1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
5 */
6
7 #include <linux/spinlock.h>
8 #include <linux/completion.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/gfs2_ondisk.h>
12 #include <linux/crc32.h>
13 #include <linux/iomap.h>
14 #include <linux/ktime.h>
15
16 #include "gfs2.h"
17 #include "incore.h"
18 #include "bmap.h"
19 #include "glock.h"
20 #include "inode.h"
21 #include "meta_io.h"
22 #include "quota.h"
23 #include "rgrp.h"
24 #include "log.h"
25 #include "super.h"
26 #include "trans.h"
27 #include "dir.h"
28 #include "util.h"
29 #include "aops.h"
30 #include "trace_gfs2.h"
31
32 /* This doesn't need to be that large as max 64 bit pointers in a 4k
33 * block is 512, so __u16 is fine for that. It saves stack space to
34 * keep it small.
35 */
36 struct metapath {
37 struct buffer_head *mp_bh[GFS2_MAX_META_HEIGHT];
38 __u16 mp_list[GFS2_MAX_META_HEIGHT];
39 int mp_fheight; /* find_metapath height */
40 int mp_aheight; /* actual height (lookup height) */
41 };
42
43 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length);
44
45 /**
46 * gfs2_unstuffer_folio - unstuff a stuffed inode into a block cached by a folio
47 * @ip: the inode
48 * @dibh: the dinode buffer
49 * @block: the block number that was allocated
50 * @folio: The folio.
51 *
52 * Returns: errno
53 */
gfs2_unstuffer_folio(struct gfs2_inode * ip,struct buffer_head * dibh,u64 block,struct folio * folio)54 static int gfs2_unstuffer_folio(struct gfs2_inode *ip, struct buffer_head *dibh,
55 u64 block, struct folio *folio)
56 {
57 struct inode *inode = &ip->i_inode;
58
59 if (!folio_test_uptodate(folio)) {
60 void *kaddr = kmap_local_folio(folio, 0);
61 u64 dsize = i_size_read(inode);
62
63 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
64 memset(kaddr + dsize, 0, folio_size(folio) - dsize);
65 kunmap_local(kaddr);
66
67 folio_mark_uptodate(folio);
68 }
69
70 if (gfs2_is_jdata(ip)) {
71 struct buffer_head *bh = folio_buffers(folio);
72
73 if (!bh)
74 bh = create_empty_buffers(folio,
75 BIT(inode->i_blkbits), BIT(BH_Uptodate));
76
77 if (!buffer_mapped(bh))
78 map_bh(bh, inode->i_sb, block);
79
80 set_buffer_uptodate(bh);
81 gfs2_trans_add_data(ip->i_gl, bh);
82 } else {
83 folio_mark_dirty(folio);
84 gfs2_ordered_add_inode(ip);
85 }
86
87 return 0;
88 }
89
__gfs2_unstuff_inode(struct gfs2_inode * ip,struct folio * folio)90 static int __gfs2_unstuff_inode(struct gfs2_inode *ip, struct folio *folio)
91 {
92 struct buffer_head *bh, *dibh;
93 struct gfs2_dinode *di;
94 u64 block = 0;
95 int isdir = gfs2_is_dir(ip);
96 int error;
97
98 error = gfs2_meta_inode_buffer(ip, &dibh);
99 if (error)
100 return error;
101
102 if (i_size_read(&ip->i_inode)) {
103 /* Get a free block, fill it with the stuffed data,
104 and write it out to disk */
105
106 unsigned int n = 1;
107 error = gfs2_alloc_blocks(ip, &block, &n, 0);
108 if (error)
109 goto out_brelse;
110 if (isdir) {
111 gfs2_trans_remove_revoke(GFS2_SB(&ip->i_inode), block, 1);
112 error = gfs2_dir_get_new_buffer(ip, block, &bh);
113 if (error)
114 goto out_brelse;
115 gfs2_buffer_copy_tail(bh, sizeof(struct gfs2_meta_header),
116 dibh, sizeof(struct gfs2_dinode));
117 brelse(bh);
118 } else {
119 error = gfs2_unstuffer_folio(ip, dibh, block, folio);
120 if (error)
121 goto out_brelse;
122 }
123 }
124
125 /* Set up the pointer to the new block */
126
127 gfs2_trans_add_meta(ip->i_gl, dibh);
128 di = (struct gfs2_dinode *)dibh->b_data;
129 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
130
131 if (i_size_read(&ip->i_inode)) {
132 *(__be64 *)(di + 1) = cpu_to_be64(block);
133 gfs2_add_inode_blocks(&ip->i_inode, 1);
134 di->di_blocks = cpu_to_be64(gfs2_get_inode_blocks(&ip->i_inode));
135 }
136
137 ip->i_height = 1;
138 di->di_height = cpu_to_be16(1);
139
140 out_brelse:
141 brelse(dibh);
142 return error;
143 }
144
145 /**
146 * gfs2_unstuff_dinode - Unstuff a dinode when the data has grown too big
147 * @ip: The GFS2 inode to unstuff
148 *
149 * This routine unstuffs a dinode and returns it to a "normal" state such
150 * that the height can be grown in the traditional way.
151 *
152 * Returns: errno
153 */
154
gfs2_unstuff_dinode(struct gfs2_inode * ip)155 int gfs2_unstuff_dinode(struct gfs2_inode *ip)
156 {
157 struct inode *inode = &ip->i_inode;
158 struct folio *folio;
159 int error;
160
161 down_write(&ip->i_rw_mutex);
162 folio = filemap_grab_folio(inode->i_mapping, 0);
163 error = PTR_ERR(folio);
164 if (IS_ERR(folio))
165 goto out;
166 error = __gfs2_unstuff_inode(ip, folio);
167 folio_unlock(folio);
168 folio_put(folio);
169 out:
170 up_write(&ip->i_rw_mutex);
171 return error;
172 }
173
174 /**
175 * find_metapath - Find path through the metadata tree
176 * @sdp: The superblock
177 * @block: The disk block to look up
178 * @mp: The metapath to return the result in
179 * @height: The pre-calculated height of the metadata tree
180 *
181 * This routine returns a struct metapath structure that defines a path
182 * through the metadata of inode "ip" to get to block "block".
183 *
184 * Example:
185 * Given: "ip" is a height 3 file, "offset" is 101342453, and this is a
186 * filesystem with a blocksize of 4096.
187 *
188 * find_metapath() would return a struct metapath structure set to:
189 * mp_fheight = 3, mp_list[0] = 0, mp_list[1] = 48, and mp_list[2] = 165.
190 *
191 * That means that in order to get to the block containing the byte at
192 * offset 101342453, we would load the indirect block pointed to by pointer
193 * 0 in the dinode. We would then load the indirect block pointed to by
194 * pointer 48 in that indirect block. We would then load the data block
195 * pointed to by pointer 165 in that indirect block.
196 *
197 * ----------------------------------------
198 * | Dinode | |
199 * | | 4|
200 * | |0 1 2 3 4 5 9|
201 * | | 6|
202 * ----------------------------------------
203 * |
204 * |
205 * V
206 * ----------------------------------------
207 * | Indirect Block |
208 * | 5|
209 * | 4 4 4 4 4 5 5 1|
210 * |0 5 6 7 8 9 0 1 2|
211 * ----------------------------------------
212 * |
213 * |
214 * V
215 * ----------------------------------------
216 * | Indirect Block |
217 * | 1 1 1 1 1 5|
218 * | 6 6 6 6 6 1|
219 * |0 3 4 5 6 7 2|
220 * ----------------------------------------
221 * |
222 * |
223 * V
224 * ----------------------------------------
225 * | Data block containing offset |
226 * | 101342453 |
227 * | |
228 * | |
229 * ----------------------------------------
230 *
231 */
232
find_metapath(const struct gfs2_sbd * sdp,u64 block,struct metapath * mp,unsigned int height)233 static void find_metapath(const struct gfs2_sbd *sdp, u64 block,
234 struct metapath *mp, unsigned int height)
235 {
236 unsigned int i;
237
238 mp->mp_fheight = height;
239 for (i = height; i--;)
240 mp->mp_list[i] = do_div(block, sdp->sd_inptrs);
241 }
242
metapath_branch_start(const struct metapath * mp)243 static inline unsigned int metapath_branch_start(const struct metapath *mp)
244 {
245 if (mp->mp_list[0] == 0)
246 return 2;
247 return 1;
248 }
249
250 /**
251 * metaptr1 - Return the first possible metadata pointer in a metapath buffer
252 * @height: The metadata height (0 = dinode)
253 * @mp: The metapath
254 */
metaptr1(unsigned int height,const struct metapath * mp)255 static inline __be64 *metaptr1(unsigned int height, const struct metapath *mp)
256 {
257 struct buffer_head *bh = mp->mp_bh[height];
258 if (height == 0)
259 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_dinode)));
260 return ((__be64 *)(bh->b_data + sizeof(struct gfs2_meta_header)));
261 }
262
263 /**
264 * metapointer - Return pointer to start of metadata in a buffer
265 * @height: The metadata height (0 = dinode)
266 * @mp: The metapath
267 *
268 * Return a pointer to the block number of the next height of the metadata
269 * tree given a buffer containing the pointer to the current height of the
270 * metadata tree.
271 */
272
metapointer(unsigned int height,const struct metapath * mp)273 static inline __be64 *metapointer(unsigned int height, const struct metapath *mp)
274 {
275 __be64 *p = metaptr1(height, mp);
276 return p + mp->mp_list[height];
277 }
278
metaend(unsigned int height,const struct metapath * mp)279 static inline const __be64 *metaend(unsigned int height, const struct metapath *mp)
280 {
281 const struct buffer_head *bh = mp->mp_bh[height];
282 return (const __be64 *)(bh->b_data + bh->b_size);
283 }
284
clone_metapath(struct metapath * clone,struct metapath * mp)285 static void clone_metapath(struct metapath *clone, struct metapath *mp)
286 {
287 unsigned int hgt;
288
289 *clone = *mp;
290 for (hgt = 0; hgt < mp->mp_aheight; hgt++)
291 get_bh(clone->mp_bh[hgt]);
292 }
293
gfs2_metapath_ra(struct gfs2_glock * gl,__be64 * start,__be64 * end)294 static void gfs2_metapath_ra(struct gfs2_glock *gl, __be64 *start, __be64 *end)
295 {
296 const __be64 *t;
297
298 for (t = start; t < end; t++) {
299 struct buffer_head *rabh;
300
301 if (!*t)
302 continue;
303
304 rabh = gfs2_getbuf(gl, be64_to_cpu(*t), CREATE);
305 if (trylock_buffer(rabh)) {
306 if (!buffer_uptodate(rabh)) {
307 rabh->b_end_io = end_buffer_read_sync;
308 submit_bh(REQ_OP_READ | REQ_RAHEAD | REQ_META |
309 REQ_PRIO, rabh);
310 continue;
311 }
312 unlock_buffer(rabh);
313 }
314 brelse(rabh);
315 }
316 }
317
318 static inline struct buffer_head *
metapath_dibh(struct metapath * mp)319 metapath_dibh(struct metapath *mp)
320 {
321 return mp->mp_bh[0];
322 }
323
__fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,unsigned int x,unsigned int h)324 static int __fillup_metapath(struct gfs2_inode *ip, struct metapath *mp,
325 unsigned int x, unsigned int h)
326 {
327 for (; x < h; x++) {
328 __be64 *ptr = metapointer(x, mp);
329 u64 dblock = be64_to_cpu(*ptr);
330 int ret;
331
332 if (!dblock)
333 break;
334 ret = gfs2_meta_buffer(ip, GFS2_METATYPE_IN, dblock, &mp->mp_bh[x + 1]);
335 if (ret)
336 return ret;
337 }
338 mp->mp_aheight = x + 1;
339 return 0;
340 }
341
342 /**
343 * lookup_metapath - Walk the metadata tree to a specific point
344 * @ip: The inode
345 * @mp: The metapath
346 *
347 * Assumes that the inode's buffer has already been looked up and
348 * hooked onto mp->mp_bh[0] and that the metapath has been initialised
349 * by find_metapath().
