1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved. 4 * Copyright (c) 2020, Linaro Limited 5 */ 6 7 #include <dt-bindings/dma/qcom-gpi.h> 8 #include <linux/bitfield.h> 9 #include <linux/dma-mapping.h> 10 #include <linux/dmaengine.h> 11 #include <linux/module.h> 12 #include <linux/of_dma.h> 13 #include <linux/platform_device.h> 14 #include <linux/dma/qcom-gpi-dma.h> 15 #include <linux/scatterlist.h> 16 #include <linux/slab.h> 17 #include "../dmaengine.h" 18 #include "../virt-dma.h" 19 20 #define TRE_TYPE_DMA 0x10 21 #define TRE_TYPE_IMMEDIATE_DMA 0x11 22 #define TRE_TYPE_GO 0x20 23 #define TRE_TYPE_CONFIG0 0x22 24 25 /* TRE flags */ 26 #define TRE_FLAGS_CHAIN BIT(0) 27 #define TRE_FLAGS_IEOB BIT(8) 28 #define TRE_FLAGS_IEOT BIT(9) 29 #define TRE_FLAGS_BEI BIT(10) 30 #define TRE_FLAGS_LINK BIT(11) 31 #define TRE_FLAGS_TYPE GENMASK(23, 16) 32 33 /* SPI CONFIG0 WD0 */ 34 #define TRE_SPI_C0_WORD_SZ GENMASK(4, 0) 35 #define TRE_SPI_C0_LOOPBACK BIT(8) 36 #define TRE_SPI_C0_CS BIT(11) 37 #define TRE_SPI_C0_CPHA BIT(12) 38 #define TRE_SPI_C0_CPOL BIT(13) 39 #define TRE_SPI_C0_TX_PACK BIT(24) 40 #define TRE_SPI_C0_RX_PACK BIT(25) 41 42 /* CONFIG0 WD2 */ 43 #define TRE_C0_CLK_DIV GENMASK(11, 0) 44 #define TRE_C0_CLK_SRC GENMASK(19, 16) 45 46 /* SPI GO WD0 */ 47 #define TRE_SPI_GO_CMD GENMASK(4, 0) 48 #define TRE_SPI_GO_CS GENMASK(10, 8) 49 #define TRE_SPI_GO_FRAG BIT(26) 50 51 /* GO WD2 */ 52 #define TRE_RX_LEN GENMASK(23, 0) 53 54 /* I2C Config0 WD0 */ 55 #define TRE_I2C_C0_TLOW GENMASK(7, 0) 56 #define TRE_I2C_C0_THIGH GENMASK(15, 8) 57 #define TRE_I2C_C0_TCYL GENMASK(23, 16) 58 #define TRE_I2C_C0_TX_PACK BIT(24) 59 #define TRE_I2C_C0_RX_PACK BIT(25) 60 61 /* I2C GO WD0 */ 62 #define TRE_I2C_GO_CMD GENMASK(4, 0) 63 #define TRE_I2C_GO_ADDR GENMASK(14, 8) 64 #define TRE_I2C_GO_STRETCH BIT(26) 65 66 /* DMA TRE */ 67 #define TRE_DMA_LEN GENMASK(23, 0) 68 #define TRE_DMA_IMMEDIATE_LEN GENMASK(3, 0) 69 70 /* Register offsets from gpi-top */ 71 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k) (0x20000 + (0x4000 * (n)) + (0x80 * (k))) 72 #define GPII_n_CH_k_CNTXT_0_EL_SIZE GENMASK(31, 24) 73 #define GPII_n_CH_k_CNTXT_0_CHSTATE GENMASK(23, 20) 74 #define GPII_n_CH_k_CNTXT_0_ERIDX GENMASK(18, 14) 75 #define GPII_n_CH_k_CNTXT_0_DIR BIT(3) 76 #define GPII_n_CH_k_CNTXT_0_PROTO GENMASK(2, 0) 77 78 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto) \ 79 (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size) | \ 80 FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex) | \ 81 FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir) | \ 82 FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto)) 83 84 #define GPI_CHTYPE_DIR_IN (0) 85 #define GPI_CHTYPE_DIR_OUT (1) 86 87 #define GPI_CHTYPE_PROTO_GPI (0x2) 88 89 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k) (0x22000 + (0x4000 * (n)) + (0x8 * (k))) 90 #define GPII_n_CH_CMD_OFFS(n) (0x23008 + (0x4000 * (n))) 91 #define GPII_n_CH_CMD_OPCODE GENMASK(31, 24) 92 #define GPII_n_CH_CMD_CHID GENMASK(7, 0) 93 #define GPII_n_CH_CMD(opcode, chid) \ 94 (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \ 95 FIELD_PREP(GPII_n_CH_CMD_CHID, chid)) 96 97 #define GPII_n_CH_CMD_ALLOCATE (0) 98 #define GPII_n_CH_CMD_START (1) 99 #define GPII_n_CH_CMD_STOP (2) 100 #define GPII_n_CH_CMD_RESET (9) 101 #define GPII_n_CH_CMD_DE_ALLOC (10) 102 #define GPII_n_CH_CMD_UART_SW_STALE (32) 103 #define GPII_n_CH_CMD_UART_RFR_READY (33) 104 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34) 105 106 /* EV Context Array */ 107 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k))) 108 #define GPII_n_EV_k_CNTXT_0_EL_SIZE GENMASK(31, 24) 109 #define GPII_n_EV_k_CNTXT_0_CHSTATE GENMASK(23, 20) 110 #define GPII_n_EV_k_CNTXT_0_INTYPE BIT(16) 111 #define GPII_n_EV_k_CNTXT_0_CHTYPE GENMASK(3, 0) 112 113 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype) \ 114 (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) | \ 115 FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype) | \ 116 FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype)) 117 118 #define GPI_INTTYPE_IRQ (1) 119 #define GPI_CHTYPE_GPI_EV (0x2) 120 121 enum CNTXT_OFFS { 122 CNTXT_0_CONFIG = 0x0, 123 CNTXT_1_R_LENGTH = 0x4, 124 CNTXT_2_RING_BASE_LSB = 0x8, 125 CNTXT_3_RING_BASE_MSB = 0xC, 126 CNTXT_4_RING_RP_LSB = 0x10, 127 CNTXT_5_RING_RP_MSB = 0x14, 128 CNTXT_6_RING_WP_LSB = 0x18, 129 CNTXT_7_RING_WP_MSB = 0x1C, 130 CNTXT_8_RING_INT_MOD = 0x20, 131 CNTXT_9_RING_INTVEC = 0x24, 132 CNTXT_10_RING_MSI_LSB = 0x28, 133 CNTXT_11_RING_MSI_MSB = 0x2C, 134 CNTXT_12_RING_RP_UPDATE_LSB = 0x30, 135 CNTXT_13_RING_RP_UPDATE_MSB = 0x34, 136 }; 137 138 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k) (0x22100 + (0x4000 * (n)) + (0x8 * (k))) 139 #define GPII_n_EV_CH_CMD_OFFS(n) (0x23010 + (0x4000 * (n))) 140 #define GPII_n_EV_CMD_OPCODE GENMASK(31, 24) 141 #define GPII_n_EV_CMD_CHID GENMASK(7, 0) 142 #define GPII_n_EV_CMD(opcode, chid) \ 143 (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \ 144 FIELD_PREP(GPII_n_EV_CMD_CHID, chid)) 145 146 #define GPII_n_EV_CH_CMD_ALLOCATE (0x00) 147 #define GPII_n_EV_CH_CMD_RESET (0x09) 148 #define GPII_n_EV_CH_CMD_DE_ALLOC (0x0A) 149 150 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n) (0x23080 + (0x4000 * (n))) 151 152 /* mask type register */ 153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n) (0x23088 + (0x4000 * (n))) 154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK GENMASK(6, 0) 155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL BIT(6) 156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB BIT(3) 157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB BIT(2) 158 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL BIT(1) 159 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL BIT(0) 160 161 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n) (0x23090 + (0x4000 * (n))) 162 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n) (0x23094 + (0x4000 * (n))) 163 164 /* Mask channel control interrupt register */ 165 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n) (0x23098 + (0x4000 * (n))) 166 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK GENMASK(1, 0) 167 168 /* Mask event control interrupt register */ 169 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n) (0x2309C + (0x4000 * (n))) 170 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK BIT(0) 171 172 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n) (0x230A0 + (0x4000 * (n))) 173 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n) (0x230A4 + (0x4000 * (n))) 174 175 /* Mask event interrupt register */ 176 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n) (0x230B8 + (0x4000 * (n))) 177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK BIT(0) 178 179 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n) (0x230C0 + (0x4000 * (n))) 180 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n) (0x23100 + (0x4000 * (n))) 181 #define GPI_GLOB_IRQ_ERROR_INT_MSK BIT(0) 182 183 /* GPII specific Global - Enable bit register */ 184 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n) (0x23108 + (0x4000 * (n))) 185 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n) (0x23110 + (0x4000 * (n))) 186 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n) (0x23118 + (0x4000 * (n))) 187 188 /* GPII general interrupt - Enable bit register */ 189 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n) (0x23120 + (0x4000 * (n))) 190 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK GENMASK(3, 0) 191 192 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n) (0x23128 + (0x4000 * (n))) 193 194 /* GPII Interrupt Type register */ 195 #define GPII_n_CNTXT_INTSET_OFFS(n) (0x23180 + (0x4000 * (n))) 196 #define GPII_n_CNTXT_INTSET_BMSK BIT(0) 197 198 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n) (0x23188 + (0x4000 * (n))) 199 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n) (0x2318C + (0x4000 * (n))) 200 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n) (0x23400 + (0x4000 * (n))) 201 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n) (0x23404 + (0x4000 * (n))) 202 203 #define GPII_n_ERROR_LOG_OFFS(n) (0x23200 + (0x4000 * (n))) 204 205 /* QOS Registers */ 206 #define GPII_n_CH_k_QOS_OFFS(n, k) (0x2005C + (0x4000 * (n)) + (0x80 * (k))) 207 208 /* Scratch registers */ 209 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k) (0x20060 + (0x4000 * (n)) + (0x80 * (k))) 210 #define GPII_n_CH_k_SCRATCH_0_SEID GENMASK(2, 0) 211 #define GPII_n_CH_k_SCRATCH_0_PROTO GENMASK(7, 4) 212 #define GPII_n_CH_k_SCRATCH_0_PAIR GENMASK(20, 16) 213 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid) \ 214 (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair) | \ 215 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto) | \ 216 FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid)) 217 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k) (0x20064 + (0x4000 * (n)) + (0x80 * (k))) 218 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k) (0x20068 + (0x4000 * (n)) + (0x80 * (k))) 219 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k) (0x2006C + (0x4000 * (n)) + (0x80 * (k))) 220 221 struct __packed gpi_tre { 222 u32 dword[4]; 