1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * Gianfar: AKA Lambda Draconis, "Dragon"
17 * RA 11 31 24.2
18 * Dec +69 19 52
19 * V 3.84
20 * B-V +1.62
21 *
22 * Theory of operation
23 *
24 * The driver is initialized through of_device. Configuration information
25 * is therefore conveyed through an OF-style device tree.
26 *
27 * The Gianfar Ethernet Controller uses a ring of buffer
28 * descriptors. The beginning is indicated by a register
29 * pointing to the physical address of the start of the ring.
30 * The end is determined by a "wrap" bit being set in the
31 * last descriptor of the ring.
32 *
33 * When a packet is received, the RXF bit in the
34 * IEVENT register is set, triggering an interrupt when the
35 * corresponding bit in the IMASK register is also set (if
36 * interrupt coalescing is active, then the interrupt may not
37 * happen immediately, but will wait until either a set number
38 * of frames or amount of time have passed). In NAPI, the
39 * interrupt handler will signal there is work to be done, and
40 * exit. This method will start at the last known empty
41 * descriptor, and process every subsequent descriptor until there
42 * are none left with data (NAPI will stop after a set number of
43 * packets to give time to other tasks, but will eventually
44 * process all the packets). The data arrives inside a
45 * pre-allocated skb, and so after the skb is passed up to the
46 * stack, a new skb must be allocated, and the address field in
47 * the buffer descriptor must be updated to indicate this new
48 * skb.
49 *
50 * When the kernel requests that a packet be transmitted, the
51 * driver starts where it left off last time, and points the
52 * descriptor at the buffer which was passed in. The driver
53 * then informs the DMA engine that there are packets ready to
54 * be transmitted. Once the controller is finished transmitting
55 * the packet, an interrupt may be triggered (under the same
56 * conditions as for reception, but depending on the TXF bit).
57 * The driver then cleans up the buffer.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/kernel.h>
63 #include <linux/platform_device.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 #include <linux/net_tstamp.h>
84
85 #include <asm/io.h>
86 #ifdef CONFIG_PPC
87 #include <asm/reg.h>
88 #include <asm/mpc85xx.h>
89 #endif
90 #include <asm/irq.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
98 #include <linux/of.h>
99 #include <linux/of_net.h>
100
101 #include "gianfar.h"
102
103 #define TX_TIMEOUT (5*HZ)
104
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
108
gfar_init_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,dma_addr_t buf)109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110 dma_addr_t buf)
111 {
112 u32 lstatus;
113
114 bdp->bufPtr = cpu_to_be32(buf);
115
116 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 lstatus |= BD_LFLAG(RXBD_WRAP);
119
120 gfar_wmb();
121
122 bdp->lstatus = cpu_to_be32(lstatus);
123 }
124
gfar_init_tx_rx_base(struct gfar_private * priv)125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
126 {
127 struct gfar __iomem *regs = priv->gfargrp[0].regs;
128 u32 __iomem *baddr;
129 int i;
130
131 baddr = ®s->tbase0;
132 for (i = 0; i < priv->num_tx_queues; i++) {
133 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134 baddr += 2;
135 }
136
137 baddr = ®s->rbase0;
138 for (i = 0; i < priv->num_rx_queues; i++) {
139 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140 baddr += 2;
141 }
142 }
143
gfar_init_rqprm(struct gfar_private * priv)144 static void gfar_init_rqprm(struct gfar_private *priv)
145 {
146 struct gfar __iomem *regs = priv->gfargrp[0].regs;
147 u32 __iomem *baddr;
148 int i;
149
150 baddr = ®s->rqprm0;
151 for (i = 0; i < priv->num_rx_queues; i++) {
152 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154 baddr++;
155 }
156 }
157
gfar_rx_offload_en(struct gfar_private * priv)158 static void gfar_rx_offload_en(struct gfar_private *priv)
159 {
160 /* set this when rx hw offload (TOE) functions are being used */
161 priv->uses_rxfcb = 0;
162
163 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 priv->uses_rxfcb = 1;
165
166 if (priv->hwts_rx_en || priv->rx_filer_enable)
167 priv->uses_rxfcb = 1;
168 }
169
gfar_mac_rx_config(struct gfar_private * priv)170 static void gfar_mac_rx_config(struct gfar_private *priv)
171 {
172 struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 u32 rctrl = 0;
174
175 if (priv->rx_filer_enable) {
176 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 /* Program the RIR0 reg with the required distribution */
178 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0);
179 }
180
181 /* Restore PROMISC mode */
182 if (priv->ndev->flags & IFF_PROMISC)
183 rctrl |= RCTRL_PROM;
184
185 if (priv->ndev->features & NETIF_F_RXCSUM)
186 rctrl |= RCTRL_CHECKSUMMING;
187
188 if (priv->extended_hash)
189 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
190
191 if (priv->padding) {
192 rctrl &= ~RCTRL_PAL_MASK;
193 rctrl |= RCTRL_PADDING(priv->padding);
194 }
195
196 /* Enable HW time stamping if requested from user space */
197 if (priv->hwts_rx_en)
198 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
199
200 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
202
203 /* Clear the LFC bit */
204 gfar_write(®s->rctrl, rctrl);
205 /* Init flow control threshold values */
206 gfar_init_rqprm(priv);
207 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL);
208 rctrl |= RCTRL_LFC;
209
210 /* Init rctrl based on our settings */
211 gfar_write(®s->rctrl, rctrl);
212 }
213
gfar_mac_tx_config(struct gfar_private * priv)214 static void gfar_mac_tx_config(struct gfar_private *priv)
215 {
216 struct gfar __iomem *regs = priv->gfargrp[0].regs;
217 u32 tctrl = 0;
218
219 if (priv->ndev->features & NETIF_F_IP_CSUM)
220 tctrl |= TCTRL_INIT_CSUM;
221
222 if (priv->prio_sched_en)
223 tctrl |= TCTRL_TXSCHED_PRIO;
224 else {
225 tctrl |= TCTRL_TXSCHED_WRRS;
226 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT);
227 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT);
228 }
229
230 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231 tctrl |= TCTRL_VLINS;
232
233 gfar_write(®s->tctrl, tctrl);
234 }
235
gfar_configure_coalescing(struct gfar_private * priv,unsigned long tx_mask,unsigned long rx_mask)236 static void gfar_configure_coalescing(struct gfar_private *priv,
237 unsigned long tx_mask, unsigned long rx_mask)
238 {
239 struct gfar __iomem *regs = priv->gfargrp[0].regs;
240 u32 __iomem *baddr;
241
242 if (priv->mode == MQ_MG_MODE) {
243 int i = 0;
244
245 baddr = ®s->txic0;
246 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247 gfar_write(baddr + i, 0);
248 if (likely(priv->tx_queue[i]->txcoalescing))
249 gfar_write(baddr + i, priv->tx_queue[i]->txic);
250 }
251
252 baddr = ®s->rxic0;
253 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254 gfar_write(baddr + i, 0);
255 if (likely(priv->rx_queue[i]->rxcoalescing))
256 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
257 }
258 } else {
259 /* Backward compatible case -- even if we enable
260 * multiple queues, there's only single reg to program
261 */
262 gfar_write(®s->txic, 0);
263 if (likely(priv->tx_queue[0]->txcoalescing))
264 gfar_write(®s->txic, priv->tx_queue[0]->txic);
265
266 gfar_write(®s->rxic, 0);
267 if (unlikely(priv->rx_queue[0]->rxcoalescing))
268 gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
269 }
270 }
271
gfar_configure_coalescing_all(struct gfar_private * priv)272 static void gfar_configure_coalescing_all(struct gfar_private *priv)
273 {
274 gfar_configure_coalescing(priv, 0xFF, 0xFF);
275 }
276
gfar_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)277 static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
278 {
279 struct gfar_private *priv = netdev_priv(dev);
280 int i;
281
282 for (i = 0; i < priv->num_rx_queues; i++) {
283 stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
284 stats->rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
285 stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
286 }
287
288 for (i = 0; i < priv->num_tx_queues; i++) {
289 stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
290 stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
291 }
292
293 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
294 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
295 unsigned long flags;
296 u32 rdrp, car, car_before;
297 u64 rdrp_offset;
298
299 spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
300 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
301 do {
302 car_before = car;
303 rdrp = gfar_read(&rmon->rdrp);
304 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
305 } while (car != car_before);
306 if (car) {
307 priv->rmon_overflow.rdrp++;
308 gfar_write(&rmon->car1, car);
309 }
310 rdrp_offset = priv->rmon_overflow.rdrp;
311 spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
312
313 stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
314 }
315 }
316
317 /* Set the appropriate hash bit for the given addr */
318 /* The algorithm works like so:
319 * 1) Take the Destination Address (ie the multicast address), and
320 * do a CRC on it (little endian), and reverse the bits of the
321 * result.
322 * 2) Use the 8 most significant bits as a hash into a 256-entry
323 * table. The table is controlled through 8 32-bit registers:
324 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
325 * gaddr7. This means that the 3 most significant bits in the
326 * hash index which gaddr register to use, and the 5 other bits
327 * indicate which bit (assuming an IBM numbering scheme, which
328 * for PowerPC (tm) is usually the case) in the register holds
329 * the entry.
330 */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)331 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
332 {
333 u32 tempval;
334 struct gfar_private *priv = netdev_priv(dev);
335 u32 result = ether_crc(ETH_ALEN, addr);
336 int width = priv->hash_width;
337 u8 whichbit = (result >> (32 - width)) & 0x1f;
338 u8 whichreg = result >> (32 - width + 5);
339 u32 value = (1 << (31-whichbit));
340
341 tempval = gfar_read(priv->hash_regs[whichreg]);
342 tempval |= value;
343 gfar_write(priv->hash_regs[whichreg], tempval);
344 }
345
346 /* There are multiple MAC Address register pairs on some controllers
347 * This function sets the numth pair to a given address
348 */
gfar_set_mac_for_addr(struct net_device * dev,int num,const u8 * addr)349 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
350 const u8 *addr)
351 {
352 struct gfar_private *priv = netdev_priv(dev);
353 struct gfar __iomem *regs = priv->gfargrp[0].regs;
354 u32 tempval;
355 u32 __iomem *macptr = ®s->macstnaddr1;
356
357 macptr += num*2;
358
359 /* For a station address of 0x12345678ABCD in transmission
360 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
361 * MACnADDR2 is set to 0x34120000.
