xref: /linux/fs/gfs2/file.c (revision 1851bccf608a28ac5ec9410764dda9a46828213b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright (C) 2004-2006 Red Hat, Inc.  All rights reserved.
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
15 #include <linux/mm.h>
16 #include <linux/mount.h>
17 #include <linux/fs.h>
18 #include <linux/filelock.h>
19 #include <linux/gfs2_ondisk.h>
20 #include <linux/falloc.h>
21 #include <linux/swap.h>
22 #include <linux/crc32.h>
23 #include <linux/writeback.h>
24 #include <linux/uaccess.h>
25 #include <linux/dlm.h>
26 #include <linux/dlm_plock.h>
27 #include <linux/delay.h>
28 #include <linux/backing-dev.h>
29 #include <linux/fileattr.h>
30 
31 #include "gfs2.h"
32 #include "incore.h"
33 #include "bmap.h"
34 #include "aops.h"
35 #include "dir.h"
36 #include "glock.h"
37 #include "glops.h"
38 #include "inode.h"
39 #include "log.h"
40 #include "meta_io.h"
41 #include "quota.h"
42 #include "rgrp.h"
43 #include "trans.h"
44 #include "util.h"
45 
46 /**
47  * gfs2_llseek - seek to a location in a file
48  * @file: the file
49  * @offset: the offset
50  * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
51  *
52  * SEEK_END requires the glock for the file because it references the
53  * file's size.
54  *
55  * Returns: The new offset, or errno
56  */
57 
gfs2_llseek(struct file * file,loff_t offset,int whence)58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
59 {
60 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
61 	struct gfs2_holder i_gh;
62 	loff_t error;
63 
64 	switch (whence) {
65 	case SEEK_END:
66 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
67 					   &i_gh);
68 		if (!error) {
69 			error = generic_file_llseek(file, offset, whence);
70 			gfs2_glock_dq_uninit(&i_gh);
71 		}
72 		break;
73 
74 	case SEEK_DATA:
75 		error = gfs2_seek_data(file, offset);
76 		break;
77 
78 	case SEEK_HOLE:
79 		error = gfs2_seek_hole(file, offset);
80 		break;
81 
82 	case SEEK_CUR:
83 	case SEEK_SET:
84 		/*
85 		 * These don't reference inode->i_size and don't depend on the
86 		 * block mapping, so we don't need the glock.
87 		 */
88 		error = generic_file_llseek(file, offset, whence);
89 		break;
90 	default:
91 		error = -EINVAL;
92 	}
93 
94 	return error;
95 }
96 
97 /**
98  * gfs2_readdir - Iterator for a directory
99  * @file: The directory to read from
100  * @ctx: What to feed directory entries to
101  *
102  * Returns: errno
103  */
104 
gfs2_readdir(struct file * file,struct dir_context * ctx)105 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
106 {
107 	struct inode *dir = file->f_mapping->host;
108 	struct gfs2_inode *dip = GFS2_I(dir);
109 	struct gfs2_holder d_gh;
110 	int error;
111 
112 	error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
113 	if (error)
114 		return error;
115 
116 	error = gfs2_dir_read(dir, ctx, &file->f_ra);
117 
118 	gfs2_glock_dq_uninit(&d_gh);
119 
120 	return error;
121 }
122 
123 /*
124  * struct fsflag_gfs2flag
125  *
126  * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127  * and to GFS2_DIF_JDATA for non-directories.
128  */
129 static struct {
130 	u32 fsflag;
131 	u32 gfsflag;
132 } fsflag_gfs2flag[] = {
133 	{FS_SYNC_FL, GFS2_DIF_SYNC},
134 	{FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
135 	{FS_APPEND_FL, GFS2_DIF_APPENDONLY},
136 	{FS_NOATIME_FL, GFS2_DIF_NOATIME},
137 	{FS_INDEX_FL, GFS2_DIF_EXHASH},
138 	{FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
139 	{FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
140 };
141 
gfs2_gfsflags_to_fsflags(struct inode * inode,u32 gfsflags)142 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
143 {
144 	int i;
145 	u32 fsflags = 0;
146 
147 	if (S_ISDIR(inode->i_mode))
148 		gfsflags &= ~GFS2_DIF_JDATA;
149 	else
150 		gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
151 
152 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
153 		if (gfsflags & fsflag_gfs2flag[i].gfsflag)
154 			fsflags |= fsflag_gfs2flag[i].fsflag;
155 	return fsflags;
156 }
157 
gfs2_fileattr_get(struct dentry * dentry,struct fileattr * fa)158 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
159 {
160 	struct inode *inode = d_inode(dentry);
161 	struct gfs2_inode *ip = GFS2_I(inode);
162 	struct gfs2_holder gh;
163 	int error;
164 	u32 fsflags;
165 
166 	if (d_is_special(dentry))
167 		return -ENOTTY;
168 
169 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
170 	error = gfs2_glock_nq(&gh);
171 	if (error)
172 		goto out_uninit;
173 
174 	fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
175 
176 	fileattr_fill_flags(fa, fsflags);
177 
178 	gfs2_glock_dq(&gh);
179 out_uninit:
180 	gfs2_holder_uninit(&gh);
181 	return error;
182 }
183 
gfs2_set_inode_flags(struct inode * inode)184 void gfs2_set_inode_flags(struct inode *inode)
185 {
186 	struct gfs2_inode *ip = GFS2_I(inode);
187 	unsigned int flags = inode->i_flags;
188 
189 	flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
190 	if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
191 		flags |= S_NOSEC;
192 	if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
193 		flags |= S_IMMUTABLE;
194 	if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
195 		flags |= S_APPEND;
196 	if (ip->i_diskflags & GFS2_DIF_NOATIME)
197 		flags |= S_NOATIME;
198 	if (ip->i_diskflags & GFS2_DIF_SYNC)
199 		flags |= S_SYNC;
200 	inode->i_flags = flags;
201 }
202 
203 /* Flags that can be set by user space */
204 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA|			\
205 			     GFS2_DIF_IMMUTABLE|		\
206 			     GFS2_DIF_APPENDONLY|		\
207 			     GFS2_DIF_NOATIME|			\
208 			     GFS2_DIF_SYNC|			\
209 			     GFS2_DIF_TOPDIR|			\
210 			     GFS2_DIF_INHERIT_JDATA)
211 
212 /**
213  * do_gfs2_set_flags - set flags on an inode
214  * @inode: The inode
215  * @reqflags: The flags to set
216  * @mask: Indicates which flags are valid
217  *
218  */
do_gfs2_set_flags(struct inode * inode,u32 reqflags,u32 mask)219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