223 }; 224 225 enum msm_gpi_tce_code { 226 MSM_GPI_TCE_SUCCESS = 1, 227 MSM_GPI_TCE_EOT = 2, 228 MSM_GPI_TCE_EOB = 4, 229 MSM_GPI_TCE_UNEXP_ERR = 16, 230 }; 231 232 #define CMD_TIMEOUT_MS (250) 233 234 #define MAX_CHANNELS_PER_GPII (2) 235 #define GPI_TX_CHAN (0) 236 #define GPI_RX_CHAN (1) 237 #define STATE_IGNORE (U32_MAX) 238 #define EV_FACTOR (2) 239 #define REQ_OF_DMA_ARGS (5) /* # of arguments required from client */ 240 #define CHAN_TRES 64 241 242 struct __packed xfer_compl_event { 243 u64 ptr; 244 u32 length:24; 245 u8 code; 246 u16 status; 247 u8 type; 248 u8 chid; 249 }; 250 251 struct __packed immediate_data_event { 252 u8 data_bytes[8]; 253 u8 length:4; 254 u8 resvd:4; 255 u16 tre_index; 256 u8 code; 257 u16 status; 258 u8 type; 259 u8 chid; 260 }; 261 262 struct __packed qup_notif_event { 263 u32 status; 264 u32 time; 265 u32 count:24; 266 u8 resvd; 267 u16 resvd1; 268 u8 type; 269 u8 chid; 270 }; 271 272 struct __packed gpi_ere { 273 u32 dword[4]; 274 }; 275 276 enum GPI_EV_TYPE { 277 XFER_COMPLETE_EV_TYPE = 0x22, 278 IMMEDIATE_DATA_EV_TYPE = 0x30, 279 QUP_NOTIF_EV_TYPE = 0x31, 280 STALE_EV_TYPE = 0xFF, 281 }; 282 283 union __packed gpi_event { 284 struct __packed xfer_compl_event xfer_compl_event; 285 struct __packed immediate_data_event immediate_data_event; 286 struct __packed qup_notif_event qup_notif_event; 287 struct __packed gpi_ere gpi_ere; 288 }; 289 290 enum gpii_irq_settings { 291 DEFAULT_IRQ_SETTINGS, 292 MASK_IEOB_SETTINGS, 293 }; 294 295 enum gpi_ev_state { 296 DEFAULT_EV_CH_STATE = 0, 297 EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE, 298 EV_STATE_ALLOCATED, 299 MAX_EV_STATES 300 }; 301 302 static const char *const gpi_ev_state_str[MAX_EV_STATES] = { 303 [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED", 304 [EV_STATE_ALLOCATED] = "ALLOCATED", 305 }; 306 307 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \ 308 "INVALID" : gpi_ev_state_str[(_state)]) 309 310 enum gpi_ch_state { 311 DEFAULT_CH_STATE = 0x0, 312 CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE, 313 CH_STATE_ALLOCATED = 0x1, 314 CH_STATE_STARTED = 0x2, 315 CH_STATE_STOPPED = 0x3, 316 CH_STATE_STOP_IN_PROC = 0x4, 317 CH_STATE_ERROR = 0xf, 318 MAX_CH_STATES 319 }; 320 321 enum gpi_cmd { 322 GPI_CH_CMD_BEGIN, 323 GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN, 324 GPI_CH_CMD_START, 325 GPI_CH_CMD_STOP, 326 GPI_CH_CMD_RESET, 327 GPI_CH_CMD_DE_ALLOC, 328 GPI_CH_CMD_UART_SW_STALE, 329 GPI_CH_CMD_UART_RFR_READY, 330 GPI_CH_CMD_UART_RFR_NOT_READY, 331 GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY, 332 GPI_EV_CMD_BEGIN, 333 GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN, 334 GPI_EV_CMD_RESET, 335 GPI_EV_CMD_DEALLOC, 336 GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC, 337 GPI_MAX_CMD, 338 }; 339 340 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END) 341 342 static const char *const gpi_cmd_str[GPI_MAX_CMD] = { 343 [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE", 344 [GPI_CH_CMD_START] = "CH START", 345 [GPI_CH_CMD_STOP] = "CH STOP", 346 [GPI_CH_CMD_RESET] = "CH_RESET", 347 [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC", 348 [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE", 349 [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY", 350 [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY", 351 [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE", 352 [GPI_EV_CMD_RESET] = "EV RESET", 353 [GPI_EV_CMD_DEALLOC] = "EV DEALLOC", 354 }; 355 356 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \ 357 gpi_cmd_str[(_cmd)]) 358 359 /* 360 * @DISABLE_STATE: no register access allowed 361 * @CONFIG_STATE: client has configured the channel 362 * @PREP_HARDWARE: register access is allowed 363 * however, no processing EVENTS 364 * @ACTIVE_STATE: channels are fully operational 365 * @PREPARE_TERMINATE: graceful termination of channels 366 * register access is allowed 367 * @PAUSE_STATE: channels are active, but not processing any events 368 */ 369 enum gpi_pm_state { 370 DISABLE_STATE, 371 CONFIG_STATE, 372 PREPARE_HARDWARE, 373 ACTIVE_STATE, 374 PREPARE_TERMINATE, 375 PAUSE_STATE, 376 MAX_PM_STATE 377 }; 378 379 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE) 380 381 static const char *const gpi_pm_state_str[MAX_PM_STATE] = { 382 [DISABLE_STATE] = "DISABLE", 383 [CONFIG_STATE] = "CONFIG", 384 [PREPARE_HARDWARE] = "PREPARE HARDWARE", 385 [ACTIVE_STATE] = "ACTIVE", 386 [PREPARE_TERMINATE] = "PREPARE TERMINATE", 387 [PAUSE_STATE] = "PAUSE", 388 }; 389 390 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \ 391 "INVALID" : gpi_pm_state_str[(_state)]) 392 393 static const struct { 394 enum gpi_cmd gpi_cmd; 395 u32 opcode; 396 u32 state; 397 } gpi_cmd_info[GPI_MAX_CMD] = { 398 { 399 GPI_CH_CMD_ALLOCATE, 400 GPII_n_CH_CMD_ALLOCATE, 401 CH_STATE_ALLOCATED, 402 }, 403 { 404 GPI_CH_CMD_START, 405 GPII_n_CH_CMD_START, 406 CH_STATE_STARTED, 407 }, 408 { 409 GPI_CH_CMD_STOP, 410 GPII_n_CH_CMD_STOP, 411 CH_STATE_STOPPED, 412 }, 413 { 414 GPI_CH_CMD_RESET, 415 GPII_n_CH_CMD_RESET, 416 CH_STATE_ALLOCATED, 417 }, 418 { 419 GPI_CH_CMD_DE_ALLOC, 420 GPII_n_CH_CMD_DE_ALLOC, 421 CH_STATE_NOT_ALLOCATED, 422 }, 423 { 424 GPI_CH_CMD_UART_SW_STALE, 425 GPII_n_CH_CMD_UART_SW_STALE, 426 STATE_IGNORE, 427 }, 428 { 429 GPI_CH_CMD_UART_RFR_READY, 430 GPII_n_CH_CMD_UART_RFR_READY, 431 STATE_IGNORE, 432 }, 433 { 434 GPI_CH_CMD_UART_RFR_NOT_READY, 435 GPII_n_CH_CMD_UART_RFR_NOT_READY, 436 STATE_IGNORE, 437 }, 438 { 439 GPI_EV_CMD_ALLOCATE, 440 GPII_n_EV_CH_CMD_ALLOCATE, 441 EV_STATE_ALLOCATED, 442 }, 443 { 444 GPI_EV_CMD_RESET, 445 GPII_n_EV_CH_CMD_RESET, 446 EV_STATE_ALLOCATED, 447 }, 448 { 449 GPI_EV_CMD_DEALLOC, 450 GPII_n_EV_CH_CMD_DE_ALLOC, 451 EV_STATE_NOT_ALLOCATED, 452 }, 453 }; 454 455 struct gpi_ring { 456 void *pre_aligned; 457 size_t alloc_size; 458 phys_addr_t phys_addr; 459 dma_addr_t dma_handle; 460 void *base; 461 void *wp; 462 void *rp; 463 u32 len; 464 u32 el_size; 465 u32 elements; 466 bool configured; 467 }; 468 469 struct gpi_dev { 470 struct dma_device dma_device; 471 struct device *dev; 472 struct resource *res; 473 void __iomem *regs; 474 void __iomem *ee_base; /*ee register base address*/ 475 u32 max_gpii; /* maximum # of gpii instances available per gpi block */ 476 u32 gpii_mask; /* gpii instances available for apps */ 477 u32 ev_factor; /* ev ring length factor */ 478 struct gpii *gpiis; 479 }; 480 481 struct gchan { 482 struct virt_dma_chan vc; 483 u32 chid; 484 u32 seid; 485 u32 protocol; 486 struct gpii *gpii; 487 enum gpi_ch_state ch_state; 488 enum gpi_pm_state pm_state; 489 void __iomem *ch_cntxt_base_reg; 490 void __iomem *ch_cntxt_db_reg; 491 void __iomem *ch_cmd_reg; 492 u32 dir; 493 struct gpi_ring ch_ring; 494 void *config; 495 }; 496 497 struct gpii { 498 u32 gpii_id; 499 struct gchan gchan[MAX_CHANNELS_PER_GPII]; 500 struct gpi_dev *gpi_dev; 501 int irq; 502 void __iomem *regs; /* points to gpi top */ 503 void __iomem *ev_cntxt_base_reg; 504 void __iomem *ev_cntxt_db_reg; 505 void __iomem *ev_ring_rp_lsb_reg; 506 void __iomem *ev_cmd_reg; 507 void __iomem *ieob_clr_reg; 508 struct mutex ctrl_lock; 509 enum gpi_ev_state ev_state; 510 bool configured_irq; 511 enum gpi_pm_state pm_state; 512 rwlock_t pm_lock; 513 struct gpi_ring ev_ring; 514 struct tasklet_struct ev_task; /* event processing tasklet */ 515 struct completion cmd_completion; 516 enum gpi_cmd gpi_cmd; 517 u32 cntxt_type_irq_msk; 518 bool ieob_set; 519 }; 520 521 #define MAX_TRE 3 522 523 struct gpi_desc { 524 struct virt_dma_desc vd; 525 size_t len; 526 void *db; /* DB register to program */ 527 struct gchan *gchan; 528 struct gpi_tre tre[MAX_TRE]; 529 u32 num_tre; 530 }; 531 532 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = { 533 GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN 534 }; 535 536 static irqreturn_t gpi_handle_irq(int irq, void *data); 537 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring); 538 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp); 539 static void gpi_process_events(struct gpii *gpii); 540 541 static inline struct gchan *to_gchan(struct dma_chan *dma_chan) 542 { 543 return container_of(dma_chan, struct gchan, vc.chan); 544 } 545 546 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd) 547 { 548 return container_of(vd, struct gpi_desc, vd); 549 } 550 551 static inline phys_addr_t to_physical(const struct gpi_ring *const ring, 552 void *addr) 553 { 554 return ring->phys_addr + (addr - ring->base); 555 } 556 557 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr) 558 { 559 return ring->base + (addr - ring->phys_addr); 560 } 561 562 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr) 563 { 564 return readl_relaxed(addr); 565 } 566 567 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val) 568 { 569 writel_relaxed(val, addr); 570 } 571 572 /* gpi_write_reg_field - write to specific bit field */ 573 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr, 574 u32 mask, u32 shift, u32 val) 575 { 576 u32 tmp = gpi_read_reg(gpii, addr); 577 578 tmp &= ~mask; 579 val = tmp | ((val << shift) & mask); 580 gpi_write_reg(gpii, addr, val); 581 } 582 583 static __always_inline void 584 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val) 