1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BlueZ - Bluetooth protocol stack for Linux
4 *
5 * Copyright (C) 2021 Intel Corporation
6 * Copyright 2023 NXP
7 */
8
9 #include <linux/property.h>
10
11 #include <net/bluetooth/bluetooth.h>
12 #include <net/bluetooth/hci_core.h>
13 #include <net/bluetooth/mgmt.h>
14
15 #include "hci_codec.h"
16 #include "hci_debugfs.h"
17 #include "smp.h"
18 #include "eir.h"
19 #include "msft.h"
20 #include "aosp.h"
21 #include "leds.h"
22
hci_cmd_sync_complete(struct hci_dev * hdev,u8 result,u16 opcode,struct sk_buff * skb)23 static void hci_cmd_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
24 struct sk_buff *skb)
25 {
26 bt_dev_dbg(hdev, "result 0x%2.2x", result);
27
28 if (hdev->req_status != HCI_REQ_PEND)
29 return;
30
31 hdev->req_result = result;
32 hdev->req_status = HCI_REQ_DONE;
33
34 /* Free the request command so it is not used as response */
35 kfree_skb(hdev->req_skb);
36 hdev->req_skb = NULL;
37
38 if (skb) {
39 struct sock *sk = hci_skb_sk(skb);
40
41 /* Drop sk reference if set */
42 if (sk)
43 sock_put(sk);
44
45 hdev->req_rsp = skb_get(skb);
46 }
47
48 wake_up_interruptible(&hdev->req_wait_q);
49 }
50
hci_cmd_sync_alloc(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,struct sock * sk)51 struct sk_buff *hci_cmd_sync_alloc(struct hci_dev *hdev, u16 opcode, u32 plen,
52 const void *param, struct sock *sk)
53 {
54 int len = HCI_COMMAND_HDR_SIZE + plen;
55 struct hci_command_hdr *hdr;
56 struct sk_buff *skb;
57
58 skb = bt_skb_alloc(len, GFP_ATOMIC);
59 if (!skb)
60 return NULL;
61
62 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
63 hdr->opcode = cpu_to_le16(opcode);
64 hdr->plen = plen;
65
66 if (plen)
67 skb_put_data(skb, param, plen);
68
69 bt_dev_dbg(hdev, "skb len %d", skb->len);
70
71 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
72 hci_skb_opcode(skb) = opcode;
73
74 /* Grab a reference if command needs to be associated with a sock (e.g.
75 * likely mgmt socket that initiated the command).
76 */
77 if (sk) {
78 hci_skb_sk(skb) = sk;
79 sock_hold(sk);
80 }
81
82 return skb;
83 }
84
hci_cmd_sync_add(struct hci_request * req,u16 opcode,u32 plen,const void * param,u8 event,struct sock * sk)85 static void hci_cmd_sync_add(struct hci_request *req, u16 opcode, u32 plen,
86 const void *param, u8 event, struct sock *sk)
87 {
88 struct hci_dev *hdev = req->hdev;
89 struct sk_buff *skb;
90
91 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
92
93 /* If an error occurred during request building, there is no point in
94 * queueing the HCI command. We can simply return.
95 */
96 if (req->err)
97 return;
98
99 skb = hci_cmd_sync_alloc(hdev, opcode, plen, param, sk);
100 if (!skb) {
101 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
102 opcode);
103 req->err = -ENOMEM;
104 return;
105 }
106
107 if (skb_queue_empty(&req->cmd_q))
108 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
109
110 hci_skb_event(skb) = event;
111
112 skb_queue_tail(&req->cmd_q, skb);
113 }
114
hci_req_sync_run(struct hci_request * req)115 static int hci_req_sync_run(struct hci_request *req)
116 {
117 struct hci_dev *hdev = req->hdev;
118 struct sk_buff *skb;
119 unsigned long flags;
120
121 bt_dev_dbg(hdev, "length %u", skb_queue_len(&req->cmd_q));
122
123 /* If an error occurred during request building, remove all HCI
124 * commands queued on the HCI request queue.
125 */
126 if (req->err) {
127 skb_queue_purge(&req->cmd_q);
128 return req->err;
129 }
130
131 /* Do not allow empty requests */
132 if (skb_queue_empty(&req->cmd_q))
133 return -ENODATA;
134
135 skb = skb_peek_tail(&req->cmd_q);
136 bt_cb(skb)->hci.req_complete_skb = hci_cmd_sync_complete;
137 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
138
139 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
140 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
141 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
142
143 queue_work(hdev->workqueue, &hdev->cmd_work);
144
145 return 0;
146 }
147
hci_request_init(struct hci_request * req,struct hci_dev * hdev)148 static void hci_request_init(struct hci_request *req, struct hci_dev *hdev)
149 {
150 skb_queue_head_init(&req->cmd_q);
151 req->hdev = hdev;
152 req->err = 0;
153 }
154
155 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync_sk(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout,struct sock * sk)156 struct sk_buff *__hci_cmd_sync_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
157 const void *param, u8 event, u32 timeout,
158 struct sock *sk)
159 {
160 struct hci_request req;
161 struct sk_buff *skb;
162 int err = 0;
163
164 bt_dev_dbg(hdev, "Opcode 0x%4.4x", opcode);
165
166 hci_request_init(&req, hdev);
167
168 hci_cmd_sync_add(&req, opcode, plen, param, event, sk);
169
170 hdev->req_status = HCI_REQ_PEND;
171
172 err = hci_req_sync_run(&req);
173 if (err < 0)
174 return ERR_PTR(err);
175
176 err = wait_event_interruptible_timeout(hdev->req_wait_q,
177 hdev->req_status != HCI_REQ_PEND,
178 timeout);
179
180 if (err == -ERESTARTSYS)
181 return ERR_PTR(-EINTR);
182
183 switch (hdev->req_status) {
184 case HCI_REQ_DONE:
185 err = -bt_to_errno(hdev->req_result);
186 break;
187
188 case HCI_REQ_CANCELED:
189 err = -hdev->req_result;
190 break;
191
192 default:
193 err = -ETIMEDOUT;
194 break;
195 }
196
197 hdev->req_status = 0;
198 hdev->req_result = 0;
199 skb = hdev->req_rsp;
200 hdev->req_rsp = NULL;
201
202 bt_dev_dbg(hdev, "end: err %d", err);
203
204 if (err < 0) {
205 kfree_skb(skb);
206 return ERR_PTR(err);
207 }
208
209 /* If command return a status event skb will be set to NULL as there are
210 * no parameters.
211 */
212 if (!skb)
213 return ERR_PTR(-ENODATA);
214
215 return skb;
216 }
217 EXPORT_SYMBOL(__hci_cmd_sync_sk);
218
219 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)220 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
221 const void *param, u32 timeout)
222 {
223 return __hci_cmd_sync_sk(hdev, opcode, plen, param, 0, timeout, NULL);
224 }
225 EXPORT_SYMBOL(__hci_cmd_sync);
226
227 /* Send HCI command and wait for command complete event */
hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)228 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
229 const void *param, u32 timeout)
230 {
231 struct sk_buff *skb;
232
233 if (!test_bit(HCI_UP, &hdev->flags))
234 return ERR_PTR(-ENETDOWN);
235
236 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
237
238 hci_req_sync_lock(hdev);
239 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
240 hci_req_sync_unlock(hdev);
241
242 return skb;
243 }
244 EXPORT_SYMBOL(hci_cmd_sync);
245
246 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync_ev(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout)247 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
248 const void *param, u8 event, u32 timeout)
249 {
250 return __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout,
251 NULL);
252 }
253 EXPORT_SYMBOL(__hci_cmd_sync_ev);
254
255 /* This function requires the caller holds hdev->req_lock. */
__hci_cmd_sync_status_sk(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout,struct sock * sk)256 int __hci_cmd_sync_status_sk(struct hci_dev *hdev, u16 opcode, u32 plen,
257 const void *param, u8 event, u32 timeout,
258 struct sock *sk)
259 {
260 struct sk_buff *skb;
261 u8 status;
262
263 skb = __hci_cmd_sync_sk(hdev, opcode, plen, param, event, timeout, sk);
264
265 /* If command return a status event, skb will be set to -ENODATA */
266 if (skb == ERR_PTR(-ENODATA))
267 return 0;
268
269 if (IS_ERR(skb)) {
270 if (!event)
271 bt_dev_err(hdev, "Opcode 0x%4.4x failed: %ld", opcode,
272 PTR_ERR(skb));
273 return PTR_ERR(skb);
274 }
275
276 status = skb->data[0];
277
278 kfree_skb(skb);
279
280 return status;
281 }
282 EXPORT_SYMBOL(__hci_cmd_sync_status_sk);
283
__hci_cmd_sync_status(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)284 int __hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
285 const void *param, u32 timeout)
286 {
287 return __hci_cmd_sync_status_sk(hdev, opcode, plen, param, 0, timeout,
288 NULL);
289 }
290 EXPORT_SYMBOL(__hci_cmd_sync_status);
291
hci_cmd_sync_status(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)292 int hci_cmd_sync_status(struct hci_dev *hdev, u16 opcode, u32 plen,
293 const void *param, u32 timeout)
294 {
295 int err;
296
297 hci_req_sync_lock(hdev);
298 err = __hci_cmd_sync_status(hdev, opcode, plen, param, timeout);
299 hci_req_sync_unlock(hdev);
300
301 return err;
302 }
303 EXPORT_SYMBOL(hci_cmd_sync_status);
304
hci_cmd_sync_work(struct work_struct * work)305 static void hci_cmd_sync_work(struct work_struct *work)
306 {
307 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_work);
308
309 bt_dev_dbg(hdev, "");
310
311 /* Dequeue all entries and run them */
312 while (1) {
313 struct hci_cmd_sync_work_entry *entry;
314
315 mutex_lock(&hdev->cmd_sync_work_lock);
316 entry = list_first_entry_or_null(&hdev->cmd_sync_work_list,
317 struct hci_cmd_sync_work_entry,
318 list);
319 if (entry)
320 list_del(&entry->list);
321 mutex_unlock(&hdev->cmd_sync_work_lock);
322
323 if (!entry)
324 break;
325
326 bt_dev_dbg(hdev, "entry %p", entry);
327
328 if (entry->func) {
329 int err;
330
331 hci_req_sync_lock(hdev);
332 err = entry->func(hdev, entry->data);
333 if (entry->destroy)
334 entry->destroy(hdev, entry->data, err);
335 hci_req_sync_unlock(hdev);
336 }
337
338 kfree(entry);
339 }
340 }
341
hci_cmd_sync_cancel_work(struct work_struct * work)342 static void hci_cmd_sync_cancel_work(struct work_struct *work)
343 {
344 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_sync_cancel_work);
345
346 cancel_delayed_work_sync(&hdev->cmd_timer);
347 cancel_delayed_work_sync(&hdev->ncmd_timer);
348 atomic_set(&hdev->cmd_cnt, 1);
349
350 wake_up_interruptible(&hdev->req_wait_q);
351 }
352
353 static int hci_scan_disable_sync(struct hci_dev *hdev);
scan_disable_sync(struct hci_dev * hdev,void * data)354 static int scan_disable_sync(struct hci_dev *hdev, void *data)
355 {
356 return hci_scan_disable_sync(hdev);
357 }
358
interleaved_inquiry_sync(struct hci_dev * hdev,void * data)359 static int interleaved_inquiry_sync(struct hci_dev *hdev, void *data)
360 {
361 return hci_inquiry_sync(hdev, DISCOV_INTERLEAVED_INQUIRY_LEN, 0);
362 }
363
le_scan_disable(struct work_struct * work)364 static void le_scan_disable(struct work_struct *work)
365 {
366 struct hci_dev *hdev = container_of(work, struct hci_dev,
367 le_scan_disable.work);
368 int status;
369
370 bt_dev_dbg(hdev, "");
371 hci_dev_lock(hdev);
372
373 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
374 goto _return;
375
376 status = hci_cmd_sync_queue(hdev, scan_disable_sync, NULL, NULL);
377 if (status) {
378 bt_dev_err(hdev, "failed to disable LE scan: %d", status);
379 goto _return;
380 }
381
382 /* If we were running LE only scan, change discovery state. If
383 * we were running both LE and BR/EDR inquiry simultaneously,
384 * and BR/EDR inquiry is already finished, stop discovery,
385 * otherwise BR/EDR inquiry will stop discovery when finished.
386 * If we will resolve remote device name, do not change
387 * discovery state.
388 */
389
390 if (hdev->discovery.type == DISCOV_TYPE_LE)
391 goto discov_stopped;
392
393 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
394 goto _return;
395
396 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
397 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
398 hdev->discovery.state != DISCOVERY_RESOLVING)
399 goto discov_stopped;
400
401 goto _return;
402 }
403
404 status = hci_cmd_sync_queue(hdev, interleaved_inquiry_sync, NULL, NULL);
405 if (status) {
406 bt_dev_err(hdev, "inquiry failed: status %d", status);
407 goto discov_stopped;
408 }
409
410 goto _return;
411
412 discov_stopped:
413 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
414
415 _return:
416 hci_dev_unlock(hdev);
417 }
418
419 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
420 u8 filter_dup);
421
reenable_adv_sync(struct hci_dev * hdev,void * data)422 static int reenable_adv_sync(struct hci_dev *hdev, void *data)
423 {
424 bt_dev_dbg(hdev, "");
425
426 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
427 list_empty(&hdev->adv_instances))
428 return 0;
429
430 if (hdev->cur_adv_instance) {
431 return hci_schedule_adv_instance_sync(hdev,
432 hdev->cur_adv_instance,
433 true);
434 } else {
435 if (ext_adv_capable(hdev)) {
436 hci_start_ext_adv_sync(hdev, 0x00);
437 } else {
438 hci_update_adv_data_sync(hdev, 0x00);
439 hci_update_scan_rsp_data_sync(hdev, 0x00);
440 hci_enable_advertising_sync(hdev);
441 }
442 }
443
444 return 0;
445 }
446
reenable_adv(struct work_struct * work)447 static void reenable_adv(struct work_struct *work)
448 {
449 struct hci_dev *hdev = container_of(work, struct hci_dev,
450 reenable_adv_work);
451 int status;
452
453 bt_dev_dbg(hdev, "");
454
455 hci_dev_lock(hdev);
456
457 status = hci_cmd_sync_queue(hdev, reenable_adv_sync, NULL, NULL);
458 if (status)
459 bt_dev_err(hdev, "failed to reenable ADV: %d", status);
460
461 hci_dev_unlock(hdev);
462 }
463
cancel_adv_timeout(struct hci_dev * hdev)464 static void cancel_adv_timeout(struct hci_dev *hdev)
465 {
466 if (hdev->adv_instance_timeout) {
467 hdev->adv_instance_timeout = 0;
468 cancel_delayed_work(&hdev->adv_instance_expire);
469 }
470 }
471
472 /* For a single instance:
473 * - force == true: The instance will be removed even when its remaining
474 * lifetime is not zero.
475 * - force == false: the instance will be deactivated but kept stored unless
476 * the remaining lifetime is zero.
477 *
478 * For instance == 0x00:
479 * - force == true: All instances will be removed regardless of their timeout
480 * setting.
481 * - force == false: Only instances that have a timeout will be removed.
482 */
hci_clear_adv_instance_sync(struct hci_dev * hdev,struct sock * sk,u8 instance,bool force)483 int hci_clear_adv_instance_sync(struct hci_dev *hdev, struct sock *sk,
484 u8 instance, bool force)
485 {
486 struct adv_info *adv_instance, *n, *next_instance = NULL;
487 int err;
488 u8 rem_inst;
489
490 /* Cancel any timeout concerning the removed instance(s). */
491 if (!instance || hdev->cur_adv_instance == instance)
492 cancel_adv_timeout(hdev);
493
494 /* Get the next instance to advertise BEFORE we remove
495 * the current one. This can be the same instance again
496 * if there is only one instance.
497 */
498 if (instance && hdev->cur_adv_instance == instance)
499 next_instance = hci_get_next_instance(hdev, instance);
500
501 if (instance == 0x00) {
502 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
503 list) {
504 if (!(force || adv_instance->timeout))
505 continue;
506
507 rem_inst = adv_instance->instance;
508 err = hci_remove_adv_instance(hdev, rem_inst);
509 if (!err)
510 mgmt_advertising_removed(sk, hdev, rem_inst);
511 }
512 } else {
513 adv_instance = hci_find_adv_instance(hdev, instance);
514
515 if (force || (adv_instance && adv_instance->timeout &&
516 !adv_instance->remaining_time)) {
517 /* Don't advertise a removed instance. */
518 if (next_instance &&
519 next_instance->instance == instance)
520 next_instance = NULL;
521
522 err = hci_remove_adv_instance(hdev, instance);
523 if (!err)
524 mgmt_advertising_removed(sk, hdev, instance);
525 }
526 }
527
528 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
529 return 0;
530
531 if (next_instance && !ext_adv_capable(hdev))
532 return hci_schedule_adv_instance_sync(hdev,
533 next_instance->instance,
534 false);
535
536 return 0;
537 }
538
adv_timeout_expire_sync(struct hci_dev * hdev,void * data)539 static int adv_timeout_expire_sync(struct hci_dev *hdev, void *data)
540 {
541 u8 instance = *(u8 *)data;
542
543 kfree(data);
544
545 hci_clear_adv_instance_sync(hdev, NULL, instance, false);
546
547 if (list_empty(&hdev->adv_instances))
548 return hci_disable_advertising_sync(hdev);
549
550 return 0;
551 }
552
adv_timeout_expire(struct work_struct * work)553 static void adv_timeout_expire(struct work_struct *work)
554 {
555 u8 *inst_ptr;
556 struct hci_dev *hdev = container_of(work, struct hci_dev,
557 adv_instance_expire.work);
558
559 bt_dev_dbg(hdev, "");
560
561 hci_dev_lock(hdev);
562
563 hdev->adv_instance_timeout = 0;
564
565 if (hdev->cur_adv_instance == 0x00)
566 goto unlock;
567
568 inst_ptr = kmalloc(1, GFP_KERNEL);
569 if (!inst_ptr)
570 goto unlock;
571
572 *inst_ptr = hdev->cur_adv_instance;
573 hci_cmd_sync_queue(hdev, adv_timeout_expire_sync, inst_ptr, NULL);
574
575 unlock:
576 hci_dev_unlock(hdev);
577 }
578
is_interleave_scanning(struct hci_dev * hdev)579 static bool is_interleave_scanning(struct hci_dev *hdev)
580 {
581 return hdev->interleave_scan_state != INTERLEAVE_SCAN_NONE;
582 }
583
584 static int hci_passive_scan_sync(struct hci_dev *hdev);
585
interleave_scan_work(struct work_struct * work)586 static void interleave_scan_work(struct work_struct *work)
587 {
588 struct hci_dev *hdev = container_of(work, struct hci_dev,
589 interleave_scan.work);
590 unsigned long timeout;
591
592 if (hdev->interleave_scan_state == INTERLEAVE_SCAN_ALLOWLIST) {
593 timeout = msecs_to_jiffies(hdev->advmon_allowlist_duration);
594 } else if (hdev->interleave_scan_state == INTERLEAVE_SCAN_NO_FILTER) {
595 timeout = msecs_to_jiffies(hdev->advmon_no_filter_duration);
596 } else {
597 bt_dev_err(hdev, "unexpected error");
598 return;
599 }
600
601 hci_passive_scan_sync(hdev);
602
603 hci_dev_lock(hdev);
604
605 switch (hdev->interleave_scan_state) {
606 case INTERLEAVE_SCAN_ALLOWLIST:
607 bt_dev_dbg(hdev, "next state: allowlist");
608 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
609 break;
610 case INTERLEAVE_SCAN_NO_FILTER:
611 bt_dev_dbg(hdev, "next state: no filter");
612 hdev->interleave_scan_state = INTERLEAVE_SCAN_ALLOWLIST;
613 break;
614 case INTERLEAVE_SCAN_NONE:
615 bt_dev_err(hdev, "unexpected error");
616 }
617
618 hci_dev_unlock(hdev);
619
620 /* Don't continue interleaving if it was canceled */
621 if (is_interleave_scanning(hdev))
622 queue_delayed_work(hdev->req_workqueue,
623 &hdev->interleave_scan, timeout);
624 }
625
hci_cmd_sync_init(struct hci_dev * hdev)626 void hci_cmd_sync_init(struct hci_dev *hdev)
627 {
628 INIT_WORK(&hdev->cmd_sync_work, hci_cmd_sync_work);
629 INIT_LIST_HEAD(&hdev->cmd_sync_work_list);
630 mutex_init(&hdev->cmd_sync_work_lock);
631 mutex_init(&hdev->unregister_lock);
632
633 INIT_WORK(&hdev->cmd_sync_cancel_work, hci_cmd_sync_cancel_work);
634 INIT_WORK(&hdev->reenable_adv_work, reenable_adv);
635 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable);
636 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
637 INIT_DELAYED_WORK(&hdev->interleave_scan, interleave_scan_work);
638 }
639
_hci_cmd_sync_cancel_entry(struct hci_dev * hdev,struct hci_cmd_sync_work_entry * entry,int err)640 static void _hci_cmd_sync_cancel_entry(struct hci_dev *hdev,
641 struct hci_cmd_sync_work_entry *entry,
642 int err)
643 {
644 if (entry->destroy)
645 entry->destroy(hdev, entry->data, err);
646
647 list_del(&entry->list);
648 kfree(entry);
649 }
650
hci_cmd_sync_clear(struct hci_dev * hdev)651 void hci_cmd_sync_clear(struct hci_dev *hdev)
652 {
653 struct hci_cmd_sync_work_entry *entry, *tmp;
654
655 cancel_work_sync(&hdev->cmd_sync_work);
656 cancel_work_sync(&hdev->reenable_adv_work);
657
658 mutex_lock(&hdev->cmd_sync_work_lock);
659 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list)
660 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
661 mutex_unlock(&hdev->cmd_sync_work_lock);
662 }
663
hci_cmd_sync_cancel(struct hci_dev * hdev,int err)664 void hci_cmd_sync_cancel(struct hci_dev *hdev, int err)
665 {
666 bt_dev_dbg(hdev, "err 0x%2.2x", err);
667
668 if (hdev->req_status == HCI_REQ_PEND) {
669 hdev->req_result = err;
670 hdev->req_status = HCI_REQ_CANCELED;
671
672 queue_work(hdev->workqueue, &hdev->cmd_sync_cancel_work);
673 }
674 }
675 EXPORT_SYMBOL(hci_cmd_sync_cancel);
676
677 /* Cancel ongoing command request synchronously:
678 *
679 * - Set result and mark status to HCI_REQ_CANCELED
680 * - Wakeup command sync thread
681 */
hci_cmd_sync_cancel_sync(struct hci_dev * hdev,int err)682 void hci_cmd_sync_cancel_sync(struct hci_dev *hdev, int err)
683 {
684 bt_dev_dbg(hdev, "err 0x%2.2x", err);
685
686 if (hdev->req_status == HCI_REQ_PEND) {
687 /* req_result is __u32 so error must be positive to be properly
688 * propagated.
689 */
690 hdev->req_result = err < 0 ? -err : err;
691 hdev->req_status = HCI_REQ_CANCELED;
692
693 wake_up_interruptible(&hdev->req_wait_q);
694 }
695 }
696 EXPORT_SYMBOL(hci_cmd_sync_cancel_sync);
697
698 /* Submit HCI command to be run in as cmd_sync_work:
699 *
700 * - hdev must _not_ be unregistered
701 */
hci_cmd_sync_submit(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)702 int hci_cmd_sync_submit(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
703 void *data, hci_cmd_sync_work_destroy_t destroy)
704 {
705 struct hci_cmd_sync_work_entry *entry;
706 int err = 0;
707
708 mutex_lock(&hdev->unregister_lock);
709 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
710 err = -ENODEV;
711 goto unlock;
712 }
713
714 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
715 if (!entry) {
716 err = -ENOMEM;
717 goto unlock;
718 }
719 entry->func = func;
720 entry->data = data;
721 entry->destroy = destroy;
722
723 mutex_lock(&hdev->cmd_sync_work_lock);
724 list_add_tail(&entry->list, &hdev->cmd_sync_work_list);
725 mutex_unlock(&hdev->cmd_sync_work_lock);
726
727 queue_work(hdev->req_workqueue, &hdev->cmd_sync_work);
728
729 unlock:
730 mutex_unlock(&hdev->unregister_lock);
731 return err;
732 }
733 EXPORT_SYMBOL(hci_cmd_sync_submit);
734
735 /* Queue HCI command:
736 *
737 * - hdev must be running
738 */
hci_cmd_sync_queue(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)739 int hci_cmd_sync_queue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
740 void *data, hci_cmd_sync_work_destroy_t destroy)
741 {
742 /* Only queue command if hdev is running which means it had been opened
743 * and is either on init phase or is already up.
744 */
745 if (!test_bit(HCI_RUNNING, &hdev->flags))
746 return -ENETDOWN;
747
748 return hci_cmd_sync_submit(hdev, func, data, destroy);
749 }
750 EXPORT_SYMBOL(hci_cmd_sync_queue);
751
752 static struct hci_cmd_sync_work_entry *
_hci_cmd_sync_lookup_entry(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)753 _hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
754 void *data, hci_cmd_sync_work_destroy_t destroy)
755 {
756 struct hci_cmd_sync_work_entry *entry, *tmp;
757
758 list_for_each_entry_safe(entry, tmp, &hdev->cmd_sync_work_list, list) {
759 if (func && entry->func != func)
760 continue;
761
762 if (data && entry->data != data)
763 continue;
764
765 if (destroy && entry->destroy != destroy)
766 continue;
767
768 return entry;
769 }
770
771 return NULL;
772 }
773
774 /* Queue HCI command entry once:
775 *
776 * - Lookup if an entry already exist and only if it doesn't creates a new entry
777 * and queue it.
778 */
hci_cmd_sync_queue_once(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)779 int hci_cmd_sync_queue_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
780 void *data, hci_cmd_sync_work_destroy_t destroy)
781 {
782 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy))
783 return 0;
784
785 return hci_cmd_sync_queue(hdev, func, data, destroy);
786 }
787 EXPORT_SYMBOL(hci_cmd_sync_queue_once);
788
789 /* Run HCI command:
790 *
791 * - hdev must be running
792 * - if on cmd_sync_work then run immediately otherwise queue
793 */
hci_cmd_sync_run(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)794 int hci_cmd_sync_run(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
795 void *data, hci_cmd_sync_work_destroy_t destroy)
796 {
797 /* Only queue command if hdev is running which means it had been opened
798 * and is either on init phase or is already up.
799 */
800 if (!test_bit(HCI_RUNNING, &hdev->flags))
801 return -ENETDOWN;
802
803 /* If on cmd_sync_work then run immediately otherwise queue */
804 if (current_work() == &hdev->cmd_sync_work)
805 return func(hdev, data);
806
807 return hci_cmd_sync_submit(hdev, func, data, destroy);
808 }
809 EXPORT_SYMBOL(hci_cmd_sync_run);
810
811 /* Run HCI command entry once:
812 *
813 * - Lookup if an entry already exist and only if it doesn't creates a new entry
814 * and run it.
815 * - if on cmd_sync_work then run immediately otherwise queue
816 */
hci_cmd_sync_run_once(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)817 int hci_cmd_sync_run_once(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
818 void *data, hci_cmd_sync_work_destroy_t destroy)
819 {
820 if (hci_cmd_sync_lookup_entry(hdev, func, data, destroy))
821 return 0;
822
823 return hci_cmd_sync_run(hdev, func, data, destroy);
824 }
825 EXPORT_SYMBOL(hci_cmd_sync_run_once);
826
827 /* Lookup HCI command entry:
828 *
829 * - Return first entry that matches by function callback or data or
830 * destroy callback.
831 */
832 struct hci_cmd_sync_work_entry *
hci_cmd_sync_lookup_entry(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)833 hci_cmd_sync_lookup_entry(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
834 void *data, hci_cmd_sync_work_destroy_t destroy)
835 {
836 struct hci_cmd_sync_work_entry *entry;
837
838 mutex_lock(&hdev->cmd_sync_work_lock);
839 entry = _hci_cmd_sync_lookup_entry(hdev, func, data, destroy);
840 mutex_unlock(&hdev->cmd_sync_work_lock);
841
842 return entry;
843 }
844 EXPORT_SYMBOL(hci_cmd_sync_lookup_entry);
845
846 /* Cancel HCI command entry */
hci_cmd_sync_cancel_entry(struct hci_dev * hdev,struct hci_cmd_sync_work_entry * entry)847 void hci_cmd_sync_cancel_entry(struct hci_dev *hdev,
848 struct hci_cmd_sync_work_entry *entry)
849 {
850 mutex_lock(&hdev->cmd_sync_work_lock);
851 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
852 mutex_unlock(&hdev->cmd_sync_work_lock);
853 }
854 EXPORT_SYMBOL(hci_cmd_sync_cancel_entry);
855
856 /* Dequeue one HCI command entry:
857 *
858 * - Lookup and cancel first entry that matches.
859 */
hci_cmd_sync_dequeue_once(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)860 bool hci_cmd_sync_dequeue_once(struct hci_dev *hdev,
861 hci_cmd_sync_work_func_t func,
862 void *data, hci_cmd_sync_work_destroy_t destroy)
863 {
864 struct hci_cmd_sync_work_entry *entry;
865
866 entry = hci_cmd_sync_lookup_entry(hdev, func, data, destroy);
867 if (!entry)
868 return false;
869
870 hci_cmd_sync_cancel_entry(hdev, entry);
871
872 return true;
873 }
874 EXPORT_SYMBOL(hci_cmd_sync_dequeue_once);
875
876 /* Dequeue HCI command entry:
877 *
878 * - Lookup and cancel any entry that matches by function callback or data or
879 * destroy callback.
880 */
hci_cmd_sync_dequeue(struct hci_dev * hdev,hci_cmd_sync_work_func_t func,void * data,hci_cmd_sync_work_destroy_t destroy)881 bool hci_cmd_sync_dequeue(struct hci_dev *hdev, hci_cmd_sync_work_func_t func,
882 void *data, hci_cmd_sync_work_destroy_t destroy)
883 {
884 struct hci_cmd_sync_work_entry *entry;
885 bool ret = false;
886
887 mutex_lock(&hdev->cmd_sync_work_lock);
888 while ((entry = _hci_cmd_sync_lookup_entry(hdev, func, data,
889 destroy))) {
890 _hci_cmd_sync_cancel_entry(hdev, entry, -ECANCELED);
891 ret = true;
892 }
893 mutex_unlock(&hdev->cmd_sync_work_lock);
894
895 return ret;
896 }
897 EXPORT_SYMBOL(hci_cmd_sync_dequeue);
898
hci_update_eir_sync(struct hci_dev * hdev)899 int hci_update_eir_sync(struct hci_dev *hdev)
900 {
901 struct hci_cp_write_eir cp;
902
903 bt_dev_dbg(hdev, "");
904
905 if (!hdev_is_powered(hdev))
906 return 0;
907
908 if (!lmp_ext_inq_capable(hdev))
909 return 0;
910
911 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
912 return 0;
913
914 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
915 return 0;
916
917 memset(&cp, 0, sizeof(cp));
918
919 eir_create(hdev, cp.data);
920
921 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
922 return 0;
923
924 memcpy(hdev->eir, cp.data, sizeof(cp.data));
925
926 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
927 HCI_CMD_TIMEOUT);
928 }
929
get_service_classes(struct hci_dev * hdev)930 static u8 get_service_classes(struct hci_dev *hdev)
931 {
932 struct bt_uuid *uuid;
933 u8 val = 0;
934
935 list_for_each_entry(uuid, &hdev->uuids, list)
936 val |= uuid->svc_hint;
937
938 return val;
939 }
940
hci_update_class_sync(struct hci_dev * hdev)941 int hci_update_class_sync(struct hci_dev *hdev)
942 {
943 u8 cod[3];
944
945 bt_dev_dbg(hdev, "");
946
947 if (!hdev_is_powered(hdev))
948 return 0;
949
950 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
951 return 0;
952
953 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
954 return 0;
955
956 cod[0] = hdev->minor_class;
957 cod[1] = hdev->major_class;
958 cod[2] = get_service_classes(hdev);
959
960 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
961 cod[1] |= 0x20;
962
963 if (memcmp(cod, hdev->dev_class, 3) == 0)
964 return 0;
965
966 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CLASS_OF_DEV,
967 sizeof(cod), cod, HCI_CMD_TIMEOUT);
968 }
969
is_advertising_allowed(struct hci_dev * hdev,bool connectable)970 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
971 {
972 /* If there is no connection we are OK to advertise. */
973 if (hci_conn_num(hdev, LE_LINK) == 0)
974 return true;
975
976 /* Check le_states if there is any connection in peripheral role. */
977 if (hdev->conn_hash.le_num_peripheral > 0) {
978 /* Peripheral connection state and non connectable mode
979 * bit 20.
