xref: /linux/drivers/dma/qcom/gpi.c (revision 196dacf4541afcbccbef9c3697231af354bbab13)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2020, Linaro Limited
5  */
6 
7 #include <dt-bindings/dma/qcom-gpi.h>
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/dma/qcom-gpi-dma.h>
15 #include <linux/scatterlist.h>
16 #include <linux/slab.h>
17 #include "../dmaengine.h"
18 #include "../virt-dma.h"
19 
20 #define TRE_TYPE_DMA		0x10
21 #define TRE_TYPE_IMMEDIATE_DMA	0x11
22 #define TRE_TYPE_GO		0x20
23 #define TRE_TYPE_CONFIG0	0x22
24 
25 /* TRE flags */
26 #define TRE_FLAGS_CHAIN		BIT(0)
27 #define TRE_FLAGS_IEOB		BIT(8)
28 #define TRE_FLAGS_IEOT		BIT(9)
29 #define TRE_FLAGS_BEI		BIT(10)
30 #define TRE_FLAGS_LINK		BIT(11)
31 #define TRE_FLAGS_TYPE		GENMASK(23, 16)
32 
33 /* SPI CONFIG0 WD0 */
34 #define TRE_SPI_C0_WORD_SZ	GENMASK(4, 0)
35 #define TRE_SPI_C0_LOOPBACK	BIT(8)
36 #define TRE_SPI_C0_CS		BIT(11)
37 #define TRE_SPI_C0_CPHA		BIT(12)
38 #define TRE_SPI_C0_CPOL		BIT(13)
39 #define TRE_SPI_C0_TX_PACK	BIT(24)
40 #define TRE_SPI_C0_RX_PACK	BIT(25)
41 
42 /* CONFIG0 WD2 */
43 #define TRE_C0_CLK_DIV		GENMASK(11, 0)
44 #define TRE_C0_CLK_SRC		GENMASK(19, 16)
45 
46 /* SPI GO WD0 */
47 #define TRE_SPI_GO_CMD		GENMASK(4, 0)
48 #define TRE_SPI_GO_CS		GENMASK(10, 8)
49 #define TRE_SPI_GO_FRAG		BIT(26)
50 
51 /* GO WD2 */
52 #define TRE_RX_LEN		GENMASK(23, 0)
53 
54 /* I2C Config0 WD0 */
55 #define TRE_I2C_C0_TLOW		GENMASK(7, 0)
56 #define TRE_I2C_C0_THIGH	GENMASK(15, 8)
57 #define TRE_I2C_C0_TCYL		GENMASK(23, 16)
58 #define TRE_I2C_C0_TX_PACK	BIT(24)
59 #define TRE_I2C_C0_RX_PACK      BIT(25)
60 
61 /* I2C GO WD0 */
62 #define TRE_I2C_GO_CMD          GENMASK(4, 0)
63 #define TRE_I2C_GO_ADDR		GENMASK(14, 8)
64 #define TRE_I2C_GO_STRETCH	BIT(26)
65 
66 /* DMA TRE */
67 #define TRE_DMA_LEN		GENMASK(23, 0)
68 #define TRE_DMA_IMMEDIATE_LEN	GENMASK(3, 0)
69 
70 /* Register offsets from gpi-top */
71 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k)	(0x20000 + (0x4000 * (n)) + (0x80 * (k)))
72 #define GPII_n_CH_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
73 #define GPII_n_CH_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
74 #define GPII_n_CH_k_CNTXT_0_ERIDX	GENMASK(18, 14)
75 #define GPII_n_CH_k_CNTXT_0_DIR		BIT(3)
76 #define GPII_n_CH_k_CNTXT_0_PROTO	GENMASK(2, 0)
77 
78 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto)  \
79 	(FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size)	| \
80 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex)		| \
81 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir)		| \
82 	 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
83 
84 #define GPI_CHTYPE_DIR_IN	(0)
85 #define GPI_CHTYPE_DIR_OUT	(1)
86 
87 #define GPI_CHTYPE_PROTO_GPI	(0x2)
88 
89 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k)	(0x22000 + (0x4000 * (n)) + (0x8 * (k)))
90 #define GPII_n_CH_CMD_OFFS(n)			(0x23008 + (0x4000 * (n)))
91 #define GPII_n_CH_CMD_OPCODE			GENMASK(31, 24)
92 #define GPII_n_CH_CMD_CHID			GENMASK(7, 0)
93 #define GPII_n_CH_CMD(opcode, chid)				 \
94 		     (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
95 		      FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
96 
97 #define GPII_n_CH_CMD_ALLOCATE		(0)
98 #define GPII_n_CH_CMD_START		(1)
99 #define GPII_n_CH_CMD_STOP		(2)
100 #define GPII_n_CH_CMD_RESET		(9)
101 #define GPII_n_CH_CMD_DE_ALLOC		(10)
102 #define GPII_n_CH_CMD_UART_SW_STALE	(32)
103 #define GPII_n_CH_CMD_UART_RFR_READY	(33)
104 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
105 
106 /* EV Context Array */
107 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
108 #define GPII_n_EV_k_CNTXT_0_EL_SIZE	GENMASK(31, 24)
109 #define GPII_n_EV_k_CNTXT_0_CHSTATE	GENMASK(23, 20)
110 #define GPII_n_EV_k_CNTXT_0_INTYPE	BIT(16)
111 #define GPII_n_EV_k_CNTXT_0_CHTYPE	GENMASK(3, 0)
112 
113 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype)		\
114 	(FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) |	\
115 	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype)  |	\
116 	 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
117 
118 #define GPI_INTTYPE_IRQ		(1)
119 #define GPI_CHTYPE_GPI_EV	(0x2)
120 
121 enum CNTXT_OFFS {
122 	CNTXT_0_CONFIG = 0x0,
123 	CNTXT_1_R_LENGTH = 0x4,
124 	CNTXT_2_RING_BASE_LSB = 0x8,
125 	CNTXT_3_RING_BASE_MSB = 0xC,
126 	CNTXT_4_RING_RP_LSB = 0x10,
127 	CNTXT_5_RING_RP_MSB = 0x14,
128 	CNTXT_6_RING_WP_LSB = 0x18,
129 	CNTXT_7_RING_WP_MSB = 0x1C,
130 	CNTXT_8_RING_INT_MOD = 0x20,
131 	CNTXT_9_RING_INTVEC = 0x24,
132 	CNTXT_10_RING_MSI_LSB = 0x28,
133 	CNTXT_11_RING_MSI_MSB = 0x2C,
134 	CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
135 	CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
136 };
137 
138 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k)	(0x22100 + (0x4000 * (n)) + (0x8 * (k)))
139 #define GPII_n_EV_CH_CMD_OFFS(n)		(0x23010 + (0x4000 * (n)))
140 #define GPII_n_EV_CMD_OPCODE			GENMASK(31, 24)
141 #define GPII_n_EV_CMD_CHID			GENMASK(7, 0)
142 #define GPII_n_EV_CMD(opcode, chid)				 \
143 		     (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
144 		      FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
145 
146 #define GPII_n_EV_CH_CMD_ALLOCATE		(0x00)
147 #define GPII_n_EV_CH_CMD_RESET			(0x09)
148 #define GPII_n_EV_CH_CMD_DE_ALLOC		(0x0A)
149 
150 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n)		(0x23080 + (0x4000 * (n)))
151 
152 /* mask type register */
153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n)	(0x23088 + (0x4000 * (n)))
154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK		GENMASK(6, 0)
155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL	BIT(6)
156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB		BIT(3)
157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB		BIT(2)
158 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL	BIT(1)
159 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL	BIT(0)
160 
161 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n)	(0x23090 + (0x4000 * (n)))
162 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n)	(0x23094 + (0x4000 * (n)))
163 
164 /* Mask channel control interrupt register */
165 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n)	(0x23098 + (0x4000 * (n)))
166 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK	GENMASK(1, 0)
167 
168 /* Mask event control interrupt register */
169 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n)	(0x2309C + (0x4000 * (n)))
170 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK	BIT(0)
171 
172 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n)	(0x230A0 + (0x4000 * (n)))
173 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n)	(0x230A4 + (0x4000 * (n)))
174 
175 /* Mask event interrupt register */
176 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n)	(0x230B8 + (0x4000 * (n)))
177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK	BIT(0)
178 
179 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n)	(0x230C0 + (0x4000 * (n)))
180 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n)	(0x23100 + (0x4000 * (n)))
181 #define GPI_GLOB_IRQ_ERROR_INT_MSK		BIT(0)
182 
183 /* GPII specific Global - Enable bit register */
184 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n)	(0x23108 + (0x4000 * (n)))
185 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n)	(0x23110 + (0x4000 * (n)))
186 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n)	(0x23118 + (0x4000 * (n)))
187 
188 /* GPII general interrupt - Enable bit register */
189 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n)	(0x23120 + (0x4000 * (n)))
190 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK		GENMASK(3, 0)
191 
192 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n)	(0x23128 + (0x4000 * (n)))
193 
194 /* GPII Interrupt Type register */
195 #define GPII_n_CNTXT_INTSET_OFFS(n)		(0x23180 + (0x4000 * (n)))
196 #define GPII_n_CNTXT_INTSET_BMSK		BIT(0)
197 
198 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n)	(0x23188 + (0x4000 * (n)))
199 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n)	(0x2318C + (0x4000 * (n)))
200 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n)		(0x23400 + (0x4000 * (n)))
201 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n)		(0x23404 + (0x4000 * (n)))
202 
203 #define GPII_n_ERROR_LOG_OFFS(n)		(0x23200 + (0x4000 * (n)))
204 
205 /* QOS Registers */
206 #define GPII_n_CH_k_QOS_OFFS(n, k)		(0x2005C + (0x4000 * (n)) + (0x80 * (k)))
207 
208 /* Scratch registers */
209 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k)	(0x20060 + (0x4000 * (n)) + (0x80 * (k)))
210 #define GPII_n_CH_k_SCRATCH_0_SEID		GENMASK(2, 0)
211 #define GPII_n_CH_k_SCRATCH_0_PROTO		GENMASK(7, 4)
212 #define GPII_n_CH_k_SCRATCH_0_PAIR		GENMASK(20, 16)
213 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid)		\
214 			     (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair)	| \
215 			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto)	| \
216 			      FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
217 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k)	(0x20064 + (0x4000 * (n)) + (0x80 * (k)))
218 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k)	(0x20068 + (0x4000 * (n)) + (0x80 * (k)))
219 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k)	(0x2006C + (0x4000 * (n)) + (0x80 * (k)))
220 
221 struct __packed gpi_tre {
222 	u32 dword[4];
223 };
224 
225 enum msm_gpi_tce_code {
226 	MSM_GPI_TCE_SUCCESS = 1,
227 	MSM_GPI_TCE_EOT = 2,
228 	MSM_GPI_TCE_EOB = 4,
229 	MSM_GPI_TCE_UNEXP_ERR = 16,
230 };
231 
232 #define CMD_TIMEOUT_MS		(250)
233 
234 #define MAX_CHANNELS_PER_GPII	(2)
235 #define GPI_TX_CHAN		(0)