350 *
351 * If this function encounters part of the tree which has not been
352 * allocated, it returns the current height of the tree at the point
353 * at which it found the unallocated block. Blocks which are found are
354 * added to the mp->mp_bh[] list.
355 *
356 * Returns: error
357 */
358
lookup_metapath(struct gfs2_inode * ip,struct metapath * mp)359 static int lookup_metapath(struct gfs2_inode *ip, struct metapath *mp)
360 {
361 return __fillup_metapath(ip, mp, 0, ip->i_height - 1);
362 }
363
364 /**
365 * fillup_metapath - fill up buffers for the metadata path to a specific height
366 * @ip: The inode
367 * @mp: The metapath
368 * @h: The height to which it should be mapped
369 *
370 * Similar to lookup_metapath, but does lookups for a range of heights
371 *
372 * Returns: error or the number of buffers filled
373 */
374
fillup_metapath(struct gfs2_inode * ip,struct metapath * mp,int h)375 static int fillup_metapath(struct gfs2_inode *ip, struct metapath *mp, int h)
376 {
377 unsigned int x = 0;
378 int ret;
379
380 if (h) {
381 /* find the first buffer we need to look up. */
382 for (x = h - 1; x > 0; x--) {
383 if (mp->mp_bh[x])
384 break;
385 }
386 }
387 ret = __fillup_metapath(ip, mp, x, h);
388 if (ret)
389 return ret;
390 return mp->mp_aheight - x - 1;
391 }
392
metapath_to_block(struct gfs2_sbd * sdp,struct metapath * mp)393 static sector_t metapath_to_block(struct gfs2_sbd *sdp, struct metapath *mp)
394 {
395 sector_t factor = 1, block = 0;
396 int hgt;
397
398 for (hgt = mp->mp_fheight - 1; hgt >= 0; hgt--) {
399 if (hgt < mp->mp_aheight)
400 block += mp->mp_list[hgt] * factor;
401 factor *= sdp->sd_inptrs;
402 }
403 return block;
404 }
405
release_metapath(struct metapath * mp)406 static void release_metapath(struct metapath *mp)
407 {
408 int i;
409
410 for (i = 0; i < GFS2_MAX_META_HEIGHT; i++) {
411 if (mp->mp_bh[i] == NULL)
412 break;
413 brelse(mp->mp_bh[i]);
414 mp->mp_bh[i] = NULL;
415 }
416 }
417
418 /**
419 * gfs2_extent_length - Returns length of an extent of blocks
420 * @bh: The metadata block
421 * @ptr: Current position in @bh
422 * @eob: Set to 1 if we hit "end of block"
423 *
424 * Returns: The length of the extent (minimum of one block)
425 */
426
gfs2_extent_length(struct buffer_head * bh,__be64 * ptr,int * eob)427 static inline unsigned int gfs2_extent_length(struct buffer_head *bh, __be64 *ptr, int *eob)
428 {
429 const __be64 *end = (__be64 *)(bh->b_data + bh->b_size);
430 const __be64 *first = ptr;
431 u64 d = be64_to_cpu(*ptr);
432
433 *eob = 0;
434 do {
435 ptr++;
436 if (ptr >= end)
437 break;
438 d++;
439 } while(be64_to_cpu(*ptr) == d);
440 if (ptr >= end)
441 *eob = 1;
442 return ptr - first;
443 }
444
445 enum walker_status { WALK_STOP, WALK_FOLLOW, WALK_CONTINUE };
446
447 /*
448 * gfs2_metadata_walker - walk an indirect block
449 * @mp: Metapath to indirect block
450 * @ptrs: Number of pointers to look at
451 *
452 * When returning WALK_FOLLOW, the walker must update @mp to point at the right
453 * indirect block to follow.
454 */
455 typedef enum walker_status (*gfs2_metadata_walker)(struct metapath *mp,
456 unsigned int ptrs);
457
458 /*
459 * gfs2_walk_metadata - walk a tree of indirect blocks
460 * @inode: The inode
461 * @mp: Starting point of walk
462 * @max_len: Maximum number of blocks to walk
463 * @walker: Called during the walk
464 *
465 * Returns 1 if the walk was stopped by @walker, 0 if we went past @max_len or
466 * past the end of metadata, and a negative error code otherwise.
467 */
468
gfs2_walk_metadata(struct inode * inode,struct metapath * mp,u64 max_len,gfs2_metadata_walker walker)469 static int gfs2_walk_metadata(struct inode *inode, struct metapath *mp,
470 u64 max_len, gfs2_metadata_walker walker)
471 {
472 struct gfs2_inode *ip = GFS2_I(inode);
473 struct gfs2_sbd *sdp = GFS2_SB(inode);
474 u64 factor = 1;
475 unsigned int hgt;
476 int ret;
477
478 /*
479 * The walk starts in the lowest allocated indirect block, which may be
480 * before the position indicated by @mp. Adjust @max_len accordingly
481 * to avoid a short walk.
482 */
483 for (hgt = mp->mp_fheight - 1; hgt >= mp->mp_aheight; hgt--) {
484 max_len += mp->mp_list[hgt] * factor;
485 mp->mp_list[hgt] = 0;
486 factor *= sdp->sd_inptrs;
487 }
488
489 for (;;) {
490 u16 start = mp->mp_list[hgt];
491 enum walker_status status;
492 unsigned int ptrs;
493 u64 len;
494
495 /* Walk indirect block. */
496 ptrs = (hgt >= 1 ? sdp->sd_inptrs : sdp->sd_diptrs) - start;
497 len = ptrs * factor;
498 if (len > max_len)
499 ptrs = DIV_ROUND_UP_ULL(max_len, factor);
500 status = walker(mp, ptrs);
501 switch (status) {
502 case WALK_STOP:
503 return 1;
504 case WALK_FOLLOW:
505 BUG_ON(mp->mp_aheight == mp->mp_fheight);
506 ptrs = mp->mp_list[hgt] - start;
507 len = ptrs * factor;
508 break;
509 case WALK_CONTINUE:
510 break;
511 }
512 if (len >= max_len)
513 break;
514 max_len -= len;
515 if (status == WALK_FOLLOW)
516 goto fill_up_metapath;
517
518 lower_metapath:
519 /* Decrease height of metapath. */
520 brelse(mp->mp_bh[hgt]);
521 mp->mp_bh[hgt] = NULL;
522 mp->mp_list[hgt] = 0;
523 if (!hgt)
524 break;
525 hgt--;
526 factor *= sdp->sd_inptrs;
527
528 /* Advance in metadata tree. */
529 (mp->mp_list[hgt])++;
530 if (hgt) {
531 if (mp->mp_list[hgt] >= sdp->sd_inptrs)
532 goto lower_metapath;
533 } else {
534 if (mp->mp_list[hgt] >= sdp->sd_diptrs)
535 break;
536 }
537
538 fill_up_metapath:
539 /* Increase height of metapath. */
540 ret = fillup_metapath(ip, mp, ip->i_height - 1);
541 if (ret < 0)
542 return ret;
543 hgt += ret;
544 for (; ret; ret--)
545 do_div(factor, sdp->sd_inptrs);
546 mp->mp_aheight = hgt + 1;
547 }
548 return 0;
549 }
550
gfs2_hole_walker(struct metapath * mp,unsigned int ptrs)551 static enum walker_status gfs2_hole_walker(struct metapath *mp,
552 unsigned int ptrs)
553 {
554 const __be64 *start, *ptr, *end;
555 unsigned int hgt;
556
557 hgt = mp->mp_aheight - 1;
558 start = metapointer(hgt, mp);
559 end = start + ptrs;
560
561 for (ptr = start; ptr < end; ptr++) {
562 if (*ptr) {
563 mp->mp_list[hgt] += ptr - start;
564 if (mp->mp_aheight == mp->mp_fheight)
565 return WALK_STOP;
566 return WALK_FOLLOW;
567 }
568 }
569 return WALK_CONTINUE;
570 }
571
572 /**
573 * gfs2_hole_size - figure out the size of a hole
574 * @inode: The inode
575 * @lblock: The logical starting block number
576 * @len: How far to look (in blocks)
577 * @mp: The metapath at lblock
578 * @iomap: The iomap to store the hole size in
579 *
580 * This function modifies @mp.
581 *
582 * Returns: errno on error
583 */
gfs2_hole_size(struct inode * inode,sector_t lblock,u64 len,struct metapath * mp,struct iomap * iomap)584 static int gfs2_hole_size(struct inode *inode, sector_t lblock, u64 len,
585 struct metapath *mp, struct iomap *iomap)
586 {
587 struct metapath clone;
588 u64 hole_size;
589 int ret;
590
591 clone_metapath(&clone, mp);
592 ret = gfs2_walk_metadata(inode, &clone, len, gfs2_hole_walker);
593 if (ret < 0)
594 goto out;
595
596 if (ret == 1)
597 hole_size = metapath_to_block(GFS2_SB(inode), &clone) - lblock;
598 else
599 hole_size = len;
600 iomap->length = hole_size << inode->i_blkbits;
601 ret = 0;
602
603 out:
604 release_metapath(&clone);
605 return ret;
606 }
607
gfs2_indirect_init(struct metapath * mp,struct gfs2_glock * gl,unsigned int i,unsigned offset,u64 bn)608 static inline void gfs2_indirect_init(struct metapath *mp,
609 struct gfs2_glock *gl, unsigned int i,
610 unsigned offset, u64 bn)
611 {
612 __be64 *ptr = (__be64 *)(mp->mp_bh[i - 1]->b_data +
613 ((i > 1) ? sizeof(struct gfs2_meta_header) :
614 sizeof(struct gfs2_dinode)));
615 BUG_ON(i < 1);
616 BUG_ON(mp->mp_bh[i] != NULL);
617 mp->mp_bh[i] = gfs2_meta_new(gl, bn);
618 gfs2_trans_add_meta(gl, mp->mp_bh[i]);
619 gfs2_metatype_set(mp->mp_bh[i], GFS2_METATYPE_IN, GFS2_FORMAT_IN);
620 gfs2_buffer_clear_tail(mp->mp_bh[i], sizeof(struct gfs2_meta_header));
621 ptr += offset;
622 *ptr = cpu_to_be64(bn);
623 }
624
625 enum alloc_state {
626 ALLOC_DATA = 0,
627 ALLOC_GROW_DEPTH = 1,
628 ALLOC_GROW_HEIGHT = 2,
629 /* ALLOC_UNSTUFF = 3, TBD and rather complicated */
630 };
631
632 /**
633 * __gfs2_iomap_alloc - Build a metadata tree of the requested height
634 * @inode: The GFS2 inode
635 * @iomap: The iomap structure
636 * @mp: The metapath, with proper height information calculated
637 *
638 * In this routine we may have to alloc:
639 * i) Indirect blocks to grow the metadata tree height
640 * ii) Indirect blocks to fill in lower part of the metadata tree
641 * iii) Data blocks
642 *
643 * This function is called after __gfs2_iomap_get, which works out the
644 * total number of blocks which we need via gfs2_alloc_size.
645 *
646 * We then do the actual allocation asking for an extent at a time (if
647 * enough contiguous free blocks are available, there will only be one
648 * allocation request per call) and uses the state machine to initialise
649 * the blocks in order.
650 *
651 * Right now, this function will allocate at most one indirect block
652 * worth of data -- with a default block size of 4K, that's slightly
653 * less than 2M. If this limitation is ever removed to allow huge
654 * allocations, we would probably still want to limit the iomap size we
655 * return to avoid stalling other tasks during huge writes; the next
656 * iomap iteration would then find the blocks already allocated.