362 */
363 tempval = (addr[5] << 24) | (addr[4] << 16) |
364 (addr[3] << 8) | addr[2];
365
366 gfar_write(macptr, tempval);
367
368 tempval = (addr[1] << 24) | (addr[0] << 16);
369
370 gfar_write(macptr+1, tempval);
371 }
372
gfar_set_mac_addr(struct net_device * dev,void * p)373 static int gfar_set_mac_addr(struct net_device *dev, void *p)
374 {
375 int ret;
376
377 ret = eth_mac_addr(dev, p);
378 if (ret)
379 return ret;
380
381 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
382
383 return 0;
384 }
385
gfar_ints_disable(struct gfar_private * priv)386 static void gfar_ints_disable(struct gfar_private *priv)
387 {
388 int i;
389 for (i = 0; i < priv->num_grps; i++) {
390 struct gfar __iomem *regs = priv->gfargrp[i].regs;
391 /* Clear IEVENT */
392 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
393
394 /* Initialize IMASK */
395 gfar_write(®s->imask, IMASK_INIT_CLEAR);
396 }
397 }
398
gfar_ints_enable(struct gfar_private * priv)399 static void gfar_ints_enable(struct gfar_private *priv)
400 {
401 int i;
402 for (i = 0; i < priv->num_grps; i++) {
403 struct gfar __iomem *regs = priv->gfargrp[i].regs;
404 /* Unmask the interrupts we look for */
405 gfar_write(®s->imask,
406 IMASK_DEFAULT | priv->rmon_overflow.imask);
407 }
408 }
409
gfar_alloc_tx_queues(struct gfar_private * priv)410 static int gfar_alloc_tx_queues(struct gfar_private *priv)
411 {
412 int i;
413
414 for (i = 0; i < priv->num_tx_queues; i++) {
415 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
416 GFP_KERNEL);
417 if (!priv->tx_queue[i])
418 return -ENOMEM;
419
420 priv->tx_queue[i]->tx_skbuff = NULL;
421 priv->tx_queue[i]->qindex = i;
422 priv->tx_queue[i]->dev = priv->ndev;
423 spin_lock_init(&(priv->tx_queue[i]->txlock));
424 }
425 return 0;
426 }
427
gfar_alloc_rx_queues(struct gfar_private * priv)428 static int gfar_alloc_rx_queues(struct gfar_private *priv)
429 {
430 int i;
431
432 for (i = 0; i < priv->num_rx_queues; i++) {
433 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
434 GFP_KERNEL);
435 if (!priv->rx_queue[i])
436 return -ENOMEM;
437
438 priv->rx_queue[i]->qindex = i;
439 priv->rx_queue[i]->ndev = priv->ndev;
440 }
441 return 0;
442 }
443
gfar_free_tx_queues(struct gfar_private * priv)444 static void gfar_free_tx_queues(struct gfar_private *priv)
445 {
446 int i;
447
448 for (i = 0; i < priv->num_tx_queues; i++)
449 kfree(priv->tx_queue[i]);
450 }
451
gfar_free_rx_queues(struct gfar_private * priv)452 static void gfar_free_rx_queues(struct gfar_private *priv)
453 {
454 int i;
455
456 for (i = 0; i < priv->num_rx_queues; i++)
457 kfree(priv->rx_queue[i]);
458 }
459
unmap_group_regs(struct gfar_private * priv)460 static void unmap_group_regs(struct gfar_private *priv)
461 {
462 int i;
463
464 for (i = 0; i < MAXGROUPS; i++)
465 if (priv->gfargrp[i].regs)
466 iounmap(priv->gfargrp[i].regs);
467 }
468
free_gfar_dev(struct gfar_private * priv)469 static void free_gfar_dev(struct gfar_private *priv)
470 {
471 int i, j;
472
473 for (i = 0; i < priv->num_grps; i++)
474 for (j = 0; j < GFAR_NUM_IRQS; j++) {
475 kfree(priv->gfargrp[i].irqinfo[j]);
476 priv->gfargrp[i].irqinfo[j] = NULL;
477 }
478
479 free_netdev(priv->ndev);
480 }
481
disable_napi(struct gfar_private * priv)482 static void disable_napi(struct gfar_private *priv)
483 {
484 int i;
485
486 for (i = 0; i < priv->num_grps; i++) {
487 napi_disable(&priv->gfargrp[i].napi_rx);
488 napi_disable(&priv->gfargrp[i].napi_tx);
489 }
490 }
491
enable_napi(struct gfar_private * priv)492 static void enable_napi(struct gfar_private *priv)
493 {
494 int i;
495
496 for (i = 0; i < priv->num_grps; i++) {
497 napi_enable(&priv->gfargrp[i].napi_rx);
498 napi_enable(&priv->gfargrp[i].napi_tx);
499 }
500 }
501
gfar_parse_group(struct device_node * np,struct gfar_private * priv,const char * model)502 static int gfar_parse_group(struct device_node *np,
503 struct gfar_private *priv, const char *model)
504 {
505 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
506 int i;
507
508 for (i = 0; i < GFAR_NUM_IRQS; i++) {
509 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
510 GFP_KERNEL);
511 if (!grp->irqinfo[i])
512 return -ENOMEM;
513 }
514
515 grp->regs = of_iomap(np, 0);
516 if (!grp->regs)
517 return -ENOMEM;
518
519 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
520
521 /* If we aren't the FEC we have multiple interrupts */
522 if (model && strcasecmp(model, "FEC")) {
523 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
524 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
525 if (!gfar_irq(grp, TX)->irq ||
526 !gfar_irq(grp, RX)->irq ||
527 !gfar_irq(grp, ER)->irq)
528 return -EINVAL;
529 }
530
531 grp->priv = priv;
532 spin_lock_init(&grp->grplock);
533 if (priv->mode == MQ_MG_MODE) {
534 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
535 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
536 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
537 } else {
538 grp->rx_bit_map = 0xFF;
539 grp->tx_bit_map = 0xFF;
540 }
541
542 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
543 * right to left, so we need to revert the 8 bits to get the q index
544 */
545 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
546 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
547
548 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
549 * also assign queues to groups
550 */
551 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
552 if (!grp->rx_queue)
553 grp->rx_queue = priv->rx_queue[i];
554 grp->num_rx_queues++;
555 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
556 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
557 priv->rx_queue[i]->grp = grp;
558 }
559
560 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
561 if (!grp->tx_queue)
562 grp->tx_queue = priv->tx_queue[i];
563 grp->num_tx_queues++;
564 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
565 priv->tqueue |= (TQUEUE_EN0 >> i);
566 priv->tx_queue[i]->grp = grp;
567 }
568
569 priv->num_grps++;
570
571 return 0;
572 }
573
gfar_of_group_count(struct device_node * np)574 static int gfar_of_group_count(struct device_node *np)
575 {
576 struct device_node *child;
577 int num = 0;
578
579 for_each_available_child_of_node(np, child)
580 if (of_node_name_eq(child, "queue-group"))
581 num++;
582
583 return num;
584 }
585
586 /* Reads the controller's registers to determine what interface
587 * connects it to the PHY.
588 */
gfar_get_interface(struct net_device * dev)589 static phy_interface_t gfar_get_interface(struct net_device *dev)
590 {
591 struct gfar_private *priv = netdev_priv(dev);
592 struct gfar __iomem *regs = priv->gfargrp[0].regs;
593 u32 ecntrl;
594
595 ecntrl = gfar_read(®s->ecntrl);
596
597 if (ecntrl & ECNTRL_SGMII_MODE)
598 return PHY_INTERFACE_MODE_SGMII;
599
600 if (ecntrl & ECNTRL_TBI_MODE) {
601 if (ecntrl & ECNTRL_REDUCED_MODE)
602 return PHY_INTERFACE_MODE_RTBI;
603 else
604 return PHY_INTERFACE_MODE_TBI;
605 }
606
607 if (ecntrl & ECNTRL_REDUCED_MODE) {
608 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
609 return PHY_INTERFACE_MODE_RMII;
610 }
611 else {
612 phy_interface_t interface = priv->interface;
613
614 /* This isn't autodetected right now, so it must
615 * be set by the device tree or platform code.
616 */
617 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
618 return PHY_INTERFACE_MODE_RGMII_ID;
619
620 return PHY_INTERFACE_MODE_RGMII;
621 }
622 }
623
624 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
625 return PHY_INTERFACE_MODE_GMII;
626
627 return PHY_INTERFACE_MODE_MII;
628 }
629
gfar_of_init(struct platform_device * ofdev,struct net_device ** pdev)630 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
631 {
632 const char *model;
633 int err = 0, i;
634 phy_interface_t interface;
635 struct net_device *dev = NULL;
636 struct gfar_private *priv = NULL;
637 struct device_node *np = ofdev->dev.of_node;
638 struct device_node *child = NULL;
639 u32 stash_len = 0;
640 u32 stash_idx = 0;
641 unsigned int num_tx_qs, num_rx_qs;
642 unsigned short mode;
643
644 if (!np)
645 return -ENODEV;
646
647 if (of_device_is_compatible(np, "fsl,etsec2"))
648 mode = MQ_MG_MODE;
649 else
650 mode = SQ_SG_MODE;
651
652 if (mode == SQ_SG_MODE) {
653 num_tx_qs = 1;
654 num_rx_qs = 1;
655 } else { /* MQ_MG_MODE */
656 /* get the actual number of supported groups */
657 unsigned int num_grps = gfar_of_group_count(np);
658
659 if (num_grps == 0 || num_grps > MAXGROUPS) {
660 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
661 num_grps);
662 pr_err("Cannot do alloc_etherdev, aborting\n");
663 return -EINVAL;
664 }
665
666 num_tx_qs = num_grps; /* one txq per int group */
667 num_rx_qs = num_grps; /* one rxq per int group */
668 }
669
670 if (num_tx_qs > MAX_TX_QS) {
671 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
672 num_tx_qs, MAX_TX_QS);
673 pr_err("Cannot do alloc_etherdev, aborting\n");
674 return -EINVAL;
675 }
676
677 if (num_rx_qs > MAX_RX_QS) {
678 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
679 num_rx_qs, MAX_RX_QS);
680 pr_err("Cannot do alloc_etherdev, aborting\n");
681 return -EINVAL;
682 }
683
684 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
685 dev = *pdev;
686 if (NULL == dev)
687 return -ENOMEM;
688
689 priv = netdev_priv(dev);
690 priv->ndev = dev;
691
692 priv->mode = mode;
693
694 priv->num_tx_queues = num_tx_qs;
695 netif_set_real_num_rx_queues(dev, num_rx_qs);
696 priv->num_rx_queues = num_rx_qs;
697
698 err = gfar_alloc_tx_queues(priv);
699 if (err)
700 goto tx_alloc_failed;
701
702 err = gfar_alloc_rx_queues(priv);
703 if (err)
704 goto rx_alloc_failed;
705
706 err = of_property_read_string(np, "model", &model);
707 if (err) {
708 pr_err("Device model property missing, aborting\n");
709 goto rx_alloc_failed;
710 }
711
712 /* Init Rx queue filer rule set linked list */
713 INIT_LIST_HEAD(&priv->rx_list.list);
714 priv->rx_list.count = 0;
715 mutex_init(&priv->rx_queue_access);
716
717 for (i = 0; i < MAXGROUPS; i++)
718 priv->gfargrp[i].regs = NULL;
719
720 /* Parse and initialize group specific information */
721 if (priv->mode == MQ_MG_MODE) {
722 for_each_available_child_of_node(np, child) {
723 if (!of_node_name_eq(child, "queue-group"))
724 continue;
725
726 err = gfar_parse_group(child, priv, model);
727 if (err) {
728 of_node_put(child);
729 goto err_grp_init;
730 }
731 }
732 } else { /* SQ_SG_MODE */
733 err = gfar_parse_group(np, priv, model);
734 if (err)
735 goto err_grp_init;
736 }
737
738 if (of_property_read_bool(np, "bd-stash")) {
739 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
740 priv->bd_stash_en = 1;
741 }
742
743 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
744
745 if (err == 0)
746 priv->rx_stash_size = stash_len;
747
748 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
749
750 if (err == 0)
751 priv->rx_stash_index = stash_idx;
752
753 if (stash_len || stash_idx)
754 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
755
756 err = of_get_ethdev_address(np, dev);
757 if (err == -EPROBE_DEFER)
758 goto err_grp_init;
759 if (err) {
760 eth_hw_addr_random(dev);
761 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
762 }
763
764 if (model && !strcasecmp(model, "TSEC"))
765 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
766 FSL_GIANFAR_DEV_HAS_COALESCE |
767 FSL_GIANFAR_DEV_HAS_RMON |
768 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
769
770 if (model && !strcasecmp(model, "eTSEC"))
771 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
772 FSL_GIANFAR_DEV_HAS_COALESCE |
773 FSL_GIANFAR_DEV_HAS_RMON |
774 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
775 FSL_GIANFAR_DEV_HAS_CSUM |
776 FSL_GIANFAR_DEV_HAS_VLAN |
777 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
778 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
779 FSL_GIANFAR_DEV_HAS_TIMER |
780 FSL_GIANFAR_DEV_HAS_RX_FILER;
781
782 /* Use PHY connection type from the DT node if one is specified there.