236 #define GPI_RX_CHAN		(1)
237 #define STATE_IGNORE		(U32_MAX)
238 #define EV_FACTOR		(2)
239 #define REQ_OF_DMA_ARGS		(5) /* # of arguments required from client */
240 #define CHAN_TRES		64
241 
242 struct __packed xfer_compl_event {
243 	u64 ptr;
244 	u32 length:24;
245 	u8 code;
246 	u16 status;
247 	u8 type;
248 	u8 chid;
249 };
250 
251 struct __packed immediate_data_event {
252 	u8 data_bytes[8];
253 	u8 length:4;
254 	u8 resvd:4;
255 	u16 tre_index;
256 	u8 code;
257 	u16 status;
258 	u8 type;
259 	u8 chid;
260 };
261 
262 struct __packed qup_notif_event {
263 	u32 status;
264 	u32 time;
265 	u32 count:24;
266 	u8 resvd;
267 	u16 resvd1;
268 	u8 type;
269 	u8 chid;
270 };
271 
272 struct __packed gpi_ere {
273 	u32 dword[4];
274 };
275 
276 enum GPI_EV_TYPE {
277 	XFER_COMPLETE_EV_TYPE = 0x22,
278 	IMMEDIATE_DATA_EV_TYPE = 0x30,
279 	QUP_NOTIF_EV_TYPE = 0x31,
280 	STALE_EV_TYPE = 0xFF,
281 };
282 
283 union __packed gpi_event {
284 	struct __packed xfer_compl_event xfer_compl_event;
285 	struct __packed immediate_data_event immediate_data_event;
286 	struct __packed qup_notif_event qup_notif_event;
287 	struct __packed gpi_ere gpi_ere;
288 };
289 
290 enum gpii_irq_settings {
291 	DEFAULT_IRQ_SETTINGS,
292 	MASK_IEOB_SETTINGS,
293 };
294 
295 enum gpi_ev_state {
296 	DEFAULT_EV_CH_STATE = 0,
297 	EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
298 	EV_STATE_ALLOCATED,
299 	MAX_EV_STATES
300 };
301 
302 static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
303 	[EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
304 	[EV_STATE_ALLOCATED] = "ALLOCATED",
305 };
306 
307 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
308 				    "INVALID" : gpi_ev_state_str[(_state)])
309 
310 enum gpi_ch_state {
311 	DEFAULT_CH_STATE = 0x0,
312 	CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
313 	CH_STATE_ALLOCATED = 0x1,
314 	CH_STATE_STARTED = 0x2,
315 	CH_STATE_STOPPED = 0x3,
316 	CH_STATE_STOP_IN_PROC = 0x4,
317 	CH_STATE_ERROR = 0xf,
318 	MAX_CH_STATES
319 };
320 
321 enum gpi_cmd {
322 	GPI_CH_CMD_BEGIN,
323 	GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
324 	GPI_CH_CMD_START,
325 	GPI_CH_CMD_STOP,
326 	GPI_CH_CMD_RESET,
327 	GPI_CH_CMD_DE_ALLOC,
328 	GPI_CH_CMD_UART_SW_STALE,
329 	GPI_CH_CMD_UART_RFR_READY,
330 	GPI_CH_CMD_UART_RFR_NOT_READY,
331 	GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
332 	GPI_EV_CMD_BEGIN,
333 	GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
334 	GPI_EV_CMD_RESET,
335 	GPI_EV_CMD_DEALLOC,
336 	GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
337 	GPI_MAX_CMD,
338 };
339 
340 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
341 
342 static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
343 	[GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
344 	[GPI_CH_CMD_START] = "CH START",
345 	[GPI_CH_CMD_STOP] = "CH STOP",
346 	[GPI_CH_CMD_RESET] = "CH_RESET",
347 	[GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
348 	[GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
349 	[GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
350 	[GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
351 	[GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
352 	[GPI_EV_CMD_RESET] = "EV RESET",
353 	[GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
354 };
355 
356 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
357 				  gpi_cmd_str[(_cmd)])
358 
359 /*
360  * @DISABLE_STATE: no register access allowed
361  * @CONFIG_STATE:  client has configured the channel
362  * @PREP_HARDWARE: register access is allowed
363  *		   however, no processing EVENTS
364  * @ACTIVE_STATE: channels are fully operational
365  * @PREPARE_TERMINATE: graceful termination of channels
366  *		       register access is allowed
367  * @PAUSE_STATE: channels are active, but not processing any events
368  */
369 enum gpi_pm_state {
370 	DISABLE_STATE,
371 	CONFIG_STATE,
372 	PREPARE_HARDWARE,
373 	ACTIVE_STATE,
374 	PREPARE_TERMINATE,
375 	PAUSE_STATE,
376 	MAX_PM_STATE
377 };
378 
379 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
380 
381 static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
382 	[DISABLE_STATE] = "DISABLE",
383 	[CONFIG_STATE] = "CONFIG",
384 	[PREPARE_HARDWARE] = "PREPARE HARDWARE",
385 	[ACTIVE_STATE] = "ACTIVE",
386 	[PREPARE_TERMINATE] = "PREPARE TERMINATE",
387 	[PAUSE_STATE] = "PAUSE",
388 };
389 
390 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
391 			      "INVALID" : gpi_pm_state_str[(_state)])
392 
393 static const struct {
394 	enum gpi_cmd gpi_cmd;
395 	u32 opcode;
396 	u32 state;
397 } gpi_cmd_info[GPI_MAX_CMD] = {
398 	{
399 		GPI_CH_CMD_ALLOCATE,
400 		GPII_n_CH_CMD_ALLOCATE,
401 		CH_STATE_ALLOCATED,
402 	},
403 	{
404 		GPI_CH_CMD_START,
405 		GPII_n_CH_CMD_START,
406 		CH_STATE_STARTED,
407 	},
408 	{
409 		GPI_CH_CMD_STOP,
410 		GPII_n_CH_CMD_STOP,
411 		CH_STATE_STOPPED,
412 	},
413 	{
414 		GPI_CH_CMD_RESET,
415 		GPII_n_CH_CMD_RESET,
416 		CH_STATE_ALLOCATED,
417 	},
418 	{
419 		GPI_CH_CMD_DE_ALLOC,
420 		GPII_n_CH_CMD_DE_ALLOC,
421 		CH_STATE_NOT_ALLOCATED,
422 	},
423 	{
424 		GPI_CH_CMD_UART_SW_STALE,
425 		GPII_n_CH_CMD_UART_SW_STALE,
426 		STATE_IGNORE,
427 	},
428 	{
429 		GPI_CH_CMD_UART_RFR_READY,
430 		GPII_n_CH_CMD_UART_RFR_READY,
431 		STATE_IGNORE,
432 	},
433 	{
434 		GPI_CH_CMD_UART_RFR_NOT_READY,
435 		GPII_n_CH_CMD_UART_RFR_NOT_READY,
436 		STATE_IGNORE,
437 	},
438 	{
439 		GPI_EV_CMD_ALLOCATE,
440 		GPII_n_EV_CH_CMD_ALLOCATE,
441 		EV_STATE_ALLOCATED,
442 	},
443 	{
444 		GPI_EV_CMD_RESET,
445 		GPII_n_EV_CH_CMD_RESET,
446 		EV_STATE_ALLOCATED,
447 	},
448 	{
449 		GPI_EV_CMD_DEALLOC,
450 		GPII_n_EV_CH_CMD_DE_ALLOC,
451 		EV_STATE_NOT_ALLOCATED,
452 	},
453 };
454 
455 struct gpi_ring {
456 	void *pre_aligned;
457 	size_t alloc_size;
458 	phys_addr_t phys_addr;
459 	dma_addr_t dma_handle;
460 	void *base;
461 	void *wp;
462 	void *rp;
463 	u32 len;
464 	u32 el_size;
465 	u32 elements;
466 	bool configured;
467 };
468 
469 struct gpi_dev {
470 	struct dma_device dma_device;
471 	struct device *dev;
472 	struct resource *res;
473 	void __iomem *regs;
474 	void __iomem *ee_base; /*ee register base address*/
475 	u32 max_gpii; /* maximum # of gpii instances available per gpi block */
476 	u32 gpii_mask; /* gpii instances available for apps */
477 	u32 ev_factor; /* ev ring length factor */
478 	struct gpii *gpiis;
479 };
480 
481 struct gchan {
482 	struct virt_dma_chan vc;
483 	u32 chid;
484 	u32 seid;
485 	u32 protocol;
486 	struct gpii *gpii;
487 	enum gpi_ch_state ch_state;
488 	enum gpi_pm_state pm_state;
489 	void __iomem *ch_cntxt_base_reg;
490 	void __iomem *ch_cntxt_db_reg;
491 	void __iomem *ch_cmd_reg;
492 	u32 dir;
493 	struct gpi_ring ch_ring;
494 	void *config;
495 };
496 
497 struct gpii {
498 	u32 gpii_id;
499 	struct gchan gchan[MAX_CHANNELS_PER_GPII];
500 	struct gpi_dev *gpi_dev;
501 	int irq;
502 	void __iomem *regs; /* points to gpi top */
503 	void __iomem *ev_cntxt_base_reg;
504 	void __iomem *ev_cntxt_db_reg;
505 	void __iomem *ev_ring_rp_lsb_reg;
506 	void __iomem *ev_cmd_reg;
507 	void __iomem *ieob_clr_reg;
508 	struct mutex ctrl_lock;
509 	enum gpi_ev_state ev_state;
510 	bool configured_irq;
511 	enum gpi_pm_state pm_state;
512 	rwlock_t pm_lock;
513 	struct gpi_ring ev_ring;
514 	struct tasklet_struct ev_task; /* event processing tasklet */
515 	struct completion cmd_completion;
516 	enum gpi_cmd gpi_cmd;
517 	u32 cntxt_type_irq_msk;
518 	bool ieob_set;
519 };
520 
521 #define MAX_TRE 3
522 
523 struct gpi_desc {
524 	struct virt_dma_desc vd;
525 	size_t len;
526 	void *db; /* DB register to program */
527 	struct gchan *gchan;
528 	struct gpi_tre tre[MAX_TRE];
529 	u32 num_tre;
530 };
531 
532 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
533 	GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
534 };
535 
536 static irqreturn_t gpi_handle_irq(int irq, void *data);
537 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
538 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
539 static void gpi_process_events(struct gpii *gpii);
540 
to_gchan(struct dma_chan * dma_chan)541 static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
542 {
543 	return container_of(dma_chan, struct gchan, vc.chan);
544 }
545 
to_gpi_desc(struct virt_dma_desc * vd)546 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
547 {
548 	return container_of(vd, struct gpi_desc, vd);
549 }
550 
to_physical(const struct gpi_ring * const ring,void * addr)551 static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
552 				      void *addr)
553 {
554 	return ring->phys_addr + (addr - ring->base);
555 }
556 
to_virtual(const struct gpi_ring * const ring,phys_addr_t addr)557 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
558 {
559 	return ring->base + (addr - ring->phys_addr);
560 }
561 
gpi_read_reg(struct gpii * gpii,void __iomem * addr)562 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
563 {
564 	return readl_relaxed(addr);
565 }
566 
gpi_write_reg(struct gpii * gpii,void __iomem * addr,u32 val)567 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
568 {
569 	writel_relaxed(val, addr);
570 }
571 
572 static __always_inline void
gpi_update_reg(struct gpii * gpii,u32 offset,u32 mask,u32 val)573 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
574 {
575 	void __iomem *addr = gpii->regs + offset;
576 	u32 tmp = gpi_read_reg(gpii, addr);
577 
578 	tmp &= ~mask;
579 	tmp |= u32_encode_bits(val, mask);
580 
581 	gpi_write_reg(gpii, addr, tmp);
582 }
583 
gpi_disable_interrupts(struct gpii * gpii)584 static void gpi_disable_interrupts(struct gpii *gpii)
585 {