980 */
981 if (!connectable && !(hdev->le_states[2] & 0x10))
982 return false;
983
984 /* Peripheral connection state and connectable mode bit 38
985 * and scannable bit 21.
986 */
987 if (connectable && (!(hdev->le_states[4] & 0x40) ||
988 !(hdev->le_states[2] & 0x20)))
989 return false;
990 }
991
992 /* Check le_states if there is any connection in central role. */
993 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_peripheral) {
994 /* Central connection state and non connectable mode bit 18. */
995 if (!connectable && !(hdev->le_states[2] & 0x02))
996 return false;
997
998 /* Central connection state and connectable mode bit 35 and
999 * scannable 19.
1000 */
1001 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1002 !(hdev->le_states[2] & 0x08)))
1003 return false;
1004 }
1005
1006 return true;
1007 }
1008
adv_use_rpa(struct hci_dev * hdev,uint32_t flags)1009 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
1010 {
1011 /* If privacy is not enabled don't use RPA */
1012 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
1013 return false;
1014
1015 /* If basic privacy mode is enabled use RPA */
1016 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
1017 return true;
1018
1019 /* If limited privacy mode is enabled don't use RPA if we're
1020 * both discoverable and bondable.
1021 */
1022 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1023 hci_dev_test_flag(hdev, HCI_BONDABLE))
1024 return false;
1025
1026 /* We're neither bondable nor discoverable in the limited
1027 * privacy mode, therefore use RPA.
1028 */
1029 return true;
1030 }
1031
hci_set_random_addr_sync(struct hci_dev * hdev,bdaddr_t * rpa)1032 static int hci_set_random_addr_sync(struct hci_dev *hdev, bdaddr_t *rpa)
1033 {
1034 /* If we're advertising or initiating an LE connection we can't
1035 * go ahead and change the random address at this time. This is
1036 * because the eventual initiator address used for the
1037 * subsequently created connection will be undefined (some
1038 * controllers use the new address and others the one we had
1039 * when the operation started).
1040 *
1041 * In this kind of scenario skip the update and let the random
1042 * address be updated at the next cycle.
1043 */
1044 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1045 hci_lookup_le_connect(hdev)) {
1046 bt_dev_dbg(hdev, "Deferring random address update");
1047 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1048 return 0;
1049 }
1050
1051 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RANDOM_ADDR,
1052 6, rpa, HCI_CMD_TIMEOUT);
1053 }
1054
hci_update_random_address_sync(struct hci_dev * hdev,bool require_privacy,bool rpa,u8 * own_addr_type)1055 int hci_update_random_address_sync(struct hci_dev *hdev, bool require_privacy,
1056 bool rpa, u8 *own_addr_type)
1057 {
1058 int err;
1059
1060 /* If privacy is enabled use a resolvable private address. If
1061 * current RPA has expired or there is something else than
1062 * the current RPA in use, then generate a new one.
1063 */
1064 if (rpa) {
1065 /* If Controller supports LL Privacy use own address type is
1066 * 0x03
1067 */
1068 if (use_ll_privacy(hdev))
1069 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
1070 else
1071 *own_addr_type = ADDR_LE_DEV_RANDOM;
1072
1073 /* Check if RPA is valid */
1074 if (rpa_valid(hdev))
1075 return 0;
1076
1077 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1078 if (err < 0) {
1079 bt_dev_err(hdev, "failed to generate new RPA");
1080 return err;
1081 }
1082
1083 err = hci_set_random_addr_sync(hdev, &hdev->rpa);
1084 if (err)
1085 return err;
1086
1087 return 0;
1088 }
1089
1090 /* In case of required privacy without resolvable private address,
1091 * use an non-resolvable private address. This is useful for active
1092 * scanning and non-connectable advertising.
1093 */
1094 if (require_privacy) {
1095 bdaddr_t nrpa;
1096
1097 while (true) {
1098 /* The non-resolvable private address is generated
1099 * from random six bytes with the two most significant
1100 * bits cleared.
1101 */
1102 get_random_bytes(&nrpa, 6);
1103 nrpa.b[5] &= 0x3f;
1104
1105 /* The non-resolvable private address shall not be
1106 * equal to the public address.
1107 */
1108 if (bacmp(&hdev->bdaddr, &nrpa))
1109 break;
1110 }
1111
1112 *own_addr_type = ADDR_LE_DEV_RANDOM;
1113
1114 return hci_set_random_addr_sync(hdev, &nrpa);
1115 }
1116
1117 /* If forcing static address is in use or there is no public
1118 * address use the static address as random address (but skip
1119 * the HCI command if the current random address is already the
1120 * static one.
1121 *
1122 * In case BR/EDR has been disabled on a dual-mode controller
1123 * and a static address has been configured, then use that
1124 * address instead of the public BR/EDR address.
1125 */
1126 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1127 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1128 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1129 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1130 *own_addr_type = ADDR_LE_DEV_RANDOM;
1131 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1132 return hci_set_random_addr_sync(hdev,
1133 &hdev->static_addr);
1134 return 0;
1135 }
1136
1137 /* Neither privacy nor static address is being used so use a
1138 * public address.
1139 */
1140 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1141
1142 return 0;
1143 }
1144
hci_disable_ext_adv_instance_sync(struct hci_dev * hdev,u8 instance)1145 static int hci_disable_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1146 {
1147 struct hci_cp_le_set_ext_adv_enable *cp;
1148 struct hci_cp_ext_adv_set *set;
1149 u8 data[sizeof(*cp) + sizeof(*set) * 1];
1150 u8 size;
1151 struct adv_info *adv = NULL;
1152
1153 /* If request specifies an instance that doesn't exist, fail */
1154 if (instance > 0) {
1155 adv = hci_find_adv_instance(hdev, instance);
1156 if (!adv)
1157 return -EINVAL;
1158
1159 /* If not enabled there is nothing to do */
1160 if (!adv->enabled)
1161 return 0;
1162 }
1163
1164 memset(data, 0, sizeof(data));
1165
1166 cp = (void *)data;
1167 set = (void *)cp->data;
1168
1169 /* Instance 0x00 indicates all advertising instances will be disabled */
1170 cp->num_of_sets = !!instance;
1171 cp->enable = 0x00;
1172
1173 set->handle = adv ? adv->handle : instance;
1174
1175 size = sizeof(*cp) + sizeof(*set) * cp->num_of_sets;
1176
1177 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1178 size, data, HCI_CMD_TIMEOUT);
1179 }
1180
hci_set_adv_set_random_addr_sync(struct hci_dev * hdev,u8 instance,bdaddr_t * random_addr)1181 static int hci_set_adv_set_random_addr_sync(struct hci_dev *hdev, u8 instance,
1182 bdaddr_t *random_addr)
1183 {
1184 struct hci_cp_le_set_adv_set_rand_addr cp;
1185 int err;
1186
1187 if (!instance) {
1188 /* Instance 0x00 doesn't have an adv_info, instead it uses
1189 * hdev->random_addr to track its address so whenever it needs
1190 * to be updated this also set the random address since
1191 * hdev->random_addr is shared with scan state machine.
1192 */
1193 err = hci_set_random_addr_sync(hdev, random_addr);
1194 if (err)
1195 return err;
1196 }
1197
1198 memset(&cp, 0, sizeof(cp));
1199
1200 cp.handle = instance;
1201 bacpy(&cp.bdaddr, random_addr);
1202
1203 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1204 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1205 }
1206
hci_setup_ext_adv_instance_sync(struct hci_dev * hdev,u8 instance)1207 int hci_setup_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance)
1208 {
1209 struct hci_cp_le_set_ext_adv_params cp;
1210 bool connectable;
1211 u32 flags;
1212 bdaddr_t random_addr;
1213 u8 own_addr_type;
1214 int err;
1215 struct adv_info *adv;
1216 bool secondary_adv;
1217
1218 if (instance > 0) {
1219 adv = hci_find_adv_instance(hdev, instance);
1220 if (!adv)
1221 return -EINVAL;
1222 } else {
1223 adv = NULL;
1224 }
1225
1226 /* Updating parameters of an active instance will return a
1227 * Command Disallowed error, so we must first disable the
1228 * instance if it is active.
1229 */
1230 if (adv && !adv->pending) {
1231 err = hci_disable_ext_adv_instance_sync(hdev, instance);
1232 if (err)
1233 return err;
1234 }
1235
1236 flags = hci_adv_instance_flags(hdev, instance);
1237
1238 /* If the "connectable" instance flag was not set, then choose between
1239 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1240 */
1241 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1242 mgmt_get_connectable(hdev);
1243
1244 if (!is_advertising_allowed(hdev, connectable))
1245 return -EPERM;
1246
1247 /* Set require_privacy to true only when non-connectable
1248 * advertising is used. In that case it is fine to use a
1249 * non-resolvable private address.
1250 */
1251 err = hci_get_random_address(hdev, !connectable,
1252 adv_use_rpa(hdev, flags), adv,
1253 &own_addr_type, &random_addr);
1254 if (err < 0)
1255 return err;
1256
1257 memset(&cp, 0, sizeof(cp));
1258
1259 if (adv) {
1260 hci_cpu_to_le24(adv->min_interval, cp.min_interval);
1261 hci_cpu_to_le24(adv->max_interval, cp.max_interval);
1262 cp.tx_power = adv->tx_power;
1263 } else {
1264 hci_cpu_to_le24(hdev->le_adv_min_interval, cp.min_interval);
1265 hci_cpu_to_le24(hdev->le_adv_max_interval, cp.max_interval);
1266 cp.tx_power = HCI_ADV_TX_POWER_NO_PREFERENCE;
1267 }
1268
1269 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1270
1271 if (connectable) {
1272 if (secondary_adv)
1273 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1274 else
1275 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1276 } else if (hci_adv_instance_is_scannable(hdev, instance) ||
1277 (flags & MGMT_ADV_PARAM_SCAN_RSP)) {
1278 if (secondary_adv)
1279 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1280 else
1281 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1282 } else {
1283 if (secondary_adv)
1284 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1285 else
1286 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1287 }
1288
1289 /* If Own_Address_Type equals 0x02 or 0x03, the Peer_Address parameter
1290 * contains the peer’s Identity Address and the Peer_Address_Type
1291 * parameter contains the peer’s Identity Type (i.e., 0x00 or 0x01).
1292 * These parameters are used to locate the corresponding local IRK in
1293 * the resolving list; this IRK is used to generate their own address
1294 * used in the advertisement.
1295 */
1296 if (own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED)
1297 hci_copy_identity_address(hdev, &cp.peer_addr,
1298 &cp.peer_addr_type);
1299
1300 cp.own_addr_type = own_addr_type;
1301 cp.channel_map = hdev->le_adv_channel_map;
1302 cp.handle = adv ? adv->handle : instance;
1303
1304 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1305 cp.primary_phy = HCI_ADV_PHY_1M;
1306 cp.secondary_phy = HCI_ADV_PHY_2M;
1307 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1308 cp.primary_phy = HCI_ADV_PHY_CODED;
1309 cp.secondary_phy = HCI_ADV_PHY_CODED;
1310 } else {
1311 /* In all other cases use 1M */
1312 cp.primary_phy = HCI_ADV_PHY_1M;
1313 cp.secondary_phy = HCI_ADV_PHY_1M;
1314 }
1315
1316 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
1317 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1318 if (err)
1319 return err;
1320
1321 if ((own_addr_type == ADDR_LE_DEV_RANDOM ||
1322 own_addr_type == ADDR_LE_DEV_RANDOM_RESOLVED) &&
1323 bacmp(&random_addr, BDADDR_ANY)) {
1324 /* Check if random address need to be updated */
1325 if (adv) {
1326 if (!bacmp(&random_addr, &adv->random_addr))
1327 return 0;
1328 } else {
1329 if (!bacmp(&random_addr, &hdev->random_addr))
1330 return 0;
1331 }
1332
1333 return hci_set_adv_set_random_addr_sync(hdev, instance,
1334 &random_addr);
1335 }
1336
1337 return 0;
1338 }
1339
hci_set_ext_scan_rsp_data_sync(struct hci_dev * hdev,u8 instance)1340 static int hci_set_ext_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1341 {
1342 DEFINE_FLEX(struct hci_cp_le_set_ext_scan_rsp_data, pdu, data, length,
1343 HCI_MAX_EXT_AD_LENGTH);
1344 u8 len;
1345 struct adv_info *adv = NULL;
1346 int err;
1347
1348 if (instance) {
1349 adv = hci_find_adv_instance(hdev, instance);
1350 if (!adv || !adv->scan_rsp_changed)
1351 return 0;
1352 }
1353
1354 len = eir_create_scan_rsp(hdev, instance, pdu->data);
1355
1356 pdu->handle = adv ? adv->handle : instance;
1357 pdu->length = len;
1358 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
1359 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1360
1361 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA,
1362 struct_size(pdu, data, len), pdu,
1363 HCI_CMD_TIMEOUT);
1364 if (err)
1365 return err;
1366
1367 if (adv) {
1368 adv->scan_rsp_changed = false;
1369 } else {
1370 memcpy(hdev->scan_rsp_data, pdu->data, len);
1371 hdev->scan_rsp_data_len = len;
1372 }
1373
1374 return 0;
1375 }
1376
__hci_set_scan_rsp_data_sync(struct hci_dev * hdev,u8 instance)1377 static int __hci_set_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1378 {
1379 struct hci_cp_le_set_scan_rsp_data cp;
1380 u8 len;
1381
1382 memset(&cp, 0, sizeof(cp));
1383
1384 len = eir_create_scan_rsp(hdev, instance, cp.data);
1385
1386 if (hdev->scan_rsp_data_len == len &&
1387 !memcmp(cp.data, hdev->scan_rsp_data, len))
1388 return 0;
1389
1390 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1391 hdev->scan_rsp_data_len = len;
1392
1393 cp.length = len;
1394
1395 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_RSP_DATA,
1396 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1397 }
1398
hci_update_scan_rsp_data_sync(struct hci_dev * hdev,u8 instance)1399 int hci_update_scan_rsp_data_sync(struct hci_dev *hdev, u8 instance)
1400 {
1401 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1402 return 0;
1403
1404 if (ext_adv_capable(hdev))
1405 return hci_set_ext_scan_rsp_data_sync(hdev, instance);
1406
1407 return __hci_set_scan_rsp_data_sync(hdev, instance);
1408 }
1409
hci_enable_ext_advertising_sync(struct hci_dev * hdev,u8 instance)1410 int hci_enable_ext_advertising_sync(struct hci_dev *hdev, u8 instance)
1411 {
1412 struct hci_cp_le_set_ext_adv_enable *cp;
1413 struct hci_cp_ext_adv_set *set;
1414 u8 data[sizeof(*cp) + sizeof(*set) * 1];
1415 struct adv_info *adv;
1416
1417 if (instance > 0) {
1418 adv = hci_find_adv_instance(hdev, instance);
1419 if (!adv)
1420 return -EINVAL;
1421 /* If already enabled there is nothing to do */
1422 if (adv->enabled)
1423 return 0;
1424 } else {
1425 adv = NULL;
1426 }
1427
1428 cp = (void *)data;
1429 set = (void *)cp->data;
1430
1431 memset(cp, 0, sizeof(*cp));
1432
1433 cp->enable = 0x01;
1434 cp->num_of_sets = 0x01;
1435
1436 memset(set, 0, sizeof(*set));
1437
1438 set->handle = adv ? adv->handle : instance;
1439
1440 /* Set duration per instance since controller is responsible for
1441 * scheduling it.
1442 */
1443 if (adv && adv->timeout) {
1444 u16 duration = adv->timeout * MSEC_PER_SEC;
1445
1446 /* Time = N * 10 ms */
1447 set->duration = cpu_to_le16(duration / 10);
1448 }
1449
1450 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1451 sizeof(*cp) +
1452 sizeof(*set) * cp->num_of_sets,
1453 data, HCI_CMD_TIMEOUT);
1454 }
1455
hci_start_ext_adv_sync(struct hci_dev * hdev,u8 instance)1456 int hci_start_ext_adv_sync(struct hci_dev *hdev, u8 instance)
1457 {
1458 int err;
1459
1460 err = hci_setup_ext_adv_instance_sync(hdev, instance);
1461 if (err)
1462 return err;
1463
1464 err = hci_set_ext_scan_rsp_data_sync(hdev, instance);
1465 if (err)
1466 return err;
1467
1468 return hci_enable_ext_advertising_sync(hdev, instance);
1469 }
1470
hci_disable_per_advertising_sync(struct hci_dev * hdev,u8 instance)1471 int hci_disable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1472 {
1473 struct hci_cp_le_set_per_adv_enable cp;
1474 struct adv_info *adv = NULL;
1475
1476 /* If periodic advertising already disabled there is nothing to do. */
1477 adv = hci_find_adv_instance(hdev, instance);
1478 if (!adv || !adv->periodic || !adv->enabled)
1479 return 0;
1480
1481 memset(&cp, 0, sizeof(cp));
1482
1483 cp.enable = 0x00;
1484 cp.handle = instance;
1485
1486 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1487 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1488 }
1489
hci_set_per_adv_params_sync(struct hci_dev * hdev,u8 instance,u16 min_interval,u16 max_interval)1490 static int hci_set_per_adv_params_sync(struct hci_dev *hdev, u8 instance,
1491 u16 min_interval, u16 max_interval)
1492 {
1493 struct hci_cp_le_set_per_adv_params cp;
1494
1495 memset(&cp, 0, sizeof(cp));
1496
1497 if (!min_interval)
1498 min_interval = DISCOV_LE_PER_ADV_INT_MIN;
1499
1500 if (!max_interval)
1501 max_interval = DISCOV_LE_PER_ADV_INT_MAX;
1502
1503 cp.handle = instance;
1504 cp.min_interval = cpu_to_le16(min_interval);
1505 cp.max_interval = cpu_to_le16(max_interval);
1506 cp.periodic_properties = 0x0000;
1507
1508 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_PARAMS,
1509 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1510 }
1511
hci_set_per_adv_data_sync(struct hci_dev * hdev,u8 instance)1512 static int hci_set_per_adv_data_sync(struct hci_dev *hdev, u8 instance)
1513 {
1514 DEFINE_FLEX(struct hci_cp_le_set_per_adv_data, pdu, data, length,
1515 HCI_MAX_PER_AD_LENGTH);
1516 u8 len;
1517 struct adv_info *adv = NULL;
1518
1519 if (instance) {
1520 adv = hci_find_adv_instance(hdev, instance);
1521 if (!adv || !adv->periodic)
1522 return 0;
1523 }
1524
1525 len = eir_create_per_adv_data(hdev, instance, pdu->data);
1526
1527 pdu->length = len;
1528 pdu->handle = adv ? adv->handle : instance;
1529 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
1530
1531 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_DATA,
1532 struct_size(pdu, data, len), pdu,
1533 HCI_CMD_TIMEOUT);
1534 }
1535
hci_enable_per_advertising_sync(struct hci_dev * hdev,u8 instance)1536 static int hci_enable_per_advertising_sync(struct hci_dev *hdev, u8 instance)
1537 {
1538 struct hci_cp_le_set_per_adv_enable cp;
1539 struct adv_info *adv = NULL;
1540
1541 /* If periodic advertising already enabled there is nothing to do. */
1542 adv = hci_find_adv_instance(hdev, instance);
1543 if (adv && adv->periodic && adv->enabled)
1544 return 0;
1545
1546 memset(&cp, 0, sizeof(cp));
1547
1548 cp.enable = 0x01;
1549 cp.handle = instance;
1550
1551 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PER_ADV_ENABLE,
1552 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1553 }
1554
1555 /* Checks if periodic advertising data contains a Basic Announcement and if it
1556 * does generates a Broadcast ID and add Broadcast Announcement.
1557 */
hci_adv_bcast_annoucement(struct hci_dev * hdev,struct adv_info * adv)1558 static int hci_adv_bcast_annoucement(struct hci_dev *hdev, struct adv_info *adv)
1559 {
1560 u8 bid[3];
1561 u8 ad[4 + 3];
1562
1563 /* Skip if NULL adv as instance 0x00 is used for general purpose
1564 * advertising so it cannot used for the likes of Broadcast Announcement
1565 * as it can be overwritten at any point.
1566 */
1567 if (!adv)
1568 return 0;
1569
1570 /* Check if PA data doesn't contains a Basic Audio Announcement then
1571 * there is nothing to do.
1572 */
1573 if (!eir_get_service_data(adv->per_adv_data, adv->per_adv_data_len,
1574 0x1851, NULL))
1575 return 0;
1576
1577 /* Check if advertising data already has a Broadcast Announcement since
1578 * the process may want to control the Broadcast ID directly and in that
1579 * case the kernel shall no interfere.
1580 */
1581 if (eir_get_service_data(adv->adv_data, adv->adv_data_len, 0x1852,
1582 NULL))
1583 return 0;
1584
1585 /* Generate Broadcast ID */
1586 get_random_bytes(bid, sizeof(bid));
1587 eir_append_service_data(ad, 0, 0x1852, bid, sizeof(bid));
1588 hci_set_adv_instance_data(hdev, adv->instance, sizeof(ad), ad, 0, NULL);
1589
1590 return hci_update_adv_data_sync(hdev, adv->instance);
1591 }
1592
hci_start_per_adv_sync(struct hci_dev * hdev,u8 instance,u8 data_len,u8 * data,u32 flags,u16 min_interval,u16 max_interval,u16 sync_interval)1593 int hci_start_per_adv_sync(struct hci_dev *hdev, u8 instance, u8 data_len,
1594 u8 *data, u32 flags, u16 min_interval,
1595 u16 max_interval, u16 sync_interval)
1596 {
1597 struct adv_info *adv = NULL;
1598 int err;
1599 bool added = false;
1600
1601 hci_disable_per_advertising_sync(hdev, instance);
1602
1603 if (instance) {
1604 adv = hci_find_adv_instance(hdev, instance);
1605 /* Create an instance if that could not be found */
1606 if (!adv) {
1607 adv = hci_add_per_instance(hdev, instance, flags,
1608 data_len, data,
1609 sync_interval,
1610 sync_interval);
1611 if (IS_ERR(adv))
1612 return PTR_ERR(adv);
1613 adv->pending = false;
1614 added = true;
1615 }
1616 }
1617
1618 /* Start advertising */
1619 err = hci_start_ext_adv_sync(hdev, instance);
1620 if (err < 0)
1621 goto fail;
1622
1623 err = hci_adv_bcast_annoucement(hdev, adv);
1624 if (err < 0)
1625 goto fail;
1626
1627 err = hci_set_per_adv_params_sync(hdev, instance, min_interval,
1628 max_interval);
1629 if (err < 0)
1630 goto fail;
1631
1632 err = hci_set_per_adv_data_sync(hdev, instance);
1633 if (err < 0)
1634 goto fail;
1635
1636 err = hci_enable_per_advertising_sync(hdev, instance);
1637 if (err < 0)
1638 goto fail;
1639
1640 return 0;
1641
1642 fail:
1643 if (added)
1644 hci_remove_adv_instance(hdev, instance);
1645
1646 return err;
1647 }
1648
hci_start_adv_sync(struct hci_dev * hdev,u8 instance)1649 static int hci_start_adv_sync(struct hci_dev *hdev, u8 instance)
1650 {
1651 int err;
1652
1653 if (ext_adv_capable(hdev))
1654 return hci_start_ext_adv_sync(hdev, instance);
1655
1656 err = hci_update_adv_data_sync(hdev, instance);
1657 if (err)
1658 return err;
1659
1660 err = hci_update_scan_rsp_data_sync(hdev, instance);
1661 if (err)
1662 return err;
1663
1664 return hci_enable_advertising_sync(hdev);
1665 }
1666
hci_enable_advertising_sync(struct hci_dev * hdev)1667 int hci_enable_advertising_sync(struct hci_dev *hdev)
1668 {
1669 struct adv_info *adv_instance;
1670 struct hci_cp_le_set_adv_param cp;
1671 u8 own_addr_type, enable = 0x01;
1672 bool connectable;
1673 u16 adv_min_interval, adv_max_interval;
1674 u32 flags;
1675 u8 status;
1676
1677 if (ext_adv_capable(hdev))
1678 return hci_enable_ext_advertising_sync(hdev,
1679 hdev->cur_adv_instance);
1680
1681 flags = hci_adv_instance_flags(hdev, hdev->cur_adv_instance);
1682 adv_instance = hci_find_adv_instance(hdev, hdev->cur_adv_instance);
1683
1684 /* If the "connectable" instance flag was not set, then choose between
1685 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1686 */
1687 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1688 mgmt_get_connectable(hdev);
1689
1690 if (!is_advertising_allowed(hdev, connectable))
1691 return -EINVAL;
1692
1693 status = hci_disable_advertising_sync(hdev);
1694 if (status)
1695 return status;
1696
1697 /* Clear the HCI_LE_ADV bit temporarily so that the
1698 * hci_update_random_address knows that it's safe to go ahead
1699 * and write a new random address. The flag will be set back on
1700 * as soon as the SET_ADV_ENABLE HCI command completes.
1701 */
1702 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1703
1704 /* Set require_privacy to true only when non-connectable
1705 * advertising is used. In that case it is fine to use a
1706 * non-resolvable private address.
1707 */
1708 status = hci_update_random_address_sync(hdev, !connectable,
1709 adv_use_rpa(hdev, flags),
1710 &own_addr_type);
1711 if (status)
1712 return status;
1713
1714 memset(&cp, 0, sizeof(cp));
1715
1716 if (adv_instance) {
1717 adv_min_interval = adv_instance->min_interval;
1718 adv_max_interval = adv_instance->max_interval;
1719 } else {
1720 adv_min_interval = hdev->le_adv_min_interval;
1721 adv_max_interval = hdev->le_adv_max_interval;
1722 }
1723
1724 if (connectable) {
1725 cp.type = LE_ADV_IND;
1726 } else {
1727 if (hci_adv_instance_is_scannable(hdev, hdev->cur_adv_instance))
1728 cp.type = LE_ADV_SCAN_IND;
1729 else
1730 cp.type = LE_ADV_NONCONN_IND;
1731
1732 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE) ||
1733 hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
1734 adv_min_interval = DISCOV_LE_FAST_ADV_INT_MIN;
1735 adv_max_interval = DISCOV_LE_FAST_ADV_INT_MAX;
1736 }
1737 }
1738
1739 cp.min_interval = cpu_to_le16(adv_min_interval);
1740 cp.max_interval = cpu_to_le16(adv_max_interval);
1741 cp.own_address_type = own_addr_type;
1742 cp.channel_map = hdev->le_adv_channel_map;
1743
1744 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
1745 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1746 if (status)
1747 return status;
1748
1749 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
1750 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
1751 }
1752
enable_advertising_sync(struct hci_dev * hdev,void * data)1753 static int enable_advertising_sync(struct hci_dev *hdev, void *data)
1754 {
1755 return hci_enable_advertising_sync(hdev);
1756 }
1757
hci_enable_advertising(struct hci_dev * hdev)1758 int hci_enable_advertising(struct hci_dev *hdev)
1759 {
1760 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1761 list_empty(&hdev->adv_instances))
1762 return 0;
1763
1764 return hci_cmd_sync_queue(hdev, enable_advertising_sync, NULL, NULL);
1765 }
1766
hci_remove_ext_adv_instance_sync(struct hci_dev * hdev,u8 instance,struct sock * sk)1767 int hci_remove_ext_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1768 struct sock *sk)
1769 {
1770 int err;
1771
1772 if (!ext_adv_capable(hdev))
1773 return 0;
1774
1775 err = hci_disable_ext_adv_instance_sync(hdev, instance);
1776 if (err)
1777 return err;
1778
1779 /* If request specifies an instance that doesn't exist, fail */
1780 if (instance > 0 && !hci_find_adv_instance(hdev, instance))
1781 return -EINVAL;
1782
1783 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_REMOVE_ADV_SET,
1784 sizeof(instance), &instance, 0,
1785 HCI_CMD_TIMEOUT, sk);
1786 }
1787
remove_ext_adv_sync(struct hci_dev * hdev,void * data)1788 static int remove_ext_adv_sync(struct hci_dev *hdev, void *data)
1789 {
1790 struct adv_info *adv = data;
1791 u8 instance = 0;
1792
1793 if (adv)
1794 instance = adv->instance;
1795
1796 return hci_remove_ext_adv_instance_sync(hdev, instance, NULL);
1797 }
1798
hci_remove_ext_adv_instance(struct hci_dev * hdev,u8 instance)1799 int hci_remove_ext_adv_instance(struct hci_dev *hdev, u8 instance)
1800 {
1801 struct adv_info *adv = NULL;
1802
1803 if (instance) {
1804 adv = hci_find_adv_instance(hdev, instance);
1805 if (!adv)
1806 return -EINVAL;
1807 }
1808
1809 return hci_cmd_sync_queue(hdev, remove_ext_adv_sync, adv, NULL);
1810 }
1811
hci_le_terminate_big_sync(struct hci_dev * hdev,u8 handle,u8 reason)1812 int hci_le_terminate_big_sync(struct hci_dev *hdev, u8 handle, u8 reason)
1813 {
1814 struct hci_cp_le_term_big cp;
1815
1816 memset(&cp, 0, sizeof(cp));
1817 cp.handle = handle;
1818 cp.reason = reason;
1819
1820 return __hci_cmd_sync_status(hdev, HCI_OP_LE_TERM_BIG,
1821 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1822 }
1823
hci_set_ext_adv_data_sync(struct hci_dev * hdev,u8 instance)1824 static int hci_set_ext_adv_data_sync(struct hci_dev *hdev, u8 instance)
1825 {
1826 DEFINE_FLEX(struct hci_cp_le_set_ext_adv_data, pdu, data, length,
1827 HCI_MAX_EXT_AD_LENGTH);
1828 u8 len;
1829 struct adv_info *adv = NULL;
1830 int err;
1831
1832 if (instance) {
1833 adv = hci_find_adv_instance(hdev, instance);
1834 if (!adv || !adv->adv_data_changed)
1835 return 0;
1836 }
1837
1838 len = eir_create_adv_data(hdev, instance, pdu->data);
1839
1840 pdu->length = len;
1841 pdu->handle = adv ? adv->handle : instance;
1842 pdu->operation = LE_SET_ADV_DATA_OP_COMPLETE;
1843 pdu->frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1844
1845 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_DATA,
1846 struct_size(pdu, data, len), pdu,
1847 HCI_CMD_TIMEOUT);
1848 if (err)
1849 return err;
1850
1851 /* Update data if the command succeed */
1852 if (adv) {
1853 adv->adv_data_changed = false;
1854 } else {
1855 memcpy(hdev->adv_data, pdu->data, len);
1856 hdev->adv_data_len = len;
1857 }
1858
1859 return 0;
1860 }
1861
hci_set_adv_data_sync(struct hci_dev * hdev,u8 instance)1862 static int hci_set_adv_data_sync(struct hci_dev *hdev, u8 instance)
1863 {
1864 struct hci_cp_le_set_adv_data cp;
1865 u8 len;
1866
1867 memset(&cp, 0, sizeof(cp));
1868
1869 len = eir_create_adv_data(hdev, instance, cp.data);
1870
1871 /* There's nothing to do if the data hasn't changed */
1872 if (hdev->adv_data_len == len &&
1873 memcmp(cp.data, hdev->adv_data, len) == 0)
1874 return 0;
1875
1876 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1877 hdev->adv_data_len = len;
1878
1879 cp.length = len;
1880
1881 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_DATA,
1882 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
1883 }
1884
hci_update_adv_data_sync(struct hci_dev * hdev,u8 instance)1885 int hci_update_adv_data_sync(struct hci_dev *hdev, u8 instance)
1886 {
1887 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1888 return 0;
1889
1890 if (ext_adv_capable(hdev))
1891 return hci_set_ext_adv_data_sync(hdev, instance);
1892
1893 return hci_set_adv_data_sync(hdev, instance);
1894 }
1895
hci_schedule_adv_instance_sync(struct hci_dev * hdev,u8 instance,bool force)1896 int hci_schedule_adv_instance_sync(struct hci_dev *hdev, u8 instance,
1897 bool force)
1898 {
1899 struct adv_info *adv = NULL;
1900 u16 timeout;
1901
1902 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) && !ext_adv_capable(hdev))
1903 return -EPERM;
1904
1905 if (hdev->adv_instance_timeout)
1906 return -EBUSY;
1907
1908 adv = hci_find_adv_instance(hdev, instance);
1909 if (!adv)
1910 return -ENOENT;
1911
1912 /* A zero timeout means unlimited advertising. As long as there is
1913 * only one instance, duration should be ignored. We still set a timeout
1914 * in case further instances are being added later on.