783 * rgmii-id really needs to be specified. Other types can be
784 * detected by hardware
785 */
786 err = of_get_phy_mode(np, &interface);
787 if (!err)
788 priv->interface = interface;
789 else
790 priv->interface = gfar_get_interface(dev);
791
792 if (of_property_read_bool(np, "fsl,magic-packet"))
793 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
794
795 if (of_property_read_bool(np, "fsl,wake-on-filer"))
796 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
797
798 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
799
800 /* In the case of a fixed PHY, the DT node associated
801 * to the PHY is the Ethernet MAC DT node.
802 */
803 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
804 err = of_phy_register_fixed_link(np);
805 if (err)
806 goto err_grp_init;
807
808 priv->phy_node = of_node_get(np);
809 }
810
811 /* Find the TBI PHY. If it's not there, we don't support SGMII */
812 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
813
814 return 0;
815
816 err_grp_init:
817 unmap_group_regs(priv);
818 rx_alloc_failed:
819 gfar_free_rx_queues(priv);
820 tx_alloc_failed:
821 gfar_free_tx_queues(priv);
822 free_gfar_dev(priv);
823 return err;
824 }
825
cluster_entry_per_class(struct gfar_private * priv,u32 rqfar,u32 class)826 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
827 u32 class)
828 {
829 u32 rqfpr = FPR_FILER_MASK;
830 u32 rqfcr = 0x0;
831
832 rqfar--;
833 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
834 priv->ftp_rqfpr[rqfar] = rqfpr;
835 priv->ftp_rqfcr[rqfar] = rqfcr;
836 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
837
838 rqfar--;
839 rqfcr = RQFCR_CMP_NOMATCH;
840 priv->ftp_rqfpr[rqfar] = rqfpr;
841 priv->ftp_rqfcr[rqfar] = rqfcr;
842 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
843
844 rqfar--;
845 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
846 rqfpr = class;
847 priv->ftp_rqfcr[rqfar] = rqfcr;
848 priv->ftp_rqfpr[rqfar] = rqfpr;
849 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
850
851 rqfar--;
852 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
853 rqfpr = class;
854 priv->ftp_rqfcr[rqfar] = rqfcr;
855 priv->ftp_rqfpr[rqfar] = rqfpr;
856 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
857
858 return rqfar;
859 }
860
gfar_init_filer_table(struct gfar_private * priv)861 static void gfar_init_filer_table(struct gfar_private *priv)
862 {
863 int i = 0x0;
864 u32 rqfar = MAX_FILER_IDX;
865 u32 rqfcr = 0x0;
866 u32 rqfpr = FPR_FILER_MASK;
867
868 /* Default rule */
869 rqfcr = RQFCR_CMP_MATCH;
870 priv->ftp_rqfcr[rqfar] = rqfcr;
871 priv->ftp_rqfpr[rqfar] = rqfpr;
872 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873
874 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
875 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
876 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
877 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
878 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
879 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
880
881 /* cur_filer_idx indicated the first non-masked rule */
882 priv->cur_filer_idx = rqfar;
883
884 /* Rest are masked rules */
885 rqfcr = RQFCR_CMP_NOMATCH;
886 for (i = 0; i < rqfar; i++) {
887 priv->ftp_rqfcr[i] = rqfcr;
888 priv->ftp_rqfpr[i] = rqfpr;
889 gfar_write_filer(priv, i, rqfcr, rqfpr);
890 }
891 }
892
893 #ifdef CONFIG_PPC
__gfar_detect_errata_83xx(struct gfar_private * priv)894 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
895 {
896 unsigned int pvr = mfspr(SPRN_PVR);
897 unsigned int svr = mfspr(SPRN_SVR);
898 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
899 unsigned int rev = svr & 0xffff;
900
901 /* MPC8313 Rev 2.0 and higher; All MPC837x */
902 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
903 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
904 priv->errata |= GFAR_ERRATA_74;
905
906 /* MPC8313 and MPC837x all rev */
907 if ((pvr == 0x80850010 && mod == 0x80b0) ||
908 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
909 priv->errata |= GFAR_ERRATA_76;
910
911 /* MPC8313 Rev < 2.0 */
912 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
913 priv->errata |= GFAR_ERRATA_12;
914 }
915
__gfar_detect_errata_85xx(struct gfar_private * priv)916 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
917 {
918 unsigned int svr = mfspr(SPRN_SVR);
919
920 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
921 priv->errata |= GFAR_ERRATA_12;
922 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
923 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
924 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
925 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
926 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
927 }
928 #endif
929
gfar_detect_errata(struct gfar_private * priv)930 static void gfar_detect_errata(struct gfar_private *priv)
931 {
932 struct device *dev = &priv->ofdev->dev;
933
934 /* no plans to fix */
935 priv->errata |= GFAR_ERRATA_A002;
936
937 #ifdef CONFIG_PPC
938 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
939 __gfar_detect_errata_85xx(priv);
940 else /* non-mpc85xx parts, i.e. e300 core based */
941 __gfar_detect_errata_83xx(priv);
942 #endif
943
944 if (priv->errata)
945 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
946 priv->errata);
947 }
948
gfar_init_addr_hash_table(struct gfar_private * priv)949 static void gfar_init_addr_hash_table(struct gfar_private *priv)
950 {
951 struct gfar __iomem *regs = priv->gfargrp[0].regs;
952
953 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
954 priv->extended_hash = 1;
955 priv->hash_width = 9;
956
957 priv->hash_regs[0] = ®s->igaddr0;
958 priv->hash_regs[1] = ®s->igaddr1;
959 priv->hash_regs[2] = ®s->igaddr2;
960 priv->hash_regs[3] = ®s->igaddr3;
961 priv->hash_regs[4] = ®s->igaddr4;
962 priv->hash_regs[5] = ®s->igaddr5;
963 priv->hash_regs[6] = ®s->igaddr6;
964 priv->hash_regs[7] = ®s->igaddr7;
965 priv->hash_regs[8] = ®s->gaddr0;
966 priv->hash_regs[9] = ®s->gaddr1;
967 priv->hash_regs[10] = ®s->gaddr2;
968 priv->hash_regs[11] = ®s->gaddr3;
969 priv->hash_regs[12] = ®s->gaddr4;
970 priv->hash_regs[13] = ®s->gaddr5;
971 priv->hash_regs[14] = ®s->gaddr6;
972 priv->hash_regs[15] = ®s->gaddr7;
973
974 } else {
975 priv->extended_hash = 0;
976 priv->hash_width = 8;
977
978 priv->hash_regs[0] = ®s->gaddr0;
979 priv->hash_regs[1] = ®s->gaddr1;
980 priv->hash_regs[2] = ®s->gaddr2;
981 priv->hash_regs[3] = ®s->gaddr3;
982 priv->hash_regs[4] = ®s->gaddr4;
983 priv->hash_regs[5] = ®s->gaddr5;
984 priv->hash_regs[6] = ®s->gaddr6;
985 priv->hash_regs[7] = ®s->gaddr7;
986 }
987 }
988
__gfar_is_rx_idle(struct gfar_private * priv)989 static int __gfar_is_rx_idle(struct gfar_private *priv)
990 {
991 u32 res;
992
993 /* Normaly TSEC should not hang on GRS commands, so we should
994 * actually wait for IEVENT_GRSC flag.
995 */
996 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
997 return 0;
998
999 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1000 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1001 * and the Rx can be safely reset.
1002 */
1003 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1004 res &= 0x7f807f80;
1005 if ((res & 0xffff) == (res >> 16))
1006 return 1;
1007
1008 return 0;
1009 }
1010
1011 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct gfar_private * priv)1012 static void gfar_halt_nodisable(struct gfar_private *priv)
1013 {
1014 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1015 u32 tempval;
1016 unsigned int timeout;
1017 int stopped;
1018
1019 gfar_ints_disable(priv);
1020
1021 if (gfar_is_dma_stopped(priv))
1022 return;
1023
1024 /* Stop the DMA, and wait for it to stop */
1025 tempval = gfar_read(®s->dmactrl);
1026 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1027 gfar_write(®s->dmactrl, tempval);
1028
1029 retry:
1030 timeout = 1000;
1031 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1032 cpu_relax();
1033 timeout--;
1034 }
1035
1036 if (!timeout)
1037 stopped = gfar_is_dma_stopped(priv);
1038
1039 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1040 !__gfar_is_rx_idle(priv))
1041 goto retry;
1042 }
1043
1044 /* Halt the receive and transmit queues */
gfar_halt(struct gfar_private * priv)1045 static void gfar_halt(struct gfar_private *priv)
1046 {
1047 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1048 u32 tempval;
1049
1050 /* Dissable the Rx/Tx hw queues */
1051 gfar_write(®s->rqueue, 0);
1052 gfar_write(®s->tqueue, 0);
1053
1054 mdelay(10);
1055
1056 gfar_halt_nodisable(priv);
1057
1058 /* Disable Rx/Tx DMA */
1059 tempval = gfar_read(®s->maccfg1);
1060 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1061 gfar_write(®s->maccfg1, tempval);
1062 }
1063
free_skb_tx_queue(struct gfar_priv_tx_q * tx_queue)1064 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1065 {
1066 struct txbd8 *txbdp;
1067 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1068 int i, j;
1069
1070 txbdp = tx_queue->tx_bd_base;
1071
1072 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1073 if (!tx_queue->tx_skbuff[i])
1074 continue;
1075
1076 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1077 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1078 txbdp->lstatus = 0;
1079 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1080 j++) {
1081 txbdp++;
1082 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1083 be16_to_cpu(txbdp->length),
1084 DMA_TO_DEVICE);
1085 }
1086 txbdp++;
1087 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1088 tx_queue->tx_skbuff[i] = NULL;
1089 }
1090 kfree(tx_queue->tx_skbuff);
1091 tx_queue->tx_skbuff = NULL;
1092 }
1093
free_skb_rx_queue(struct gfar_priv_rx_q * rx_queue)1094 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1095 {
1096 int i;
1097
1098 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1099
1100 dev_kfree_skb(rx_queue->skb);
1101
1102 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1103 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1104
1105 rxbdp->lstatus = 0;
1106 rxbdp->bufPtr = 0;
1107 rxbdp++;
1108
1109 if (!rxb->page)
1110 continue;
1111
1112 dma_unmap_page(rx_queue->dev, rxb->dma,
1113 PAGE_SIZE, DMA_FROM_DEVICE);
1114 __free_page(rxb->page);
1115
1116 rxb->page = NULL;
1117 }
1118
1119 kfree(rx_queue->rx_buff);
1120 rx_queue->rx_buff = NULL;
1121 }
1122
1123 /* If there are any tx skbs or rx skbs still around, free them.