585 { 586 void __iomem *addr = gpii->regs + offset; 587 u32 tmp = gpi_read_reg(gpii, addr); 588 589 tmp &= ~mask; 590 tmp |= u32_encode_bits(val, mask); 591 592 gpi_write_reg(gpii, addr, tmp); 593 } 594 595 static void gpi_disable_interrupts(struct gpii *gpii) 596 { 597 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 598 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0); 599 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), 600 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0); 601 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), 602 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0); 603 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), 604 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0); 605 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), 606 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); 607 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), 608 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0); 609 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), 610 GPII_n_CNTXT_INTSET_BMSK, 0); 611 612 gpii->cntxt_type_irq_msk = 0; 613 devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii); 614 gpii->configured_irq = false; 615 } 616 617 /* configure and enable interrupts */ 618 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask) 619 { 620 const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL | 621 GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB | 622 GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB | 623 GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL | 624 GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); 625 int ret; 626 627 if (!gpii->configured_irq) { 628 ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq, 629 gpi_handle_irq, IRQF_TRIGGER_HIGH, 630 "gpi-dma", gpii); 631 if (ret < 0) { 632 dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n", 633 gpii->irq, ret); 634 return ret; 635 } 636 } 637 638 if (settings == MASK_IEOB_SETTINGS) { 639 /* 640 * GPII only uses one EV ring per gpii so we can globally 641 * enable/disable IEOB interrupt 642 */ 643 if (mask) 644 gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; 645 else 646 gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB); 647 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 648 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk); 649 } else { 650 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id), 651 GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable); 652 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id), 653 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 654 GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK); 655 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id), 656 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 657 GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK); 658 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id), 659 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 660 GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK); 661 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id), 662 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 663 GPII_n_CNTXT_GPII_IRQ_EN_BMSK); 664 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id), 665 GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK); 666 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0); 667 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0); 668 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0); 669 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0); 670 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id), 671 GPII_n_CNTXT_INTSET_BMSK, 1); 672 gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0); 673 674 gpii->cntxt_type_irq_msk = enable; 675 } 676 677 gpii->configured_irq = true; 678 return 0; 679 } 680 681 /* Sends gpii event or channel command */ 682 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan, 683 enum gpi_cmd gpi_cmd) 684 { 685 u32 chid = MAX_CHANNELS_PER_GPII; 686 unsigned long timeout; 687 void __iomem *cmd_reg; 688 u32 cmd; 689 690 if (gpi_cmd >= GPI_MAX_CMD) 691 return -EINVAL; 692 if (IS_CHAN_CMD(gpi_cmd)) 693 chid = gchan->chid; 694 695 dev_dbg(gpii->gpi_dev->dev, 696 "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid); 697 698 /* send opcode and wait for completion */ 699 reinit_completion(&gpii->cmd_completion); 700 gpii->gpi_cmd = gpi_cmd; 701 702 cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg; 703 cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) : 704 GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0); 705 gpi_write_reg(gpii, cmd_reg, cmd); 706 timeout = wait_for_completion_timeout(&gpii->cmd_completion, 707 msecs_to_jiffies(CMD_TIMEOUT_MS)); 708 if (!timeout) { 709 dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n", 710 TO_GPI_CMD_STR(gpi_cmd), chid); 711 return -EIO; 712 } 713 714 /* confirm new ch state is correct , if the cmd is a state change cmd */ 715 if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE) 716 return 0; 717 718 if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state) 719 return 0; 720 721 if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state) 722 return 0; 723 724 return -EIO; 725 } 726 727 /* program transfer ring DB register */ 728 static inline void gpi_write_ch_db(struct gchan *gchan, 729 struct gpi_ring *ring, void *wp) 730 { 731 struct gpii *gpii = gchan->gpii; 732 phys_addr_t p_wp; 733 734 p_wp = to_physical(ring, wp); 735 gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp); 736 } 737 738 /* program event ring DB register */ 739 static inline void gpi_write_ev_db(struct gpii *gpii, 740 struct gpi_ring *ring, void *wp) 741 { 742 phys_addr_t p_wp; 743 744 p_wp = ring->phys_addr + (wp - ring->base); 745 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp); 746 } 747 748 /* process transfer completion interrupt */ 749 static void gpi_process_ieob(struct gpii *gpii) 750 { 751 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); 752 753 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0); 754 tasklet_hi_schedule(&gpii->ev_task); 755 } 756 757 /* process channel control interrupt */ 758 static void gpi_process_ch_ctrl_irq(struct gpii *gpii) 759 { 760 u32 gpii_id = gpii->gpii_id; 761 u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id); 762 u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset); 763 struct gchan *gchan; 764 u32 chid, state; 765 766 /* clear the status */ 767 offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id); 768 gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq); 769 770 for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) { 771 if (!(BIT(chid) & ch_irq)) 772 continue; 773 774 gchan = &gpii->gchan[chid]; 775 state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg + 776 CNTXT_0_CONFIG); 777 state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state); 778 779 /* 780 * CH_CMD_DEALLOC cmd always successful. However cmd does 781 * not change hardware status. So overwriting software state 782 * to default state. 783 */ 784 if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC) 785 state = DEFAULT_CH_STATE; 786 gchan->ch_state = state; 787 788 /* 789 * Triggering complete all if ch_state is not a stop in process. 790 * Stop in process is a transition state and we will wait for 791 * stop interrupt before notifying. 792 */ 793 if (gchan->ch_state != CH_STATE_STOP_IN_PROC) 794 complete_all(&gpii->cmd_completion); 795 } 796 } 797 798 /* processing gpi general error interrupts */ 799 static void gpi_process_gen_err_irq(struct gpii *gpii) 800 { 801 u32 gpii_id = gpii->gpii_id; 802 u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id); 803 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); 804 805 /* clear the status */ 806 dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts); 807 808 /* Clear the register */ 809 offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id); 810 gpi_write_reg(gpii, gpii->regs + offset, irq_stts); 811 } 812 813 /* processing gpi level error interrupts */ 814 static void gpi_process_glob_err_irq(struct gpii *gpii) 815 { 816 u32 gpii_id = gpii->gpii_id; 817 u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id); 818 u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset); 819 820 offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id); 821 gpi_write_reg(gpii, gpii->regs + offset, irq_stts); 822 823 /* only error interrupt should be set */ 824 if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) { 825 dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts); 826 return; 827 } 828 829 offset = GPII_n_ERROR_LOG_OFFS(gpii_id); 830 gpi_write_reg(gpii, gpii->regs + offset, 0); 831 } 832 833 /* gpii interrupt handler */ 834 static irqreturn_t gpi_handle_irq(int irq, void *data) 835 { 836 struct gpii *gpii = data; 837 u32 gpii_id = gpii->gpii_id; 838 u32 type, offset; 839 unsigned long flags; 840 841 read_lock_irqsave(&gpii->pm_lock, flags); 842 843 /* 844 * States are out of sync to receive interrupt 845 * while software state is in DISABLE state, bailing out. 846 */ 847 if (!REG_ACCESS_VALID(gpii->pm_state)) { 