1915 *
1916 * If the remaining lifetime of the instance is more than the duration
1917 * then the timeout corresponds to the duration, otherwise it will be
1918 * reduced to the remaining instance lifetime.
1919 */
1920 if (adv->timeout == 0 || adv->duration <= adv->remaining_time)
1921 timeout = adv->duration;
1922 else
1923 timeout = adv->remaining_time;
1924
1925 /* The remaining time is being reduced unless the instance is being
1926 * advertised without time limit.
1927 */
1928 if (adv->timeout)
1929 adv->remaining_time = adv->remaining_time - timeout;
1930
1931 /* Only use work for scheduling instances with legacy advertising */
1932 if (!ext_adv_capable(hdev)) {
1933 hdev->adv_instance_timeout = timeout;
1934 queue_delayed_work(hdev->req_workqueue,
1935 &hdev->adv_instance_expire,
1936 msecs_to_jiffies(timeout * 1000));
1937 }
1938
1939 /* If we're just re-scheduling the same instance again then do not
1940 * execute any HCI commands. This happens when a single instance is
1941 * being advertised.
1942 */
1943 if (!force && hdev->cur_adv_instance == instance &&
1944 hci_dev_test_flag(hdev, HCI_LE_ADV))
1945 return 0;
1946
1947 hdev->cur_adv_instance = instance;
1948
1949 return hci_start_adv_sync(hdev, instance);
1950 }
1951
hci_clear_adv_sets_sync(struct hci_dev * hdev,struct sock * sk)1952 static int hci_clear_adv_sets_sync(struct hci_dev *hdev, struct sock *sk)
1953 {
1954 int err;
1955
1956 if (!ext_adv_capable(hdev))
1957 return 0;
1958
1959 /* Disable instance 0x00 to disable all instances */
1960 err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
1961 if (err)
1962 return err;
1963
1964 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CLEAR_ADV_SETS,
1965 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
1966 }
1967
hci_clear_adv_sync(struct hci_dev * hdev,struct sock * sk,bool force)1968 static int hci_clear_adv_sync(struct hci_dev *hdev, struct sock *sk, bool force)
1969 {
1970 struct adv_info *adv, *n;
1971 int err = 0;
1972
1973 if (ext_adv_capable(hdev))
1974 /* Remove all existing sets */
1975 err = hci_clear_adv_sets_sync(hdev, sk);
1976 if (ext_adv_capable(hdev))
1977 return err;
1978
1979 /* This is safe as long as there is no command send while the lock is
1980 * held.
1981 */
1982 hci_dev_lock(hdev);
1983
1984 /* Cleanup non-ext instances */
1985 list_for_each_entry_safe(adv, n, &hdev->adv_instances, list) {
1986 u8 instance = adv->instance;
1987 int err;
1988
1989 if (!(force || adv->timeout))
1990 continue;
1991
1992 err = hci_remove_adv_instance(hdev, instance);
1993 if (!err)
1994 mgmt_advertising_removed(sk, hdev, instance);
1995 }
1996
1997 hci_dev_unlock(hdev);
1998
1999 return 0;
2000 }
2001
hci_remove_adv_sync(struct hci_dev * hdev,u8 instance,struct sock * sk)2002 static int hci_remove_adv_sync(struct hci_dev *hdev, u8 instance,
2003 struct sock *sk)
2004 {
2005 int err = 0;
2006
2007 /* If we use extended advertising, instance has to be removed first. */
2008 if (ext_adv_capable(hdev))
2009 err = hci_remove_ext_adv_instance_sync(hdev, instance, sk);
2010 if (ext_adv_capable(hdev))
2011 return err;
2012
2013 /* This is safe as long as there is no command send while the lock is
2014 * held.
2015 */
2016 hci_dev_lock(hdev);
2017
2018 err = hci_remove_adv_instance(hdev, instance);
2019 if (!err)
2020 mgmt_advertising_removed(sk, hdev, instance);
2021
2022 hci_dev_unlock(hdev);
2023
2024 return err;
2025 }
2026
2027 /* For a single instance:
2028 * - force == true: The instance will be removed even when its remaining
2029 * lifetime is not zero.
2030 * - force == false: the instance will be deactivated but kept stored unless
2031 * the remaining lifetime is zero.
2032 *
2033 * For instance == 0x00:
2034 * - force == true: All instances will be removed regardless of their timeout
2035 * setting.
2036 * - force == false: Only instances that have a timeout will be removed.
2037 */
hci_remove_advertising_sync(struct hci_dev * hdev,struct sock * sk,u8 instance,bool force)2038 int hci_remove_advertising_sync(struct hci_dev *hdev, struct sock *sk,
2039 u8 instance, bool force)
2040 {
2041 struct adv_info *next = NULL;
2042 int err;
2043
2044 /* Cancel any timeout concerning the removed instance(s). */
2045 if (!instance || hdev->cur_adv_instance == instance)
2046 cancel_adv_timeout(hdev);
2047
2048 /* Get the next instance to advertise BEFORE we remove
2049 * the current one. This can be the same instance again
2050 * if there is only one instance.
2051 */
2052 if (hdev->cur_adv_instance == instance)
2053 next = hci_get_next_instance(hdev, instance);
2054
2055 if (!instance) {
2056 err = hci_clear_adv_sync(hdev, sk, force);
2057 if (err)
2058 return err;
2059 } else {
2060 struct adv_info *adv = hci_find_adv_instance(hdev, instance);
2061
2062 if (force || (adv && adv->timeout && !adv->remaining_time)) {
2063 /* Don't advertise a removed instance. */
2064 if (next && next->instance == instance)
2065 next = NULL;
2066
2067 err = hci_remove_adv_sync(hdev, instance, sk);
2068 if (err)
2069 return err;
2070 }
2071 }
2072
2073 if (!hdev_is_powered(hdev) || hci_dev_test_flag(hdev, HCI_ADVERTISING))
2074 return 0;
2075
2076 if (next && !ext_adv_capable(hdev))
2077 hci_schedule_adv_instance_sync(hdev, next->instance, false);
2078
2079 return 0;
2080 }
2081
hci_read_rssi_sync(struct hci_dev * hdev,__le16 handle)2082 int hci_read_rssi_sync(struct hci_dev *hdev, __le16 handle)
2083 {
2084 struct hci_cp_read_rssi cp;
2085
2086 cp.handle = handle;
2087 return __hci_cmd_sync_status(hdev, HCI_OP_READ_RSSI,
2088 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2089 }
2090
hci_read_clock_sync(struct hci_dev * hdev,struct hci_cp_read_clock * cp)2091 int hci_read_clock_sync(struct hci_dev *hdev, struct hci_cp_read_clock *cp)
2092 {
2093 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLOCK,
2094 sizeof(*cp), cp, HCI_CMD_TIMEOUT);
2095 }
2096
hci_read_tx_power_sync(struct hci_dev * hdev,__le16 handle,u8 type)2097 int hci_read_tx_power_sync(struct hci_dev *hdev, __le16 handle, u8 type)
2098 {
2099 struct hci_cp_read_tx_power cp;
2100
2101 cp.handle = handle;
2102 cp.type = type;
2103 return __hci_cmd_sync_status(hdev, HCI_OP_READ_TX_POWER,
2104 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2105 }
2106
hci_disable_advertising_sync(struct hci_dev * hdev)2107 int hci_disable_advertising_sync(struct hci_dev *hdev)
2108 {
2109 u8 enable = 0x00;
2110 int err = 0;
2111
2112 /* If controller is not advertising we are done. */
2113 if (!hci_dev_test_flag(hdev, HCI_LE_ADV))
2114 return 0;
2115
2116 if (ext_adv_capable(hdev))
2117 err = hci_disable_ext_adv_instance_sync(hdev, 0x00);
2118 if (ext_adv_capable(hdev))
2119 return err;
2120
2121 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
2122 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
2123 }
2124
hci_le_set_ext_scan_enable_sync(struct hci_dev * hdev,u8 val,u8 filter_dup)2125 static int hci_le_set_ext_scan_enable_sync(struct hci_dev *hdev, u8 val,
2126 u8 filter_dup)
2127 {
2128 struct hci_cp_le_set_ext_scan_enable cp;
2129
2130 memset(&cp, 0, sizeof(cp));
2131 cp.enable = val;
2132
2133 if (hci_dev_test_flag(hdev, HCI_MESH))
2134 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2135 else
2136 cp.filter_dup = filter_dup;
2137
2138 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2139 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2140 }
2141
hci_le_set_scan_enable_sync(struct hci_dev * hdev,u8 val,u8 filter_dup)2142 static int hci_le_set_scan_enable_sync(struct hci_dev *hdev, u8 val,
2143 u8 filter_dup)
2144 {
2145 struct hci_cp_le_set_scan_enable cp;
2146
2147 if (use_ext_scan(hdev))
2148 return hci_le_set_ext_scan_enable_sync(hdev, val, filter_dup);
2149
2150 memset(&cp, 0, sizeof(cp));
2151 cp.enable = val;
2152
2153 if (val && hci_dev_test_flag(hdev, HCI_MESH))
2154 cp.filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
2155 else
2156 cp.filter_dup = filter_dup;
2157
2158 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_ENABLE,
2159 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2160 }
2161
hci_le_set_addr_resolution_enable_sync(struct hci_dev * hdev,u8 val)2162 static int hci_le_set_addr_resolution_enable_sync(struct hci_dev *hdev, u8 val)
2163 {
2164 if (!use_ll_privacy(hdev))
2165 return 0;
2166
2167 /* If controller is not/already resolving we are done. */
2168 if (val == hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2169 return 0;
2170
2171 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADDR_RESOLV_ENABLE,
2172 sizeof(val), &val, HCI_CMD_TIMEOUT);
2173 }
2174
hci_scan_disable_sync(struct hci_dev * hdev)2175 static int hci_scan_disable_sync(struct hci_dev *hdev)
2176 {
2177 int err;
2178
2179 /* If controller is not scanning we are done. */
2180 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2181 return 0;
2182
2183 if (hdev->scanning_paused) {
2184 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2185 return 0;
2186 }
2187
2188 err = hci_le_set_scan_enable_sync(hdev, LE_SCAN_DISABLE, 0x00);
2189 if (err) {
2190 bt_dev_err(hdev, "Unable to disable scanning: %d", err);
2191 return err;
2192 }
2193
2194 return err;
2195 }
2196
scan_use_rpa(struct hci_dev * hdev)2197 static bool scan_use_rpa(struct hci_dev *hdev)
2198 {
2199 return hci_dev_test_flag(hdev, HCI_PRIVACY);
2200 }
2201
hci_start_interleave_scan(struct hci_dev * hdev)2202 static void hci_start_interleave_scan(struct hci_dev *hdev)
2203 {
2204 hdev->interleave_scan_state = INTERLEAVE_SCAN_NO_FILTER;
2205 queue_delayed_work(hdev->req_workqueue,
2206 &hdev->interleave_scan, 0);
2207 }
2208
cancel_interleave_scan(struct hci_dev * hdev)2209 static void cancel_interleave_scan(struct hci_dev *hdev)
2210 {
2211 bt_dev_dbg(hdev, "cancelling interleave scan");
2212
2213 cancel_delayed_work_sync(&hdev->interleave_scan);
2214
2215 hdev->interleave_scan_state = INTERLEAVE_SCAN_NONE;
2216 }
2217
2218 /* Return true if interleave_scan wasn't started until exiting this function,
2219 * otherwise, return false
2220 */
hci_update_interleaved_scan_sync(struct hci_dev * hdev)2221 static bool hci_update_interleaved_scan_sync(struct hci_dev *hdev)
2222 {
2223 /* Do interleaved scan only if all of the following are true:
2224 * - There is at least one ADV monitor
2225 * - At least one pending LE connection or one device to be scanned for
2226 * - Monitor offloading is not supported
2227 * If so, we should alternate between allowlist scan and one without
2228 * any filters to save power.
2229 */
2230 bool use_interleaving = hci_is_adv_monitoring(hdev) &&
2231 !(list_empty(&hdev->pend_le_conns) &&
2232 list_empty(&hdev->pend_le_reports)) &&
2233 hci_get_adv_monitor_offload_ext(hdev) ==
2234 HCI_ADV_MONITOR_EXT_NONE;
2235 bool is_interleaving = is_interleave_scanning(hdev);
2236
2237 if (use_interleaving && !is_interleaving) {
2238 hci_start_interleave_scan(hdev);
2239 bt_dev_dbg(hdev, "starting interleave scan");
2240 return true;
2241 }
2242
2243 if (!use_interleaving && is_interleaving)
2244 cancel_interleave_scan(hdev);
2245
2246 return false;
2247 }
2248
2249 /* Removes connection to resolve list if needed.*/
hci_le_del_resolve_list_sync(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2250 static int hci_le_del_resolve_list_sync(struct hci_dev *hdev,
2251 bdaddr_t *bdaddr, u8 bdaddr_type)
2252 {
2253 struct hci_cp_le_del_from_resolv_list cp;
2254 struct bdaddr_list_with_irk *entry;
2255
2256 if (!use_ll_privacy(hdev))
2257 return 0;
2258
2259 /* Check if the IRK has been programmed */
2260 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list, bdaddr,
2261 bdaddr_type);
2262 if (!entry)
2263 return 0;
2264
2265 cp.bdaddr_type = bdaddr_type;
2266 bacpy(&cp.bdaddr, bdaddr);
2267
2268 return __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_RESOLV_LIST,
2269 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2270 }
2271
hci_le_del_accept_list_sync(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2272 static int hci_le_del_accept_list_sync(struct hci_dev *hdev,
2273 bdaddr_t *bdaddr, u8 bdaddr_type)
2274 {
2275 struct hci_cp_le_del_from_accept_list cp;
2276 int err;
2277
2278 /* Check if device is on accept list before removing it */
2279 if (!hci_bdaddr_list_lookup(&hdev->le_accept_list, bdaddr, bdaddr_type))
2280 return 0;
2281
2282 cp.bdaddr_type = bdaddr_type;
2283 bacpy(&cp.bdaddr, bdaddr);
2284
2285 /* Ignore errors when removing from resolving list as that is likely
2286 * that the device was never added.
2287 */
2288 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2289
2290 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_DEL_FROM_ACCEPT_LIST,
2291 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2292 if (err) {
2293 bt_dev_err(hdev, "Unable to remove from allow list: %d", err);
2294 return err;
2295 }
2296
2297 bt_dev_dbg(hdev, "Remove %pMR (0x%x) from allow list", &cp.bdaddr,
2298 cp.bdaddr_type);
2299
2300 return 0;
2301 }
2302
2303 struct conn_params {
2304 bdaddr_t addr;
2305 u8 addr_type;
2306 hci_conn_flags_t flags;
2307 u8 privacy_mode;
2308 };
2309
2310 /* Adds connection to resolve list if needed.
2311 * Setting params to NULL programs local hdev->irk
2312 */
hci_le_add_resolve_list_sync(struct hci_dev * hdev,struct conn_params * params)2313 static int hci_le_add_resolve_list_sync(struct hci_dev *hdev,
2314 struct conn_params *params)
2315 {
2316 struct hci_cp_le_add_to_resolv_list cp;
2317 struct smp_irk *irk;
2318 struct bdaddr_list_with_irk *entry;
2319 struct hci_conn_params *p;
2320
2321 if (!use_ll_privacy(hdev))
2322 return 0;
2323
2324 /* Attempt to program local identity address, type and irk if params is
2325 * NULL.
2326 */
2327 if (!params) {
2328 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
2329 return 0;
2330
2331 hci_copy_identity_address(hdev, &cp.bdaddr, &cp.bdaddr_type);
2332 memcpy(cp.peer_irk, hdev->irk, 16);
2333 goto done;
2334 }
2335
2336 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
2337 if (!irk)
2338 return 0;
2339
2340 /* Check if the IK has _not_ been programmed yet. */
2341 entry = hci_bdaddr_list_lookup_with_irk(&hdev->le_resolv_list,
2342 ¶ms->addr,
2343 params->addr_type);
2344 if (entry)
2345 return 0;
2346
2347 cp.bdaddr_type = params->addr_type;
2348 bacpy(&cp.bdaddr, ¶ms->addr);
2349 memcpy(cp.peer_irk, irk->val, 16);
2350
2351 /* Default privacy mode is always Network */
2352 params->privacy_mode = HCI_NETWORK_PRIVACY;
2353
2354 rcu_read_lock();
2355 p = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2356 ¶ms->addr, params->addr_type);
2357 if (!p)
2358 p = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2359 ¶ms->addr, params->addr_type);
2360 if (p)
2361 WRITE_ONCE(p->privacy_mode, HCI_NETWORK_PRIVACY);
2362 rcu_read_unlock();
2363
2364 done:
2365 if (hci_dev_test_flag(hdev, HCI_PRIVACY))
2366 memcpy(cp.local_irk, hdev->irk, 16);
2367 else
2368 memset(cp.local_irk, 0, 16);
2369
2370 return __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_RESOLV_LIST,
2371 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2372 }
2373
2374 /* Set Device Privacy Mode. */
hci_le_set_privacy_mode_sync(struct hci_dev * hdev,struct conn_params * params)2375 static int hci_le_set_privacy_mode_sync(struct hci_dev *hdev,
2376 struct conn_params *params)
2377 {
2378 struct hci_cp_le_set_privacy_mode cp;
2379 struct smp_irk *irk;
2380
2381 /* If device privacy mode has already been set there is nothing to do */
2382 if (params->privacy_mode == HCI_DEVICE_PRIVACY)
2383 return 0;
2384
2385 /* Check if HCI_CONN_FLAG_DEVICE_PRIVACY has been set as it also
2386 * indicates that LL Privacy has been enabled and
2387 * HCI_OP_LE_SET_PRIVACY_MODE is supported.
2388 */
2389 if (!(params->flags & HCI_CONN_FLAG_DEVICE_PRIVACY))
2390 return 0;
2391
2392 irk = hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type);
2393 if (!irk)
2394 return 0;
2395
2396 memset(&cp, 0, sizeof(cp));
2397 cp.bdaddr_type = irk->addr_type;
2398 bacpy(&cp.bdaddr, &irk->bdaddr);
2399 cp.mode = HCI_DEVICE_PRIVACY;
2400
2401 /* Note: params->privacy_mode is not updated since it is a copy */
2402
2403 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_PRIVACY_MODE,
2404 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2405 }
2406
2407 /* Adds connection to allow list if needed, if the device uses RPA (has IRK)
2408 * this attempts to program the device in the resolving list as well and
2409 * properly set the privacy mode.
2410 */
hci_le_add_accept_list_sync(struct hci_dev * hdev,struct conn_params * params,u8 * num_entries)2411 static int hci_le_add_accept_list_sync(struct hci_dev *hdev,
2412 struct conn_params *params,
2413 u8 *num_entries)
2414 {
2415 struct hci_cp_le_add_to_accept_list cp;
2416 int err;
2417
2418 /* During suspend, only wakeable devices can be in acceptlist */
2419 if (hdev->suspended &&
2420 !(params->flags & HCI_CONN_FLAG_REMOTE_WAKEUP)) {
2421 hci_le_del_accept_list_sync(hdev, ¶ms->addr,
2422 params->addr_type);
2423 return 0;
2424 }
2425
2426 /* Select filter policy to accept all advertising */
2427 if (*num_entries >= hdev->le_accept_list_size)
2428 return -ENOSPC;
2429
2430 /* Accept list can not be used with RPAs */
2431 if (!use_ll_privacy(hdev) &&
2432 hci_find_irk_by_addr(hdev, ¶ms->addr, params->addr_type))
2433 return -EINVAL;
2434
2435 /* Attempt to program the device in the resolving list first to avoid
2436 * having to rollback in case it fails since the resolving list is
2437 * dynamic it can probably be smaller than the accept list.
2438 */
2439 err = hci_le_add_resolve_list_sync(hdev, params);
2440 if (err) {
2441 bt_dev_err(hdev, "Unable to add to resolve list: %d", err);
2442 return err;
2443 }
2444
2445 /* Set Privacy Mode */
2446 err = hci_le_set_privacy_mode_sync(hdev, params);
2447 if (err) {
2448 bt_dev_err(hdev, "Unable to set privacy mode: %d", err);
2449 return err;
2450 }
2451
2452 /* Check if already in accept list */
2453 if (hci_bdaddr_list_lookup(&hdev->le_accept_list, ¶ms->addr,
2454 params->addr_type))
2455 return 0;
2456
2457 *num_entries += 1;
2458 cp.bdaddr_type = params->addr_type;
2459 bacpy(&cp.bdaddr, ¶ms->addr);
2460
2461 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST,
2462 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2463 if (err) {
2464 bt_dev_err(hdev, "Unable to add to allow list: %d", err);
2465 /* Rollback the device from the resolving list */
2466 hci_le_del_resolve_list_sync(hdev, &cp.bdaddr, cp.bdaddr_type);
2467 return err;
2468 }
2469
2470 bt_dev_dbg(hdev, "Add %pMR (0x%x) to allow list", &cp.bdaddr,
2471 cp.bdaddr_type);
2472
2473 return 0;
2474 }
2475
2476 /* This function disables/pause all advertising instances */
hci_pause_advertising_sync(struct hci_dev * hdev)2477 static int hci_pause_advertising_sync(struct hci_dev *hdev)
2478 {
2479 int err;
2480 int old_state;
2481
2482 /* If already been paused there is nothing to do. */
2483 if (hdev->advertising_paused)
2484 return 0;
2485
2486 bt_dev_dbg(hdev, "Pausing directed advertising");
2487
2488 /* Stop directed advertising */
2489 old_state = hci_dev_test_flag(hdev, HCI_ADVERTISING);
2490 if (old_state) {
2491 /* When discoverable timeout triggers, then just make sure
2492 * the limited discoverable flag is cleared. Even in the case
2493 * of a timeout triggered from general discoverable, it is
2494 * safe to unconditionally clear the flag.
2495 */
2496 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2497 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2498 hdev->discov_timeout = 0;
2499 }
2500
2501 bt_dev_dbg(hdev, "Pausing advertising instances");
2502
2503 /* Call to disable any advertisements active on the controller.
2504 * This will succeed even if no advertisements are configured.
2505 */
2506 err = hci_disable_advertising_sync(hdev);
2507 if (err)
2508 return err;
2509
2510 /* If we are using software rotation, pause the loop */
2511 if (!ext_adv_capable(hdev))
2512 cancel_adv_timeout(hdev);
2513
2514 hdev->advertising_paused = true;
2515 hdev->advertising_old_state = old_state;
2516
2517 return 0;
2518 }
2519
2520 /* This function enables all user advertising instances */
hci_resume_advertising_sync(struct hci_dev * hdev)2521 static int hci_resume_advertising_sync(struct hci_dev *hdev)
2522 {
2523 struct adv_info *adv, *tmp;
2524 int err;
2525
2526 /* If advertising has not been paused there is nothing to do. */
2527 if (!hdev->advertising_paused)
2528 return 0;
2529
2530 /* Resume directed advertising */
2531 hdev->advertising_paused = false;
2532 if (hdev->advertising_old_state) {
2533 hci_dev_set_flag(hdev, HCI_ADVERTISING);
2534 hdev->advertising_old_state = 0;
2535 }
2536
2537 bt_dev_dbg(hdev, "Resuming advertising instances");
2538
2539 if (ext_adv_capable(hdev)) {
2540 /* Call for each tracked instance to be re-enabled */
2541 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list) {
2542 err = hci_enable_ext_advertising_sync(hdev,
2543 adv->instance);
2544 if (!err)
2545 continue;
2546
2547 /* If the instance cannot be resumed remove it */
2548 hci_remove_ext_adv_instance_sync(hdev, adv->instance,
2549 NULL);
2550 }
2551 } else {
2552 /* Schedule for most recent instance to be restarted and begin
2553 * the software rotation loop
2554 */
2555 err = hci_schedule_adv_instance_sync(hdev,
2556 hdev->cur_adv_instance,
2557 true);
2558 }
2559
2560 hdev->advertising_paused = false;
2561
2562 return err;
2563 }
2564
hci_pause_addr_resolution(struct hci_dev * hdev)2565 static int hci_pause_addr_resolution(struct hci_dev *hdev)
2566 {
2567 int err;
2568
2569 if (!use_ll_privacy(hdev))
2570 return 0;
2571
2572 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION))
2573 return 0;
2574
2575 /* Cannot disable addr resolution if scanning is enabled or
2576 * when initiating an LE connection.
2577 */
2578 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) ||
2579 hci_lookup_le_connect(hdev)) {
2580 bt_dev_err(hdev, "Command not allowed when scan/LE connect");
2581 return -EPERM;
2582 }
2583
2584 /* Cannot disable addr resolution if advertising is enabled. */
2585 err = hci_pause_advertising_sync(hdev);
2586 if (err) {
2587 bt_dev_err(hdev, "Pause advertising failed: %d", err);
2588 return err;
2589 }
2590
2591 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2592 if (err)
2593 bt_dev_err(hdev, "Unable to disable Address Resolution: %d",
2594 err);
2595
2596 /* Return if address resolution is disabled and RPA is not used. */
2597 if (!err && scan_use_rpa(hdev))
2598 return 0;
2599
2600 hci_resume_advertising_sync(hdev);
2601 return err;
2602 }
2603
hci_read_local_oob_data_sync(struct hci_dev * hdev,bool extended,struct sock * sk)2604 struct sk_buff *hci_read_local_oob_data_sync(struct hci_dev *hdev,
2605 bool extended, struct sock *sk)
2606 {
2607 u16 opcode = extended ? HCI_OP_READ_LOCAL_OOB_EXT_DATA :
2608 HCI_OP_READ_LOCAL_OOB_DATA;
2609
2610 return __hci_cmd_sync_sk(hdev, opcode, 0, NULL, 0, HCI_CMD_TIMEOUT, sk);
2611 }
2612
conn_params_copy(struct list_head * list,size_t * n)2613 static struct conn_params *conn_params_copy(struct list_head *list, size_t *n)
2614 {
2615 struct hci_conn_params *params;
2616 struct conn_params *p;
2617 size_t i;
2618
2619 rcu_read_lock();
2620
2621 i = 0;
2622 list_for_each_entry_rcu(params, list, action)
2623 ++i;
2624 *n = i;
2625
2626 rcu_read_unlock();
2627
2628 p = kvcalloc(*n, sizeof(struct conn_params), GFP_KERNEL);
2629 if (!p)
2630 return NULL;
2631
2632 rcu_read_lock();
2633
2634 i = 0;
2635 list_for_each_entry_rcu(params, list, action) {
2636 /* Racing adds are handled in next scan update */
2637 if (i >= *n)
2638 break;
2639
2640 /* No hdev->lock, but: addr, addr_type are immutable.
2641 * privacy_mode is only written by us or in
2642 * hci_cc_le_set_privacy_mode that we wait for.
2643 * We should be idempotent so MGMT updating flags
2644 * while we are processing is OK.
2645 */
2646 bacpy(&p[i].addr, ¶ms->addr);
2647 p[i].addr_type = params->addr_type;
2648 p[i].flags = READ_ONCE(params->flags);
2649 p[i].privacy_mode = READ_ONCE(params->privacy_mode);
2650 ++i;
2651 }
2652
2653 rcu_read_unlock();
2654
2655 *n = i;
2656 return p;
2657 }
2658
2659 /* Clear LE Accept List */
hci_le_clear_accept_list_sync(struct hci_dev * hdev)2660 static int hci_le_clear_accept_list_sync(struct hci_dev *hdev)
2661 {
2662 if (!(hdev->commands[26] & 0x80))
2663 return 0;
2664
2665 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_ACCEPT_LIST, 0, NULL,
2666 HCI_CMD_TIMEOUT);
2667 }
2668
2669 /* Device must not be scanning when updating the accept list.
2670 *
2671 * Update is done using the following sequence:
2672 *
2673 * use_ll_privacy((Disable Advertising) -> Disable Resolving List) ->
2674 * Remove Devices From Accept List ->
2675 * (has IRK && use_ll_privacy(Remove Devices From Resolving List))->
2676 * Add Devices to Accept List ->
2677 * (has IRK && use_ll_privacy(Remove Devices From Resolving List)) ->
2678 * use_ll_privacy(Enable Resolving List -> (Enable Advertising)) ->
2679 * Enable Scanning
2680 *
2681 * In case of failure advertising shall be restored to its original state and
2682 * return would disable accept list since either accept or resolving list could
2683 * not be programmed.
2684 *
2685 */
hci_update_accept_list_sync(struct hci_dev * hdev)2686 static u8 hci_update_accept_list_sync(struct hci_dev *hdev)
2687 {
2688 struct conn_params *params;
2689 struct bdaddr_list *b, *t;
2690 u8 num_entries = 0;
2691 bool pend_conn, pend_report;
2692 u8 filter_policy;
2693 size_t i, n;
2694 int err;
2695
2696 /* Pause advertising if resolving list can be used as controllers
2697 * cannot accept resolving list modifications while advertising.