1124 * Then free tx_skbuff and rx_skbuff
1125 */
free_skb_resources(struct gfar_private * priv)1126 static void free_skb_resources(struct gfar_private *priv)
1127 {
1128 struct gfar_priv_tx_q *tx_queue = NULL;
1129 struct gfar_priv_rx_q *rx_queue = NULL;
1130 int i;
1131
1132 /* Go through all the buffer descriptors and free their data buffers */
1133 for (i = 0; i < priv->num_tx_queues; i++) {
1134 struct netdev_queue *txq;
1135
1136 tx_queue = priv->tx_queue[i];
1137 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1138 if (tx_queue->tx_skbuff)
1139 free_skb_tx_queue(tx_queue);
1140 netdev_tx_reset_queue(txq);
1141 }
1142
1143 for (i = 0; i < priv->num_rx_queues; i++) {
1144 rx_queue = priv->rx_queue[i];
1145 if (rx_queue->rx_buff)
1146 free_skb_rx_queue(rx_queue);
1147 }
1148
1149 dma_free_coherent(priv->dev,
1150 sizeof(struct txbd8) * priv->total_tx_ring_size +
1151 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1152 priv->tx_queue[0]->tx_bd_base,
1153 priv->tx_queue[0]->tx_bd_dma_base);
1154 }
1155
stop_gfar(struct net_device * dev)1156 void stop_gfar(struct net_device *dev)
1157 {
1158 struct gfar_private *priv = netdev_priv(dev);
1159
1160 netif_tx_stop_all_queues(dev);
1161
1162 smp_mb__before_atomic();
1163 set_bit(GFAR_DOWN, &priv->state);
1164 smp_mb__after_atomic();
1165
1166 disable_napi(priv);
1167
1168 /* disable ints and gracefully shut down Rx/Tx DMA */
1169 gfar_halt(priv);
1170
1171 phy_stop(dev->phydev);
1172
1173 free_skb_resources(priv);
1174 }
1175
gfar_start(struct gfar_private * priv)1176 static void gfar_start(struct gfar_private *priv)
1177 {
1178 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1179 u32 tempval;
1180 int i = 0;
1181
1182 /* Enable Rx/Tx hw queues */
1183 gfar_write(®s->rqueue, priv->rqueue);
1184 gfar_write(®s->tqueue, priv->tqueue);
1185
1186 /* Initialize DMACTRL to have WWR and WOP */
1187 tempval = gfar_read(®s->dmactrl);
1188 tempval |= DMACTRL_INIT_SETTINGS;
1189 gfar_write(®s->dmactrl, tempval);
1190
1191 /* Make sure we aren't stopped */
1192 tempval = gfar_read(®s->dmactrl);
1193 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1194 gfar_write(®s->dmactrl, tempval);
1195
1196 for (i = 0; i < priv->num_grps; i++) {
1197 regs = priv->gfargrp[i].regs;
1198 /* Clear THLT/RHLT, so that the DMA starts polling now */
1199 gfar_write(®s->tstat, priv->gfargrp[i].tstat);
1200 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
1201 }
1202
1203 /* Enable Rx/Tx DMA */
1204 tempval = gfar_read(®s->maccfg1);
1205 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1206 gfar_write(®s->maccfg1, tempval);
1207
1208 gfar_ints_enable(priv);
1209
1210 netif_trans_update(priv->ndev); /* prevent tx timeout */
1211 }
1212
gfar_new_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * rxb)1213 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1214 {
1215 struct page *page;
1216 dma_addr_t addr;
1217
1218 page = dev_alloc_page();
1219 if (unlikely(!page))
1220 return false;
1221
1222 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1223 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1224 __free_page(page);
1225
1226 return false;
1227 }
1228
1229 rxb->dma = addr;
1230 rxb->page = page;
1231 rxb->page_offset = 0;
1232
1233 return true;
1234 }
1235
gfar_rx_alloc_err(struct gfar_priv_rx_q * rx_queue)1236 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1237 {
1238 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1239 struct gfar_extra_stats *estats = &priv->extra_stats;
1240
1241 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1242 atomic64_inc(&estats->rx_alloc_err);
1243 }
1244
gfar_alloc_rx_buffs(struct gfar_priv_rx_q * rx_queue,int alloc_cnt)1245 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1246 int alloc_cnt)
1247 {
1248 struct rxbd8 *bdp;
1249 struct gfar_rx_buff *rxb;
1250 int i;
1251
1252 i = rx_queue->next_to_use;
1253 bdp = &rx_queue->rx_bd_base[i];
1254 rxb = &rx_queue->rx_buff[i];
1255
1256 while (alloc_cnt--) {
1257 /* try reuse page */
1258 if (unlikely(!rxb->page)) {
1259 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1260 gfar_rx_alloc_err(rx_queue);
1261 break;
1262 }
1263 }
1264
1265 /* Setup the new RxBD */
1266 gfar_init_rxbdp(rx_queue, bdp,
1267 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1268
1269 /* Update to the next pointer */
1270 bdp++;
1271 rxb++;
1272
1273 if (unlikely(++i == rx_queue->rx_ring_size)) {
1274 i = 0;
1275 bdp = rx_queue->rx_bd_base;
1276 rxb = rx_queue->rx_buff;
1277 }
1278 }
1279
1280 rx_queue->next_to_use = i;
1281 rx_queue->next_to_alloc = i;
1282 }
1283
gfar_init_bds(struct net_device * ndev)1284 static void gfar_init_bds(struct net_device *ndev)
1285 {
1286 struct gfar_private *priv = netdev_priv(ndev);
1287 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1288 struct gfar_priv_tx_q *tx_queue = NULL;
1289 struct gfar_priv_rx_q *rx_queue = NULL;
1290 struct txbd8 *txbdp;
1291 u32 __iomem *rfbptr;
1292 int i, j;
1293
1294 for (i = 0; i < priv->num_tx_queues; i++) {
1295 tx_queue = priv->tx_queue[i];
1296 /* Initialize some variables in our dev structure */
1297 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1298 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1299 tx_queue->cur_tx = tx_queue->tx_bd_base;
1300 tx_queue->skb_curtx = 0;
1301 tx_queue->skb_dirtytx = 0;
1302
1303 /* Initialize Transmit Descriptor Ring */
1304 txbdp = tx_queue->tx_bd_base;
1305 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1306 txbdp->lstatus = 0;
1307 txbdp->bufPtr = 0;
1308 txbdp++;
1309 }
1310
1311 /* Set the last descriptor in the ring to indicate wrap */
1312 txbdp--;
1313 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1314 TXBD_WRAP);
1315 }
1316
1317 rfbptr = ®s->rfbptr0;
1318 for (i = 0; i < priv->num_rx_queues; i++) {
1319 rx_queue = priv->rx_queue[i];
1320
1321 rx_queue->next_to_clean = 0;
1322 rx_queue->next_to_use = 0;
1323 rx_queue->next_to_alloc = 0;
1324
1325 /* make sure next_to_clean != next_to_use after this
1326 * by leaving at least 1 unused descriptor
1327 */
1328 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1329
1330 rx_queue->rfbptr = rfbptr;
1331 rfbptr += 2;
1332 }
1333 }
1334
gfar_alloc_skb_resources(struct net_device * ndev)1335 static int gfar_alloc_skb_resources(struct net_device *ndev)
1336 {
1337 void *vaddr;
1338 dma_addr_t addr;
1339 int i, j;
1340 struct gfar_private *priv = netdev_priv(ndev);
1341 struct device *dev = priv->dev;
1342 struct gfar_priv_tx_q *tx_queue = NULL;
1343 struct gfar_priv_rx_q *rx_queue = NULL;
1344
1345 priv->total_tx_ring_size = 0;
1346 for (i = 0; i < priv->num_tx_queues; i++)
1347 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1348
1349 priv->total_rx_ring_size = 0;
1350 for (i = 0; i < priv->num_rx_queues; i++)
1351 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1352
1353 /* Allocate memory for the buffer descriptors */
1354 vaddr = dma_alloc_coherent(dev,
1355 (priv->total_tx_ring_size *
1356 sizeof(struct txbd8)) +
1357 (priv->total_rx_ring_size *
1358 sizeof(struct rxbd8)),
1359 &addr, GFP_KERNEL);
1360 if (!vaddr)
1361 return -ENOMEM;
1362
1363 for (i = 0; i < priv->num_tx_queues; i++) {
1364 tx_queue = priv->tx_queue[i];
1365 tx_queue->tx_bd_base = vaddr;
1366 tx_queue->tx_bd_dma_base = addr;
1367 tx_queue->dev = ndev;
1368 /* enet DMA only understands physical addresses */
1369 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1370 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1371 }
1372
1373 /* Start the rx descriptor ring where the tx ring leaves off */
1374 for (i = 0; i < priv->num_rx_queues; i++) {
1375 rx_queue = priv->rx_queue[i];
1376 rx_queue->rx_bd_base = vaddr;
1377 rx_queue->rx_bd_dma_base = addr;
1378 rx_queue->ndev = ndev;
1379 rx_queue->dev = dev;
1380 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1381 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1382 }
1383
1384 /* Setup the skbuff rings */
1385 for (i = 0; i < priv->num_tx_queues; i++) {
1386 tx_queue = priv->tx_queue[i];
1387 tx_queue->tx_skbuff =
1388 kmalloc_array(tx_queue->tx_ring_size,
1389 sizeof(*tx_queue->tx_skbuff),
1390 GFP_KERNEL);
1391 if (!tx_queue->tx_skbuff)
1392 goto cleanup;
1393
1394 for (j = 0; j < tx_queue->tx_ring_size; j++)
1395 tx_queue->tx_skbuff[j] = NULL;
1396 }
1397
1398 for (i = 0; i < priv->num_rx_queues; i++) {
1399 rx_queue = priv->rx_queue[i];
1400 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1401 sizeof(*rx_queue->rx_buff),
1402 GFP_KERNEL);
1403 if (!rx_queue->rx_buff)
1404 goto cleanup;
1405 }
1406
1407 gfar_init_bds(ndev);
1408
1409 return 0;
1410
1411 cleanup:
1412 free_skb_resources(priv);
1413 return -ENOMEM;
1414 }
1415
1416 /* Bring the controller up and running */
startup_gfar(struct net_device * ndev)1417 int startup_gfar(struct net_device *ndev)
1418 {
1419 struct gfar_private *priv = netdev_priv(ndev);
1420 int err;
1421
1422 gfar_mac_reset(priv);
1423
1424 err = gfar_alloc_skb_resources(ndev);
1425 if (err)
1426 return err;
1427
1428 gfar_init_tx_rx_base(priv);
1429
1430 smp_mb__before_atomic();
1431 clear_bit(GFAR_DOWN, &priv->state);
1432 smp_mb__after_atomic();
1433
1434 /* Start Rx/Tx DMA and enable the interrupts */
1435 gfar_start(priv);
1436
1437 /* force link state update after mac reset */
1438 priv->oldlink = 0;
1439 priv->oldspeed = 0;
1440 priv->oldduplex = -1;
1441
1442 phy_start(ndev->phydev);
1443
1444 enable_napi(priv);
1445
1446 netif_tx_wake_all_queues(ndev);
1447
1448 return 0;
1449 }
1450
gfar_get_flowctrl_cfg(struct gfar_private * priv)1451 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1452 {
1453 struct net_device *ndev = priv->ndev;
1454 struct phy_device *phydev = ndev->phydev;
1455 u32 val = 0;
1456
1457 if (!phydev->duplex)
1458 return val;
1459
1460 if (!priv->pause_aneg_en) {
1461 if (priv->tx_pause_en)
1462 val |= MACCFG1_TX_FLOW;
1463 if (priv->rx_pause_en)