220 {
221 	struct gfs2_inode *ip = GFS2_I(inode);
222 	struct gfs2_sbd *sdp = GFS2_SB(inode);
223 	struct buffer_head *bh;
224 	struct gfs2_holder gh;
225 	int error;
226 	u32 new_flags, flags;
227 
228 	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
229 	if (error)
230 		return error;
231 
232 	error = 0;
233 	flags = ip->i_diskflags;
234 	new_flags = (flags & ~mask) | (reqflags & mask);
235 	if ((new_flags ^ flags) == 0)
236 		goto out;
237 
238 	if (!IS_IMMUTABLE(inode)) {
239 		error = gfs2_permission(&nop_mnt_idmap, inode, MAY_WRITE);
240 		if (error)
241 			goto out;
242 	}
243 	if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
244 		if (new_flags & GFS2_DIF_JDATA)
245 			gfs2_log_flush(sdp, ip->i_gl,
246 				       GFS2_LOG_HEAD_FLUSH_NORMAL |
247 				       GFS2_LFC_SET_FLAGS);
248 		error = filemap_fdatawrite(inode->i_mapping);
249 		if (error)
250 			goto out;
251 		error = filemap_fdatawait(inode->i_mapping);
252 		if (error)
253 			goto out;
254 		truncate_inode_pages(inode->i_mapping, 0);
255 		if (new_flags & GFS2_DIF_JDATA)
256 			gfs2_ordered_del_inode(ip);
257 	}
258 	error = gfs2_trans_begin(sdp, RES_DINODE, 0);
259 	if (error)
260 		goto out;
261 	error = gfs2_meta_inode_buffer(ip, &bh);
262 	if (error)
263 		goto out_trans_end;
264 	inode_set_ctime_current(inode);
265 	gfs2_trans_add_meta(ip->i_gl, bh);
266 	ip->i_diskflags = new_flags;
267 	gfs2_dinode_out(ip, bh->b_data);
268 	brelse(bh);
269 	gfs2_set_inode_flags(inode);
270 	gfs2_set_aops(inode);
271 out_trans_end:
272 	gfs2_trans_end(sdp);
273 out:
274 	gfs2_glock_dq_uninit(&gh);
275 	return error;
276 }
277 
gfs2_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)278 int gfs2_fileattr_set(struct mnt_idmap *idmap,
279 		      struct dentry *dentry, struct fileattr *fa)
280 {
281 	struct inode *inode = d_inode(dentry);
282 	u32 fsflags = fa->flags, gfsflags = 0;
283 	u32 mask;
284 	int i;
285 
286 	if (d_is_special(dentry))
287 		return -ENOTTY;
288 
289 	if (fileattr_has_fsx(fa))
290 		return -EOPNOTSUPP;
291 
292 	for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
293 		if (fsflags & fsflag_gfs2flag[i].fsflag) {
294 			fsflags &= ~fsflag_gfs2flag[i].fsflag;
295 			gfsflags |= fsflag_gfs2flag[i].gfsflag;
296 		}
297 	}
298 	if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
299 		return -EINVAL;
300 
301 	mask = GFS2_FLAGS_USER_SET;
302 	if (S_ISDIR(inode->i_mode)) {
303 		mask &= ~GFS2_DIF_JDATA;
304 	} else {
305 		/* The GFS2_DIF_TOPDIR flag is only valid for directories. */
306 		if (gfsflags & GFS2_DIF_TOPDIR)
307 			return -EINVAL;
308 		mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
309 	}
310 
311 	return do_gfs2_set_flags(inode, gfsflags, mask);
312 }
313 
gfs2_getlabel(struct file * filp,char __user * label)314 static int gfs2_getlabel(struct file *filp, char __user *label)
315 {
316 	struct inode *inode = file_inode(filp);
317 	struct gfs2_sbd *sdp = GFS2_SB(inode);
318 
319 	if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
320 		return -EFAULT;
321 
322 	return 0;
323 }
324 
gfs2_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)325 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
326 {
327 	switch(cmd) {
328 	case FITRIM:
329 		return gfs2_fitrim(filp, (void __user *)arg);
330 	case FS_IOC_GETFSLABEL:
331 		return gfs2_getlabel(filp, (char __user *)arg);
332 	}
333 
334 	return -ENOTTY;
335 }
336 
337 #ifdef CONFIG_COMPAT
gfs2_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)338 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
339 {
340 	switch(cmd) {
341 	/* Keep this list in sync with gfs2_ioctl */
342 	case FITRIM:
343 	case FS_IOC_GETFSLABEL:
344 		break;
345 	default:
346 		return -ENOIOCTLCMD;
347 	}
348 
349 	return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
350 }
351 #else
352 #define gfs2_compat_ioctl NULL
353 #endif
354 
355 /**
356  * gfs2_size_hint - Give a hint to the size of a write request
357  * @filep: The struct file
358  * @offset: The file offset of the write
359  * @size: The length of the write
360  *
361  * When we are about to do a write, this function records the total
362  * write size in order to provide a suitable hint to the lower layers
363  * about how many blocks will be required.
364  *
365  */
366 
gfs2_size_hint(struct file * filep,loff_t offset,size_t size)367 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
368 {
369 	struct inode *inode = file_inode(filep);
370 	struct gfs2_sbd *sdp = GFS2_SB(inode);
371 	struct gfs2_inode *ip = GFS2_I(inode);
372 	size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
373 	int hint = min_t(size_t, INT_MAX, blks);
374 
375 	if (hint > atomic_read(&ip->i_sizehint))
376 		atomic_set(&ip->i_sizehint, hint);
377 }
378 
379 /**
380  * gfs2_allocate_folio_backing - Allocate blocks for a write fault
381  * @folio: The (locked) folio to allocate backing for
382  * @length: Size of the allocation
383  *
384  * We try to allocate all the blocks required for the folio in one go.  This
385  * might fail for various reasons, so we keep trying until all the blocks to
386  * back this folio are allocated.  If some of the blocks are already allocated,
387  * that is ok too.
388  */
gfs2_allocate_folio_backing(struct folio * folio,size_t length)389 static int gfs2_allocate_folio_backing(struct folio *folio, size_t length)
390 {
391 	u64 pos = folio_pos(folio);
392 
393 	do {
394 		struct iomap iomap = { };
395 
396 		if (gfs2_iomap_alloc(folio->mapping->host, pos, length, &iomap))
397 			return -EIO;
398 
399 		if (length < iomap.length)
400 			iomap.length = length;
401 		length -= iomap.length;
402 		pos += iomap.length;
403 	} while (length > 0);
404 
405 	return 0;
406 }
407 
408 /**
409  * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
410  * @vmf: The virtual memory fault containing the page to become writable
411  *
412  * When the page becomes writable, we need to ensure that we have
413  * blocks allocated on disk to back that page.