2698 */
2699 if (use_ll_privacy(hdev)) {
2700 err = hci_pause_advertising_sync(hdev);
2701 if (err) {
2702 bt_dev_err(hdev, "pause advertising failed: %d", err);
2703 return 0x00;
2704 }
2705 }
2706
2707 /* Disable address resolution while reprogramming accept list since
2708 * devices that do have an IRK will be programmed in the resolving list
2709 * when LL Privacy is enabled.
2710 */
2711 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x00);
2712 if (err) {
2713 bt_dev_err(hdev, "Unable to disable LL privacy: %d", err);
2714 goto done;
2715 }
2716
2717 /* Force address filtering if PA Sync is in progress */
2718 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2719 struct hci_cp_le_pa_create_sync *sent;
2720
2721 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_PA_CREATE_SYNC);
2722 if (sent) {
2723 struct conn_params pa;
2724
2725 memset(&pa, 0, sizeof(pa));
2726
2727 bacpy(&pa.addr, &sent->addr);
2728 pa.addr_type = sent->addr_type;
2729
2730 /* Clear first since there could be addresses left
2731 * behind.
2732 */
2733 hci_le_clear_accept_list_sync(hdev);
2734
2735 num_entries = 1;
2736 err = hci_le_add_accept_list_sync(hdev, &pa,
2737 &num_entries);
2738 goto done;
2739 }
2740 }
2741
2742 /* Go through the current accept list programmed into the
2743 * controller one by one and check if that address is connected or is
2744 * still in the list of pending connections or list of devices to
2745 * report. If not present in either list, then remove it from
2746 * the controller.
2747 */
2748 list_for_each_entry_safe(b, t, &hdev->le_accept_list, list) {
2749 if (hci_conn_hash_lookup_le(hdev, &b->bdaddr, b->bdaddr_type))
2750 continue;
2751
2752 /* Pointers not dereferenced, no locks needed */
2753 pend_conn = hci_pend_le_action_lookup(&hdev->pend_le_conns,
2754 &b->bdaddr,
2755 b->bdaddr_type);
2756 pend_report = hci_pend_le_action_lookup(&hdev->pend_le_reports,
2757 &b->bdaddr,
2758 b->bdaddr_type);
2759
2760 /* If the device is not likely to connect or report,
2761 * remove it from the acceptlist.
2762 */
2763 if (!pend_conn && !pend_report) {
2764 hci_le_del_accept_list_sync(hdev, &b->bdaddr,
2765 b->bdaddr_type);
2766 continue;
2767 }
2768
2769 num_entries++;
2770 }
2771
2772 /* Since all no longer valid accept list entries have been
2773 * removed, walk through the list of pending connections
2774 * and ensure that any new device gets programmed into
2775 * the controller.
2776 *
2777 * If the list of the devices is larger than the list of
2778 * available accept list entries in the controller, then
2779 * just abort and return filer policy value to not use the
2780 * accept list.
2781 *
2782 * The list and params may be mutated while we wait for events,
2783 * so make a copy and iterate it.
2784 */
2785
2786 params = conn_params_copy(&hdev->pend_le_conns, &n);
2787 if (!params) {
2788 err = -ENOMEM;
2789 goto done;
2790 }
2791
2792 for (i = 0; i < n; ++i) {
2793 err = hci_le_add_accept_list_sync(hdev, ¶ms[i],
2794 &num_entries);
2795 if (err) {
2796 kvfree(params);
2797 goto done;
2798 }
2799 }
2800
2801 kvfree(params);
2802
2803 /* After adding all new pending connections, walk through
2804 * the list of pending reports and also add these to the
2805 * accept list if there is still space. Abort if space runs out.
2806 */
2807
2808 params = conn_params_copy(&hdev->pend_le_reports, &n);
2809 if (!params) {
2810 err = -ENOMEM;
2811 goto done;
2812 }
2813
2814 for (i = 0; i < n; ++i) {
2815 err = hci_le_add_accept_list_sync(hdev, ¶ms[i],
2816 &num_entries);
2817 if (err) {
2818 kvfree(params);
2819 goto done;
2820 }
2821 }
2822
2823 kvfree(params);
2824
2825 /* Use the allowlist unless the following conditions are all true:
2826 * - We are not currently suspending
2827 * - There are 1 or more ADV monitors registered and it's not offloaded
2828 * - Interleaved scanning is not currently using the allowlist
2829 */
2830 if (!idr_is_empty(&hdev->adv_monitors_idr) && !hdev->suspended &&
2831 hci_get_adv_monitor_offload_ext(hdev) == HCI_ADV_MONITOR_EXT_NONE &&
2832 hdev->interleave_scan_state != INTERLEAVE_SCAN_ALLOWLIST)
2833 err = -EINVAL;
2834
2835 done:
2836 filter_policy = err ? 0x00 : 0x01;
2837
2838 /* Enable address resolution when LL Privacy is enabled. */
2839 err = hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
2840 if (err)
2841 bt_dev_err(hdev, "Unable to enable LL privacy: %d", err);
2842
2843 /* Resume advertising if it was paused */
2844 if (use_ll_privacy(hdev))
2845 hci_resume_advertising_sync(hdev);
2846
2847 /* Select filter policy to use accept list */
2848 return filter_policy;
2849 }
2850
hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params * cp,u8 type,u16 interval,u16 window)2851 static void hci_le_scan_phy_params(struct hci_cp_le_scan_phy_params *cp,
2852 u8 type, u16 interval, u16 window)
2853 {
2854 cp->type = type;
2855 cp->interval = cpu_to_le16(interval);
2856 cp->window = cpu_to_le16(window);
2857 }
2858
hci_le_set_ext_scan_param_sync(struct hci_dev * hdev,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy)2859 static int hci_le_set_ext_scan_param_sync(struct hci_dev *hdev, u8 type,
2860 u16 interval, u16 window,
2861 u8 own_addr_type, u8 filter_policy)
2862 {
2863 struct hci_cp_le_set_ext_scan_params *cp;
2864 struct hci_cp_le_scan_phy_params *phy;
2865 u8 data[sizeof(*cp) + sizeof(*phy) * 2];
2866 u8 num_phy = 0x00;
2867
2868 cp = (void *)data;
2869 phy = (void *)cp->data;
2870
2871 memset(data, 0, sizeof(data));
2872
2873 cp->own_addr_type = own_addr_type;
2874 cp->filter_policy = filter_policy;
2875
2876 /* Check if PA Sync is in progress then select the PHY based on the
2877 * hci_conn.iso_qos.
2878 */
2879 if (hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
2880 struct hci_cp_le_add_to_accept_list *sent;
2881
2882 sent = hci_sent_cmd_data(hdev, HCI_OP_LE_ADD_TO_ACCEPT_LIST);
2883 if (sent) {
2884 struct hci_conn *conn;
2885
2886 conn = hci_conn_hash_lookup_ba(hdev, ISO_LINK,
2887 &sent->bdaddr);
2888 if (conn) {
2889 struct bt_iso_qos *qos = &conn->iso_qos;
2890
2891 if (qos->bcast.in.phy & BT_ISO_PHY_1M ||
2892 qos->bcast.in.phy & BT_ISO_PHY_2M) {
2893 cp->scanning_phys |= LE_SCAN_PHY_1M;
2894 hci_le_scan_phy_params(phy, type,
2895 interval,
2896 window);
2897 num_phy++;
2898 phy++;
2899 }
2900
2901 if (qos->bcast.in.phy & BT_ISO_PHY_CODED) {
2902 cp->scanning_phys |= LE_SCAN_PHY_CODED;
2903 hci_le_scan_phy_params(phy, type,
2904 interval * 3,
2905 window * 3);
2906 num_phy++;
2907 phy++;
2908 }
2909
2910 if (num_phy)
2911 goto done;
2912 }
2913 }
2914 }
2915
2916 if (scan_1m(hdev) || scan_2m(hdev)) {
2917 cp->scanning_phys |= LE_SCAN_PHY_1M;
2918 hci_le_scan_phy_params(phy, type, interval, window);
2919 num_phy++;
2920 phy++;
2921 }
2922
2923 if (scan_coded(hdev)) {
2924 cp->scanning_phys |= LE_SCAN_PHY_CODED;
2925 hci_le_scan_phy_params(phy, type, interval * 3, window * 3);
2926 num_phy++;
2927 phy++;
2928 }
2929
2930 done:
2931 if (!num_phy)
2932 return -EINVAL;
2933
2934 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
2935 sizeof(*cp) + sizeof(*phy) * num_phy,
2936 data, HCI_CMD_TIMEOUT);
2937 }
2938
hci_le_set_scan_param_sync(struct hci_dev * hdev,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy)2939 static int hci_le_set_scan_param_sync(struct hci_dev *hdev, u8 type,
2940 u16 interval, u16 window,
2941 u8 own_addr_type, u8 filter_policy)
2942 {
2943 struct hci_cp_le_set_scan_param cp;
2944
2945 if (use_ext_scan(hdev))
2946 return hci_le_set_ext_scan_param_sync(hdev, type, interval,
2947 window, own_addr_type,
2948 filter_policy);
2949
2950 memset(&cp, 0, sizeof(cp));
2951 cp.type = type;
2952 cp.interval = cpu_to_le16(interval);
2953 cp.window = cpu_to_le16(window);
2954 cp.own_address_type = own_addr_type;
2955 cp.filter_policy = filter_policy;
2956
2957 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_SCAN_PARAM,
2958 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
2959 }
2960
hci_start_scan_sync(struct hci_dev * hdev,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy,u8 filter_dup)2961 static int hci_start_scan_sync(struct hci_dev *hdev, u8 type, u16 interval,
2962 u16 window, u8 own_addr_type, u8 filter_policy,
2963 u8 filter_dup)
2964 {
2965 int err;
2966
2967 if (hdev->scanning_paused) {
2968 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2969 return 0;
2970 }
2971
2972 err = hci_le_set_scan_param_sync(hdev, type, interval, window,
2973 own_addr_type, filter_policy);
2974 if (err)
2975 return err;
2976
2977 return hci_le_set_scan_enable_sync(hdev, LE_SCAN_ENABLE, filter_dup);
2978 }
2979
hci_passive_scan_sync(struct hci_dev * hdev)2980 static int hci_passive_scan_sync(struct hci_dev *hdev)
2981 {
2982 u8 own_addr_type;
2983 u8 filter_policy;
2984 u16 window, interval;
2985 u8 filter_dups = LE_SCAN_FILTER_DUP_ENABLE;
2986 int err;
2987
2988 if (hdev->scanning_paused) {
2989 bt_dev_dbg(hdev, "Scanning is paused for suspend");
2990 return 0;
2991 }
2992
2993 err = hci_scan_disable_sync(hdev);
2994 if (err) {
2995 bt_dev_err(hdev, "disable scanning failed: %d", err);
2996 return err;
2997 }
2998
2999 /* Set require_privacy to false since no SCAN_REQ are send
3000 * during passive scanning. Not using an non-resolvable address
3001 * here is important so that peer devices using direct
3002 * advertising with our address will be correctly reported
3003 * by the controller.
3004 */
3005 if (hci_update_random_address_sync(hdev, false, scan_use_rpa(hdev),
3006 &own_addr_type))
3007 return 0;
3008
3009 if (hdev->enable_advmon_interleave_scan &&
3010 hci_update_interleaved_scan_sync(hdev))
3011 return 0;
3012
3013 bt_dev_dbg(hdev, "interleave state %d", hdev->interleave_scan_state);
3014
3015 /* Adding or removing entries from the accept list must
3016 * happen before enabling scanning. The controller does
3017 * not allow accept list modification while scanning.
3018 */
3019 filter_policy = hci_update_accept_list_sync(hdev);
3020
3021 /* If suspended and filter_policy set to 0x00 (no acceptlist) then
3022 * passive scanning cannot be started since that would require the host
3023 * to be woken up to process the reports.
3024 */
3025 if (hdev->suspended && !filter_policy) {
3026 /* Check if accept list is empty then there is no need to scan
3027 * while suspended.
3028 */
3029 if (list_empty(&hdev->le_accept_list))
3030 return 0;
3031
3032 /* If there are devices is the accept_list that means some
3033 * devices could not be programmed which in non-suspended case
3034 * means filter_policy needs to be set to 0x00 so the host needs
3035 * to filter, but since this is treating suspended case we
3036 * can ignore device needing host to filter to allow devices in
3037 * the acceptlist to be able to wakeup the system.
3038 */
3039 filter_policy = 0x01;
3040 }
3041
3042 /* When the controller is using random resolvable addresses and
3043 * with that having LE privacy enabled, then controllers with
3044 * Extended Scanner Filter Policies support can now enable support
3045 * for handling directed advertising.
3046 *
3047 * So instead of using filter polices 0x00 (no acceptlist)
3048 * and 0x01 (acceptlist enabled) use the new filter policies
3049 * 0x02 (no acceptlist) and 0x03 (acceptlist enabled).
3050 */
3051 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
3052 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
3053 filter_policy |= 0x02;
3054
3055 if (hdev->suspended) {
3056 window = hdev->le_scan_window_suspend;
3057 interval = hdev->le_scan_int_suspend;
3058 } else if (hci_is_le_conn_scanning(hdev)) {
3059 window = hdev->le_scan_window_connect;
3060 interval = hdev->le_scan_int_connect;
3061 } else if (hci_is_adv_monitoring(hdev)) {
3062 window = hdev->le_scan_window_adv_monitor;
3063 interval = hdev->le_scan_int_adv_monitor;
3064
3065 /* Disable duplicates filter when scanning for advertisement
3066 * monitor for the following reasons.
3067 *
3068 * For HW pattern filtering (ex. MSFT), Realtek and Qualcomm
3069 * controllers ignore RSSI_Sampling_Period when the duplicates
3070 * filter is enabled.
3071 *
3072 * For SW pattern filtering, when we're not doing interleaved
3073 * scanning, it is necessary to disable duplicates filter,
3074 * otherwise hosts can only receive one advertisement and it's
3075 * impossible to know if a peer is still in range.
3076 */
3077 filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
3078 } else {
3079 window = hdev->le_scan_window;
3080 interval = hdev->le_scan_interval;
3081 }
3082
3083 /* Disable all filtering for Mesh */
3084 if (hci_dev_test_flag(hdev, HCI_MESH)) {
3085 filter_policy = 0;
3086 filter_dups = LE_SCAN_FILTER_DUP_DISABLE;
3087 }
3088
3089 bt_dev_dbg(hdev, "LE passive scan with acceptlist = %d", filter_policy);
3090
3091 return hci_start_scan_sync(hdev, LE_SCAN_PASSIVE, interval, window,
3092 own_addr_type, filter_policy, filter_dups);
3093 }
3094
3095 /* This function controls the passive scanning based on hdev->pend_le_conns
3096 * list. If there are pending LE connection we start the background scanning,
3097 * otherwise we stop it in the following sequence:
3098 *
3099 * If there are devices to scan:
3100 *
3101 * Disable Scanning -> Update Accept List ->
3102 * use_ll_privacy((Disable Advertising) -> Disable Resolving List ->
3103 * Update Resolving List -> Enable Resolving List -> (Enable Advertising)) ->
3104 * Enable Scanning
3105 *
3106 * Otherwise:
3107 *
3108 * Disable Scanning
3109 */
hci_update_passive_scan_sync(struct hci_dev * hdev)3110 int hci_update_passive_scan_sync(struct hci_dev *hdev)
3111 {
3112 int err;
3113
3114 if (!test_bit(HCI_UP, &hdev->flags) ||
3115 test_bit(HCI_INIT, &hdev->flags) ||
3116 hci_dev_test_flag(hdev, HCI_SETUP) ||
3117 hci_dev_test_flag(hdev, HCI_CONFIG) ||
3118 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
3119 hci_dev_test_flag(hdev, HCI_UNREGISTER))
3120 return 0;
3121
3122 /* No point in doing scanning if LE support hasn't been enabled */
3123 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3124 return 0;
3125
3126 /* If discovery is active don't interfere with it */
3127 if (hdev->discovery.state != DISCOVERY_STOPPED)
3128 return 0;
3129
3130 /* Reset RSSI and UUID filters when starting background scanning
3131 * since these filters are meant for service discovery only.
3132 *
3133 * The Start Discovery and Start Service Discovery operations
3134 * ensure to set proper values for RSSI threshold and UUID
3135 * filter list. So it is safe to just reset them here.
3136 */
3137 hci_discovery_filter_clear(hdev);
3138
3139 bt_dev_dbg(hdev, "ADV monitoring is %s",
3140 hci_is_adv_monitoring(hdev) ? "on" : "off");
3141
3142 if (!hci_dev_test_flag(hdev, HCI_MESH) &&
3143 list_empty(&hdev->pend_le_conns) &&
3144 list_empty(&hdev->pend_le_reports) &&
3145 !hci_is_adv_monitoring(hdev) &&
3146 !hci_dev_test_flag(hdev, HCI_PA_SYNC)) {
3147 /* If there is no pending LE connections or devices
3148 * to be scanned for or no ADV monitors, we should stop the
3149 * background scanning.
3150 */
3151
3152 bt_dev_dbg(hdev, "stopping background scanning");
3153
3154 err = hci_scan_disable_sync(hdev);
3155 if (err)
3156 bt_dev_err(hdev, "stop background scanning failed: %d",
3157 err);
3158 } else {
3159 /* If there is at least one pending LE connection, we should
3160 * keep the background scan running.
3161 */
3162
3163 /* If controller is connecting, we should not start scanning
3164 * since some controllers are not able to scan and connect at
3165 * the same time.
3166 */
3167 if (hci_lookup_le_connect(hdev))
3168 return 0;
3169
3170 bt_dev_dbg(hdev, "start background scanning");
3171
3172 err = hci_passive_scan_sync(hdev);
3173 if (err)
3174 bt_dev_err(hdev, "start background scanning failed: %d",
3175 err);
3176 }
3177
3178 return err;
3179 }
3180
update_scan_sync(struct hci_dev * hdev,void * data)3181 static int update_scan_sync(struct hci_dev *hdev, void *data)
3182 {
3183 return hci_update_scan_sync(hdev);
3184 }
3185
hci_update_scan(struct hci_dev * hdev)3186 int hci_update_scan(struct hci_dev *hdev)
3187 {
3188 return hci_cmd_sync_queue(hdev, update_scan_sync, NULL, NULL);
3189 }
3190
update_passive_scan_sync(struct hci_dev * hdev,void * data)3191 static int update_passive_scan_sync(struct hci_dev *hdev, void *data)
3192 {
3193 return hci_update_passive_scan_sync(hdev);
3194 }
3195
hci_update_passive_scan(struct hci_dev * hdev)3196 int hci_update_passive_scan(struct hci_dev *hdev)
3197 {
3198 /* Only queue if it would have any effect */
3199 if (!test_bit(HCI_UP, &hdev->flags) ||
3200 test_bit(HCI_INIT, &hdev->flags) ||
3201 hci_dev_test_flag(hdev, HCI_SETUP) ||
3202 hci_dev_test_flag(hdev, HCI_CONFIG) ||
3203 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
3204 hci_dev_test_flag(hdev, HCI_UNREGISTER))
3205 return 0;
3206
3207 return hci_cmd_sync_queue_once(hdev, update_passive_scan_sync, NULL,
3208 NULL);
3209 }
3210
hci_write_sc_support_sync(struct hci_dev * hdev,u8 val)3211 int hci_write_sc_support_sync(struct hci_dev *hdev, u8 val)
3212 {
3213 int err;
3214
3215 if (!bredr_sc_enabled(hdev) || lmp_host_sc_capable(hdev))
3216 return 0;
3217
3218 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
3219 sizeof(val), &val, HCI_CMD_TIMEOUT);
3220
3221 if (!err) {
3222 if (val) {
3223 hdev->features[1][0] |= LMP_HOST_SC;
3224 hci_dev_set_flag(hdev, HCI_SC_ENABLED);
3225 } else {
3226 hdev->features[1][0] &= ~LMP_HOST_SC;
3227 hci_dev_clear_flag(hdev, HCI_SC_ENABLED);
3228 }
3229 }
3230
3231 return err;
3232 }
3233
hci_write_ssp_mode_sync(struct hci_dev * hdev,u8 mode)3234 int hci_write_ssp_mode_sync(struct hci_dev *hdev, u8 mode)
3235 {
3236 int err;
3237
3238 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
3239 lmp_host_ssp_capable(hdev))
3240 return 0;
3241
3242 if (!mode && hci_dev_test_flag(hdev, HCI_USE_DEBUG_KEYS)) {
3243 __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_DEBUG_MODE,
3244 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3245 }
3246
3247 err = __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3248 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3249 if (err)
3250 return err;
3251
3252 return hci_write_sc_support_sync(hdev, 0x01);
3253 }
3254
hci_write_le_host_supported_sync(struct hci_dev * hdev,u8 le,u8 simul)3255 int hci_write_le_host_supported_sync(struct hci_dev *hdev, u8 le, u8 simul)
3256 {
3257 struct hci_cp_write_le_host_supported cp;
3258
3259 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED) ||
3260 !lmp_bredr_capable(hdev))
3261 return 0;
3262
3263 /* Check first if we already have the right host state
3264 * (host features set)
3265 */
3266 if (le == lmp_host_le_capable(hdev) &&
3267 simul == lmp_host_le_br_capable(hdev))
3268 return 0;
3269
3270 memset(&cp, 0, sizeof(cp));
3271
3272 cp.le = le;
3273 cp.simul = simul;
3274
3275 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
3276 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3277 }
3278
hci_powered_update_adv_sync(struct hci_dev * hdev)3279 static int hci_powered_update_adv_sync(struct hci_dev *hdev)
3280 {
3281 struct adv_info *adv, *tmp;
3282 int err;
3283
3284 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
3285 return 0;
3286
3287 /* If RPA Resolution has not been enable yet it means the
3288 * resolving list is empty and we should attempt to program the
3289 * local IRK in order to support using own_addr_type
3290 * ADDR_LE_DEV_RANDOM_RESOLVED (0x03).
3291 */
3292 if (!hci_dev_test_flag(hdev, HCI_LL_RPA_RESOLUTION)) {
3293 hci_le_add_resolve_list_sync(hdev, NULL);
3294 hci_le_set_addr_resolution_enable_sync(hdev, 0x01);
3295 }
3296
3297 /* Make sure the controller has a good default for
3298 * advertising data. This also applies to the case
3299 * where BR/EDR was toggled during the AUTO_OFF phase.
3300 */
3301 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
3302 list_empty(&hdev->adv_instances)) {
3303 if (ext_adv_capable(hdev)) {
3304 err = hci_setup_ext_adv_instance_sync(hdev, 0x00);
3305 if (!err)
3306 hci_update_scan_rsp_data_sync(hdev, 0x00);
3307 } else {
3308 err = hci_update_adv_data_sync(hdev, 0x00);
3309 if (!err)
3310 hci_update_scan_rsp_data_sync(hdev, 0x00);
3311 }
3312
3313 if (hci_dev_test_flag(hdev, HCI_ADVERTISING))
3314 hci_enable_advertising_sync(hdev);
3315 }
3316
3317 /* Call for each tracked instance to be scheduled */
3318 list_for_each_entry_safe(adv, tmp, &hdev->adv_instances, list)
3319 hci_schedule_adv_instance_sync(hdev, adv->instance, true);
3320
3321 return 0;
3322 }
3323
hci_write_auth_enable_sync(struct hci_dev * hdev)3324 static int hci_write_auth_enable_sync(struct hci_dev *hdev)
3325 {
3326 u8 link_sec;
3327
3328 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
3329 if (link_sec == test_bit(HCI_AUTH, &hdev->flags))
3330 return 0;
3331
3332 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_AUTH_ENABLE,
3333 sizeof(link_sec), &link_sec,
3334 HCI_CMD_TIMEOUT);
3335 }
3336
hci_write_fast_connectable_sync(struct hci_dev * hdev,bool enable)3337 int hci_write_fast_connectable_sync(struct hci_dev *hdev, bool enable)
3338 {
3339 struct hci_cp_write_page_scan_activity cp;
3340 u8 type;
3341 int err = 0;
3342
3343 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3344 return 0;
3345
3346 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3347 return 0;
3348
3349 memset(&cp, 0, sizeof(cp));
3350
3351 if (enable) {
3352 type = PAGE_SCAN_TYPE_INTERLACED;
3353
3354 /* 160 msec page scan interval */
3355 cp.interval = cpu_to_le16(0x0100);
3356 } else {
3357 type = hdev->def_page_scan_type;
3358 cp.interval = cpu_to_le16(hdev->def_page_scan_int);
3359 }
3360
3361 cp.window = cpu_to_le16(hdev->def_page_scan_window);
3362
3363 if (__cpu_to_le16(hdev->page_scan_interval) != cp.interval ||
3364 __cpu_to_le16(hdev->page_scan_window) != cp.window) {
3365 err = __hci_cmd_sync_status(hdev,
3366 HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
3367 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3368 if (err)
3369 return err;
3370 }
3371
3372 if (hdev->page_scan_type != type)
3373 err = __hci_cmd_sync_status(hdev,
3374 HCI_OP_WRITE_PAGE_SCAN_TYPE,
3375 sizeof(type), &type,
3376 HCI_CMD_TIMEOUT);
3377
3378 return err;
3379 }
3380
disconnected_accept_list_entries(struct hci_dev * hdev)3381 static bool disconnected_accept_list_entries(struct hci_dev *hdev)
3382 {
3383 struct bdaddr_list *b;
3384
3385 list_for_each_entry(b, &hdev->accept_list, list) {
3386 struct hci_conn *conn;
3387
3388 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
3389 if (!conn)
3390 return true;
3391
3392 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
3393 return true;
3394 }
3395
3396 return false;
3397 }
3398
hci_write_scan_enable_sync(struct hci_dev * hdev,u8 val)3399 static int hci_write_scan_enable_sync(struct hci_dev *hdev, u8 val)
3400 {
3401 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SCAN_ENABLE,
3402 sizeof(val), &val,
3403 HCI_CMD_TIMEOUT);
3404 }
3405
hci_update_scan_sync(struct hci_dev * hdev)3406 int hci_update_scan_sync(struct hci_dev *hdev)
3407 {
3408 u8 scan;
3409
3410 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3411 return 0;
3412
3413 if (!hdev_is_powered(hdev))
3414 return 0;
3415
3416 if (mgmt_powering_down(hdev))
3417 return 0;
3418
3419 if (hdev->scanning_paused)
3420 return 0;
3421
3422 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
3423 disconnected_accept_list_entries(hdev))
3424 scan = SCAN_PAGE;
3425 else
3426 scan = SCAN_DISABLED;
3427
3428 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
3429 scan |= SCAN_INQUIRY;
3430
3431 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
3432 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
3433 return 0;
3434
3435 return hci_write_scan_enable_sync(hdev, scan);
3436 }
3437
hci_update_name_sync(struct hci_dev * hdev)3438 int hci_update_name_sync(struct hci_dev *hdev)
3439 {
3440 struct hci_cp_write_local_name cp;
3441
3442 memset(&cp, 0, sizeof(cp));
3443
3444 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
3445
3446 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LOCAL_NAME,
3447 sizeof(cp), &cp,
3448 HCI_CMD_TIMEOUT);
3449 }
3450
3451 /* This function perform powered update HCI command sequence after the HCI init
3452 * sequence which end up resetting all states, the sequence is as follows:
3453 *
3454 * HCI_SSP_ENABLED(Enable SSP)
3455 * HCI_LE_ENABLED(Enable LE)
3456 * HCI_LE_ENABLED(use_ll_privacy(Add local IRK to Resolving List) ->
3457 * Update adv data)
3458 * Enable Authentication
3459 * lmp_bredr_capable(Set Fast Connectable -> Set Scan Type -> Set Class ->
3460 * Set Name -> Set EIR)
3461 * HCI_FORCE_STATIC_ADDR | BDADDR_ANY && !HCI_BREDR_ENABLED (Set Static Address)
3462 */
hci_powered_update_sync(struct hci_dev * hdev)3463 int hci_powered_update_sync(struct hci_dev *hdev)
3464 {
3465 int err;
3466
3467 /* Register the available SMP channels (BR/EDR and LE) only when
3468 * successfully powering on the controller. This late
3469 * registration is required so that LE SMP can clearly decide if
3470 * the public address or static address is used.
3471 */
3472 smp_register(hdev);
3473
3474 err = hci_write_ssp_mode_sync(hdev, 0x01);
3475 if (err)
3476 return err;
3477
3478 err = hci_write_le_host_supported_sync(hdev, 0x01, 0x00);
3479 if (err)
3480 return err;
3481
3482 err = hci_powered_update_adv_sync(hdev);
3483 if (err)
3484 return err;
3485
3486 err = hci_write_auth_enable_sync(hdev);
3487 if (err)
3488 return err;
3489
3490 if (lmp_bredr_capable(hdev)) {
3491 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
3492 hci_write_fast_connectable_sync(hdev, true);
3493 else
3494 hci_write_fast_connectable_sync(hdev, false);
3495 hci_update_scan_sync(hdev);
3496 hci_update_class_sync(hdev);
3497 hci_update_name_sync(hdev);
3498 hci_update_eir_sync(hdev);
3499 }
3500
3501 /* If forcing static address is in use or there is no public
3502 * address use the static address as random address (but skip
3503 * the HCI command if the current random address is already the
3504 * static one.
3505 *
3506 * In case BR/EDR has been disabled on a dual-mode controller
3507 * and a static address has been configured, then use that
3508 * address instead of the public BR/EDR address.
3509 */
3510 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3511 (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
3512 !hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))) {
3513 if (bacmp(&hdev->static_addr, BDADDR_ANY))
3514 return hci_set_random_addr_sync(hdev,
3515 &hdev->static_addr);
3516 }
3517
3518 return 0;
3519 }
3520
3521 /**
3522 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
3523 * (BD_ADDR) for a HCI device from
3524 * a firmware node property.
3525 * @hdev: The HCI device
3526 *
3527 * Search the firmware node for 'local-bd-address'.
3528 *
3529 * All-zero BD addresses are rejected, because those could be properties
3530 * that exist in the firmware tables, but were not updated by the firmware. For
3531 * example, the DTS could define 'local-bd-address', with zero BD addresses.