586 	gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
587 		       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
588 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
589 		       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
590 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
591 		       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
592 	gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
593 		       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
594 	gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
595 		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
596 	gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
597 		       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
598 	gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
599 		       GPII_n_CNTXT_INTSET_BMSK, 0);
600 
601 	gpii->cntxt_type_irq_msk = 0;
602 	devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
603 	gpii->configured_irq = false;
604 }
605 
606 /* configure and enable interrupts */
gpi_config_interrupts(struct gpii * gpii,enum gpii_irq_settings settings,bool mask)607 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
608 {
609 	const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
610 			      GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
611 			      GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
612 			      GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
613 			      GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
614 	int ret;
615 
616 	if (!gpii->configured_irq) {
617 		ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
618 				       gpi_handle_irq, IRQF_TRIGGER_HIGH,
619 				       "gpi-dma", gpii);
620 		if (ret < 0) {
621 			dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
622 				gpii->irq, ret);
623 			return ret;
624 		}
625 	}
626 
627 	if (settings == MASK_IEOB_SETTINGS) {
628 		/*
629 		 * GPII only uses one EV ring per gpii so we can globally
630 		 * enable/disable IEOB interrupt
631 		 */
632 		if (mask)
633 			gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
634 		else
635 			gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
636 		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
637 			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
638 	} else {
639 		gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
640 			       GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
641 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
642 			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
643 			       GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
644 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
645 			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
646 			       GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
647 		gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
648 			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
649 			       GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
650 		gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
651 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
652 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
653 		gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
654 			       GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
655 		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
656 		gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
657 		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
658 		gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
659 		gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
660 			       GPII_n_CNTXT_INTSET_BMSK, 1);
661 		gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
662 
663 		gpii->cntxt_type_irq_msk = enable;
664 	}
665 
666 	gpii->configured_irq = true;
667 	return 0;
668 }
669 
670 /* Sends gpii event or channel command */
gpi_send_cmd(struct gpii * gpii,struct gchan * gchan,enum gpi_cmd gpi_cmd)671 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
672 			enum gpi_cmd gpi_cmd)
673 {
674 	u32 chid = MAX_CHANNELS_PER_GPII;
675 	unsigned long timeout;
676 	void __iomem *cmd_reg;
677 	u32 cmd;
678 
679 	if (gpi_cmd >= GPI_MAX_CMD)
680 		return -EINVAL;
681 	if (IS_CHAN_CMD(gpi_cmd))
682 		chid = gchan->chid;
683 
684 	dev_dbg(gpii->gpi_dev->dev,
685 		"sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
686 
687 	/* send opcode and wait for completion */
688 	reinit_completion(&gpii->cmd_completion);
689 	gpii->gpi_cmd = gpi_cmd;
690 
691 	cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
692 	cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
693 				     GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
694 	gpi_write_reg(gpii, cmd_reg, cmd);
695 	timeout = wait_for_completion_timeout(&gpii->cmd_completion,
696 					      msecs_to_jiffies(CMD_TIMEOUT_MS));
697 	if (!timeout) {
698 		dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
699 			TO_GPI_CMD_STR(gpi_cmd), chid);
700 		return -EIO;
701 	}
702 
703 	/* confirm new ch state is correct , if the cmd is a state change cmd */
704 	if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
705 		return 0;
706 
707 	if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
708 		return 0;
709 
710 	if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
711 		return 0;
712 
713 	return -EIO;
714 }
715 
716 /* program transfer ring DB register */
gpi_write_ch_db(struct gchan * gchan,struct gpi_ring * ring,void * wp)717 static inline void gpi_write_ch_db(struct gchan *gchan,
718 				   struct gpi_ring *ring, void *wp)
719 {
720 	struct gpii *gpii = gchan->gpii;
721 	phys_addr_t p_wp;
722 
723 	p_wp = to_physical(ring, wp);
724 	gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
725 }
726 
727 /* program event ring DB register */
gpi_write_ev_db(struct gpii * gpii,struct gpi_ring * ring,void * wp)728 static inline void gpi_write_ev_db(struct gpii *gpii,
729 				   struct gpi_ring *ring, void *wp)
730 {
731 	phys_addr_t p_wp;
732 
733 	p_wp = ring->phys_addr + (wp - ring->base);
734 	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
735 }
736 
737 /* process transfer completion interrupt */
gpi_process_ieob(struct gpii * gpii)738 static void gpi_process_ieob(struct gpii *gpii)
739 {
740 	gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
741 
742 	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
743 	tasklet_hi_schedule(&gpii->ev_task);
744 }
745 
746 /* process channel control interrupt */
gpi_process_ch_ctrl_irq(struct gpii * gpii)747 static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
748 {
749 	u32 gpii_id = gpii->gpii_id;
750 	u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
751 	u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
752 	struct gchan *gchan;
753 	u32 chid, state;
754 
755 	/* clear the status */
756 	offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
757 	gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
758 
759 	for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
760 		if (!(BIT(chid) & ch_irq))
761 			continue;
762 
763 		gchan = &gpii->gchan[chid];
764 		state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
765 				     CNTXT_0_CONFIG);
766 		state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
767 
768 		/*
769 		 * CH_CMD_DEALLOC cmd always successful. However cmd does
770 		 * not change hardware status. So overwriting software state
771 		 * to default state.
772 		 */
773 		if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
774 			state = DEFAULT_CH_STATE;
775 		gchan->ch_state = state;
776 
777 		/*
778 		 * Triggering complete all if ch_state is not a stop in process.
779 		 * Stop in process is a transition state and we will wait for
780 		 * stop interrupt before notifying.
781 		 */
782 		if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
783 			complete_all(&gpii->cmd_completion);
784 	}
785 }
786 
787 /* processing gpi general error interrupts */
gpi_process_gen_err_irq(struct gpii * gpii)788 static void gpi_process_gen_err_irq(struct gpii *gpii)
789 {
790 	u32 gpii_id = gpii->gpii_id;
791 	u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
792 	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
793 
794 	/* clear the status */
795 	dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
796 
797 	/* Clear the register */
798 	offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
799 	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
800 }
801 
802 /* processing gpi level error interrupts */
gpi_process_glob_err_irq(struct gpii * gpii)803 static void gpi_process_glob_err_irq(struct gpii *gpii)
804 {
805 	u32 gpii_id = gpii->gpii_id;
806 	u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
807 	u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
808 
809 	offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
810 	gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
811 
812 	/* only error interrupt should be set */
813 	if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
814 		dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
815 		return;
816 	}
817 
818 	offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
819 	gpi_write_reg(gpii, gpii->regs + offset, 0);
820 }
821 
822 /* gpii interrupt handler */
gpi_handle_irq(int irq,void * data)823 static irqreturn_t gpi_handle_irq(int irq, void *data)
824 {
825 	struct gpii *gpii = data;
826 	u32 gpii_id = gpii->gpii_id;
827 	u32 type, offset;
828 	unsigned long flags;
829 
830 	read_lock_irqsave(&gpii->pm_lock, flags);
831 
832 	/*
833 	 * States are out of sync to receive interrupt
834 	 * while software state is in DISABLE state, bailing out.