414  */
415 
gfs2_page_mkwrite(struct vm_fault * vmf)416 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
417 {
418 	struct folio *folio = page_folio(vmf->page);
419 	struct inode *inode = file_inode(vmf->vma->vm_file);
420 	struct gfs2_inode *ip = GFS2_I(inode);
421 	struct gfs2_sbd *sdp = GFS2_SB(inode);
422 	struct gfs2_alloc_parms ap = {};
423 	u64 pos = folio_pos(folio);
424 	unsigned int data_blocks, ind_blocks, rblocks;
425 	vm_fault_t ret = VM_FAULT_LOCKED;
426 	struct gfs2_holder gh;
427 	size_t length;
428 	loff_t size;
429 	int err;
430 
431 	sb_start_pagefault(inode->i_sb);
432 
433 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
434 	err = gfs2_glock_nq(&gh);
435 	if (err) {
436 		ret = vmf_fs_error(err);
437 		goto out_uninit;
438 	}
439 
440 	/* Check folio index against inode size */
441 	size = i_size_read(inode);
442 	if (pos >= size) {
443 		ret = VM_FAULT_SIGBUS;
444 		goto out_unlock;
445 	}
446 
447 	/* Update file times before taking folio lock */
448 	file_update_time(vmf->vma->vm_file);
449 
450 	/* folio is wholly or partially inside EOF */
451 	if (size - pos < folio_size(folio))
452 		length = size - pos;
453 	else
454 		length = folio_size(folio);
455 
456 	gfs2_size_hint(vmf->vma->vm_file, pos, length);
457 
458 	set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
459 	set_bit(GIF_SW_PAGED, &ip->i_flags);
460 
461 	/*
462 	 * iomap_writepage / iomap_writepages currently don't support inline
463 	 * files, so always unstuff here.
464 	 */
465 
466 	if (!gfs2_is_stuffed(ip) &&
467 	    !gfs2_write_alloc_required(ip, pos, length)) {
468 		folio_lock(folio);
469 		if (!folio_test_uptodate(folio) ||
470 		    folio->mapping != inode->i_mapping) {
471 			ret = VM_FAULT_NOPAGE;
472 			folio_unlock(folio);
473 		}
474 		goto out_unlock;
475 	}
476 
477 	err = gfs2_rindex_update(sdp);
478 	if (err) {
479 		ret = vmf_fs_error(err);
480 		goto out_unlock;
481 	}
482 
483 	gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
484 	ap.target = data_blocks + ind_blocks;
485 	err = gfs2_quota_lock_check(ip, &ap);
486 	if (err) {
487 		ret = vmf_fs_error(err);
488 		goto out_unlock;
489 	}
490 	err = gfs2_inplace_reserve(ip, &ap);
491 	if (err) {
492 		ret = vmf_fs_error(err);
493 		goto out_quota_unlock;
494 	}
495 
496 	rblocks = RES_DINODE + ind_blocks;
497 	if (gfs2_is_jdata(ip))
498 		rblocks += data_blocks ? data_blocks : 1;
499 	if (ind_blocks || data_blocks) {
500 		rblocks += RES_STATFS + RES_QUOTA;
501 		rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
502 	}
503 	err = gfs2_trans_begin(sdp, rblocks, 0);
504 	if (err) {
505 		ret = vmf_fs_error(err);
506 		goto out_trans_fail;
507 	}
508 
509 	/* Unstuff, if required, and allocate backing blocks for folio */
510 	if (gfs2_is_stuffed(ip)) {
511 		err = gfs2_unstuff_dinode(ip);
512 		if (err) {
513 			ret = vmf_fs_error(err);
514 			goto out_trans_end;
515 		}
516 	}
517 
518 	folio_lock(folio);
519 	/* If truncated, we must retry the operation, we may have raced
520 	 * with the glock demotion code.
521 	 */
522 	if (!folio_test_uptodate(folio) || folio->mapping != inode->i_mapping) {
523 		ret = VM_FAULT_NOPAGE;
524 		goto out_page_locked;
525 	}
526 
527 	err = gfs2_allocate_folio_backing(folio, length);
528 	if (err)
529 		ret = vmf_fs_error(err);
530 
531 out_page_locked:
532 	if (ret != VM_FAULT_LOCKED)
533 		folio_unlock(folio);
534 out_trans_end:
535 	gfs2_trans_end(sdp);
536 out_trans_fail:
537 	gfs2_inplace_release(ip);
538 out_quota_unlock:
539 	gfs2_quota_unlock(ip);
540 out_unlock:
541 	gfs2_glock_dq(&gh);
542 out_uninit:
543 	gfs2_holder_uninit(&gh);
544 	if (ret == VM_FAULT_LOCKED) {
545 		folio_mark_dirty(folio);
546 		folio_wait_stable(folio);
547 	}
548 	sb_end_pagefault(inode->i_sb);
549 	return ret;
550 }
551 
gfs2_fault(struct vm_fault * vmf)552 static vm_fault_t gfs2_fault(struct vm_fault *vmf)
553 {
554 	struct inode *inode = file_inode(vmf->vma->vm_file);
555 	struct gfs2_inode *ip = GFS2_I(inode);
556 	struct gfs2_holder gh;
557 	vm_fault_t ret;
558 	int err;
559 
560 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
561 	err = gfs2_glock_nq(&gh);
562 	if (err) {
563 		ret = vmf_fs_error(err);
564 		goto out_uninit;
565 	}
566 	ret = filemap_fault(vmf);
567 	gfs2_glock_dq(&gh);
568 out_uninit:
569 	gfs2_holder_uninit(&gh);
570 	return ret;
571 }
572 
573 static const struct vm_operations_struct gfs2_vm_ops = {
574 	.fault = gfs2_fault,
575 	.map_pages = filemap_map_pages,
576 	.page_mkwrite = gfs2_page_mkwrite,
577 };
578 
579 /**
580  * gfs2_mmap
581  * @file: The file to map
582  * @vma: The VMA which described the mapping
583  *
584  * There is no need to get a lock here unless we should be updating
585  * atime. We ignore any locking errors since the only consequence is
586  * a missed atime update (which will just be deferred until later).
587  *
588  * Returns: 0
589  */
590 
gfs2_mmap(struct file * file,struct vm_area_struct * vma)591 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
592 {
593 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
594 
595 	if (!(file->f_flags & O_NOATIME) &&
596 	    !IS_NOATIME(&ip->i_inode)) {
597 		struct gfs2_holder i_gh;
598 		int error;
599 
600 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
601 					   &i_gh);
602 		if (error)
603 			return error;
604 		/* grab lock to update inode */
605 		gfs2_glock_dq_uninit(&i_gh);
606 		file_accessed(file);
607 	}
608 	vma->vm_ops = &gfs2_vm_ops;
609 
610 	return 0;
611 }
612 
613 /**
614  * gfs2_open_common - This is common to open and atomic_open
615  * @inode: The inode being opened
616  * @file: The file being opened
617  *
618  * This maybe called under a glock or not depending upon how it has
619  * been called. We must always be called under a glock for regular
620  * files, however. For other file types, it does not matter whether
621  * we hold the glock or not.