1464 val |= MACCFG1_RX_FLOW;
1465 } else {
1466 u16 lcl_adv, rmt_adv;
1467 u8 flowctrl;
1468 /* get link partner capabilities */
1469 rmt_adv = 0;
1470 if (phydev->pause)
1471 rmt_adv = LPA_PAUSE_CAP;
1472 if (phydev->asym_pause)
1473 rmt_adv |= LPA_PAUSE_ASYM;
1474
1475 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1476 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1477 if (flowctrl & FLOW_CTRL_TX)
1478 val |= MACCFG1_TX_FLOW;
1479 if (flowctrl & FLOW_CTRL_RX)
1480 val |= MACCFG1_RX_FLOW;
1481 }
1482
1483 return val;
1484 }
1485
gfar_update_link_state(struct gfar_private * priv)1486 static noinline void gfar_update_link_state(struct gfar_private *priv)
1487 {
1488 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1489 struct net_device *ndev = priv->ndev;
1490 struct phy_device *phydev = ndev->phydev;
1491 struct gfar_priv_rx_q *rx_queue = NULL;
1492 int i;
1493
1494 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1495 return;
1496
1497 if (phydev->link) {
1498 u32 tempval1 = gfar_read(®s->maccfg1);
1499 u32 tempval = gfar_read(®s->maccfg2);
1500 u32 ecntrl = gfar_read(®s->ecntrl);
1501 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1502
1503 if (phydev->duplex != priv->oldduplex) {
1504 if (!(phydev->duplex))
1505 tempval &= ~(MACCFG2_FULL_DUPLEX);
1506 else
1507 tempval |= MACCFG2_FULL_DUPLEX;
1508
1509 priv->oldduplex = phydev->duplex;
1510 }
1511
1512 if (phydev->speed != priv->oldspeed) {
1513 switch (phydev->speed) {
1514 case 1000:
1515 tempval =
1516 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1517
1518 ecntrl &= ~(ECNTRL_R100);
1519 break;
1520 case 100:
1521 case 10:
1522 tempval =
1523 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1524
1525 /* Reduced mode distinguishes
1526 * between 10 and 100
1527 */
1528 if (phydev->speed == SPEED_100)
1529 ecntrl |= ECNTRL_R100;
1530 else
1531 ecntrl &= ~(ECNTRL_R100);
1532 break;
1533 default:
1534 netif_warn(priv, link, priv->ndev,
1535 "Ack! Speed (%d) is not 10/100/1000!\n",
1536 phydev->speed);
1537 break;
1538 }
1539
1540 priv->oldspeed = phydev->speed;
1541 }
1542
1543 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1544 tempval1 |= gfar_get_flowctrl_cfg(priv);
1545
1546 /* Turn last free buffer recording on */
1547 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1548 for (i = 0; i < priv->num_rx_queues; i++) {
1549 u32 bdp_dma;
1550
1551 rx_queue = priv->rx_queue[i];
1552 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1553 gfar_write(rx_queue->rfbptr, bdp_dma);
1554 }
1555
1556 priv->tx_actual_en = 1;
1557 }
1558
1559 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1560 priv->tx_actual_en = 0;
1561
1562 gfar_write(®s->maccfg1, tempval1);
1563 gfar_write(®s->maccfg2, tempval);
1564 gfar_write(®s->ecntrl, ecntrl);
1565
1566 if (!priv->oldlink)
1567 priv->oldlink = 1;
1568
1569 } else if (priv->oldlink) {
1570 priv->oldlink = 0;
1571 priv->oldspeed = 0;
1572 priv->oldduplex = -1;
1573 }
1574
1575 if (netif_msg_link(priv))
1576 phy_print_status(phydev);
1577 }
1578
1579 /* Called every time the controller might need to be made
1580 * aware of new link state. The PHY code conveys this
1581 * information through variables in the phydev structure, and this
1582 * function converts those variables into the appropriate
1583 * register values, and can bring down the device if needed.
1584 */
adjust_link(struct net_device * dev)1585 static void adjust_link(struct net_device *dev)
1586 {
1587 struct gfar_private *priv = netdev_priv(dev);
1588 struct phy_device *phydev = dev->phydev;
1589
1590 if (unlikely(phydev->link != priv->oldlink ||
1591 (phydev->link && (phydev->duplex != priv->oldduplex ||
1592 phydev->speed != priv->oldspeed))))
1593 gfar_update_link_state(priv);
1594 }
1595
1596 /* Initialize TBI PHY interface for communicating with the
1597 * SERDES lynx PHY on the chip. We communicate with this PHY
1598 * through the MDIO bus on each controller, treating it as a
1599 * "normal" PHY at the address found in the TBIPA register. We assume
1600 * that the TBIPA register is valid. Either the MDIO bus code will set
1601 * it to a value that doesn't conflict with other PHYs on the bus, or the
1602 * value doesn't matter, as there are no other PHYs on the bus.
1603 */
gfar_configure_serdes(struct net_device * dev)1604 static void gfar_configure_serdes(struct net_device *dev)
1605 {
1606 struct gfar_private *priv = netdev_priv(dev);
1607 struct phy_device *tbiphy;
1608
1609 if (!priv->tbi_node) {
1610 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1611 "device tree specify a tbi-handle\n");
1612 return;
1613 }
1614
1615 tbiphy = of_phy_find_device(priv->tbi_node);
1616 if (!tbiphy) {
1617 dev_err(&dev->dev, "error: Could not get TBI device\n");
1618 return;
1619 }
1620
1621 /* If the link is already up, we must already be ok, and don't need to
1622 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1623 * everything for us? Resetting it takes the link down and requires
1624 * several seconds for it to come back.
1625 */
1626 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1627 put_device(&tbiphy->mdio.dev);
1628 return;
1629 }
1630
1631 /* Single clk mode, mii mode off(for serdes communication) */
1632 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1633
1634 phy_write(tbiphy, MII_ADVERTISE,
1635 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1636 ADVERTISE_1000XPSE_ASYM);
1637
1638 phy_write(tbiphy, MII_BMCR,
1639 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1640 BMCR_SPEED1000);
1641
1642 put_device(&tbiphy->mdio.dev);
1643 }
1644
1645 /* Initializes driver's PHY state, and attaches to the PHY.
1646 * Returns 0 on success.
1647 */
init_phy(struct net_device * dev)1648 static int init_phy(struct net_device *dev)
1649 {
1650 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1651 struct gfar_private *priv = netdev_priv(dev);
1652 phy_interface_t interface = priv->interface;
1653 struct phy_device *phydev;
1654 struct ethtool_keee edata;
1655
1656 linkmode_set_bit_array(phy_10_100_features_array,
1657 ARRAY_SIZE(phy_10_100_features_array),
1658 mask);
1659 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1660 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1661 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1662 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1663
1664 priv->oldlink = 0;
1665 priv->oldspeed = 0;
1666 priv->oldduplex = -1;
1667
1668 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1669 interface);
1670 if (!phydev) {
1671 dev_err(&dev->dev, "could not attach to PHY\n");
1672 return -ENODEV;
1673 }
1674
1675 if (interface == PHY_INTERFACE_MODE_SGMII)
1676 gfar_configure_serdes(dev);
1677
1678 /* Remove any features not supported by the controller */
1679 linkmode_and(phydev->supported, phydev->supported, mask);
1680 linkmode_copy(phydev->advertising, phydev->supported);
1681
1682 /* Add support for flow control */
1683 phy_support_asym_pause(phydev);
1684
1685 /* disable EEE autoneg, EEE not supported by eTSEC */
1686 memset(&edata, 0, sizeof(struct ethtool_keee));
1687 phy_ethtool_set_eee(phydev, &edata);
1688
1689 return 0;
1690 }
1691
gfar_add_fcb(struct sk_buff * skb)1692 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1693 {
1694 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1695
1696 memset(fcb, 0, GMAC_FCB_LEN);
1697
1698 return fcb;
1699 }
1700
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb,int fcb_length)1701 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1702 int fcb_length)
1703 {
1704 /* If we're here, it's a IP packet with a TCP or UDP
1705 * payload. We set it to checksum, using a pseudo-header
1706 * we provide
1707 */
1708 u8 flags = TXFCB_DEFAULT;
1709
1710 /* Tell the controller what the protocol is
1711 * And provide the already calculated phcs
1712 */
1713 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1714 flags |= TXFCB_UDP;
1715 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1716 } else
1717 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1718
1719 /* l3os is the distance between the start of the
1720 * frame (skb->data) and the start of the IP hdr.
1721 * l4os is the distance between the start of the
1722 * l3 hdr and the l4 hdr
1723 */
1724 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1725 fcb->l4os = skb_network_header_len(skb);
1726
1727 fcb->flags = flags;
1728 }
1729
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)1730 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1731 {
1732 fcb->flags |= TXFCB_VLN;
1733 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1734 }
1735
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)1736 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1737 struct txbd8 *base, int ring_size)
1738 {
1739 struct txbd8 *new_bd = bdp + stride;
1740
1741 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1742 }
1743
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)1744 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1745 int ring_size)
1746 {
1747 return skip_txbd(bdp, 1, base, ring_size);
1748 }
1749
1750 /* eTSEC12: csum generation not supported for some fcb offsets */
gfar_csum_errata_12(struct gfar_private * priv,unsigned long fcb_addr)1751 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1752 unsigned long fcb_addr)
1753 {
1754 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1755 (fcb_addr % 0x20) > 0x18);
1756 }
1757
1758 /* eTSEC76: csum generation for frames larger than 2500 may
1759 * cause excess delays before start of transmission
1760 */
gfar_csum_errata_76(struct gfar_private * priv,unsigned int len)1761 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1762 unsigned int len)
1763 {
1764 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1765 (len > 2500));
1766 }
1767
1768 /* This is called by the kernel when a frame is ready for transmission.