657 *
658 * Returns: errno on error
659 */
660
__gfs2_iomap_alloc(struct inode * inode,struct iomap * iomap,struct metapath * mp)661 static int __gfs2_iomap_alloc(struct inode *inode, struct iomap *iomap,
662 struct metapath *mp)
663 {
664 struct gfs2_inode *ip = GFS2_I(inode);
665 struct gfs2_sbd *sdp = GFS2_SB(inode);
666 struct buffer_head *dibh = metapath_dibh(mp);
667 u64 bn;
668 unsigned n, i, blks, alloced = 0, iblks = 0, branch_start = 0;
669 size_t dblks = iomap->length >> inode->i_blkbits;
670 const unsigned end_of_metadata = mp->mp_fheight - 1;
671 int ret;
672 enum alloc_state state;
673 __be64 *ptr;
674 __be64 zero_bn = 0;
675
676 BUG_ON(mp->mp_aheight < 1);
677 BUG_ON(dibh == NULL);
678 BUG_ON(dblks < 1);
679
680 gfs2_trans_add_meta(ip->i_gl, dibh);
681
682 down_write(&ip->i_rw_mutex);
683
684 if (mp->mp_fheight == mp->mp_aheight) {
685 /* Bottom indirect block exists */
686 state = ALLOC_DATA;
687 } else {
688 /* Need to allocate indirect blocks */
689 if (mp->mp_fheight == ip->i_height) {
690 /* Writing into existing tree, extend tree down */
691 iblks = mp->mp_fheight - mp->mp_aheight;
692 state = ALLOC_GROW_DEPTH;
693 } else {
694 /* Building up tree height */
695 state = ALLOC_GROW_HEIGHT;
696 iblks = mp->mp_fheight - ip->i_height;
697 branch_start = metapath_branch_start(mp);
698 iblks += (mp->mp_fheight - branch_start);
699 }
700 }
701
702 /* start of the second part of the function (state machine) */
703
704 blks = dblks + iblks;
705 i = mp->mp_aheight;
706 do {
707 n = blks - alloced;
708 ret = gfs2_alloc_blocks(ip, &bn, &n, 0);
709 if (ret)
710 goto out;
711 alloced += n;
712 if (state != ALLOC_DATA || gfs2_is_jdata(ip))
713 gfs2_trans_remove_revoke(sdp, bn, n);
714 switch (state) {
715 /* Growing height of tree */
716 case ALLOC_GROW_HEIGHT:
717 if (i == 1) {
718 ptr = (__be64 *)(dibh->b_data +
719 sizeof(struct gfs2_dinode));
720 zero_bn = *ptr;
721 }
722 for (; i - 1 < mp->mp_fheight - ip->i_height && n > 0;
723 i++, n--)
724 gfs2_indirect_init(mp, ip->i_gl, i, 0, bn++);
725 if (i - 1 == mp->mp_fheight - ip->i_height) {
726 i--;
727 gfs2_buffer_copy_tail(mp->mp_bh[i],
728 sizeof(struct gfs2_meta_header),
729 dibh, sizeof(struct gfs2_dinode));
730 gfs2_buffer_clear_tail(dibh,
731 sizeof(struct gfs2_dinode) +
732 sizeof(__be64));
733 ptr = (__be64 *)(mp->mp_bh[i]->b_data +
734 sizeof(struct gfs2_meta_header));
735 *ptr = zero_bn;
736 state = ALLOC_GROW_DEPTH;
737 for(i = branch_start; i < mp->mp_fheight; i++) {
738 if (mp->mp_bh[i] == NULL)
739 break;
740 brelse(mp->mp_bh[i]);
741 mp->mp_bh[i] = NULL;
742 }
743 i = branch_start;
744 }
745 if (n == 0)
746 break;
747 fallthrough; /* To branching from existing tree */
748 case ALLOC_GROW_DEPTH:
749 if (i > 1 && i < mp->mp_fheight)
750 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[i-1]);
751 for (; i < mp->mp_fheight && n > 0; i++, n--)
752 gfs2_indirect_init(mp, ip->i_gl, i,
753 mp->mp_list[i-1], bn++);
754 if (i == mp->mp_fheight)
755 state = ALLOC_DATA;
756 if (n == 0)
757 break;
758 fallthrough; /* To tree complete, adding data blocks */
759 case ALLOC_DATA:
760 BUG_ON(n > dblks);
761 BUG_ON(mp->mp_bh[end_of_metadata] == NULL);
762 gfs2_trans_add_meta(ip->i_gl, mp->mp_bh[end_of_metadata]);
763 dblks = n;
764 ptr = metapointer(end_of_metadata, mp);
765 iomap->addr = bn << inode->i_blkbits;
766 iomap->flags |= IOMAP_F_MERGED | IOMAP_F_NEW;
767 while (n-- > 0)
768 *ptr++ = cpu_to_be64(bn++);
769 break;
770 }
771 } while (iomap->addr == IOMAP_NULL_ADDR);
772
773 iomap->type = IOMAP_MAPPED;
774 iomap->length = (u64)dblks << inode->i_blkbits;
775 ip->i_height = mp->mp_fheight;
776 gfs2_add_inode_blocks(&ip->i_inode, alloced);
777 gfs2_dinode_out(ip, dibh->b_data);
778 out:
779 up_write(&ip->i_rw_mutex);
780 return ret;
781 }
782
783 #define IOMAP_F_GFS2_BOUNDARY IOMAP_F_PRIVATE
784
785 /**
786 * gfs2_alloc_size - Compute the maximum allocation size
787 * @inode: The inode
788 * @mp: The metapath
789 * @size: Requested size in blocks
790 *
791 * Compute the maximum size of the next allocation at @mp.
792 *
793 * Returns: size in blocks
794 */
gfs2_alloc_size(struct inode * inode,struct metapath * mp,u64 size)795 static u64 gfs2_alloc_size(struct inode *inode, struct metapath *mp, u64 size)
796 {
797 struct gfs2_inode *ip = GFS2_I(inode);
798 struct gfs2_sbd *sdp = GFS2_SB(inode);
799 const __be64 *first, *ptr, *end;
800
801 /*
802 * For writes to stuffed files, this function is called twice via
803 * __gfs2_iomap_get, before and after unstuffing. The size we return the
804 * first time needs to be large enough to get the reservation and
805 * allocation sizes right. The size we return the second time must
806 * be exact or else __gfs2_iomap_alloc won't do the right thing.
807 */
808
809 if (gfs2_is_stuffed(ip) || mp->mp_fheight != mp->mp_aheight) {
810 unsigned int maxsize = mp->mp_fheight > 1 ?
811 sdp->sd_inptrs : sdp->sd_diptrs;
812 maxsize -= mp->mp_list[mp->mp_fheight - 1];
813 if (size > maxsize)
814 size = maxsize;
815 return size;
816 }
817
818 first = metapointer(ip->i_height - 1, mp);
819 end = metaend(ip->i_height - 1, mp);
820 if (end - first > size)
821 end = first + size;
822 for (ptr = first; ptr < end; ptr++) {
823 if (*ptr)
824 break;
825 }
826 return ptr - first;
827 }
828
829 /**
830 * __gfs2_iomap_get - Map blocks from an inode to disk blocks
831 * @inode: The inode
832 * @pos: Starting position in bytes
833 * @length: Length to map, in bytes
834 * @flags: iomap flags
835 * @iomap: The iomap structure
836 * @mp: The metapath
837 *
838 * Returns: errno
839 */
__gfs2_iomap_get(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)840 static int __gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
841 unsigned flags, struct iomap *iomap,
842 struct metapath *mp)
843 {
844 struct gfs2_inode *ip = GFS2_I(inode);
845 struct gfs2_sbd *sdp = GFS2_SB(inode);
846 loff_t size = i_size_read(inode);
847 __be64 *ptr;
848 sector_t lblock;
849 sector_t lblock_stop;
850 int ret;
851 int eob;
852 u64 len;
853 struct buffer_head *dibh = NULL, *bh;
854 u8 height;
855
856 if (!length)
857 return -EINVAL;
858
859 down_read(&ip->i_rw_mutex);
860
861 ret = gfs2_meta_inode_buffer(ip, &dibh);
862 if (ret)
863 goto unlock;
864 mp->mp_bh[0] = dibh;
865
866 if (gfs2_is_stuffed(ip)) {
867 if (flags & IOMAP_WRITE) {
868 loff_t max_size = gfs2_max_stuffed_size(ip);
869
870 if (pos + length > max_size)
871 goto unstuff;
872 iomap->length = max_size;
873 } else {
874 if (pos >= size) {
875 if (flags & IOMAP_REPORT) {
876 ret = -ENOENT;
877 goto unlock;
878 } else {
879 iomap->offset = pos;
880 iomap->length = length;
881 goto hole_found;
882 }
883 }
884 iomap->length = size;
885 }
886 iomap->addr = (ip->i_no_addr << inode->i_blkbits) +
887 sizeof(struct gfs2_dinode);
888 iomap->type = IOMAP_INLINE;
889 iomap->inline_data = dibh->b_data + sizeof(struct gfs2_dinode);
890 goto out;
891 }
892
893 unstuff:
894 lblock = pos >> inode->i_blkbits;
895 iomap->offset = lblock << inode->i_blkbits;
896 lblock_stop = (pos + length - 1) >> inode->i_blkbits;
897 len = lblock_stop - lblock + 1;
898 iomap->length = len << inode->i_blkbits;
899
900 height = ip->i_height;
901 while ((lblock + 1) * sdp->sd_sb.sb_bsize > sdp->sd_heightsize[height])
902 height++;
903 find_metapath(sdp, lblock, mp, height);
904 if (height > ip->i_height || gfs2_is_stuffed(ip))
905 goto do_alloc;
906
907 ret = lookup_metapath(ip, mp);
908 if (ret)
909 goto unlock;
910
911 if (mp->mp_aheight != ip->i_height)
912 goto do_alloc;
913
914 ptr = metapointer(ip->i_height - 1, mp);
915 if (*ptr == 0)
916 goto do_alloc;
917
918 bh = mp->mp_bh[ip->i_height - 1];
919 len = gfs2_extent_length(bh, ptr, &eob);
920
921 iomap->addr = be64_to_cpu(*ptr) << inode->i_blkbits;
922 iomap->length = len << inode->i_blkbits;
923 iomap->type = IOMAP_MAPPED;
924 iomap->flags |= IOMAP_F_MERGED;
925 if (eob)
926 iomap->flags |= IOMAP_F_GFS2_BOUNDARY;
927
928 out:
929 iomap->bdev = inode->i_sb->s_bdev;
930 unlock:
931 up_read(&ip->i_rw_mutex);
932 return ret;
933
934 do_alloc:
935 if (flags & IOMAP_REPORT) {
936 if (pos >= size)
937 ret = -ENOENT;
938 else if (height == ip->i_height)
939 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
940 else
941 iomap->length = size - iomap->offset;
942 } else if (flags & IOMAP_WRITE) {
943 u64 alloc_size;
944
945 if (flags & IOMAP_DIRECT)
946 goto out; /* (see gfs2_file_direct_write) */
947
948 len = gfs2_alloc_size(inode, mp, len);
949 alloc_size = len << inode->i_blkbits;
950 if (alloc_size < iomap->length)
951 iomap->length = alloc_size;
952 } else {
953 if (pos < size && height == ip->i_height)
954 ret = gfs2_hole_size(inode, lblock, len, mp, iomap);
955 }
956 hole_found:
957 iomap->addr = IOMAP_NULL_ADDR;
958 iomap->type = IOMAP_HOLE;
959 goto out;
960 }
961
962 static struct folio *
gfs2_iomap_get_folio(struct iomap_iter * iter,loff_t pos,unsigned len)963 gfs2_iomap_get_folio(struct iomap_iter *iter, loff_t pos, unsigned len)
964 {
965 struct inode *inode = iter->inode;
966 unsigned int blockmask = i_blocksize(inode) - 1;
967 struct gfs2_sbd *sdp = GFS2_SB(inode);
968 unsigned int blocks;
969 struct folio *folio;
970 int status;
971
972 blocks = ((pos & blockmask) + len + blockmask) >> inode->i_blkbits;
973 status = gfs2_trans_begin(sdp, RES_DINODE + blocks, 0);
974 if (status)
975 return ERR_PTR(status);
976
977 folio = iomap_get_folio(iter, pos, len);
978 if (IS_ERR(folio))
979 gfs2_trans_end(sdp);
980 return folio;
981 }
982