622  *
623  * Returns: Error code or 0 for success
624  */
625 
gfs2_open_common(struct inode * inode,struct file * file)626 int gfs2_open_common(struct inode *inode, struct file *file)
627 {
628 	struct gfs2_file *fp;
629 	int ret;
630 
631 	if (S_ISREG(inode->i_mode)) {
632 		ret = generic_file_open(inode, file);
633 		if (ret)
634 			return ret;
635 
636 		if (!gfs2_is_jdata(GFS2_I(inode)))
637 			file->f_mode |= FMODE_CAN_ODIRECT;
638 	}
639 
640 	fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
641 	if (!fp)
642 		return -ENOMEM;
643 
644 	mutex_init(&fp->f_fl_mutex);
645 
646 	gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
647 	file->private_data = fp;
648 	if (file->f_mode & FMODE_WRITE) {
649 		ret = gfs2_qa_get(GFS2_I(inode));
650 		if (ret)
651 			goto fail;
652 	}
653 	return 0;
654 
655 fail:
656 	kfree(file->private_data);
657 	file->private_data = NULL;
658 	return ret;
659 }
660 
661 /**
662  * gfs2_open - open a file
663  * @inode: the inode to open
664  * @file: the struct file for this opening
665  *
666  * After atomic_open, this function is only used for opening files
667  * which are already cached. We must still get the glock for regular
668  * files to ensure that we have the file size uptodate for the large
669  * file check which is in the common code. That is only an issue for
670  * regular files though.
671  *
672  * Returns: errno
673  */
674 
gfs2_open(struct inode * inode,struct file * file)675 static int gfs2_open(struct inode *inode, struct file *file)
676 {
677 	struct gfs2_inode *ip = GFS2_I(inode);
678 	struct gfs2_holder i_gh;
679 	int error;
680 	bool need_unlock = false;
681 
682 	if (S_ISREG(ip->i_inode.i_mode)) {
683 		error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
684 					   &i_gh);
685 		if (error)
686 			return error;
687 		need_unlock = true;
688 	}
689 
690 	error = gfs2_open_common(inode, file);
691 
692 	if (need_unlock)
693 		gfs2_glock_dq_uninit(&i_gh);
694 
695 	return error;
696 }
697 
698 /**
699  * gfs2_release - called to close a struct file
700  * @inode: the inode the struct file belongs to
701  * @file: the struct file being closed
702  *
703  * Returns: errno
704  */
705 
gfs2_release(struct inode * inode,struct file * file)706 static int gfs2_release(struct inode *inode, struct file *file)
707 {
708 	struct gfs2_inode *ip = GFS2_I(inode);
709 
710 	kfree(file->private_data);
711 	file->private_data = NULL;
712 
713 	if (file->f_mode & FMODE_WRITE) {
714 		if (gfs2_rs_active(&ip->i_res))
715 			gfs2_rs_delete(ip);
716 		gfs2_qa_put(ip);
717 	}
718 	return 0;
719 }
720 
721 /**
722  * gfs2_fsync - sync the dirty data for a file (across the cluster)
723  * @file: the file that points to the dentry
724  * @start: the start position in the file to sync
725  * @end: the end position in the file to sync
726  * @datasync: set if we can ignore timestamp changes
727  *
728  * We split the data flushing here so that we don't wait for the data
729  * until after we've also sent the metadata to disk. Note that for
730  * data=ordered, we will write & wait for the data at the log flush
731  * stage anyway, so this is unlikely to make much of a difference
732  * except in the data=writeback case.
733  *
734  * If the fdatawrite fails due to any reason except -EIO, we will
735  * continue the remainder of the fsync, although we'll still report
736  * the error at the end. This is to match filemap_write_and_wait_range()
737  * behaviour.
738  *
739  * Returns: errno
740  */
741 
gfs2_fsync(struct file * file,loff_t start,loff_t end,int datasync)742 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
743 		      int datasync)
744 {
745 	struct address_space *mapping = file->f_mapping;
746 	struct inode *inode = mapping->host;
747 	int sync_state = inode->i_state & I_DIRTY;
748 	struct gfs2_inode *ip = GFS2_I(inode);
749 	int ret = 0, ret1 = 0;
750 
751 	if (mapping->nrpages) {
752 		ret1 = filemap_fdatawrite_range(mapping, start, end);
753 		if (ret1 == -EIO)
754 			return ret1;
755 	}
756 
757 	if (!gfs2_is_jdata(ip))
758 		sync_state &= ~I_DIRTY_PAGES;
759 	if (datasync)
760 		sync_state &= ~I_DIRTY_SYNC;
761 
762 	if (sync_state) {
763 		ret = sync_inode_metadata(inode, 1);
764 		if (ret)
765 			return ret;
766 		if (gfs2_is_jdata(ip))
767 			ret = file_write_and_wait(file);
768 		if (ret)
769 			return ret;
770 		gfs2_ail_flush(ip->i_gl, 1);
771 	}
772 
773 	if (mapping->nrpages)
774 		ret = file_fdatawait_range(file, start, end);
775 
776 	return ret ? ret : ret1;
777 }
778 
should_fault_in_pages(struct iov_iter * i,struct kiocb * iocb,size_t * prev_count,size_t * window_size)779 static inline bool should_fault_in_pages(struct iov_iter *i,
780 					 struct kiocb *iocb,
781 					 size_t *prev_count,
782 					 size_t *window_size)
783 {
784 	size_t count = iov_iter_count(i);
785 	size_t size, offs;
786 
787 	if (!count)
788 		return false;
789 	if (!user_backed_iter(i))
790 		return false;
791 
792 	/*
793 	 * Try to fault in multiple pages initially.  When that doesn't result
794 	 * in any progress, fall back to a single page.
795 	 */
796 	size = PAGE_SIZE;
797 	offs = offset_in_page(iocb->ki_pos);
798 	if (*prev_count != count) {
799 		size_t nr_dirtied;
800 
801 		nr_dirtied = max(current->nr_dirtied_pause -
802 				 current->nr_dirtied, 8);
803 		size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
804 	}
805 
806 	*prev_count = count;
807 	*window_size = size - offs;
808 	return true;
809 }
810 
gfs2_file_direct_read(struct kiocb * iocb,struct iov_iter * to,struct gfs2_holder * gh)811 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
812 				     struct gfs2_holder *gh)
813 {
814 	struct file *file = iocb->ki_filp;
815 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
816 	size_t prev_count = 0, window_size = 0;
817 	size_t read = 0;
818 	ssize_t ret;
819 
820 	/*
821 	 * In this function, we disable page faults when we're holding the
822 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
823 	 * that the inode glock may be dropped, fault in the pages manually,
824 	 * and retry.
825 	 *
826 	 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
827 	 * physical as well as manual page faults, and we need to disable both
828 	 * kinds.
829 	 *
830 	 * For direct I/O, gfs2 takes the inode glock in deferred mode.  This
831 	 * locking mode is compatible with other deferred holders, so multiple
832 	 * processes and nodes can do direct I/O to a file at the same time.
833 	 * There's no guarantee that reads or writes will be atomic.  Any
834 	 * coordination among readers and writers needs to happen externally.