848 dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n", 849 TO_GPI_PM_STR(gpii->pm_state)); 850 goto exit_irq; 851 } 852 853 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); 854 type = gpi_read_reg(gpii, gpii->regs + offset); 855 856 do { 857 /* global gpii error */ 858 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) { 859 gpi_process_glob_err_irq(gpii); 860 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB); 861 } 862 863 /* transfer complete interrupt */ 864 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) { 865 gpi_process_ieob(gpii); 866 type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB; 867 } 868 869 /* event control irq */ 870 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) { 871 u32 ev_state; 872 u32 ev_ch_irq; 873 874 dev_dbg(gpii->gpi_dev->dev, 875 "processing EV CTRL interrupt\n"); 876 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id); 877 ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset); 878 879 offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS 880 (gpii_id); 881 gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq); 882 ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg + 883 CNTXT_0_CONFIG); 884 ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state); 885 886 /* 887 * CMD EV_CMD_DEALLOC is always successful. However 888 * cmd does not change hardware status. So overwriting 889 * software state to default state. 890 */ 891 if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC) 892 ev_state = DEFAULT_EV_CH_STATE; 893 894 gpii->ev_state = ev_state; 895 dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n", 896 TO_GPI_EV_STATE_STR(gpii->ev_state)); 897 complete_all(&gpii->cmd_completion); 898 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL); 899 } 900 901 /* channel control irq */ 902 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) { 903 dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n"); 904 gpi_process_ch_ctrl_irq(gpii); 905 type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL); 906 } 907 908 if (type) { 909 dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type); 910 gpi_process_gen_err_irq(gpii); 911 goto exit_irq; 912 } 913 914 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id); 915 type = gpi_read_reg(gpii, gpii->regs + offset); 916 } while (type); 917 918 exit_irq: 919 read_unlock_irqrestore(&gpii->pm_lock, flags); 920 921 return IRQ_HANDLED; 922 } 923 924 /* process DMA Immediate completion data events */ 925 static void gpi_process_imed_data_event(struct gchan *gchan, 926 struct immediate_data_event *imed_event) 927 { 928 struct gpii *gpii = gchan->gpii; 929 struct gpi_ring *ch_ring = &gchan->ch_ring; 930 void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index); 931 struct dmaengine_result result; 932 struct gpi_desc *gpi_desc; 933 struct virt_dma_desc *vd; 934 unsigned long flags; 935 u32 chid; 936 937 /* 938 * If channel not active don't process event 939 */ 940 if (gchan->pm_state != ACTIVE_STATE) { 941 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", 942 TO_GPI_PM_STR(gchan->pm_state)); 943 return; 944 } 945 946 spin_lock_irqsave(&gchan->vc.lock, flags); 947 vd = vchan_next_desc(&gchan->vc); 948 if (!vd) { 949 struct gpi_ere *gpi_ere; 950 struct gpi_tre *gpi_tre; 951 952 spin_unlock_irqrestore(&gchan->vc.lock, flags); 953 dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n"); 954 gpi_ere = (struct gpi_ere *)imed_event; 955 dev_dbg(gpii->gpi_dev->dev, 956 "Event: %08x %08x %08x %08x\n", 957 gpi_ere->dword[0], gpi_ere->dword[1], 958 gpi_ere->dword[2], gpi_ere->dword[3]); 959 gpi_tre = tre; 960 dev_dbg(gpii->gpi_dev->dev, 961 "Pending TRE: %08x %08x %08x %08x\n", 962 gpi_tre->dword[0], gpi_tre->dword[1], 963 gpi_tre->dword[2], gpi_tre->dword[3]); 964 return; 965 } 966 gpi_desc = to_gpi_desc(vd); 967 spin_unlock_irqrestore(&gchan->vc.lock, flags); 968 969 /* 970 * RP pointed by Event is to last TRE processed, 971 * we need to update ring rp to tre + 1 972 */ 973 tre += ch_ring->el_size; 974 if (tre >= (ch_ring->base + ch_ring->len)) 975 tre = ch_ring->base; 976 ch_ring->rp = tre; 977 978 /* make sure rp updates are immediately visible to all cores */ 979 smp_wmb(); 980 981 chid = imed_event->chid; 982 if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { 983 if (chid == GPI_RX_CHAN) 984 goto gpi_free_desc; 985 else 986 return; 987 } 988 989 if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR) 990 result.result = DMA_TRANS_ABORTED; 991 else 992 result.result = DMA_TRANS_NOERROR; 993 result.residue = gpi_desc->len - imed_event->length; 994 995 dma_cookie_complete(&vd->tx); 996 dmaengine_desc_get_callback_invoke(&vd->tx, &result); 997 998 gpi_free_desc: 999 spin_lock_irqsave(&gchan->vc.lock, flags); 1000 list_del(&vd->node); 1001 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1002 kfree(gpi_desc); 1003 gpi_desc = NULL; 1004 } 1005 1006 /* processing transfer completion events */ 1007 static void gpi_process_xfer_compl_event(struct gchan *gchan, 1008 struct xfer_compl_event *compl_event) 1009 { 1010 struct gpii *gpii = gchan->gpii; 1011 struct gpi_ring *ch_ring = &gchan->ch_ring; 1012 void *ev_rp = to_virtual(ch_ring, compl_event->ptr); 1013 struct virt_dma_desc *vd; 1014 struct gpi_desc *gpi_desc; 1015 struct dmaengine_result result; 1016 unsigned long flags; 1017 u32 chid; 1018 1019 /* only process events on active channel */ 1020 if (unlikely(gchan->pm_state != ACTIVE_STATE)) { 1021 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n", 1022 TO_GPI_PM_STR(gchan->pm_state)); 1023 return; 1024 } 1025 1026 spin_lock_irqsave(&gchan->vc.lock, flags); 1027 vd = vchan_next_desc(&gchan->vc); 1028 if (!vd) { 1029 struct gpi_ere *gpi_ere; 1030 1031 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1032 dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n"); 1033 gpi_ere = (struct gpi_ere *)compl_event; 1034 dev_err(gpii->gpi_dev->dev, 1035 "Event: %08x %08x %08x %08x\n", 1036 gpi_ere->dword[0], gpi_ere->dword[1], 1037 gpi_ere->dword[2], gpi_ere->dword[3]); 1038 return; 1039 } 1040 1041 gpi_desc = to_gpi_desc(vd); 1042 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1043 1044 /* 1045 * RP pointed by Event is to last TRE processed, 1046 * we need to update ring rp to ev_rp + 1 1047 */ 1048 ev_rp += ch_ring->el_size; 1049 if (ev_rp >= (ch_ring->base + ch_ring->len)) 1050 ev_rp = ch_ring->base; 1051 ch_ring->rp = ev_rp; 1052 1053 /* update must be visible to other cores */ 1054 smp_wmb(); 1055 1056 chid = compl_event->chid; 1057 if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) { 1058 if (chid == GPI_RX_CHAN) 1059 goto gpi_free_desc; 1060 else 1061 return; 1062 } 1063 1064 if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) { 1065 dev_err(gpii->gpi_dev->dev, "Error in Transaction\n"); 1066 result.result = DMA_TRANS_ABORTED; 1067 } else { 1068 dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n"); 1069 result.result = DMA_TRANS_NOERROR; 1070 } 1071 result.residue = gpi_desc->len - compl_event->length; 1072 dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue); 1073 1074 dma_cookie_complete(&vd->tx); 1075 dmaengine_desc_get_callback_invoke(&vd->tx, &result); 1076 1077 gpi_free_desc: 1078 spin_lock_irqsave(&gchan->vc.lock, flags); 1079 list_del(&vd->node); 1080 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1081 kfree(gpi_desc); 1082 gpi_desc = NULL; 1083 } 1084 1085 /* process all events */ 1086 static void gpi_process_events(struct gpii *gpii) 1087 { 1088 struct gpi_ring *ev_ring = &gpii->ev_ring; 1089 phys_addr_t cntxt_rp; 1090 void *rp; 1091 union gpi_event *gpi_event; 1092 struct gchan *gchan; 1093 u32 chid, type; 1094 1095 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1096 rp = to_virtual(ev_ring, cntxt_rp); 1097 1098 do { 1099 while (rp != ev_ring->rp) { 1100 gpi_event = ev_ring->rp; 1101 chid = gpi_event->xfer_compl_event.chid; 1102 type = gpi_event->xfer_compl_event.type; 1103 1104 dev_dbg(gpii->gpi_dev->dev, 1105 "Event: CHID:%u, type:%x %08x %08x %08x %08x\n", 1106 chid, type, gpi_event->gpi_ere.dword[0], 1107 gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2], 1108 gpi_event->gpi_ere.dword[3]); 1109 1110 switch (type) { 1111 case XFER_COMPLETE_EV_TYPE: 1112 gchan = &gpii->gchan[chid]; 1113 gpi_process_xfer_compl_event(gchan, 1114 &gpi_event->xfer_compl_event); 1115 break; 1116 case STALE_EV_TYPE: 1117 dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n"); 1118 break; 1119 case IMMEDIATE_DATA_EV_TYPE: 1120 gchan = &gpii->gchan[chid]; 1121 gpi_process_imed_data_event(gchan, 1122 &gpi_event->immediate_data_event); 1123 break; 1124 case QUP_NOTIF_EV_TYPE: 1125 dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n"); 1126 break; 1127 default: 1128 dev_dbg(gpii->gpi_dev->dev, 1129 "not supported event type:0x%x\n", type); 1130 } 1131 gpi_ring_recycle_ev_element(ev_ring); 1132 } 1133 gpi_write_ev_db(gpii, ev_ring, ev_ring->wp); 1134 1135 /* clear pending IEOB events */ 1136 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0)); 1137 1138 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1139 rp = to_virtual(ev_ring, cntxt_rp); 1140 1141 } while (rp != ev_ring->rp); 1142 } 1143 1144 /* processing events