gfs2_iomap_put_folio(struct inode * inode,loff_t pos,unsigned copied,struct folio * folio)983 static void gfs2_iomap_put_folio(struct inode *inode, loff_t pos,
984 unsigned copied, struct folio *folio)
985 {
986 struct gfs2_trans *tr = current->journal_info;
987 struct gfs2_inode *ip = GFS2_I(inode);
988 struct gfs2_sbd *sdp = GFS2_SB(inode);
989
990 if (!gfs2_is_stuffed(ip))
991 gfs2_trans_add_databufs(ip, folio, offset_in_folio(folio, pos),
992 copied);
993
994 folio_unlock(folio);
995 folio_put(folio);
996
997 if (tr->tr_num_buf_new)
998 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
999
1000 gfs2_trans_end(sdp);
1001 }
1002
1003 static const struct iomap_folio_ops gfs2_iomap_folio_ops = {
1004 .get_folio = gfs2_iomap_get_folio,
1005 .put_folio = gfs2_iomap_put_folio,
1006 };
1007
gfs2_iomap_begin_write(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct metapath * mp)1008 static int gfs2_iomap_begin_write(struct inode *inode, loff_t pos,
1009 loff_t length, unsigned flags,
1010 struct iomap *iomap,
1011 struct metapath *mp)
1012 {
1013 struct gfs2_inode *ip = GFS2_I(inode);
1014 struct gfs2_sbd *sdp = GFS2_SB(inode);
1015 bool unstuff;
1016 int ret;
1017
1018 unstuff = gfs2_is_stuffed(ip) &&
1019 pos + length > gfs2_max_stuffed_size(ip);
1020
1021 if (unstuff || iomap->type == IOMAP_HOLE) {
1022 unsigned int data_blocks, ind_blocks;
1023 struct gfs2_alloc_parms ap = {};
1024 unsigned int rblocks;
1025 struct gfs2_trans *tr;
1026
1027 gfs2_write_calc_reserv(ip, iomap->length, &data_blocks,
1028 &ind_blocks);
1029 ap.target = data_blocks + ind_blocks;
1030 ret = gfs2_quota_lock_check(ip, &ap);
1031 if (ret)
1032 return ret;
1033
1034 ret = gfs2_inplace_reserve(ip, &ap);
1035 if (ret)
1036 goto out_qunlock;
1037
1038 rblocks = RES_DINODE + ind_blocks;
1039 if (gfs2_is_jdata(ip))
1040 rblocks += data_blocks;
1041 if (ind_blocks || data_blocks)
1042 rblocks += RES_STATFS + RES_QUOTA;
1043 if (inode == sdp->sd_rindex)
1044 rblocks += 2 * RES_STATFS;
1045 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1046
1047 ret = gfs2_trans_begin(sdp, rblocks,
1048 iomap->length >> inode->i_blkbits);
1049 if (ret)
1050 goto out_trans_fail;
1051
1052 if (unstuff) {
1053 ret = gfs2_unstuff_dinode(ip);
1054 if (ret)
1055 goto out_trans_end;
1056 release_metapath(mp);
1057 ret = __gfs2_iomap_get(inode, iomap->offset,
1058 iomap->length, flags, iomap, mp);
1059 if (ret)
1060 goto out_trans_end;
1061 }
1062
1063 if (iomap->type == IOMAP_HOLE) {
1064 ret = __gfs2_iomap_alloc(inode, iomap, mp);
1065 if (ret) {
1066 gfs2_trans_end(sdp);
1067 gfs2_inplace_release(ip);
1068 punch_hole(ip, iomap->offset, iomap->length);
1069 goto out_qunlock;
1070 }
1071 }
1072
1073 tr = current->journal_info;
1074 if (tr->tr_num_buf_new)
1075 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1076
1077 gfs2_trans_end(sdp);
1078 }
1079
1080 if (gfs2_is_stuffed(ip) || gfs2_is_jdata(ip))
1081 iomap->folio_ops = &gfs2_iomap_folio_ops;
1082 return 0;
1083
1084 out_trans_end:
1085 gfs2_trans_end(sdp);
1086 out_trans_fail:
1087 gfs2_inplace_release(ip);
1088 out_qunlock:
1089 gfs2_quota_unlock(ip);
1090 return ret;
1091 }
1092
gfs2_iomap_begin(struct inode * inode,loff_t pos,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1093 static int gfs2_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
1094 unsigned flags, struct iomap *iomap,
1095 struct iomap *srcmap)
1096 {
1097 struct gfs2_inode *ip = GFS2_I(inode);
1098 struct metapath mp = { .mp_aheight = 1, };
1099 int ret;
1100
1101 if (gfs2_is_jdata(ip))
1102 iomap->flags |= IOMAP_F_BUFFER_HEAD;
1103
1104 trace_gfs2_iomap_start(ip, pos, length, flags);
1105 ret = __gfs2_iomap_get(inode, pos, length, flags, iomap, &mp);
1106 if (ret)
1107 goto out_unlock;
1108
1109 switch(flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1110 case IOMAP_WRITE:
1111 if (flags & IOMAP_DIRECT) {
1112 /*
1113 * Silently fall back to buffered I/O for stuffed files
1114 * or if we've got a hole (see gfs2_file_direct_write).
1115 */
1116 if (iomap->type != IOMAP_MAPPED)
1117 ret = -ENOTBLK;
1118 goto out_unlock;
1119 }
1120 break;
1121 case IOMAP_ZERO:
1122 if (iomap->type == IOMAP_HOLE)
1123 goto out_unlock;
1124 break;
1125 default:
1126 goto out_unlock;
1127 }
1128
1129 ret = gfs2_iomap_begin_write(inode, pos, length, flags, iomap, &mp);
1130
1131 out_unlock:
1132 release_metapath(&mp);
1133 trace_gfs2_iomap_end(ip, iomap, ret);
1134 return ret;
1135 }
1136
gfs2_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1137 static int gfs2_iomap_end(struct inode *inode, loff_t pos, loff_t length,
1138 ssize_t written, unsigned flags, struct iomap *iomap)
1139 {
1140 struct gfs2_inode *ip = GFS2_I(inode);
1141 struct gfs2_sbd *sdp = GFS2_SB(inode);
1142
1143 switch (flags & (IOMAP_WRITE | IOMAP_ZERO)) {
1144 case IOMAP_WRITE:
1145 if (flags & IOMAP_DIRECT)
1146 return 0;
1147 break;
1148 case IOMAP_ZERO:
1149 if (iomap->type == IOMAP_HOLE)
1150 return 0;
1151 break;
1152 default:
1153 return 0;
1154 }
1155
1156 if (!gfs2_is_stuffed(ip))
1157 gfs2_ordered_add_inode(ip);
1158
1159 if (inode == sdp->sd_rindex)
1160 adjust_fs_space(inode);
1161
1162 gfs2_inplace_release(ip);
1163
1164 if (ip->i_qadata && ip->i_qadata->qa_qd_num)
1165 gfs2_quota_unlock(ip);
1166
1167 if (length != written && (iomap->flags & IOMAP_F_NEW)) {
1168 /* Deallocate blocks that were just allocated. */
1169 loff_t hstart = round_up(pos + written, i_blocksize(inode));
1170 loff_t hend = iomap->offset + iomap->length;
1171
1172 if (hstart < hend) {
1173 truncate_pagecache_range(inode, hstart, hend - 1);
1174 punch_hole(ip, hstart, hend - hstart);
1175 }
1176 }
1177
1178 if (unlikely(!written))
1179 return 0;
1180
1181 if (iomap->flags & IOMAP_F_SIZE_CHANGED)
1182 mark_inode_dirty(inode);
1183 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
1184 return 0;
1185 }
1186
1187 const struct iomap_ops gfs2_iomap_ops = {
1188 .iomap_begin = gfs2_iomap_begin,
1189 .iomap_end = gfs2_iomap_end,
1190 };
1191
1192 /**
1193 * gfs2_block_map - Map one or more blocks of an inode to a disk block
1194 * @inode: The inode
1195 * @lblock: The logical block number
1196 * @bh_map: The bh to be mapped
1197 * @create: True if its ok to alloc blocks to satify the request
1198 *
1199 * The size of the requested mapping is defined in bh_map->b_size.
1200 *
1201 * Clears buffer_mapped(bh_map) and leaves bh_map->b_size unchanged
1202 * when @lblock is not mapped. Sets buffer_mapped(bh_map) and
1203 * bh_map->b_size to indicate the size of the mapping when @lblock and
1204 * successive blocks are mapped, up to the requested size.
1205 *
1206 * Sets buffer_boundary() if a read of metadata will be required
1207 * before the next block can be mapped. Sets buffer_new() if new
1208 * blocks were allocated.
1209 *
1210 * Returns: errno
1211 */
1212
gfs2_block_map(struct inode * inode,sector_t lblock,struct buffer_head * bh_map,int create)1213 int gfs2_block_map(struct inode *inode, sector_t lblock,
1214 struct buffer_head *bh_map, int create)
1215 {
1216 struct gfs2_inode *ip = GFS2_I(inode);
1217 loff_t pos = (loff_t)lblock << inode->i_blkbits;
1218 loff_t length = bh_map->b_size;
1219 struct iomap iomap = { };
1220 int ret;
1221
1222 clear_buffer_mapped(bh_map);
1223 clear_buffer_new(bh_map);
1224 clear_buffer_boundary(bh_map);
1225 trace_gfs2_bmap(ip, bh_map, lblock, create, 1);
1226
1227 if (!create)
1228 ret = gfs2_iomap_get(inode, pos, length, &iomap);
1229 else
1230 ret = gfs2_iomap_alloc(inode, pos, length, &iomap);
1231 if (ret)
1232 goto out;
1233
1234 if (iomap.length > bh_map->b_size) {
1235 iomap.length = bh_map->b_size;
1236 iomap.flags &= ~IOMAP_F_GFS2_BOUNDARY;
1237 }
1238 if (iomap.addr != IOMAP_NULL_ADDR)
1239 map_bh(bh_map, inode->i_sb, iomap.addr >> inode->i_blkbits);
1240 bh_map->b_size = iomap.length;
1241 if (iomap.flags & IOMAP_F_GFS2_BOUNDARY)
1242 set_buffer_boundary(bh_map);
1243 if (iomap.flags & IOMAP_F_NEW)
1244 set_buffer_new(bh_map);
1245
1246 out:
1247 trace_gfs2_bmap(ip, bh_map, lblock, create, ret);
1248 return ret;
1249 }
1250
gfs2_get_extent(struct inode * inode,u64 lblock,u64 * dblock,unsigned int * extlen)1251 int gfs2_get_extent(struct inode *inode, u64 lblock, u64 *dblock,
1252 unsigned int *extlen)
1253 {
1254 unsigned int blkbits = inode->i_blkbits;
1255 struct iomap iomap = { };
1256 unsigned int len;
1257 int ret;
1258
1259 ret = gfs2_iomap_get(inode, lblock << blkbits, *extlen << blkbits,
1260 &iomap);
1261 if (ret)
1262 return ret;
1263 if (iomap.type != IOMAP_MAPPED)
1264 return -EIO;
1265 *dblock = iomap.addr >> blkbits;
1266 len = iomap.length >> blkbits;
1267 if (len < *extlen)
1268 *extlen = len;
1269 return 0;
1270 }
1271
gfs2_alloc_extent(struct inode * inode,u64 lblock,u64 * dblock,unsigned int * extlen,bool * new)1272 int gfs2_alloc_extent(struct inode *inode, u64 lblock, u64 *dblock,
1273 unsigned int *extlen, bool *new)
1274 {
1275 unsigned int blkbits = inode->i_blkbits;
1276 struct iomap iomap = { };
1277 unsigned int len;
1278 int ret;
1279
1280 ret = gfs2_iomap_alloc(inode, lblock << blkbits, *extlen << blkbits,
1281 &iomap);
1282 if (ret)
1283 return ret;
1284 if (iomap.type != IOMAP_MAPPED)
1285 return -EIO;
1286 *dblock = iomap.addr >> blkbits;
1287 len = iomap.length >> blkbits;
1288 if (len < *extlen)
1289 *extlen = len;
1290 *new = iomap.flags & IOMAP_F_NEW;
1291 return 0;
1292 }
1293
1294 /*
1295 * NOTE: Never call gfs2_block_zero_range with an open transaction because it
1296 * uses iomap write to perform its actions, which begin their own transactions
1297 * (iomap_begin, get_folio, etc.)