1769 * It is pointed to by the dev->hard_start_xmit function pointer
1770 */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)1771 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1772 {
1773 struct gfar_private *priv = netdev_priv(dev);
1774 struct gfar_priv_tx_q *tx_queue = NULL;
1775 struct netdev_queue *txq;
1776 struct gfar __iomem *regs = NULL;
1777 struct txfcb *fcb = NULL;
1778 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1779 u32 lstatus;
1780 skb_frag_t *frag;
1781 int i, rq = 0;
1782 int do_tstamp, do_csum, do_vlan;
1783 u32 bufaddr;
1784 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1785
1786 rq = skb->queue_mapping;
1787 tx_queue = priv->tx_queue[rq];
1788 txq = netdev_get_tx_queue(dev, rq);
1789 base = tx_queue->tx_bd_base;
1790 regs = tx_queue->grp->regs;
1791
1792 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1793 do_vlan = skb_vlan_tag_present(skb);
1794 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1795 priv->hwts_tx_en;
1796
1797 if (do_csum || do_vlan)
1798 fcb_len = GMAC_FCB_LEN;
1799
1800 /* check if time stamp should be generated */
1801 if (unlikely(do_tstamp))
1802 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1803
1804 /* make space for additional header when fcb is needed */
1805 if (fcb_len) {
1806 if (unlikely(skb_cow_head(skb, fcb_len))) {
1807 dev->stats.tx_errors++;
1808 dev_kfree_skb_any(skb);
1809 return NETDEV_TX_OK;
1810 }
1811 }
1812
1813 /* total number of fragments in the SKB */
1814 nr_frags = skb_shinfo(skb)->nr_frags;
1815
1816 /* calculate the required number of TxBDs for this skb */
1817 if (unlikely(do_tstamp))
1818 nr_txbds = nr_frags + 2;
1819 else
1820 nr_txbds = nr_frags + 1;
1821
1822 /* check if there is space to queue this packet */
1823 if (nr_txbds > tx_queue->num_txbdfree) {
1824 /* no space, stop the queue */
1825 netif_tx_stop_queue(txq);
1826 dev->stats.tx_fifo_errors++;
1827 return NETDEV_TX_BUSY;
1828 }
1829
1830 /* Update transmit stats */
1831 bytes_sent = skb->len;
1832 tx_queue->stats.tx_bytes += bytes_sent;
1833 /* keep Tx bytes on wire for BQL accounting */
1834 GFAR_CB(skb)->bytes_sent = bytes_sent;
1835 tx_queue->stats.tx_packets++;
1836
1837 txbdp = txbdp_start = tx_queue->cur_tx;
1838 lstatus = be32_to_cpu(txbdp->lstatus);
1839
1840 /* Add TxPAL between FCB and frame if required */
1841 if (unlikely(do_tstamp)) {
1842 skb_push(skb, GMAC_TXPAL_LEN);
1843 memset(skb->data, 0, GMAC_TXPAL_LEN);
1844 }
1845
1846 /* Add TxFCB if required */
1847 if (fcb_len) {
1848 fcb = gfar_add_fcb(skb);
1849 lstatus |= BD_LFLAG(TXBD_TOE);
1850 }
1851
1852 /* Set up checksumming */
1853 if (do_csum) {
1854 gfar_tx_checksum(skb, fcb, fcb_len);
1855
1856 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1857 unlikely(gfar_csum_errata_76(priv, skb->len))) {
1858 __skb_pull(skb, GMAC_FCB_LEN);
1859 skb_checksum_help(skb);
1860 if (do_vlan || do_tstamp) {
1861 /* put back a new fcb for vlan/tstamp TOE */
1862 fcb = gfar_add_fcb(skb);
1863 } else {
1864 /* Tx TOE not used */
1865 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1866 fcb = NULL;
1867 }
1868 }
1869 }
1870
1871 if (do_vlan)
1872 gfar_tx_vlan(skb, fcb);
1873
1874 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1875 DMA_TO_DEVICE);
1876 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1877 goto dma_map_err;
1878
1879 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1880
1881 /* Time stamp insertion requires one additional TxBD */
1882 if (unlikely(do_tstamp))
1883 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1884 tx_queue->tx_ring_size);
1885
1886 if (likely(!nr_frags)) {
1887 if (likely(!do_tstamp))
1888 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1889 } else {
1890 u32 lstatus_start = lstatus;
1891
1892 /* Place the fragment addresses and lengths into the TxBDs */
1893 frag = &skb_shinfo(skb)->frags[0];
1894 for (i = 0; i < nr_frags; i++, frag++) {
1895 unsigned int size;
1896
1897 /* Point at the next BD, wrapping as needed */
1898 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1899
1900 size = skb_frag_size(frag);
1901
1902 lstatus = be32_to_cpu(txbdp->lstatus) | size |
1903 BD_LFLAG(TXBD_READY);
1904
1905 /* Handle the last BD specially */
1906 if (i == nr_frags - 1)
1907 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1908
1909 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1910 size, DMA_TO_DEVICE);
1911 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1912 goto dma_map_err;
1913
1914 /* set the TxBD length and buffer pointer */
1915 txbdp->bufPtr = cpu_to_be32(bufaddr);
1916 txbdp->lstatus = cpu_to_be32(lstatus);
1917 }
1918
1919 lstatus = lstatus_start;
1920 }
1921
1922 /* If time stamping is requested one additional TxBD must be set up. The
1923 * first TxBD points to the FCB and must have a data length of
1924 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1925 * the full frame length.
1926 */
1927 if (unlikely(do_tstamp)) {
1928 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1929
1930 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1931 bufaddr += fcb_len;
1932
1933 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1934 (skb_headlen(skb) - fcb_len);
1935 if (!nr_frags)
1936 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1937
1938 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1939 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1940 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1941
1942 /* Setup tx hardware time stamping */
1943 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1944 fcb->ptp = 1;
1945 } else {
1946 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1947 }
1948
1949 skb_tx_timestamp(skb);
1950 netdev_tx_sent_queue(txq, bytes_sent);
1951
1952 gfar_wmb();
1953
1954 txbdp_start->lstatus = cpu_to_be32(lstatus);
1955
1956 gfar_wmb(); /* force lstatus write before tx_skbuff */
1957
1958 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1959
1960 /* Update the current skb pointer to the next entry we will use
1961 * (wrapping if necessary)
1962 */
1963 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1964 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1965
1966 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1967
1968 /* We can work in parallel with gfar_clean_tx_ring(), except
1969 * when modifying num_txbdfree. Note that we didn't grab the lock
1970 * when we were reading the num_txbdfree and checking for available
1971 * space, that's because outside of this function it can only grow.
1972 */
1973 spin_lock_bh(&tx_queue->txlock);
1974 /* reduce TxBD free count */
1975 tx_queue->num_txbdfree -= (nr_txbds);
1976 spin_unlock_bh(&tx_queue->txlock);
1977
1978 /* If the next BD still needs to be cleaned up, then the bds
1979 * are full. We need to tell the kernel to stop sending us stuff.
1980 */
1981 if (!tx_queue->num_txbdfree) {
1982 netif_tx_stop_queue(txq);
1983
1984 dev->stats.tx_fifo_errors++;
1985 }
1986
1987 /* Tell the DMA to go go go */
1988 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1989
1990 return NETDEV_TX_OK;
1991
1992 dma_map_err:
1993 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1994 if (do_tstamp)
1995 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1996 for (i = 0; i < nr_frags; i++) {
1997 lstatus = be32_to_cpu(txbdp->lstatus);
1998 if (!(lstatus & BD_LFLAG(TXBD_READY)))
1999 break;
2000
2001 lstatus &= ~BD_LFLAG(TXBD_READY);
2002 txbdp->lstatus = cpu_to_be32(lstatus);
2003 bufaddr = be32_to_cpu(txbdp->bufPtr);
2004 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2005 DMA_TO_DEVICE);
2006 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2007 }
2008 gfar_wmb();
2009 dev_kfree_skb_any(skb);
2010 return NETDEV_TX_OK;
2011 }
2012
2013 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)2014 static int gfar_set_mac_address(struct net_device *dev)
2015 {
2016 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2017
2018 return 0;
2019 }
2020
gfar_change_mtu(struct net_device * dev,int new_mtu)2021 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2022 {
2023 struct gfar_private *priv = netdev_priv(dev);
2024
2025 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2026 cpu_relax();
2027
2028 if (dev->flags & IFF_UP)
2029 stop_gfar(dev);
2030
2031 WRITE_ONCE(dev->mtu, new_mtu);
2032
2033 if (dev->flags & IFF_UP)
2034 startup_gfar(dev);
2035
2036 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2037
2038 return 0;
2039 }
2040
reset_gfar(struct net_device * ndev)2041 static void reset_gfar(struct net_device *ndev)
2042 {
2043 struct gfar_private *priv = netdev_priv(ndev);
2044
2045 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2046 cpu_relax();
2047
2048 stop_gfar(ndev);
2049 startup_gfar(ndev);
2050
2051 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2052 }
2053
2054 /* gfar_reset_task gets scheduled when a packet has not been
2055 * transmitted after a set amount of time.
2056 * For now, assume that clearing out all the structures, and
2057 * starting over will fix the problem.
2058 */
gfar_reset_task(struct work_struct * work)2059 static void gfar_reset_task(struct work_struct *work)
2060 {
2061 struct gfar_private *priv = container_of(work, struct gfar_private,
2062 reset_task);
2063 reset_gfar(priv->ndev);
2064 }
2065
gfar_timeout(struct net_device * dev,unsigned int txqueue)2066 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2067 {
2068 struct gfar_private *priv = netdev_priv(dev);
2069
2070 dev->stats.tx_errors++;
2071 schedule_work(&priv->reset_task);
2072 }
2073
gfar_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)2074 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2075 {
2076 struct hwtstamp_config config;
2077 struct gfar_private *priv = netdev_priv(netdev);
2078
2079 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2080 return -EFAULT;
2081
2082 switch (config.tx_type) {
2083 case HWTSTAMP_TX_OFF:
2084 priv->hwts_tx_en = 0;
2085 break;
2086 case HWTSTAMP_TX_ON:
2087 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2088 return -ERANGE;
2089 priv->hwts_tx_en = 1;
2090 break;
2091 default:
2092 return -ERANGE;
2093 }
2094
2095 switch (config.rx_filter) {
2096 case HWTSTAMP_FILTER_NONE:
2097 if (priv->hwts_rx_en) {
2098 priv->hwts_rx_en = 0;
2099 reset_gfar(netdev);
2100 }
2101 break;
2102 default:
2103 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2104 return -ERANGE;
2105 if (!priv->hwts_rx_en) {
2106 priv->hwts_rx_en = 1;
2107 reset_gfar(netdev);
2108 }
2109 config.rx_filter = HWTSTAMP_FILTER_ALL;
2110 break;
2111 }
2112
2113 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2114 -EFAULT : 0;
2115 }
2116
gfar_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)2117 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2118 {
2119 struct hwtstamp_config config;
2120 struct gfar_private *priv = netdev_priv(netdev);
2121
2122 config.flags = 0;
2123 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2124 config.rx_filter = (priv->hwts_rx_en ?