835 	 */
836 
837 	if (!iov_iter_count(to))
838 		return 0; /* skip atime */
839 
840 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
841 retry:
842 	ret = gfs2_glock_nq(gh);
843 	if (ret)
844 		goto out_uninit;
845 	pagefault_disable();
846 	to->nofault = true;
847 	ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
848 			   IOMAP_DIO_PARTIAL, NULL, read);
849 	to->nofault = false;
850 	pagefault_enable();
851 	if (ret <= 0 && ret != -EFAULT)
852 		goto out_unlock;
853 	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
854 	if (ret > 0)
855 		read = ret;
856 
857 	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
858 		gfs2_glock_dq(gh);
859 		window_size -= fault_in_iov_iter_writeable(to, window_size);
860 		if (window_size)
861 			goto retry;
862 	}
863 out_unlock:
864 	if (gfs2_holder_queued(gh))
865 		gfs2_glock_dq(gh);
866 out_uninit:
867 	gfs2_holder_uninit(gh);
868 	/* User space doesn't expect partial success. */
869 	if (ret < 0)
870 		return ret;
871 	return read;
872 }
873 
gfs2_file_direct_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)874 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
875 				      struct gfs2_holder *gh)
876 {
877 	struct file *file = iocb->ki_filp;
878 	struct inode *inode = file->f_mapping->host;
879 	struct gfs2_inode *ip = GFS2_I(inode);
880 	size_t prev_count = 0, window_size = 0;
881 	size_t written = 0;
882 	bool enough_retries;
883 	ssize_t ret;
884 
885 	/*
886 	 * In this function, we disable page faults when we're holding the
887 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
888 	 * that the inode glock may be dropped, fault in the pages manually,
889 	 * and retry.
890 	 *
891 	 * For writes, iomap_dio_rw only triggers manual page faults, so we
892 	 * don't need to disable physical ones.
893 	 */
894 
895 	/*
896 	 * Deferred lock, even if its a write, since we do no allocation on
897 	 * this path. All we need to change is the atime, and this lock mode
898 	 * ensures that other nodes have flushed their buffered read caches
899 	 * (i.e. their page cache entries for this inode). We do not,
900 	 * unfortunately, have the option of only flushing a range like the
901 	 * VFS does.
902 	 */
903 	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
904 retry:
905 	ret = gfs2_glock_nq(gh);
906 	if (ret)
907 		goto out_uninit;
908 	/* Silently fall back to buffered I/O when writing beyond EOF */
909 	if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
910 		goto out_unlock;
911 
912 	from->nofault = true;
913 	ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
914 			   IOMAP_DIO_PARTIAL, NULL, written);
915 	from->nofault = false;
916 	if (ret <= 0) {
917 		if (ret == -ENOTBLK)
918 			ret = 0;
919 		if (ret != -EFAULT)
920 			goto out_unlock;
921 	}
922 	/* No increment (+=) because iomap_dio_rw returns a cumulative value. */
923 	if (ret > 0)
924 		written = ret;
925 
926 	enough_retries = prev_count == iov_iter_count(from) &&
927 			 window_size <= PAGE_SIZE;
928 	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
929 		gfs2_glock_dq(gh);
930 		window_size -= fault_in_iov_iter_readable(from, window_size);
931 		if (window_size) {
932 			if (!enough_retries)
933 				goto retry;
934 			/* fall back to buffered I/O */
935 			ret = 0;
936 		}
937 	}
938 out_unlock:
939 	if (gfs2_holder_queued(gh))
940 		gfs2_glock_dq(gh);
941 out_uninit:
942 	gfs2_holder_uninit(gh);
943 	/* User space doesn't expect partial success. */
944 	if (ret < 0)
945 		return ret;
946 	return written;
947 }
948 
gfs2_file_read_iter(struct kiocb * iocb,struct iov_iter * to)949 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
950 {
951 	struct gfs2_inode *ip;
952 	struct gfs2_holder gh;
953 	size_t prev_count = 0, window_size = 0;
954 	size_t read = 0;
955 	ssize_t ret;
956 
957 	/*
958 	 * In this function, we disable page faults when we're holding the
959 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
960 	 * that the inode glock may be dropped, fault in the pages manually,
961 	 * and retry.
962 	 */
963 
964 	if (iocb->ki_flags & IOCB_DIRECT)
965 		return gfs2_file_direct_read(iocb, to, &gh);
966 
967 	pagefault_disable();
968 	iocb->ki_flags |= IOCB_NOIO;
969 	ret = generic_file_read_iter(iocb, to);
970 	iocb->ki_flags &= ~IOCB_NOIO;
971 	pagefault_enable();
972 	if (ret >= 0) {
973 		if (!iov_iter_count(to))
974 			return ret;
975 		read = ret;
976 	} else if (ret != -EFAULT) {
977 		if (ret != -EAGAIN)
978 			return ret;
979 		if (iocb->ki_flags & IOCB_NOWAIT)
980 			return ret;
981 	}
982 	ip = GFS2_I(iocb->ki_filp->f_mapping->host);
983 	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
984 retry:
985 	ret = gfs2_glock_nq(&gh);
986 	if (ret)
987 		goto out_uninit;
988 	pagefault_disable();
989 	ret = generic_file_read_iter(iocb, to);
990 	pagefault_enable();
991 	if (ret <= 0 && ret != -EFAULT)
992 		goto out_unlock;
993 	if (ret > 0)
994 		read += ret;
995 
996 	if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
997 		gfs2_glock_dq(&gh);
998 		window_size -= fault_in_iov_iter_writeable(to, window_size);
999 		if (window_size)
1000 			goto retry;
1001 	}
1002 out_unlock:
1003 	if (gfs2_holder_queued(&gh))
1004 		gfs2_glock_dq(&gh);
1005 out_uninit:
1006 	gfs2_holder_uninit(&gh);
1007 	return read ? read : ret;
1008 }
1009 
gfs2_file_buffered_write(struct kiocb * iocb,struct iov_iter * from,struct gfs2_holder * gh)1010 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
1011 					struct iov_iter *from,
1012 					struct gfs2_holder *gh)
1013 {
1014 	struct file *file = iocb->ki_filp;
1015 	struct inode *inode = file_inode(file);
1016 	struct gfs2_inode *ip = GFS2_I(inode);
1017 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1018 	struct gfs2_holder *statfs_gh = NULL;
1019 	size_t prev_count = 0, window_size = 0;
1020 	size_t orig_count = iov_iter_count(from);
1021 	size_t written = 0;
1022 	ssize_t ret;
1023 
1024 	/*
1025 	 * In this function, we disable page faults when we're holding the
1026 	 * inode glock while doing I/O.  If a page fault occurs, we indicate
1027 	 * that the inode glock may be dropped, fault in the pages manually,
1028 	 * and retry.