1298 */
gfs2_block_zero_range(struct inode * inode,loff_t from,unsigned int length)1299 static int gfs2_block_zero_range(struct inode *inode, loff_t from,
1300 unsigned int length)
1301 {
1302 BUG_ON(current->journal_info);
1303 return iomap_zero_range(inode, from, length, NULL, &gfs2_iomap_ops,
1304 NULL);
1305 }
1306
1307 #define GFS2_JTRUNC_REVOKES 8192
1308
1309 /**
1310 * gfs2_journaled_truncate - Wrapper for truncate_pagecache for jdata files
1311 * @inode: The inode being truncated
1312 * @oldsize: The original (larger) size
1313 * @newsize: The new smaller size
1314 *
1315 * With jdata files, we have to journal a revoke for each block which is
1316 * truncated. As a result, we need to split this into separate transactions
1317 * if the number of pages being truncated gets too large.
1318 */
1319
gfs2_journaled_truncate(struct inode * inode,u64 oldsize,u64 newsize)1320 static int gfs2_journaled_truncate(struct inode *inode, u64 oldsize, u64 newsize)
1321 {
1322 struct gfs2_sbd *sdp = GFS2_SB(inode);
1323 u64 max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
1324 u64 chunk;
1325 int error;
1326
1327 while (oldsize != newsize) {
1328 struct gfs2_trans *tr;
1329 unsigned int offs;
1330
1331 chunk = oldsize - newsize;
1332 if (chunk > max_chunk)
1333 chunk = max_chunk;
1334
1335 offs = oldsize & ~PAGE_MASK;
1336 if (offs && chunk > PAGE_SIZE)
1337 chunk = offs + ((chunk - offs) & PAGE_MASK);
1338
1339 truncate_pagecache(inode, oldsize - chunk);
1340 oldsize -= chunk;
1341
1342 tr = current->journal_info;
1343 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
1344 continue;
1345
1346 gfs2_trans_end(sdp);
1347 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
1348 if (error)
1349 return error;
1350 }
1351
1352 return 0;
1353 }
1354
trunc_start(struct inode * inode,u64 newsize)1355 static int trunc_start(struct inode *inode, u64 newsize)
1356 {
1357 struct gfs2_inode *ip = GFS2_I(inode);
1358 struct gfs2_sbd *sdp = GFS2_SB(inode);
1359 struct buffer_head *dibh = NULL;
1360 int journaled = gfs2_is_jdata(ip);
1361 u64 oldsize = inode->i_size;
1362 int error;
1363
1364 if (!gfs2_is_stuffed(ip)) {
1365 unsigned int blocksize = i_blocksize(inode);
1366 unsigned int offs = newsize & (blocksize - 1);
1367 if (offs) {
1368 error = gfs2_block_zero_range(inode, newsize,
1369 blocksize - offs);
1370 if (error)
1371 return error;
1372 }
1373 }
1374 if (journaled)
1375 error = gfs2_trans_begin(sdp, RES_DINODE + RES_JDATA, GFS2_JTRUNC_REVOKES);
1376 else
1377 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1378 if (error)
1379 return error;
1380
1381 error = gfs2_meta_inode_buffer(ip, &dibh);
1382 if (error)
1383 goto out;
1384
1385 gfs2_trans_add_meta(ip->i_gl, dibh);
1386
1387 if (gfs2_is_stuffed(ip))
1388 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode) + newsize);
1389 else
1390 ip->i_diskflags |= GFS2_DIF_TRUNC_IN_PROG;
1391
1392 i_size_write(inode, newsize);
1393 inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
1394 gfs2_dinode_out(ip, dibh->b_data);
1395
1396 if (journaled)
1397 error = gfs2_journaled_truncate(inode, oldsize, newsize);
1398 else
1399 truncate_pagecache(inode, newsize);
1400
1401 out:
1402 brelse(dibh);
1403 if (current->journal_info)
1404 gfs2_trans_end(sdp);
1405 return error;
1406 }
1407
gfs2_iomap_get(struct inode * inode,loff_t pos,loff_t length,struct iomap * iomap)1408 int gfs2_iomap_get(struct inode *inode, loff_t pos, loff_t length,
1409 struct iomap *iomap)
1410 {
1411 struct metapath mp = { .mp_aheight = 1, };
1412 int ret;
1413
1414 ret = __gfs2_iomap_get(inode, pos, length, 0, iomap, &mp);
1415 release_metapath(&mp);
1416 return ret;
1417 }
1418
gfs2_iomap_alloc(struct inode * inode,loff_t pos,loff_t length,struct iomap * iomap)1419 int gfs2_iomap_alloc(struct inode *inode, loff_t pos, loff_t length,
1420 struct iomap *iomap)
1421 {
1422 struct metapath mp = { .mp_aheight = 1, };
1423 int ret;
1424
1425 ret = __gfs2_iomap_get(inode, pos, length, IOMAP_WRITE, iomap, &mp);
1426 if (!ret && iomap->type == IOMAP_HOLE)
1427 ret = __gfs2_iomap_alloc(inode, iomap, &mp);
1428 release_metapath(&mp);
1429 return ret;
1430 }
1431
1432 /**
1433 * sweep_bh_for_rgrps - find an rgrp in a meta buffer and free blocks therein
1434 * @ip: inode
1435 * @rd_gh: holder of resource group glock
1436 * @bh: buffer head to sweep
1437 * @start: starting point in bh
1438 * @end: end point in bh
1439 * @meta: true if bh points to metadata (rather than data)
1440 * @btotal: place to keep count of total blocks freed
1441 *
1442 * We sweep a metadata buffer (provided by the metapath) for blocks we need to
1443 * free, and free them all. However, we do it one rgrp at a time. If this
1444 * block has references to multiple rgrps, we break it into individual
1445 * transactions. This allows other processes to use the rgrps while we're
1446 * focused on a single one, for better concurrency / performance.
1447 * At every transaction boundary, we rewrite the inode into the journal.
1448 * That way the bitmaps are kept consistent with the inode and we can recover
1449 * if we're interrupted by power-outages.
1450 *
1451 * Returns: 0, or return code if an error occurred.
1452 * *btotal has the total number of blocks freed
1453 */
sweep_bh_for_rgrps(struct gfs2_inode * ip,struct gfs2_holder * rd_gh,struct buffer_head * bh,__be64 * start,__be64 * end,bool meta,u32 * btotal)1454 static int sweep_bh_for_rgrps(struct gfs2_inode *ip, struct gfs2_holder *rd_gh,
1455 struct buffer_head *bh, __be64 *start, __be64 *end,
1456 bool meta, u32 *btotal)
1457 {
1458 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1459 struct gfs2_rgrpd *rgd;
1460 struct gfs2_trans *tr;
1461 __be64 *p;
1462 int blks_outside_rgrp;
1463 u64 bn, bstart, isize_blks;
1464 s64 blen; /* needs to be s64 or gfs2_add_inode_blocks breaks */
1465 int ret = 0;
1466 bool buf_in_tr = false; /* buffer was added to transaction */
1467
1468 more_rgrps:
1469 rgd = NULL;
1470 if (gfs2_holder_initialized(rd_gh)) {
1471 rgd = gfs2_glock2rgrp(rd_gh->gh_gl);
1472 gfs2_assert_withdraw(sdp,
1473 gfs2_glock_is_locked_by_me(rd_gh->gh_gl));
1474 }
1475 blks_outside_rgrp = 0;
1476 bstart = 0;
1477 blen = 0;
1478
1479 for (p = start; p < end; p++) {
1480 if (!*p)
1481 continue;
1482 bn = be64_to_cpu(*p);
1483
1484 if (rgd) {
1485 if (!rgrp_contains_block(rgd, bn)) {
1486 blks_outside_rgrp++;
1487 continue;
1488 }
1489 } else {
1490 rgd = gfs2_blk2rgrpd(sdp, bn, true);
1491 if (unlikely(!rgd)) {
1492 ret = -EIO;
1493 goto out;
1494 }
1495 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE,
1496 LM_FLAG_NODE_SCOPE, rd_gh);
1497 if (ret)
1498 goto out;
1499
1500 /* Must be done with the rgrp glock held: */
1501 if (gfs2_rs_active(&ip->i_res) &&
1502 rgd == ip->i_res.rs_rgd)
1503 gfs2_rs_deltree(&ip->i_res);
1504 }
1505
1506 /* The size of our transactions will be unknown until we
1507 actually process all the metadata blocks that relate to
1508 the rgrp. So we estimate. We know it can't be more than
1509 the dinode's i_blocks and we don't want to exceed the
1510 journal flush threshold, sd_log_thresh2. */
1511 if (current->journal_info == NULL) {
1512 unsigned int jblocks_rqsted, revokes;
1513
1514 jblocks_rqsted = rgd->rd_length + RES_DINODE +
1515 RES_INDIRECT;
1516 isize_blks = gfs2_get_inode_blocks(&ip->i_inode);
1517 if (isize_blks > atomic_read(&sdp->sd_log_thresh2))
1518 jblocks_rqsted +=
1519 atomic_read(&sdp->sd_log_thresh2);
1520 else
1521 jblocks_rqsted += isize_blks;
1522 revokes = jblocks_rqsted;
1523 if (meta)
1524 revokes += end - start;
1525 else if (ip->i_depth)
1526 revokes += sdp->sd_inptrs;
1527 ret = gfs2_trans_begin(sdp, jblocks_rqsted, revokes);
1528 if (ret)
1529 goto out_unlock;
1530 down_write(&ip->i_rw_mutex);
1531 }
1532 /* check if we will exceed the transaction blocks requested */
1533 tr = current->journal_info;
1534 if (tr->tr_num_buf_new + RES_STATFS +
1535 RES_QUOTA >= atomic_read(&sdp->sd_log_thresh2)) {
1536 /* We set blks_outside_rgrp to ensure the loop will
1537 be repeated for the same rgrp, but with a new
1538 transaction. */
1539 blks_outside_rgrp++;
1540 /* This next part is tricky. If the buffer was added
1541 to the transaction, we've already set some block
1542 pointers to 0, so we better follow through and free
1543 them, or we will introduce corruption (so break).
1544 This may be impossible, or at least rare, but I
1545 decided to cover the case regardless.
