xref: /linux/kernel/sched/sched.h (revision acd855a949fc168f5cefe643ed4875a052b66060)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7 
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23 
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71 #include <linux/delayacct.h>
72 
73 #include <trace/events/power.h>
74 #include <trace/events/sched.h>
75 
76 #include "../workqueue_internal.h"
77 
78 struct rq;
79 struct cfs_rq;
80 struct rt_rq;
81 struct sched_group;
82 struct cpuidle_state;
83 
84 #ifdef CONFIG_PARAVIRT
85 # include <asm/paravirt.h>
86 # include <asm/paravirt_api_clock.h>
87 #endif
88 
89 #include <asm/barrier.h>
90 
91 #include "cpupri.h"
92 #include "cpudeadline.h"
93 
94 #ifdef CONFIG_SCHED_DEBUG
95 # define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
96 #else
97 # define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
98 #endif
99 
100 /* task_struct::on_rq states: */
101 #define TASK_ON_RQ_QUEUED	1
102 #define TASK_ON_RQ_MIGRATING	2
103 
104 extern __read_mostly int scheduler_running;
105 
106 extern unsigned long calc_load_update;
107 extern atomic_long_t calc_load_tasks;
108 
109 extern void calc_global_load_tick(struct rq *this_rq);
110 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
111 
112 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
113 
114 extern int sysctl_sched_rt_period;
115 extern int sysctl_sched_rt_runtime;
116 extern int sched_rr_timeslice;
117 
118 /*
119  * Asymmetric CPU capacity bits
120  */
121 struct asym_cap_data {
122 	struct list_head link;
123 	struct rcu_head rcu;
124 	unsigned long capacity;
125 	unsigned long cpus[];
126 };
127 
128 extern struct list_head asym_cap_list;
129 
130 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
131 
132 /*
133  * Helpers for converting nanosecond timing to jiffy resolution
134  */
135 #define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
136 
137 /*
138  * Increase resolution of nice-level calculations for 64-bit architectures.
139  * The extra resolution improves shares distribution and load balancing of
140  * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
141  * hierarchies, especially on larger systems. This is not a user-visible change
142  * and does not change the user-interface for setting shares/weights.
143  *
144  * We increase resolution only if we have enough bits to allow this increased
145  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
146  * are pretty high and the returns do not justify the increased costs.
147  *
148  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
149  * increase coverage and consistency always enable it on 64-bit platforms.
150  */
151 #ifdef CONFIG_64BIT
152 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
153 # define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
154 # define scale_load_down(w)					\
155 ({								\
156 	unsigned long __w = (w);				\
157 								\
158 	if (__w)						\
159 		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
160 	__w;							\
161 })
162 #else
163 # define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
164 # define scale_load(w)		(w)
165 # define scale_load_down(w)	(w)
166 #endif
167 
168 /*
169  * Task weight (visible to users) and its load (invisible to users) have
170  * independent resolution, but they should be well calibrated. We use
171  * scale_load() and scale_load_down(w) to convert between them. The
172  * following must be true:
173  *
174  *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
175  *
176  */
177 #define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
178 
179 /*
180  * Single value that decides SCHED_DEADLINE internal math precision.
181  * 10 -> just above 1us
182  * 9  -> just above 0.5us
183  */
184 #define DL_SCALE		10
185 
186 /*
187  * Single value that denotes runtime == period, ie unlimited time.
188  */
189 #define RUNTIME_INF		((u64)~0ULL)
190 
idle_policy(int policy)191 static inline int idle_policy(int policy)
192 {
193 	return policy == SCHED_IDLE;
194 }
195 
normal_policy(int policy)196 static inline int normal_policy(int policy)
197 {
198 #ifdef CONFIG_SCHED_CLASS_EXT
199 	if (policy == SCHED_EXT)
200 		return true;
201 #endif
202 	return policy == SCHED_NORMAL;
203 }
204 
fair_policy(int policy)205 static inline int fair_policy(int policy)
206 {
207 	return normal_policy(policy) || policy == SCHED_BATCH;
208 }
209 
rt_policy(int policy)210 static inline int rt_policy(int policy)
211 {
212 	return policy == SCHED_FIFO || policy == SCHED_RR;
213 }
214 
dl_policy(int policy)215 static inline int dl_policy(int policy)
216 {
217 	return policy == SCHED_DEADLINE;
218 }
219 
valid_policy(int policy)220 static inline bool valid_policy(int policy)
221 {
222 	return idle_policy(policy) || fair_policy(policy) ||
223 		rt_policy(policy) || dl_policy(policy);
224 }
225 
task_has_idle_policy(struct task_struct * p)226 static inline int task_has_idle_policy(struct task_struct *p)
227 {
228 	return idle_policy(p->policy);
229 }
230 
task_has_rt_policy(struct task_struct * p)231 static inline int task_has_rt_policy(struct task_struct *p)
232 {
233 	return rt_policy(p->policy);
234 }
235 
task_has_dl_policy(struct task_struct * p)236 static inline int task_has_dl_policy(struct task_struct *p)
237 {
238 	return dl_policy(p->policy);
239 }
240 
241 #define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
242 
update_avg(u64 * avg,u64 sample)243 static inline void update_avg(u64 *avg, u64 sample)
244 {
245 	s64 diff = sample - *avg;
246 
247 	*avg += diff / 8;
248 }
249 
250 /*
251  * Shifting a value by an exponent greater *or equal* to the size of said value
252  * is UB; cap at size-1.
253  */
254 #define shr_bound(val, shift)							\
255 	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
256 
257 /*
258  * cgroup weight knobs should use the common MIN, DFL and MAX values which are
259  * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
260  * maps pretty well onto the shares value used by scheduler and the round-trip
261  * conversions preserve the original value over the entire range.
262  */
sched_weight_from_cgroup(unsigned long cgrp_weight)263 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
264 {
265 	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
266 }
267 
sched_weight_to_cgroup(unsigned long weight)268 static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
269 {
270 	return clamp_t(unsigned long,
271 		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
272 		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
273 }
274 
275 /*
276  * !! For sched_setattr_nocheck() (kernel) only !!
277  *
278  * This is actually gross. :(
279  *
280  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
281  * tasks, but still be able to sleep. We need this on platforms that cannot
282  * atomically change clock frequency. Remove once fast switching will be
283  * available on such platforms.
284  *
285  * SUGOV stands for SchedUtil GOVernor.
286  */
287 #define SCHED_FLAG_SUGOV	0x10000000
288 
289 #define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
290 
dl_entity_is_special(const struct sched_dl_entity * dl_se)291 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
292 {
293 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
294 	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
295 #else
296 	return false;
297 #endif
298 }
299 
300 /*
301  * Tells if entity @a should preempt entity @b.
302  */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)303 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
304 				     const struct sched_dl_entity *b)
305 {
306 	return dl_entity_is_special(a) ||
307 	       dl_time_before(a->deadline, b->deadline);
308 }
309 
310 /*
311  * This is the priority-queue data structure of the RT scheduling class:
312  */
313 struct rt_prio_array {
314 	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
315 	struct list_head queue[MAX_RT_PRIO];
316 };
317 
318 struct rt_bandwidth {
319 	/* nests inside the rq lock: */
320 	raw_spinlock_t		rt_runtime_lock;
321 	ktime_t			rt_period;
322 	u64			rt_runtime;
323 	struct hrtimer		rt_period_timer;
324 	unsigned int		rt_period_active;
325 };
326 
dl_bandwidth_enabled(void)327 static inline int dl_bandwidth_enabled(void)
328 {
329 	return sysctl_sched_rt_runtime >= 0;
330 }
331 
332 /*
333  * To keep the bandwidth of -deadline tasks under control
334  * we need some place where:
335  *  - store the maximum -deadline bandwidth of each cpu;
336  *  - cache the fraction of bandwidth that is currently allocated in
337  *    each root domain;
338  *
339  * This is all done in the data structure below. It is similar to the
340  * one used for RT-throttling (rt_bandwidth), with the main difference
341  * that, since here we are only interested in admission control, we
342  * do not decrease any runtime while the group "executes", neither we
343  * need a timer to replenish it.
344  *
345  * With respect to SMP, bandwidth is given on a per root domain basis,
346  * meaning that:
347  *  - bw (< 100%) is the deadline bandwidth of each CPU;
348  *  - total_bw is the currently allocated bandwidth in each root domain;
349  */
350 struct dl_bw {
351 	raw_spinlock_t		lock;
352 	u64			bw;
353 	u64			total_bw;
354 };
355 
356 extern void init_dl_bw(struct dl_bw *dl_b);
357 extern int  sched_dl_global_validate(void);
358 extern void sched_dl_do_global(void);
359 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
360 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
361 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
362 extern bool __checkparam_dl(const struct sched_attr *attr);
363 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
364 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
365 extern int  dl_bw_check_overflow(int cpu);
366 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
367 /*
368  * SCHED_DEADLINE supports servers (nested scheduling) with the following
369  * interface:
370  *
371  *   dl_se::rq -- runqueue we belong to.
372  *
373  *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
374  *                                server when it runs out of tasks to run.
375  *
376  *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
377  *                           returns NULL.
378  *
379  *   dl_server_update() -- called from update_curr_common(), propagates runtime
380  *                         to the server.
381  *
382  *   dl_server_start()
383  *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
384  *
385  *   dl_server_init() -- initializes the server.
386  */
387 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
388 extern void dl_server_start(struct sched_dl_entity *dl_se);
389 extern void dl_server_stop(struct sched_dl_entity *dl_se);
390 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
391 		    dl_server_has_tasks_f has_tasks,
392 		    dl_server_pick_f pick_task);
393 
394 extern void dl_server_update_idle_time(struct rq *rq,
395 		    struct task_struct *p);
396 extern void fair_server_init(struct rq *rq);
397 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
398 extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
399 		    u64 runtime, u64 period, bool init);
400 
dl_server_active(struct sched_dl_entity * dl_se)401 static inline bool dl_server_active(struct sched_dl_entity *dl_se)
402 {
403 	return dl_se->dl_server_active;
404 }
405 
406 #ifdef CONFIG_CGROUP_SCHED
407 
408 extern struct list_head task_groups;
409 
410 struct cfs_bandwidth {
411 #ifdef CONFIG_CFS_BANDWIDTH
412 	raw_spinlock_t		lock;
413 	ktime_t			period;
414 	u64			quota;
415 	u64			runtime;
416 	u64			burst;
417 	u64			runtime_snap;
418 	s64			hierarchical_quota;
419 
420 	u8			idle;
421 	u8			period_active;
422 	u8			slack_started;
423 	struct hrtimer		period_timer;
424 	struct hrtimer		slack_timer;
425 	struct list_head	throttled_cfs_rq;
426 
427 	/* Statistics: */
428 	int			nr_periods;
429 	int			nr_throttled;
430 	int			nr_burst;
431 	u64			throttled_time;
432 	u64			burst_time;
433 #endif
434 };
435 
436 /* Task group related information */
437 struct task_group {
438 	struct cgroup_subsys_state css;
439 
440 #ifdef CONFIG_GROUP_SCHED_WEIGHT
441 	/* A positive value indicates that this is a SCHED_IDLE group. */
442 	int			idle;
443 #endif
444 
445 #ifdef CONFIG_FAIR_GROUP_SCHED
446 	/* schedulable entities of this group on each CPU */
447 	struct sched_entity	**se;
448 	/* runqueue "owned" by this group on each CPU */
449 	struct cfs_rq		**cfs_rq;
450 	unsigned long		shares;
451 #ifdef	CONFIG_SMP
452 	/*
453 	 * load_avg can be heavily contended at clock tick time, so put
454 	 * it in its own cache-line separated from the fields above which
455 	 * will also be accessed at each tick.
456 	 */
457 	atomic_long_t		load_avg ____cacheline_aligned;
458 #endif
459 #endif
460 
461 #ifdef CONFIG_RT_GROUP_SCHED
462 	struct sched_rt_entity	**rt_se;
463 	struct rt_rq		**rt_rq;
464 
465 	struct rt_bandwidth	rt_bandwidth;
466 #endif
467 
468 #ifdef CONFIG_EXT_GROUP_SCHED
469 	u32			scx_flags;	/* SCX_TG_* */
470 	u32			scx_weight;
471 #endif
472 
473 	struct rcu_head		rcu;
474 	struct list_head	list;
475 
476 	struct task_group	*parent;
477 	struct list_head	siblings;
478 	struct list_head	children;
479 
480 #ifdef CONFIG_SCHED_AUTOGROUP
481 	struct autogroup	*autogroup;
482 #endif
483 
484 	struct cfs_bandwidth	cfs_bandwidth;
485 
486 #ifdef CONFIG_UCLAMP_TASK_GROUP
487 	/* The two decimal precision [%] value requested from user-space */
488 	unsigned int		uclamp_pct[UCLAMP_CNT];
489 	/* Clamp values requested for a task group */
490 	struct uclamp_se	uclamp_req[UCLAMP_CNT];
491 	/* Effective clamp values used for a task group */
492 	struct uclamp_se	uclamp[UCLAMP_CNT];
493 #endif
494 
495 };
496 
497 #ifdef CONFIG_GROUP_SCHED_WEIGHT
498 #define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
499 
500 /*
501  * A weight of 0 or 1 can cause arithmetics problems.
502  * A weight of a cfs_rq is the sum of weights of which entities
503  * are queued on this cfs_rq, so a weight of a entity should not be
504  * too large, so as the shares value of a task group.
505  * (The default weight is 1024 - so there's no practical
506  *  limitation from this.)
507  */
508 #define MIN_SHARES		(1UL <<  1)
509 #define MAX_SHARES		(1UL << 18)
510 #endif
511 
512 typedef int (*tg_visitor)(struct task_group *, void *);
513 
514 extern int walk_tg_tree_from(struct task_group *from,
515 			     tg_visitor down, tg_visitor up, void *data);
516 
517 /*
518  * Iterate the full tree, calling @down when first entering a node and @up when
519  * leaving it for the final time.
520  *
521  * Caller must hold rcu_lock or sufficient equivalent.