1029 	 */
1030 
1031 	if (inode == sdp->sd_rindex) {
1032 		statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1033 		if (!statfs_gh)
1034 			return -ENOMEM;
1035 	}
1036 
1037 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
1038 	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1039 retry:
1040 		window_size -= fault_in_iov_iter_readable(from, window_size);
1041 		if (!window_size) {
1042 			ret = -EFAULT;
1043 			goto out_uninit;
1044 		}
1045 		from->count = min(from->count, window_size);
1046 	}
1047 	ret = gfs2_glock_nq(gh);
1048 	if (ret)
1049 		goto out_uninit;
1050 
1051 	if (inode == sdp->sd_rindex) {
1052 		struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1053 
1054 		ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1055 					 GL_NOCACHE, statfs_gh);
1056 		if (ret)
1057 			goto out_unlock;
1058 	}
1059 
1060 	pagefault_disable();
1061 	ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops, NULL);
1062 	pagefault_enable();
1063 	if (ret > 0)
1064 		written += ret;
1065 
1066 	if (inode == sdp->sd_rindex)
1067 		gfs2_glock_dq_uninit(statfs_gh);
1068 
1069 	if (ret <= 0 && ret != -EFAULT)
1070 		goto out_unlock;
1071 
1072 	from->count = orig_count - written;
1073 	if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1074 		gfs2_glock_dq(gh);
1075 		goto retry;
1076 	}
1077 out_unlock:
1078 	if (gfs2_holder_queued(gh))
1079 		gfs2_glock_dq(gh);
1080 out_uninit:
1081 	gfs2_holder_uninit(gh);
1082 	kfree(statfs_gh);
1083 	from->count = orig_count - written;
1084 	return written ? written : ret;
1085 }
1086 
1087 /**
1088  * gfs2_file_write_iter - Perform a write to a file
1089  * @iocb: The io context
1090  * @from: The data to write
1091  *
1092  * We have to do a lock/unlock here to refresh the inode size for
1093  * O_APPEND writes, otherwise we can land up writing at the wrong
1094  * offset. There is still a race, but provided the app is using its
1095  * own file locking, this will make O_APPEND work as expected.
1096  *
1097  */
1098 
gfs2_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1099 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1100 {
1101 	struct file *file = iocb->ki_filp;
1102 	struct inode *inode = file_inode(file);
1103 	struct gfs2_inode *ip = GFS2_I(inode);
1104 	struct gfs2_holder gh;
1105 	ssize_t ret;
1106 
1107 	gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
1108 
1109 	if (iocb->ki_flags & IOCB_APPEND) {
1110 		ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1111 		if (ret)
1112 			return ret;
1113 		gfs2_glock_dq_uninit(&gh);
1114 	}
1115 
1116 	inode_lock(inode);
1117 	ret = generic_write_checks(iocb, from);
1118 	if (ret <= 0)
1119 		goto out_unlock;
1120 
1121 	ret = file_remove_privs(file);
1122 	if (ret)
1123 		goto out_unlock;
1124 
1125 	if (iocb->ki_flags & IOCB_DIRECT) {
1126 		struct address_space *mapping = file->f_mapping;
1127 		ssize_t buffered, ret2;
1128 
1129 		/*
1130 		 * Note that under direct I/O, we don't allow and inode
1131 		 * timestamp updates, so we're not calling file_update_time()
1132 		 * here.
1133 		 */
1134 
1135 		ret = gfs2_file_direct_write(iocb, from, &gh);
1136 		if (ret < 0 || !iov_iter_count(from))
1137 			goto out_unlock;
1138 
1139 		iocb->ki_flags |= IOCB_DSYNC;
1140 		buffered = gfs2_file_buffered_write(iocb, from, &gh);
1141 		if (unlikely(buffered <= 0)) {
1142 			if (!ret)
1143 				ret = buffered;
1144 			goto out_unlock;
1145 		}
1146 
1147 		/*
1148 		 * We need to ensure that the page cache pages are written to
1149 		 * disk and invalidated to preserve the expected O_DIRECT
1150 		 * semantics.  If the writeback or invalidate fails, only report
1151 		 * the direct I/O range as we don't know if the buffered pages
1152 		 * made it to disk.
1153 		 */
1154 		ret2 = generic_write_sync(iocb, buffered);
1155 		invalidate_mapping_pages(mapping,
1156 				(iocb->ki_pos - buffered) >> PAGE_SHIFT,
1157 				(iocb->ki_pos - 1) >> PAGE_SHIFT);
1158 		if (!ret || ret2 > 0)
1159 			ret += ret2;
1160 	} else {
1161 		ret = file_update_time(file);
1162 		if (ret)
1163 			goto out_unlock;
1164 
1165 		ret = gfs2_file_buffered_write(iocb, from, &gh);
1166 		if (likely(ret > 0))
1167 			ret = generic_write_sync(iocb, ret);
1168 	}
1169 
1170 out_unlock:
1171 	inode_unlock(inode);
1172 	return ret;
1173 }
1174 
fallocate_chunk(struct inode * inode,loff_t offset,loff_t len,int mode)1175 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1176 			   int mode)
1177 {
1178 	struct super_block *sb = inode->i_sb;
1179 	struct gfs2_inode *ip = GFS2_I(inode);
1180 	loff_t end = offset + len;
1181 	struct buffer_head *dibh;
1182 	int error;
1183 
1184 	error = gfs2_meta_inode_buffer(ip, &dibh);
1185 	if (unlikely(error))
1186 		return error;
1187 
1188 	gfs2_trans_add_meta(ip->i_gl, dibh);
1189 
1190 	if (gfs2_is_stuffed(ip)) {
1191 		error = gfs2_unstuff_dinode(ip);
1192 		if (unlikely(error))
1193 			goto out;
1194 	}
1195 
1196 	while (offset < end) {
1197 		struct iomap iomap = { };
1198 
1199 		error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
1200 		if (error)
1201 			goto out;
1202 		offset = iomap.offset + iomap.length;
1203 		if (!(iomap.flags & IOMAP_F_NEW))
1204 			continue;
1205 		error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1206 					 iomap.length >> inode->i_blkbits,
1207 					 GFP_NOFS);
1208 		if (error) {
1209 			fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1210 			goto out;
1211 		}
1212 	}
1213 out:
1214 	brelse(dibh);
1215 	return error;
1216 }
1217 
1218 /**
1219  * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1220  *                     blocks, determine how many bytes can be written.
1221  * @ip:          The inode in question.
1222  * @len:         Max cap of bytes. What we return in *len must be <= this.
1223  * @data_blocks: Compute and return the number of data blocks needed
1224  * @ind_blocks:  Compute and return the number of indirect blocks needed
1225  * @max_blocks:  The total blocks available to work with.