3532 */
hci_dev_get_bd_addr_from_property(struct hci_dev * hdev)3533 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
3534 {
3535 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
3536 bdaddr_t ba;
3537 int ret;
3538
3539 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
3540 (u8 *)&ba, sizeof(ba));
3541 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
3542 return;
3543
3544 if (test_bit(HCI_QUIRK_BDADDR_PROPERTY_BROKEN, &hdev->quirks))
3545 baswap(&hdev->public_addr, &ba);
3546 else
3547 bacpy(&hdev->public_addr, &ba);
3548 }
3549
3550 struct hci_init_stage {
3551 int (*func)(struct hci_dev *hdev);
3552 };
3553
3554 /* Run init stage NULL terminated function table */
hci_init_stage_sync(struct hci_dev * hdev,const struct hci_init_stage * stage)3555 static int hci_init_stage_sync(struct hci_dev *hdev,
3556 const struct hci_init_stage *stage)
3557 {
3558 size_t i;
3559
3560 for (i = 0; stage[i].func; i++) {
3561 int err;
3562
3563 err = stage[i].func(hdev);
3564 if (err)
3565 return err;
3566 }
3567
3568 return 0;
3569 }
3570
3571 /* Read Local Version */
hci_read_local_version_sync(struct hci_dev * hdev)3572 static int hci_read_local_version_sync(struct hci_dev *hdev)
3573 {
3574 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_VERSION,
3575 0, NULL, HCI_CMD_TIMEOUT);
3576 }
3577
3578 /* Read BD Address */
hci_read_bd_addr_sync(struct hci_dev * hdev)3579 static int hci_read_bd_addr_sync(struct hci_dev *hdev)
3580 {
3581 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BD_ADDR,
3582 0, NULL, HCI_CMD_TIMEOUT);
3583 }
3584
3585 #define HCI_INIT(_func) \
3586 { \
3587 .func = _func, \
3588 }
3589
3590 static const struct hci_init_stage hci_init0[] = {
3591 /* HCI_OP_READ_LOCAL_VERSION */
3592 HCI_INIT(hci_read_local_version_sync),
3593 /* HCI_OP_READ_BD_ADDR */
3594 HCI_INIT(hci_read_bd_addr_sync),
3595 {}
3596 };
3597
hci_reset_sync(struct hci_dev * hdev)3598 int hci_reset_sync(struct hci_dev *hdev)
3599 {
3600 int err;
3601
3602 set_bit(HCI_RESET, &hdev->flags);
3603
3604 err = __hci_cmd_sync_status(hdev, HCI_OP_RESET, 0, NULL,
3605 HCI_CMD_TIMEOUT);
3606 if (err)
3607 return err;
3608
3609 return 0;
3610 }
3611
hci_init0_sync(struct hci_dev * hdev)3612 static int hci_init0_sync(struct hci_dev *hdev)
3613 {
3614 int err;
3615
3616 bt_dev_dbg(hdev, "");
3617
3618 /* Reset */
3619 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3620 err = hci_reset_sync(hdev);
3621 if (err)
3622 return err;
3623 }
3624
3625 return hci_init_stage_sync(hdev, hci_init0);
3626 }
3627
hci_unconf_init_sync(struct hci_dev * hdev)3628 static int hci_unconf_init_sync(struct hci_dev *hdev)
3629 {
3630 int err;
3631
3632 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3633 return 0;
3634
3635 err = hci_init0_sync(hdev);
3636 if (err < 0)
3637 return err;
3638
3639 if (hci_dev_test_flag(hdev, HCI_SETUP))
3640 hci_debugfs_create_basic(hdev);
3641
3642 return 0;
3643 }
3644
3645 /* Read Local Supported Features. */
hci_read_local_features_sync(struct hci_dev * hdev)3646 static int hci_read_local_features_sync(struct hci_dev *hdev)
3647 {
3648 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_FEATURES,
3649 0, NULL, HCI_CMD_TIMEOUT);
3650 }
3651
3652 /* BR Controller init stage 1 command sequence */
3653 static const struct hci_init_stage br_init1[] = {
3654 /* HCI_OP_READ_LOCAL_FEATURES */
3655 HCI_INIT(hci_read_local_features_sync),
3656 /* HCI_OP_READ_LOCAL_VERSION */
3657 HCI_INIT(hci_read_local_version_sync),
3658 /* HCI_OP_READ_BD_ADDR */
3659 HCI_INIT(hci_read_bd_addr_sync),
3660 {}
3661 };
3662
3663 /* Read Local Commands */
hci_read_local_cmds_sync(struct hci_dev * hdev)3664 static int hci_read_local_cmds_sync(struct hci_dev *hdev)
3665 {
3666 /* All Bluetooth 1.2 and later controllers should support the
3667 * HCI command for reading the local supported commands.
3668 *
3669 * Unfortunately some controllers indicate Bluetooth 1.2 support,
3670 * but do not have support for this command. If that is the case,
3671 * the driver can quirk the behavior and skip reading the local
3672 * supported commands.
3673 */
3674 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
3675 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
3676 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_COMMANDS,
3677 0, NULL, HCI_CMD_TIMEOUT);
3678
3679 return 0;
3680 }
3681
hci_init1_sync(struct hci_dev * hdev)3682 static int hci_init1_sync(struct hci_dev *hdev)
3683 {
3684 int err;
3685
3686 bt_dev_dbg(hdev, "");
3687
3688 /* Reset */
3689 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks)) {
3690 err = hci_reset_sync(hdev);
3691 if (err)
3692 return err;
3693 }
3694
3695 return hci_init_stage_sync(hdev, br_init1);
3696 }
3697
3698 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
hci_read_buffer_size_sync(struct hci_dev * hdev)3699 static int hci_read_buffer_size_sync(struct hci_dev *hdev)
3700 {
3701 return __hci_cmd_sync_status(hdev, HCI_OP_READ_BUFFER_SIZE,
3702 0, NULL, HCI_CMD_TIMEOUT);
3703 }
3704
3705 /* Read Class of Device */
hci_read_dev_class_sync(struct hci_dev * hdev)3706 static int hci_read_dev_class_sync(struct hci_dev *hdev)
3707 {
3708 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CLASS_OF_DEV,
3709 0, NULL, HCI_CMD_TIMEOUT);
3710 }
3711
3712 /* Read Local Name */
hci_read_local_name_sync(struct hci_dev * hdev)3713 static int hci_read_local_name_sync(struct hci_dev *hdev)
3714 {
3715 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_NAME,
3716 0, NULL, HCI_CMD_TIMEOUT);
3717 }
3718
3719 /* Read Voice Setting */
hci_read_voice_setting_sync(struct hci_dev * hdev)3720 static int hci_read_voice_setting_sync(struct hci_dev *hdev)
3721 {
3722 return __hci_cmd_sync_status(hdev, HCI_OP_READ_VOICE_SETTING,
3723 0, NULL, HCI_CMD_TIMEOUT);
3724 }
3725
3726 /* Read Number of Supported IAC */
hci_read_num_supported_iac_sync(struct hci_dev * hdev)3727 static int hci_read_num_supported_iac_sync(struct hci_dev *hdev)
3728 {
3729 return __hci_cmd_sync_status(hdev, HCI_OP_READ_NUM_SUPPORTED_IAC,
3730 0, NULL, HCI_CMD_TIMEOUT);
3731 }
3732
3733 /* Read Current IAC LAP */
hci_read_current_iac_lap_sync(struct hci_dev * hdev)3734 static int hci_read_current_iac_lap_sync(struct hci_dev *hdev)
3735 {
3736 return __hci_cmd_sync_status(hdev, HCI_OP_READ_CURRENT_IAC_LAP,
3737 0, NULL, HCI_CMD_TIMEOUT);
3738 }
3739
hci_set_event_filter_sync(struct hci_dev * hdev,u8 flt_type,u8 cond_type,bdaddr_t * bdaddr,u8 auto_accept)3740 static int hci_set_event_filter_sync(struct hci_dev *hdev, u8 flt_type,
3741 u8 cond_type, bdaddr_t *bdaddr,
3742 u8 auto_accept)
3743 {
3744 struct hci_cp_set_event_filter cp;
3745
3746 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
3747 return 0;
3748
3749 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3750 return 0;
3751
3752 memset(&cp, 0, sizeof(cp));
3753 cp.flt_type = flt_type;
3754
3755 if (flt_type != HCI_FLT_CLEAR_ALL) {
3756 cp.cond_type = cond_type;
3757 bacpy(&cp.addr_conn_flt.bdaddr, bdaddr);
3758 cp.addr_conn_flt.auto_accept = auto_accept;
3759 }
3760
3761 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_FLT,
3762 flt_type == HCI_FLT_CLEAR_ALL ?
3763 sizeof(cp.flt_type) : sizeof(cp), &cp,
3764 HCI_CMD_TIMEOUT);
3765 }
3766
hci_clear_event_filter_sync(struct hci_dev * hdev)3767 static int hci_clear_event_filter_sync(struct hci_dev *hdev)
3768 {
3769 if (!hci_dev_test_flag(hdev, HCI_EVENT_FILTER_CONFIGURED))
3770 return 0;
3771
3772 /* In theory the state machine should not reach here unless
3773 * a hci_set_event_filter_sync() call succeeds, but we do
3774 * the check both for parity and as a future reminder.
3775 */
3776 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
3777 return 0;
3778
3779 return hci_set_event_filter_sync(hdev, HCI_FLT_CLEAR_ALL, 0x00,
3780 BDADDR_ANY, 0x00);
3781 }
3782
3783 /* Connection accept timeout ~20 secs */
hci_write_ca_timeout_sync(struct hci_dev * hdev)3784 static int hci_write_ca_timeout_sync(struct hci_dev *hdev)
3785 {
3786 __le16 param = cpu_to_le16(0x7d00);
3787
3788 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CA_TIMEOUT,
3789 sizeof(param), ¶m, HCI_CMD_TIMEOUT);
3790 }
3791
3792 /* BR Controller init stage 2 command sequence */
3793 static const struct hci_init_stage br_init2[] = {
3794 /* HCI_OP_READ_BUFFER_SIZE */
3795 HCI_INIT(hci_read_buffer_size_sync),
3796 /* HCI_OP_READ_CLASS_OF_DEV */
3797 HCI_INIT(hci_read_dev_class_sync),
3798 /* HCI_OP_READ_LOCAL_NAME */
3799 HCI_INIT(hci_read_local_name_sync),
3800 /* HCI_OP_READ_VOICE_SETTING */
3801 HCI_INIT(hci_read_voice_setting_sync),
3802 /* HCI_OP_READ_NUM_SUPPORTED_IAC */
3803 HCI_INIT(hci_read_num_supported_iac_sync),
3804 /* HCI_OP_READ_CURRENT_IAC_LAP */
3805 HCI_INIT(hci_read_current_iac_lap_sync),
3806 /* HCI_OP_SET_EVENT_FLT */
3807 HCI_INIT(hci_clear_event_filter_sync),
3808 /* HCI_OP_WRITE_CA_TIMEOUT */
3809 HCI_INIT(hci_write_ca_timeout_sync),
3810 {}
3811 };
3812
hci_write_ssp_mode_1_sync(struct hci_dev * hdev)3813 static int hci_write_ssp_mode_1_sync(struct hci_dev *hdev)
3814 {
3815 u8 mode = 0x01;
3816
3817 if (!lmp_ssp_capable(hdev) || !hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3818 return 0;
3819
3820 /* When SSP is available, then the host features page
3821 * should also be available as well. However some
3822 * controllers list the max_page as 0 as long as SSP
3823 * has not been enabled. To achieve proper debugging
3824 * output, force the minimum max_page to 1 at least.
3825 */
3826 hdev->max_page = 0x01;
3827
3828 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SSP_MODE,
3829 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3830 }
3831
hci_write_eir_sync(struct hci_dev * hdev)3832 static int hci_write_eir_sync(struct hci_dev *hdev)
3833 {
3834 struct hci_cp_write_eir cp;
3835
3836 if (!lmp_ssp_capable(hdev) || hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
3837 return 0;
3838
3839 memset(hdev->eir, 0, sizeof(hdev->eir));
3840 memset(&cp, 0, sizeof(cp));
3841
3842 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_EIR, sizeof(cp), &cp,
3843 HCI_CMD_TIMEOUT);
3844 }
3845
hci_write_inquiry_mode_sync(struct hci_dev * hdev)3846 static int hci_write_inquiry_mode_sync(struct hci_dev *hdev)
3847 {
3848 u8 mode;
3849
3850 if (!lmp_inq_rssi_capable(hdev) &&
3851 !test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
3852 return 0;
3853
3854 /* If Extended Inquiry Result events are supported, then
3855 * they are clearly preferred over Inquiry Result with RSSI
3856 * events.
3857 */
3858 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
3859
3860 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_INQUIRY_MODE,
3861 sizeof(mode), &mode, HCI_CMD_TIMEOUT);
3862 }
3863
hci_read_inq_rsp_tx_power_sync(struct hci_dev * hdev)3864 static int hci_read_inq_rsp_tx_power_sync(struct hci_dev *hdev)
3865 {
3866 if (!lmp_inq_tx_pwr_capable(hdev))
3867 return 0;
3868
3869 return __hci_cmd_sync_status(hdev, HCI_OP_READ_INQ_RSP_TX_POWER,
3870 0, NULL, HCI_CMD_TIMEOUT);
3871 }
3872
hci_read_local_ext_features_sync(struct hci_dev * hdev,u8 page)3873 static int hci_read_local_ext_features_sync(struct hci_dev *hdev, u8 page)
3874 {
3875 struct hci_cp_read_local_ext_features cp;
3876
3877 if (!lmp_ext_feat_capable(hdev))
3878 return 0;
3879
3880 memset(&cp, 0, sizeof(cp));
3881 cp.page = page;
3882
3883 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_EXT_FEATURES,
3884 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
3885 }
3886
hci_read_local_ext_features_1_sync(struct hci_dev * hdev)3887 static int hci_read_local_ext_features_1_sync(struct hci_dev *hdev)
3888 {
3889 return hci_read_local_ext_features_sync(hdev, 0x01);
3890 }
3891
3892 /* HCI Controller init stage 2 command sequence */
3893 static const struct hci_init_stage hci_init2[] = {
3894 /* HCI_OP_READ_LOCAL_COMMANDS */
3895 HCI_INIT(hci_read_local_cmds_sync),
3896 /* HCI_OP_WRITE_SSP_MODE */
3897 HCI_INIT(hci_write_ssp_mode_1_sync),
3898 /* HCI_OP_WRITE_EIR */
3899 HCI_INIT(hci_write_eir_sync),
3900 /* HCI_OP_WRITE_INQUIRY_MODE */
3901 HCI_INIT(hci_write_inquiry_mode_sync),
3902 /* HCI_OP_READ_INQ_RSP_TX_POWER */
3903 HCI_INIT(hci_read_inq_rsp_tx_power_sync),
3904 /* HCI_OP_READ_LOCAL_EXT_FEATURES */
3905 HCI_INIT(hci_read_local_ext_features_1_sync),
3906 /* HCI_OP_WRITE_AUTH_ENABLE */
3907 HCI_INIT(hci_write_auth_enable_sync),
3908 {}
3909 };
3910
3911 /* Read LE Buffer Size */
hci_le_read_buffer_size_sync(struct hci_dev * hdev)3912 static int hci_le_read_buffer_size_sync(struct hci_dev *hdev)
3913 {
3914 /* Use Read LE Buffer Size V2 if supported */
3915 if (iso_capable(hdev) && hdev->commands[41] & 0x20)
3916 return __hci_cmd_sync_status(hdev,
3917 HCI_OP_LE_READ_BUFFER_SIZE_V2,
3918 0, NULL, HCI_CMD_TIMEOUT);
3919
3920 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_BUFFER_SIZE,
3921 0, NULL, HCI_CMD_TIMEOUT);
3922 }
3923
3924 /* Read LE Local Supported Features */
hci_le_read_local_features_sync(struct hci_dev * hdev)3925 static int hci_le_read_local_features_sync(struct hci_dev *hdev)
3926 {
3927 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_LOCAL_FEATURES,
3928 0, NULL, HCI_CMD_TIMEOUT);
3929 }
3930
3931 /* Read LE Supported States */
hci_le_read_supported_states_sync(struct hci_dev * hdev)3932 static int hci_le_read_supported_states_sync(struct hci_dev *hdev)
3933 {
3934 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_SUPPORTED_STATES,
3935 0, NULL, HCI_CMD_TIMEOUT);
3936 }
3937
3938 /* LE Controller init stage 2 command sequence */
3939 static const struct hci_init_stage le_init2[] = {
3940 /* HCI_OP_LE_READ_LOCAL_FEATURES */
3941 HCI_INIT(hci_le_read_local_features_sync),
3942 /* HCI_OP_LE_READ_BUFFER_SIZE */
3943 HCI_INIT(hci_le_read_buffer_size_sync),
3944 /* HCI_OP_LE_READ_SUPPORTED_STATES */
3945 HCI_INIT(hci_le_read_supported_states_sync),
3946 {}
3947 };
3948
hci_init2_sync(struct hci_dev * hdev)3949 static int hci_init2_sync(struct hci_dev *hdev)
3950 {
3951 int err;
3952
3953 bt_dev_dbg(hdev, "");
3954
3955 err = hci_init_stage_sync(hdev, hci_init2);
3956 if (err)
3957 return err;
3958
3959 if (lmp_bredr_capable(hdev)) {
3960 err = hci_init_stage_sync(hdev, br_init2);
3961 if (err)
3962 return err;
3963 } else {
3964 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
3965 }
3966
3967 if (lmp_le_capable(hdev)) {
3968 err = hci_init_stage_sync(hdev, le_init2);
3969 if (err)
3970 return err;
3971 /* LE-only controllers have LE implicitly enabled */
3972 if (!lmp_bredr_capable(hdev))
3973 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
3974 }
3975
3976 return 0;
3977 }
3978
hci_set_event_mask_sync(struct hci_dev * hdev)3979 static int hci_set_event_mask_sync(struct hci_dev *hdev)
3980 {
3981 /* The second byte is 0xff instead of 0x9f (two reserved bits
3982 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
3983 * command otherwise.
3984 */
3985 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
3986
3987 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
3988 * any event mask for pre 1.2 devices.
3989 */
3990 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
3991 return 0;
3992
3993 if (lmp_bredr_capable(hdev)) {
3994 events[4] |= 0x01; /* Flow Specification Complete */
3995
3996 /* Don't set Disconnect Complete and mode change when
3997 * suspended as that would wakeup the host when disconnecting
3998 * due to suspend.
3999 */
4000 if (hdev->suspended) {
4001 events[0] &= 0xef;
4002 events[2] &= 0xf7;
4003 }
4004 } else {
4005 /* Use a different default for LE-only devices */
4006 memset(events, 0, sizeof(events));
4007 events[1] |= 0x20; /* Command Complete */
4008 events[1] |= 0x40; /* Command Status */
4009 events[1] |= 0x80; /* Hardware Error */
4010
4011 /* If the controller supports the Disconnect command, enable
4012 * the corresponding event. In addition enable packet flow
4013 * control related events.
4014 */
4015 if (hdev->commands[0] & 0x20) {
4016 /* Don't set Disconnect Complete when suspended as that
4017 * would wakeup the host when disconnecting due to
4018 * suspend.
4019 */
4020 if (!hdev->suspended)
4021 events[0] |= 0x10; /* Disconnection Complete */
4022 events[2] |= 0x04; /* Number of Completed Packets */
4023 events[3] |= 0x02; /* Data Buffer Overflow */
4024 }
4025
4026 /* If the controller supports the Read Remote Version
4027 * Information command, enable the corresponding event.
4028 */
4029 if (hdev->commands[2] & 0x80)
4030 events[1] |= 0x08; /* Read Remote Version Information
4031 * Complete
4032 */
4033
4034 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
4035 events[0] |= 0x80; /* Encryption Change */
4036 events[5] |= 0x80; /* Encryption Key Refresh Complete */
4037 }
4038 }
4039
4040 if (lmp_inq_rssi_capable(hdev) ||
4041 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
4042 events[4] |= 0x02; /* Inquiry Result with RSSI */
4043
4044 if (lmp_ext_feat_capable(hdev))
4045 events[4] |= 0x04; /* Read Remote Extended Features Complete */
4046
4047 if (lmp_esco_capable(hdev)) {
4048 events[5] |= 0x08; /* Synchronous Connection Complete */
4049 events[5] |= 0x10; /* Synchronous Connection Changed */
4050 }
4051
4052 if (lmp_sniffsubr_capable(hdev))
4053 events[5] |= 0x20; /* Sniff Subrating */
4054
4055 if (lmp_pause_enc_capable(hdev))
4056 events[5] |= 0x80; /* Encryption Key Refresh Complete */
4057
4058 if (lmp_ext_inq_capable(hdev))
4059 events[5] |= 0x40; /* Extended Inquiry Result */
4060
4061 if (lmp_no_flush_capable(hdev))
4062 events[7] |= 0x01; /* Enhanced Flush Complete */
4063
4064 if (lmp_lsto_capable(hdev))
4065 events[6] |= 0x80; /* Link Supervision Timeout Changed */
4066
4067 if (lmp_ssp_capable(hdev)) {
4068 events[6] |= 0x01; /* IO Capability Request */
4069 events[6] |= 0x02; /* IO Capability Response */
4070 events[6] |= 0x04; /* User Confirmation Request */
4071 events[6] |= 0x08; /* User Passkey Request */
4072 events[6] |= 0x10; /* Remote OOB Data Request */
4073 events[6] |= 0x20; /* Simple Pairing Complete */
4074 events[7] |= 0x04; /* User Passkey Notification */
4075 events[7] |= 0x08; /* Keypress Notification */
4076 events[7] |= 0x10; /* Remote Host Supported
4077 * Features Notification
4078 */
4079 }
4080
4081 if (lmp_le_capable(hdev))
4082 events[7] |= 0x20; /* LE Meta-Event */
4083
4084 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK,
4085 sizeof(events), events, HCI_CMD_TIMEOUT);
4086 }
4087
hci_read_stored_link_key_sync(struct hci_dev * hdev)4088 static int hci_read_stored_link_key_sync(struct hci_dev *hdev)
4089 {
4090 struct hci_cp_read_stored_link_key cp;
4091
4092 if (!(hdev->commands[6] & 0x20) ||
4093 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4094 return 0;
4095
4096 memset(&cp, 0, sizeof(cp));
4097 bacpy(&cp.bdaddr, BDADDR_ANY);
4098 cp.read_all = 0x01;
4099
4100 return __hci_cmd_sync_status(hdev, HCI_OP_READ_STORED_LINK_KEY,
4101 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4102 }
4103
hci_setup_link_policy_sync(struct hci_dev * hdev)4104 static int hci_setup_link_policy_sync(struct hci_dev *hdev)
4105 {
4106 struct hci_cp_write_def_link_policy cp;
4107 u16 link_policy = 0;
4108
4109 if (!(hdev->commands[5] & 0x10))
4110 return 0;
4111
4112 memset(&cp, 0, sizeof(cp));
4113
4114 if (lmp_rswitch_capable(hdev))
4115 link_policy |= HCI_LP_RSWITCH;
4116 if (lmp_hold_capable(hdev))
4117 link_policy |= HCI_LP_HOLD;
4118 if (lmp_sniff_capable(hdev))
4119 link_policy |= HCI_LP_SNIFF;
4120 if (lmp_park_capable(hdev))
4121 link_policy |= HCI_LP_PARK;
4122
4123 cp.policy = cpu_to_le16(link_policy);
4124
4125 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_LINK_POLICY,
4126 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4127 }
4128
hci_read_page_scan_activity_sync(struct hci_dev * hdev)4129 static int hci_read_page_scan_activity_sync(struct hci_dev *hdev)
4130 {
4131 if (!(hdev->commands[8] & 0x01))
4132 return 0;
4133
4134 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_ACTIVITY,
4135 0, NULL, HCI_CMD_TIMEOUT);
4136 }
4137
hci_read_def_err_data_reporting_sync(struct hci_dev * hdev)4138 static int hci_read_def_err_data_reporting_sync(struct hci_dev *hdev)
4139 {
4140 if (!(hdev->commands[18] & 0x04) ||
4141 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4142 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4143 return 0;
4144
4145 return __hci_cmd_sync_status(hdev, HCI_OP_READ_DEF_ERR_DATA_REPORTING,
4146 0, NULL, HCI_CMD_TIMEOUT);
4147 }
4148
hci_read_page_scan_type_sync(struct hci_dev * hdev)4149 static int hci_read_page_scan_type_sync(struct hci_dev *hdev)
4150 {
4151 /* Some older Broadcom based Bluetooth 1.2 controllers do not
4152 * support the Read Page Scan Type command. Check support for
4153 * this command in the bit mask of supported commands.
4154 */
4155 if (!(hdev->commands[13] & 0x01))
4156 return 0;
4157
4158 return __hci_cmd_sync_status(hdev, HCI_OP_READ_PAGE_SCAN_TYPE,
4159 0, NULL, HCI_CMD_TIMEOUT);
4160 }
4161
4162 /* Read features beyond page 1 if available */
hci_read_local_ext_features_all_sync(struct hci_dev * hdev)4163 static int hci_read_local_ext_features_all_sync(struct hci_dev *hdev)
4164 {
4165 u8 page;
4166 int err;
4167
4168 if (!lmp_ext_feat_capable(hdev))
4169 return 0;
4170
4171 for (page = 2; page < HCI_MAX_PAGES && page <= hdev->max_page;
4172 page++) {
4173 err = hci_read_local_ext_features_sync(hdev, page);
4174 if (err)
4175 return err;
4176 }
4177
4178 return 0;
4179 }
4180
4181 /* HCI Controller init stage 3 command sequence */
4182 static const struct hci_init_stage hci_init3[] = {
4183 /* HCI_OP_SET_EVENT_MASK */
4184 HCI_INIT(hci_set_event_mask_sync),
4185 /* HCI_OP_READ_STORED_LINK_KEY */
4186 HCI_INIT(hci_read_stored_link_key_sync),
4187 /* HCI_OP_WRITE_DEF_LINK_POLICY */
4188 HCI_INIT(hci_setup_link_policy_sync),
4189 /* HCI_OP_READ_PAGE_SCAN_ACTIVITY */
4190 HCI_INIT(hci_read_page_scan_activity_sync),
4191 /* HCI_OP_READ_DEF_ERR_DATA_REPORTING */
4192 HCI_INIT(hci_read_def_err_data_reporting_sync),
4193 /* HCI_OP_READ_PAGE_SCAN_TYPE */
4194 HCI_INIT(hci_read_page_scan_type_sync),
4195 /* HCI_OP_READ_LOCAL_EXT_FEATURES */
4196 HCI_INIT(hci_read_local_ext_features_all_sync),
4197 {}
4198 };
4199
hci_le_set_event_mask_sync(struct hci_dev * hdev)4200 static int hci_le_set_event_mask_sync(struct hci_dev *hdev)
4201 {
4202 u8 events[8];
4203
4204 if (!lmp_le_capable(hdev))
4205 return 0;
4206
4207 memset(events, 0, sizeof(events));
4208
4209 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
4210 events[0] |= 0x10; /* LE Long Term Key Request */
4211
4212 /* If controller supports the Connection Parameters Request
4213 * Link Layer Procedure, enable the corresponding event.
4214 */
4215 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
4216 /* LE Remote Connection Parameter Request */
4217 events[0] |= 0x20;
4218
4219 /* If the controller supports the Data Length Extension
4220 * feature, enable the corresponding event.
4221 */
4222 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
4223 events[0] |= 0x40; /* LE Data Length Change */
4224
4225 /* If the controller supports LL Privacy feature or LE Extended Adv,
4226 * enable the corresponding event.
4227 */
4228 if (use_enhanced_conn_complete(hdev))
4229 events[1] |= 0x02; /* LE Enhanced Connection Complete */
4230
4231 /* If the controller supports Extended Scanner Filter
4232 * Policies, enable the corresponding event.
4233 */
4234 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
4235 events[1] |= 0x04; /* LE Direct Advertising Report */
4236
4237 /* If the controller supports Channel Selection Algorithm #2
4238 * feature, enable the corresponding event.
4239 */
4240 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
4241 events[2] |= 0x08; /* LE Channel Selection Algorithm */
4242
4243 /* If the controller supports the LE Set Scan Enable command,
4244 * enable the corresponding advertising report event.
4245 */
4246 if (hdev->commands[26] & 0x08)
4247 events[0] |= 0x02; /* LE Advertising Report */
4248
4249 /* If the controller supports the LE Create Connection
4250 * command, enable the corresponding event.
4251 */
4252 if (hdev->commands[26] & 0x10)
4253 events[0] |= 0x01; /* LE Connection Complete */
4254
4255 /* If the controller supports the LE Connection Update
4256 * command, enable the corresponding event.
4257 */
4258 if (hdev->commands[27] & 0x04)
4259 events[0] |= 0x04; /* LE Connection Update Complete */
4260
4261 /* If the controller supports the LE Read Remote Used Features
4262 * command, enable the corresponding event.
4263 */
4264 if (hdev->commands[27] & 0x20)
4265 /* LE Read Remote Used Features Complete */
4266 events[0] |= 0x08;
4267
4268 /* If the controller supports the LE Read Local P-256
4269 * Public Key command, enable the corresponding event.
4270 */
4271 if (hdev->commands[34] & 0x02)
4272 /* LE Read Local P-256 Public Key Complete */
4273 events[0] |= 0x80;
4274
4275 /* If the controller supports the LE Generate DHKey
4276 * command, enable the corresponding event.
4277 */
4278 if (hdev->commands[34] & 0x04)
4279 events[1] |= 0x01; /* LE Generate DHKey Complete */
4280
4281 /* If the controller supports the LE Set Default PHY or
4282 * LE Set PHY commands, enable the corresponding event.
4283 */
4284 if (hdev->commands[35] & (0x20 | 0x40))
4285 events[1] |= 0x08; /* LE PHY Update Complete */
4286
4287 /* If the controller supports LE Set Extended Scan Parameters
4288 * and LE Set Extended Scan Enable commands, enable the
4289 * corresponding event.
4290 */
4291 if (use_ext_scan(hdev))
4292 events[1] |= 0x10; /* LE Extended Advertising Report */
4293
4294 /* If the controller supports the LE Extended Advertising
4295 * command, enable the corresponding event.
4296 */
4297 if (ext_adv_capable(hdev))
4298 events[2] |= 0x02; /* LE Advertising Set Terminated */
4299
4300 if (cis_capable(hdev)) {
4301 events[3] |= 0x01; /* LE CIS Established */
4302 if (cis_peripheral_capable(hdev))
4303 events[3] |= 0x02; /* LE CIS Request */
4304 }
4305
4306 if (bis_capable(hdev)) {
4307 events[1] |= 0x20; /* LE PA Report */
4308 events[1] |= 0x40; /* LE PA Sync Established */
4309 events[3] |= 0x04; /* LE Create BIG Complete */
4310 events[3] |= 0x08; /* LE Terminate BIG Complete */
4311 events[3] |= 0x10; /* LE BIG Sync Established */
4312 events[3] |= 0x20; /* LE BIG Sync Loss */
4313 events[4] |= 0x02; /* LE BIG Info Advertising Report */
4314 }
4315
4316 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EVENT_MASK,
4317 sizeof(events), events, HCI_CMD_TIMEOUT);
4318 }
4319
4320 /* Read LE Advertising Channel TX Power */
hci_le_read_adv_tx_power_sync(struct hci_dev * hdev)4321 static int hci_le_read_adv_tx_power_sync(struct hci_dev *hdev)
4322 {
4323 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
4324 /* HCI TS spec forbids mixing of legacy and extended
4325 * advertising commands wherein READ_ADV_TX_POWER is
4326 * also included. So do not call it if extended adv
4327 * is supported otherwise controller will return
4328 * COMMAND_DISALLOWED for extended commands.