using tasklet */ 1145 static void gpi_ev_tasklet(unsigned long data) 1146 { 1147 struct gpii *gpii = (struct gpii *)data; 1148 1149 read_lock(&gpii->pm_lock); 1150 if (!REG_ACCESS_VALID(gpii->pm_state)) { 1151 read_unlock(&gpii->pm_lock); 1152 dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n", 1153 TO_GPI_PM_STR(gpii->pm_state)); 1154 return; 1155 } 1156 1157 /* process the events */ 1158 gpi_process_events(gpii); 1159 1160 /* enable IEOB, switching back to interrupts */ 1161 gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1); 1162 read_unlock(&gpii->pm_lock); 1163 } 1164 1165 /* marks all pending events for the channel as stale */ 1166 static void gpi_mark_stale_events(struct gchan *gchan) 1167 { 1168 struct gpii *gpii = gchan->gpii; 1169 struct gpi_ring *ev_ring = &gpii->ev_ring; 1170 u32 cntxt_rp, local_rp; 1171 void *ev_rp; 1172 1173 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1174 1175 ev_rp = ev_ring->rp; 1176 local_rp = (u32)to_physical(ev_ring, ev_rp); 1177 while (local_rp != cntxt_rp) { 1178 union gpi_event *gpi_event = ev_rp; 1179 u32 chid = gpi_event->xfer_compl_event.chid; 1180 1181 if (chid == gchan->chid) 1182 gpi_event->xfer_compl_event.type = STALE_EV_TYPE; 1183 ev_rp += ev_ring->el_size; 1184 if (ev_rp >= (ev_ring->base + ev_ring->len)) 1185 ev_rp = ev_ring->base; 1186 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg); 1187 local_rp = (u32)to_physical(ev_ring, ev_rp); 1188 } 1189 } 1190 1191 /* reset sw state and issue channel reset or de-alloc */ 1192 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd) 1193 { 1194 struct gpii *gpii = gchan->gpii; 1195 struct gpi_ring *ch_ring = &gchan->ch_ring; 1196 LIST_HEAD(list); 1197 int ret; 1198 1199 ret = gpi_send_cmd(gpii, gchan, gpi_cmd); 1200 if (ret) { 1201 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1202 TO_GPI_CMD_STR(gpi_cmd), ret); 1203 return ret; 1204 } 1205 1206 /* initialize the local ring ptrs */ 1207 ch_ring->rp = ch_ring->base; 1208 ch_ring->wp = ch_ring->base; 1209 1210 /* visible to other cores */ 1211 smp_wmb(); 1212 1213 /* check event ring for any stale events */ 1214 write_lock_irq(&gpii->pm_lock); 1215 gpi_mark_stale_events(gchan); 1216 1217 /* remove all async descriptors */ 1218 spin_lock(&gchan->vc.lock); 1219 vchan_get_all_descriptors(&gchan->vc, &list); 1220 spin_unlock(&gchan->vc.lock); 1221 write_unlock_irq(&gpii->pm_lock); 1222 vchan_dma_desc_free_list(&gchan->vc, &list); 1223 1224 return 0; 1225 } 1226 1227 static int gpi_start_chan(struct gchan *gchan) 1228 { 1229 struct gpii *gpii = gchan->gpii; 1230 int ret; 1231 1232 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START); 1233 if (ret) { 1234 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1235 TO_GPI_CMD_STR(GPI_CH_CMD_START), ret); 1236 return ret; 1237 } 1238 1239 /* gpii CH is active now */ 1240 write_lock_irq(&gpii->pm_lock); 1241 gchan->pm_state = ACTIVE_STATE; 1242 write_unlock_irq(&gpii->pm_lock); 1243 1244 return 0; 1245 } 1246 1247 static int gpi_stop_chan(struct gchan *gchan) 1248 { 1249 struct gpii *gpii = gchan->gpii; 1250 int ret; 1251 1252 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP); 1253 if (ret) { 1254 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1255 TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret); 1256 return ret; 1257 } 1258 1259 return 0; 1260 } 1261 1262 /* allocate and configure the transfer channel */ 1263 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd) 1264 { 1265 struct gpii *gpii = chan->gpii; 1266 struct gpi_ring *ring = &chan->ch_ring; 1267 int ret; 1268 u32 id = gpii->gpii_id; 1269 u32 chid = chan->chid; 1270 u32 pair_chid = !chid; 1271 1272 if (send_alloc_cmd) { 1273 ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE); 1274 if (ret) { 1275 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n", 1276 TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret); 1277 return ret; 1278 } 1279 } 1280 1281 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG, 1282 GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI)); 1283 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len); 1284 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr); 1285 gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB, 1286 upper_32_bits(ring->phys_addr)); 1287 gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, 1288 upper_32_bits(ring->phys_addr)); 1289 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid), 1290 GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid)); 1291 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0); 1292 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0); 1293 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0); 1294 gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1); 1295 1296 /* flush all the writes */ 1297 wmb(); 1298 return 0; 1299 } 1300 1301 /* allocate and configure event ring */ 1302 static int gpi_alloc_ev_chan(struct gpii *gpii) 1303 { 1304 struct gpi_ring *ring = &gpii->ev_ring; 1305 void __iomem *base = gpii->ev_cntxt_base_reg; 1306 int ret; 1307 1308 ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE); 1309 if (ret) { 1310 dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n", 1311 TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret); 1312 return ret; 1313 } 1314 1315 /* program event context */ 1316 gpi_write_reg(gpii, base + CNTXT_0_CONFIG, 1317 GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV)); 1318 gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len); 1319 gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr)); 1320 gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr)); 1321 gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB, 1322 upper_32_bits(ring->phys_addr)); 1323 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); 1324 gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0); 1325 gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0); 1326 gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0); 1327 gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0); 1328 gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0); 1329 1330 /* add events to ring */ 1331 ring->wp = (ring->base + ring->len - ring->el_size); 1332 1333 /* flush all the writes */ 1334 wmb(); 1335 1336 /* gpii is active now */ 1337 write_lock_irq(&gpii->pm_lock); 1338 gpii->pm_state = ACTIVE_STATE; 1339 write_unlock_irq(&gpii->pm_lock); 1340 gpi_write_ev_db(gpii, ring, ring->wp); 1341 1342 return 0; 1343 } 1344 1345 /* calculate # of ERE/TRE available to queue */ 1346 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring) 1347 { 1348 int elements = 0; 1349 1350 if (ring->wp < ring->rp) { 1351 elements = ((ring->rp - ring->wp) / ring->el_size) - 1; 1352 } else { 1353 elements = (ring->rp - ring->base) / ring->el_size; 1354 elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1; 1355 } 1356 1357 return elements; 1358 } 1359 1360 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp) 1361 { 1362 if (gpi_ring_num_elements_avail(ring) <= 0) 1363 return -ENOMEM; 1364 1365 *wp = ring->wp; 1366 ring->wp += ring->el_size; 1367 if (ring->wp >= (ring->base + ring->len)) 1368 ring->wp = ring->base; 1369 1370 /* visible to other cores */ 1371 smp_wmb(); 1372 1373 return 0; 1374 } 1375 1376 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring) 1377 { 1378 /* Update the WP */ 1379 ring->wp += ring->el_size; 1380 if (ring->wp >= (ring->base + ring->len)) 1381 ring->wp = ring->base; 1382 1383 /* Update the RP */ 1384 ring->rp += ring->el_size; 1385 if (ring->rp >= (ring->base + ring->len)) 1386 ring->rp = ring->base; 1387 1388 /* visible to other cores */ 1389 smp_wmb(); 1390 } 1391 1392 static void gpi_free_ring(struct gpi_ring *ring, 1393 struct gpii *gpii) 1394 { 1395 dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size, 1396 ring->pre_aligned, ring->dma_handle); 1397 memset(ring, 0, sizeof(*ring)); 1398 } 1399 1400 /* allocate memory for transfer and event rings */ 1401 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements, 1402 u32 el_size, struct gpii *gpii) 1403 { 1404 u64 len = elements * el_size; 1405 int bit; 1406 1407 /* ring len must be power of 2 */ 1408 bit = find_last_bit((unsigned long *)&len, 32); 1409 if (((1 << bit) - 1) & len) 1410 bit++; 1411 len = 1 << bit; 1412 ring->alloc_size = (len + (len - 1)); 1413 dev_dbg(gpii->gpi_dev->dev, 1414 "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%zu\n", 1415 elements, el_size, (elements * el_size), len, 1416 ring->alloc_size); 1417 1418 ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev, 1419 ring->alloc_size, 1420 &ring->dma_handle, GFP_KERNEL); 1421 if (!ring->pre_aligned) { 1422 dev_err(gpii->gpi_dev->dev, "could not alloc size:%zu mem for ring\n", 1423 ring->alloc_size); 1424 return -ENOMEM; 1425 } 1426 1427 /* align the physical mem */ 1428 ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1); 1429 ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle); 1430 ring->rp = ring->base; 1431 ring->wp = ring->base; 1432 ring->len = len; 1433 ring->el_size = el_size; 1434 ring->elements = ring->len / ring->el_size; 1435 memset(ring->base, 0, ring->len); 1436 ring->configured = true; 1437 1438 /* update to