1226  *
1227  * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1228  */
calc_max_reserv(struct gfs2_inode * ip,loff_t * len,unsigned int * data_blocks,unsigned int * ind_blocks,unsigned int max_blocks)1229 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1230 			    unsigned int *data_blocks, unsigned int *ind_blocks,
1231 			    unsigned int max_blocks)
1232 {
1233 	loff_t max = *len;
1234 	const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1235 	unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1236 
1237 	for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1238 		tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1239 		max_data -= tmp;
1240 	}
1241 
1242 	*data_blocks = max_data;
1243 	*ind_blocks = max_blocks - max_data;
1244 	*len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1245 	if (*len > max) {
1246 		*len = max;
1247 		gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1248 	}
1249 }
1250 
__gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1251 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1252 {
1253 	struct inode *inode = file_inode(file);
1254 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1255 	struct gfs2_inode *ip = GFS2_I(inode);
1256 	struct gfs2_alloc_parms ap = {};
1257 	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1258 	loff_t bytes, max_bytes, max_blks;
1259 	int error;
1260 	const loff_t pos = offset;
1261 	const loff_t count = len;
1262 	loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1263 	loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1264 	loff_t max_chunk_size = UINT_MAX & bsize_mask;
1265 
1266 	next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1267 
1268 	offset &= bsize_mask;
1269 
1270 	len = next - offset;
1271 	bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1272 	if (!bytes)
1273 		bytes = UINT_MAX;
1274 	bytes &= bsize_mask;
1275 	if (bytes == 0)
1276 		bytes = sdp->sd_sb.sb_bsize;
1277 
1278 	gfs2_size_hint(file, offset, len);
1279 
1280 	gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1281 	ap.min_target = data_blocks + ind_blocks;
1282 
1283 	while (len > 0) {
1284 		if (len < bytes)
1285 			bytes = len;
1286 		if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1287 			len -= bytes;
1288 			offset += bytes;
1289 			continue;
1290 		}
1291 
1292 		/* We need to determine how many bytes we can actually
1293 		 * fallocate without exceeding quota or going over the
1294 		 * end of the fs. We start off optimistically by assuming
1295 		 * we can write max_bytes */
1296 		max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1297 
1298 		/* Since max_bytes is most likely a theoretical max, we
1299 		 * calculate a more realistic 'bytes' to serve as a good
1300 		 * starting point for the number of bytes we may be able
1301 		 * to write */
1302 		gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1303 		ap.target = data_blocks + ind_blocks;
1304 
1305 		error = gfs2_quota_lock_check(ip, &ap);
1306 		if (error)
1307 			return error;
1308 		/* ap.allowed tells us how many blocks quota will allow
1309 		 * us to write. Check if this reduces max_blks */
1310 		max_blks = UINT_MAX;
1311 		if (ap.allowed)
1312 			max_blks = ap.allowed;
1313 
1314 		error = gfs2_inplace_reserve(ip, &ap);
1315 		if (error)
1316 			goto out_qunlock;
1317 
1318 		/* check if the selected rgrp limits our max_blks further */
1319 		if (ip->i_res.rs_reserved < max_blks)
1320 			max_blks = ip->i_res.rs_reserved;
1321 
1322 		/* Almost done. Calculate bytes that can be written using
1323 		 * max_blks. We also recompute max_bytes, data_blocks and
1324 		 * ind_blocks */
1325 		calc_max_reserv(ip, &max_bytes, &data_blocks,
1326 				&ind_blocks, max_blks);
1327 
1328 		rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1329 			  RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1330 		if (gfs2_is_jdata(ip))
1331 			rblocks += data_blocks ? data_blocks : 1;
1332 
1333 		error = gfs2_trans_begin(sdp, rblocks,
1334 					 PAGE_SIZE >> inode->i_blkbits);
1335 		if (error)
1336 			goto out_trans_fail;
1337 
1338 		error = fallocate_chunk(inode, offset, max_bytes, mode);
1339 		gfs2_trans_end(sdp);
1340 
1341 		if (error)
1342 			goto out_trans_fail;
1343 
1344 		len -= max_bytes;
1345 		offset += max_bytes;
1346 		gfs2_inplace_release(ip);
1347 		gfs2_quota_unlock(ip);
1348 	}
1349 
1350 	if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1351 		i_size_write(inode, pos + count);
1352 	file_update_time(file);
1353 	mark_inode_dirty(inode);
1354 
1355 	if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1356 		return vfs_fsync_range(file, pos, pos + count - 1,
1357 			       (file->f_flags & __O_SYNC) ? 0 : 1);
1358 	return 0;
1359 
1360 out_trans_fail:
1361 	gfs2_inplace_release(ip);
1362 out_qunlock:
1363 	gfs2_quota_unlock(ip);
1364 	return error;
1365 }
1366 
gfs2_fallocate(struct file * file,int mode,loff_t offset,loff_t len)1367 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1368 {
1369 	struct inode *inode = file_inode(file);
1370 	struct gfs2_sbd *sdp = GFS2_SB(inode);
1371 	struct gfs2_inode *ip = GFS2_I(inode);
1372 	struct gfs2_holder gh;
1373 	int ret;
1374 
1375 	if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1376 		return -EOPNOTSUPP;
1377 	/* fallocate is needed by gfs2_grow to reserve space in the rindex */
1378 	if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1379 		return -EOPNOTSUPP;
1380 
1381 	inode_lock(inode);
1382 
1383 	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1384 	ret = gfs2_glock_nq(&gh);
1385 	if (ret)
1386 		goto out_uninit;
1387 
1388 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1389 	    (offset + len) > inode->i_size) {
1390 		ret = inode_newsize_ok(inode, offset + len);
1391 		if (ret)
1392 			goto out_unlock;
1393 	}
1394 
1395 	ret = get_write_access(inode);
1396 	if (ret)
1397 		goto out_unlock;
1398 
1399 	if (mode & FALLOC_FL_PUNCH_HOLE) {
1400 		ret = __gfs2_punch_hole(file, offset, len);
1401 	} else {
1402 		ret = __gfs2_fallocate(file, mode, offset, len);
1403 		if (ret)
1404 			gfs2_rs_deltree(&ip->i_res);
1405 	}
1406 
1407 	put_write_access(inode);
1408 out_unlock:
1409 	gfs2_glock_dq(&gh);
1410 out_uninit:
1411 	gfs2_holder_uninit(&gh);
1412 	inode_unlock(inode);
1413 	return ret;
1414 }
1415 
gfs2_file_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1416 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1417 				      struct file *out, loff_t *ppos,
1418 				      size_t len, unsigned int flags)
1419 {
1420 	ssize_t ret;
1421 
1422 	gfs2_size_hint(out, *ppos, len);
1423 
1424 	ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1425 	return ret;
1426 }
1427 
1428 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1429 
1430 /**
1431  * gfs2_lock - acquire/release a posix lock on a file
1432  * @file: the file pointer
1433  * @cmd: either modify or retrieve lock state, possibly wait
1434  * @fl: type and range of lock
1435  *
1436  * Returns: errno
1437  */
1438 
gfs2_lock(struct file * file,int cmd,struct file_lock * fl)1439 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1440 {
1441 	struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1442 	struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1443 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1444 
1445 	if (!(fl->c.flc_flags & FL_POSIX))
1446 		return -ENOLCK;
1447 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1448 		if (lock_is_unlock(fl))
1449 			locks_lock_file_wait(file, fl);
1450 		return -EIO;
1451 	}
1452 	if (cmd == F_CANCELLK)
1453 		return dlm_posix_cancel(ls->ls_dlm, ip->i_no_addr, file, fl);
1454 	else if (IS_GETLK(cmd))
1455 		return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1456 	else if (lock_is_unlock(fl))
1457 		return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1458 	else
1459 		return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1460 }
1461 
__flock_holder_uninit(struct file * file,struct gfs2_holder * fl_gh)1462 static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh)
1463 {
1464 	struct gfs2_glock *gl = gfs2_glock_hold(fl_gh->gh_gl);
1465 
1466 	/*
1467 	 * Make sure gfs2_glock_put() won't sleep under the file->f_lock
1468 	 * spinlock.