835 	 */
836 	if (!REG_ACCESS_VALID(gpii->pm_state)) {
837 		dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
838 			TO_GPI_PM_STR(gpii->pm_state));
839 		goto exit_irq;
840 	}
841 
842 	offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
843 	type = gpi_read_reg(gpii, gpii->regs + offset);
844 
845 	do {
846 		/* global gpii error */
847 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
848 			gpi_process_glob_err_irq(gpii);
849 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
850 		}
851 
852 		/* transfer complete interrupt */
853 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
854 			gpi_process_ieob(gpii);
855 			type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
856 		}
857 
858 		/* event control irq */
859 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
860 			u32 ev_state;
861 			u32 ev_ch_irq;
862 
863 			dev_dbg(gpii->gpi_dev->dev,
864 				"processing EV CTRL interrupt\n");
865 			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
866 			ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
867 
868 			offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
869 				(gpii_id);
870 			gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
871 			ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
872 						CNTXT_0_CONFIG);
873 			ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
874 
875 			/*
876 			 * CMD EV_CMD_DEALLOC is always successful. However
877 			 * cmd does not change hardware status. So overwriting
878 			 * software state to default state.
879 			 */
880 			if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
881 				ev_state = DEFAULT_EV_CH_STATE;
882 
883 			gpii->ev_state = ev_state;
884 			dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
885 				TO_GPI_EV_STATE_STR(gpii->ev_state));
886 			complete_all(&gpii->cmd_completion);
887 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
888 		}
889 
890 		/* channel control irq */
891 		if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
892 			dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
893 			gpi_process_ch_ctrl_irq(gpii);
894 			type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
895 		}
896 
897 		if (type) {
898 			dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
899 			gpi_process_gen_err_irq(gpii);
900 			goto exit_irq;
901 		}
902 
903 		offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
904 		type = gpi_read_reg(gpii, gpii->regs + offset);
905 	} while (type);
906 
907 exit_irq:
908 	read_unlock_irqrestore(&gpii->pm_lock, flags);
909 
910 	return IRQ_HANDLED;
911 }
912 
913 /* process DMA Immediate completion data events */
gpi_process_imed_data_event(struct gchan * gchan,struct immediate_data_event * imed_event)914 static void gpi_process_imed_data_event(struct gchan *gchan,
915 					struct immediate_data_event *imed_event)
916 {
917 	struct gpii *gpii = gchan->gpii;
918 	struct gpi_ring *ch_ring = &gchan->ch_ring;
919 	void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
920 	struct dmaengine_result result;
921 	struct gpi_desc *gpi_desc;
922 	struct virt_dma_desc *vd;
923 	unsigned long flags;
924 	u32 chid;
925 
926 	/*
927 	 * If channel not active don't process event
928 	 */
929 	if (gchan->pm_state != ACTIVE_STATE) {
930 		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
931 			TO_GPI_PM_STR(gchan->pm_state));
932 		return;
933 	}
934 
935 	spin_lock_irqsave(&gchan->vc.lock, flags);
936 	vd = vchan_next_desc(&gchan->vc);
937 	if (!vd) {
938 		struct gpi_ere *gpi_ere;
939 		struct gpi_tre *gpi_tre;
940 
941 		spin_unlock_irqrestore(&gchan->vc.lock, flags);
942 		dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
943 		gpi_ere = (struct gpi_ere *)imed_event;
944 		dev_dbg(gpii->gpi_dev->dev,
945 			"Event: %08x %08x %08x %08x\n",
946 			gpi_ere->dword[0], gpi_ere->dword[1],
947 			gpi_ere->dword[2], gpi_ere->dword[3]);
948 		gpi_tre = tre;
949 		dev_dbg(gpii->gpi_dev->dev,
950 			"Pending TRE: %08x %08x %08x %08x\n",
951 			gpi_tre->dword[0], gpi_tre->dword[1],
952 			gpi_tre->dword[2], gpi_tre->dword[3]);
953 		return;
954 	}
955 	gpi_desc = to_gpi_desc(vd);
956 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
957 
958 	/*
959 	 * RP pointed by Event is to last TRE processed,
960 	 * we need to update ring rp to tre + 1
961 	 */
962 	tre += ch_ring->el_size;
963 	if (tre >= (ch_ring->base + ch_ring->len))
964 		tre = ch_ring->base;
965 	ch_ring->rp = tre;
966 
967 	/* make sure rp updates are immediately visible to all cores */
968 	smp_wmb();
969 
970 	chid = imed_event->chid;
971 	if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
972 		if (chid == GPI_RX_CHAN)
973 			goto gpi_free_desc;
974 		else
975 			return;
976 	}
977 
978 	if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
979 		result.result = DMA_TRANS_ABORTED;
980 	else
981 		result.result = DMA_TRANS_NOERROR;
982 	result.residue = gpi_desc->len - imed_event->length;
983 
984 	dma_cookie_complete(&vd->tx);
985 	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
986 
987 gpi_free_desc:
988 	spin_lock_irqsave(&gchan->vc.lock, flags);
989 	list_del(&vd->node);
990 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
991 	kfree(gpi_desc);
992 	gpi_desc = NULL;
993 }
994 
995 /* processing transfer completion events */
gpi_process_xfer_compl_event(struct gchan * gchan,struct xfer_compl_event * compl_event)996 static void gpi_process_xfer_compl_event(struct gchan *gchan,
997 					 struct xfer_compl_event *compl_event)
998 {
999 	struct gpii *gpii = gchan->gpii;
1000 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1001 	void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1002 	struct virt_dma_desc *vd;
1003 	struct gpi_desc *gpi_desc;
1004 	struct dmaengine_result result;
1005 	unsigned long flags;
1006 	u32 chid;
1007 
1008 	/* only process events on active channel */
1009 	if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1010 		dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1011 			TO_GPI_PM_STR(gchan->pm_state));
1012 		return;
1013 	}
1014 
1015 	spin_lock_irqsave(&gchan->vc.lock, flags);
1016 	vd = vchan_next_desc(&gchan->vc);
1017 	if (!vd) {
1018 		struct gpi_ere *gpi_ere;
1019 
1020 		spin_unlock_irqrestore(&gchan->vc.lock, flags);
1021 		dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1022 		gpi_ere = (struct gpi_ere *)compl_event;
1023 		dev_err(gpii->gpi_dev->dev,
1024 			"Event: %08x %08x %08x %08x\n",
1025 			gpi_ere->dword[0], gpi_ere->dword[1],
1026 			gpi_ere->dword[2], gpi_ere->dword[3]);
1027 		return;
1028 	}
1029 
1030 	gpi_desc = to_gpi_desc(vd);
1031 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1032 
1033 	/*
1034 	 * RP pointed by Event is to last TRE processed,
1035 	 * we need to update ring rp to ev_rp + 1
1036 	 */
1037 	ev_rp += ch_ring->el_size;
1038 	if (ev_rp >= (ch_ring->base + ch_ring->len))
1039 		ev_rp = ch_ring->base;
1040 	ch_ring->rp = ev_rp;
1041 
1042 	/* update must be visible to other cores */
1043 	smp_wmb();
1044 
1045 	chid = compl_event->chid;
1046 	if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1047 		if (chid == GPI_RX_CHAN)
1048 			goto gpi_free_desc;
1049 		else
1050 			return;
1051 	}
1052 
1053 	if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1054 		dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1055 		result.result = DMA_TRANS_ABORTED;
1056 	} else {
1057 		dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1058 		result.result = DMA_TRANS_NOERROR;
1059 	}
1060 	result.residue = gpi_desc->len - compl_event->length;
1061 	dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1062 
1063 	dma_cookie_complete(&vd->tx);
1064 	dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1065 
1066 gpi_free_desc:
1067 	spin_lock_irqsave(&gchan->vc.lock, flags);
1068 	list_del(&vd->node);
1069 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1070 	kfree(gpi_desc);
1071 	gpi_desc = NULL;
1072 }
1073 
1074 /* process all events */
gpi_process_events(struct gpii * gpii)1075 static void gpi_process_events(struct gpii *gpii)
1076 {
1077 	struct gpi_ring *ev_ring = &gpii->ev_ring;
1078 	phys_addr_t cntxt_rp;
1079 	void *rp;
1080 	union gpi_event *gpi_event;
1081 	struct gchan *gchan;
1082 	u32 chid, type;
1083 
1084 	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1085 	rp = to_virtual(ev_ring, cntxt_rp);
1086 
1087 	do {
1088 		while (rp != ev_ring->rp) {
1089 			gpi_event = ev_ring->rp;
1090 			chid = gpi_event->xfer_compl_event.chid;
1091 			type = gpi_event->xfer_compl_event.type;
1092 
1093 			dev_dbg(gpii->gpi_dev->dev,
1094 				"Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1095 				chid, type, gpi_event->gpi_ere.dword[0],
1096 				gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1097 				gpi_event->gpi_ere.dword[3]);
1098 
1099 			switch (type) {
1100 			case XFER_COMPLETE_EV_TYPE:
1101 				gchan = &gpii->gchan[chid];
1102 				gpi_process_xfer_compl_event(gchan,
1103 							     &gpi_event->xfer_compl_event);
1104 				break;
1105 			case STALE_EV_TYPE:
1106 				dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1107 				break;
1108 			case IMMEDIATE_DATA_EV_TYPE:
1109 				gchan = &gpii->gchan[chid];
1110 				gpi_process_imed_data_event(gchan,
1111 							    &gpi_event->immediate_data_event);
1112 				break;
1113 			case QUP_NOTIF_EV_TYPE:
1114 				dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1115 				break;
1116 			default:
1117 				dev_dbg(gpii->gpi_dev->dev,
1118 					"not supported event type:0x%x\n", type);
1119 			}
1120 			gpi_ring_recycle_ev_element(ev_ring);
1121 		}
1122 		gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1123 
1124 		/* clear pending IEOB events */
1125 		gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1126 
1127 		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1128 		rp = to_virtual(ev_ring, cntxt_rp);
1129 