4329 */
4330 return __hci_cmd_sync_status(hdev,
4331 HCI_OP_LE_READ_ADV_TX_POWER,
4332 0, NULL, HCI_CMD_TIMEOUT);
4333 }
4334
4335 return 0;
4336 }
4337
4338 /* Read LE Min/Max Tx Power*/
hci_le_read_tx_power_sync(struct hci_dev * hdev)4339 static int hci_le_read_tx_power_sync(struct hci_dev *hdev)
4340 {
4341 if (!(hdev->commands[38] & 0x80) ||
4342 test_bit(HCI_QUIRK_BROKEN_READ_TRANSMIT_POWER, &hdev->quirks))
4343 return 0;
4344
4345 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_TRANSMIT_POWER,
4346 0, NULL, HCI_CMD_TIMEOUT);
4347 }
4348
4349 /* Read LE Accept List Size */
hci_le_read_accept_list_size_sync(struct hci_dev * hdev)4350 static int hci_le_read_accept_list_size_sync(struct hci_dev *hdev)
4351 {
4352 if (!(hdev->commands[26] & 0x40))
4353 return 0;
4354
4355 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_ACCEPT_LIST_SIZE,
4356 0, NULL, HCI_CMD_TIMEOUT);
4357 }
4358
4359 /* Read LE Resolving List Size */
hci_le_read_resolv_list_size_sync(struct hci_dev * hdev)4360 static int hci_le_read_resolv_list_size_sync(struct hci_dev *hdev)
4361 {
4362 if (!(hdev->commands[34] & 0x40))
4363 return 0;
4364
4365 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
4366 0, NULL, HCI_CMD_TIMEOUT);
4367 }
4368
4369 /* Clear LE Resolving List */
hci_le_clear_resolv_list_sync(struct hci_dev * hdev)4370 static int hci_le_clear_resolv_list_sync(struct hci_dev *hdev)
4371 {
4372 if (!(hdev->commands[34] & 0x20))
4373 return 0;
4374
4375 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL,
4376 HCI_CMD_TIMEOUT);
4377 }
4378
4379 /* Set RPA timeout */
hci_le_set_rpa_timeout_sync(struct hci_dev * hdev)4380 static int hci_le_set_rpa_timeout_sync(struct hci_dev *hdev)
4381 {
4382 __le16 timeout = cpu_to_le16(hdev->rpa_timeout);
4383
4384 if (!(hdev->commands[35] & 0x04) ||
4385 test_bit(HCI_QUIRK_BROKEN_SET_RPA_TIMEOUT, &hdev->quirks))
4386 return 0;
4387
4388 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_RPA_TIMEOUT,
4389 sizeof(timeout), &timeout,
4390 HCI_CMD_TIMEOUT);
4391 }
4392
4393 /* Read LE Maximum Data Length */
hci_le_read_max_data_len_sync(struct hci_dev * hdev)4394 static int hci_le_read_max_data_len_sync(struct hci_dev *hdev)
4395 {
4396 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4397 return 0;
4398
4399 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL,
4400 HCI_CMD_TIMEOUT);
4401 }
4402
4403 /* Read LE Suggested Default Data Length */
hci_le_read_def_data_len_sync(struct hci_dev * hdev)4404 static int hci_le_read_def_data_len_sync(struct hci_dev *hdev)
4405 {
4406 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4407 return 0;
4408
4409 return __hci_cmd_sync_status(hdev, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL,
4410 HCI_CMD_TIMEOUT);
4411 }
4412
4413 /* Read LE Number of Supported Advertising Sets */
hci_le_read_num_support_adv_sets_sync(struct hci_dev * hdev)4414 static int hci_le_read_num_support_adv_sets_sync(struct hci_dev *hdev)
4415 {
4416 if (!ext_adv_capable(hdev))
4417 return 0;
4418
4419 return __hci_cmd_sync_status(hdev,
4420 HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
4421 0, NULL, HCI_CMD_TIMEOUT);
4422 }
4423
4424 /* Write LE Host Supported */
hci_set_le_support_sync(struct hci_dev * hdev)4425 static int hci_set_le_support_sync(struct hci_dev *hdev)
4426 {
4427 struct hci_cp_write_le_host_supported cp;
4428
4429 /* LE-only devices do not support explicit enablement */
4430 if (!lmp_bredr_capable(hdev))
4431 return 0;
4432
4433 memset(&cp, 0, sizeof(cp));
4434
4435 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
4436 cp.le = 0x01;
4437 cp.simul = 0x00;
4438 }
4439
4440 if (cp.le == lmp_host_le_capable(hdev))
4441 return 0;
4442
4443 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_LE_HOST_SUPPORTED,
4444 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4445 }
4446
4447 /* LE Set Host Feature */
hci_le_set_host_feature_sync(struct hci_dev * hdev)4448 static int hci_le_set_host_feature_sync(struct hci_dev *hdev)
4449 {
4450 struct hci_cp_le_set_host_feature cp;
4451
4452 if (!cis_capable(hdev))
4453 return 0;
4454
4455 memset(&cp, 0, sizeof(cp));
4456
4457 /* Connected Isochronous Channels (Host Support) */
4458 cp.bit_number = 32;
4459 cp.bit_value = 1;
4460
4461 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_HOST_FEATURE,
4462 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4463 }
4464
4465 /* LE Controller init stage 3 command sequence */
4466 static const struct hci_init_stage le_init3[] = {
4467 /* HCI_OP_LE_SET_EVENT_MASK */
4468 HCI_INIT(hci_le_set_event_mask_sync),
4469 /* HCI_OP_LE_READ_ADV_TX_POWER */
4470 HCI_INIT(hci_le_read_adv_tx_power_sync),
4471 /* HCI_OP_LE_READ_TRANSMIT_POWER */
4472 HCI_INIT(hci_le_read_tx_power_sync),
4473 /* HCI_OP_LE_READ_ACCEPT_LIST_SIZE */
4474 HCI_INIT(hci_le_read_accept_list_size_sync),
4475 /* HCI_OP_LE_CLEAR_ACCEPT_LIST */
4476 HCI_INIT(hci_le_clear_accept_list_sync),
4477 /* HCI_OP_LE_READ_RESOLV_LIST_SIZE */
4478 HCI_INIT(hci_le_read_resolv_list_size_sync),
4479 /* HCI_OP_LE_CLEAR_RESOLV_LIST */
4480 HCI_INIT(hci_le_clear_resolv_list_sync),
4481 /* HCI_OP_LE_SET_RPA_TIMEOUT */
4482 HCI_INIT(hci_le_set_rpa_timeout_sync),
4483 /* HCI_OP_LE_READ_MAX_DATA_LEN */
4484 HCI_INIT(hci_le_read_max_data_len_sync),
4485 /* HCI_OP_LE_READ_DEF_DATA_LEN */
4486 HCI_INIT(hci_le_read_def_data_len_sync),
4487 /* HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS */
4488 HCI_INIT(hci_le_read_num_support_adv_sets_sync),
4489 /* HCI_OP_WRITE_LE_HOST_SUPPORTED */
4490 HCI_INIT(hci_set_le_support_sync),
4491 /* HCI_OP_LE_SET_HOST_FEATURE */
4492 HCI_INIT(hci_le_set_host_feature_sync),
4493 {}
4494 };
4495
hci_init3_sync(struct hci_dev * hdev)4496 static int hci_init3_sync(struct hci_dev *hdev)
4497 {
4498 int err;
4499
4500 bt_dev_dbg(hdev, "");
4501
4502 err = hci_init_stage_sync(hdev, hci_init3);
4503 if (err)
4504 return err;
4505
4506 if (lmp_le_capable(hdev))
4507 return hci_init_stage_sync(hdev, le_init3);
4508
4509 return 0;
4510 }
4511
hci_delete_stored_link_key_sync(struct hci_dev * hdev)4512 static int hci_delete_stored_link_key_sync(struct hci_dev *hdev)
4513 {
4514 struct hci_cp_delete_stored_link_key cp;
4515
4516 /* Some Broadcom based Bluetooth controllers do not support the
4517 * Delete Stored Link Key command. They are clearly indicating its
4518 * absence in the bit mask of supported commands.
4519 *
4520 * Check the supported commands and only if the command is marked
4521 * as supported send it. If not supported assume that the controller
4522 * does not have actual support for stored link keys which makes this
4523 * command redundant anyway.
4524 *
4525 * Some controllers indicate that they support handling deleting
4526 * stored link keys, but they don't. The quirk lets a driver
4527 * just disable this command.
4528 */
4529 if (!(hdev->commands[6] & 0x80) ||
4530 test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks))
4531 return 0;
4532
4533 memset(&cp, 0, sizeof(cp));
4534 bacpy(&cp.bdaddr, BDADDR_ANY);
4535 cp.delete_all = 0x01;
4536
4537 return __hci_cmd_sync_status(hdev, HCI_OP_DELETE_STORED_LINK_KEY,
4538 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4539 }
4540
hci_set_event_mask_page_2_sync(struct hci_dev * hdev)4541 static int hci_set_event_mask_page_2_sync(struct hci_dev *hdev)
4542 {
4543 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
4544 bool changed = false;
4545
4546 /* Set event mask page 2 if the HCI command for it is supported */
4547 if (!(hdev->commands[22] & 0x04))
4548 return 0;
4549
4550 /* If Connectionless Peripheral Broadcast central role is supported
4551 * enable all necessary events for it.
4552 */
4553 if (lmp_cpb_central_capable(hdev)) {
4554 events[1] |= 0x40; /* Triggered Clock Capture */
4555 events[1] |= 0x80; /* Synchronization Train Complete */
4556 events[2] |= 0x08; /* Truncated Page Complete */
4557 events[2] |= 0x20; /* CPB Channel Map Change */
4558 changed = true;
4559 }
4560
4561 /* If Connectionless Peripheral Broadcast peripheral role is supported
4562 * enable all necessary events for it.
4563 */
4564 if (lmp_cpb_peripheral_capable(hdev)) {
4565 events[2] |= 0x01; /* Synchronization Train Received */
4566 events[2] |= 0x02; /* CPB Receive */
4567 events[2] |= 0x04; /* CPB Timeout */
4568 events[2] |= 0x10; /* Peripheral Page Response Timeout */
4569 changed = true;
4570 }
4571
4572 /* Enable Authenticated Payload Timeout Expired event if supported */
4573 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
4574 events[2] |= 0x80;
4575 changed = true;
4576 }
4577
4578 /* Some Broadcom based controllers indicate support for Set Event
4579 * Mask Page 2 command, but then actually do not support it. Since
4580 * the default value is all bits set to zero, the command is only
4581 * required if the event mask has to be changed. In case no change
4582 * to the event mask is needed, skip this command.
4583 */
4584 if (!changed)
4585 return 0;
4586
4587 return __hci_cmd_sync_status(hdev, HCI_OP_SET_EVENT_MASK_PAGE_2,
4588 sizeof(events), events, HCI_CMD_TIMEOUT);
4589 }
4590
4591 /* Read local codec list if the HCI command is supported */
hci_read_local_codecs_sync(struct hci_dev * hdev)4592 static int hci_read_local_codecs_sync(struct hci_dev *hdev)
4593 {
4594 if (hdev->commands[45] & 0x04)
4595 hci_read_supported_codecs_v2(hdev);
4596 else if (hdev->commands[29] & 0x20)
4597 hci_read_supported_codecs(hdev);
4598
4599 return 0;
4600 }
4601
4602 /* Read local pairing options if the HCI command is supported */
hci_read_local_pairing_opts_sync(struct hci_dev * hdev)4603 static int hci_read_local_pairing_opts_sync(struct hci_dev *hdev)
4604 {
4605 if (!(hdev->commands[41] & 0x08))
4606 return 0;
4607
4608 return __hci_cmd_sync_status(hdev, HCI_OP_READ_LOCAL_PAIRING_OPTS,
4609 0, NULL, HCI_CMD_TIMEOUT);
4610 }
4611
4612 /* Get MWS transport configuration if the HCI command is supported */
hci_get_mws_transport_config_sync(struct hci_dev * hdev)4613 static int hci_get_mws_transport_config_sync(struct hci_dev *hdev)
4614 {
4615 if (!mws_transport_config_capable(hdev))
4616 return 0;
4617
4618 return __hci_cmd_sync_status(hdev, HCI_OP_GET_MWS_TRANSPORT_CONFIG,
4619 0, NULL, HCI_CMD_TIMEOUT);
4620 }
4621
4622 /* Check for Synchronization Train support */
hci_read_sync_train_params_sync(struct hci_dev * hdev)4623 static int hci_read_sync_train_params_sync(struct hci_dev *hdev)
4624 {
4625 if (!lmp_sync_train_capable(hdev))
4626 return 0;
4627
4628 return __hci_cmd_sync_status(hdev, HCI_OP_READ_SYNC_TRAIN_PARAMS,
4629 0, NULL, HCI_CMD_TIMEOUT);
4630 }
4631
4632 /* Enable Secure Connections if supported and configured */
hci_write_sc_support_1_sync(struct hci_dev * hdev)4633 static int hci_write_sc_support_1_sync(struct hci_dev *hdev)
4634 {
4635 u8 support = 0x01;
4636
4637 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED) ||
4638 !bredr_sc_enabled(hdev))
4639 return 0;
4640
4641 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_SC_SUPPORT,
4642 sizeof(support), &support,
4643 HCI_CMD_TIMEOUT);
4644 }
4645
4646 /* Set erroneous data reporting if supported to the wideband speech
4647 * setting value
4648 */
hci_set_err_data_report_sync(struct hci_dev * hdev)4649 static int hci_set_err_data_report_sync(struct hci_dev *hdev)
4650 {
4651 struct hci_cp_write_def_err_data_reporting cp;
4652 bool enabled = hci_dev_test_flag(hdev, HCI_WIDEBAND_SPEECH_ENABLED);
4653
4654 if (!(hdev->commands[18] & 0x08) ||
4655 !(hdev->features[0][6] & LMP_ERR_DATA_REPORTING) ||
4656 test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
4657 return 0;
4658
4659 if (enabled == hdev->err_data_reporting)
4660 return 0;
4661
4662 memset(&cp, 0, sizeof(cp));
4663 cp.err_data_reporting = enabled ? ERR_DATA_REPORTING_ENABLED :
4664 ERR_DATA_REPORTING_DISABLED;
4665
4666 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
4667 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4668 }
4669
4670 static const struct hci_init_stage hci_init4[] = {
4671 /* HCI_OP_DELETE_STORED_LINK_KEY */
4672 HCI_INIT(hci_delete_stored_link_key_sync),
4673 /* HCI_OP_SET_EVENT_MASK_PAGE_2 */
4674 HCI_INIT(hci_set_event_mask_page_2_sync),
4675 /* HCI_OP_READ_LOCAL_CODECS */
4676 HCI_INIT(hci_read_local_codecs_sync),
4677 /* HCI_OP_READ_LOCAL_PAIRING_OPTS */
4678 HCI_INIT(hci_read_local_pairing_opts_sync),
4679 /* HCI_OP_GET_MWS_TRANSPORT_CONFIG */
4680 HCI_INIT(hci_get_mws_transport_config_sync),
4681 /* HCI_OP_READ_SYNC_TRAIN_PARAMS */
4682 HCI_INIT(hci_read_sync_train_params_sync),
4683 /* HCI_OP_WRITE_SC_SUPPORT */
4684 HCI_INIT(hci_write_sc_support_1_sync),
4685 /* HCI_OP_WRITE_DEF_ERR_DATA_REPORTING */
4686 HCI_INIT(hci_set_err_data_report_sync),
4687 {}
4688 };
4689
4690 /* Set Suggested Default Data Length to maximum if supported */
hci_le_set_write_def_data_len_sync(struct hci_dev * hdev)4691 static int hci_le_set_write_def_data_len_sync(struct hci_dev *hdev)
4692 {
4693 struct hci_cp_le_write_def_data_len cp;
4694
4695 if (!(hdev->le_features[0] & HCI_LE_DATA_LEN_EXT))
4696 return 0;
4697
4698 memset(&cp, 0, sizeof(cp));
4699 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
4700 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
4701
4702 return __hci_cmd_sync_status(hdev, HCI_OP_LE_WRITE_DEF_DATA_LEN,
4703 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4704 }
4705
4706 /* Set Default PHY parameters if command is supported, enables all supported
4707 * PHYs according to the LE Features bits.
4708 */
hci_le_set_default_phy_sync(struct hci_dev * hdev)4709 static int hci_le_set_default_phy_sync(struct hci_dev *hdev)
4710 {
4711 struct hci_cp_le_set_default_phy cp;
4712
4713 if (!(hdev->commands[35] & 0x20)) {
4714 /* If the command is not supported it means only 1M PHY is
4715 * supported.
4716 */
4717 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
4718 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
4719 return 0;
4720 }
4721
4722 memset(&cp, 0, sizeof(cp));
4723 cp.all_phys = 0x00;
4724 cp.tx_phys = HCI_LE_SET_PHY_1M;
4725 cp.rx_phys = HCI_LE_SET_PHY_1M;
4726
4727 /* Enables 2M PHY if supported */
4728 if (le_2m_capable(hdev)) {
4729 cp.tx_phys |= HCI_LE_SET_PHY_2M;
4730 cp.rx_phys |= HCI_LE_SET_PHY_2M;
4731 }
4732
4733 /* Enables Coded PHY if supported */
4734 if (le_coded_capable(hdev)) {
4735 cp.tx_phys |= HCI_LE_SET_PHY_CODED;
4736 cp.rx_phys |= HCI_LE_SET_PHY_CODED;
4737 }
4738
4739 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_DEFAULT_PHY,
4740 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
4741 }
4742
4743 static const struct hci_init_stage le_init4[] = {
4744 /* HCI_OP_LE_WRITE_DEF_DATA_LEN */
4745 HCI_INIT(hci_le_set_write_def_data_len_sync),
4746 /* HCI_OP_LE_SET_DEFAULT_PHY */
4747 HCI_INIT(hci_le_set_default_phy_sync),
4748 {}
4749 };
4750
hci_init4_sync(struct hci_dev * hdev)4751 static int hci_init4_sync(struct hci_dev *hdev)
4752 {
4753 int err;
4754
4755 bt_dev_dbg(hdev, "");
4756
4757 err = hci_init_stage_sync(hdev, hci_init4);
4758 if (err)
4759 return err;
4760
4761 if (lmp_le_capable(hdev))
4762 return hci_init_stage_sync(hdev, le_init4);
4763
4764 return 0;
4765 }
4766
hci_init_sync(struct hci_dev * hdev)4767 static int hci_init_sync(struct hci_dev *hdev)
4768 {
4769 int err;
4770
4771 err = hci_init1_sync(hdev);
4772 if (err < 0)
4773 return err;
4774
4775 if (hci_dev_test_flag(hdev, HCI_SETUP))
4776 hci_debugfs_create_basic(hdev);
4777
4778 err = hci_init2_sync(hdev);
4779 if (err < 0)
4780 return err;
4781
4782 err = hci_init3_sync(hdev);
4783 if (err < 0)
4784 return err;
4785
4786 err = hci_init4_sync(hdev);
4787 if (err < 0)
4788 return err;
4789
4790 /* This function is only called when the controller is actually in
4791 * configured state. When the controller is marked as unconfigured,
4792 * this initialization procedure is not run.
4793 *
4794 * It means that it is possible that a controller runs through its
4795 * setup phase and then discovers missing settings. If that is the
4796 * case, then this function will not be called. It then will only
4797 * be called during the config phase.
4798 *
4799 * So only when in setup phase or config phase, create the debugfs
4800 * entries and register the SMP channels.
4801 */
4802 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4803 !hci_dev_test_flag(hdev, HCI_CONFIG))
4804 return 0;
4805
4806 if (hci_dev_test_and_set_flag(hdev, HCI_DEBUGFS_CREATED))
4807 return 0;
4808
4809 hci_debugfs_create_common(hdev);
4810
4811 if (lmp_bredr_capable(hdev))
4812 hci_debugfs_create_bredr(hdev);
4813
4814 if (lmp_le_capable(hdev))
4815 hci_debugfs_create_le(hdev);
4816
4817 return 0;
4818 }
4819
4820 #define HCI_QUIRK_BROKEN(_quirk, _desc) { HCI_QUIRK_BROKEN_##_quirk, _desc }
4821
4822 static const struct {
4823 unsigned long quirk;
4824 const char *desc;
4825 } hci_broken_table[] = {
4826 HCI_QUIRK_BROKEN(LOCAL_COMMANDS,
4827 "HCI Read Local Supported Commands not supported"),
4828 HCI_QUIRK_BROKEN(STORED_LINK_KEY,
4829 "HCI Delete Stored Link Key command is advertised, "
4830 "but not supported."),
4831 HCI_QUIRK_BROKEN(ERR_DATA_REPORTING,
4832 "HCI Read Default Erroneous Data Reporting command is "
4833 "advertised, but not supported."),
4834 HCI_QUIRK_BROKEN(READ_TRANSMIT_POWER,
4835 "HCI Read Transmit Power Level command is advertised, "
4836 "but not supported."),
4837 HCI_QUIRK_BROKEN(FILTER_CLEAR_ALL,
4838 "HCI Set Event Filter command not supported."),
4839 HCI_QUIRK_BROKEN(ENHANCED_SETUP_SYNC_CONN,
4840 "HCI Enhanced Setup Synchronous Connection command is "
4841 "advertised, but not supported."),
4842 HCI_QUIRK_BROKEN(SET_RPA_TIMEOUT,
4843 "HCI LE Set Random Private Address Timeout command is "
4844 "advertised, but not supported."),
4845 HCI_QUIRK_BROKEN(LE_CODED,
4846 "HCI LE Coded PHY feature bit is set, "
4847 "but its usage is not supported.")
4848 };
4849
4850 /* This function handles hdev setup stage:
4851 *
4852 * Calls hdev->setup
4853 * Setup address if HCI_QUIRK_USE_BDADDR_PROPERTY is set.
4854 */
hci_dev_setup_sync(struct hci_dev * hdev)4855 static int hci_dev_setup_sync(struct hci_dev *hdev)
4856 {
4857 int ret = 0;
4858 bool invalid_bdaddr;
4859 size_t i;
4860
4861 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4862 !test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks))
4863 return 0;
4864
4865 bt_dev_dbg(hdev, "");
4866
4867 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
4868
4869 if (hdev->setup)
4870 ret = hdev->setup(hdev);
4871
4872 for (i = 0; i < ARRAY_SIZE(hci_broken_table); i++) {
4873 if (test_bit(hci_broken_table[i].quirk, &hdev->quirks))
4874 bt_dev_warn(hdev, "%s", hci_broken_table[i].desc);
4875 }
4876
4877 /* The transport driver can set the quirk to mark the
4878 * BD_ADDR invalid before creating the HCI device or in
4879 * its setup callback.
4880 */
4881 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks) ||
4882 test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
4883 if (!ret) {
4884 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks) &&
4885 !bacmp(&hdev->public_addr, BDADDR_ANY))
4886 hci_dev_get_bd_addr_from_property(hdev);
4887
4888 if (invalid_bdaddr && bacmp(&hdev->public_addr, BDADDR_ANY) &&
4889 hdev->set_bdaddr) {
4890 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4891 if (!ret)
4892 invalid_bdaddr = false;
4893 }
4894 }
4895
4896 /* The transport driver can set these quirks before
4897 * creating the HCI device or in its setup callback.
4898 *
4899 * For the invalid BD_ADDR quirk it is possible that
4900 * it becomes a valid address if the bootloader does
4901 * provide it (see above).
4902 *
4903 * In case any of them is set, the controller has to
4904 * start up as unconfigured.
4905 */
4906 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
4907 invalid_bdaddr)
4908 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
4909
4910 /* For an unconfigured controller it is required to
4911 * read at least the version information provided by
4912 * the Read Local Version Information command.
4913 *
4914 * If the set_bdaddr driver callback is provided, then
4915 * also the original Bluetooth public device address
4916 * will be read using the Read BD Address command.
4917 */
4918 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
4919 return hci_unconf_init_sync(hdev);
4920
4921 return ret;
4922 }
4923
4924 /* This function handles hdev init stage:
4925 *
4926 * Calls hci_dev_setup_sync to perform setup stage
4927 * Calls hci_init_sync to perform HCI command init sequence
4928 */
hci_dev_init_sync(struct hci_dev * hdev)4929 static int hci_dev_init_sync(struct hci_dev *hdev)
4930 {
4931 int ret;
4932
4933 bt_dev_dbg(hdev, "");
4934
4935 atomic_set(&hdev->cmd_cnt, 1);
4936 set_bit(HCI_INIT, &hdev->flags);
4937
4938 ret = hci_dev_setup_sync(hdev);
4939
4940 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
4941 /* If public address change is configured, ensure that
4942 * the address gets programmed. If the driver does not
4943 * support changing the public address, fail the power
4944 * on procedure.
4945 */
4946 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
4947 hdev->set_bdaddr)
4948 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
4949 else
4950 ret = -EADDRNOTAVAIL;
4951 }
4952
4953 if (!ret) {
4954 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
4955 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4956 ret = hci_init_sync(hdev);
4957 if (!ret && hdev->post_init)
4958 ret = hdev->post_init(hdev);
4959 }
4960 }
4961
4962 /* If the HCI Reset command is clearing all diagnostic settings,
4963 * then they need to be reprogrammed after the init procedure
4964 * completed.
4965 */
4966 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
4967 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4968 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
4969 ret = hdev->set_diag(hdev, true);
4970
4971 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4972 msft_do_open(hdev);
4973 aosp_do_open(hdev);
4974 }
4975
4976 clear_bit(HCI_INIT, &hdev->flags);
4977
4978 return ret;
4979 }
4980
hci_dev_open_sync(struct hci_dev * hdev)4981 int hci_dev_open_sync(struct hci_dev *hdev)
4982 {
4983 int ret;
4984
4985 bt_dev_dbg(hdev, "");
4986
4987 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
4988 ret = -ENODEV;
4989 goto done;
4990 }
4991
4992 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
4993 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
4994 /* Check for rfkill but allow the HCI setup stage to
4995 * proceed (which in itself doesn't cause any RF activity).
4996 */
4997 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
4998 ret = -ERFKILL;
4999 goto done;
5000 }
5001
5002 /* Check for valid public address or a configured static
5003 * random address, but let the HCI setup proceed to
5004 * be able to determine if there is a public address
5005 * or not.
5006 *
5007 * In case of user channel usage, it is not important
5008 * if a public address or static random address is
5009 * available.
5010 */
5011 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5012 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5013 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
5014 ret = -EADDRNOTAVAIL;
5015 goto done;
5016 }
5017 }
5018
5019 if (test_bit(HCI_UP, &hdev->flags)) {
5020 ret = -EALREADY;
5021 goto done;
5022 }
5023
5024 if (hdev->open(hdev)) {
5025 ret = -EIO;
5026 goto done;
5027 }
5028
5029 hci_devcd_reset(hdev);
5030
5031 set_bit(HCI_RUNNING, &hdev->flags);
5032 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
5033
5034 ret = hci_dev_init_sync(hdev);
5035 if (!ret) {
5036 hci_dev_hold(hdev);
5037 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
5038 hci_adv_instances_set_rpa_expired(hdev, true);
5039 set_bit(HCI_UP, &hdev->flags);
5040 hci_sock_dev_event(hdev, HCI_DEV_UP);
5041 hci_leds_update_powered(hdev, true);
5042 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
5043 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
5044 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
5045 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5046 hci_dev_test_flag(hdev, HCI_MGMT)) {
5047 ret = hci_powered_update_sync(hdev);
5048 mgmt_power_on(hdev, ret);
5049 }
5050 } else {
5051 /* Init failed, cleanup */
5052 flush_work(&hdev->tx_work);
5053
5054 /* Since hci_rx_work() is possible to awake new cmd_work
5055 * it should be flushed first to avoid unexpected call of
5056 * hci_cmd_work()
5057 */
5058 flush_work(&hdev->rx_work);
5059 flush_work(&hdev->cmd_work);
5060
5061 skb_queue_purge(&hdev->cmd_q);
5062 skb_queue_purge(&hdev->rx_q);
5063
5064 if (hdev->flush)
5065 hdev->flush(hdev);
5066
5067 if (hdev->sent_cmd) {
5068 cancel_delayed_work_sync(&hdev->cmd_timer);
5069 kfree_skb(hdev->sent_cmd);
5070 hdev->sent_cmd = NULL;
5071 }
5072
5073 if (hdev->req_skb) {
5074 kfree_skb(hdev->req_skb);
5075 hdev->req_skb = NULL;
5076 }
5077
5078 clear_bit(HCI_RUNNING, &hdev->flags);
5079 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5080
5081 hdev->close(hdev);
5082 hdev->flags &= BIT(HCI_RAW);
5083 }
5084
5085 done:
5086 return ret;
5087 }
5088
5089 /* This function requires the caller holds hdev->lock */
hci_pend_le_actions_clear(struct hci_dev * hdev)5090 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
5091 {
5092 struct hci_conn_params *p;
5093
5094 list_for_each_entry(p, &hdev->le_conn_params, list) {
5095 hci_pend_le_list_del_init(p);
5096 if (p->conn) {
5097 hci_conn_drop(p->conn);
5098 hci_conn_put(p->conn);
5099 p->conn = NULL;
5100 }
5101 }
5102
5103 BT_DBG("All LE pending actions cleared");
5104 }
5105
hci_dev_shutdown(struct hci_dev * hdev)5106 static int hci_dev_shutdown(struct hci_dev *hdev)
5107 {
5108 int err = 0;
5109 /* Similar to how we first do setup and then set the exclusive access
5110 * bit for userspace, we must first unset userchannel and then clean up.
5111 * Otherwise, the kernel can't properly use the hci channel to clean up
5112 * the controller (some shutdown routines require sending additional
5113 * commands to the controller for example).
5114 */
5115 bool was_userchannel =
5116 hci_dev_test_and_clear_flag(hdev, HCI_USER_CHANNEL);
5117
5118 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
5119 test_bit(HCI_UP, &hdev->flags)) {
5120 /* Execute vendor specific shutdown routine */
5121 if (hdev->shutdown)
5122 err = hdev->shutdown(hdev);
5123 }
5124
5125 if (was_userchannel)
5126 hci_dev_set_flag(hdev, HCI_USER_CHANNEL);
5127
5128 return err;
5129 }
5130
hci_dev_close_sync(struct hci_dev * hdev)5131 int hci_dev_close_sync(struct hci_dev *hdev)
5132 {
5133 bool auto_off;
5134 int err = 0;
5135
5136 bt_dev_dbg(hdev, "");
5137
5138 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
5139 disable_delayed_work(&hdev->power_off);
5140 disable_delayed_work(&hdev->ncmd_timer);
5141 disable_delayed_work(&hdev->le_scan_disable);
5142 } else {
5143 cancel_delayed_work(&hdev->power_off);
5144 cancel_delayed_work(&hdev->ncmd_timer);
5145 cancel_delayed_work(&hdev->le_scan_disable);
5146 }
5147
5148 hci_cmd_sync_cancel_sync(hdev, ENODEV);
5149
5150 cancel_interleave_scan(hdev);
5151
5152 if (hdev->adv_instance_timeout) {
5153 cancel_delayed_work_sync(&hdev->adv_instance_expire);
5154 hdev->adv_instance_timeout = 0;
5155 }
5156
5157 err = hci_dev_shutdown(hdev);
5158
5159 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
5160 cancel_delayed_work_sync(&hdev->cmd_timer);
5161 return err;
5162 }
5163
5164 hci_leds_update_powered(hdev, false);
5165
5166 /* Flush RX and TX works */
5167 flush_work(&hdev->tx_work);
5168 flush_work(&hdev->rx_work);
5169
5170 if (hdev->discov_timeout > 0) {
5171 hdev->discov_timeout = 0;
5172 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
5173 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
5174 }
5175
5176 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
5177 cancel_delayed_work(&hdev->service_cache);
5178
5179 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
5180 struct adv_info *adv_instance;
5181
5182 cancel_delayed_work_sync(&hdev->rpa_expired);
5183
5184 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
5185 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
5186 }
5187
5188 /* Avoid potential lockdep warnings from the *_flush() calls by
5189 * ensuring the workqueue is empty up front.