1546
1547 If the buffer was not added to the transaction
1548 (this call), doing so would exceed our transaction
1549 size, so we need to end the transaction and start a
1550 new one (so goto). */
1551
1552 if (buf_in_tr)
1553 break;
1554 goto out_unlock;
1555 }
1556
1557 gfs2_trans_add_meta(ip->i_gl, bh);
1558 buf_in_tr = true;
1559 *p = 0;
1560 if (bstart + blen == bn) {
1561 blen++;
1562 continue;
1563 }
1564 if (bstart) {
1565 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1566 (*btotal) += blen;
1567 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1568 }
1569 bstart = bn;
1570 blen = 1;
1571 }
1572 if (bstart) {
1573 __gfs2_free_blocks(ip, rgd, bstart, (u32)blen, meta);
1574 (*btotal) += blen;
1575 gfs2_add_inode_blocks(&ip->i_inode, -blen);
1576 }
1577 out_unlock:
1578 if (!ret && blks_outside_rgrp) { /* If buffer still has non-zero blocks
1579 outside the rgrp we just processed,
1580 do it all over again. */
1581 if (current->journal_info) {
1582 struct buffer_head *dibh;
1583
1584 ret = gfs2_meta_inode_buffer(ip, &dibh);
1585 if (ret)
1586 goto out;
1587
1588 /* Every transaction boundary, we rewrite the dinode
1589 to keep its di_blocks current in case of failure. */
1590 inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
1591 gfs2_trans_add_meta(ip->i_gl, dibh);
1592 gfs2_dinode_out(ip, dibh->b_data);
1593 brelse(dibh);
1594 up_write(&ip->i_rw_mutex);
1595 gfs2_trans_end(sdp);
1596 buf_in_tr = false;
1597 }
1598 gfs2_glock_dq_uninit(rd_gh);
1599 cond_resched();
1600 goto more_rgrps;
1601 }
1602 out:
1603 return ret;
1604 }
1605
mp_eq_to_hgt(struct metapath * mp,__u16 * list,unsigned int h)1606 static bool mp_eq_to_hgt(struct metapath *mp, __u16 *list, unsigned int h)
1607 {
1608 if (memcmp(mp->mp_list, list, h * sizeof(mp->mp_list[0])))
1609 return false;
1610 return true;
1611 }
1612
1613 /**
1614 * find_nonnull_ptr - find a non-null pointer given a metapath and height
1615 * @sdp: The superblock
1616 * @mp: starting metapath
1617 * @h: desired height to search
1618 * @end_list: See punch_hole().
1619 * @end_aligned: See punch_hole().
1620 *
1621 * Assumes the metapath is valid (with buffers) out to height h.
1622 * Returns: true if a non-null pointer was found in the metapath buffer
1623 * false if all remaining pointers are NULL in the buffer
1624 */
find_nonnull_ptr(struct gfs2_sbd * sdp,struct metapath * mp,unsigned int h,__u16 * end_list,unsigned int end_aligned)1625 static bool find_nonnull_ptr(struct gfs2_sbd *sdp, struct metapath *mp,
1626 unsigned int h,
1627 __u16 *end_list, unsigned int end_aligned)
1628 {
1629 struct buffer_head *bh = mp->mp_bh[h];
1630 __be64 *first, *ptr, *end;
1631
1632 first = metaptr1(h, mp);
1633 ptr = first + mp->mp_list[h];
1634 end = (__be64 *)(bh->b_data + bh->b_size);
1635 if (end_list && mp_eq_to_hgt(mp, end_list, h)) {
1636 bool keep_end = h < end_aligned;
1637 end = first + end_list[h] + keep_end;
1638 }
1639
1640 while (ptr < end) {
1641 if (*ptr) { /* if we have a non-null pointer */
1642 mp->mp_list[h] = ptr - first;
1643 h++;
1644 if (h < GFS2_MAX_META_HEIGHT)
1645 mp->mp_list[h] = 0;
1646 return true;
1647 }
1648 ptr++;
1649 }
1650 return false;
1651 }
1652
1653 enum dealloc_states {
1654 DEALLOC_MP_FULL = 0, /* Strip a metapath with all buffers read in */
1655 DEALLOC_MP_LOWER = 1, /* lower the metapath strip height */
1656 DEALLOC_FILL_MP = 2, /* Fill in the metapath to the given height. */
1657 DEALLOC_DONE = 3, /* process complete */
1658 };
1659
1660 static inline void
metapointer_range(struct metapath * mp,int height,__u16 * start_list,unsigned int start_aligned,__u16 * end_list,unsigned int end_aligned,__be64 ** start,__be64 ** end)1661 metapointer_range(struct metapath *mp, int height,
1662 __u16 *start_list, unsigned int start_aligned,
1663 __u16 *end_list, unsigned int end_aligned,
1664 __be64 **start, __be64 **end)
1665 {
1666 struct buffer_head *bh = mp->mp_bh[height];
1667 __be64 *first;
1668
1669 first = metaptr1(height, mp);
1670 *start = first;
1671 if (mp_eq_to_hgt(mp, start_list, height)) {
1672 bool keep_start = height < start_aligned;
1673 *start = first + start_list[height] + keep_start;
1674 }
1675 *end = (__be64 *)(bh->b_data + bh->b_size);
1676 if (end_list && mp_eq_to_hgt(mp, end_list, height)) {
1677 bool keep_end = height < end_aligned;
1678 *end = first + end_list[height] + keep_end;
1679 }
1680 }
1681
walk_done(struct gfs2_sbd * sdp,struct metapath * mp,int height,__u16 * end_list,unsigned int end_aligned)1682 static inline bool walk_done(struct gfs2_sbd *sdp,
1683 struct metapath *mp, int height,
1684 __u16 *end_list, unsigned int end_aligned)
1685 {
1686 __u16 end;
1687
1688 if (end_list) {
1689 bool keep_end = height < end_aligned;
1690 if (!mp_eq_to_hgt(mp, end_list, height))
1691 return false;
1692 end = end_list[height] + keep_end;
1693 } else
1694 end = (height > 0) ? sdp->sd_inptrs : sdp->sd_diptrs;
1695 return mp->mp_list[height] >= end;
1696 }
1697
1698 /**
1699 * punch_hole - deallocate blocks in a file
1700 * @ip: inode to truncate
1701 * @offset: the start of the hole
1702 * @length: the size of the hole (or 0 for truncate)
1703 *
1704 * Punch a hole into a file or truncate a file at a given position. This
1705 * function operates in whole blocks (@offset and @length are rounded
1706 * accordingly); partially filled blocks must be cleared otherwise.
1707 *
1708 * This function works from the bottom up, and from the right to the left. In
1709 * other words, it strips off the highest layer (data) before stripping any of
1710 * the metadata. Doing it this way is best in case the operation is interrupted
1711 * by power failure, etc. The dinode is rewritten in every transaction to
1712 * guarantee integrity.
1713 */
punch_hole(struct gfs2_inode * ip,u64 offset,u64 length)1714 static int punch_hole(struct gfs2_inode *ip, u64 offset, u64 length)
1715 {
1716 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1717 u64 maxsize = sdp->sd_heightsize[ip->i_height];
1718 struct metapath mp = {};
1719 struct buffer_head *dibh, *bh;
1720 struct gfs2_holder rd_gh;
1721 unsigned int bsize_shift = sdp->sd_sb.sb_bsize_shift;
1722 unsigned int bsize = 1 << bsize_shift;
1723 u64 lblock = (offset + bsize - 1) >> bsize_shift;
1724 __u16 start_list[GFS2_MAX_META_HEIGHT];
1725 __u16 __end_list[GFS2_MAX_META_HEIGHT], *end_list = NULL;
1726 unsigned int start_aligned, end_aligned;
1727 unsigned int strip_h = ip->i_height - 1;
1728 u32 btotal = 0;
1729 int ret, state;
1730 int mp_h; /* metapath buffers are read in to this height */
1731 u64 prev_bnr = 0;
1732 __be64 *start, *end;
1733
1734 if (offset + bsize - 1 >= maxsize) {
1735 /*
1736 * The starting point lies beyond the allocated metadata;
1737 * there are no blocks to deallocate.
1738 */
1739 return 0;
1740 }
1741
1742 /*
1743 * The start position of the hole is defined by lblock, start_list, and
1744 * start_aligned. The end position of the hole is defined by lend,
1745 * end_list, and end_aligned.
1746 *
1747 * start_aligned and end_aligned define down to which height the start
1748 * and end positions are aligned to the metadata tree (i.e., the
1749 * position is a multiple of the metadata granularity at the height
1750 * above). This determines at which heights additional meta pointers
1751 * needs to be preserved for the remaining data.
1752 */
1753
1754 if (length) {
1755 u64 end_offset = offset + length;
1756 u64 lend;
1757
1758 /*
1759 * Clip the end at the maximum file size for the given height:
1760 * that's how far the metadata goes; files bigger than that
1761 * will have additional layers of indirection.
1762 */
1763 if (end_offset > maxsize)
1764 end_offset = maxsize;
1765 lend = end_offset >> bsize_shift;
1766
1767 if (lblock >= lend)
1768 return 0;
1769
1770 find_metapath(sdp, lend, &mp, ip->i_height);
1771 end_list = __end_list;
1772 memcpy(end_list, mp.mp_list, sizeof(mp.mp_list));
1773
1774 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1775 if (end_list[mp_h])
1776 break;
1777 }
1778 end_aligned = mp_h;
1779 }
1780
1781 find_metapath(sdp, lblock, &mp, ip->i_height);
1782 memcpy(start_list, mp.mp_list, sizeof(start_list));
1783
1784 for (mp_h = ip->i_height - 1; mp_h > 0; mp_h--) {
1785 if (start_list[mp_h])
1786 break;
1787 }
1788 start_aligned = mp_h;
1789
1790 ret = gfs2_meta_inode_buffer(ip, &dibh);
1791 if (ret)
1792 return ret;
1793
1794 mp.mp_bh[0] = dibh;
1795 ret = lookup_metapath(ip, &mp);
1796 if (ret)
1797 goto out_metapath;
1798
1799 /* issue read-ahead on metadata */
1800 for (mp_h = 0; mp_h < mp.mp_aheight - 1; mp_h++) {
1801 metapointer_range(&mp, mp_h, start_list, start_aligned,
1802 end_list, end_aligned, &start, &end);
1803 gfs2_metapath_ra(ip->i_gl, start, end);
1804 }
1805
1806 if (mp.mp_aheight == ip->i_height)
1807 state = DEALLOC_MP_FULL; /* We have a complete metapath */
1808 else
1809 state = DEALLOC_FILL_MP; /* deal with partial metapath */
1810
1811 ret = gfs2_rindex_update(sdp);
1812 if (ret)
1813 goto out_metapath;
1814
1815 ret = gfs2_quota_hold(ip, NO_UID_QUOTA_CHANGE, NO_GID_QUOTA_CHANGE);
1816 if (ret)
1817 goto out_metapath;
1818 gfs2_holder_mark_uninitialized(&rd_gh);
1819
1820 mp_h = strip_h;
1821
1822 while (state != DEALLOC_DONE) {
1823 switch (state) {
1824 /* Truncate a full metapath at the given strip height.
1825 * Note that strip_h == mp_h in order to be in this state. */
1826 case DEALLOC_MP_FULL:
1827 bh = mp.mp_bh[mp_h];
1828 gfs2_assert_withdraw(sdp, bh);
1829 if (gfs2_assert_withdraw(sdp,
1830 prev_bnr != bh->b_blocknr)) {
1831 fs_emerg(sdp, "inode %llu, block:%llu, i_h:%u, "
1832 "s_h:%u, mp_h:%u\n",
1833 (unsigned long long)ip->i_no_addr,
1834 prev_bnr, ip->i_height, strip_h, mp_h);
1835 }
1836 prev_bnr = bh->b_blocknr;
1837
1838 if (gfs2_metatype_check(sdp, bh,
1839 (mp_h ? GFS2_METATYPE_IN :
1840 GFS2_METATYPE_DI))) {
1841 ret = -EIO;
1842 goto out;
1843 }
1844
1845 /*
1846 * Below, passing end_aligned as 0 gives us the
1847 * metapointer range excluding the end point: the end
1848 * point is the first metapath we must not deallocate!