1130 	} while (rp != ev_ring->rp);
1131 }
1132 
1133 /* processing events using tasklet */
gpi_ev_tasklet(unsigned long data)1134 static void gpi_ev_tasklet(unsigned long data)
1135 {
1136 	struct gpii *gpii = (struct gpii *)data;
1137 
1138 	read_lock(&gpii->pm_lock);
1139 	if (!REG_ACCESS_VALID(gpii->pm_state)) {
1140 		read_unlock(&gpii->pm_lock);
1141 		dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1142 			TO_GPI_PM_STR(gpii->pm_state));
1143 		return;
1144 	}
1145 
1146 	/* process the events */
1147 	gpi_process_events(gpii);
1148 
1149 	/* enable IEOB, switching back to interrupts */
1150 	gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1151 	read_unlock(&gpii->pm_lock);
1152 }
1153 
1154 /* marks all pending events for the channel as stale */
gpi_mark_stale_events(struct gchan * gchan)1155 static void gpi_mark_stale_events(struct gchan *gchan)
1156 {
1157 	struct gpii *gpii = gchan->gpii;
1158 	struct gpi_ring *ev_ring = &gpii->ev_ring;
1159 	u32 cntxt_rp, local_rp;
1160 	void *ev_rp;
1161 
1162 	cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1163 
1164 	ev_rp = ev_ring->rp;
1165 	local_rp = (u32)to_physical(ev_ring, ev_rp);
1166 	while (local_rp != cntxt_rp) {
1167 		union gpi_event *gpi_event = ev_rp;
1168 		u32 chid = gpi_event->xfer_compl_event.chid;
1169 
1170 		if (chid == gchan->chid)
1171 			gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1172 		ev_rp += ev_ring->el_size;
1173 		if (ev_rp >= (ev_ring->base + ev_ring->len))
1174 			ev_rp = ev_ring->base;
1175 		cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1176 		local_rp = (u32)to_physical(ev_ring, ev_rp);
1177 	}
1178 }
1179 
1180 /* reset sw state and issue channel reset or de-alloc */
gpi_reset_chan(struct gchan * gchan,enum gpi_cmd gpi_cmd)1181 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1182 {
1183 	struct gpii *gpii = gchan->gpii;
1184 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1185 	LIST_HEAD(list);
1186 	int ret;
1187 
1188 	ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1189 	if (ret) {
1190 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1191 			TO_GPI_CMD_STR(gpi_cmd), ret);
1192 		return ret;
1193 	}
1194 
1195 	/* initialize the local ring ptrs */
1196 	ch_ring->rp = ch_ring->base;
1197 	ch_ring->wp = ch_ring->base;
1198 
1199 	/* visible to other cores */
1200 	smp_wmb();
1201 
1202 	/* check event ring for any stale events */
1203 	write_lock_irq(&gpii->pm_lock);
1204 	gpi_mark_stale_events(gchan);
1205 
1206 	/* remove all async descriptors */
1207 	spin_lock(&gchan->vc.lock);
1208 	vchan_get_all_descriptors(&gchan->vc, &list);
1209 	spin_unlock(&gchan->vc.lock);
1210 	write_unlock_irq(&gpii->pm_lock);
1211 	vchan_dma_desc_free_list(&gchan->vc, &list);
1212 
1213 	return 0;
1214 }
1215 
gpi_start_chan(struct gchan * gchan)1216 static int gpi_start_chan(struct gchan *gchan)
1217 {
1218 	struct gpii *gpii = gchan->gpii;
1219 	int ret;
1220 
1221 	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1222 	if (ret) {
1223 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1224 			TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1225 		return ret;
1226 	}
1227 
1228 	/* gpii CH is active now */
1229 	write_lock_irq(&gpii->pm_lock);
1230 	gchan->pm_state = ACTIVE_STATE;
1231 	write_unlock_irq(&gpii->pm_lock);
1232 
1233 	return 0;
1234 }
1235 
gpi_stop_chan(struct gchan * gchan)1236 static int gpi_stop_chan(struct gchan *gchan)
1237 {
1238 	struct gpii *gpii = gchan->gpii;
1239 	int ret;
1240 
1241 	ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1242 	if (ret) {
1243 		dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1244 			TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1245 		return ret;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 /* allocate and configure the transfer channel */
gpi_alloc_chan(struct gchan * chan,bool send_alloc_cmd)1252 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1253 {
1254 	struct gpii *gpii = chan->gpii;
1255 	struct gpi_ring *ring = &chan->ch_ring;
1256 	int ret;
1257 	u32 id = gpii->gpii_id;
1258 	u32 chid = chan->chid;
1259 	u32 pair_chid = !chid;
1260 
1261 	if (send_alloc_cmd) {
1262 		ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1263 		if (ret) {
1264 			dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1265 				TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1266 			return ret;
1267 		}
1268 	}
1269 
1270 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1271 		      GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1272 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1273 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1274 	gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1275 		      upper_32_bits(ring->phys_addr));
1276 	gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1277 		      upper_32_bits(ring->phys_addr));
1278 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1279 		      GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1280 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1281 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1282 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1283 	gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1284 
1285 	/* flush all the writes */
1286 	wmb();
1287 	return 0;
1288 }
1289 
1290 /* allocate and configure event ring */
gpi_alloc_ev_chan(struct gpii * gpii)1291 static int gpi_alloc_ev_chan(struct gpii *gpii)
1292 {
1293 	struct gpi_ring *ring = &gpii->ev_ring;
1294 	void __iomem *base = gpii->ev_cntxt_base_reg;
1295 	int ret;
1296 
1297 	ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1298 	if (ret) {
1299 		dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1300 			TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1301 		return ret;
1302 	}
1303 
1304 	/* program event context */
1305 	gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1306 		      GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1307 	gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1308 	gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1309 	gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1310 	gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1311 		      upper_32_bits(ring->phys_addr));
1312 	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1313 	gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1314 	gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1315 	gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1316 	gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1317 	gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1318 
1319 	/* add events to ring */
1320 	ring->wp = (ring->base + ring->len - ring->el_size);
1321 
1322 	/* flush all the writes */
1323 	wmb();
1324 
1325 	/* gpii is active now */
1326 	write_lock_irq(&gpii->pm_lock);
1327 	gpii->pm_state = ACTIVE_STATE;
1328 	write_unlock_irq(&gpii->pm_lock);
1329 	gpi_write_ev_db(gpii, ring, ring->wp);
1330 
1331 	return 0;
1332 }
1333 
1334 /* calculate # of ERE/TRE available to queue */
gpi_ring_num_elements_avail(const struct gpi_ring * const ring)1335 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1336 {
1337 	int elements = 0;
1338 
1339 	if (ring->wp < ring->rp) {
1340 		elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1341 	} else {
1342 		elements = (ring->rp - ring->base) / ring->el_size;
1343 		elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1344 	}
1345 
1346 	return elements;
1347 }
1348 
gpi_ring_add_element(struct gpi_ring * ring,void ** wp)1349 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1350 {
1351 	if (gpi_ring_num_elements_avail(ring) <= 0)
1352 		return -ENOMEM;
1353 
1354 	*wp = ring->wp;
1355 	ring->wp += ring->el_size;
1356 	if (ring->wp  >= (ring->base + ring->len))
1357 		ring->wp = ring->base;
1358 
1359 	/* visible to other cores */
1360 	smp_wmb();
1361 
1362 	return 0;
1363 }
1364 
gpi_ring_recycle_ev_element(struct gpi_ring * ring)1365 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1366 {
1367 	/* Update the WP */
1368 	ring->wp += ring->el_size;
1369 	if (ring->wp  >= (ring->base + ring->len))
1370 		ring->wp = ring->base;
1371 
1372 	/* Update the RP */
1373 	ring->rp += ring->el_size;
1374 	if (ring->rp  >= (ring->base + ring->len))
1375 		ring->rp = ring->base;
1376 
1377 	/* visible to other cores */
1378 	smp_wmb();
1379 }
1380 
gpi_free_ring(struct gpi_ring * ring,struct gpii * gpii)1381 static void gpi_free_ring(struct gpi_ring *ring,
1382 			  struct gpii *gpii)
1383 {
1384 	dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1385 			  ring->pre_aligned, ring->dma_handle);
1386 	memset(ring, 0, sizeof(*ring));
1387 }
1388 
1389 /* allocate memory for transfer and event rings */
gpi_alloc_ring(struct gpi_ring * ring,u32 elements,u32 el_size,struct gpii * gpii)1390 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1391 			  u32 el_size, struct gpii *gpii)
1392 {
1393 	u64 len = elements * el_size;
1394 	int bit;
1395 
1396 	/* ring len must be power of 2 */
1397 	bit = find_last_bit((unsigned long *)&len, 32);
1398 	if (((1 << bit) - 1) & len)
1399 		bit++;
1400 	len = 1 << bit;
1401 	ring->alloc_size = (len + (len - 1));
1402 	dev_dbg(gpii->gpi_dev->dev,
1403 		"#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n",
1404 		  elements, el_size, (elements * el_size), len,
1405 		  ring->alloc_size);
1406 
1407 	ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1408 					       ring->alloc_size,
1409 					       &ring->dma_handle, GFP_KERNEL);
1410 	if (!ring->pre_aligned) {
1411 		dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n",
1412 			ring->alloc_size);
1413 		return -ENOMEM;
1414 	}
1415 
1416 	/* align the physical mem */
1417 	ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1418 	ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1419 	ring->rp = ring->base;