other cores */ 1439 smp_wmb(); 1440 1441 dev_dbg(gpii->gpi_dev->dev, 1442 "phy_pre:%pad phy_alig:%pa len:%u el_size:%u elements:%u\n", 1443 &ring->dma_handle, &ring->phys_addr, ring->len, 1444 ring->el_size, ring->elements); 1445 1446 return 0; 1447 } 1448 1449 /* copy tre into transfer ring */ 1450 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan, 1451 struct gpi_tre *gpi_tre, void **wp) 1452 { 1453 struct gpi_tre *ch_tre; 1454 int ret; 1455 1456 /* get next tre location we can copy */ 1457 ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre); 1458 if (unlikely(ret)) { 1459 dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n"); 1460 return; 1461 } 1462 1463 /* copy the tre info */ 1464 memcpy(ch_tre, gpi_tre, sizeof(*ch_tre)); 1465 *wp = ch_tre; 1466 } 1467 1468 /* reset and restart transfer channel */ 1469 static int gpi_terminate_all(struct dma_chan *chan) 1470 { 1471 struct gchan *gchan = to_gchan(chan); 1472 struct gpii *gpii = gchan->gpii; 1473 int schid, echid, i; 1474 int ret = 0; 1475 1476 mutex_lock(&gpii->ctrl_lock); 1477 1478 /* 1479 * treat both channels as a group if its protocol is not UART 1480 * STOP, RESET, or START needs to be in lockstep 1481 */ 1482 schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0; 1483 echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII; 1484 1485 /* stop the channel */ 1486 for (i = schid; i < echid; i++) { 1487 gchan = &gpii->gchan[i]; 1488 1489 /* disable ch state so no more TRE processing */ 1490 write_lock_irq(&gpii->pm_lock); 1491 gchan->pm_state = PREPARE_TERMINATE; 1492 write_unlock_irq(&gpii->pm_lock); 1493 1494 /* send command to Stop the channel */ 1495 ret = gpi_stop_chan(gchan); 1496 } 1497 1498 /* reset the channels (clears any pending tre) */ 1499 for (i = schid; i < echid; i++) { 1500 gchan = &gpii->gchan[i]; 1501 1502 ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET); 1503 if (ret) { 1504 dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret); 1505 goto terminate_exit; 1506 } 1507 1508 /* reprogram channel CNTXT */ 1509 ret = gpi_alloc_chan(gchan, false); 1510 if (ret) { 1511 dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret); 1512 goto terminate_exit; 1513 } 1514 } 1515 1516 /* restart the channels */ 1517 for (i = schid; i < echid; i++) { 1518 gchan = &gpii->gchan[i]; 1519 1520 ret = gpi_start_chan(gchan); 1521 if (ret) { 1522 dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret); 1523 goto terminate_exit; 1524 } 1525 } 1526 1527 terminate_exit: 1528 mutex_unlock(&gpii->ctrl_lock); 1529 return ret; 1530 } 1531 1532 /* pause dma transfer for all channels */ 1533 static int gpi_pause(struct dma_chan *chan) 1534 { 1535 struct gchan *gchan = to_gchan(chan); 1536 struct gpii *gpii = gchan->gpii; 1537 int i, ret; 1538 1539 mutex_lock(&gpii->ctrl_lock); 1540 1541 /* 1542 * pause/resume are per gpii not per channel, so 1543 * client needs to call pause only once 1544 */ 1545 if (gpii->pm_state == PAUSE_STATE) { 1546 dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n"); 1547 mutex_unlock(&gpii->ctrl_lock); 1548 return 0; 1549 } 1550 1551 /* send stop command to stop the channels */ 1552 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1553 ret = gpi_stop_chan(&gpii->gchan[i]); 1554 if (ret) { 1555 mutex_unlock(&gpii->ctrl_lock); 1556 return ret; 1557 } 1558 } 1559 1560 disable_irq(gpii->irq); 1561 1562 /* Wait for threads to complete out */ 1563 tasklet_kill(&gpii->ev_task); 1564 1565 write_lock_irq(&gpii->pm_lock); 1566 gpii->pm_state = PAUSE_STATE; 1567 write_unlock_irq(&gpii->pm_lock); 1568 mutex_unlock(&gpii->ctrl_lock); 1569 1570 return 0; 1571 } 1572 1573 /* resume dma transfer */ 1574 static int gpi_resume(struct dma_chan *chan) 1575 { 1576 struct gchan *gchan = to_gchan(chan); 1577 struct gpii *gpii = gchan->gpii; 1578 int i, ret; 1579 1580 mutex_lock(&gpii->ctrl_lock); 1581 if (gpii->pm_state == ACTIVE_STATE) { 1582 dev_dbg(gpii->gpi_dev->dev, "channel is already active\n"); 1583 mutex_unlock(&gpii->ctrl_lock); 1584 return 0; 1585 } 1586 1587 enable_irq(gpii->irq); 1588 1589 /* send start command to start the channels */ 1590 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1591 ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START); 1592 if (ret) { 1593 dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret); 1594 mutex_unlock(&gpii->ctrl_lock); 1595 return ret; 1596 } 1597 } 1598 1599 write_lock_irq(&gpii->pm_lock); 1600 gpii->pm_state = ACTIVE_STATE; 1601 write_unlock_irq(&gpii->pm_lock); 1602 mutex_unlock(&gpii->ctrl_lock); 1603 1604 return 0; 1605 } 1606 1607 static void gpi_desc_free(struct virt_dma_desc *vd) 1608 { 1609 struct gpi_desc *gpi_desc = to_gpi_desc(vd); 1610 1611 kfree(gpi_desc); 1612 gpi_desc = NULL; 1613 } 1614 1615 static int 1616 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config) 1617 { 1618 struct gchan *gchan = to_gchan(chan); 1619 1620 if (!config->peripheral_config) 1621 return -EINVAL; 1622 1623 gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT); 1624 if (!gchan->config) 1625 return -ENOMEM; 1626 1627 memcpy(gchan->config, config->peripheral_config, config->peripheral_size); 1628 1629 return 0; 1630 } 1631 1632 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc, 1633 struct scatterlist *sgl, enum dma_transfer_direction direction) 1634 { 1635 struct gpi_i2c_config *i2c = chan->config; 1636 struct device *dev = chan->gpii->gpi_dev->dev; 1637 unsigned int tre_idx = 0; 1638 dma_addr_t address; 1639 struct gpi_tre *tre; 1640 unsigned int i; 1641 1642 /* first create config tre if applicable */ 1643 if (i2c->set_config) { 1644 tre = &desc->tre[tre_idx]; 1645 tre_idx++; 1646 1647 tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW); 1648 tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH); 1649 tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL); 1650 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK); 1651 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK); 1652 1653 tre->dword[1] = 0; 1654 1655 tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV); 1656 1657 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); 1658 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1659 } 1660 1661 /* create the GO tre for Tx */ 1662 if (i2c->op == I2C_WRITE) { 1663 tre = &desc->tre[tre_idx]; 1664 tre_idx++; 1665 1666 if (i2c->multi_msg) 1667 tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD); 1668 else 1669 tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD); 1670 1671 tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR); 1672 tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH); 1673 1674 tre->dword[1] = 0; 1675 tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN); 1676 1677 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); 1678 1679 if (i2c->multi_msg) 1680 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1681 else 1682 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1683 } 1684 1685 if (i2c->op == I2C_READ || i2c->multi_msg == false) { 1686 /* create the DMA TRE */ 1687 tre = &desc->tre[tre_idx]; 1688 tre_idx++; 1689 1690 address = sg_dma_address(sgl); 1691 tre->dword[0] = lower_32_bits(address); 1692 tre->dword[1] = upper_32_bits(address); 1693 1694 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN); 1695 1696 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); 1697 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT); 1698 } 1699 1700 for (i = 0; i < tre_idx; i++) 1701 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], 1702 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); 1703 1704 return tre_idx; 1705 } 1706 1707 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc, 1708 struct scatterlist *sgl, enum dma_transfer_direction direction) 1709 { 1710 struct gpi_spi_config *spi = chan->config; 1711 struct device *dev = chan->gpii->gpi_dev->dev; 1712 unsigned int tre_idx = 0; 1713 dma_addr_t address; 1714 struct gpi_tre *tre; 1715 unsigned int i; 1716 int len; 1717 1718 /* first create config tre if applicable */ 1719 if (direction == DMA_MEM_TO_DEV && spi->set_config) { 1720 tre = &desc->tre[tre_idx]; 1721 tre_idx++; 1722 1723 tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ); 1724 tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK); 1725 tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL); 1726 tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA); 1727 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK); 1728 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK); 1729 1730 tre->dword[1] = 0; 1731 1732 tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV); 1733 tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC); 1734 1735 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE); 1736 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1737 } 1738 1739 /* create the GO tre for Tx */ 1740 if (direction == DMA_MEM_TO_DEV) { 1741 tre = &desc->tre[tre_idx]; 1742 tre_idx++; 1743 1744 tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG); 1745 tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS); 1746 tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD); 1747 1748 tre->dword[1] = 0; 1749 1750 tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN); 