5190 */
5191 drain_workqueue(hdev->workqueue);
5192
5193 hci_dev_lock(hdev);
5194
5195 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5196
5197 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
5198
5199 if (!auto_off && !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
5200 hci_dev_test_flag(hdev, HCI_MGMT))
5201 __mgmt_power_off(hdev);
5202
5203 hci_inquiry_cache_flush(hdev);
5204 hci_pend_le_actions_clear(hdev);
5205 hci_conn_hash_flush(hdev);
5206 /* Prevent data races on hdev->smp_data or hdev->smp_bredr_data */
5207 smp_unregister(hdev);
5208 hci_dev_unlock(hdev);
5209
5210 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
5211
5212 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
5213 aosp_do_close(hdev);
5214 msft_do_close(hdev);
5215 }
5216
5217 if (hdev->flush)
5218 hdev->flush(hdev);
5219
5220 /* Reset device */
5221 skb_queue_purge(&hdev->cmd_q);
5222 atomic_set(&hdev->cmd_cnt, 1);
5223 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
5224 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
5225 set_bit(HCI_INIT, &hdev->flags);
5226 hci_reset_sync(hdev);
5227 clear_bit(HCI_INIT, &hdev->flags);
5228 }
5229
5230 /* flush cmd work */
5231 flush_work(&hdev->cmd_work);
5232
5233 /* Drop queues */
5234 skb_queue_purge(&hdev->rx_q);
5235 skb_queue_purge(&hdev->cmd_q);
5236 skb_queue_purge(&hdev->raw_q);
5237
5238 /* Drop last sent command */
5239 if (hdev->sent_cmd) {
5240 cancel_delayed_work_sync(&hdev->cmd_timer);
5241 kfree_skb(hdev->sent_cmd);
5242 hdev->sent_cmd = NULL;
5243 }
5244
5245 /* Drop last request */
5246 if (hdev->req_skb) {
5247 kfree_skb(hdev->req_skb);
5248 hdev->req_skb = NULL;
5249 }
5250
5251 clear_bit(HCI_RUNNING, &hdev->flags);
5252 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
5253
5254 /* After this point our queues are empty and no tasks are scheduled. */
5255 hdev->close(hdev);
5256
5257 /* Clear flags */
5258 hdev->flags &= BIT(HCI_RAW);
5259 hci_dev_clear_volatile_flags(hdev);
5260
5261 memset(hdev->eir, 0, sizeof(hdev->eir));
5262 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
5263 bacpy(&hdev->random_addr, BDADDR_ANY);
5264 hci_codec_list_clear(&hdev->local_codecs);
5265
5266 hci_dev_put(hdev);
5267 return err;
5268 }
5269
5270 /* This function perform power on HCI command sequence as follows:
5271 *
5272 * If controller is already up (HCI_UP) performs hci_powered_update_sync
5273 * sequence otherwise run hci_dev_open_sync which will follow with
5274 * hci_powered_update_sync after the init sequence is completed.
5275 */
hci_power_on_sync(struct hci_dev * hdev)5276 static int hci_power_on_sync(struct hci_dev *hdev)
5277 {
5278 int err;
5279
5280 if (test_bit(HCI_UP, &hdev->flags) &&
5281 hci_dev_test_flag(hdev, HCI_MGMT) &&
5282 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
5283 cancel_delayed_work(&hdev->power_off);
5284 return hci_powered_update_sync(hdev);
5285 }
5286
5287 err = hci_dev_open_sync(hdev);
5288 if (err < 0)
5289 return err;
5290
5291 /* During the HCI setup phase, a few error conditions are
5292 * ignored and they need to be checked now. If they are still
5293 * valid, it is important to return the device back off.
5294 */
5295 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
5296 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
5297 (!bacmp(&hdev->bdaddr, BDADDR_ANY) &&
5298 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
5299 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
5300 hci_dev_close_sync(hdev);
5301 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
5302 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
5303 HCI_AUTO_OFF_TIMEOUT);
5304 }
5305
5306 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
5307 /* For unconfigured devices, set the HCI_RAW flag
5308 * so that userspace can easily identify them.
5309 */
5310 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5311 set_bit(HCI_RAW, &hdev->flags);
5312
5313 /* For fully configured devices, this will send
5314 * the Index Added event. For unconfigured devices,
5315 * it will send Unconfigued Index Added event.
5316 *
5317 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
5318 * and no event will be send.
5319 */
5320 mgmt_index_added(hdev);
5321 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
5322 /* When the controller is now configured, then it
5323 * is important to clear the HCI_RAW flag.
5324 */
5325 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
5326 clear_bit(HCI_RAW, &hdev->flags);
5327
5328 /* Powering on the controller with HCI_CONFIG set only
5329 * happens with the transition from unconfigured to
5330 * configured. This will send the Index Added event.
5331 */
5332 mgmt_index_added(hdev);
5333 }
5334
5335 return 0;
5336 }
5337
hci_remote_name_cancel_sync(struct hci_dev * hdev,bdaddr_t * addr)5338 static int hci_remote_name_cancel_sync(struct hci_dev *hdev, bdaddr_t *addr)
5339 {
5340 struct hci_cp_remote_name_req_cancel cp;
5341
5342 memset(&cp, 0, sizeof(cp));
5343 bacpy(&cp.bdaddr, addr);
5344
5345 return __hci_cmd_sync_status(hdev, HCI_OP_REMOTE_NAME_REQ_CANCEL,
5346 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5347 }
5348
hci_stop_discovery_sync(struct hci_dev * hdev)5349 int hci_stop_discovery_sync(struct hci_dev *hdev)
5350 {
5351 struct discovery_state *d = &hdev->discovery;
5352 struct inquiry_entry *e;
5353 int err;
5354
5355 bt_dev_dbg(hdev, "state %u", hdev->discovery.state);
5356
5357 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
5358 if (test_bit(HCI_INQUIRY, &hdev->flags)) {
5359 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL,
5360 0, NULL, HCI_CMD_TIMEOUT);
5361 if (err)
5362 return err;
5363 }
5364
5365 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
5366 cancel_delayed_work(&hdev->le_scan_disable);
5367
5368 err = hci_scan_disable_sync(hdev);
5369 if (err)
5370 return err;
5371 }
5372
5373 } else {
5374 err = hci_scan_disable_sync(hdev);
5375 if (err)
5376 return err;
5377 }
5378
5379 /* Resume advertising if it was paused */
5380 if (use_ll_privacy(hdev))
5381 hci_resume_advertising_sync(hdev);
5382
5383 /* No further actions needed for LE-only discovery */
5384 if (d->type == DISCOV_TYPE_LE)
5385 return 0;
5386
5387 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
5388 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
5389 NAME_PENDING);
5390 if (!e)
5391 return 0;
5392
5393 /* Ignore cancel errors since it should interfere with stopping
5394 * of the discovery.
5395 */
5396 hci_remote_name_cancel_sync(hdev, &e->data.bdaddr);
5397 }
5398
5399 return 0;
5400 }
5401
hci_disconnect_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5402 static int hci_disconnect_sync(struct hci_dev *hdev, struct hci_conn *conn,
5403 u8 reason)
5404 {
5405 struct hci_cp_disconnect cp;
5406
5407 if (test_bit(HCI_CONN_BIG_CREATED, &conn->flags)) {
5408 /* This is a BIS connection, hci_conn_del will
5409 * do the necessary cleanup.
5410 */
5411 hci_dev_lock(hdev);
5412 hci_conn_failed(conn, reason);
5413 hci_dev_unlock(hdev);
5414
5415 return 0;
5416 }
5417
5418 memset(&cp, 0, sizeof(cp));
5419 cp.handle = cpu_to_le16(conn->handle);
5420 cp.reason = reason;
5421
5422 /* Wait for HCI_EV_DISCONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5423 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5424 * used when suspending or powering off, where we don't want to wait
5425 * for the peer's response.
5426 */
5427 if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5428 return __hci_cmd_sync_status_sk(hdev, HCI_OP_DISCONNECT,
5429 sizeof(cp), &cp,
5430 HCI_EV_DISCONN_COMPLETE,
5431 HCI_CMD_TIMEOUT, NULL);
5432
5433 return __hci_cmd_sync_status(hdev, HCI_OP_DISCONNECT, sizeof(cp), &cp,
5434 HCI_CMD_TIMEOUT);
5435 }
5436
hci_le_connect_cancel_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5437 static int hci_le_connect_cancel_sync(struct hci_dev *hdev,
5438 struct hci_conn *conn, u8 reason)
5439 {
5440 /* Return reason if scanning since the connection shall probably be
5441 * cleanup directly.
5442 */
5443 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
5444 return reason;
5445
5446 if (conn->role == HCI_ROLE_SLAVE ||
5447 test_and_set_bit(HCI_CONN_CANCEL, &conn->flags))
5448 return 0;
5449
5450 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CREATE_CONN_CANCEL,
5451 0, NULL, HCI_CMD_TIMEOUT);
5452 }
5453
hci_connect_cancel_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5454 static int hci_connect_cancel_sync(struct hci_dev *hdev, struct hci_conn *conn,
5455 u8 reason)
5456 {
5457 if (conn->type == LE_LINK)
5458 return hci_le_connect_cancel_sync(hdev, conn, reason);
5459
5460 if (conn->type == ISO_LINK) {
5461 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
5462 * page 1857:
5463 *
5464 * If this command is issued for a CIS on the Central and the
5465 * CIS is successfully terminated before being established,
5466 * then an HCI_LE_CIS_Established event shall also be sent for
5467 * this CIS with the Status Operation Cancelled by Host (0x44).
5468 */
5469 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
5470 return hci_disconnect_sync(hdev, conn, reason);
5471
5472 /* CIS with no Create CIS sent have nothing to cancel */
5473 if (bacmp(&conn->dst, BDADDR_ANY))
5474 return HCI_ERROR_LOCAL_HOST_TERM;
5475
5476 /* There is no way to cancel a BIS without terminating the BIG
5477 * which is done later on connection cleanup.
5478 */
5479 return 0;
5480 }
5481
5482 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
5483 return 0;
5484
5485 /* Wait for HCI_EV_CONN_COMPLETE, not HCI_EV_CMD_STATUS, when the
5486 * reason is anything but HCI_ERROR_REMOTE_POWER_OFF. This reason is
5487 * used when suspending or powering off, where we don't want to wait
5488 * for the peer's response.
5489 */
5490 if (reason != HCI_ERROR_REMOTE_POWER_OFF)
5491 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN_CANCEL,
5492 6, &conn->dst,
5493 HCI_EV_CONN_COMPLETE,
5494 HCI_CMD_TIMEOUT, NULL);
5495
5496 return __hci_cmd_sync_status(hdev, HCI_OP_CREATE_CONN_CANCEL,
5497 6, &conn->dst, HCI_CMD_TIMEOUT);
5498 }
5499
hci_reject_sco_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5500 static int hci_reject_sco_sync(struct hci_dev *hdev, struct hci_conn *conn,
5501 u8 reason)
5502 {
5503 struct hci_cp_reject_sync_conn_req cp;
5504
5505 memset(&cp, 0, sizeof(cp));
5506 bacpy(&cp.bdaddr, &conn->dst);
5507 cp.reason = reason;
5508
5509 /* SCO rejection has its own limited set of
5510 * allowed error values (0x0D-0x0F).
5511 */
5512 if (reason < 0x0d || reason > 0x0f)
5513 cp.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
5514
5515 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_SYNC_CONN_REQ,
5516 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5517 }
5518
hci_le_reject_cis_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5519 static int hci_le_reject_cis_sync(struct hci_dev *hdev, struct hci_conn *conn,
5520 u8 reason)
5521 {
5522 struct hci_cp_le_reject_cis cp;
5523
5524 memset(&cp, 0, sizeof(cp));
5525 cp.handle = cpu_to_le16(conn->handle);
5526 cp.reason = reason;
5527
5528 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REJECT_CIS,
5529 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5530 }
5531
hci_reject_conn_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5532 static int hci_reject_conn_sync(struct hci_dev *hdev, struct hci_conn *conn,
5533 u8 reason)
5534 {
5535 struct hci_cp_reject_conn_req cp;
5536
5537 if (conn->type == ISO_LINK)
5538 return hci_le_reject_cis_sync(hdev, conn, reason);
5539
5540 if (conn->type == SCO_LINK || conn->type == ESCO_LINK)
5541 return hci_reject_sco_sync(hdev, conn, reason);
5542
5543 memset(&cp, 0, sizeof(cp));
5544 bacpy(&cp.bdaddr, &conn->dst);
5545 cp.reason = reason;
5546
5547 return __hci_cmd_sync_status(hdev, HCI_OP_REJECT_CONN_REQ,
5548 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5549 }
5550
hci_abort_conn_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 reason)5551 int hci_abort_conn_sync(struct hci_dev *hdev, struct hci_conn *conn, u8 reason)
5552 {
5553 int err = 0;
5554 u16 handle = conn->handle;
5555 bool disconnect = false;
5556 struct hci_conn *c;
5557
5558 switch (conn->state) {
5559 case BT_CONNECTED:
5560 case BT_CONFIG:
5561 err = hci_disconnect_sync(hdev, conn, reason);
5562 break;
5563 case BT_CONNECT:
5564 err = hci_connect_cancel_sync(hdev, conn, reason);
5565 break;
5566 case BT_CONNECT2:
5567 err = hci_reject_conn_sync(hdev, conn, reason);
5568 break;
5569 case BT_OPEN:
5570 case BT_BOUND:
5571 break;
5572 default:
5573 disconnect = true;
5574 break;
5575 }
5576
5577 hci_dev_lock(hdev);
5578
5579 /* Check if the connection has been cleaned up concurrently */
5580 c = hci_conn_hash_lookup_handle(hdev, handle);
5581 if (!c || c != conn) {
5582 err = 0;
5583 goto unlock;
5584 }
5585
5586 /* Cleanup hci_conn object if it cannot be cancelled as it
5587 * likelly means the controller and host stack are out of sync
5588 * or in case of LE it was still scanning so it can be cleanup
5589 * safely.
5590 */
5591 if (disconnect) {
5592 conn->state = BT_CLOSED;
5593 hci_disconn_cfm(conn, reason);
5594 hci_conn_del(conn);
5595 } else {
5596 hci_conn_failed(conn, reason);
5597 }
5598
5599 unlock:
5600 hci_dev_unlock(hdev);
5601 return err;
5602 }
5603
hci_disconnect_all_sync(struct hci_dev * hdev,u8 reason)5604 static int hci_disconnect_all_sync(struct hci_dev *hdev, u8 reason)
5605 {
5606 struct list_head *head = &hdev->conn_hash.list;
5607 struct hci_conn *conn;
5608
5609 rcu_read_lock();
5610 while ((conn = list_first_or_null_rcu(head, struct hci_conn, list))) {
5611 /* Make sure the connection is not freed while unlocking */
5612 conn = hci_conn_get(conn);
5613 rcu_read_unlock();
5614 /* Disregard possible errors since hci_conn_del shall have been
5615 * called even in case of errors had occurred since it would
5616 * then cause hci_conn_failed to be called which calls
5617 * hci_conn_del internally.
5618 */
5619 hci_abort_conn_sync(hdev, conn, reason);
5620 hci_conn_put(conn);
5621 rcu_read_lock();
5622 }
5623 rcu_read_unlock();
5624
5625 return 0;
5626 }
5627
5628 /* This function perform power off HCI command sequence as follows:
5629 *
5630 * Clear Advertising
5631 * Stop Discovery
5632 * Disconnect all connections
5633 * hci_dev_close_sync
5634 */
hci_power_off_sync(struct hci_dev * hdev)5635 static int hci_power_off_sync(struct hci_dev *hdev)
5636 {
5637 int err;
5638
5639 /* If controller is already down there is nothing to do */
5640 if (!test_bit(HCI_UP, &hdev->flags))
5641 return 0;
5642
5643 hci_dev_set_flag(hdev, HCI_POWERING_DOWN);
5644
5645 if (test_bit(HCI_ISCAN, &hdev->flags) ||
5646 test_bit(HCI_PSCAN, &hdev->flags)) {
5647 err = hci_write_scan_enable_sync(hdev, 0x00);
5648 if (err)
5649 goto out;
5650 }
5651
5652 err = hci_clear_adv_sync(hdev, NULL, false);
5653 if (err)
5654 goto out;
5655
5656 err = hci_stop_discovery_sync(hdev);
5657 if (err)
5658 goto out;
5659
5660 /* Terminated due to Power Off */
5661 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
5662 if (err)
5663 goto out;
5664
5665 err = hci_dev_close_sync(hdev);
5666
5667 out:
5668 hci_dev_clear_flag(hdev, HCI_POWERING_DOWN);
5669 return err;
5670 }
5671
hci_set_powered_sync(struct hci_dev * hdev,u8 val)5672 int hci_set_powered_sync(struct hci_dev *hdev, u8 val)
5673 {
5674 if (val)
5675 return hci_power_on_sync(hdev);
5676
5677 return hci_power_off_sync(hdev);
5678 }
5679
hci_write_iac_sync(struct hci_dev * hdev)5680 static int hci_write_iac_sync(struct hci_dev *hdev)
5681 {
5682 struct hci_cp_write_current_iac_lap cp;
5683
5684 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
5685 return 0;
5686
5687 memset(&cp, 0, sizeof(cp));
5688
5689 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
5690 /* Limited discoverable mode */
5691 cp.num_iac = min_t(u8, hdev->num_iac, 2);
5692 cp.iac_lap[0] = 0x00; /* LIAC */
5693 cp.iac_lap[1] = 0x8b;
5694 cp.iac_lap[2] = 0x9e;
5695 cp.iac_lap[3] = 0x33; /* GIAC */
5696 cp.iac_lap[4] = 0x8b;
5697 cp.iac_lap[5] = 0x9e;
5698 } else {
5699 /* General discoverable mode */
5700 cp.num_iac = 1;
5701 cp.iac_lap[0] = 0x33; /* GIAC */
5702 cp.iac_lap[1] = 0x8b;
5703 cp.iac_lap[2] = 0x9e;
5704 }
5705
5706 return __hci_cmd_sync_status(hdev, HCI_OP_WRITE_CURRENT_IAC_LAP,
5707 (cp.num_iac * 3) + 1, &cp,
5708 HCI_CMD_TIMEOUT);
5709 }
5710
hci_update_discoverable_sync(struct hci_dev * hdev)5711 int hci_update_discoverable_sync(struct hci_dev *hdev)
5712 {
5713 int err = 0;
5714
5715 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
5716 err = hci_write_iac_sync(hdev);
5717 if (err)
5718 return err;
5719
5720 err = hci_update_scan_sync(hdev);
5721 if (err)
5722 return err;
5723
5724 err = hci_update_class_sync(hdev);
5725 if (err)
5726 return err;
5727 }
5728
5729 /* Advertising instances don't use the global discoverable setting, so
5730 * only update AD if advertising was enabled using Set Advertising.
5731 */
5732 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
5733 err = hci_update_adv_data_sync(hdev, 0x00);
5734 if (err)
5735 return err;
5736
5737 /* Discoverable mode affects the local advertising
5738 * address in limited privacy mode.
5739 */
5740 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
5741 if (ext_adv_capable(hdev))
5742 err = hci_start_ext_adv_sync(hdev, 0x00);
5743 else
5744 err = hci_enable_advertising_sync(hdev);
5745 }
5746 }
5747
5748 return err;
5749 }
5750
update_discoverable_sync(struct hci_dev * hdev,void * data)5751 static int update_discoverable_sync(struct hci_dev *hdev, void *data)
5752 {
5753 return hci_update_discoverable_sync(hdev);
5754 }
5755
hci_update_discoverable(struct hci_dev * hdev)5756 int hci_update_discoverable(struct hci_dev *hdev)
5757 {
5758 /* Only queue if it would have any effect */
5759 if (hdev_is_powered(hdev) &&
5760 hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
5761 hci_dev_test_flag(hdev, HCI_DISCOVERABLE) &&
5762 hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
5763 return hci_cmd_sync_queue(hdev, update_discoverable_sync, NULL,
5764 NULL);
5765
5766 return 0;
5767 }
5768
hci_update_connectable_sync(struct hci_dev * hdev)5769 int hci_update_connectable_sync(struct hci_dev *hdev)
5770 {
5771 int err;
5772
5773 err = hci_update_scan_sync(hdev);
5774 if (err)
5775 return err;
5776
5777 /* If BR/EDR is not enabled and we disable advertising as a
5778 * by-product of disabling connectable, we need to update the
5779 * advertising flags.
5780 */
5781 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
5782 err = hci_update_adv_data_sync(hdev, hdev->cur_adv_instance);
5783
5784 /* Update the advertising parameters if necessary */
5785 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
5786 !list_empty(&hdev->adv_instances)) {
5787 if (ext_adv_capable(hdev))
5788 err = hci_start_ext_adv_sync(hdev,
5789 hdev->cur_adv_instance);
5790 else
5791 err = hci_enable_advertising_sync(hdev);
5792
5793 if (err)
5794 return err;
5795 }
5796
5797 return hci_update_passive_scan_sync(hdev);
5798 }
5799
hci_inquiry_sync(struct hci_dev * hdev,u8 length,u8 num_rsp)5800 int hci_inquiry_sync(struct hci_dev *hdev, u8 length, u8 num_rsp)
5801 {
5802 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
5803 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
5804 struct hci_cp_inquiry cp;
5805
5806 bt_dev_dbg(hdev, "");
5807
5808 if (test_bit(HCI_INQUIRY, &hdev->flags))
5809 return 0;
5810
5811 hci_dev_lock(hdev);
5812 hci_inquiry_cache_flush(hdev);
5813 hci_dev_unlock(hdev);
5814
5815 memset(&cp, 0, sizeof(cp));
5816
5817 if (hdev->discovery.limited)
5818 memcpy(&cp.lap, liac, sizeof(cp.lap));
5819 else
5820 memcpy(&cp.lap, giac, sizeof(cp.lap));
5821
5822 cp.length = length;
5823 cp.num_rsp = num_rsp;
5824
5825 return __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY,
5826 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
5827 }
5828
hci_active_scan_sync(struct hci_dev * hdev,uint16_t interval)5829 static int hci_active_scan_sync(struct hci_dev *hdev, uint16_t interval)
5830 {
5831 u8 own_addr_type;
5832 /* Accept list is not used for discovery */
5833 u8 filter_policy = 0x00;
5834 /* Default is to enable duplicates filter */
5835 u8 filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
5836 int err;
5837
5838 bt_dev_dbg(hdev, "");
5839
5840 /* If controller is scanning, it means the passive scanning is
5841 * running. Thus, we should temporarily stop it in order to set the
5842 * discovery scanning parameters.
5843 */
5844 err = hci_scan_disable_sync(hdev);
5845 if (err) {
5846 bt_dev_err(hdev, "Unable to disable scanning: %d", err);
5847 return err;
5848 }
5849
5850 cancel_interleave_scan(hdev);
5851
5852 /* Pause address resolution for active scan and stop advertising if
5853 * privacy is enabled.
5854 */
5855 err = hci_pause_addr_resolution(hdev);
5856 if (err)
5857 goto failed;
5858
5859 /* All active scans will be done with either a resolvable private
5860 * address (when privacy feature has been enabled) or non-resolvable
5861 * private address.
5862 */
5863 err = hci_update_random_address_sync(hdev, true, scan_use_rpa(hdev),
5864 &own_addr_type);
5865 if (err < 0)
5866 own_addr_type = ADDR_LE_DEV_PUBLIC;
5867
5868 if (hci_is_adv_monitoring(hdev) ||
5869 (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
5870 hdev->discovery.result_filtering)) {
5871 /* Duplicate filter should be disabled when some advertisement
5872 * monitor is activated, otherwise AdvMon can only receive one
5873 * advertisement for one peer(*) during active scanning, and
5874 * might report loss to these peers.
5875 *
5876 * If controller does strict duplicate filtering and the
5877 * discovery requires result filtering disables controller based
5878 * filtering since that can cause reports that would match the
5879 * host filter to not be reported.
5880 */
5881 filter_dup = LE_SCAN_FILTER_DUP_DISABLE;
5882 }
5883
5884 err = hci_start_scan_sync(hdev, LE_SCAN_ACTIVE, interval,
5885 hdev->le_scan_window_discovery,
5886 own_addr_type, filter_policy, filter_dup);
5887 if (!err)
5888 return err;
5889
5890 failed:
5891 /* Resume advertising if it was paused */
5892 if (use_ll_privacy(hdev))
5893 hci_resume_advertising_sync(hdev);
5894
5895 /* Resume passive scanning */
5896 hci_update_passive_scan_sync(hdev);
5897 return err;
5898 }
5899
hci_start_interleaved_discovery_sync(struct hci_dev * hdev)5900 static int hci_start_interleaved_discovery_sync(struct hci_dev *hdev)
5901 {
5902 int err;
5903
5904 bt_dev_dbg(hdev, "");
5905
5906 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery * 2);
5907 if (err)
5908 return err;
5909
5910 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0);
5911 }
5912
hci_start_discovery_sync(struct hci_dev * hdev)5913 int hci_start_discovery_sync(struct hci_dev *hdev)
5914 {
5915 unsigned long timeout;
5916 int err;
5917
5918 bt_dev_dbg(hdev, "type %u", hdev->discovery.type);
5919
5920 switch (hdev->discovery.type) {
5921 case DISCOV_TYPE_BREDR:
5922 return hci_inquiry_sync(hdev, DISCOV_BREDR_INQUIRY_LEN, 0);
5923 case DISCOV_TYPE_INTERLEAVED:
5924 /* When running simultaneous discovery, the LE scanning time
5925 * should occupy the whole discovery time sine BR/EDR inquiry
5926 * and LE scanning are scheduled by the controller.
5927 *
5928 * For interleaving discovery in comparison, BR/EDR inquiry
5929 * and LE scanning are done sequentially with separate
5930 * timeouts.
5931 */
5932 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
5933 &hdev->quirks)) {
5934 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5935 /* During simultaneous discovery, we double LE scan
5936 * interval. We must leave some time for the controller
5937 * to do BR/EDR inquiry.
5938 */
5939 err = hci_start_interleaved_discovery_sync(hdev);
5940 break;
5941 }
5942
5943 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
5944 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5945 break;
5946 case DISCOV_TYPE_LE:
5947 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
5948 err = hci_active_scan_sync(hdev, hdev->le_scan_int_discovery);
5949 break;
5950 default:
5951 return -EINVAL;
5952 }
5953
5954 if (err)
5955 return err;
5956
5957 bt_dev_dbg(hdev, "timeout %u ms", jiffies_to_msecs(timeout));
5958
5959 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
5960 timeout);
5961 return 0;
5962 }
5963
hci_suspend_monitor_sync(struct hci_dev * hdev)5964 static void hci_suspend_monitor_sync(struct hci_dev *hdev)
5965 {
5966 switch (hci_get_adv_monitor_offload_ext(hdev)) {
5967 case HCI_ADV_MONITOR_EXT_MSFT:
5968 msft_suspend_sync(hdev);
5969 break;
5970 default:
5971 return;
5972 }
5973 }
5974
5975 /* This function disables discovery and mark it as paused */
hci_pause_discovery_sync(struct hci_dev * hdev)5976 static int hci_pause_discovery_sync(struct hci_dev *hdev)
5977 {
5978 int old_state = hdev->discovery.state;
5979 int err;
5980
5981 /* If discovery already stopped/stopping/paused there nothing to do */
5982 if (old_state == DISCOVERY_STOPPED || old_state == DISCOVERY_STOPPING ||
5983 hdev->discovery_paused)
5984 return 0;
5985
5986 hci_discovery_set_state(hdev, DISCOVERY_STOPPING);
5987 err = hci_stop_discovery_sync(hdev);
5988 if (err)
5989 return err;
5990
5991 hdev->discovery_paused = true;
5992 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
5993
5994 return 0;
5995 }
5996
hci_update_event_filter_sync(struct hci_dev * hdev)5997 static int hci_update_event_filter_sync(struct hci_dev *hdev)
5998 {
5999 struct bdaddr_list_with_flags *b;
6000 u8 scan = SCAN_DISABLED;
6001 bool scanning = test_bit(HCI_PSCAN, &hdev->flags);
6002 int err;
6003
6004 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
6005 return 0;
6006
6007 /* Some fake CSR controllers lock up after setting this type of
6008 * filter, so avoid sending the request altogether.
6009 */
6010 if (test_bit(HCI_QUIRK_BROKEN_FILTER_CLEAR_ALL, &hdev->quirks))
6011 return 0;
6012
6013 /* Always clear event filter when starting */
6014 hci_clear_event_filter_sync(hdev);
6015
6016 list_for_each_entry(b, &hdev->accept_list, list) {
6017 if (!(b->flags & HCI_CONN_FLAG_REMOTE_WAKEUP))
6018 continue;
6019
6020 bt_dev_dbg(hdev, "Adding event filters for %pMR", &b->bdaddr);
6021
6022 err = hci_set_event_filter_sync(hdev, HCI_FLT_CONN_SETUP,
6023 HCI_CONN_SETUP_ALLOW_BDADDR,
6024 &b->bdaddr,
6025 HCI_CONN_SETUP_AUTO_ON);
6026 if (err)
6027 bt_dev_dbg(hdev, "Failed to set event filter for %pMR",
6028 &b->bdaddr);
6029 else
6030 scan = SCAN_PAGE;
6031 }
6032
6033 if (scan && !scanning)
6034 hci_write_scan_enable_sync(hdev, scan);
6035 else if (!scan && scanning)
6036 hci_write_scan_enable_sync(hdev, scan);
6037
6038 return 0;
6039 }
6040
6041 /* This function disables scan (BR and LE) and mark it as paused */
hci_pause_scan_sync(struct hci_dev * hdev)6042 static int hci_pause_scan_sync(struct hci_dev *hdev)
6043 {
6044 if (hdev->scanning_paused)
6045 return 0;
6046
6047 /* Disable page scan if enabled */
6048 if (test_bit(HCI_PSCAN, &hdev->flags))
6049 hci_write_scan_enable_sync(hdev, SCAN_DISABLED);
6050
6051 hci_scan_disable_sync(hdev);
6052
6053 hdev->scanning_paused = true;
6054
6055 return 0;
6056 }
6057
6058 /* This function performs the HCI suspend procedures in the follow order:
6059 *
6060 * Pause discovery (active scanning/inquiry)
6061 * Pause Directed Advertising/Advertising
6062 * Pause Scanning (passive scanning in case discovery was not active)
6063 * Disconnect all connections
6064 * Set suspend_status to BT_SUSPEND_DISCONNECT if hdev cannot wakeup
6065 * otherwise:
6066 * Update event mask (only set events that are allowed to wake up the host)
6067 * Update event filter (with devices marked with HCI_CONN_FLAG_REMOTE_WAKEUP)
6068 * Update passive scanning (lower duty cycle)
6069 * Set suspend_status to BT_SUSPEND_CONFIGURE_WAKE
6070 */
hci_suspend_sync(struct hci_dev * hdev)6071 int hci_suspend_sync(struct hci_dev *hdev)
6072 {
6073 int err;
6074
6075 /* If marked as suspended there nothing to do */
6076 if (hdev->suspended)
6077 return 0;
6078
6079 /* Mark device as suspended */
6080 hdev->suspended = true;
6081
6082 /* Pause discovery if not already stopped */
6083 hci_pause_discovery_sync(hdev);
6084
6085 /* Pause other advertisements */
6086 hci_pause_advertising_sync(hdev);
6087
6088 /* Suspend monitor filters */
6089 hci_suspend_monitor_sync(hdev);
6090
6091 /* Prevent disconnects from causing scanning to be re-enabled */
6092 hci_pause_scan_sync(hdev);
6093
6094 if (hci_conn_count(hdev)) {
6095 /* Soft disconnect everything (power off) */
6096 err = hci_disconnect_all_sync(hdev, HCI_ERROR_REMOTE_POWER_OFF);
6097 if (err) {
6098 /* Set state to BT_RUNNING so resume doesn't notify */
6099 hdev->suspend_state = BT_RUNNING;
6100 hci_resume_sync(hdev);
6101 return err;
6102 }
6103
6104 /* Update event mask so only the allowed event can wakeup the
6105 * host.