1420 	ring->wp = ring->base;
1421 	ring->len = len;
1422 	ring->el_size = el_size;
1423 	ring->elements = ring->len / ring->el_size;
1424 	memset(ring->base, 0, ring->len);
1425 	ring->configured = true;
1426 
1427 	/* update to other cores */
1428 	smp_wmb();
1429 
1430 	dev_dbg(gpii->gpi_dev->dev,
1431 		"phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n",
1432 		&ring->dma_handle, &ring->phys_addr, ring->len,
1433 		ring->el_size, ring->elements);
1434 
1435 	return 0;
1436 }
1437 
1438 /* copy tre into transfer ring */
gpi_queue_xfer(struct gpii * gpii,struct gchan * gchan,struct gpi_tre * gpi_tre,void ** wp)1439 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1440 			   struct gpi_tre *gpi_tre, void **wp)
1441 {
1442 	struct gpi_tre *ch_tre;
1443 	int ret;
1444 
1445 	/* get next tre location we can copy */
1446 	ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1447 	if (unlikely(ret)) {
1448 		dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1449 		return;
1450 	}
1451 
1452 	/* copy the tre info */
1453 	memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1454 	*wp = ch_tre;
1455 }
1456 
1457 /* reset and restart transfer channel */
gpi_terminate_all(struct dma_chan * chan)1458 static int gpi_terminate_all(struct dma_chan *chan)
1459 {
1460 	struct gchan *gchan = to_gchan(chan);
1461 	struct gpii *gpii = gchan->gpii;
1462 	int schid, echid, i;
1463 	int ret = 0;
1464 
1465 	mutex_lock(&gpii->ctrl_lock);
1466 
1467 	/*
1468 	 * treat both channels as a group if its protocol is not UART
1469 	 * STOP, RESET, or START needs to be in lockstep
1470 	 */
1471 	schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1472 	echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1473 
1474 	/* stop the channel */
1475 	for (i = schid; i < echid; i++) {
1476 		gchan = &gpii->gchan[i];
1477 
1478 		/* disable ch state so no more TRE processing */
1479 		write_lock_irq(&gpii->pm_lock);
1480 		gchan->pm_state = PREPARE_TERMINATE;
1481 		write_unlock_irq(&gpii->pm_lock);
1482 
1483 		/* send command to Stop the channel */
1484 		ret = gpi_stop_chan(gchan);
1485 	}
1486 
1487 	/* reset the channels (clears any pending tre) */
1488 	for (i = schid; i < echid; i++) {
1489 		gchan = &gpii->gchan[i];
1490 
1491 		ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1492 		if (ret) {
1493 			dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1494 			goto terminate_exit;
1495 		}
1496 
1497 		/* reprogram channel CNTXT */
1498 		ret = gpi_alloc_chan(gchan, false);
1499 		if (ret) {
1500 			dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1501 			goto terminate_exit;
1502 		}
1503 	}
1504 
1505 	/* restart the channels */
1506 	for (i = schid; i < echid; i++) {
1507 		gchan = &gpii->gchan[i];
1508 
1509 		ret = gpi_start_chan(gchan);
1510 		if (ret) {
1511 			dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1512 			goto terminate_exit;
1513 		}
1514 	}
1515 
1516 terminate_exit:
1517 	mutex_unlock(&gpii->ctrl_lock);
1518 	return ret;
1519 }
1520 
1521 /* pause dma transfer for all channels */
gpi_pause(struct dma_chan * chan)1522 static int gpi_pause(struct dma_chan *chan)
1523 {
1524 	struct gchan *gchan = to_gchan(chan);
1525 	struct gpii *gpii = gchan->gpii;
1526 	int i, ret;
1527 
1528 	mutex_lock(&gpii->ctrl_lock);
1529 
1530 	/*
1531 	 * pause/resume are per gpii not per channel, so
1532 	 * client needs to call pause only once
1533 	 */
1534 	if (gpii->pm_state == PAUSE_STATE) {
1535 		dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1536 		mutex_unlock(&gpii->ctrl_lock);
1537 		return 0;
1538 	}
1539 
1540 	/* send stop command to stop the channels */
1541 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1542 		ret = gpi_stop_chan(&gpii->gchan[i]);
1543 		if (ret) {
1544 			mutex_unlock(&gpii->ctrl_lock);
1545 			return ret;
1546 		}
1547 	}
1548 
1549 	disable_irq(gpii->irq);
1550 
1551 	/* Wait for threads to complete out */
1552 	tasklet_kill(&gpii->ev_task);
1553 
1554 	write_lock_irq(&gpii->pm_lock);
1555 	gpii->pm_state = PAUSE_STATE;
1556 	write_unlock_irq(&gpii->pm_lock);
1557 	mutex_unlock(&gpii->ctrl_lock);
1558 
1559 	return 0;
1560 }
1561 
1562 /* resume dma transfer */
gpi_resume(struct dma_chan * chan)1563 static int gpi_resume(struct dma_chan *chan)
1564 {
1565 	struct gchan *gchan = to_gchan(chan);
1566 	struct gpii *gpii = gchan->gpii;
1567 	int i, ret;
1568 
1569 	mutex_lock(&gpii->ctrl_lock);
1570 	if (gpii->pm_state == ACTIVE_STATE) {
1571 		dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1572 		mutex_unlock(&gpii->ctrl_lock);
1573 		return 0;
1574 	}
1575 
1576 	enable_irq(gpii->irq);
1577 
1578 	/* send start command to start the channels */
1579 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1580 		ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1581 		if (ret) {
1582 			dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1583 			mutex_unlock(&gpii->ctrl_lock);
1584 			return ret;
1585 		}
1586 	}
1587 
1588 	write_lock_irq(&gpii->pm_lock);
1589 	gpii->pm_state = ACTIVE_STATE;
1590 	write_unlock_irq(&gpii->pm_lock);
1591 	mutex_unlock(&gpii->ctrl_lock);
1592 
1593 	return 0;
1594 }
1595 
gpi_desc_free(struct virt_dma_desc * vd)1596 static void gpi_desc_free(struct virt_dma_desc *vd)
1597 {
1598 	struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1599 
1600 	kfree(gpi_desc);
1601 	gpi_desc = NULL;
1602 }
1603 
1604 static int
gpi_peripheral_config(struct dma_chan * chan,struct dma_slave_config * config)1605 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1606 {
1607 	struct gchan *gchan = to_gchan(chan);
1608 
1609 	if (!config->peripheral_config)
1610 		return -EINVAL;
1611 
1612 	gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1613 	if (!gchan->config)
1614 		return -ENOMEM;
1615 
1616 	memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1617 
1618 	return 0;
1619 }
1620 
gpi_create_i2c_tre(struct gchan * chan,struct gpi_desc * desc,struct scatterlist * sgl,enum dma_transfer_direction direction)1621 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1622 			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1623 {
1624 	struct gpi_i2c_config *i2c = chan->config;
1625 	struct device *dev = chan->gpii->gpi_dev->dev;
1626 	unsigned int tre_idx = 0;
1627 	dma_addr_t address;
1628 	struct gpi_tre *tre;
1629 	unsigned int i;
1630 
1631 	/* first create config tre if applicable */
1632 	if (i2c->set_config) {
1633 		tre = &desc->tre[tre_idx];
1634 		tre_idx++;
1635 
1636 		tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1637 		tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1638 		tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1639 		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1640 		tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1641 
1642 		tre->dword[1] = 0;
1643 
1644 		tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1645 
1646 		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1647 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1648 	}
1649 
1650 	/* create the GO tre for Tx */
1651 	if (i2c->op == I2C_WRITE) {
1652 		tre = &desc->tre[tre_idx];
1653 		tre_idx++;
1654 
1655 		if (i2c->multi_msg)
1656 			tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1657 		else
1658 			tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1659 
1660 		tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1661 		tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1662 
1663 		tre->dword[1] = 0;
1664 		tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1665 
1666 		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1667 
1668 		if (i2c->multi_msg)
1669 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1670 		else
1671 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1672 	}
1673 
1674 	if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1675 		/* create the DMA TRE */
1676 		tre = &desc->tre[tre_idx];
1677 		tre_idx++;
1678 
1679 		address = sg_dma_address(sgl);
1680 		tre->dword[0] = lower_32_bits(address);
1681 		tre->dword[1] = upper_32_bits(address);
1682 
1683 		tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1684 
1685 		tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1686 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1687 	}
1688 
1689 	for (i = 0; i < tre_idx; i++)
1690 		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1691 			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1692 
1693 	return tre_idx;
1694 }
1695 
gpi_create_spi_tre(struct gchan * chan,struct gpi_desc * desc,struct scatterlist * sgl,enum dma_transfer_direction direction)1696 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1697 			      struct scatterlist *sgl, enum dma_transfer_direction direction)
1698 {
1699 	struct gpi_spi_config *spi = chan->config;
1700 	struct device *dev = chan->gpii->gpi_dev->dev;
1701 	unsigned int tre_idx = 0;
1702 	dma_addr_t address;
1703 	struct gpi_tre *tre;
1704 	unsigned int i;
1705 	int len;
1706 
1707 	/* first create config tre if applicable */
1708 	if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1709 		tre = &desc->tre[tre_idx];
1710 		tre_idx++;
1711 
1712 		tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1713 		tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1714 		tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1715 		tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1716 		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1717 		tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1718 
1719 		tre->dword[1] = 0;
1720 
1721 		tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1722 		tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1723 
1724 		tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1725 		tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1726 	}
1727 
1728 	/* create the GO tre for Tx */