1849 */
1850
1851 metapointer_range(&mp, mp_h, start_list, start_aligned,
1852 end_list, 0 /* end_aligned */,
1853 &start, &end);
1854 ret = sweep_bh_for_rgrps(ip, &rd_gh, mp.mp_bh[mp_h],
1855 start, end,
1856 mp_h != ip->i_height - 1,
1857 &btotal);
1858
1859 /* If we hit an error or just swept dinode buffer,
1860 just exit. */
1861 if (ret || !mp_h) {
1862 state = DEALLOC_DONE;
1863 break;
1864 }
1865 state = DEALLOC_MP_LOWER;
1866 break;
1867
1868 /* lower the metapath strip height */
1869 case DEALLOC_MP_LOWER:
1870 /* We're done with the current buffer, so release it,
1871 unless it's the dinode buffer. Then back up to the
1872 previous pointer. */
1873 if (mp_h) {
1874 brelse(mp.mp_bh[mp_h]);
1875 mp.mp_bh[mp_h] = NULL;
1876 }
1877 /* If we can't get any lower in height, we've stripped
1878 off all we can. Next step is to back up and start
1879 stripping the previous level of metadata. */
1880 if (mp_h == 0) {
1881 strip_h--;
1882 memcpy(mp.mp_list, start_list, sizeof(start_list));
1883 mp_h = strip_h;
1884 state = DEALLOC_FILL_MP;
1885 break;
1886 }
1887 mp.mp_list[mp_h] = 0;
1888 mp_h--; /* search one metadata height down */
1889 mp.mp_list[mp_h]++;
1890 if (walk_done(sdp, &mp, mp_h, end_list, end_aligned))
1891 break;
1892 /* Here we've found a part of the metapath that is not
1893 * allocated. We need to search at that height for the
1894 * next non-null pointer. */
1895 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned)) {
1896 state = DEALLOC_FILL_MP;
1897 mp_h++;
1898 }
1899 /* No more non-null pointers at this height. Back up
1900 to the previous height and try again. */
1901 break; /* loop around in the same state */
1902
1903 /* Fill the metapath with buffers to the given height. */
1904 case DEALLOC_FILL_MP:
1905 /* Fill the buffers out to the current height. */
1906 ret = fillup_metapath(ip, &mp, mp_h);
1907 if (ret < 0)
1908 goto out;
1909
1910 /* On the first pass, issue read-ahead on metadata. */
1911 if (mp.mp_aheight > 1 && strip_h == ip->i_height - 1) {
1912 unsigned int height = mp.mp_aheight - 1;
1913
1914 /* No read-ahead for data blocks. */
1915 if (mp.mp_aheight - 1 == strip_h)
1916 height--;
1917
1918 for (; height >= mp.mp_aheight - ret; height--) {
1919 metapointer_range(&mp, height,
1920 start_list, start_aligned,
1921 end_list, end_aligned,
1922 &start, &end);
1923 gfs2_metapath_ra(ip->i_gl, start, end);
1924 }
1925 }
1926
1927 /* If buffers found for the entire strip height */
1928 if (mp.mp_aheight - 1 == strip_h) {
1929 state = DEALLOC_MP_FULL;
1930 break;
1931 }
1932 if (mp.mp_aheight < ip->i_height) /* We have a partial height */
1933 mp_h = mp.mp_aheight - 1;
1934
1935 /* If we find a non-null block pointer, crawl a bit
1936 higher up in the metapath and try again, otherwise
1937 we need to look lower for a new starting point. */
1938 if (find_nonnull_ptr(sdp, &mp, mp_h, end_list, end_aligned))
1939 mp_h++;
1940 else
1941 state = DEALLOC_MP_LOWER;
1942 break;
1943 }
1944 }
1945
1946 if (btotal) {
1947 if (current->journal_info == NULL) {
1948 ret = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS +
1949 RES_QUOTA, 0);
1950 if (ret)
1951 goto out;
1952 down_write(&ip->i_rw_mutex);
1953 }
1954 gfs2_statfs_change(sdp, 0, +btotal, 0);
1955 gfs2_quota_change(ip, -(s64)btotal, ip->i_inode.i_uid,
1956 ip->i_inode.i_gid);
1957 inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
1958 gfs2_trans_add_meta(ip->i_gl, dibh);
1959 gfs2_dinode_out(ip, dibh->b_data);
1960 up_write(&ip->i_rw_mutex);
1961 gfs2_trans_end(sdp);
1962 }
1963
1964 out:
1965 if (gfs2_holder_initialized(&rd_gh))
1966 gfs2_glock_dq_uninit(&rd_gh);
1967 if (current->journal_info) {
1968 up_write(&ip->i_rw_mutex);
1969 gfs2_trans_end(sdp);
1970 cond_resched();
1971 }
1972 gfs2_quota_unhold(ip);
1973 out_metapath:
1974 release_metapath(&mp);
1975 return ret;
1976 }
1977
trunc_end(struct gfs2_inode * ip)1978 static int trunc_end(struct gfs2_inode *ip)
1979 {
1980 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1981 struct buffer_head *dibh;
1982 int error;
1983
1984 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
1985 if (error)
1986 return error;
1987
1988 down_write(&ip->i_rw_mutex);
1989
1990 error = gfs2_meta_inode_buffer(ip, &dibh);
1991 if (error)
1992 goto out;
1993
1994 if (!i_size_read(&ip->i_inode)) {
1995 ip->i_height = 0;
1996 ip->i_goal = ip->i_no_addr;
1997 gfs2_buffer_clear_tail(dibh, sizeof(struct gfs2_dinode));
1998 gfs2_ordered_del_inode(ip);
1999 }
2000 inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
2001 ip->i_diskflags &= ~GFS2_DIF_TRUNC_IN_PROG;
2002
2003 gfs2_trans_add_meta(ip->i_gl, dibh);
2004 gfs2_dinode_out(ip, dibh->b_data);
2005 brelse(dibh);
2006
2007 out:
2008 up_write(&ip->i_rw_mutex);
2009 gfs2_trans_end(sdp);
2010 return error;
2011 }
2012
2013 /**
2014 * do_shrink - make a file smaller
2015 * @inode: the inode
2016 * @newsize: the size to make the file
2017 *
2018 * Called with an exclusive lock on @inode. The @size must
2019 * be equal to or smaller than the current inode size.
2020 *
2021 * Returns: errno
2022 */
2023
do_shrink(struct inode * inode,u64 newsize)2024 static int do_shrink(struct inode *inode, u64 newsize)
2025 {
2026 struct gfs2_inode *ip = GFS2_I(inode);
2027 int error;
2028
2029 error = trunc_start(inode, newsize);
2030 if (error < 0)
2031 return error;
2032 if (gfs2_is_stuffed(ip))
2033 return 0;
2034
2035 error = punch_hole(ip, newsize, 0);
2036 if (error == 0)
2037 error = trunc_end(ip);
2038
2039 return error;
2040 }
2041
2042 /**
2043 * do_grow - Touch and update inode size
2044 * @inode: The inode
2045 * @size: The new size
2046 *
2047 * This function updates the timestamps on the inode and
2048 * may also increase the size of the inode. This function
2049 * must not be called with @size any smaller than the current
2050 * inode size.
2051 *
2052 * Although it is not strictly required to unstuff files here,
2053 * earlier versions of GFS2 have a bug in the stuffed file reading
2054 * code which will result in a buffer overrun if the size is larger
2055 * than the max stuffed file size. In order to prevent this from
2056 * occurring, such files are unstuffed, but in other cases we can
2057 * just update the inode size directly.
2058 *
2059 * Returns: 0 on success, or -ve on error
2060 */
2061
do_grow(struct inode * inode,u64 size)2062 static int do_grow(struct inode *inode, u64 size)
2063 {
2064 struct gfs2_inode *ip = GFS2_I(inode);
2065 struct gfs2_sbd *sdp = GFS2_SB(inode);
2066 struct gfs2_alloc_parms ap = { .target = 1, };
2067 struct buffer_head *dibh;
2068 int error;
2069 int unstuff = 0;
2070
2071 if (gfs2_is_stuffed(ip) && size > gfs2_max_stuffed_size(ip)) {
2072 error = gfs2_quota_lock_check(ip, &ap);
2073 if (error)
2074 return error;
2075
2076 error = gfs2_inplace_reserve(ip, &ap);
2077 if (error)
2078 goto do_grow_qunlock;
2079 unstuff = 1;
2080 }
2081
2082 error = gfs2_trans_begin(sdp, RES_DINODE + RES_STATFS + RES_RG_BIT +
2083 (unstuff &&
2084 gfs2_is_jdata(ip) ? RES_JDATA : 0) +
2085 (sdp->sd_args.ar_quota == GFS2_QUOTA_OFF ?
2086 0 : RES_QUOTA), 0);
2087 if (error)
2088 goto do_grow_release;
2089
2090 if (unstuff) {
2091 error = gfs2_unstuff_dinode(ip);
2092 if (error)
2093 goto do_end_trans;
2094 }
2095
2096 error = gfs2_meta_inode_buffer(ip, &dibh);
2097 if (error)
2098 goto do_end_trans;
2099
2100 truncate_setsize(inode, size);
2101 inode_set_mtime_to_ts(&ip->i_inode, inode_set_ctime_current(&ip->i_inode));
2102 gfs2_trans_add_meta(ip->i_gl, dibh);
2103 gfs2_dinode_out(ip, dibh->b_data);
2104 brelse(dibh);
2105
2106 do_end_trans:
2107 gfs2_trans_end(sdp);
2108 do_grow_release:
2109 if (unstuff) {
2110 gfs2_inplace_release(ip);
2111 do_grow_qunlock:
2112 gfs2_quota_unlock(ip);
2113 }
2114 return error;
2115 }
2116
2117 /**
2118 * gfs2_setattr_size - make a file a given size
2119 * @inode: the inode
2120 * @newsize: the size to make the file
2121 *
2122 * The file size can grow, shrink, or stay the same size. This
2123 * is called holding i_rwsem and an exclusive glock on the inode
2124 * in question.
2125 *
2126 * Returns: errno
2127 */
2128
gfs2_setattr_size(struct inode * inode,u64 newsize)2129 int gfs2_setattr_size(struct inode *inode, u64 newsize)
2130 {
2131 struct gfs2_inode *ip = GFS2_I(inode);
2132 int ret;
2133
2134 BUG_ON(!S_ISREG(inode->i_mode));
2135
2136 ret = inode_newsize_ok(inode, newsize);
2137 if (ret)
2138 return ret;
2139
2140 inode_dio_wait(inode);
2141
2142 ret = gfs2_qa_get(ip);
2143 if (ret)
2144 goto out;
2145
2146 if (newsize >= inode->i_size) {
2147 ret = do_grow(inode, newsize);
2148 goto out;
2149 }
2150
2151 ret = do_shrink(inode, newsize);
2152 out:
2153 gfs2_rs_delete(ip);
2154 gfs2_qa_put(ip);
2155 return ret;
2156 }
2157
gfs2_truncatei_resume(struct gfs2_inode * ip)2158 int gfs2_truncatei_resume(struct gfs2_inode *ip)
2159 {
2160 int error;
2161 error = punch_hole(ip, i_size_read(&ip->i_inode), 0);
2162 if (!error)
2163 error = trunc_end(ip);
2164 return error;
2165 }
2166
gfs2_file_dealloc(struct gfs2_inode * ip)2167 int gfs2_file_dealloc(struct gfs2_inode *ip)
2168 {
2169 return punch_hole(ip, 0, 0);
2170 }
2171
2172 /**
2173 * gfs2_free_journal_extents - Free cached journal bmap info
2174 * @jd: The journal
2175 *
2176 */
2177
gfs2_free_journal_extents(struct gfs2_jdesc * jd)2178 void gfs2_free_journal_extents(struct gfs2_jdesc *jd)
2179 {
2180 struct gfs2_journal_extent *jext;
2181
2182 while(!list_empty(&jd->extent_list)) {
2183 jext = list_first_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2184 list_del(&jext->list);
2185 kfree(jext);
2186 }
2187 }
2188
2189 /**
2190 * gfs2_add_jextent - Add or merge a new extent to extent cache
2191 * @jd: The journal descriptor
2192 * @lblock: The logical block at start of new extent
2193 * @dblock: The physical block at start of new extent
2194 * @blocks: Size of extent in fs blocks
2195 *
2196 * Returns: 0 on success or -ENOMEM
2197 */
2198
gfs2_add_jextent(struct gfs2_jdesc * jd,u64 lblock,u64 dblock,u64 blocks)2199 static int gfs2_add_jextent(struct gfs2_jdesc *jd, u64 lblock, u64 dblock, u64 blocks)
2200 {
2201 struct gfs2_journal_extent *jext;
2202
2203 if (!list_empty(&jd->extent_list)) {
2204 jext = list_last_entry(&jd->extent_list, struct gfs2_journal_extent, list);
2205 if ((jext->dblock + jext->blocks) == dblock) {
2206 jext->blocks += blocks;
2207 return 0;
2208 }
2209 }
2210
2211 jext = kzalloc(sizeof(struct gfs2_journal_extent), GFP_NOFS);
2212 if (jext == NULL)
2213 return -ENOMEM;
2214 jext->dblock = dblock;
2215 jext->lblock = lblock;
2216 jext->blocks = blocks;
2217 list_add_tail(&jext->list, &jd->extent_list);
2218 jd->nr_extents++;
2219 return 0;
2220 }
2221
2222 /**
2223 * gfs2_map_journal_extents - Cache journal bmap info
2224 * @sdp: The super block
2225 * @jd: The journal to map
2226 *
2227 * Create a reusable "extent" mapping from all logical
2228 * blocks to all physical blocks for the given journal. This will save
2229 * us time when writing journal blocks. Most journals will have only one
2230 * extent that maps all their logical blocks. That's because gfs2.mkfs
2231 * arranges the journal blocks sequentially to maximize performance.