6106 */
6107 hci_set_event_mask_sync(hdev);
6108 }
6109
6110 /* Only configure accept list if disconnect succeeded and wake
6111 * isn't being prevented.
6112 */
6113 if (!hdev->wakeup || !hdev->wakeup(hdev)) {
6114 hdev->suspend_state = BT_SUSPEND_DISCONNECT;
6115 return 0;
6116 }
6117
6118 /* Unpause to take care of updating scanning params */
6119 hdev->scanning_paused = false;
6120
6121 /* Enable event filter for paired devices */
6122 hci_update_event_filter_sync(hdev);
6123
6124 /* Update LE passive scan if enabled */
6125 hci_update_passive_scan_sync(hdev);
6126
6127 /* Pause scan changes again. */
6128 hdev->scanning_paused = true;
6129
6130 hdev->suspend_state = BT_SUSPEND_CONFIGURE_WAKE;
6131
6132 return 0;
6133 }
6134
6135 /* This function resumes discovery */
hci_resume_discovery_sync(struct hci_dev * hdev)6136 static int hci_resume_discovery_sync(struct hci_dev *hdev)
6137 {
6138 int err;
6139
6140 /* If discovery not paused there nothing to do */
6141 if (!hdev->discovery_paused)
6142 return 0;
6143
6144 hdev->discovery_paused = false;
6145
6146 hci_discovery_set_state(hdev, DISCOVERY_STARTING);
6147
6148 err = hci_start_discovery_sync(hdev);
6149
6150 hci_discovery_set_state(hdev, err ? DISCOVERY_STOPPED :
6151 DISCOVERY_FINDING);
6152
6153 return err;
6154 }
6155
hci_resume_monitor_sync(struct hci_dev * hdev)6156 static void hci_resume_monitor_sync(struct hci_dev *hdev)
6157 {
6158 switch (hci_get_adv_monitor_offload_ext(hdev)) {
6159 case HCI_ADV_MONITOR_EXT_MSFT:
6160 msft_resume_sync(hdev);
6161 break;
6162 default:
6163 return;
6164 }
6165 }
6166
6167 /* This function resume scan and reset paused flag */
hci_resume_scan_sync(struct hci_dev * hdev)6168 static int hci_resume_scan_sync(struct hci_dev *hdev)
6169 {
6170 if (!hdev->scanning_paused)
6171 return 0;
6172
6173 hdev->scanning_paused = false;
6174
6175 hci_update_scan_sync(hdev);
6176
6177 /* Reset passive scanning to normal */
6178 hci_update_passive_scan_sync(hdev);
6179
6180 return 0;
6181 }
6182
6183 /* This function performs the HCI suspend procedures in the follow order:
6184 *
6185 * Restore event mask
6186 * Clear event filter
6187 * Update passive scanning (normal duty cycle)
6188 * Resume Directed Advertising/Advertising
6189 * Resume discovery (active scanning/inquiry)
6190 */
hci_resume_sync(struct hci_dev * hdev)6191 int hci_resume_sync(struct hci_dev *hdev)
6192 {
6193 /* If not marked as suspended there nothing to do */
6194 if (!hdev->suspended)
6195 return 0;
6196
6197 hdev->suspended = false;
6198
6199 /* Restore event mask */
6200 hci_set_event_mask_sync(hdev);
6201
6202 /* Clear any event filters and restore scan state */
6203 hci_clear_event_filter_sync(hdev);
6204
6205 /* Resume scanning */
6206 hci_resume_scan_sync(hdev);
6207
6208 /* Resume monitor filters */
6209 hci_resume_monitor_sync(hdev);
6210
6211 /* Resume other advertisements */
6212 hci_resume_advertising_sync(hdev);
6213
6214 /* Resume discovery */
6215 hci_resume_discovery_sync(hdev);
6216
6217 return 0;
6218 }
6219
conn_use_rpa(struct hci_conn * conn)6220 static bool conn_use_rpa(struct hci_conn *conn)
6221 {
6222 struct hci_dev *hdev = conn->hdev;
6223
6224 return hci_dev_test_flag(hdev, HCI_PRIVACY);
6225 }
6226
hci_le_ext_directed_advertising_sync(struct hci_dev * hdev,struct hci_conn * conn)6227 static int hci_le_ext_directed_advertising_sync(struct hci_dev *hdev,
6228 struct hci_conn *conn)
6229 {
6230 struct hci_cp_le_set_ext_adv_params cp;
6231 int err;
6232 bdaddr_t random_addr;
6233 u8 own_addr_type;
6234
6235 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6236 &own_addr_type);
6237 if (err)
6238 return err;
6239
6240 /* Set require_privacy to false so that the remote device has a
6241 * chance of identifying us.
6242 */
6243 err = hci_get_random_address(hdev, false, conn_use_rpa(conn), NULL,
6244 &own_addr_type, &random_addr);
6245 if (err)
6246 return err;
6247
6248 memset(&cp, 0, sizeof(cp));
6249
6250 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_DIRECT_IND);
6251 cp.channel_map = hdev->le_adv_channel_map;
6252 cp.tx_power = HCI_TX_POWER_INVALID;
6253 cp.primary_phy = HCI_ADV_PHY_1M;
6254 cp.secondary_phy = HCI_ADV_PHY_1M;
6255 cp.handle = 0x00; /* Use instance 0 for directed adv */
6256 cp.own_addr_type = own_addr_type;
6257 cp.peer_addr_type = conn->dst_type;
6258 bacpy(&cp.peer_addr, &conn->dst);
6259
6260 /* As per Core Spec 5.2 Vol 2, PART E, Sec 7.8.53, for
6261 * advertising_event_property LE_LEGACY_ADV_DIRECT_IND
6262 * does not supports advertising data when the advertising set already
6263 * contains some, the controller shall return erroc code 'Invalid
6264 * HCI Command Parameters(0x12).
6265 * So it is required to remove adv set for handle 0x00. since we use
6266 * instance 0 for directed adv.
6267 */
6268 err = hci_remove_ext_adv_instance_sync(hdev, cp.handle, NULL);
6269 if (err)
6270 return err;
6271
6272 err = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_EXT_ADV_PARAMS,
6273 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6274 if (err)
6275 return err;
6276
6277 /* Check if random address need to be updated */
6278 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
6279 bacmp(&random_addr, BDADDR_ANY) &&
6280 bacmp(&random_addr, &hdev->random_addr)) {
6281 err = hci_set_adv_set_random_addr_sync(hdev, 0x00,
6282 &random_addr);
6283 if (err)
6284 return err;
6285 }
6286
6287 return hci_enable_ext_advertising_sync(hdev, 0x00);
6288 }
6289
hci_le_directed_advertising_sync(struct hci_dev * hdev,struct hci_conn * conn)6290 static int hci_le_directed_advertising_sync(struct hci_dev *hdev,
6291 struct hci_conn *conn)
6292 {
6293 struct hci_cp_le_set_adv_param cp;
6294 u8 status;
6295 u8 own_addr_type;
6296 u8 enable;
6297
6298 if (ext_adv_capable(hdev))
6299 return hci_le_ext_directed_advertising_sync(hdev, conn);
6300
6301 /* Clear the HCI_LE_ADV bit temporarily so that the
6302 * hci_update_random_address knows that it's safe to go ahead
6303 * and write a new random address. The flag will be set back on
6304 * as soon as the SET_ADV_ENABLE HCI command completes.
6305 */
6306 hci_dev_clear_flag(hdev, HCI_LE_ADV);
6307
6308 /* Set require_privacy to false so that the remote device has a
6309 * chance of identifying us.
6310 */
6311 status = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6312 &own_addr_type);
6313 if (status)
6314 return status;
6315
6316 memset(&cp, 0, sizeof(cp));
6317
6318 /* Some controllers might reject command if intervals are not
6319 * within range for undirected advertising.
6320 * BCM20702A0 is known to be affected by this.
6321 */
6322 cp.min_interval = cpu_to_le16(0x0020);
6323 cp.max_interval = cpu_to_le16(0x0020);
6324
6325 cp.type = LE_ADV_DIRECT_IND;
6326 cp.own_address_type = own_addr_type;
6327 cp.direct_addr_type = conn->dst_type;
6328 bacpy(&cp.direct_addr, &conn->dst);
6329 cp.channel_map = hdev->le_adv_channel_map;
6330
6331 status = __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_PARAM,
6332 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6333 if (status)
6334 return status;
6335
6336 enable = 0x01;
6337
6338 return __hci_cmd_sync_status(hdev, HCI_OP_LE_SET_ADV_ENABLE,
6339 sizeof(enable), &enable, HCI_CMD_TIMEOUT);
6340 }
6341
set_ext_conn_params(struct hci_conn * conn,struct hci_cp_le_ext_conn_param * p)6342 static void set_ext_conn_params(struct hci_conn *conn,
6343 struct hci_cp_le_ext_conn_param *p)
6344 {
6345 struct hci_dev *hdev = conn->hdev;
6346
6347 memset(p, 0, sizeof(*p));
6348
6349 p->scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6350 p->scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6351 p->conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6352 p->conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6353 p->conn_latency = cpu_to_le16(conn->le_conn_latency);
6354 p->supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6355 p->min_ce_len = cpu_to_le16(0x0000);
6356 p->max_ce_len = cpu_to_le16(0x0000);
6357 }
6358
hci_le_ext_create_conn_sync(struct hci_dev * hdev,struct hci_conn * conn,u8 own_addr_type)6359 static int hci_le_ext_create_conn_sync(struct hci_dev *hdev,
6360 struct hci_conn *conn, u8 own_addr_type)
6361 {
6362 struct hci_cp_le_ext_create_conn *cp;
6363 struct hci_cp_le_ext_conn_param *p;
6364 u8 data[sizeof(*cp) + sizeof(*p) * 3];
6365 u32 plen;
6366
6367 cp = (void *)data;
6368 p = (void *)cp->data;
6369
6370 memset(cp, 0, sizeof(*cp));
6371
6372 bacpy(&cp->peer_addr, &conn->dst);
6373 cp->peer_addr_type = conn->dst_type;
6374 cp->own_addr_type = own_addr_type;
6375
6376 plen = sizeof(*cp);
6377
6378 if (scan_1m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_1M ||
6379 conn->le_adv_sec_phy == HCI_ADV_PHY_1M)) {
6380 cp->phys |= LE_SCAN_PHY_1M;
6381 set_ext_conn_params(conn, p);
6382
6383 p++;
6384 plen += sizeof(*p);
6385 }
6386
6387 if (scan_2m(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_2M ||
6388 conn->le_adv_sec_phy == HCI_ADV_PHY_2M)) {
6389 cp->phys |= LE_SCAN_PHY_2M;
6390 set_ext_conn_params(conn, p);
6391
6392 p++;
6393 plen += sizeof(*p);
6394 }
6395
6396 if (scan_coded(hdev) && (conn->le_adv_phy == HCI_ADV_PHY_CODED ||
6397 conn->le_adv_sec_phy == HCI_ADV_PHY_CODED)) {
6398 cp->phys |= LE_SCAN_PHY_CODED;
6399 set_ext_conn_params(conn, p);
6400
6401 plen += sizeof(*p);
6402 }
6403
6404 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_EXT_CREATE_CONN,
6405 plen, data,
6406 HCI_EV_LE_ENHANCED_CONN_COMPLETE,
6407 conn->conn_timeout, NULL);
6408 }
6409
hci_le_create_conn_sync(struct hci_dev * hdev,void * data)6410 static int hci_le_create_conn_sync(struct hci_dev *hdev, void *data)
6411 {
6412 struct hci_cp_le_create_conn cp;
6413 struct hci_conn_params *params;
6414 u8 own_addr_type;
6415 int err;
6416 struct hci_conn *conn = data;
6417
6418 if (!hci_conn_valid(hdev, conn))
6419 return -ECANCELED;
6420
6421 bt_dev_dbg(hdev, "conn %p", conn);
6422
6423 clear_bit(HCI_CONN_SCANNING, &conn->flags);
6424 conn->state = BT_CONNECT;
6425
6426 /* If requested to connect as peripheral use directed advertising */
6427 if (conn->role == HCI_ROLE_SLAVE) {
6428 /* If we're active scanning and simultaneous roles is not
6429 * enabled simply reject the attempt.
6430 */
6431 if (hci_dev_test_flag(hdev, HCI_LE_SCAN) &&
6432 hdev->le_scan_type == LE_SCAN_ACTIVE &&
6433 !hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES)) {
6434 hci_conn_del(conn);
6435 return -EBUSY;
6436 }
6437
6438 /* Pause advertising while doing directed advertising. */
6439 hci_pause_advertising_sync(hdev);
6440
6441 err = hci_le_directed_advertising_sync(hdev, conn);
6442 goto done;
6443 }
6444
6445 /* Disable advertising if simultaneous roles is not in use. */
6446 if (!hci_dev_test_flag(hdev, HCI_LE_SIMULTANEOUS_ROLES))
6447 hci_pause_advertising_sync(hdev);
6448
6449 params = hci_conn_params_lookup(hdev, &conn->dst, conn->dst_type);
6450 if (params) {
6451 conn->le_conn_min_interval = params->conn_min_interval;
6452 conn->le_conn_max_interval = params->conn_max_interval;
6453 conn->le_conn_latency = params->conn_latency;
6454 conn->le_supv_timeout = params->supervision_timeout;
6455 } else {
6456 conn->le_conn_min_interval = hdev->le_conn_min_interval;
6457 conn->le_conn_max_interval = hdev->le_conn_max_interval;
6458 conn->le_conn_latency = hdev->le_conn_latency;
6459 conn->le_supv_timeout = hdev->le_supv_timeout;
6460 }
6461
6462 /* If controller is scanning, we stop it since some controllers are
6463 * not able to scan and connect at the same time. Also set the
6464 * HCI_LE_SCAN_INTERRUPTED flag so that the command complete
6465 * handler for scan disabling knows to set the correct discovery
6466 * state.
6467 */
6468 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
6469 hci_scan_disable_sync(hdev);
6470 hci_dev_set_flag(hdev, HCI_LE_SCAN_INTERRUPTED);
6471 }
6472
6473 /* Update random address, but set require_privacy to false so
6474 * that we never connect with an non-resolvable address.
6475 */
6476 err = hci_update_random_address_sync(hdev, false, conn_use_rpa(conn),
6477 &own_addr_type);
6478 if (err)
6479 goto done;
6480
6481 if (use_ext_conn(hdev)) {
6482 err = hci_le_ext_create_conn_sync(hdev, conn, own_addr_type);
6483 goto done;
6484 }
6485
6486 memset(&cp, 0, sizeof(cp));
6487
6488 cp.scan_interval = cpu_to_le16(hdev->le_scan_int_connect);
6489 cp.scan_window = cpu_to_le16(hdev->le_scan_window_connect);
6490
6491 bacpy(&cp.peer_addr, &conn->dst);
6492 cp.peer_addr_type = conn->dst_type;
6493 cp.own_address_type = own_addr_type;
6494 cp.conn_interval_min = cpu_to_le16(conn->le_conn_min_interval);
6495 cp.conn_interval_max = cpu_to_le16(conn->le_conn_max_interval);
6496 cp.conn_latency = cpu_to_le16(conn->le_conn_latency);
6497 cp.supervision_timeout = cpu_to_le16(conn->le_supv_timeout);
6498 cp.min_ce_len = cpu_to_le16(0x0000);
6499 cp.max_ce_len = cpu_to_le16(0x0000);
6500
6501 /* BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E page 2261:
6502 *
6503 * If this event is unmasked and the HCI_LE_Connection_Complete event
6504 * is unmasked, only the HCI_LE_Enhanced_Connection_Complete event is
6505 * sent when a new connection has been created.
6506 */
6507 err = __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CONN,
6508 sizeof(cp), &cp,
6509 use_enhanced_conn_complete(hdev) ?
6510 HCI_EV_LE_ENHANCED_CONN_COMPLETE :
6511 HCI_EV_LE_CONN_COMPLETE,
6512 conn->conn_timeout, NULL);
6513
6514 done:
6515 if (err == -ETIMEDOUT)
6516 hci_le_connect_cancel_sync(hdev, conn, 0x00);
6517
6518 /* Re-enable advertising after the connection attempt is finished. */
6519 hci_resume_advertising_sync(hdev);
6520 return err;
6521 }
6522
hci_le_create_cis_sync(struct hci_dev * hdev)6523 int hci_le_create_cis_sync(struct hci_dev *hdev)
6524 {
6525 DEFINE_FLEX(struct hci_cp_le_create_cis, cmd, cis, num_cis, 0x1f);
6526 size_t aux_num_cis = 0;
6527 struct hci_conn *conn;
6528 u8 cig = BT_ISO_QOS_CIG_UNSET;
6529
6530 /* The spec allows only one pending LE Create CIS command at a time. If
6531 * the command is pending now, don't do anything. We check for pending
6532 * connections after each CIS Established event.
6533 *
6534 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6535 * page 2566:
6536 *
6537 * If the Host issues this command before all the
6538 * HCI_LE_CIS_Established events from the previous use of the
6539 * command have been generated, the Controller shall return the
6540 * error code Command Disallowed (0x0C).
6541 *
6542 * BLUETOOTH CORE SPECIFICATION Version 5.3 | Vol 4, Part E
6543 * page 2567:
6544 *
6545 * When the Controller receives the HCI_LE_Create_CIS command, the
6546 * Controller sends the HCI_Command_Status event to the Host. An
6547 * HCI_LE_CIS_Established event will be generated for each CIS when it
6548 * is established or if it is disconnected or considered lost before
6549 * being established; until all the events are generated, the command
6550 * remains pending.
6551 */
6552
6553 hci_dev_lock(hdev);
6554
6555 rcu_read_lock();
6556
6557 /* Wait until previous Create CIS has completed */
6558 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6559 if (test_bit(HCI_CONN_CREATE_CIS, &conn->flags))
6560 goto done;
6561 }
6562
6563 /* Find CIG with all CIS ready */
6564 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6565 struct hci_conn *link;
6566
6567 if (hci_conn_check_create_cis(conn))
6568 continue;
6569
6570 cig = conn->iso_qos.ucast.cig;
6571
6572 list_for_each_entry_rcu(link, &hdev->conn_hash.list, list) {
6573 if (hci_conn_check_create_cis(link) > 0 &&
6574 link->iso_qos.ucast.cig == cig &&
6575 link->state != BT_CONNECTED) {
6576 cig = BT_ISO_QOS_CIG_UNSET;
6577 break;
6578 }
6579 }
6580
6581 if (cig != BT_ISO_QOS_CIG_UNSET)
6582 break;
6583 }
6584
6585 if (cig == BT_ISO_QOS_CIG_UNSET)
6586 goto done;
6587
6588 list_for_each_entry_rcu(conn, &hdev->conn_hash.list, list) {
6589 struct hci_cis *cis = &cmd->cis[aux_num_cis];
6590
6591 if (hci_conn_check_create_cis(conn) ||
6592 conn->iso_qos.ucast.cig != cig)
6593 continue;
6594
6595 set_bit(HCI_CONN_CREATE_CIS, &conn->flags);
6596 cis->acl_handle = cpu_to_le16(conn->parent->handle);
6597 cis->cis_handle = cpu_to_le16(conn->handle);
6598 aux_num_cis++;
6599
6600 if (aux_num_cis >= cmd->num_cis)
6601 break;
6602 }
6603 cmd->num_cis = aux_num_cis;
6604
6605 done:
6606 rcu_read_unlock();
6607
6608 hci_dev_unlock(hdev);
6609
6610 if (!aux_num_cis)
6611 return 0;
6612
6613 /* Wait for HCI_LE_CIS_Established */
6614 return __hci_cmd_sync_status_sk(hdev, HCI_OP_LE_CREATE_CIS,
6615 struct_size(cmd, cis, cmd->num_cis),
6616 cmd, HCI_EVT_LE_CIS_ESTABLISHED,
6617 conn->conn_timeout, NULL);
6618 }
6619
hci_le_remove_cig_sync(struct hci_dev * hdev,u8 handle)6620 int hci_le_remove_cig_sync(struct hci_dev *hdev, u8 handle)
6621 {
6622 struct hci_cp_le_remove_cig cp;
6623
6624 memset(&cp, 0, sizeof(cp));
6625 cp.cig_id = handle;
6626
6627 return __hci_cmd_sync_status(hdev, HCI_OP_LE_REMOVE_CIG, sizeof(cp),
6628 &cp, HCI_CMD_TIMEOUT);
6629 }
6630
hci_le_big_terminate_sync(struct hci_dev * hdev,u8 handle)6631 int hci_le_big_terminate_sync(struct hci_dev *hdev, u8 handle)
6632 {
6633 struct hci_cp_le_big_term_sync cp;
6634
6635 memset(&cp, 0, sizeof(cp));
6636 cp.handle = handle;
6637
6638 return __hci_cmd_sync_status(hdev, HCI_OP_LE_BIG_TERM_SYNC,
6639 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6640 }
6641
hci_le_pa_terminate_sync(struct hci_dev * hdev,u16 handle)6642 int hci_le_pa_terminate_sync(struct hci_dev *hdev, u16 handle)
6643 {
6644 struct hci_cp_le_pa_term_sync cp;
6645
6646 memset(&cp, 0, sizeof(cp));
6647 cp.handle = cpu_to_le16(handle);
6648
6649 return __hci_cmd_sync_status(hdev, HCI_OP_LE_PA_TERM_SYNC,
6650 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6651 }
6652
hci_get_random_address(struct hci_dev * hdev,bool require_privacy,bool use_rpa,struct adv_info * adv_instance,u8 * own_addr_type,bdaddr_t * rand_addr)6653 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
6654 bool use_rpa, struct adv_info *adv_instance,
6655 u8 *own_addr_type, bdaddr_t *rand_addr)
6656 {
6657 int err;
6658
6659 bacpy(rand_addr, BDADDR_ANY);
6660
6661 /* If privacy is enabled use a resolvable private address. If
6662 * current RPA has expired then generate a new one.
6663 */
6664 if (use_rpa) {
6665 /* If Controller supports LL Privacy use own address type is
6666 * 0x03
6667 */
6668 if (use_ll_privacy(hdev))
6669 *own_addr_type = ADDR_LE_DEV_RANDOM_RESOLVED;
6670 else
6671 *own_addr_type = ADDR_LE_DEV_RANDOM;
6672
6673 if (adv_instance) {
6674 if (adv_rpa_valid(adv_instance))
6675 return 0;
6676 } else {
6677 if (rpa_valid(hdev))
6678 return 0;
6679 }
6680
6681 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
6682 if (err < 0) {
6683 bt_dev_err(hdev, "failed to generate new RPA");
6684 return err;
6685 }
6686
6687 bacpy(rand_addr, &hdev->rpa);
6688
6689 return 0;
6690 }
6691
6692 /* In case of required privacy without resolvable private address,
6693 * use an non-resolvable private address. This is useful for
6694 * non-connectable advertising.
6695 */
6696 if (require_privacy) {
6697 bdaddr_t nrpa;
6698
6699 while (true) {
6700 /* The non-resolvable private address is generated
6701 * from random six bytes with the two most significant
6702 * bits cleared.
6703 */
6704 get_random_bytes(&nrpa, 6);
6705 nrpa.b[5] &= 0x3f;
6706
6707 /* The non-resolvable private address shall not be
6708 * equal to the public address.
6709 */
6710 if (bacmp(&hdev->bdaddr, &nrpa))
6711 break;
6712 }
6713
6714 *own_addr_type = ADDR_LE_DEV_RANDOM;
6715 bacpy(rand_addr, &nrpa);
6716
6717 return 0;
6718 }
6719
6720 /* No privacy so use a public address. */
6721 *own_addr_type = ADDR_LE_DEV_PUBLIC;
6722
6723 return 0;
6724 }
6725
_update_adv_data_sync(struct hci_dev * hdev,void * data)6726 static int _update_adv_data_sync(struct hci_dev *hdev, void *data)
6727 {
6728 u8 instance = PTR_UINT(data);
6729
6730 return hci_update_adv_data_sync(hdev, instance);
6731 }
6732
hci_update_adv_data(struct hci_dev * hdev,u8 instance)6733 int hci_update_adv_data(struct hci_dev *hdev, u8 instance)
6734 {
6735 return hci_cmd_sync_queue(hdev, _update_adv_data_sync,
6736 UINT_PTR(instance), NULL);
6737 }
6738
hci_acl_create_conn_sync(struct hci_dev * hdev,void * data)6739 static int hci_acl_create_conn_sync(struct hci_dev *hdev, void *data)
6740 {
6741 struct hci_conn *conn = data;
6742 struct inquiry_entry *ie;
6743 struct hci_cp_create_conn cp;
6744 int err;
6745
6746 if (!hci_conn_valid(hdev, conn))
6747 return -ECANCELED;
6748
6749 /* Many controllers disallow HCI Create Connection while it is doing
6750 * HCI Inquiry. So we cancel the Inquiry first before issuing HCI Create
6751 * Connection. This may cause the MGMT discovering state to become false
6752 * without user space's request but it is okay since the MGMT Discovery
6753 * APIs do not promise that discovery should be done forever. Instead,
6754 * the user space monitors the status of MGMT discovering and it may
6755 * request for discovery again when this flag becomes false.
6756 */
6757 if (test_bit(HCI_INQUIRY, &hdev->flags)) {
6758 err = __hci_cmd_sync_status(hdev, HCI_OP_INQUIRY_CANCEL, 0,
6759 NULL, HCI_CMD_TIMEOUT);
6760 if (err)
6761 bt_dev_warn(hdev, "Failed to cancel inquiry %d", err);
6762 }
6763
6764 conn->state = BT_CONNECT;
6765 conn->out = true;
6766 conn->role = HCI_ROLE_MASTER;
6767
6768 conn->attempt++;
6769
6770 conn->link_policy = hdev->link_policy;
6771
6772 memset(&cp, 0, sizeof(cp));
6773 bacpy(&cp.bdaddr, &conn->dst);
6774 cp.pscan_rep_mode = 0x02;
6775
6776 ie = hci_inquiry_cache_lookup(hdev, &conn->dst);
6777 if (ie) {
6778 if (inquiry_entry_age(ie) <= INQUIRY_ENTRY_AGE_MAX) {
6779 cp.pscan_rep_mode = ie->data.pscan_rep_mode;
6780 cp.pscan_mode = ie->data.pscan_mode;
6781 cp.clock_offset = ie->data.clock_offset |
6782 cpu_to_le16(0x8000);
6783 }
6784
6785 memcpy(conn->dev_class, ie->data.dev_class, 3);
6786 }
6787
6788 cp.pkt_type = cpu_to_le16(conn->pkt_type);
6789 if (lmp_rswitch_capable(hdev) && !(hdev->link_mode & HCI_LM_MASTER))
6790 cp.role_switch = 0x01;
6791 else
6792 cp.role_switch = 0x00;
6793
6794 return __hci_cmd_sync_status_sk(hdev, HCI_OP_CREATE_CONN,
6795 sizeof(cp), &cp,
6796 HCI_EV_CONN_COMPLETE,
6797 conn->conn_timeout, NULL);
6798 }
6799
hci_connect_acl_sync(struct hci_dev * hdev,struct hci_conn * conn)6800 int hci_connect_acl_sync(struct hci_dev *hdev, struct hci_conn *conn)
6801 {
6802 return hci_cmd_sync_queue_once(hdev, hci_acl_create_conn_sync, conn,
6803 NULL);
6804 }
6805
create_le_conn_complete(struct hci_dev * hdev,void * data,int err)6806 static void create_le_conn_complete(struct hci_dev *hdev, void *data, int err)
6807 {
6808 struct hci_conn *conn = data;
6809
6810 bt_dev_dbg(hdev, "err %d", err);
6811
6812 if (err == -ECANCELED)
6813 return;
6814
6815 hci_dev_lock(hdev);
6816
6817 if (!hci_conn_valid(hdev, conn))
6818 goto done;
6819
6820 if (!err) {
6821 hci_connect_le_scan_cleanup(conn, 0x00);
6822 goto done;
6823 }
6824
6825 /* Check if connection is still pending */
6826 if (conn != hci_lookup_le_connect(hdev))
6827 goto done;
6828
6829 /* Flush to make sure we send create conn cancel command if needed */
6830 flush_delayed_work(&conn->le_conn_timeout);
6831 hci_conn_failed(conn, bt_status(err));
6832
6833 done:
6834 hci_dev_unlock(hdev);
6835 }
6836
hci_connect_le_sync(struct hci_dev * hdev,struct hci_conn * conn)6837 int hci_connect_le_sync(struct hci_dev *hdev, struct hci_conn *conn)
6838 {
6839 return hci_cmd_sync_queue_once(hdev, hci_le_create_conn_sync, conn,
6840 create_le_conn_complete);
6841 }
6842
hci_cancel_connect_sync(struct hci_dev * hdev,struct hci_conn * conn)6843 int hci_cancel_connect_sync(struct hci_dev *hdev, struct hci_conn *conn)
6844 {
6845 if (conn->state != BT_OPEN)
6846 return -EINVAL;
6847
6848 switch (conn->type) {
6849 case ACL_LINK:
6850 return !hci_cmd_sync_dequeue_once(hdev,
6851 hci_acl_create_conn_sync,
6852 conn, NULL);
6853 case LE_LINK:
6854 return !hci_cmd_sync_dequeue_once(hdev, hci_le_create_conn_sync,
6855 conn, create_le_conn_complete);
6856 }
6857
6858 return -ENOENT;
6859 }
6860
hci_le_conn_update_sync(struct hci_dev * hdev,struct hci_conn * conn,struct hci_conn_params * params)6861 int hci_le_conn_update_sync(struct hci_dev *hdev, struct hci_conn *conn,
6862 struct hci_conn_params *params)
6863 {
6864 struct hci_cp_le_conn_update cp;
6865
6866 memset(&cp, 0, sizeof(cp));
6867 cp.handle = cpu_to_le16(conn->handle);
6868 cp.conn_interval_min = cpu_to_le16(params->conn_min_interval);
6869 cp.conn_interval_max = cpu_to_le16(params->conn_max_interval);
6870 cp.conn_latency = cpu_to_le16(params->conn_latency);
6871 cp.supervision_timeout = cpu_to_le16(params->supervision_timeout);
6872 cp.min_ce_len = cpu_to_le16(0x0000);
6873 cp.max_ce_len = cpu_to_le16(0x0000);
6874
6875 return __hci_cmd_sync_status(hdev, HCI_OP_LE_CONN_UPDATE,
6876 sizeof(cp), &cp, HCI_CMD_TIMEOUT);
6877 }
6878