1729 	if (direction == DMA_MEM_TO_DEV) {
1730 		tre = &desc->tre[tre_idx];
1731 		tre_idx++;
1732 
1733 		tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1734 		tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1735 		tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1736 
1737 		tre->dword[1] = 0;
1738 
1739 		tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1740 
1741 		tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1742 		if (spi->cmd == SPI_RX) {
1743 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1744 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1745 		} else if (spi->cmd == SPI_TX) {
1746 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1747 		} else { /* SPI_DUPLEX */
1748 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1749 			tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1750 		}
1751 	}
1752 
1753 	/* create the dma tre */
1754 	tre = &desc->tre[tre_idx];
1755 	tre_idx++;
1756 
1757 	address = sg_dma_address(sgl);
1758 	len = sg_dma_len(sgl);
1759 
1760 	/* Support Immediate dma for write transfers for data length up to 8 bytes */
1761 	if (direction == DMA_MEM_TO_DEV && len <= 2 * sizeof(tre->dword[0])) {
1762 		/*
1763 		 * For Immediate dma, data length may not always be length of 8 bytes,
1764 		 * it can be length less than 8, hence initialize both dword's with 0
1765 		 */
1766 		tre->dword[0] = 0;
1767 		tre->dword[1] = 0;
1768 		memcpy(&tre->dword[0], sg_virt(sgl), len);
1769 
1770 		tre->dword[2] = u32_encode_bits(len, TRE_DMA_IMMEDIATE_LEN);
1771 		tre->dword[3] = u32_encode_bits(TRE_TYPE_IMMEDIATE_DMA, TRE_FLAGS_TYPE);
1772 	} else {
1773 		tre->dword[0] = lower_32_bits(address);
1774 		tre->dword[1] = upper_32_bits(address);
1775 
1776 		tre->dword[2] = u32_encode_bits(len, TRE_DMA_LEN);
1777 		tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1778 	}
1779 
1780 	tre->dword[3] |= u32_encode_bits(direction == DMA_MEM_TO_DEV,
1781 					 TRE_FLAGS_IEOT);
1782 
1783 	for (i = 0; i < tre_idx; i++)
1784 		dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1785 			desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1786 
1787 	return tre_idx;
1788 }
1789 
1790 /* copy tre into transfer ring */
1791 static struct dma_async_tx_descriptor *
gpi_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)1792 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1793 		  unsigned int sg_len, enum dma_transfer_direction direction,
1794 		  unsigned long flags, void *context)
1795 {
1796 	struct gchan *gchan = to_gchan(chan);
1797 	struct gpii *gpii = gchan->gpii;
1798 	struct device *dev = gpii->gpi_dev->dev;
1799 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1800 	struct gpi_desc *gpi_desc;
1801 	u32 nr, nr_tre = 0;
1802 	u8 set_config;
1803 	int i;
1804 
1805 	gpii->ieob_set = false;
1806 	if (!is_slave_direction(direction)) {
1807 		dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1808 		return NULL;
1809 	}
1810 
1811 	if (sg_len > 1) {
1812 		dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1813 		return NULL;
1814 	}
1815 
1816 	nr_tre = 3;
1817 	set_config = *(u32 *)gchan->config;
1818 	if (!set_config)
1819 		nr_tre = 2;
1820 	if (direction == DMA_DEV_TO_MEM) /* rx */
1821 		nr_tre = 1;
1822 
1823 	/* calculate # of elements required & available */
1824 	nr = gpi_ring_num_elements_avail(ch_ring);
1825 	if (nr < nr_tre) {
1826 		dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1827 		return NULL;
1828 	}
1829 
1830 	gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1831 	if (!gpi_desc)
1832 		return NULL;
1833 
1834 	/* create TREs for xfer */
1835 	if (gchan->protocol == QCOM_GPI_SPI) {
1836 		i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1837 	} else if (gchan->protocol == QCOM_GPI_I2C) {
1838 		i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1839 	} else {
1840 		dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1841 		kfree(gpi_desc);
1842 		return NULL;
1843 	}
1844 
1845 	/* set up the descriptor */
1846 	gpi_desc->gchan = gchan;
1847 	gpi_desc->len = sg_dma_len(sgl);
1848 	gpi_desc->num_tre  = i;
1849 
1850 	return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1851 }
1852 
1853 /* rings transfer ring db to being transfer */
gpi_issue_pending(struct dma_chan * chan)1854 static void gpi_issue_pending(struct dma_chan *chan)
1855 {
1856 	struct gchan *gchan = to_gchan(chan);
1857 	struct gpii *gpii = gchan->gpii;
1858 	unsigned long flags, pm_lock_flags;
1859 	struct virt_dma_desc *vd = NULL;
1860 	struct gpi_desc *gpi_desc;
1861 	struct gpi_ring *ch_ring = &gchan->ch_ring;
1862 	void *tre, *wp = NULL;
1863 	int i;
1864 
1865 	read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1866 
1867 	/* move all submitted descriptors to issued list */
1868 	spin_lock_irqsave(&gchan->vc.lock, flags);
1869 	if (vchan_issue_pending(&gchan->vc))
1870 		vd = list_last_entry(&gchan->vc.desc_issued,
1871 				     struct virt_dma_desc, node);
1872 	spin_unlock_irqrestore(&gchan->vc.lock, flags);
1873 
1874 	/* nothing to do list is empty */
1875 	if (!vd) {
1876 		read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1877 		return;
1878 	}
1879 
1880 	gpi_desc = to_gpi_desc(vd);
1881 	for (i = 0; i < gpi_desc->num_tre; i++) {
1882 		tre = &gpi_desc->tre[i];
1883 		gpi_queue_xfer(gpii, gchan, tre, &wp);
1884 	}
1885 
1886 	gpi_desc->db = ch_ring->wp;
1887 	gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1888 	read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1889 }
1890 
gpi_ch_init(struct gchan * gchan)1891 static int gpi_ch_init(struct gchan *gchan)
1892 {
1893 	struct gpii *gpii = gchan->gpii;
1894 	const int ev_factor = gpii->gpi_dev->ev_factor;
1895 	u32 elements;
1896 	int i = 0, ret = 0;
1897 
1898 	gchan->pm_state = CONFIG_STATE;
1899 
1900 	/* check if both channels are configured before continue */
1901 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1902 		if (gpii->gchan[i].pm_state != CONFIG_STATE)
1903 			goto exit_gpi_init;
1904 
1905 	/* protocol must be same for both channels */
1906 	if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1907 		dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1908 			gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1909 		ret = -EINVAL;
1910 		goto exit_gpi_init;
1911 	}
1912 
1913 	/* allocate memory for event ring */
1914 	elements = CHAN_TRES << ev_factor;
1915 	ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1916 			     sizeof(union gpi_event), gpii);
1917 	if (ret)
1918 		goto exit_gpi_init;
1919 
1920 	/* configure interrupts */
1921 	write_lock_irq(&gpii->pm_lock);
1922 	gpii->pm_state = PREPARE_HARDWARE;
1923 	write_unlock_irq(&gpii->pm_lock);
1924 	ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1925 	if (ret) {
1926 		dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1927 		goto error_config_int;
1928 	}
1929 
1930 	/* allocate event rings */
1931 	ret = gpi_alloc_ev_chan(gpii);
1932 	if (ret) {
1933 		dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1934 		goto error_alloc_ev_ring;
1935 	}
1936 
1937 	/* Allocate all channels */
1938 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1939 		ret = gpi_alloc_chan(&gpii->gchan[i], true);
1940 		if (ret) {
1941 			dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1942 			goto error_alloc_chan;
1943 		}
1944 	}
1945 
1946 	/* start channels  */
1947 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1948 		ret = gpi_start_chan(&gpii->gchan[i]);
1949 		if (ret) {
1950 			dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1951 			goto error_start_chan;
1952 		}
1953 	}
1954 	return ret;
1955 
1956 error_start_chan:
1957 	for (i = i - 1; i >= 0; i--) {
1958 		gpi_stop_chan(&gpii->gchan[i]);
1959 		gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1960 	}
1961 	i = 2;
1962 error_alloc_chan:
1963 	for (i = i - 1; i >= 0; i--)
1964 		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1965 error_alloc_ev_ring:
1966 	gpi_disable_interrupts(gpii);
1967 error_config_int:
1968 	gpi_free_ring(&gpii->ev_ring, gpii);
1969 exit_gpi_init:
1970 	return ret;
1971 }
1972 
1973 /* release all channel resources */
gpi_free_chan_resources(struct dma_chan * chan)1974 static void gpi_free_chan_resources(struct dma_chan *chan)
1975 {
1976 	struct gchan *gchan = to_gchan(chan);
1977 	struct gpii *gpii = gchan->gpii;
1978 	enum gpi_pm_state cur_state;
1979 	int ret, i;
1980 
1981 	mutex_lock(&gpii->ctrl_lock);
1982 
1983 	cur_state = gchan->pm_state;
1984 
1985 	/* disable ch state so no more TRE processing for this channel */
1986 	write_lock_irq(&gpii->pm_lock);
1987 	gchan->pm_state = PREPARE_TERMINATE;
1988 	write_unlock_irq(&gpii->pm_lock);
1989 
1990 	/* attempt to do graceful hardware shutdown */
1991 	if (cur_state == ACTIVE_STATE) {
1992 		gpi_stop_chan(gchan);
1993 
1994 		ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1995 		if (ret)
1996 			dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
1997 
1998 		gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1999 	}
2000 
2001 	/* free all allocated memory */
2002 	gpi_free_ring(&gchan->ch_ring, gpii);
2003 	vchan_free_chan_resources(&gchan->vc);
2004 	kfree(gchan->config);
2005 
2006 	write_lock_irq(&gpii->pm_lock);
2007 	gchan->pm_state = DISABLE_STATE;
2008 	write_unlock_irq(&gpii->pm_lock);
2009 
2010 	/* if other rings are still active exit */
2011 	for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2012 		if (gpii->gchan[i].ch_ring.configured)
2013 			goto exit_free;
2014 
2015 	/* deallocate EV Ring */
2016 	cur_state = gpii->pm_state;
2017 	write_lock_irq(&gpii->pm_lock);
2018 	gpii->pm_state = PREPARE_TERMINATE;
2019 	write_unlock_irq(&gpii->pm_lock);
2020 
2021 	/* wait for threads to complete out */
2022 	tasklet_kill(&gpii->ev_task);
2023 
2024 	/* send command to de allocate event ring */