1469 	 */
1470 
1471 	spin_lock(&file->f_lock);
1472 	gfs2_holder_uninit(fl_gh);
1473 	spin_unlock(&file->f_lock);
1474 	gfs2_glock_put(gl);
1475 }
1476 
do_flock(struct file * file,int cmd,struct file_lock * fl)1477 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1478 {
1479 	struct gfs2_file *fp = file->private_data;
1480 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1481 	struct gfs2_inode *ip = GFS2_I(file_inode(file));
1482 	struct gfs2_glock *gl;
1483 	unsigned int state;
1484 	u16 flags;
1485 	int error = 0;
1486 	int sleeptime;
1487 
1488 	state = lock_is_write(fl) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1489 	flags = GL_EXACT | GL_NOPID;
1490 	if (!IS_SETLKW(cmd))
1491 		flags |= LM_FLAG_TRY_1CB;
1492 
1493 	mutex_lock(&fp->f_fl_mutex);
1494 
1495 	if (gfs2_holder_initialized(fl_gh)) {
1496 		struct file_lock request;
1497 		if (fl_gh->gh_state == state)
1498 			goto out;
1499 		locks_init_lock(&request);
1500 		request.c.flc_type = F_UNLCK;
1501 		request.c.flc_flags = FL_FLOCK;
1502 		locks_lock_file_wait(file, &request);
1503 		gfs2_glock_dq(fl_gh);
1504 		gfs2_holder_reinit(state, flags, fl_gh);
1505 	} else {
1506 		error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1507 				       &gfs2_flock_glops, CREATE, &gl);
1508 		if (error)
1509 			goto out;
1510 		spin_lock(&file->f_lock);
1511 		gfs2_holder_init(gl, state, flags, fl_gh);
1512 		spin_unlock(&file->f_lock);
1513 		gfs2_glock_put(gl);
1514 	}
1515 	for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1516 		error = gfs2_glock_nq(fl_gh);
1517 		if (error != GLR_TRYFAILED)
1518 			break;
1519 		fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB;
1520 		fl_gh->gh_flags |= LM_FLAG_TRY;
1521 		msleep(sleeptime);
1522 	}
1523 	if (error) {
1524 		__flock_holder_uninit(file, fl_gh);
1525 		if (error == GLR_TRYFAILED)
1526 			error = -EAGAIN;
1527 	} else {
1528 		error = locks_lock_file_wait(file, fl);
1529 		gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1530 	}
1531 
1532 out:
1533 	mutex_unlock(&fp->f_fl_mutex);
1534 	return error;
1535 }
1536 
do_unflock(struct file * file,struct file_lock * fl)1537 static void do_unflock(struct file *file, struct file_lock *fl)
1538 {
1539 	struct gfs2_file *fp = file->private_data;
1540 	struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1541 
1542 	mutex_lock(&fp->f_fl_mutex);
1543 	locks_lock_file_wait(file, fl);
1544 	if (gfs2_holder_initialized(fl_gh)) {
1545 		gfs2_glock_dq(fl_gh);
1546 		__flock_holder_uninit(file, fl_gh);
1547 	}
1548 	mutex_unlock(&fp->f_fl_mutex);
1549 }
1550 
1551 /**
1552  * gfs2_flock - acquire/release a flock lock on a file
1553  * @file: the file pointer
1554  * @cmd: either modify or retrieve lock state, possibly wait
1555  * @fl: type and range of lock
1556  *
1557  * Returns: errno
1558  */
1559 
gfs2_flock(struct file * file,int cmd,struct file_lock * fl)1560 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1561 {
1562 	if (!(fl->c.flc_flags & FL_FLOCK))
1563 		return -ENOLCK;
1564 
1565 	if (lock_is_unlock(fl)) {
1566 		do_unflock(file, fl);
1567 		return 0;
1568 	} else {
1569 		return do_flock(file, cmd, fl);
1570 	}
1571 }
1572 
1573 const struct file_operations gfs2_file_fops = {
1574 	.llseek		= gfs2_llseek,
1575 	.read_iter	= gfs2_file_read_iter,
1576 	.write_iter	= gfs2_file_write_iter,
1577 	.iopoll		= iocb_bio_iopoll,
1578 	.unlocked_ioctl	= gfs2_ioctl,
1579 	.compat_ioctl	= gfs2_compat_ioctl,
1580 	.mmap		= gfs2_mmap,
1581 	.open		= gfs2_open,
1582 	.release	= gfs2_release,
1583 	.fsync		= gfs2_fsync,
1584 	.lock		= gfs2_lock,
1585 	.flock		= gfs2_flock,
1586 	.splice_read	= copy_splice_read,
1587 	.splice_write	= gfs2_file_splice_write,
1588 	.setlease	= simple_nosetlease,
1589 	.fallocate	= gfs2_fallocate,
1590 	.fop_flags	= FOP_ASYNC_LOCK,
1591 };
1592 
1593 const struct file_operations gfs2_dir_fops = {
1594 	.iterate_shared	= gfs2_readdir,
1595 	.unlocked_ioctl	= gfs2_ioctl,
1596 	.compat_ioctl	= gfs2_compat_ioctl,
1597 	.open		= gfs2_open,
1598 	.release	= gfs2_release,
1599 	.fsync		= gfs2_fsync,
1600 	.lock		= gfs2_lock,
1601 	.flock		= gfs2_flock,
1602 	.llseek		= default_llseek,
1603 	.fop_flags	= FOP_ASYNC_LOCK,
1604 };
1605 
1606 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1607 
1608 const struct file_operations gfs2_file_fops_nolock = {
1609 	.llseek		= gfs2_llseek,
1610 	.read_iter	= gfs2_file_read_iter,
1611 	.write_iter	= gfs2_file_write_iter,
1612 	.iopoll		= iocb_bio_iopoll,
1613 	.unlocked_ioctl	= gfs2_ioctl,
1614 	.compat_ioctl	= gfs2_compat_ioctl,
1615 	.mmap		= gfs2_mmap,
1616 	.open		= gfs2_open,
1617 	.release	= gfs2_release,
1618 	.fsync		= gfs2_fsync,
1619 	.splice_read	= copy_splice_read,
1620 	.splice_write	= gfs2_file_splice_write,
1621 	.setlease	= generic_setlease,
1622 	.fallocate	= gfs2_fallocate,
1623 };
1624 
1625 const struct file_operations gfs2_dir_fops_nolock = {
1626 	.iterate_shared	= gfs2_readdir,
1627 	.unlocked_ioctl	= gfs2_ioctl,
1628 	.compat_ioctl	= gfs2_compat_ioctl,
1629 	.open		= gfs2_open,
1630 	.release	= gfs2_release,
1631 	.fsync		= gfs2_fsync,
1632 	.llseek		= default_llseek,
1633 };
1634 
1635