522  */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)523 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
524 {
525 	return walk_tg_tree_from(&root_task_group, down, up, data);
526 }
527 
css_tg(struct cgroup_subsys_state * css)528 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
529 {
530 	return css ? container_of(css, struct task_group, css) : NULL;
531 }
532 
533 extern int tg_nop(struct task_group *tg, void *data);
534 
535 #ifdef CONFIG_FAIR_GROUP_SCHED
536 extern void free_fair_sched_group(struct task_group *tg);
537 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
538 extern void online_fair_sched_group(struct task_group *tg);
539 extern void unregister_fair_sched_group(struct task_group *tg);
540 #else
free_fair_sched_group(struct task_group * tg)541 static inline void free_fair_sched_group(struct task_group *tg) { }
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)542 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
543 {
544        return 1;
545 }
online_fair_sched_group(struct task_group * tg)546 static inline void online_fair_sched_group(struct task_group *tg) { }
unregister_fair_sched_group(struct task_group * tg)547 static inline void unregister_fair_sched_group(struct task_group *tg) { }
548 #endif
549 
550 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
551 			struct sched_entity *se, int cpu,
552 			struct sched_entity *parent);
553 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
554 
555 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
556 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
557 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
558 extern bool cfs_task_bw_constrained(struct task_struct *p);
559 
560 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
561 		struct sched_rt_entity *rt_se, int cpu,
562 		struct sched_rt_entity *parent);
563 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
564 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
565 extern long sched_group_rt_runtime(struct task_group *tg);
566 extern long sched_group_rt_period(struct task_group *tg);
567 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
568 
569 extern struct task_group *sched_create_group(struct task_group *parent);
570 extern void sched_online_group(struct task_group *tg,
571 			       struct task_group *parent);
572 extern void sched_destroy_group(struct task_group *tg);
573 extern void sched_release_group(struct task_group *tg);
574 
575 extern void sched_move_task(struct task_struct *tsk);
576 
577 #ifdef CONFIG_FAIR_GROUP_SCHED
578 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
579 
580 extern int sched_group_set_idle(struct task_group *tg, long idle);
581 
582 #ifdef CONFIG_SMP
583 extern void set_task_rq_fair(struct sched_entity *se,
584 			     struct cfs_rq *prev, struct cfs_rq *next);
585 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)586 static inline void set_task_rq_fair(struct sched_entity *se,
587 			     struct cfs_rq *prev, struct cfs_rq *next) { }
588 #endif /* CONFIG_SMP */
589 #else /* !CONFIG_FAIR_GROUP_SCHED */
sched_group_set_shares(struct task_group * tg,unsigned long shares)590 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
sched_group_set_idle(struct task_group * tg,long idle)591 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
592 #endif /* CONFIG_FAIR_GROUP_SCHED */
593 
594 #else /* CONFIG_CGROUP_SCHED */
595 
596 struct cfs_bandwidth { };
597 
cfs_task_bw_constrained(struct task_struct * p)598 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
599 
600 #endif	/* CONFIG_CGROUP_SCHED */
601 
602 extern void unregister_rt_sched_group(struct task_group *tg);
603 extern void free_rt_sched_group(struct task_group *tg);
604 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
605 
606 /*
607  * u64_u32_load/u64_u32_store
608  *
609  * Use a copy of a u64 value to protect against data race. This is only
610  * applicable for 32-bits architectures.
611  */
612 #ifdef CONFIG_64BIT
613 # define u64_u32_load_copy(var, copy)		var
614 # define u64_u32_store_copy(var, copy, val)	(var = val)
615 #else
616 # define u64_u32_load_copy(var, copy)					\
617 ({									\
618 	u64 __val, __val_copy;						\
619 	do {								\
620 		__val_copy = copy;					\
621 		/*							\
622 		 * paired with u64_u32_store_copy(), ordering access	\
623 		 * to var and copy.					\
624 		 */							\
625 		smp_rmb();						\
626 		__val = var;						\
627 	} while (__val != __val_copy);					\
628 	__val;								\
629 })
630 # define u64_u32_store_copy(var, copy, val)				\
631 do {									\
632 	typeof(val) __val = (val);					\
633 	var = __val;							\
634 	/*								\
635 	 * paired with u64_u32_load_copy(), ordering access to var and	\
636 	 * copy.							\
637 	 */								\
638 	smp_wmb();							\
639 	copy = __val;							\
640 } while (0)
641 #endif
642 # define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
643 # define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
644 
645 struct balance_callback {
646 	struct balance_callback *next;
647 	void (*func)(struct rq *rq);
648 };
649 
650 /* CFS-related fields in a runqueue */
651 struct cfs_rq {
652 	struct load_weight	load;
653 	unsigned int		nr_running;
654 	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
655 	unsigned int		idle_nr_running;   /* SCHED_IDLE */
656 	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
657 	unsigned int		h_nr_delayed;
658 
659 	s64			avg_vruntime;
660 	u64			avg_load;
661 
662 	u64			min_vruntime;
663 #ifdef CONFIG_SCHED_CORE
664 	unsigned int		forceidle_seq;
665 	u64			min_vruntime_fi;
666 #endif
667 
668 	struct rb_root_cached	tasks_timeline;
669 
670 	/*
671 	 * 'curr' points to currently running entity on this cfs_rq.
672 	 * It is set to NULL otherwise (i.e when none are currently running).
673 	 */
674 	struct sched_entity	*curr;
675 	struct sched_entity	*next;
676 
677 #ifdef CONFIG_SMP
678 	/*
679 	 * CFS load tracking
680 	 */
681 	struct sched_avg	avg;
682 #ifndef CONFIG_64BIT
683 	u64			last_update_time_copy;
684 #endif
685 	struct {
686 		raw_spinlock_t	lock ____cacheline_aligned;
687 		int		nr;
688 		unsigned long	load_avg;
689 		unsigned long	util_avg;
690 		unsigned long	runnable_avg;
691 	} removed;
692 
693 #ifdef CONFIG_FAIR_GROUP_SCHED
694 	u64			last_update_tg_load_avg;
695 	unsigned long		tg_load_avg_contrib;
696 	long			propagate;
697 	long			prop_runnable_sum;
698 
699 	/*
700 	 *   h_load = weight * f(tg)
701 	 *
702 	 * Where f(tg) is the recursive weight fraction assigned to
703 	 * this group.
704 	 */
705 	unsigned long		h_load;
706 	u64			last_h_load_update;
707 	struct sched_entity	*h_load_next;
708 #endif /* CONFIG_FAIR_GROUP_SCHED */
709 #endif /* CONFIG_SMP */
710 
711 #ifdef CONFIG_FAIR_GROUP_SCHED
712 	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
713 
714 	/*
715 	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
716 	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
717 	 * (like users, containers etc.)
718 	 *
719 	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
720 	 * This list is used during load balance.
721 	 */
722 	int			on_list;
723 	struct list_head	leaf_cfs_rq_list;
724 	struct task_group	*tg;	/* group that "owns" this runqueue */
725 
726 	/* Locally cached copy of our task_group's idle value */
727 	int			idle;
728 
729 #ifdef CONFIG_CFS_BANDWIDTH
730 	int			runtime_enabled;
731 	s64			runtime_remaining;
732 
733 	u64			throttled_pelt_idle;
734 #ifndef CONFIG_64BIT
735 	u64                     throttled_pelt_idle_copy;
736 #endif
737 	u64			throttled_clock;
738 	u64			throttled_clock_pelt;
739 	u64			throttled_clock_pelt_time;
740 	u64			throttled_clock_self;
741 	u64			throttled_clock_self_time;
742 	int			throttled;
743 	int			throttle_count;
744 	struct list_head	throttled_list;
745 	struct list_head	throttled_csd_list;
746 #endif /* CONFIG_CFS_BANDWIDTH */
747 #endif /* CONFIG_FAIR_GROUP_SCHED */
748 };
749 
750 #ifdef CONFIG_SCHED_CLASS_EXT
751 /* scx_rq->flags, protected by the rq lock */
752 enum scx_rq_flags {
753 	/*
754 	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
755 	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
756 	 * only while the BPF scheduler considers the CPU to be online.
757 	 */
758 	SCX_RQ_ONLINE		= 1 << 0,
759 	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
760 	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
761 	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
762 	SCX_RQ_BYPASSING	= 1 << 4,
763 
764 	SCX_RQ_IN_WAKEUP	= 1 << 16,
765 	SCX_RQ_IN_BALANCE	= 1 << 17,
766 };
767 
768 struct scx_rq {
769 	struct scx_dispatch_q	local_dsq;
770 	struct list_head	runnable_list;		/* runnable tasks on this rq */
771 	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
772 	unsigned long		ops_qseq;
773 	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
774 	u32			nr_running;
775 	u32			flags;
776 	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
777 	bool			cpu_released;
778 	cpumask_var_t		cpus_to_kick;
779 	cpumask_var_t		cpus_to_kick_if_idle;
780 	cpumask_var_t		cpus_to_preempt;
781 	cpumask_var_t		cpus_to_wait;
782 	unsigned long		pnt_seq;
783 	struct balance_callback	deferred_bal_cb;
784 	struct irq_work		deferred_irq_work;
785 	struct irq_work		kick_cpus_irq_work;
786 };
787 #endif /* CONFIG_SCHED_CLASS_EXT */
788 
rt_bandwidth_enabled(void)789 static inline int rt_bandwidth_enabled(void)
790 {
791 	return sysctl_sched_rt_runtime >= 0;
792 }
793 
794 /* RT IPI pull logic requires IRQ_WORK */
795 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
796 # define HAVE_RT_PUSH_IPI
797 #endif
798 
799 /* Real-Time classes' related field in a runqueue: */
800 struct rt_rq {
801 	struct rt_prio_array	active;
802 	unsigned int		rt_nr_running;
803 	unsigned int		rr_nr_running;
804 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
805 	struct {
806 		int		curr; /* highest queued rt task prio */
807 #ifdef CONFIG_SMP
808 		int		next; /* next highest */
809 #endif
810 	} highest_prio;
811 #endif
812 #ifdef CONFIG_SMP
813 	bool			overloaded;
814 	struct plist_head	pushable_tasks;
815 
816 #endif /* CONFIG_SMP */
817 	int			rt_queued;
818 
819 #ifdef CONFIG_RT_GROUP_SCHED
820 	int			rt_throttled;
821 	u64			rt_time;
822 	u64			rt_runtime;
823 	/* Nests inside the rq lock: */
824 	raw_spinlock_t		rt_runtime_lock;
825 
826 	unsigned int		rt_nr_boosted;
827 
828 	struct rq		*rq;
829 	struct task_group	*tg;
830 #endif
831 };
832 
rt_rq_is_runnable(struct rt_rq * rt_rq)833 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
834 {
835 	return rt_rq->rt_queued && rt_rq->rt_nr_running;
836 }
837 
838 /* Deadline class' related fields in a runqueue */
839 struct dl_rq {
840 	/* runqueue is an rbtree, ordered by deadline */
841 	struct rb_root_cached	root;
842 
843 	unsigned int		dl_nr_running;
844 
845 #ifdef CONFIG_SMP
846 	/*
847 	 * Deadline values of the currently executing and the
848 	 * earliest ready task on this rq. Caching these facilitates
849 	 * the decision whether or not a ready but not running task
850 	 * should migrate somewhere else.
851 	 */
852 	struct {
853 		u64		curr;
854 		u64		next;
855 	} earliest_dl;
856 
857 	bool			overloaded;
858 
859 	/*
860 	 * Tasks on this rq that can be pushed away. They are kept in
861 	 * an rb-tree, ordered by tasks' deadlines, with caching
862 	 * of the leftmost (earliest deadline) element.
863 	 */
864 	struct rb_root_cached	pushable_dl_tasks_root;
865 #else
866 	struct dl_bw		dl_bw;
867 #endif
868 	/*
869 	 * "Active utilization" for this runqueue: increased when a
870 	 * task wakes up (becomes TASK_RUNNING) and decreased when a
871 	 * task blocks
872 	 */
873 	u64			running_bw;
874 
875 	/*
876 	 * Utilization of the tasks "assigned" to this runqueue (including
877 	 * the tasks that are in runqueue and the tasks that executed on this
878 	 * CPU and blocked). Increased when a task moves to this runqueue, and
879 	 * decreased when the task moves away (migrates, changes scheduling
880 	 * policy, or terminates).
881 	 * This is needed to compute the "inactive utilization" for the
882 	 * runqueue (inactive utilization = this_bw - running_bw).
883 	 */
884 	u64			this_bw;
885 	u64			extra_bw;
886 
887 	/*
888 	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
889 	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
890 	 */
891 	u64			max_bw;
892 
893 	/*
894 	 * Inverse of the fraction of CPU utilization that can be reclaimed
895 	 * by the GRUB algorithm.
896 	 */
897 	u64			bw_ratio;
898 };
899 
900 #ifdef CONFIG_FAIR_GROUP_SCHED
901 
902 /* An entity is a task if it doesn't "own" a runqueue */
903 #define entity_is_task(se)	(!se->my_q)
904 
se_update_runnable(struct sched_entity * se)905 static inline void se_update_runnable(struct sched_entity *se)
906 {
907 	if (!entity_is_task(se)) {
908 		struct cfs_rq *cfs_rq = se->my_q;
909 
910 		se->runnable_weight = cfs_rq->h_nr_running - cfs_rq->h_nr_delayed;
911 	}
912 }
913 
se_runnable(struct sched_entity * se)914 static inline long se_runnable(struct sched_entity *se)
915 {
916 	if (se->sched_delayed)
917 		return false;
918 
919 	if (entity_is_task(se))
920 		return !!se->on_rq;
921 	else
922 		return se->runnable_weight;
923 }
924 
925 #else /* !CONFIG_FAIR_GROUP_SCHED: */
926 
927 #define entity_is_task(se)	1
928 
se_update_runnable(struct sched_entity * se)929 static inline void se_update_runnable(struct sched_entity *se) { }
930 
se_runnable(struct sched_entity * se)931 static inline long se_runnable(struct sched_entity *se)
932 {
933 	if (se->sched_delayed)
934 		return false;
935 
936 	return !!se->on_rq;
937 }
938 
939 #endif /* !CONFIG_FAIR_GROUP_SCHED */
940 
941 #ifdef CONFIG_SMP
942 /*
943  * XXX we want to get rid of these helpers and use the full load resolution.
944  */
se_weight(struct sched_entity * se)945 static inline long se_weight(struct sched_entity *se)
946 {
947 	return scale_load_down(se->load.weight);
948 }
949 
950 
sched_asym_prefer(int a,int b)951 static inline bool sched_asym_prefer(int a, int b)
952 {
953 	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
954 }
955 
956 struct perf_domain {
957 	struct em_perf_domain *em_pd;
958 	struct perf_domain *next;
959 	struct rcu_head rcu;
960 };
961 
962 /*
963  * We add the notion of a root-domain which will be used to define per-domain
964  * variables. Each exclusive cpuset essentially defines an island domain by
965  * fully partitioning the member CPUs from any other cpuset. Whenever a new
966  * exclusive cpuset is created, we also create and attach a new root-domain
967  * object.
968  *
969  */
970 struct root_domain {
971 	atomic_t		refcount;
972 	atomic_t		rto_count;
973 	struct rcu_head		rcu;
974 	cpumask_var_t		span;
975 	cpumask_var_t		online;
976 
977 	/*
978 	 * Indicate pullable load on at least one CPU, e.g:
979 	 * - More than one runnable task
980 	 * - Running task is misfit
981 	 */
982 	bool			overloaded;
983 
984 	/* Indicate one or more CPUs over-utilized (tipping point) */
985 	bool			overutilized;
986 
987 	/*
988 	 * The bit corresponding to a CPU gets set here if such CPU has more
989 	 * than one runnable -deadline task (as it is below for RT tasks).
990 	 */
991 	cpumask_var_t		dlo_mask;
992 	atomic_t		dlo_count;
993 	struct dl_bw		dl_bw;
994 	struct cpudl		cpudl;
995 
996 	/*
997 	 * Indicate whether a root_domain's dl_bw has been checked or
998 	 * updated. It's monotonously increasing value.
999 	 *
1000 	 * Also, some corner cases, like 'wrap around' is dangerous, but given
1001 	 * that u64 is 'big enough'. So that shouldn't be a concern.
1002 	 */
1003 	u64 visit_gen;
1004 
1005 #ifdef HAVE_RT_PUSH_IPI
1006 	/*
1007 	 * For IPI pull requests, loop across the rto_mask.
1008 	 */
1009 	struct irq_work		rto_push_work;
1010 	raw_spinlock_t		rto_lock;
1011 	/* These are only updated and read within rto_lock */
1012 	int			rto_loop;
1013 	int			rto_cpu;
1014 	/* These atomics are updated outside of a lock */
1015 	atomic_t		rto_loop_next;
1016 	atomic_t		rto_loop_start;
1017 #endif
1018 	/*
1019 	 * The "RT overload" flag: it gets set if a CPU has more than
1020 	 * one runnable RT task.
1021 	 */
1022 	cpumask_var_t		rto_mask;
1023 	struct cpupri		cpupri;
1024 
1025 	/*
1026 	 * NULL-terminated list of performance domains intersecting with the
1027 	 * CPUs of the rd. Protected by RCU.