2025 	if (cur_state == ACTIVE_STATE)
2026 		gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2027 
2028 	gpi_free_ring(&gpii->ev_ring, gpii);
2029 
2030 	/* disable interrupts */
2031 	if (cur_state == ACTIVE_STATE)
2032 		gpi_disable_interrupts(gpii);
2033 
2034 	/* set final state to disable */
2035 	write_lock_irq(&gpii->pm_lock);
2036 	gpii->pm_state = DISABLE_STATE;
2037 	write_unlock_irq(&gpii->pm_lock);
2038 
2039 exit_free:
2040 	mutex_unlock(&gpii->ctrl_lock);
2041 }
2042 
2043 /* allocate channel resources */
gpi_alloc_chan_resources(struct dma_chan * chan)2044 static int gpi_alloc_chan_resources(struct dma_chan *chan)
2045 {
2046 	struct gchan *gchan = to_gchan(chan);
2047 	struct gpii *gpii = gchan->gpii;
2048 	int ret;
2049 
2050 	mutex_lock(&gpii->ctrl_lock);
2051 
2052 	/* allocate memory for transfer ring */
2053 	ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2054 			     sizeof(struct gpi_tre), gpii);
2055 	if (ret)
2056 		goto xfer_alloc_err;
2057 
2058 	ret = gpi_ch_init(gchan);
2059 
2060 	mutex_unlock(&gpii->ctrl_lock);
2061 
2062 	return ret;
2063 xfer_alloc_err:
2064 	mutex_unlock(&gpii->ctrl_lock);
2065 
2066 	return ret;
2067 }
2068 
gpi_find_avail_gpii(struct gpi_dev * gpi_dev,u32 seid)2069 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2070 {
2071 	struct gchan *tx_chan, *rx_chan;
2072 	unsigned int gpii;
2073 
2074 	/* check if same seid is already configured for another chid */
2075 	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2076 		if (!((1 << gpii) & gpi_dev->gpii_mask))
2077 			continue;
2078 
2079 		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2080 		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2081 
2082 		if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2083 			return gpii;
2084 		if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2085 			return gpii;
2086 	}
2087 
2088 	/* no channels configured with same seid, return next avail gpii */
2089 	for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2090 		if (!((1 << gpii) & gpi_dev->gpii_mask))
2091 			continue;
2092 
2093 		tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2094 		rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2095 
2096 		/* check if gpii is configured */
2097 		if (tx_chan->vc.chan.client_count ||
2098 		    rx_chan->vc.chan.client_count)
2099 			continue;
2100 
2101 		/* found a free gpii */
2102 		return gpii;
2103 	}
2104 
2105 	/* no gpii instance available to use */
2106 	return -EIO;
2107 }
2108 
2109 /* gpi_of_dma_xlate: open client requested channel */
gpi_of_dma_xlate(struct of_phandle_args * args,struct of_dma * of_dma)2110 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2111 					 struct of_dma *of_dma)
2112 {
2113 	struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2114 	u32 seid, chid;
2115 	int gpii;
2116 	struct gchan *gchan;
2117 
2118 	if (args->args_count < 3) {
2119 		dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2120 			args->args_count);
2121 		return NULL;
2122 	}
2123 
2124 	chid = args->args[0];
2125 	if (chid >= MAX_CHANNELS_PER_GPII) {
2126 		dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2127 		return NULL;
2128 	}
2129 
2130 	seid = args->args[1];
2131 
2132 	/* find next available gpii to use */
2133 	gpii = gpi_find_avail_gpii(gpi_dev, seid);
2134 	if (gpii < 0) {
2135 		dev_err(gpi_dev->dev, "no available gpii instances\n");
2136 		return NULL;
2137 	}
2138 
2139 	gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2140 	if (gchan->vc.chan.client_count) {
2141 		dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2142 			gpii, chid, gchan->seid);
2143 		return NULL;
2144 	}
2145 
2146 	gchan->seid = seid;
2147 	gchan->protocol = args->args[2];
2148 
2149 	return dma_get_slave_channel(&gchan->vc.chan);
2150 }
2151 
gpi_probe(struct platform_device * pdev)2152 static int gpi_probe(struct platform_device *pdev)
2153 {
2154 	struct gpi_dev *gpi_dev;
2155 	unsigned int i;
2156 	u32 ee_offset;
2157 	int ret;
2158 
2159 	gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2160 	if (!gpi_dev)
2161 		return -ENOMEM;
2162 
2163 	gpi_dev->dev = &pdev->dev;
2164 	gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res);
2165 	if (IS_ERR(gpi_dev->regs))
2166 		return PTR_ERR(gpi_dev->regs);
2167 	gpi_dev->ee_base = gpi_dev->regs;
2168 
2169 	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2170 				   &gpi_dev->max_gpii);
2171 	if (ret) {
2172 		dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2173 		return ret;
2174 	}
2175 
2176 	ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2177 				   &gpi_dev->gpii_mask);
2178 	if (ret) {
2179 		dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2180 		return ret;
2181 	}
2182 
2183 	ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev);
2184 	gpi_dev->ee_base = gpi_dev->ee_base - ee_offset;
2185 
2186 	gpi_dev->ev_factor = EV_FACTOR;
2187 
2188 	ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2189 	if (ret) {
2190 		dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2191 		return ret;
2192 	}
2193 
2194 	gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2195 				      gpi_dev->max_gpii, GFP_KERNEL);
2196 	if (!gpi_dev->gpiis)
2197 		return -ENOMEM;
2198 
2199 	/* setup all the supported gpii */
2200 	INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2201 	for (i = 0; i < gpi_dev->max_gpii; i++) {
2202 		struct gpii *gpii = &gpi_dev->gpiis[i];
2203 		int chan;
2204 
2205 		if (!((1 << i) & gpi_dev->gpii_mask))
2206 			continue;
2207 
2208 		/* set up ev cntxt register map */
2209 		gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2210 		gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2211 		gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2212 		gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2213 		gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2214 
2215 		/* set up irq */
2216 		ret = platform_get_irq(pdev, i);
2217 		if (ret < 0)
2218 			return ret;
2219 		gpii->irq = ret;
2220 
2221 		/* set up channel specific register info */
2222 		for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2223 			struct gchan *gchan = &gpii->gchan[chan];
2224 
2225 			/* set up ch cntxt register map */
2226 			gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2227 				GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2228 			gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2229 				GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2230 			gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2231 
2232 			/* vchan setup */
2233 			vchan_init(&gchan->vc, &gpi_dev->dma_device);
2234 			gchan->vc.desc_free = gpi_desc_free;
2235 			gchan->chid = chan;
2236 			gchan->gpii = gpii;
2237 			gchan->dir = GPII_CHAN_DIR[chan];
2238 		}
2239 		mutex_init(&gpii->ctrl_lock);
2240 		rwlock_init(&gpii->pm_lock);
2241 		tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2242 			     (unsigned long)gpii);
2243 		init_completion(&gpii->cmd_completion);
2244 		gpii->gpii_id = i;
2245 		gpii->regs = gpi_dev->ee_base;
2246 		gpii->gpi_dev = gpi_dev;
2247 	}
2248 
2249 	platform_set_drvdata(pdev, gpi_dev);
2250 
2251 	/* clear and Set capabilities */
2252 	dma_cap_zero(gpi_dev->dma_device.cap_mask);
2253 	dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2254 
2255 	/* configure dmaengine apis */
2256 	gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2257 	gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2258 	gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2259 	gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2260 	gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2261 	gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2262 	gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2263 	gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2264 	gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2265 	gpi_dev->dma_device.device_config = gpi_peripheral_config;
2266 	gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2267 	gpi_dev->dma_device.dev = gpi_dev->dev;
2268 	gpi_dev->dma_device.device_pause = gpi_pause;
2269 	gpi_dev->dma_device.device_resume = gpi_resume;
2270 
2271 	/* register with dmaengine framework */
2272 	ret = dma_async_device_register(&gpi_dev->dma_device);
2273 	if (ret) {
2274 		dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2275 		return ret;
2276 	}
2277 
2278 	ret = of_dma_controller_register(gpi_dev->dev->of_node,
2279 					 gpi_of_dma_xlate, gpi_dev);
2280 	if (ret) {
2281 		dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2282 		return ret;
2283 	}
2284 
2285 	return ret;
2286 }
2287 
2288 static const struct of_device_id gpi_of_match[] = {
2289 	{ .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 },
2290 	{ .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 },
2291 	/*
2292 	 * Do not grow the list for compatible devices. Instead use
2293 	 * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma
2294 	 * (for ee_offset = 0x10000).
2295 	 */
2296 	{ .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 },
2297 	{ .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 },
2298 	{ .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 },
2299 	{ .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 },
2300 	{ .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 },
2301 	{ },
2302 };
2303 MODULE_DEVICE_TABLE(of, gpi_of_match);
2304 
2305 static struct platform_driver gpi_driver = {
2306 	.probe = gpi_probe,
2307 	.driver = {
2308 		.name = KBUILD_MODNAME,
2309 		.of_match_table = gpi_of_match,
2310 	},
2311 };
2312 
gpi_init(void)2313 static int __init gpi_init(void)
2314 {
2315 	return platform_driver_register(&gpi_driver);
2316 }
2317 subsys_initcall(gpi_init)
2318 
2319 MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2320 MODULE_LICENSE("GPL v2");
2321