1751 1752 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE); 1753 if (spi->cmd == SPI_RX) { 1754 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB); 1755 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1756 } else if (spi->cmd == SPI_TX) { 1757 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1758 } else { /* SPI_DUPLEX */ 1759 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN); 1760 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK); 1761 } 1762 } 1763 1764 /* create the dma tre */ 1765 tre = &desc->tre[tre_idx]; 1766 tre_idx++; 1767 1768 address = sg_dma_address(sgl); 1769 len = sg_dma_len(sgl); 1770 1771 /* Support Immediate dma for write transfers for data length up to 8 bytes */ 1772 if (direction == DMA_MEM_TO_DEV && len <= 2 * sizeof(tre->dword[0])) { 1773 /* 1774 * For Immediate dma, data length may not always be length of 8 bytes, 1775 * it can be length less than 8, hence initialize both dword's with 0 1776 */ 1777 tre->dword[0] = 0; 1778 tre->dword[1] = 0; 1779 memcpy(&tre->dword[0], sg_virt(sgl), len); 1780 1781 tre->dword[2] = u32_encode_bits(len, TRE_DMA_IMMEDIATE_LEN); 1782 tre->dword[3] = u32_encode_bits(TRE_TYPE_IMMEDIATE_DMA, TRE_FLAGS_TYPE); 1783 } else { 1784 tre->dword[0] = lower_32_bits(address); 1785 tre->dword[1] = upper_32_bits(address); 1786 1787 tre->dword[2] = u32_encode_bits(len, TRE_DMA_LEN); 1788 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE); 1789 } 1790 1791 tre->dword[3] |= u32_encode_bits(direction == DMA_MEM_TO_DEV, 1792 TRE_FLAGS_IEOT); 1793 1794 for (i = 0; i < tre_idx; i++) 1795 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0], 1796 desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]); 1797 1798 return tre_idx; 1799 } 1800 1801 /* copy tre into transfer ring */ 1802 static struct dma_async_tx_descriptor * 1803 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, 1804 unsigned int sg_len, enum dma_transfer_direction direction, 1805 unsigned long flags, void *context) 1806 { 1807 struct gchan *gchan = to_gchan(chan); 1808 struct gpii *gpii = gchan->gpii; 1809 struct device *dev = gpii->gpi_dev->dev; 1810 struct gpi_ring *ch_ring = &gchan->ch_ring; 1811 struct gpi_desc *gpi_desc; 1812 u32 nr, nr_tre = 0; 1813 u8 set_config; 1814 int i; 1815 1816 gpii->ieob_set = false; 1817 if (!is_slave_direction(direction)) { 1818 dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction); 1819 return NULL; 1820 } 1821 1822 if (sg_len > 1) { 1823 dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len); 1824 return NULL; 1825 } 1826 1827 nr_tre = 3; 1828 set_config = *(u32 *)gchan->config; 1829 if (!set_config) 1830 nr_tre = 2; 1831 if (direction == DMA_DEV_TO_MEM) /* rx */ 1832 nr_tre = 1; 1833 1834 /* calculate # of elements required & available */ 1835 nr = gpi_ring_num_elements_avail(ch_ring); 1836 if (nr < nr_tre) { 1837 dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre); 1838 return NULL; 1839 } 1840 1841 gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT); 1842 if (!gpi_desc) 1843 return NULL; 1844 1845 /* create TREs for xfer */ 1846 if (gchan->protocol == QCOM_GPI_SPI) { 1847 i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction); 1848 } else if (gchan->protocol == QCOM_GPI_I2C) { 1849 i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction); 1850 } else { 1851 dev_err(dev, "invalid peripheral: %d\n", gchan->protocol); 1852 kfree(gpi_desc); 1853 return NULL; 1854 } 1855 1856 /* set up the descriptor */ 1857 gpi_desc->gchan = gchan; 1858 gpi_desc->len = sg_dma_len(sgl); 1859 gpi_desc->num_tre = i; 1860 1861 return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags); 1862 } 1863 1864 /* rings transfer ring db to being transfer */ 1865 static void gpi_issue_pending(struct dma_chan *chan) 1866 { 1867 struct gchan *gchan = to_gchan(chan); 1868 struct gpii *gpii = gchan->gpii; 1869 unsigned long flags, pm_lock_flags; 1870 struct virt_dma_desc *vd = NULL; 1871 struct gpi_desc *gpi_desc; 1872 struct gpi_ring *ch_ring = &gchan->ch_ring; 1873 void *tre, *wp = NULL; 1874 int i; 1875 1876 read_lock_irqsave(&gpii->pm_lock, pm_lock_flags); 1877 1878 /* move all submitted descriptors to issued list */ 1879 spin_lock_irqsave(&gchan->vc.lock, flags); 1880 if (vchan_issue_pending(&gchan->vc)) 1881 vd = list_last_entry(&gchan->vc.desc_issued, 1882 struct virt_dma_desc, node); 1883 spin_unlock_irqrestore(&gchan->vc.lock, flags); 1884 1885 /* nothing to do list is empty */ 1886 if (!vd) { 1887 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); 1888 return; 1889 } 1890 1891 gpi_desc = to_gpi_desc(vd); 1892 for (i = 0; i < gpi_desc->num_tre; i++) { 1893 tre = &gpi_desc->tre[i]; 1894 gpi_queue_xfer(gpii, gchan, tre, &wp); 1895 } 1896 1897 gpi_desc->db = ch_ring->wp; 1898 gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db); 1899 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags); 1900 } 1901 1902 static int gpi_ch_init(struct gchan *gchan) 1903 { 1904 struct gpii *gpii = gchan->gpii; 1905 const int ev_factor = gpii->gpi_dev->ev_factor; 1906 u32 elements; 1907 int i = 0, ret = 0; 1908 1909 gchan->pm_state = CONFIG_STATE; 1910 1911 /* check if both channels are configured before continue */ 1912 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) 1913 if (gpii->gchan[i].pm_state != CONFIG_STATE) 1914 goto exit_gpi_init; 1915 1916 /* protocol must be same for both channels */ 1917 if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) { 1918 dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n", 1919 gpii->gchan[0].protocol, gpii->gchan[1].protocol); 1920 ret = -EINVAL; 1921 goto exit_gpi_init; 1922 } 1923 1924 /* allocate memory for event ring */ 1925 elements = CHAN_TRES << ev_factor; 1926 ret = gpi_alloc_ring(&gpii->ev_ring, elements, 1927 sizeof(union gpi_event), gpii); 1928 if (ret) 1929 goto exit_gpi_init; 1930 1931 /* configure interrupts */ 1932 write_lock_irq(&gpii->pm_lock); 1933 gpii->pm_state = PREPARE_HARDWARE; 1934 write_unlock_irq(&gpii->pm_lock); 1935 ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0); 1936 if (ret) { 1937 dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret); 1938 goto error_config_int; 1939 } 1940 1941 /* allocate event rings */ 1942 ret = gpi_alloc_ev_chan(gpii); 1943 if (ret) { 1944 dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret); 1945 goto error_alloc_ev_ring; 1946 } 1947 1948 /* Allocate all channels */ 1949 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1950 ret = gpi_alloc_chan(&gpii->gchan[i], true); 1951 if (ret) { 1952 dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret); 1953 goto error_alloc_chan; 1954 } 1955 } 1956 1957 /* start channels */ 1958 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) { 1959 ret = gpi_start_chan(&gpii->gchan[i]); 1960 if (ret) { 1961 dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret); 1962 goto error_start_chan; 1963 } 1964 } 1965 return ret; 1966 1967 error_start_chan: 1968 for (i = i - 1; i >= 0; i--) { 1969 gpi_stop_chan(&gpii->gchan[i]); 1970 gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); 1971 } 1972 i = 2; 1973 error_alloc_chan: 1974 for (i = i - 1; i >= 0; i--) 1975 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); 1976 error_alloc_ev_ring: 1977 gpi_disable_interrupts(gpii); 1978 error_config_int: 1979 gpi_free_ring(&gpii->ev_ring, gpii); 1980 exit_gpi_init: 1981 return ret; 1982 } 1983 1984 /* release all channel resources */ 1985 static void gpi_free_chan_resources(struct dma_chan *chan) 1986 { 1987 struct gchan *gchan = to_gchan(chan); 1988 struct gpii *gpii = gchan->gpii; 1989 enum gpi_pm_state cur_state; 1990 int ret, i; 1991 1992 mutex_lock(&gpii->ctrl_lock); 1993 1994 cur_state = gchan->pm_state; 1995 1996 /* disable ch state so no more TRE processing for this channel */ 1997 write_lock_irq(&gpii->pm_lock); 1998 gchan->pm_state = PREPARE_TERMINATE; 1999 write_unlock_irq(&gpii->pm_lock); 2000 2001 /* attempt to do graceful hardware shutdown */ 2002 if (cur_state == ACTIVE_STATE) { 2003 gpi_stop_chan(gchan); 2004 2005 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET); 2006 if (ret) 2007 dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret); 2008 2009 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC); 2010 } 2011 2012 /* free all allocated memory */ 2013 gpi_free_ring(&gchan->ch_ring, gpii); 2014 vchan_free_chan_resources(&gchan->vc); 2015 kfree(gchan->config); 2016 2017 write_lock_irq(&gpii->pm_lock); 2018 gchan->pm_state = DISABLE_STATE; 2019 write_unlock_irq(&gpii->pm_lock); 2020 2021 /* if other rings are still active exit */ 2022 for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) 2023 if (gpii->gchan[i].ch_ring.configured) 2024 goto exit_free; 2025 2026 /* deallocate EV Ring */ 2027 cur_state = gpii->pm_state; 2028 write_lock_irq(&gpii->pm_lock); 2029 gpii->pm_state = PREPARE_TERMINATE; 2030 write_unlock_irq(&gpii->pm_lock); 2031 2032 /* wait for threads to complete out */ 2033 tasklet_kill(&gpii->ev_task); 2034 2035 /* send command to de allocate event ring */ 2036 if (cur_state == ACTIVE_STATE) 2037 gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC); 2038 2039 gpi_free_ring(&gpii->ev_ring, gpii); 2040 2041 /* disable interrupts */ 2042 if (cur_state == ACTIVE_STATE) 2043 gpi_disable_interrupts(gpii); 2044 2045 /* set final state to disable */ 2046 write_lock_irq(&gpii->pm_lock); 2047 gpii->pm_state = DISABLE_STATE; 2048 write_unlock_irq(&gpii->pm_lock); 2049 2050 exit_free: 2051 mutex_unlock(&gpii->ctrl_lock); 2052 } 2053 2054 /* allocate channel resources */ 2055 static int gpi_alloc_chan_resources(struct dma_chan *chan) 2056 { 2057 struct gchan *gchan = to_gchan(chan); 2058 struct gpii *gpii = gchan->gpii; 2059 int ret; 2060 2061 mutex_lock(&gpii->ctrl_lock); 2062 2063 /* allocate memory for transfer ring */ 2064 ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES, 2065 sizeof(struct gpi_tre), gpii); 2066 if (ret) 2067 goto xfer_alloc_err; 2068 2069 ret = gpi_ch_init(gchan); 2070 2071 mutex_unlock(&gpii->ctrl_lock); 2072 2073 return ret; 2074 xfer_alloc_err: 2075 mutex_unlock(&gpii->ctrl_lock); 2076 2077 return ret; 2078 } 2079 2080 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid) 2081 { 2082 struct gchan *tx_chan, *rx_chan; 2083 unsigned int gpii; 2084 2085 /* check if same seid is already configured for another chid */ 2086 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { 2087 if (!