2125 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2126
2127 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2128 -EFAULT : 0;
2129 }
2130
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2131 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2132 {
2133 struct phy_device *phydev = dev->phydev;
2134
2135 if (!netif_running(dev))
2136 return -EINVAL;
2137
2138 if (cmd == SIOCSHWTSTAMP)
2139 return gfar_hwtstamp_set(dev, rq);
2140 if (cmd == SIOCGHWTSTAMP)
2141 return gfar_hwtstamp_get(dev, rq);
2142
2143 if (!phydev)
2144 return -ENODEV;
2145
2146 return phy_mii_ioctl(phydev, rq, cmd);
2147 }
2148
2149 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct gfar_priv_tx_q * tx_queue)2150 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2151 {
2152 struct net_device *dev = tx_queue->dev;
2153 struct netdev_queue *txq;
2154 struct gfar_private *priv = netdev_priv(dev);
2155 struct txbd8 *bdp, *next = NULL;
2156 struct txbd8 *lbdp = NULL;
2157 struct txbd8 *base = tx_queue->tx_bd_base;
2158 struct sk_buff *skb;
2159 int skb_dirtytx;
2160 int tx_ring_size = tx_queue->tx_ring_size;
2161 int frags = 0, nr_txbds = 0;
2162 int i;
2163 int howmany = 0;
2164 int tqi = tx_queue->qindex;
2165 unsigned int bytes_sent = 0;
2166 u32 lstatus;
2167 size_t buflen;
2168
2169 txq = netdev_get_tx_queue(dev, tqi);
2170 bdp = tx_queue->dirty_tx;
2171 skb_dirtytx = tx_queue->skb_dirtytx;
2172
2173 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2174 bool do_tstamp;
2175
2176 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2177 priv->hwts_tx_en;
2178
2179 frags = skb_shinfo(skb)->nr_frags;
2180
2181 /* When time stamping, one additional TxBD must be freed.
2182 * Also, we need to dma_unmap_single() the TxPAL.
2183 */
2184 if (unlikely(do_tstamp))
2185 nr_txbds = frags + 2;
2186 else
2187 nr_txbds = frags + 1;
2188
2189 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2190
2191 lstatus = be32_to_cpu(lbdp->lstatus);
2192
2193 /* Only clean completed frames */
2194 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2195 (lstatus & BD_LENGTH_MASK))
2196 break;
2197
2198 if (unlikely(do_tstamp)) {
2199 next = next_txbd(bdp, base, tx_ring_size);
2200 buflen = be16_to_cpu(next->length) +
2201 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2202 } else
2203 buflen = be16_to_cpu(bdp->length);
2204
2205 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2206 buflen, DMA_TO_DEVICE);
2207
2208 if (unlikely(do_tstamp)) {
2209 struct skb_shared_hwtstamps shhwtstamps;
2210 __be64 *ns;
2211
2212 ns = (__be64 *)(((uintptr_t)skb->data + 0x10) & ~0x7UL);
2213
2214 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2215 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2216 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2217 skb_tstamp_tx(skb, &shhwtstamps);
2218 gfar_clear_txbd_status(bdp);
2219 bdp = next;
2220 }
2221
2222 gfar_clear_txbd_status(bdp);
2223 bdp = next_txbd(bdp, base, tx_ring_size);
2224
2225 for (i = 0; i < frags; i++) {
2226 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2227 be16_to_cpu(bdp->length),
2228 DMA_TO_DEVICE);
2229 gfar_clear_txbd_status(bdp);
2230 bdp = next_txbd(bdp, base, tx_ring_size);
2231 }
2232
2233 bytes_sent += GFAR_CB(skb)->bytes_sent;
2234
2235 dev_kfree_skb_any(skb);
2236
2237 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2238
2239 skb_dirtytx = (skb_dirtytx + 1) &
2240 TX_RING_MOD_MASK(tx_ring_size);
2241
2242 howmany++;
2243 spin_lock(&tx_queue->txlock);
2244 tx_queue->num_txbdfree += nr_txbds;
2245 spin_unlock(&tx_queue->txlock);
2246 }
2247
2248 /* If we freed a buffer, we can restart transmission, if necessary */
2249 if (tx_queue->num_txbdfree &&
2250 netif_tx_queue_stopped(txq) &&
2251 !(test_bit(GFAR_DOWN, &priv->state)))
2252 netif_wake_subqueue(priv->ndev, tqi);
2253
2254 /* Update dirty indicators */
2255 tx_queue->skb_dirtytx = skb_dirtytx;
2256 tx_queue->dirty_tx = bdp;
2257
2258 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2259 }
2260
count_errors(u32 lstatus,struct net_device * ndev)2261 static void count_errors(u32 lstatus, struct net_device *ndev)
2262 {
2263 struct gfar_private *priv = netdev_priv(ndev);
2264 struct net_device_stats *stats = &ndev->stats;
2265 struct gfar_extra_stats *estats = &priv->extra_stats;
2266
2267 /* If the packet was truncated, none of the other errors matter */
2268 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2269 stats->rx_length_errors++;
2270
2271 atomic64_inc(&estats->rx_trunc);
2272
2273 return;
2274 }
2275 /* Count the errors, if there were any */
2276 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2277 stats->rx_length_errors++;
2278
2279 if (lstatus & BD_LFLAG(RXBD_LARGE))
2280 atomic64_inc(&estats->rx_large);
2281 else
2282 atomic64_inc(&estats->rx_short);
2283 }
2284 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2285 stats->rx_frame_errors++;
2286 atomic64_inc(&estats->rx_nonoctet);
2287 }
2288 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2289 atomic64_inc(&estats->rx_crcerr);
2290 stats->rx_crc_errors++;
2291 }
2292 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2293 atomic64_inc(&estats->rx_overrun);
2294 stats->rx_over_errors++;
2295 }
2296 }
2297
gfar_receive(int irq,void * grp_id)2298 static irqreturn_t gfar_receive(int irq, void *grp_id)
2299 {
2300 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2301 unsigned long flags;
2302 u32 imask, ievent;
2303
2304 ievent = gfar_read(&grp->regs->ievent);
2305
2306 if (unlikely(ievent & IEVENT_FGPI)) {
2307 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2308 return IRQ_HANDLED;
2309 }
2310
2311 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2312 spin_lock_irqsave(&grp->grplock, flags);
2313 imask = gfar_read(&grp->regs->imask);
2314 imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2315 gfar_write(&grp->regs->imask, imask);
2316 spin_unlock_irqrestore(&grp->grplock, flags);
2317 __napi_schedule(&grp->napi_rx);
2318 } else {
2319 /* Clear IEVENT, so interrupts aren't called again
2320 * because of the packets that have already arrived.
2321 */
2322 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2323 }
2324
2325 return IRQ_HANDLED;
2326 }
2327
2328 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * grp_id)2329 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2330 {
2331 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2332 unsigned long flags;
2333 u32 imask;
2334
2335 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2336 spin_lock_irqsave(&grp->grplock, flags);
2337 imask = gfar_read(&grp->regs->imask);
2338 imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2339 gfar_write(&grp->regs->imask, imask);
2340 spin_unlock_irqrestore(&grp->grplock, flags);
2341 __napi_schedule(&grp->napi_tx);
2342 } else {
2343 /* Clear IEVENT, so interrupts aren't called again
2344 * because of the packets that have already arrived.
2345 */
2346 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2347 }
2348
2349 return IRQ_HANDLED;
2350 }
2351
gfar_add_rx_frag(struct gfar_rx_buff * rxb,u32 lstatus,struct sk_buff * skb,bool first)2352 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2353 struct sk_buff *skb, bool first)
2354 {
2355 int size = lstatus & BD_LENGTH_MASK;
2356 struct page *page = rxb->page;
2357
2358 if (likely(first)) {
2359 skb_put(skb, size);
2360 } else {
2361 /* the last fragments' length contains the full frame length */
2362 if (lstatus & BD_LFLAG(RXBD_LAST))
2363 size -= skb->len;
2364
2365 WARN(size < 0, "gianfar: rx fragment size underflow");
2366 if (size < 0)
2367 return false;
2368
2369 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2370 rxb->page_offset + RXBUF_ALIGNMENT,
2371 size, GFAR_RXB_TRUESIZE);
2372 }
2373
2374 /* try reuse page */
2375 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2376 return false;
2377
2378 /* change offset to the other half */
2379 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2380
2381 page_ref_inc(page);
2382
2383 return true;
2384 }
2385
gfar_reuse_rx_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * old_rxb)2386 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2387 struct gfar_rx_buff *old_rxb)
2388 {
2389 struct gfar_rx_buff *new_rxb;
2390 u16 nta = rxq->next_to_alloc;
2391
2392 new_rxb = &rxq->rx_buff[nta];
2393
2394 /* find next buf that can reuse a page */
2395 nta++;
2396 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2397
2398 /* copy page reference */
2399 *new_rxb = *old_rxb;
2400
2401 /* sync for use by the device */
2402 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2403 old_rxb->page_offset,
2404 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2405 }
2406
gfar_get_next_rxbuff(struct gfar_priv_rx_q * rx_queue,u32 lstatus,struct sk_buff * skb)2407 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2408 u32 lstatus, struct sk_buff *skb)
2409 {
2410 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2411 struct page *page = rxb->page;
2412 bool first = false;
2413
2414 if (likely(!skb)) {
2415 void *buff_addr = page_address(page) + rxb->page_offset;
2416
2417 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2418 if (unlikely(!skb)) {
2419 gfar_rx_alloc_err(rx_queue);
2420 return NULL;
2421 }
2422 skb_reserve(skb, RXBUF_ALIGNMENT);
2423 first = true;
2424 }
2425
2426 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2427 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2428
2429 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2430 /* reuse the free half of the page */
2431 gfar_reuse_rx_page(rx_queue, rxb);
2432 } else {
2433 /* page cannot be reused, unmap it */
2434 dma_unmap_page(rx_queue->dev, rxb->dma,
2435 PAGE_SIZE, DMA_FROM_DEVICE);
2436 }
2437
2438 /* clear rxb content */
2439 rxb->page = NULL;
2440
2441 return skb;
2442 }
2443
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)2444 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2445 {
2446 /* If valid headers were found, and valid sums
2447 * were verified, then we tell the kernel that no
2448 * checksumming is necessary. Otherwise, it is [FIXME]
2449 */
2450 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2451 (RXFCB_CIP | RXFCB_CTU))
2452 skb->ip_summed = CHECKSUM_UNNECESSARY;
2453 else
2454 skb_checksum_none_assert(skb);
2455 }
2456
2457 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
gfar_process_frame(struct net_device * ndev,struct sk_buff * skb)2458 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2459 {
2460 struct gfar_private *priv = netdev_priv(ndev);
2461 struct rxfcb *fcb = NULL;
2462
2463 /* fcb is at the beginning if exists */
2464 fcb = (struct rxfcb *)skb->data;
2465
2466 /* Remove the FCB from the skb
2467 * Remove the padded bytes, if there are any
2468 */
2469 if (priv->uses_rxfcb)
2470 skb_pull(skb, GMAC_FCB_LEN);
2471
2472 /* Get receive timestamp from the skb */
2473 if (priv->hwts_rx_en) {
2474 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2475 __be64 *ns = (__be64 *)skb->data;
2476
2477 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2478 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2479 }
2480
2481 if (priv->padding)
2482 skb_pull(skb, priv->padding);
2483
2484 /* Trim off the FCS */
2485 pskb_trim(skb, skb->len - ETH_FCS_LEN);
2486
2487 if (ndev->features & NETIF_F_RXCSUM)
2488 gfar_rx_checksum(skb, fcb);
2489
2490 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2491 * Even if vlan rx accel is disabled, on some chips
2492 * RXFCB_VLN is pseudo randomly set.