2232 * So the extent would map the first block for the entire file length.
2233 * However, gfs2_jadd can happen while file activity is happening, so
2234 * those journals may not be sequential. Less likely is the case where
2235 * the users created their own journals by mounting the metafs and
2236 * laying it out. But it's still possible. These journals might have
2237 * several extents.
2238 *
2239 * Returns: 0 on success, or error on failure
2240 */
2241
gfs2_map_journal_extents(struct gfs2_sbd * sdp,struct gfs2_jdesc * jd)2242 int gfs2_map_journal_extents(struct gfs2_sbd *sdp, struct gfs2_jdesc *jd)
2243 {
2244 u64 lblock = 0;
2245 u64 lblock_stop;
2246 struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
2247 struct buffer_head bh;
2248 unsigned int shift = sdp->sd_sb.sb_bsize_shift;
2249 u64 size;
2250 int rc;
2251 ktime_t start, end;
2252
2253 start = ktime_get();
2254 lblock_stop = i_size_read(jd->jd_inode) >> shift;
2255 size = (lblock_stop - lblock) << shift;
2256 jd->nr_extents = 0;
2257 WARN_ON(!list_empty(&jd->extent_list));
2258
2259 do {
2260 bh.b_state = 0;
2261 bh.b_blocknr = 0;
2262 bh.b_size = size;
2263 rc = gfs2_block_map(jd->jd_inode, lblock, &bh, 0);
2264 if (rc || !buffer_mapped(&bh))
2265 goto fail;
2266 rc = gfs2_add_jextent(jd, lblock, bh.b_blocknr, bh.b_size >> shift);
2267 if (rc)
2268 goto fail;
2269 size -= bh.b_size;
2270 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2271 } while(size > 0);
2272
2273 end = ktime_get();
2274 fs_info(sdp, "journal %d mapped with %u extents in %lldms\n", jd->jd_jid,
2275 jd->nr_extents, ktime_ms_delta(end, start));
2276 return 0;
2277
2278 fail:
2279 fs_warn(sdp, "error %d mapping journal %u at offset %llu (extent %u)\n",
2280 rc, jd->jd_jid,
2281 (unsigned long long)(i_size_read(jd->jd_inode) - size),
2282 jd->nr_extents);
2283 fs_warn(sdp, "bmap=%d lblock=%llu block=%llu, state=0x%08lx, size=%llu\n",
2284 rc, (unsigned long long)lblock, (unsigned long long)bh.b_blocknr,
2285 bh.b_state, (unsigned long long)bh.b_size);
2286 gfs2_free_journal_extents(jd);
2287 return rc;
2288 }
2289
2290 /**
2291 * gfs2_write_alloc_required - figure out if a write will require an allocation
2292 * @ip: the file being written to
2293 * @offset: the offset to write to
2294 * @len: the number of bytes being written
2295 *
2296 * Returns: 1 if an alloc is required, 0 otherwise
2297 */
2298
gfs2_write_alloc_required(struct gfs2_inode * ip,u64 offset,unsigned int len)2299 int gfs2_write_alloc_required(struct gfs2_inode *ip, u64 offset,
2300 unsigned int len)
2301 {
2302 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2303 struct buffer_head bh;
2304 unsigned int shift;
2305 u64 lblock, lblock_stop, size;
2306 u64 end_of_file;
2307
2308 if (!len)
2309 return 0;
2310
2311 if (gfs2_is_stuffed(ip)) {
2312 if (offset + len > gfs2_max_stuffed_size(ip))
2313 return 1;
2314 return 0;
2315 }
2316
2317 shift = sdp->sd_sb.sb_bsize_shift;
2318 BUG_ON(gfs2_is_dir(ip));
2319 end_of_file = (i_size_read(&ip->i_inode) + sdp->sd_sb.sb_bsize - 1) >> shift;
2320 lblock = offset >> shift;
2321 lblock_stop = (offset + len + sdp->sd_sb.sb_bsize - 1) >> shift;
2322 if (lblock_stop > end_of_file && ip != GFS2_I(sdp->sd_rindex))
2323 return 1;
2324
2325 size = (lblock_stop - lblock) << shift;
2326 do {
2327 bh.b_state = 0;
2328 bh.b_size = size;
2329 gfs2_block_map(&ip->i_inode, lblock, &bh, 0);
2330 if (!buffer_mapped(&bh))
2331 return 1;
2332 size -= bh.b_size;
2333 lblock += (bh.b_size >> ip->i_inode.i_blkbits);
2334 } while(size > 0);
2335
2336 return 0;
2337 }
2338
stuffed_zero_range(struct inode * inode,loff_t offset,loff_t length)2339 static int stuffed_zero_range(struct inode *inode, loff_t offset, loff_t length)
2340 {
2341 struct gfs2_inode *ip = GFS2_I(inode);
2342 struct buffer_head *dibh;
2343 int error;
2344
2345 if (offset >= inode->i_size)
2346 return 0;
2347 if (offset + length > inode->i_size)
2348 length = inode->i_size - offset;
2349
2350 error = gfs2_meta_inode_buffer(ip, &dibh);
2351 if (error)
2352 return error;
2353 gfs2_trans_add_meta(ip->i_gl, dibh);
2354 memset(dibh->b_data + sizeof(struct gfs2_dinode) + offset, 0,
2355 length);
2356 brelse(dibh);
2357 return 0;
2358 }
2359
gfs2_journaled_truncate_range(struct inode * inode,loff_t offset,loff_t length)2360 static int gfs2_journaled_truncate_range(struct inode *inode, loff_t offset,
2361 loff_t length)
2362 {
2363 struct gfs2_sbd *sdp = GFS2_SB(inode);
2364 loff_t max_chunk = GFS2_JTRUNC_REVOKES * sdp->sd_vfs->s_blocksize;
2365 int error;
2366
2367 while (length) {
2368 struct gfs2_trans *tr;
2369 loff_t chunk;
2370 unsigned int offs;
2371
2372 chunk = length;
2373 if (chunk > max_chunk)
2374 chunk = max_chunk;
2375
2376 offs = offset & ~PAGE_MASK;
2377 if (offs && chunk > PAGE_SIZE)
2378 chunk = offs + ((chunk - offs) & PAGE_MASK);
2379
2380 truncate_pagecache_range(inode, offset, chunk);
2381 offset += chunk;
2382 length -= chunk;
2383
2384 tr = current->journal_info;
2385 if (!test_bit(TR_TOUCHED, &tr->tr_flags))
2386 continue;
2387
2388 gfs2_trans_end(sdp);
2389 error = gfs2_trans_begin(sdp, RES_DINODE, GFS2_JTRUNC_REVOKES);
2390 if (error)
2391 return error;
2392 }
2393 return 0;
2394 }
2395
__gfs2_punch_hole(struct file * file,loff_t offset,loff_t length)2396 int __gfs2_punch_hole(struct file *file, loff_t offset, loff_t length)
2397 {
2398 struct inode *inode = file_inode(file);
2399 struct gfs2_inode *ip = GFS2_I(inode);
2400 struct gfs2_sbd *sdp = GFS2_SB(inode);
2401 unsigned int blocksize = i_blocksize(inode);
2402 loff_t start, end;
2403 int error;
2404
2405 if (!gfs2_is_stuffed(ip)) {
2406 unsigned int start_off, end_len;
2407
2408 start_off = offset & (blocksize - 1);
2409 end_len = (offset + length) & (blocksize - 1);
2410 if (start_off) {
2411 unsigned int len = length;
2412 if (length > blocksize - start_off)
2413 len = blocksize - start_off;
2414 error = gfs2_block_zero_range(inode, offset, len);
2415 if (error)
2416 goto out;
2417 if (start_off + length < blocksize)
2418 end_len = 0;
2419 }
2420 if (end_len) {
2421 error = gfs2_block_zero_range(inode,
2422 offset + length - end_len, end_len);
2423 if (error)
2424 goto out;
2425 }
2426 }
2427
2428 start = round_down(offset, blocksize);
2429 end = round_up(offset + length, blocksize) - 1;
2430 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
2431 if (error)
2432 return error;
2433
2434 if (gfs2_is_jdata(ip))
2435 error = gfs2_trans_begin(sdp, RES_DINODE + 2 * RES_JDATA,
2436 GFS2_JTRUNC_REVOKES);
2437 else
2438 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
2439 if (error)
2440 return error;
2441
2442 if (gfs2_is_stuffed(ip)) {
2443 error = stuffed_zero_range(inode, offset, length);
2444 if (error)
2445 goto out;
2446 }
2447
2448 if (gfs2_is_jdata(ip)) {
2449 BUG_ON(!current->journal_info);
2450 gfs2_journaled_truncate_range(inode, offset, length);
2451 } else
2452 truncate_pagecache_range(inode, offset, offset + length - 1);
2453
2454 file_update_time(file);
2455 mark_inode_dirty(inode);
2456
2457 if (current->journal_info)
2458 gfs2_trans_end(sdp);
2459
2460 if (!gfs2_is_stuffed(ip))
2461 error = punch_hole(ip, offset, length);
2462
2463 out:
2464 if (current->journal_info)
2465 gfs2_trans_end(sdp);
2466 return error;
2467 }
2468
gfs2_map_blocks(struct iomap_writepage_ctx * wpc,struct inode * inode,loff_t offset,unsigned int len)2469 static int gfs2_map_blocks(struct iomap_writepage_ctx *wpc, struct inode *inode,
2470 loff_t offset, unsigned int len)
2471 {
2472 int ret;
2473
2474 if (WARN_ON_ONCE(gfs2_is_stuffed(GFS2_I(inode))))
2475 return -EIO;
2476
2477 if (offset >= wpc->iomap.offset &&
2478 offset < wpc->iomap.offset + wpc->iomap.length)
2479 return 0;
2480
2481 memset(&wpc->iomap, 0, sizeof(wpc->iomap));
2482 ret = gfs2_iomap_get(inode, offset, INT_MAX, &wpc->iomap);
2483 return ret;
2484 }
2485
2486 const struct iomap_writeback_ops gfs2_writeback_ops = {
2487 .map_blocks = gfs2_map_blocks,
2488 };
2489