1028 	 */
1029 	struct perf_domain __rcu *pd;
1030 };
1031 
1032 extern void init_defrootdomain(void);
1033 extern int sched_init_domains(const struct cpumask *cpu_map);
1034 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1035 extern void sched_get_rd(struct root_domain *rd);
1036 extern void sched_put_rd(struct root_domain *rd);
1037 
get_rd_overloaded(struct root_domain * rd)1038 static inline int get_rd_overloaded(struct root_domain *rd)
1039 {
1040 	return READ_ONCE(rd->overloaded);
1041 }
1042 
set_rd_overloaded(struct root_domain * rd,int status)1043 static inline void set_rd_overloaded(struct root_domain *rd, int status)
1044 {
1045 	if (get_rd_overloaded(rd) != status)
1046 		WRITE_ONCE(rd->overloaded, status);
1047 }
1048 
1049 #ifdef HAVE_RT_PUSH_IPI
1050 extern void rto_push_irq_work_func(struct irq_work *work);
1051 #endif
1052 #endif /* CONFIG_SMP */
1053 
1054 #ifdef CONFIG_UCLAMP_TASK
1055 /*
1056  * struct uclamp_bucket - Utilization clamp bucket
1057  * @value: utilization clamp value for tasks on this clamp bucket
1058  * @tasks: number of RUNNABLE tasks on this clamp bucket
1059  *
1060  * Keep track of how many tasks are RUNNABLE for a given utilization
1061  * clamp value.
1062  */
1063 struct uclamp_bucket {
1064 	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1065 	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1066 };
1067 
1068 /*
1069  * struct uclamp_rq - rq's utilization clamp
1070  * @value: currently active clamp values for a rq
1071  * @bucket: utilization clamp buckets affecting a rq
1072  *
1073  * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1074  * A clamp value is affecting a rq when there is at least one task RUNNABLE
1075  * (or actually running) with that value.
1076  *
1077  * There are up to UCLAMP_CNT possible different clamp values, currently there
1078  * are only two: minimum utilization and maximum utilization.
1079  *
1080  * All utilization clamping values are MAX aggregated, since:
1081  * - for util_min: we want to run the CPU at least at the max of the minimum
1082  *   utilization required by its currently RUNNABLE tasks.
1083  * - for util_max: we want to allow the CPU to run up to the max of the
1084  *   maximum utilization allowed by its currently RUNNABLE tasks.
1085  *
1086  * Since on each system we expect only a limited number of different
1087  * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1088  * the metrics required to compute all the per-rq utilization clamp values.
1089  */
1090 struct uclamp_rq {
1091 	unsigned int value;
1092 	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1093 };
1094 
1095 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1096 #endif /* CONFIG_UCLAMP_TASK */
1097 
1098 /*
1099  * This is the main, per-CPU runqueue data structure.
1100  *
1101  * Locking rule: those places that want to lock multiple runqueues
1102  * (such as the load balancing or the thread migration code), lock
1103  * acquire operations must be ordered by ascending &runqueue.
1104  */
1105 struct rq {
1106 	/* runqueue lock: */
1107 	raw_spinlock_t		__lock;
1108 
1109 	unsigned int		nr_running;
1110 #ifdef CONFIG_NUMA_BALANCING
1111 	unsigned int		nr_numa_running;
1112 	unsigned int		nr_preferred_running;
1113 	unsigned int		numa_migrate_on;
1114 #endif
1115 #ifdef CONFIG_NO_HZ_COMMON
1116 #ifdef CONFIG_SMP
1117 	unsigned long		last_blocked_load_update_tick;
1118 	unsigned int		has_blocked_load;
1119 	call_single_data_t	nohz_csd;
1120 #endif /* CONFIG_SMP */
1121 	unsigned int		nohz_tick_stopped;
1122 	atomic_t		nohz_flags;
1123 #endif /* CONFIG_NO_HZ_COMMON */
1124 
1125 #ifdef CONFIG_SMP
1126 	unsigned int		ttwu_pending;
1127 #endif
1128 	u64			nr_switches;
1129 
1130 #ifdef CONFIG_UCLAMP_TASK
1131 	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1132 	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1133 	unsigned int		uclamp_flags;
1134 #define UCLAMP_FLAG_IDLE 0x01
1135 #endif
1136 
1137 	struct cfs_rq		cfs;
1138 	struct rt_rq		rt;
1139 	struct dl_rq		dl;
1140 #ifdef CONFIG_SCHED_CLASS_EXT
1141 	struct scx_rq		scx;
1142 #endif
1143 
1144 	struct sched_dl_entity	fair_server;
1145 
1146 #ifdef CONFIG_FAIR_GROUP_SCHED
1147 	/* list of leaf cfs_rq on this CPU: */
1148 	struct list_head	leaf_cfs_rq_list;
1149 	struct list_head	*tmp_alone_branch;
1150 #endif /* CONFIG_FAIR_GROUP_SCHED */
1151 
1152 	/*
1153 	 * This is part of a global counter where only the total sum
1154 	 * over all CPUs matters. A task can increase this counter on
1155 	 * one CPU and if it got migrated afterwards it may decrease
1156 	 * it on another CPU. Always updated under the runqueue lock:
1157 	 */
1158 	unsigned int		nr_uninterruptible;
1159 
1160 	union {
1161 		struct task_struct __rcu *donor; /* Scheduler context */
1162 		struct task_struct __rcu *curr;  /* Execution context */
1163 	};
1164 	struct sched_dl_entity	*dl_server;
1165 	struct task_struct	*idle;
1166 	struct task_struct	*stop;
1167 	unsigned long		next_balance;
1168 	struct mm_struct	*prev_mm;
1169 
1170 	unsigned int		clock_update_flags;
1171 	u64			clock;
1172 	/* Ensure that all clocks are in the same cache line */
1173 	u64			clock_task ____cacheline_aligned;
1174 	u64			clock_pelt;
1175 	unsigned long		lost_idle_time;
1176 	u64			clock_pelt_idle;
1177 	u64			clock_idle;
1178 #ifndef CONFIG_64BIT
1179 	u64			clock_pelt_idle_copy;
1180 	u64			clock_idle_copy;
1181 #endif
1182 
1183 	atomic_t		nr_iowait;
1184 
1185 #ifdef CONFIG_SCHED_DEBUG
1186 	u64 last_seen_need_resched_ns;
1187 	int ticks_without_resched;
1188 #endif
1189 
1190 #ifdef CONFIG_MEMBARRIER
1191 	int membarrier_state;
1192 #endif
1193 
1194 #ifdef CONFIG_SMP
1195 	struct root_domain		*rd;
1196 	struct sched_domain __rcu	*sd;
1197 
1198 	unsigned long		cpu_capacity;
1199 
1200 	struct balance_callback *balance_callback;
1201 
1202 	unsigned char		nohz_idle_balance;
1203 	unsigned char		idle_balance;
1204 
1205 	unsigned long		misfit_task_load;
1206 
1207 	/* For active balancing */
1208 	int			active_balance;
1209 	int			push_cpu;
1210 	struct cpu_stop_work	active_balance_work;
1211 
1212 	/* CPU of this runqueue: */
1213 	int			cpu;
1214 	int			online;
1215 
1216 	struct list_head cfs_tasks;
1217 
1218 	struct sched_avg	avg_rt;
1219 	struct sched_avg	avg_dl;
1220 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1221 	struct sched_avg	avg_irq;
1222 #endif
1223 #ifdef CONFIG_SCHED_HW_PRESSURE
1224 	struct sched_avg	avg_hw;
1225 #endif
1226 	u64			idle_stamp;
1227 	u64			avg_idle;
1228 
1229 	/* This is used to determine avg_idle's max value */
1230 	u64			max_idle_balance_cost;
1231 
1232 #ifdef CONFIG_HOTPLUG_CPU
1233 	struct rcuwait		hotplug_wait;
1234 #endif
1235 #endif /* CONFIG_SMP */
1236 
1237 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1238 	u64			prev_irq_time;
1239 	u64			psi_irq_time;
1240 #endif
1241 #ifdef CONFIG_PARAVIRT
1242 	u64			prev_steal_time;
1243 #endif
1244 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1245 	u64			prev_steal_time_rq;
1246 #endif
1247 
1248 	/* calc_load related fields */
1249 	unsigned long		calc_load_update;
1250 	long			calc_load_active;
1251 
1252 #ifdef CONFIG_SCHED_HRTICK
1253 #ifdef CONFIG_SMP
1254 	call_single_data_t	hrtick_csd;
1255 #endif
1256 	struct hrtimer		hrtick_timer;
1257 	ktime_t			hrtick_time;
1258 #endif
1259 
1260 #ifdef CONFIG_SCHEDSTATS
1261 	/* latency stats */
1262 	struct sched_info	rq_sched_info;
1263 	unsigned long long	rq_cpu_time;
1264 
1265 	/* sys_sched_yield() stats */
1266 	unsigned int		yld_count;
1267 
1268 	/* schedule() stats */
1269 	unsigned int		sched_count;
1270 	unsigned int		sched_goidle;
1271 
1272 	/* try_to_wake_up() stats */
1273 	unsigned int		ttwu_count;
1274 	unsigned int		ttwu_local;
1275 #endif
1276 
1277 #ifdef CONFIG_CPU_IDLE
1278 	/* Must be inspected within a RCU lock section */
1279 	struct cpuidle_state	*idle_state;
1280 #endif
1281 
1282 #ifdef CONFIG_SMP
1283 	unsigned int		nr_pinned;
1284 #endif
1285 	unsigned int		push_busy;
1286 	struct cpu_stop_work	push_work;
1287 
1288 #ifdef CONFIG_SCHED_CORE
1289 	/* per rq */
1290 	struct rq		*core;
1291 	struct task_struct	*core_pick;
1292 	struct sched_dl_entity	*core_dl_server;
1293 	unsigned int		core_enabled;
1294 	unsigned int		core_sched_seq;
1295 	struct rb_root		core_tree;
1296 
1297 	/* shared state -- careful with sched_core_cpu_deactivate() */
1298 	unsigned int		core_task_seq;
1299 	unsigned int		core_pick_seq;
1300 	unsigned long		core_cookie;
1301 	unsigned int		core_forceidle_count;
1302 	unsigned int		core_forceidle_seq;
1303 	unsigned int		core_forceidle_occupation;
1304 	u64			core_forceidle_start;
1305 #endif
1306 
1307 	/* Scratch cpumask to be temporarily used under rq_lock */
1308 	cpumask_var_t		scratch_mask;
1309 
1310 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1311 	call_single_data_t	cfsb_csd;
1312 	struct list_head	cfsb_csd_list;
1313 #endif
1314 };
1315 
1316 #ifdef CONFIG_FAIR_GROUP_SCHED
1317 
1318 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1319 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1320 {
1321 	return cfs_rq->rq;
1322 }
1323 
1324 #else
1325 
rq_of(struct cfs_rq * cfs_rq)1326 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1327 {
1328 	return container_of(cfs_rq, struct rq, cfs);
1329 }
1330 #endif
1331 
cpu_of(struct rq * rq)1332 static inline int cpu_of(struct rq *rq)
1333 {
1334 #ifdef CONFIG_SMP
1335 	return rq->cpu;
1336 #else
1337 	return 0;
1338 #endif
1339 }
1340 
1341 #define MDF_PUSH		0x01
1342 
is_migration_disabled(struct task_struct * p)1343 static inline bool is_migration_disabled(struct task_struct *p)
1344 {
1345 #ifdef CONFIG_SMP
1346 	return p->migration_disabled;
1347 #else
1348 	return false;
1349 #endif
1350 }
1351 
1352 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1353 
1354 #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1355 #define this_rq()		this_cpu_ptr(&runqueues)
1356 #define task_rq(p)		cpu_rq(task_cpu(p))
1357 #define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1358 #define raw_rq()		raw_cpu_ptr(&runqueues)
1359 
rq_set_donor(struct rq * rq,struct task_struct * t)1360 static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1361 {
1362 	/* Do nothing */
1363 }
1364 
1365 #ifdef CONFIG_SCHED_CORE
1366 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1367 
1368 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1369 
sched_core_enabled(struct rq * rq)1370 static inline bool sched_core_enabled(struct rq *rq)
1371 {
1372 	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1373 }
1374 
sched_core_disabled(void)1375 static inline bool sched_core_disabled(void)
1376 {
1377 	return !static_branch_unlikely(&__sched_core_enabled);
1378 }
1379 
1380 /*
1381  * Be careful with this function; not for general use. The return value isn't
1382  * stable unless you actually hold a relevant rq->__lock.
1383  */
rq_lockp(struct rq * rq)1384 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1385 {
1386 	if (sched_core_enabled(rq))
1387 		return &rq->core->__lock;
1388 
1389 	return &rq->__lock;
1390 }
1391 
__rq_lockp(struct rq * rq)1392 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1393 {
1394 	if (rq->core_enabled)
1395 		return &rq->core->__lock;
1396 
1397 	return &rq->__lock;
1398 }
1399 
1400 extern bool
1401 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1402 
1403 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1404 
1405 /*
1406  * Helpers to check if the CPU's core cookie matches with the task's cookie
1407  * when core scheduling is enabled.
1408  * A special case is that the task's cookie always matches with CPU's core
1409  * cookie if the CPU is in an idle core.
1410  */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1411 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1412 {
1413 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1414 	if (!sched_core_enabled(rq))
1415 		return true;
1416 
1417 	return rq->core->core_cookie == p->core_cookie;
1418 }
1419 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1420 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1421 {
1422 	bool idle_core = true;
1423 	int cpu;
1424 
1425 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1426 	if (!sched_core_enabled(rq))
1427 		return true;
1428 
1429 	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1430 		if (!available_idle_cpu(cpu)) {
1431 			idle_core = false;
1432 			break;
1433 		}
1434 	}
1435 
1436 	/*
1437 	 * A CPU in an idle core is always the best choice for tasks with
1438 	 * cookies.