((1 << gpii) & gpi_dev->gpii_mask)) 2088 continue; 2089 2090 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; 2091 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; 2092 2093 if (rx_chan->vc.chan.client_count && rx_chan->seid == seid) 2094 return gpii; 2095 if (tx_chan->vc.chan.client_count && tx_chan->seid == seid) 2096 return gpii; 2097 } 2098 2099 /* no channels configured with same seid, return next avail gpii */ 2100 for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) { 2101 if (!((1 << gpii) & gpi_dev->gpii_mask)) 2102 continue; 2103 2104 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN]; 2105 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN]; 2106 2107 /* check if gpii is configured */ 2108 if (tx_chan->vc.chan.client_count || 2109 rx_chan->vc.chan.client_count) 2110 continue; 2111 2112 /* found a free gpii */ 2113 return gpii; 2114 } 2115 2116 /* no gpii instance available to use */ 2117 return -EIO; 2118 } 2119 2120 /* gpi_of_dma_xlate: open client requested channel */ 2121 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args, 2122 struct of_dma *of_dma) 2123 { 2124 struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data; 2125 u32 seid, chid; 2126 int gpii; 2127 struct gchan *gchan; 2128 2129 if (args->args_count < 3) { 2130 dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n", 2131 args->args_count); 2132 return NULL; 2133 } 2134 2135 chid = args->args[0]; 2136 if (chid >= MAX_CHANNELS_PER_GPII) { 2137 dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid); 2138 return NULL; 2139 } 2140 2141 seid = args->args[1]; 2142 2143 /* find next available gpii to use */ 2144 gpii = gpi_find_avail_gpii(gpi_dev, seid); 2145 if (gpii < 0) { 2146 dev_err(gpi_dev->dev, "no available gpii instances\n"); 2147 return NULL; 2148 } 2149 2150 gchan = &gpi_dev->gpiis[gpii].gchan[chid]; 2151 if (gchan->vc.chan.client_count) { 2152 dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n", 2153 gpii, chid, gchan->seid); 2154 return NULL; 2155 } 2156 2157 gchan->seid = seid; 2158 gchan->protocol = args->args[2]; 2159 2160 return dma_get_slave_channel(&gchan->vc.chan); 2161 } 2162 2163 static int gpi_probe(struct platform_device *pdev) 2164 { 2165 struct gpi_dev *gpi_dev; 2166 unsigned int i; 2167 u32 ee_offset; 2168 int ret; 2169 2170 gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL); 2171 if (!gpi_dev) 2172 return -ENOMEM; 2173 2174 gpi_dev->dev = &pdev->dev; 2175 gpi_dev->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &gpi_dev->res); 2176 if (IS_ERR(gpi_dev->regs)) 2177 return PTR_ERR(gpi_dev->regs); 2178 gpi_dev->ee_base = gpi_dev->regs; 2179 2180 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels", 2181 &gpi_dev->max_gpii); 2182 if (ret) { 2183 dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n"); 2184 return ret; 2185 } 2186 2187 ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask", 2188 &gpi_dev->gpii_mask); 2189 if (ret) { 2190 dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n"); 2191 return ret; 2192 } 2193 2194 ee_offset = (uintptr_t)device_get_match_data(gpi_dev->dev); 2195 gpi_dev->ee_base = gpi_dev->ee_base - ee_offset; 2196 2197 gpi_dev->ev_factor = EV_FACTOR; 2198 2199 ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64)); 2200 if (ret) { 2201 dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret); 2202 return ret; 2203 } 2204 2205 gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) * 2206 gpi_dev->max_gpii, GFP_KERNEL); 2207 if (!gpi_dev->gpiis) 2208 return -ENOMEM; 2209 2210 /* setup all the supported gpii */ 2211 INIT_LIST_HEAD(&gpi_dev->dma_device.channels); 2212 for (i = 0; i < gpi_dev->max_gpii; i++) { 2213 struct gpii *gpii = &gpi_dev->gpiis[i]; 2214 int chan; 2215 2216 if (!((1 << i) & gpi_dev->gpii_mask)) 2217 continue; 2218 2219 /* set up ev cntxt register map */ 2220 gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0); 2221 gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0); 2222 gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB; 2223 gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i); 2224 gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i); 2225 2226 /* set up irq */ 2227 ret = platform_get_irq(pdev, i); 2228 if (ret < 0) 2229 return ret; 2230 gpii->irq = ret; 2231 2232 /* set up channel specific register info */ 2233 for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) { 2234 struct gchan *gchan = &gpii->gchan[chan]; 2235 2236 /* set up ch cntxt register map */ 2237 gchan->ch_cntxt_base_reg = gpi_dev->ee_base + 2238 GPII_n_CH_k_CNTXT_0_OFFS(i, chan); 2239 gchan->ch_cntxt_db_reg = gpi_dev->ee_base + 2240 GPII_n_CH_k_DOORBELL_0_OFFS(i, chan); 2241 gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i); 2242 2243 /* vchan setup */ 2244 vchan_init(&gchan->vc, &gpi_dev->dma_device); 2245 gchan->vc.desc_free = gpi_desc_free; 2246 gchan->chid = chan; 2247 gchan->gpii = gpii; 2248 gchan->dir = GPII_CHAN_DIR[chan]; 2249 } 2250 mutex_init(&gpii->ctrl_lock); 2251 rwlock_init(&gpii->pm_lock); 2252 tasklet_init(&gpii->ev_task, gpi_ev_tasklet, 2253 (unsigned long)gpii); 2254 init_completion(&gpii->cmd_completion); 2255 gpii->gpii_id = i; 2256 gpii->regs = gpi_dev->ee_base; 2257 gpii->gpi_dev = gpi_dev; 2258 } 2259 2260 platform_set_drvdata(pdev, gpi_dev); 2261 2262 /* clear and Set capabilities */ 2263 dma_cap_zero(gpi_dev->dma_device.cap_mask); 2264 dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask); 2265 2266 /* configure dmaengine apis */ 2267 gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); 2268 gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR; 2269 gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; 2270 gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES; 2271 gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources; 2272 gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources; 2273 gpi_dev->dma_device.device_tx_status = dma_cookie_status; 2274 gpi_dev->dma_device.device_issue_pending = gpi_issue_pending; 2275 gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg; 2276 gpi_dev->dma_device.device_config = gpi_peripheral_config; 2277 gpi_dev->dma_device.device_terminate_all = gpi_terminate_all; 2278 gpi_dev->dma_device.dev = gpi_dev->dev; 2279 gpi_dev->dma_device.device_pause = gpi_pause; 2280 gpi_dev->dma_device.device_resume = gpi_resume; 2281 2282 /* register with dmaengine framework */ 2283 ret = dma_async_device_register(&gpi_dev->dma_device); 2284 if (ret) { 2285 dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret); 2286 return ret; 2287 } 2288 2289 ret = of_dma_controller_register(gpi_dev->dev->of_node, 2290 gpi_of_dma_xlate, gpi_dev); 2291 if (ret) { 2292 dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret); 2293 return ret; 2294 } 2295 2296 return ret; 2297 } 2298 2299 static const struct of_device_id gpi_of_match[] = { 2300 { .compatible = "qcom,sdm845-gpi-dma", .data = (void *)0x0 }, 2301 { .compatible = "qcom,sm6350-gpi-dma", .data = (void *)0x10000 }, 2302 /* 2303 * Do not grow the list for compatible devices. Instead use 2304 * qcom,sdm845-gpi-dma (for ee_offset = 0x0) or qcom,sm6350-gpi-dma 2305 * (for ee_offset = 0x10000). 2306 */ 2307 { .compatible = "qcom,sc7280-gpi-dma", .data = (void *)0x10000 }, 2308 { .compatible = "qcom,sm8150-gpi-dma", .data = (void *)0x0 }, 2309 { .compatible = "qcom,sm8250-gpi-dma", .data = (void *)0x0 }, 2310 { .compatible = "qcom,sm8350-gpi-dma", .data = (void *)0x10000 }, 2311 { .compatible = "qcom,sm8450-gpi-dma", .data = (void *)0x10000 }, 2312 { }, 2313 }; 2314 MODULE_DEVICE_TABLE(of, gpi_of_match); 2315 2316 static struct platform_driver gpi_driver = { 2317 .probe = gpi_probe, 2318 .driver = { 2319 .name = KBUILD_MODNAME, 2320 .of_match_table = gpi_of_match, 2321 }, 2322 }; 2323 2324 static int __init gpi_init(void) 2325 { 2326 return platform_driver_register(&gpi_driver); 2327 } 2328 subsys_initcall(gpi_init) 2329 2330 MODULE_DESCRIPTION("QCOM GPI DMA engine driver"); 2331 MODULE_LICENSE("GPL v2"); 2332