1439 	 */
1440 	return idle_core || rq->core->core_cookie == p->core_cookie;
1441 }
1442 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1443 static inline bool sched_group_cookie_match(struct rq *rq,
1444 					    struct task_struct *p,
1445 					    struct sched_group *group)
1446 {
1447 	int cpu;
1448 
1449 	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1450 	if (!sched_core_enabled(rq))
1451 		return true;
1452 
1453 	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1454 		if (sched_core_cookie_match(cpu_rq(cpu), p))
1455 			return true;
1456 	}
1457 	return false;
1458 }
1459 
sched_core_enqueued(struct task_struct * p)1460 static inline bool sched_core_enqueued(struct task_struct *p)
1461 {
1462 	return !RB_EMPTY_NODE(&p->core_node);
1463 }
1464 
1465 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1466 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1467 
1468 extern void sched_core_get(void);
1469 extern void sched_core_put(void);
1470 
1471 #else /* !CONFIG_SCHED_CORE: */
1472 
sched_core_enabled(struct rq * rq)1473 static inline bool sched_core_enabled(struct rq *rq)
1474 {
1475 	return false;
1476 }
1477 
sched_core_disabled(void)1478 static inline bool sched_core_disabled(void)
1479 {
1480 	return true;
1481 }
1482 
rq_lockp(struct rq * rq)1483 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1484 {
1485 	return &rq->__lock;
1486 }
1487 
__rq_lockp(struct rq * rq)1488 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1489 {
1490 	return &rq->__lock;
1491 }
1492 
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1493 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1494 {
1495 	return true;
1496 }
1497 
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1498 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1499 {
1500 	return true;
1501 }
1502 
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1503 static inline bool sched_group_cookie_match(struct rq *rq,
1504 					    struct task_struct *p,
1505 					    struct sched_group *group)
1506 {
1507 	return true;
1508 }
1509 
1510 #endif /* !CONFIG_SCHED_CORE */
1511 
lockdep_assert_rq_held(struct rq * rq)1512 static inline void lockdep_assert_rq_held(struct rq *rq)
1513 {
1514 	lockdep_assert_held(__rq_lockp(rq));
1515 }
1516 
1517 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1518 extern bool raw_spin_rq_trylock(struct rq *rq);
1519 extern void raw_spin_rq_unlock(struct rq *rq);
1520 
raw_spin_rq_lock(struct rq * rq)1521 static inline void raw_spin_rq_lock(struct rq *rq)
1522 {
1523 	raw_spin_rq_lock_nested(rq, 0);
1524 }
1525 
raw_spin_rq_lock_irq(struct rq * rq)1526 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1527 {
1528 	local_irq_disable();
1529 	raw_spin_rq_lock(rq);
1530 }
1531 
raw_spin_rq_unlock_irq(struct rq * rq)1532 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1533 {
1534 	raw_spin_rq_unlock(rq);
1535 	local_irq_enable();
1536 }
1537 
_raw_spin_rq_lock_irqsave(struct rq * rq)1538 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1539 {
1540 	unsigned long flags;
1541 
1542 	local_irq_save(flags);
1543 	raw_spin_rq_lock(rq);
1544 
1545 	return flags;
1546 }
1547 
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1548 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1549 {
1550 	raw_spin_rq_unlock(rq);
1551 	local_irq_restore(flags);
1552 }
1553 
1554 #define raw_spin_rq_lock_irqsave(rq, flags)	\
1555 do {						\
1556 	flags = _raw_spin_rq_lock_irqsave(rq);	\
1557 } while (0)
1558 
1559 #ifdef CONFIG_SCHED_SMT
1560 extern void __update_idle_core(struct rq *rq);
1561 
update_idle_core(struct rq * rq)1562 static inline void update_idle_core(struct rq *rq)
1563 {
1564 	if (static_branch_unlikely(&sched_smt_present))
1565 		__update_idle_core(rq);
1566 }
1567 
1568 #else
update_idle_core(struct rq * rq)1569 static inline void update_idle_core(struct rq *rq) { }
1570 #endif
1571 
1572 #ifdef CONFIG_FAIR_GROUP_SCHED
1573 
task_of(struct sched_entity * se)1574 static inline struct task_struct *task_of(struct sched_entity *se)
1575 {
1576 	SCHED_WARN_ON(!entity_is_task(se));
1577 	return container_of(se, struct task_struct, se);
1578 }
1579 
task_cfs_rq(struct task_struct * p)1580 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1581 {
1582 	return p->se.cfs_rq;
1583 }
1584 
1585 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1586 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1587 {
1588 	return se->cfs_rq;
1589 }
1590 
1591 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1592 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1593 {
1594 	return grp->my_q;
1595 }
1596 
1597 #else /* !CONFIG_FAIR_GROUP_SCHED: */
1598 
1599 #define task_of(_se)		container_of(_se, struct task_struct, se)
1600 
task_cfs_rq(const struct task_struct * p)1601 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1602 {
1603 	return &task_rq(p)->cfs;
1604 }
1605 
cfs_rq_of(const struct sched_entity * se)1606 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1607 {
1608 	const struct task_struct *p = task_of(se);
1609 	struct rq *rq = task_rq(p);
1610 
1611 	return &rq->cfs;
1612 }
1613 
1614 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1615 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1616 {
1617 	return NULL;
1618 }
1619 
1620 #endif /* !CONFIG_FAIR_GROUP_SCHED */
1621 
1622 extern void update_rq_clock(struct rq *rq);
1623 
1624 /*
1625  * rq::clock_update_flags bits
1626  *
1627  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1628  *  call to __schedule(). This is an optimisation to avoid
1629  *  neighbouring rq clock updates.
1630  *
1631  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1632  *  in effect and calls to update_rq_clock() are being ignored.
1633  *
1634  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1635  *  made to update_rq_clock() since the last time rq::lock was pinned.
1636  *
1637  * If inside of __schedule(), clock_update_flags will have been
1638  * shifted left (a left shift is a cheap operation for the fast path
1639  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1640  *
1641  *	if (rq-clock_update_flags >= RQCF_UPDATED)
1642  *
1643  * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1644  * one position though, because the next rq_unpin_lock() will shift it
1645  * back.
1646  */
1647 #define RQCF_REQ_SKIP		0x01
1648 #define RQCF_ACT_SKIP		0x02
1649 #define RQCF_UPDATED		0x04
1650 
assert_clock_updated(struct rq * rq)1651 static inline void assert_clock_updated(struct rq *rq)
1652 {
1653 	/*
1654 	 * The only reason for not seeing a clock update since the
1655 	 * last rq_pin_lock() is if we're currently skipping updates.
1656 	 */
1657 	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1658 }
1659 
rq_clock(struct rq * rq)1660 static inline u64 rq_clock(struct rq *rq)
1661 {
1662 	lockdep_assert_rq_held(rq);
1663 	assert_clock_updated(rq);
1664 
1665 	return rq->clock;
1666 }
1667 
rq_clock_task(struct rq * rq)1668 static inline u64 rq_clock_task(struct rq *rq)
1669 {
1670 	lockdep_assert_rq_held(rq);
1671 	assert_clock_updated(rq);
1672 
1673 	return rq->clock_task;
1674 }
1675 
rq_clock_skip_update(struct rq * rq)1676 static inline void rq_clock_skip_update(struct rq *rq)
1677 {
1678 	lockdep_assert_rq_held(rq);
1679 	rq->clock_update_flags |= RQCF_REQ_SKIP;
1680 }
1681 
1682 /*
1683  * See rt task throttling, which is the only time a skip
1684  * request is canceled.
1685  */
rq_clock_cancel_skipupdate(struct rq * rq)1686 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1687 {
1688 	lockdep_assert_rq_held(rq);
1689 	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1690 }
1691 
1692 /*
1693  * During cpu offlining and rq wide unthrottling, we can trigger
1694  * an update_rq_clock() for several cfs and rt runqueues (Typically
1695  * when using list_for_each_entry_*)
1696  * rq_clock_start_loop_update() can be called after updating the clock
1697  * once and before iterating over the list to prevent multiple update.
1698  * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1699  * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1700  */
rq_clock_start_loop_update(struct rq * rq)1701 static inline void rq_clock_start_loop_update(struct rq *rq)
1702 {
1703 	lockdep_assert_rq_held(rq);
1704 	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1705 	rq->clock_update_flags |= RQCF_ACT_SKIP;
1706 }
1707 
rq_clock_stop_loop_update(struct rq * rq)1708 static inline void rq_clock_stop_loop_update(struct rq *rq)
1709 {
1710 	lockdep_assert_rq_held(rq);
1711 	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1712 }
1713 
1714 struct rq_flags {
1715 	unsigned long flags;
1716 	struct pin_cookie cookie;
1717 #ifdef CONFIG_SCHED_DEBUG
1718 	/*
1719 	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1720 	 * current pin context is stashed here in case it needs to be
1721 	 * restored in rq_repin_lock().
1722 	 */
1723 	unsigned int clock_update_flags;
1724 #endif
1725 };
1726 
1727 extern struct balance_callback balance_push_callback;
1728 
1729 /*
1730  * Lockdep annotation that avoids accidental unlocks; it's like a
1731  * sticky/continuous lockdep_assert_held().
1732  *
1733  * This avoids code that has access to 'struct rq *rq' (basically everything in
1734  * the scheduler) from accidentally unlocking the rq if they do not also have a
1735  * copy of the (on-stack) 'struct rq_flags rf'.
1736  *
1737  * Also see Documentation/locking/lockdep-design.rst.
1738  */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1739 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1740 {
1741 	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1742 
1743 #ifdef CONFIG_SCHED_DEBUG
1744 	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1745 	rf->clock_update_flags = 0;
1746 # ifdef CONFIG_SMP
1747 	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1748 # endif
1749 #endif
1750 }
1751 
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1752 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1753 {
1754 #ifdef CONFIG_SCHED_DEBUG
1755 	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1756 		rf->clock_update_flags = RQCF_UPDATED;
1757 #endif
1758 
1759 	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1760 }
1761 
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1762 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1763 {
1764 	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1765 
1766 #ifdef CONFIG_SCHED_DEBUG
1767 	/*
1768 	 * Restore the value we stashed in @rf for this pin context.
1769 	 */
1770 	rq->clock_update_flags |= rf->clock_update_flags;
1771 #endif
1772 }
1773 
1774 extern
1775 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1776 	__acquires(rq->lock);
1777 
1778 extern
1779 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1780 	__acquires(p->pi_lock)
1781 	__acquires(rq->lock);
1782 
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1783 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1784 	__releases(rq->lock)
1785 {
1786 	rq_unpin_lock(rq, rf);
1787 	raw_spin_rq_unlock(rq);
1788 }
1789 
1790 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1791 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1792 	__releases(rq->lock)
1793 	__releases(p->pi_lock)
1794 {
1795 	rq_unpin_lock(rq, rf);
1796 	raw_spin_rq_unlock(rq);
1797 	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1798 }
1799 
1800 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1801 		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1802 		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1803 		    struct rq *rq; struct rq_flags rf)
1804 
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1805 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1806 	__acquires(rq->lock)
1807 {
1808 	raw_spin_rq_lock_irqsave(rq, rf->flags);
1809 	rq_pin_lock(rq, rf);
1810 }
1811 
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1812 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1813 	__acquires(rq->lock)
1814 {
1815 	raw_spin_rq_lock_irq(rq);
1816 	rq_pin_lock(rq, rf);
1817 }
1818 
rq_lock(struct rq * rq,struct rq_flags * rf)1819 static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1820 	__acquires(rq->lock)
1821 {
1822 	raw_spin_rq_lock(rq);
1823 	rq_pin_lock(rq, rf);
1824 }
1825 
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1826 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1827 	__releases(rq->lock)
1828 {
1829 	rq_unpin_lock(rq, rf);
1830 	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1831 }
1832 
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1833 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1834 	__releases(rq->lock)
1835 {
1836 	rq_unpin_lock(rq, rf);
1837 	raw_spin_rq_unlock_irq(rq);
1838 }
1839 
rq_unlock(struct rq * rq,struct rq_flags * rf)1840 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1841 	__releases(rq->lock)
1842 {
1843 	rq_unpin_lock(rq, rf);
1844 	raw_spin_rq_unlock(rq);
1845 }
1846 
1847 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1848 		    rq_lock(_T->lock, &_T->rf),
1849 		    rq_unlock(_T->lock, &_T->rf),
1850 		    struct rq_flags rf)
1851 
1852 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1853 		    rq_lock_irq(_T->lock, &_T->rf),
1854 		    rq_unlock_irq(_T->lock, &_T->rf),
1855 		    struct rq_flags rf)
1856 
1857 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1858 		    rq_lock_irqsave(_T->lock, &_T->rf),
1859 		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1860 		    struct rq_flags rf)
1861 
this_rq_lock_irq(struct rq_flags * rf)1862 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1863 	__acquires(rq->lock)
1864 {
1865 	struct rq *rq;
1866 
1867 	local_irq_disable();
1868 	rq = this_rq();
1869 	rq_lock(rq, rf);
1870 
1871 	return rq;
1872 }
1873 
1874 #ifdef CONFIG_NUMA
1875 
1876 enum numa_topology_type {
1877 	NUMA_DIRECT,
1878 	NUMA_GLUELESS_MESH,
1879 	NUMA_BACKPLANE,
1880 };
1881 
1882 extern enum numa_topology_type sched_numa_topology_type;
1883 extern int sched_max_numa_distance;
1884 extern bool find_numa_distance(int distance);
1885 extern void sched_init_numa(int offline_node);
1886 extern void sched_update_numa(int cpu, bool online);
1887 extern void sched_domains_numa_masks_set(unsigned int cpu);
1888 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1889 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1890 
1891 #else /* !CONFIG_NUMA: */
1892 
sched_init_numa(int offline_node)1893 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1894 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1895 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1896 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1897 
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1898 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1899 {
1900 	return nr_cpu_ids;
1901 }
1902 
1903 #endif /* !CONFIG_NUMA */
1904 
1905 #ifdef CONFIG_NUMA_BALANCING
1906 
1907 /* The regions in numa_faults array from task_struct */
1908 enum numa_faults_stats {
1909 	NUMA_MEM = 0,
1910 	NUMA_CPU,
1911 	NUMA_MEMBUF,
1912 	NUMA_CPUBUF
1913 };
1914 
1915 extern void sched_setnuma(struct task_struct *p, int node);
1916 extern int migrate_task_to(struct task_struct *p, int cpu);
1917 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1918 			int cpu, int scpu);
1919 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1920 
1921 #else /* !CONFIG_NUMA_BALANCING: */
1922 
1923 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1924 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1925 {
1926 }
1927 
1928 #endif /* !CONFIG_NUMA_BALANCING */
1929 
1930 #ifdef CONFIG_SMP
1931 
1932 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1933 queue_balance_callback(struct rq *rq,
1934 		       struct balance_callback *head,
1935 		       void (*func)(struct rq *rq))
1936 {
1937 	lockdep_assert_rq_held(rq);
1938 
1939 	/*
1940 	 * Don't (re)queue an already queued item; nor queue anything when
1941 	 * balance_push() is active, see the comment with
1942 	 * balance_push_callback.
1943 	 */
1944 	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1945 		return;
1946 
1947 	head->func = func;
1948 	head->next = rq->balance_callback;
1949 	rq->balance_callback = head;
1950 }
1951 
1952 #define rcu_dereference_check_sched_domain(p) \
1953 	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
1954 
1955 /*
1956  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1957  * See destroy_sched_domains: call_rcu for details.
1958  *
1959  * The domain tree of any CPU may only be accessed from within
1960  * preempt-disabled sections.
1961  */
1962 #define for_each_domain(cpu, __sd) \
1963 	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1964 			__sd; __sd = __sd->parent)
1965 
1966 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1967 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1968 static const unsigned int SD_SHARED_CHILD_MASK =
1969 #include <linux/sched/sd_flags.h>
1970 0;
1971 #undef SD_FLAG
1972 
1973 /**
1974  * highest_flag_domain - Return highest sched_domain containing flag.
1975  * @cpu:	The CPU whose highest level of sched domain is to
1976  *		be returned.
1977  * @flag:	The flag to check for the highest sched_domain
1978  *		for the given CPU.
1979  *
1980  * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1981  * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1982  */
highest_flag_domain(int cpu,int flag)1983 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1984 {
1985 	struct sched_domain *sd, *hsd = NULL;
1986 
1987 	for_each_domain(cpu, sd) {
1988 		if (sd->flags & flag) {
1989 			hsd = sd;
1990 			continue;
1991 		}
1992 
1993 		/*
1994 		 * Stop the search if @flag is known to be shared at lower
1995 		 * levels. It will not be found further up.
1996 		 */
1997 		if (flag & SD_SHARED_CHILD_MASK)
1998 			break;
1999 	}
2000 
2001 	return hsd;
2002 }
2003 
lowest_flag_domain(int cpu,int flag)2004 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2005 {
2006 	struct sched_domain *sd;
2007 
2008 	for_each_domain(cpu, sd) {
2009 		if (sd->flags & flag)
2010 			break;
2011 	}
2012 
2013 	return sd;
2014 }
2015 
2016 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2017 DECLARE_PER_CPU(int, sd_llc_size);
2018 DECLARE_PER_CPU(int, sd_llc_id);
2019 DECLARE_PER_CPU(int, sd_share_id);
2020 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2021 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2022 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2023 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2024 
2025 extern struct static_key_false sched_asym_cpucapacity;
2026 extern struct static_key_false sched_cluster_active;
2027 
sched_asym_cpucap_active(void)2028 static __always_inline bool sched_asym_cpucap_active(void)
2029 {
2030 	return static_branch_unlikely(&sched_asym_cpucapacity);
2031 }
2032 
2033 struct sched_group_capacity {
2034 	atomic_t		ref;
2035 	/*
2036 	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2037 	 * for a single CPU.
2038 	 */
2039 	unsigned long		capacity;
2040 	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2041 	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2042 	unsigned long		next_update;
2043 	int			imbalance;		/* XXX unrelated to capacity but shared group state */
2044 
2045 #ifdef CONFIG_SCHED_DEBUG
2046 	int			id;
2047 #endif
2048 
2049 	unsigned long		cpumask[];		/* Balance mask */
2050 };
2051 
2052 struct sched_group {
2053 	struct sched_group	*next;			/* Must be a circular list */
2054 	atomic_t		ref;
2055 
2056 	unsigned int		group_weight;
2057 	unsigned int		cores;
2058 	struct sched_group_capacity *sgc;
2059 	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2060 	int			flags;
2061 
2062 	/*
2063 	 * The CPUs this group covers.
2064 	 *
2065 	 * NOTE: this field is variable length. (Allocated dynamically
2066 	 * by attaching extra space to the end of the structure,
2067 	 * depending on how many CPUs the kernel has booted up with)
2068 	 */
2069 	unsigned long		cpumask[];
2070 };
2071 
sched_group_span(struct sched_group * sg)2072 static inline struct cpumask *sched_group_span(struct sched_group *sg)
2073 {
2074 	return to_cpumask(sg->cpumask);
2075 }
2076 
2077 /*
2078  * See build_balance_mask().
2079  */
group_balance_mask(struct sched_group * sg)2080 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2081 {
2082 	return to_cpumask(sg->sgc->cpumask);
2083 }
2084 
2085 extern int group_balance_cpu(struct sched_group *sg);
2086 
2087 #ifdef CONFIG_SCHED_DEBUG
2088 extern void update_sched_domain_debugfs(void);
2089 extern void dirty_sched_domain_sysctl(int cpu);
2090 #else
update_sched_domain_debugfs(void)2091 static inline void update_sched_domain_debugfs(void) { }
dirty_sched_domain_sysctl(int cpu)2092 static inline void dirty_sched_domain_sysctl(int cpu) { }
2093 #endif
2094 
2095 extern int sched_update_scaling(void);
2096 
task_user_cpus(struct task_struct * p)2097 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2098 {
2099 	if (!p->user_cpus_ptr)
2100 		return cpu_possible_mask; /* &init_task.cpus_mask */
2101 	return p->user_cpus_ptr;
2102 }
2103 
2104 #endif /* CONFIG_SMP */
2105 
2106 #ifdef CONFIG_CGROUP_SCHED
2107 
2108 /*
2109  * Return the group to which this tasks belongs.
2110  *
2111  * We cannot use task_css() and friends because the cgroup subsystem
2112  * changes that value before the cgroup_subsys::attach() method is called,
2113  * therefore we cannot pin it and might observe the wrong value.
2114  *
2115  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2116  * core changes this before calling sched_move_task().
2117  *
2118  * Instead we use a 'copy' which is updated from sched_move_task() while
2119  * holding both task_struct::pi_lock and rq::lock.
2120  */
task_group(struct task_struct * p)2121 static inline struct task_group *task_group(struct task_struct *p)
2122 {
2123 	return p->sched_task_group;
2124 }
2125 
2126 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2127 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2128 {
2129 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2130 	struct task_group *tg = task_group(p);
2131 #endif
2132 
2133 #ifdef CONFIG_FAIR_GROUP_SCHED
2134 	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2135 	p->se.cfs_rq = tg->cfs_rq[cpu];
2136 	p->se.parent = tg->se[cpu];
2137 	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2138 #endif
2139 
2140 #ifdef CONFIG_RT_GROUP_SCHED
2141 	p->rt.rt_rq  = tg->rt_rq[cpu];
2142 	p->rt.parent = tg->rt_se[cpu];
2143 #endif
2144 }
2145 
2146 #else /* !CONFIG_CGROUP_SCHED: */
2147 
set_task_rq(struct task_struct * p,unsigned int cpu)2148 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2149 
task_group(struct task_struct * p)2150 static inline struct task_group *task_group(struct task_struct *p)
2151 {
2152 	return NULL;
2153 }
2154 
2155 #endif /* !CONFIG_CGROUP_SCHED */
2156 
__set_task_cpu(struct task_struct * p,unsigned int cpu)2157 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2158 {
2159 	set_task_rq(p, cpu);
2160 #ifdef CONFIG_SMP
2161 	/*
2162 	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2163 	 * successfully executed on another CPU. We must ensure that updates of
2164 	 * per-task data have been completed by this moment.
2165 	 */
2166 	smp_wmb();
2167 	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2168 	p->wake_cpu = cpu;
2169 #endif
2170 }
2171 
2172 /*
2173  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2174  */
2175 #ifdef CONFIG_SCHED_DEBUG
2176 # define const_debug __read_mostly
2177 #else
2178 # define const_debug const
2179 #endif
2180 
2181 #define SCHED_FEAT(name, enabled)	\
2182 	__SCHED_FEAT_##name ,
2183 
2184 enum {
2185 #include "features.h"
2186 	__SCHED_FEAT_NR,
2187 };
2188 
2189 #undef SCHED_FEAT
2190 
2191 #ifdef CONFIG_SCHED_DEBUG
2192 
2193 /*
2194  * To support run-time toggling of sched features, all the translation units
2195  * (but core.c) reference the sysctl_sched_features defined in core.c.
2196  */
2197 extern const_debug unsigned int sysctl_sched_features;
2198 
2199 #ifdef CONFIG_JUMP_LABEL
2200 
2201 #define SCHED_FEAT(name, enabled)					\
2202 static __always_inline bool static_branch_##name(struct static_key *key) \
2203 {									\
2204 	return static_key_##enabled(key);				\
2205 }
2206 
2207 #include "features.h"
2208 #undef SCHED_FEAT
2209 
2210 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2211 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2212 
2213 #else /* !CONFIG_JUMP_LABEL: */
2214 
2215 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2216 
2217 #endif /* !CONFIG_JUMP_LABEL */
2218 
2219 #else /* !SCHED_DEBUG: */
2220 
2221 /*
2222  * Each translation unit has its own copy of sysctl_sched_features to allow
2223  * constants propagation at compile time and compiler optimization based on
2224  * features default.
2225  */
2226 #define SCHED_FEAT(name, enabled)	\
2227 	(1UL << __SCHED_FEAT_##name) * enabled |
2228 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2229 #include "features.h"
2230 	0;
2231 #undef SCHED_FEAT
2232 
2233 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2234 
2235 #endif /* !SCHED_DEBUG */
2236 
2237 extern struct static_key_false sched_numa_balancing;
2238 extern struct static_key_false sched_schedstats;
2239 
global_rt_period(void)2240 static inline u64 global_rt_period(void)
2241 {
2242 	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2243 }
2244 
global_rt_runtime(void)2245 static inline u64 global_rt_runtime(void)
2246 {
2247 	if (sysctl_sched_rt_runtime < 0)
2248 		return RUNTIME_INF;
2249 
2250 	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2251 }
2252 
2253 /*
2254  * Is p the current execution context?
2255  */
task_current(struct rq * rq,struct task_struct * p)2256 static inline int task_current(struct rq *rq, struct task_struct *p)
2257 {
2258 	return rq->curr == p;
2259 }
2260 
2261 /*
2262  * Is p the current scheduling context?
2263  *
2264  * Note that it might be the current execution context at the same time if
2265  * rq->curr == rq->donor == p.
2266  */
task_current_donor(struct rq * rq,struct task_struct * p)2267 static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2268 {
2269 	return rq->donor == p;
2270 }
2271 
task_on_cpu(struct rq * rq,struct task_struct * p)2272 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2273 {
2274 #ifdef CONFIG_SMP
2275 	return p->on_cpu;
2276 #else
2277 	return task_current(rq, p);
2278 #endif
2279 }
2280 
task_on_rq_queued(struct task_struct * p)2281 static inline int task_on_rq_queued(struct task_struct *p)
2282 {
2283 	return p->on_rq == TASK_ON_RQ_QUEUED;
2284 }
2285 
task_on_rq_migrating(struct task_struct * p)2286 static inline int task_on_rq_migrating(struct task_struct *p)
2287 {
2288 	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2289 }
2290 
2291 /* Wake flags. The first three directly map to some SD flag value */
2292 #define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2293 #define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2294 #define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
2295 
2296 #define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2297 #define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2298 #define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2299 #define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
2300 
2301 #ifdef CONFIG_SMP
2302 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2303 static_assert(WF_FORK == SD_BALANCE_FORK);
2304 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2305 #endif
2306 
2307 /*
2308  * To aid in avoiding the subversion of "niceness" due to uneven distribution
2309  * of tasks with abnormal "nice" values across CPUs the contribution that
2310  * each task makes to its run queue's load is weighted according to its
2311  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2312  * scaled version of the new time slice allocation that they receive on time
2313  * slice expiry etc.
2314  */
2315 
2316 #define WEIGHT_IDLEPRIO		3
2317 #define WMULT_IDLEPRIO		1431655765
2318 
2319 extern const int		sched_prio_to_weight[40];
2320 extern const u32		sched_prio_to_wmult[40];
2321 
2322 /*
2323  * {de,en}queue flags:
2324  *
2325  * DEQUEUE_SLEEP  - task is no longer runnable
2326  * ENQUEUE_WAKEUP - task just became runnable
2327  *
2328  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2329  *                are in a known state which allows modification. Such pairs
2330  *                should preserve as much state as possible.
2331  *
2332  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2333  *        in the runqueue.
2334  *
2335  * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2336  *
2337  * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2338  *
2339  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2340  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2341  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2342  * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2343  *
2344  */
2345 
2346 #define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2347 #define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2348 #define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2349 #define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2350 #define DEQUEUE_SPECIAL		0x10
2351 #define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2352 #define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2353 
2354 #define ENQUEUE_WAKEUP		0x01
2355 #define ENQUEUE_RESTORE		0x02
2356 #define ENQUEUE_MOVE		0x04
2357 #define ENQUEUE_NOCLOCK		0x08
2358 
2359 #define ENQUEUE_HEAD		0x10
2360 #define ENQUEUE_REPLENISH	0x20
2361 #ifdef CONFIG_SMP
2362 #define ENQUEUE_MIGRATED	0x40
2363 #else
2364 #define ENQUEUE_MIGRATED	0x00
2365 #endif
2366 #define ENQUEUE_INITIAL		0x80
2367 #define ENQUEUE_MIGRATING	0x100
2368 #define ENQUEUE_DELAYED		0x200
2369 #define ENQUEUE_RQ_SELECTED	0x400
2370 
2371 #define RETRY_TASK		((void *)-1UL)
2372 
2373 struct affinity_context {
2374 	const struct cpumask	*new_mask;
2375 	struct cpumask		*user_mask;
2376 	unsigned int		flags;
2377 };
2378 
2379 extern s64 update_curr_common(struct rq *rq);
2380 
2381 struct sched_class {
2382 
2383 #ifdef CONFIG_UCLAMP_TASK
2384 	int uclamp_enabled;
2385 #endif
2386 
2387 	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2388 	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2389 	void (*yield_task)   (struct rq *rq);
2390 	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2391 
2392 	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2393 
2394 	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2395 	struct task_struct *(*pick_task)(struct rq *rq);
2396 	/*
2397 	 * Optional! When implemented pick_next_task() should be equivalent to:
2398 	 *
2399 	 *   next = pick_task();
2400 	 *   if (next) {
2401 	 *       put_prev_task(prev);
2402 	 *       set_next_task_first(next);
2403 	 *   }
2404 	 */
2405 	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2406 
2407 	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2408 	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2409 
2410 #ifdef CONFIG_SMP
2411 	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2412 
2413 	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2414 
2415 	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2416 
2417 	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2418 
2419 	void (*rq_online)(struct rq *rq);
2420 	void (*rq_offline)(struct rq *rq);
2421 
2422 	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2423 #endif
2424 
2425 	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2426 	void (*task_fork)(struct task_struct *p);
2427 	void (*task_dead)(struct task_struct *p);
2428 
2429 	/*
2430 	 * The switched_from() call is allowed to drop rq->lock, therefore we
2431 	 * cannot assume the switched_from/switched_to pair is serialized by
2432 	 * rq->lock. They are however serialized by p->pi_lock.
2433 	 */
2434 	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2435 	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2436 	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2437 	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2438 			      const struct load_weight *lw);
2439 	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2440 			      int oldprio);
2441 
2442 	unsigned int (*get_rr_interval)(struct rq *rq,
2443 					struct task_struct *task);
2444 
2445 	void (*update_curr)(struct rq *rq);
2446 
2447 #ifdef CONFIG_FAIR_GROUP_SCHED
2448 	void (*task_change_group)(struct task_struct *p);
2449 #endif
2450 
2451 #ifdef CONFIG_SCHED_CORE
2452 	int (*task_is_throttled)(struct task_struct *p, int cpu);
2453 #endif
2454 };
2455 
put_prev_task(struct rq * rq,struct task_struct * prev)2456 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2457 {
2458 	WARN_ON_ONCE(rq->donor != prev);
2459 	prev->sched_class->put_prev_task(rq, prev, NULL);
2460 }
2461 
set_next_task(struct rq * rq,struct task_struct * next)2462 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2463 {
2464 	next->sched_class->set_next_task(rq, next, false);
2465 }
2466 
2467 static inline void
__put_prev_set_next_dl_server(struct rq * rq,struct task_struct * prev,struct task_struct * next)2468 __put_prev_set_next_dl_server(struct rq *rq,
2469 			      struct task_struct *prev,
2470 			      struct task_struct *next)
2471 {
2472 	prev->dl_server = NULL;
2473 	next->dl_server = rq->dl_server;
2474 	rq->dl_server = NULL;
2475 }
2476 
put_prev_set_next_task(struct rq * rq,struct task_struct * prev,struct task_struct * next)2477 static inline void put_prev_set_next_task(struct rq *rq,
2478 					  struct task_struct *prev,
2479 					  struct task_struct *next)
2480 {
2481 	WARN_ON_ONCE(rq->curr != prev);
2482 
2483 	__put_prev_set_next_dl_server(rq, prev, next);
2484 
2485 	if (next == prev)
2486 		return;
2487 
2488 	prev->sched_class->put_prev_task(rq, prev, next);
2489 	next->sched_class->set_next_task(rq, next, true);
2490 }
2491 
2492 /*
2493  * Helper to define a sched_class instance; each one is placed in a separate
2494  * section which is ordered by the linker script:
2495  *
2496  *   include/asm-generic/vmlinux.lds.h
2497  *
2498  * *CAREFUL* they are laid out in *REVERSE* order!!!
2499  *
2500  * Also enforce alignment on the instance, not the type, to guarantee layout.
2501  */
2502 #define DEFINE_SCHED_CLASS(name) \
2503 const struct sched_class name##_sched_class \
2504 	__aligned(__alignof__(struct sched_class)) \
2505 	__section("__" #name "_sched_class")
2506 
2507 /* Defined in include/asm-generic/vmlinux.lds.h */
2508 extern struct sched_class __sched_class_highest[];
2509 extern struct sched_class __sched_class_lowest[];
2510 
2511 extern const struct sched_class stop_sched_class;
2512 extern const struct sched_class dl_sched_class;
2513 extern const struct sched_class rt_sched_class;
2514 extern const struct sched_class fair_sched_class;
2515 extern const struct sched_class idle_sched_class;
2516 
2517 #ifdef CONFIG_SCHED_CLASS_EXT
2518 extern const struct sched_class ext_sched_class;
2519 
2520 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled);	/* SCX BPF scheduler loaded */
2521 DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
2522 
2523 #define scx_enabled()		static_branch_unlikely(&__scx_ops_enabled)
2524 #define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
2525 #else /* !CONFIG_SCHED_CLASS_EXT */
2526 #define scx_enabled()		false
2527 #define scx_switched_all()	false
2528 #endif /* !CONFIG_SCHED_CLASS_EXT */
2529 
2530 /*
2531  * Iterate only active classes. SCX can take over all fair tasks or be
2532  * completely disabled. If the former, skip fair. If the latter, skip SCX.
2533  */
next_active_class(const struct sched_class * class)2534 static inline const struct sched_class *next_active_class(const struct sched_class *class)
2535 {
2536 	class++;
2537 #ifdef CONFIG_SCHED_CLASS_EXT
2538 	if (scx_switched_all() && class == &fair_sched_class)
2539 		class++;
2540 	if (!scx_enabled() && class == &ext_sched_class)
2541 		class++;
2542 #endif
2543 	return class;
2544 }
2545 
2546 #define for_class_range(class, _from, _to) \
2547 	for (class = (_from); class < (_to); class++)
2548 
2549 #define for_each_class(class) \
2550 	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2551 
2552 #define for_active_class_range(class, _from, _to)				\
2553 	for (class = (_from); class != (_to); class = next_active_class(class))
2554 
2555 #define for_each_active_class(class)						\
2556 	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2557 
2558 #define sched_class_above(_a, _b)	((_a) < (_b))
2559 
sched_stop_runnable(struct rq * rq)2560 static inline bool sched_stop_runnable(struct rq *rq)
2561 {
2562 	return rq->stop && task_on_rq_queued(rq->stop);
2563 }
2564 
sched_dl_runnable(struct rq * rq)2565 static inline bool sched_dl_runnable(struct rq *rq)
2566 {
2567 	return rq->dl.dl_nr_running > 0;
2568 }
2569 
sched_rt_runnable(struct rq * rq)2570 static inline bool sched_rt_runnable(struct rq *rq)
2571 {
2572 	return rq->rt.rt_queued > 0;
2573 }
2574 
sched_fair_runnable(struct rq * rq)2575 static inline bool sched_fair_runnable(struct rq *rq)
2576 {
2577 	return rq->cfs.nr_running > 0;
2578 }
2579 
2580 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2581 extern struct task_struct *pick_task_idle(struct rq *rq);
2582 
2583 #define SCA_CHECK		0x01
2584 #define SCA_MIGRATE_DISABLE	0x02
2585 #define SCA_MIGRATE_ENABLE	0x04
2586 #define SCA_USER		0x08
2587 
2588 #ifdef CONFIG_SMP
2589 
2590 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2591 
2592 extern void sched_balance_trigger(struct rq *rq);
2593 
2594 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2595 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2596 
task_allowed_on_cpu(struct task_struct * p,int cpu)2597 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2598 {
2599 	/* When not in the task's cpumask, no point in looking further. */
2600 	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2601 		return false;
2602 
2603 	/* Can @cpu run a user thread? */
2604 	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2605 		return false;
2606 
2607 	return true;
2608 }
2609 
alloc_user_cpus_ptr(int node)2610 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2611 {
2612 	/*
2613 	 * See do_set_cpus_allowed() above for the rcu_head usage.
2614 	 */
2615 	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2616 
2617 	return kmalloc_node(size, GFP_KERNEL, node);
2618 }
2619 
get_push_task(struct rq * rq)2620 static inline struct task_struct *get_push_task(struct rq *rq)
2621 {
2622 	struct task_struct *p = rq->donor;
2623 
2624 	lockdep_assert_rq_held(rq);
2625 
2626 	if (rq->push_busy)
2627 		return NULL;
2628 
2629 	if (p->nr_cpus_allowed == 1)
2630 		return NULL;
2631 
2632 	if (p->migration_disabled)
2633 		return NULL;
2634 
2635 	rq->push_busy = true;
2636 	return get_task_struct(p);
2637 }
2638 
2639 extern int push_cpu_stop(void *arg);
2640 
2641 #else /* !CONFIG_SMP: */
2642 
task_allowed_on_cpu(struct task_struct * p,int cpu)2643 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2644 {
2645 	return true;
2646 }
2647 
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)2648 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2649 					 struct affinity_context *ctx)
2650 {
2651 	return set_cpus_allowed_ptr(p, ctx->new_mask);
2652 }
2653 
alloc_user_cpus_ptr(int node)2654 static inline cpumask_t *alloc_user_cpus_ptr(int node)
2655 {
2656 	return NULL;
2657 }
2658 
2659 #endif /* !CONFIG_SMP */
2660 
2661 #ifdef CONFIG_CPU_IDLE
2662 
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2663 static inline void idle_set_state(struct rq *rq,
2664 				  struct cpuidle_state *idle_state)
2665 {
2666 	rq->idle_state = idle_state;
2667 }
2668 
idle_get_state(struct rq * rq)2669 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2670 {
2671 	SCHED_WARN_ON(!rcu_read_lock_held());
2672 
2673 	return rq->idle_state;
2674 }
2675 
2676 #else /* !CONFIG_CPU_IDLE: */
2677 
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2678 static inline void idle_set_state(struct rq *rq,
2679 				  struct cpuidle_state *idle_state)
2680 {
2681 }
2682 
idle_get_state(struct rq * rq)2683 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2684 {
2685 	return NULL;
2686 }
2687 
2688 #endif /* !CONFIG_CPU_IDLE */
2689 
2690 extern void schedule_idle(void);
2691 asmlinkage void schedule_user(void);
2692 
2693 extern void sysrq_sched_debug_show(void);
2694 extern void sched_init_granularity(void);
2695 extern void update_max_interval(void);
2696 
2697 extern void init_sched_dl_class(void);
2698 extern void init_sched_rt_class(void);
2699 extern void init_sched_fair_class(void);
2700 
2701 extern void resched_curr(struct rq *rq);
2702 extern void resched_curr_lazy(struct rq *rq);
2703 extern void resched_cpu(int cpu);
2704 
2705 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2706 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2707 
2708 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2709 
2710 #define BW_SHIFT		20
2711 #define BW_UNIT			(1 << BW_SHIFT)
2712 #define RATIO_SHIFT		8
2713 #define MAX_BW_BITS		(64 - BW_SHIFT)
2714 #define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2715 
2716 extern unsigned long to_ratio(u64 period, u64 runtime);
2717 
2718 extern void init_entity_runnable_average(struct sched_entity *se);
2719 extern void post_init_entity_util_avg(struct task_struct *p);
2720 
2721 #ifdef CONFIG_NO_HZ_FULL
2722 extern bool sched_can_stop_tick(struct rq *rq);
2723 extern int __init sched_tick_offload_init(void);
2724 
2725 /*
2726  * Tick may be needed by tasks in the runqueue depending on their policy and
2727  * requirements. If tick is needed, lets send the target an IPI to kick it out of
2728  * nohz mode if necessary.
2729  */
sched_update_tick_dependency(struct rq * rq)2730 static inline void sched_update_tick_dependency(struct rq *rq)
2731 {
2732 	int cpu = cpu_of(rq);
2733 
2734 	if (!tick_nohz_full_cpu(cpu))
2735 		return;
2736 
2737 	if (sched_can_stop_tick(rq))
2738 		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2739 	else
2740 		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2741 }
2742 #else /* !CONFIG_NO_HZ_FULL: */
sched_tick_offload_init(void)2743 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2744 static inline void sched_update_tick_dependency(struct rq *rq) { }
2745 #endif /* !CONFIG_NO_HZ_FULL */
2746 
add_nr_running(struct rq * rq,unsigned count)2747 static inline void add_nr_running(struct rq *rq, unsigned count)
2748 {
2749 	unsigned prev_nr = rq->nr_running;
2750 
2751 	rq->nr_running = prev_nr + count;
2752 	if (trace_sched_update_nr_running_tp_enabled()) {
2753 		call_trace_sched_update_nr_running(rq, count);
2754 	}
2755 
2756 #ifdef CONFIG_SMP
2757 	if (prev_nr < 2 && rq->nr_running >= 2)
2758 		set_rd_overloaded(rq->rd, 1);
2759 #endif
2760 
2761 	sched_update_tick_dependency(rq);
2762 }
2763 
sub_nr_running(struct rq * rq,unsigned count)2764 static inline void sub_nr_running(struct rq *rq, unsigned count)
2765 {
2766 	rq->nr_running -= count;
2767 	if (trace_sched_update_nr_running_tp_enabled()) {
2768 		call_trace_sched_update_nr_running(rq, -count);
2769 	}
2770 
2771 	/* Check if we still need preemption */
2772 	sched_update_tick_dependency(rq);
2773 }
2774 
__block_task(struct rq * rq,struct task_struct * p)2775 static inline void __block_task(struct rq *rq, struct task_struct *p)
2776 {
2777 	if (p->sched_contributes_to_load)
2778 		rq->nr_uninterruptible++;
2779 
2780 	if (p->in_iowait) {
2781 		atomic_inc(&rq->nr_iowait);
2782 		delayacct_blkio_start();
2783 	}
2784 
2785 	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2786 
2787 	/*
2788 	 * The moment this write goes through, ttwu() can swoop in and migrate
2789 	 * this task, rendering our rq->__lock ineffective.
2790 	 *
2791 	 * __schedule()				try_to_wake_up()
2792 	 *   LOCK rq->__lock			  LOCK p->pi_lock
2793 	 *   pick_next_task()
2794 	 *     pick_next_task_fair()
2795 	 *       pick_next_entity()
2796 	 *         dequeue_entities()
2797 	 *           __block_task()
2798 	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2799 	 *					    break;
2800 	 *
2801 	 *					  ACQUIRE (after ctrl-dep)
2802 	 *
2803 	 *					  cpu = select_task_rq();
2804 	 *					  set_task_cpu(p, cpu);
2805 	 *					  ttwu_queue()
2806 	 *					    ttwu_do_activate()
2807 	 *					      LOCK rq->__lock
2808 	 *					      activate_task()
2809 	 *					        STORE p->on_rq = 1
2810 	 *   UNLOCK rq->__lock
2811 	 *
2812 	 * Callers must ensure to not reference @p after this -- we no longer
2813 	 * own it.
2814 	 */
2815 	smp_store_release(&p->on_rq, 0);
2816 }
2817 
2818 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2819 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2820 
2821 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2822 
2823 #ifdef CONFIG_PREEMPT_RT
2824 # define SCHED_NR_MIGRATE_BREAK 8
2825 #else
2826 # define SCHED_NR_MIGRATE_BREAK 32
2827 #endif
2828 
2829 extern const_debug unsigned int sysctl_sched_nr_migrate;
2830 extern const_debug unsigned int sysctl_sched_migration_cost;
2831 
2832 extern unsigned int sysctl_sched_base_slice;
2833 
2834 #ifdef CONFIG_SCHED_DEBUG
2835 extern int sysctl_resched_latency_warn_ms;
2836 extern int sysctl_resched_latency_warn_once;
2837 
2838 extern unsigned int sysctl_sched_tunable_scaling;
2839 
2840 extern unsigned int sysctl_numa_balancing_scan_delay;
2841 extern unsigned int sysctl_numa_balancing_scan_period_min;
2842 extern unsigned int sysctl_numa_balancing_scan_period_max;
2843 extern unsigned int sysctl_numa_balancing_scan_size;
2844 extern unsigned int sysctl_numa_balancing_hot_threshold;
2845 #endif
2846 
2847 #ifdef CONFIG_SCHED_HRTICK
2848 
2849 /*
2850  * Use hrtick when:
2851  *  - enabled by features
2852  *  - hrtimer is actually high res
2853  */
hrtick_enabled(struct rq * rq)2854 static inline int hrtick_enabled(struct rq *rq)
2855 {
2856 	if (!cpu_active(cpu_of(rq)))
2857 		return 0;
2858 	return hrtimer_is_hres_active(&rq->hrtick_timer);
2859 }
2860 
hrtick_enabled_fair(struct rq * rq)2861 static inline int hrtick_enabled_fair(struct rq *rq)
2862 {
2863 	if (!sched_feat(HRTICK))
2864 		return 0;
2865 	return hrtick_enabled(rq);
2866 }
2867 
hrtick_enabled_dl(struct rq * rq)2868 static inline int hrtick_enabled_dl(struct rq *rq)
2869 {
2870 	if (!sched_feat(HRTICK_DL))
2871 		return 0;
2872 	return hrtick_enabled(rq);
2873 }
2874 
2875 extern void hrtick_start(struct rq *rq, u64 delay);
2876 
2877 #else /* !CONFIG_SCHED_HRTICK: */
2878 
hrtick_enabled_fair(struct rq * rq)2879 static inline int hrtick_enabled_fair(struct rq *rq)
2880 {
2881 	return 0;
2882 }
2883 
hrtick_enabled_dl(struct rq * rq)2884 static inline int hrtick_enabled_dl(struct rq *rq)
2885 {
2886 	return 0;
2887 }
2888 
hrtick_enabled(struct rq * rq)2889 static inline int hrtick_enabled(struct rq *rq)
2890 {
2891 	return 0;
2892 }
2893 
2894 #endif /* !CONFIG_SCHED_HRTICK */
2895 
2896 #ifndef arch_scale_freq_tick
arch_scale_freq_tick(void)2897 static __always_inline void arch_scale_freq_tick(void) { }
2898 #endif
2899 
2900 #ifndef arch_scale_freq_capacity
2901 /**
2902  * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2903  * @cpu: the CPU in question.
2904  *
2905  * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2906  *
2907  *     f_curr
2908  *     ------ * SCHED_CAPACITY_SCALE
2909  *     f_max
2910  */
2911 static __always_inline
arch_scale_freq_capacity(int cpu)2912 unsigned long arch_scale_freq_capacity(int cpu)
2913 {
2914 	return SCHED_CAPACITY_SCALE;
2915 }
2916 #endif
2917 
2918 #ifdef CONFIG_SCHED_DEBUG
2919 /*
2920  * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2921  * acquire rq lock instead of rq_lock(). So at the end of these two functions
2922  * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2923  * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2924  */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2925 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2926 {
2927 	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2928 	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2929 #ifdef CONFIG_SMP
2930 	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2931 #endif
2932 }
2933 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2934 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
2935 #endif
2936 
2937 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2938 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2939 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2940 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2941   _lock; return _t; }
2942 
2943 #ifdef CONFIG_SMP
2944 
rq_order_less(struct rq * rq1,struct rq * rq2)2945 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2946 {
2947 #ifdef CONFIG_SCHED_CORE
2948 	/*
2949 	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2950 	 * order by core-id first and cpu-id second.
2951 	 *
2952 	 * Notably:
2953 	 *
2954 	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2955 	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2956 	 *
2957 	 * when only cpu-id is considered.
2958 	 */
2959 	if (rq1->core->cpu < rq2->core->cpu)
2960 		return true;
2961 	if (rq1->core->cpu > rq2->core->cpu)
2962 		return false;
2963 
2964 	/*
2965 	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2966 	 */
2967 #endif
2968 	return rq1->cpu < rq2->cpu;
2969 }
2970 
2971 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2972 
2973 #ifdef CONFIG_PREEMPTION
2974 
2975 /*
2976  * fair double_lock_balance: Safely acquires both rq->locks in a fair
2977  * way at the expense of forcing extra atomic operations in all
2978  * invocations.  This assures that the double_lock is acquired using the
2979  * same underlying policy as the spinlock_t on this architecture, which
2980  * reduces latency compared to the unfair variant below.  However, it
2981  * also adds more overhead and therefore may reduce throughput.
2982  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2983 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2984 	__releases(this_rq->lock)
2985 	__acquires(busiest->lock)
2986 	__acquires(this_rq->lock)
2987 {
2988 	raw_spin_rq_unlock(this_rq);
2989 	double_rq_lock(this_rq, busiest);
2990 
2991 	return 1;
2992 }
2993 
2994 #else /* !CONFIG_PREEMPTION: */
2995 /*
2996  * Unfair double_lock_balance: Optimizes throughput at the expense of
2997  * latency by eliminating extra atomic operations when the locks are
2998  * already in proper order on entry.  This favors lower CPU-ids and will
2999  * grant the double lock to lower CPUs over higher ids under contention,
3000  * regardless of entry order into the function.
3001  */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)3002 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3003 	__releases(this_rq->lock)
3004 	__acquires(busiest->lock)
3005 	__acquires(this_rq->lock)
3006 {
3007 	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
3008 	    likely(raw_spin_rq_trylock(busiest))) {
3009 		double_rq_clock_clear_update(this_rq, busiest);
3010 		return 0;
3011 	}
3012 
3013 	if (rq_order_less(this_rq, busiest)) {
3014 		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
3015 		double_rq_clock_clear_update(this_rq, busiest);
3016 		return 0;
3017 	}
3018 
3019 	raw_spin_rq_unlock(this_rq);
3020 	double_rq_lock(this_rq, busiest);
3021 
3022 	return 1;
3023 }
3024 
3025 #endif /* !CONFIG_PREEMPTION */
3026 
3027 /*
3028  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3029  */
double_lock_balance(struct rq * this_rq,struct rq * busiest)3030 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3031 {
3032 	lockdep_assert_irqs_disabled();
3033 
3034 	return _double_lock_balance(this_rq, busiest);
3035 }
3036 
double_unlock_balance(struct rq * this_rq,struct rq * busiest)3037 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3038 	__releases(busiest->lock)
3039 {
3040 	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3041 		raw_spin_rq_unlock(busiest);
3042 	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3043 }
3044 
double_lock(spinlock_t * l1,spinlock_t * l2)3045 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3046 {
3047 	if (l1 > l2)
3048 		swap(l1, l2);
3049 
3050 	spin_lock(l1);
3051 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3052 }
3053 
double_lock_irq(spinlock_t * l1,spinlock_t * l2)3054 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3055 {
3056 	if (l1 > l2)
3057 		swap(l1, l2);
3058 
3059 	spin_lock_irq(l1);
3060 	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3061 }
3062 
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)3063 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3064 {
3065 	if (l1 > l2)
3066 		swap(l1, l2);
3067 
3068 	raw_spin_lock(l1);
3069 	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3070 }
3071 
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)3072 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3073 {
3074 	raw_spin_unlock(l1);
3075 	raw_spin_unlock(l2);
3076 }
3077 
3078 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3079 		    double_raw_lock(_T->lock, _T->lock2),
3080 		    double_raw_unlock(_T->lock, _T->lock2))
3081 
3082 /*
3083  * double_rq_unlock - safely unlock two runqueues
3084  *
3085  * Note this does not restore interrupts like task_rq_unlock,
3086  * you need to do so manually after calling.
3087  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)3088 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3089 	__releases(rq1->lock)
3090 	__releases(rq2->lock)
3091 {
3092 	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3093 		raw_spin_rq_unlock(rq2);
3094 	else
3095 		__release(rq2->lock);
3096 	raw_spin_rq_unlock(rq1);
3097 }
3098 
3099 extern void set_rq_online (struct rq *rq);
3100 extern void set_rq_offline(struct rq *rq);
3101 
3102 extern bool sched_smp_initialized;
3103 
3104 #else /* !CONFIG_SMP: */
3105 
3106 /*
3107  * double_rq_lock - safely lock two runqueues
3108  *
3109  * Note this does not disable interrupts like task_rq_lock,
3110  * you need to do so manually before calling.
3111  */
double_rq_lock(struct rq * rq1,struct rq * rq2)3112 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
3113 	__acquires(rq1->lock)
3114 	__acquires(rq2->lock)
3115 {
3116 	WARN_ON_ONCE(!irqs_disabled());
3117 	WARN_ON_ONCE(rq1 != rq2);
3118 	raw_spin_rq_lock(rq1);
3119 	__acquire(rq2->lock);	/* Fake it out ;) */
3120 	double_rq_clock_clear_update(rq1, rq2);
3121 }
3122 
3123 /*
3124  * double_rq_unlock - safely unlock two runqueues
3125  *
3126  * Note this does not restore interrupts like task_rq_unlock,
3127  * you need to do so manually after calling.
3128  */
double_rq_unlock(struct rq * rq1,struct rq * rq2)3129 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3130 	__releases(rq1->lock)
3131 	__releases(rq2->lock)
3132 {
3133 	WARN_ON_ONCE(rq1 != rq2);
3134 	raw_spin_rq_unlock(rq1);
3135 	__release(rq2->lock);
3136 }
3137 
3138 #endif /* !CONFIG_SMP */
3139 
3140 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3141 		    double_rq_lock(_T->lock, _T->lock2),
3142 		    double_rq_unlock(_T->lock, _T->lock2))
3143 
3144 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3145 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3146 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3147 
3148 #ifdef	CONFIG_SCHED_DEBUG
3149 extern bool sched_debug_verbose;
3150 
3151 extern void print_cfs_stats(struct seq_file *m, int cpu);
3152 extern void print_rt_stats(struct seq_file *m, int cpu);
3153 extern void print_dl_stats(struct seq_file *m, int cpu);
3154 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3155 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3156 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3157 
3158 extern void resched_latency_warn(int cpu, u64 latency);
3159 # ifdef CONFIG_NUMA_BALANCING
3160 extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3161 extern void
3162 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3163 		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3164 # endif /* CONFIG_NUMA_BALANCING */
3165 #else /* !CONFIG_SCHED_DEBUG: */
resched_latency_warn(int cpu,u64 latency)3166 static inline void resched_latency_warn(int cpu, u64 latency) { }
3167 #endif /* !CONFIG_SCHED_DEBUG */
3168 
3169 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3170 extern void init_rt_rq(struct rt_rq *rt_rq);
3171 extern void init_dl_rq(struct dl_rq *dl_rq);
3172 
3173 extern void cfs_bandwidth_usage_inc(void);
3174 extern void cfs_bandwidth_usage_dec(void);
3175 
3176 #ifdef CONFIG_NO_HZ_COMMON
3177 
3178 #define NOHZ_BALANCE_KICK_BIT	0
3179 #define NOHZ_STATS_KICK_BIT	1
3180 #define NOHZ_NEWILB_KICK_BIT	2
3181 #define NOHZ_NEXT_KICK_BIT	3
3182 
3183 /* Run sched_balance_domains() */
3184 #define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3185 /* Update blocked load */
3186 #define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3187 /* Update blocked load when entering idle */
3188 #define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3189 /* Update nohz.next_balance */
3190 #define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3191 
3192 #define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3193 
3194 #define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3195 
3196 extern void nohz_balance_exit_idle(struct rq *rq);
3197 #else /* !CONFIG_NO_HZ_COMMON: */
nohz_balance_exit_idle(struct rq * rq)3198 static inline void nohz_balance_exit_idle(struct rq *rq) { }
3199 #endif /* !CONFIG_NO_HZ_COMMON */
3200 
3201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
3202 extern void nohz_run_idle_balance(int cpu);
3203 #else
nohz_run_idle_balance(int cpu)3204 static inline void nohz_run_idle_balance(int cpu) { }
3205 #endif
3206 
3207 #include "stats.h"
3208 
3209 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
3210 
3211 extern void __sched_core_account_forceidle(struct rq *rq);
3212 
sched_core_account_forceidle(struct rq * rq)3213 static inline void sched_core_account_forceidle(struct rq *rq)
3214 {
3215 	if (schedstat_enabled())
3216 		__sched_core_account_forceidle(rq);
3217 }
3218 
3219 extern void __sched_core_tick(struct rq *rq);
3220 
sched_core_tick(struct rq * rq)3221 static inline void sched_core_tick(struct rq *rq)
3222 {
3223 	if (sched_core_enabled(rq) && schedstat_enabled())
3224 		__sched_core_tick(rq);
3225 }
3226 
3227 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
3228 
sched_core_account_forceidle(struct rq * rq)3229 static inline void sched_core_account_forceidle(struct rq *rq) { }
3230 
sched_core_tick(struct rq * rq)3231 static inline void sched_core_tick(struct rq *rq) { }
3232 
3233 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3234 
3235 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3236 
3237 struct irqtime {
3238 	u64			total;
3239 	u64			tick_delta;
3240 	u64			irq_start_time;
3241 	struct u64_stats_sync	sync;
3242 };
3243 
3244 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3245 
3246 /*
3247  * Returns the irqtime minus the softirq time computed by ksoftirqd.
3248  * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3249  * and never move forward.
3250  */
irq_time_read(int cpu)3251 static inline u64 irq_time_read(int cpu)
3252 {
3253 	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3254 	unsigned int seq;
3255 	u64 total;
3256 
3257 	do {
3258 		seq = __u64_stats_fetch_begin(&irqtime->sync);
3259 		total = irqtime->total;
3260 	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3261 
3262 	return total;
3263 }
3264 
3265 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3266 
3267 #ifdef CONFIG_CPU_FREQ
3268 
3269 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3270 
3271 /**
3272  * cpufreq_update_util - Take a note about CPU utilization changes.
3273  * @rq: Runqueue to carry out the update for.
3274  * @flags: Update reason flags.
3275  *
3276  * This function is called by the scheduler on the CPU whose utilization is
3277  * being updated.
3278  *
3279  * It can only be called from RCU-sched read-side critical sections.
3280  *
3281  * The way cpufreq is currently arranged requires it to evaluate the CPU
3282  * performance state (frequency/voltage) on a regular basis to prevent it from
3283  * being stuck in a completely inadequate performance level for too long.
3284  * That is not guaranteed to happen if the updates are only triggered from CFS
3285  * and DL, though, because they may not be coming in if only RT tasks are
3286  * active all the time (or there are RT tasks only).
3287  *
3288  * As a workaround for that issue, this function is called periodically by the
3289  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3290  * but that really is a band-aid.  Going forward it should be replaced with
3291  * solutions targeted more specifically at RT tasks.
3292  */
cpufreq_update_util(struct rq * rq,unsigned int flags)3293 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3294 {
3295 	struct update_util_data *data;
3296 
3297 	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3298 						  cpu_of(rq)));
3299 	if (data)
3300 		data->func(data, rq_clock(rq), flags);
3301 }
3302 #else /* !CONFIG_CPU_FREQ: */
cpufreq_update_util(struct rq * rq,unsigned int flags)3303 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3304 #endif /* !CONFIG_CPU_FREQ */
3305 
3306 #ifdef arch_scale_freq_capacity
3307 # ifndef arch_scale_freq_invariant
3308 #  define arch_scale_freq_invariant()	true
3309 # endif
3310 #else
3311 # define arch_scale_freq_invariant()	false
3312 #endif
3313 
3314 #ifdef CONFIG_SMP
3315 
3316 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3317 				 unsigned long *min,
3318 				 unsigned long *max);
3319 
3320 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3321 				 unsigned long min,
3322 				 unsigned long max);
3323 
3324 
3325 /*
3326  * Verify the fitness of task @p to run on @cpu taking into account the
3327  * CPU original capacity and the runtime/deadline ratio of the task.
3328  *
3329  * The function will return true if the original capacity of @cpu is
3330  * greater than or equal to task's deadline density right shifted by
3331  * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3332  */
dl_task_fits_capacity(struct task_struct * p,int cpu)3333 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3334 {
3335 	unsigned long cap = arch_scale_cpu_capacity(cpu);
3336 
3337 	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3338 }
3339 
cpu_bw_dl(struct rq * rq)3340 static inline unsigned long cpu_bw_dl(struct rq *rq)
3341 {
3342 	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3343 }
3344 
cpu_util_dl(struct rq * rq)3345 static inline unsigned long cpu_util_dl(struct rq *rq)
3346 {
3347 	return READ_ONCE(rq->avg_dl.util_avg);
3348 }
3349 
3350 
3351 extern unsigned long cpu_util_cfs(int cpu);
3352 extern unsigned long cpu_util_cfs_boost(int cpu);
3353 
cpu_util_rt(struct rq * rq)3354 static inline unsigned long cpu_util_rt(struct rq *rq)
3355 {
3356 	return READ_ONCE(rq->avg_rt.util_avg);
3357 }
3358 
3359 #else /* !CONFIG_SMP */
update_other_load_avgs(struct rq * rq)3360 static inline bool update_other_load_avgs(struct rq *rq) { return false; }
3361 #endif /* CONFIG_SMP */
3362 
3363 #ifdef CONFIG_UCLAMP_TASK
3364 
3365 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3366 
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3367 static inline unsigned long uclamp_rq_get(struct rq *rq,
3368 					  enum uclamp_id clamp_id)
3369 {
3370 	return READ_ONCE(rq->uclamp[clamp_id].value);
3371 }
3372 
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3373 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3374 				 unsigned int value)
3375 {
3376 	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3377 }
3378 
uclamp_rq_is_idle(struct rq * rq)3379 static inline bool uclamp_rq_is_idle(struct rq *rq)
3380 {
3381 	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3382 }
3383 
3384 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3385 static inline bool uclamp_rq_is_capped(struct rq *rq)
3386 {
3387 	unsigned long rq_util;
3388 	unsigned long max_util;
3389 
3390 	if (!static_branch_likely(&sched_uclamp_used))
3391 		return false;
3392 
3393 	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3394 	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3395 
3396 	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3397 }
3398 
3399 /*
3400  * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3401  * by default in the fast path and only gets turned on once userspace performs
3402  * an operation that requires it.
3403  *
3404  * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3405  * hence is active.
3406  */
uclamp_is_used(void)3407 static inline bool uclamp_is_used(void)
3408 {
3409 	return static_branch_likely(&sched_uclamp_used);
3410 }
3411 
3412 #define for_each_clamp_id(clamp_id) \
3413 	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3414 
3415 extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3416 
3417 
uclamp_none(enum uclamp_id clamp_id)3418 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3419 {
3420 	if (clamp_id == UCLAMP_MIN)
3421 		return 0;
3422 	return SCHED_CAPACITY_SCALE;
3423 }
3424 
3425 /* Integer rounded range for each bucket */
3426 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3427 
uclamp_bucket_id(unsigned int clamp_value)3428 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3429 {
3430 	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3431 }
3432 
3433 static inline void
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)3434 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3435 {
3436 	uc_se->value = value;
3437 	uc_se->bucket_id = uclamp_bucket_id(value);
3438 	uc_se->user_defined = user_defined;
3439 }
3440 
3441 #else /* !CONFIG_UCLAMP_TASK: */
3442 
3443 static inline unsigned long
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3444 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3445 {
3446 	if (clamp_id == UCLAMP_MIN)
3447 		return 0;
3448 
3449 	return SCHED_CAPACITY_SCALE;
3450 }
3451 
uclamp_rq_is_capped(struct rq * rq)3452 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3453 
uclamp_is_used(void)3454 static inline bool uclamp_is_used(void)
3455 {
3456 	return false;
3457 }
3458 
3459 static inline unsigned long
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3460 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3461 {
3462 	if (clamp_id == UCLAMP_MIN)
3463 		return 0;
3464 
3465 	return SCHED_CAPACITY_SCALE;
3466 }
3467 
3468 static inline void
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3469 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3470 {
3471 }
3472 
uclamp_rq_is_idle(struct rq * rq)3473 static inline bool uclamp_rq_is_idle(struct rq *rq)
3474 {
3475 	return false;
3476 }
3477 
3478 #endif /* !CONFIG_UCLAMP_TASK */
3479 
3480 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3481 
cpu_util_irq(struct rq * rq)3482 static inline unsigned long cpu_util_irq(struct rq *rq)
3483 {
3484 	return READ_ONCE(rq->avg_irq.util_avg);
3485 }
3486 
3487 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3488 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3489 {
3490 	util *= (max - irq);
3491 	util /= max;
3492 
3493 	return util;
3494 
3495 }
3496 
3497 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3498 
cpu_util_irq(struct rq * rq)3499 static inline unsigned long cpu_util_irq(struct rq *rq)
3500 {
3501 	return 0;
3502 }
3503 
3504 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3505 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3506 {
3507 	return util;
3508 }
3509 
3510 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3511 
3512 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3513 
3514 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3515 
3516 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3517 
sched_energy_enabled(void)3518 static inline bool sched_energy_enabled(void)
3519 {
3520 	return static_branch_unlikely(&sched_energy_present);
3521 }
3522 
3523 extern struct cpufreq_governor schedutil_gov;
3524 
3525 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3526 
3527 #define perf_domain_span(pd) NULL
3528 
sched_energy_enabled(void)3529 static inline bool sched_energy_enabled(void) { return false; }
3530 
3531 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3532 
3533 #ifdef CONFIG_MEMBARRIER
3534 
3535 /*
3536  * The scheduler provides memory barriers required by membarrier between:
3537  * - prior user-space memory accesses and store to rq->membarrier_state,
3538  * - store to rq->membarrier_state and following user-space memory accesses.
3539  * In the same way it provides those guarantees around store to rq->curr.
3540  */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3541 static inline void membarrier_switch_mm(struct rq *rq,
3542 					struct mm_struct *prev_mm,
3543 					struct mm_struct *next_mm)
3544 {
3545 	int membarrier_state;
3546 
3547 	if (prev_mm == next_mm)
3548 		return;
3549 
3550 	membarrier_state = atomic_read(&next_mm->membarrier_state);
3551 	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3552 		return;
3553 
3554 	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3555 }
3556 
3557 #else /* !CONFIG_MEMBARRIER :*/
3558 
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3559 static inline void membarrier_switch_mm(struct rq *rq,
3560 					struct mm_struct *prev_mm,
3561 					struct mm_struct *next_mm)
3562 {
3563 }
3564 
3565 #endif /* !CONFIG_MEMBARRIER */
3566 
3567 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3568 static inline bool is_per_cpu_kthread(struct task_struct *p)
3569 {
3570 	if (!(p->flags & PF_KTHREAD))
3571 		return false;
3572 
3573 	if (p->nr_cpus_allowed != 1)
3574 		return false;
3575 
3576 	return true;
3577 }
3578 #endif
3579 
3580 extern void swake_up_all_locked(struct swait_queue_head *q);
3581 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3582 
3583 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3584 
3585 #ifdef CONFIG_PREEMPT_DYNAMIC
3586 extern int preempt_dynamic_mode;
3587 extern int sched_dynamic_mode(const char *str);
3588 extern void sched_dynamic_update(int mode);
3589 #endif
3590 
3591 #ifdef CONFIG_SCHED_MM_CID
3592 
3593 #define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3594 #define MM_CID_SCAN_DELAY	100			/* 100ms */
3595 
3596 extern raw_spinlock_t cid_lock;
3597 extern int use_cid_lock;
3598 
3599 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3600 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3601 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3602 extern void init_sched_mm_cid(struct task_struct *t);
3603 
__mm_cid_put(struct mm_struct * mm,int cid)3604 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3605 {
3606 	if (cid < 0)
3607 		return;
3608 	cpumask_clear_cpu(cid, mm_cidmask(mm));
3609 }
3610 
3611 /*
3612  * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3613  * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3614  * be held to transition to other states.
3615  *
3616  * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3617  * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3618  */
mm_cid_put_lazy(struct task_struct * t)3619 static inline void mm_cid_put_lazy(struct task_struct *t)
3620 {
3621 	struct mm_struct *mm = t->mm;
3622 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3623 	int cid;
3624 
3625 	lockdep_assert_irqs_disabled();
3626 	cid = __this_cpu_read(pcpu_cid->cid);
3627 	if (!mm_cid_is_lazy_put(cid) ||
3628 	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3629 		return;
3630 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3631 }
3632 
mm_cid_pcpu_unset(struct mm_struct * mm)3633 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3634 {
3635 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3636 	int cid, res;
3637 
3638 	lockdep_assert_irqs_disabled();
3639 	cid = __this_cpu_read(pcpu_cid->cid);
3640 	for (;;) {
3641 		if (mm_cid_is_unset(cid))
3642 			return MM_CID_UNSET;
3643 		/*
3644 		 * Attempt transition from valid or lazy-put to unset.
3645 		 */
3646 		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3647 		if (res == cid)
3648 			break;
3649 		cid = res;
3650 	}
3651 	return cid;
3652 }
3653 
mm_cid_put(struct mm_struct * mm)3654 static inline void mm_cid_put(struct mm_struct *mm)
3655 {
3656 	int cid;
3657 
3658 	lockdep_assert_irqs_disabled();
3659 	cid = mm_cid_pcpu_unset(mm);
3660 	if (cid == MM_CID_UNSET)
3661 		return;
3662 	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3663 }
3664 
__mm_cid_try_get(struct task_struct * t,struct mm_struct * mm)3665 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3666 {
3667 	struct cpumask *cidmask = mm_cidmask(mm);
3668 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3669 	int cid = __this_cpu_read(pcpu_cid->recent_cid);
3670 
3671 	/* Try to re-use recent cid. This improves cache locality. */
3672 	if (!mm_cid_is_unset(cid) && !cpumask_test_and_set_cpu(cid, cidmask))
3673 		return cid;
3674 	/*
3675 	 * Expand cid allocation if the maximum number of concurrency
3676 	 * IDs allocated (max_nr_cid) is below the number cpus allowed
3677 	 * and number of threads. Expanding cid allocation as much as
3678 	 * possible improves cache locality.
3679 	 */
3680 	cid = atomic_read(&mm->max_nr_cid);
3681 	while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3682 		if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3683 			continue;
3684 		if (!cpumask_test_and_set_cpu(cid, cidmask))
3685 			return cid;
3686 	}
3687 	/*
3688 	 * Find the first available concurrency id.
3689 	 * Retry finding first zero bit if the mask is temporarily
3690 	 * filled. This only happens during concurrent remote-clear
3691 	 * which owns a cid without holding a rq lock.
3692 	 */
3693 	for (;;) {
3694 		cid = cpumask_first_zero(cidmask);
3695 		if (cid < READ_ONCE(mm->nr_cpus_allowed))
3696 			break;
3697 		cpu_relax();
3698 	}
3699 	if (cpumask_test_and_set_cpu(cid, cidmask))
3700 		return -1;
3701 
3702 	return cid;
3703 }
3704 
3705 /*
3706  * Save a snapshot of the current runqueue time of this cpu
3707  * with the per-cpu cid value, allowing to estimate how recently it was used.
3708  */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3709 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3710 {
3711 	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3712 
3713 	lockdep_assert_rq_held(rq);
3714 	WRITE_ONCE(pcpu_cid->time, rq->clock);
3715 }
3716 
__mm_cid_get(struct rq * rq,struct task_struct * t,struct mm_struct * mm)3717 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3718 			       struct mm_struct *mm)
3719 {
3720 	int cid;
3721 
3722 	/*
3723 	 * All allocations (even those using the cid_lock) are lock-free. If
3724 	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3725 	 * guarantee forward progress.
3726 	 */
3727 	if (!READ_ONCE(use_cid_lock)) {
3728 		cid = __mm_cid_try_get(t, mm);
3729 		if (cid >= 0)
3730 			goto end;
3731 		raw_spin_lock(&cid_lock);
3732 	} else {
3733 		raw_spin_lock(&cid_lock);
3734 		cid = __mm_cid_try_get(t, mm);
3735 		if (cid >= 0)
3736 			goto unlock;
3737 	}
3738 
3739 	/*
3740 	 * cid concurrently allocated. Retry while forcing following
3741 	 * allocations to use the cid_lock to ensure forward progress.
3742 	 */
3743 	WRITE_ONCE(use_cid_lock, 1);
3744 	/*
3745 	 * Set use_cid_lock before allocation. Only care about program order
3746 	 * because this is only required for forward progress.
3747 	 */
3748 	barrier();
3749 	/*
3750 	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3751 	 * all newcoming allocations observe the use_cid_lock flag set.
3752 	 */
3753 	do {
3754 		cid = __mm_cid_try_get(t, mm);
3755 		cpu_relax();
3756 	} while (cid < 0);
3757 	/*
3758 	 * Allocate before clearing use_cid_lock. Only care about
3759 	 * program order because this is for forward progress.
3760 	 */
3761 	barrier();
3762 	WRITE_ONCE(use_cid_lock, 0);
3763 unlock:
3764 	raw_spin_unlock(&cid_lock);
3765 end:
3766 	mm_cid_snapshot_time(rq, mm);
3767 
3768 	return cid;
3769 }
3770 
mm_cid_get(struct rq * rq,struct task_struct * t,struct mm_struct * mm)3771 static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3772 			     struct mm_struct *mm)
3773 {
3774 	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3775 	struct cpumask *cpumask;
3776 	int cid;
3777 
3778 	lockdep_assert_rq_held(rq);
3779 	cpumask = mm_cidmask(mm);
3780 	cid = __this_cpu_read(pcpu_cid->cid);
3781 	if (mm_cid_is_valid(cid)) {
3782 		mm_cid_snapshot_time(rq, mm);
3783 		return cid;
3784 	}
3785 	if (mm_cid_is_lazy_put(cid)) {
3786 		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3787 			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3788 	}
3789 	cid = __mm_cid_get(rq, t, mm);
3790 	__this_cpu_write(pcpu_cid->cid, cid);
3791 	__this_cpu_write(pcpu_cid->recent_cid, cid);
3792 
3793 	return cid;
3794 }
3795 
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3796 static inline void switch_mm_cid(struct rq *rq,
3797 				 struct task_struct *prev,
3798 				 struct task_struct *next)
3799 {
3800 	/*
3801 	 * Provide a memory barrier between rq->curr store and load of
3802 	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3803 	 *
3804 	 * Should be adapted if context_switch() is modified.
3805 	 */
3806 	if (!next->mm) {                                // to kernel
3807 		/*
3808 		 * user -> kernel transition does not guarantee a barrier, but
3809 		 * we can use the fact that it performs an atomic operation in
3810 		 * mmgrab().
3811 		 */
3812 		if (prev->mm)                           // from user
3813 			smp_mb__after_mmgrab();
3814 		/*
3815 		 * kernel -> kernel transition does not change rq->curr->mm
3816 		 * state. It stays NULL.
3817 		 */
3818 	} else {                                        // to user
3819 		/*
3820 		 * kernel -> user transition does not provide a barrier
3821 		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3822 		 * Provide it here.
3823 		 */
3824 		if (!prev->mm) {                        // from kernel
3825 			smp_mb();
3826 		} else {				// from user
3827 			/*
3828 			 * user->user transition relies on an implicit
3829 			 * memory barrier in switch_mm() when
3830 			 * current->mm changes. If the architecture
3831 			 * switch_mm() does not have an implicit memory
3832 			 * barrier, it is emitted here.  If current->mm
3833 			 * is unchanged, no barrier is needed.
3834 			 */
3835 			smp_mb__after_switch_mm();
3836 		}
3837 	}
3838 	if (prev->mm_cid_active) {
3839 		mm_cid_snapshot_time(rq, prev->mm);
3840 		mm_cid_put_lazy(prev);
3841 		prev->mm_cid = -1;
3842 	}
3843 	if (next->mm_cid_active)
3844 		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3845 }
3846 
3847 #else /* !CONFIG_SCHED_MM_CID: */
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3848 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3849 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3850 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3851 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3852 static inline void init_sched_mm_cid(struct task_struct *t) { }
3853 #endif /* !CONFIG_SCHED_MM_CID */
3854 
3855 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3856 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3857 #ifdef CONFIG_SMP
3858 static inline
move_queued_task_locked(struct rq * src_rq,struct rq * dst_rq,struct task_struct * task)3859 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3860 {
3861 	lockdep_assert_rq_held(src_rq);
3862 	lockdep_assert_rq_held(dst_rq);
3863 
3864 	deactivate_task(src_rq, task, 0);
3865 	set_task_cpu(task, dst_rq->cpu);
3866 	activate_task(dst_rq, task, 0);
3867 }
3868 
3869 static inline
task_is_pushable(struct rq * rq,struct task_struct * p,int cpu)3870 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3871 {
3872 	if (!task_on_cpu(rq, p) &&
3873 	    cpumask_test_cpu(cpu, &p->cpus_mask))
3874 		return true;
3875 
3876 	return false;
3877 }
3878 #endif
3879 
3880 #ifdef CONFIG_RT_MUTEXES
3881 
__rt_effective_prio(struct task_struct * pi_task,int prio)3882 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3883 {
3884 	if (pi_task)
3885 		prio = min(prio, pi_task->prio);
3886 
3887 	return prio;
3888 }
3889 
rt_effective_prio(struct task_struct * p,int prio)3890 static inline int rt_effective_prio(struct task_struct *p, int prio)
3891 {
3892 	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3893 
3894 	return __rt_effective_prio(pi_task, prio);
3895 }
3896 
3897 #else /* !CONFIG_RT_MUTEXES: */
3898 
rt_effective_prio(struct task_struct * p,int prio)3899 static inline int rt_effective_prio(struct task_struct *p, int prio)
3900 {
3901 	return prio;
3902 }
3903 
3904 #endif /* !CONFIG_RT_MUTEXES */
3905 
3906 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3907 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3908 extern const struct sched_class *__setscheduler_class(int policy, int prio);
3909 extern void set_load_weight(struct task_struct *p, bool update_load);
3910 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3911 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3912 
3913 extern void check_class_changing(struct rq *rq, struct task_struct *p,
3914 				 const struct sched_class *prev_class);
3915 extern void check_class_changed(struct rq *rq, struct task_struct *p,
3916 				const struct sched_class *prev_class,
3917 				int oldprio);
3918 
3919 #ifdef CONFIG_SMP
3920 extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3921 extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3922 #else
3923 
splice_balance_callbacks(struct rq * rq)3924 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
3925 {
3926 	return NULL;
3927 }
3928 
balance_callbacks(struct rq * rq,struct balance_callback * head)3929 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
3930 {
3931 }
3932 
3933 #endif
3934 
3935 #ifdef CONFIG_SCHED_CLASS_EXT
3936 /*
3937  * Used by SCX in the enable/disable paths to move tasks between sched_classes
3938  * and establish invariants.
3939  */
3940 struct sched_enq_and_set_ctx {
3941 	struct task_struct	*p;
3942 	int			queue_flags;
3943 	bool			queued;
3944 	bool			running;
3945 };
3946 
3947 void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3948 			    struct sched_enq_and_set_ctx *ctx);
3949 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
3950 
3951 #endif /* CONFIG_SCHED_CLASS_EXT */
3952 
3953 #include "ext.h"
3954 
3955 #endif /* _KERNEL_SCHED_SCHED_H */
3956