2493 */
2494 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2495 be16_to_cpu(fcb->flags) & RXFCB_VLN)
2496 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2497 be16_to_cpu(fcb->vlctl));
2498 }
2499
2500 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2501 * until the budget/quota has been reached. Returns the number
2502 * of frames handled
2503 */
gfar_clean_rx_ring(struct gfar_priv_rx_q * rx_queue,int rx_work_limit)2504 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2505 int rx_work_limit)
2506 {
2507 struct net_device *ndev = rx_queue->ndev;
2508 struct gfar_private *priv = netdev_priv(ndev);
2509 struct rxbd8 *bdp;
2510 int i, howmany = 0;
2511 struct sk_buff *skb = rx_queue->skb;
2512 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2513 unsigned int total_bytes = 0, total_pkts = 0;
2514
2515 /* Get the first full descriptor */
2516 i = rx_queue->next_to_clean;
2517
2518 while (rx_work_limit--) {
2519 u32 lstatus;
2520
2521 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2522 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2523 cleaned_cnt = 0;
2524 }
2525
2526 bdp = &rx_queue->rx_bd_base[i];
2527 lstatus = be32_to_cpu(bdp->lstatus);
2528 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2529 break;
2530
2531 /* lost RXBD_LAST descriptor due to overrun */
2532 if (skb &&
2533 (lstatus & BD_LFLAG(RXBD_FIRST))) {
2534 /* discard faulty buffer */
2535 dev_kfree_skb(skb);
2536 skb = NULL;
2537 rx_queue->stats.rx_dropped++;
2538
2539 /* can continue normally */
2540 }
2541
2542 /* order rx buffer descriptor reads */
2543 rmb();
2544
2545 /* fetch next to clean buffer from the ring */
2546 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2547 if (unlikely(!skb))
2548 break;
2549
2550 cleaned_cnt++;
2551 howmany++;
2552
2553 if (unlikely(++i == rx_queue->rx_ring_size))
2554 i = 0;
2555
2556 rx_queue->next_to_clean = i;
2557
2558 /* fetch next buffer if not the last in frame */
2559 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2560 continue;
2561
2562 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2563 count_errors(lstatus, ndev);
2564
2565 /* discard faulty buffer */
2566 dev_kfree_skb(skb);
2567 skb = NULL;
2568 rx_queue->stats.rx_dropped++;
2569 continue;
2570 }
2571
2572 gfar_process_frame(ndev, skb);
2573
2574 /* Increment the number of packets */
2575 total_pkts++;
2576 total_bytes += skb->len;
2577
2578 skb_record_rx_queue(skb, rx_queue->qindex);
2579
2580 skb->protocol = eth_type_trans(skb, ndev);
2581
2582 /* Send the packet up the stack */
2583 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2584
2585 skb = NULL;
2586 }
2587
2588 /* Store incomplete frames for completion */
2589 rx_queue->skb = skb;
2590
2591 rx_queue->stats.rx_packets += total_pkts;
2592 rx_queue->stats.rx_bytes += total_bytes;
2593
2594 if (cleaned_cnt)
2595 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2596
2597 /* Update Last Free RxBD pointer for LFC */
2598 if (unlikely(priv->tx_actual_en)) {
2599 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2600
2601 gfar_write(rx_queue->rfbptr, bdp_dma);
2602 }
2603
2604 return howmany;
2605 }
2606
gfar_poll_rx_sq(struct napi_struct * napi,int budget)2607 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2608 {
2609 struct gfar_priv_grp *gfargrp =
2610 container_of(napi, struct gfar_priv_grp, napi_rx);
2611 struct gfar __iomem *regs = gfargrp->regs;
2612 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2613 int work_done = 0;
2614
2615 /* Clear IEVENT, so interrupts aren't called again
2616 * because of the packets that have already arrived
2617 */
2618 gfar_write(®s->ievent, IEVENT_RX_MASK);
2619
2620 work_done = gfar_clean_rx_ring(rx_queue, budget);
2621
2622 if (work_done < budget) {
2623 u32 imask;
2624 napi_complete_done(napi, work_done);
2625 /* Clear the halt bit in RSTAT */
2626 gfar_write(®s->rstat, gfargrp->rstat);
2627
2628 spin_lock_irq(&gfargrp->grplock);
2629 imask = gfar_read(®s->imask);
2630 imask |= IMASK_RX_DEFAULT;
2631 gfar_write(®s->imask, imask);
2632 spin_unlock_irq(&gfargrp->grplock);
2633 }
2634
2635 return work_done;
2636 }
2637
gfar_poll_tx_sq(struct napi_struct * napi,int budget)2638 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2639 {
2640 struct gfar_priv_grp *gfargrp =
2641 container_of(napi, struct gfar_priv_grp, napi_tx);
2642 struct gfar __iomem *regs = gfargrp->regs;
2643 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2644 u32 imask;
2645
2646 /* Clear IEVENT, so interrupts aren't called again
2647 * because of the packets that have already arrived
2648 */
2649 gfar_write(®s->ievent, IEVENT_TX_MASK);
2650
2651 /* run Tx cleanup to completion */
2652 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2653 gfar_clean_tx_ring(tx_queue);
2654
2655 napi_complete(napi);
2656
2657 spin_lock_irq(&gfargrp->grplock);
2658 imask = gfar_read(®s->imask);
2659 imask |= IMASK_TX_DEFAULT;
2660 gfar_write(®s->imask, imask);
2661 spin_unlock_irq(&gfargrp->grplock);
2662
2663 return 0;
2664 }
2665
2666 /* GFAR error interrupt handler */
gfar_error(int irq,void * grp_id)2667 static irqreturn_t gfar_error(int irq, void *grp_id)
2668 {
2669 struct gfar_priv_grp *gfargrp = grp_id;
2670 struct gfar __iomem *regs = gfargrp->regs;
2671 struct gfar_private *priv= gfargrp->priv;
2672 struct net_device *dev = priv->ndev;
2673
2674 /* Save ievent for future reference */
2675 u32 events = gfar_read(®s->ievent);
2676
2677 /* Clear IEVENT */
2678 gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
2679
2680 /* Magic Packet is not an error. */
2681 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2682 (events & IEVENT_MAG))
2683 events &= ~IEVENT_MAG;
2684
2685 /* Hmm... */
2686 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2687 netdev_dbg(dev,
2688 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2689 events, gfar_read(®s->imask));
2690
2691 /* Update the error counters */
2692 if (events & IEVENT_TXE) {
2693 dev->stats.tx_errors++;
2694
2695 if (events & IEVENT_LC)
2696 dev->stats.tx_window_errors++;
2697 if (events & IEVENT_CRL)
2698 dev->stats.tx_aborted_errors++;
2699 if (events & IEVENT_XFUN) {
2700 netif_dbg(priv, tx_err, dev,
2701 "TX FIFO underrun, packet dropped\n");
2702 dev->stats.tx_dropped++;
2703 atomic64_inc(&priv->extra_stats.tx_underrun);
2704
2705 schedule_work(&priv->reset_task);
2706 }
2707 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2708 }
2709 if (events & IEVENT_MSRO) {
2710 struct rmon_mib __iomem *rmon = ®s->rmon;
2711 u32 car;
2712
2713 spin_lock(&priv->rmon_overflow.lock);
2714 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2715 if (car) {
2716 priv->rmon_overflow.rdrp++;
2717 gfar_write(&rmon->car1, car);
2718 }
2719 spin_unlock(&priv->rmon_overflow.lock);
2720 }
2721 if (events & IEVENT_BSY) {
2722 dev->stats.rx_over_errors++;
2723 atomic64_inc(&priv->extra_stats.rx_bsy);
2724
2725 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2726 gfar_read(®s->rstat));
2727 }
2728 if (events & IEVENT_BABR) {
2729 dev->stats.rx_errors++;
2730 atomic64_inc(&priv->extra_stats.rx_babr);
2731
2732 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2733 }
2734 if (events & IEVENT_EBERR) {
2735 atomic64_inc(&priv->extra_stats.eberr);
2736 netif_dbg(priv, rx_err, dev, "bus error\n");
2737 }
2738 if (events & IEVENT_RXC)
2739 netif_dbg(priv, rx_status, dev, "control frame\n");
2740
2741 if (events & IEVENT_BABT) {
2742 atomic64_inc(&priv->extra_stats.tx_babt);
2743 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2744 }
2745 return IRQ_HANDLED;
2746 }
2747
2748 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * grp_id)2749 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2750 {
2751 struct gfar_priv_grp *gfargrp = grp_id;
2752
2753 /* Save ievent for future reference */
2754 u32 events = gfar_read(&gfargrp->regs->ievent);
2755
2756 /* Check for reception */
2757 if (events & IEVENT_RX_MASK)
2758 gfar_receive(irq, grp_id);
2759
2760 /* Check for transmit completion */
2761 if (events & IEVENT_TX_MASK)
2762 gfar_transmit(irq, grp_id);
2763
2764 /* Check for errors */
2765 if (events & IEVENT_ERR_MASK)
2766 gfar_error(irq, grp_id);
2767
2768 return IRQ_HANDLED;
2769 }
2770
2771 #ifdef CONFIG_NET_POLL_CONTROLLER
2772 /* Polling 'interrupt' - used by things like netconsole to send skbs
2773 * without having to re-enable interrupts. It's not called while
2774 * the interrupt routine is executing.
2775 */
gfar_netpoll(struct net_device * dev)2776 static void gfar_netpoll(struct net_device *dev)
2777 {
2778 struct gfar_private *priv = netdev_priv(dev);
2779 int i;
2780
2781 /* If the device has multiple interrupts, run tx/rx */
2782 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2783 for (i = 0; i < priv->num_grps; i++) {
2784 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2785
2786 disable_irq(gfar_irq(grp, TX)->irq);
2787 disable_irq(gfar_irq(grp, RX)->irq);
2788 disable_irq(gfar_irq(grp, ER)->irq);
2789 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2790 enable_irq(gfar_irq(grp, ER)->irq);
2791 enable_irq(gfar_irq(grp, RX)->irq);
2792 enable_irq(gfar_irq(grp, TX)->irq);
2793 }
2794 } else {
2795 for (i = 0; i < priv->num_grps; i++) {
2796 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2797
2798 disable_irq(gfar_irq(grp, TX)->irq);
2799 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2800 enable_irq(gfar_irq(grp, TX)->irq);
2801 }
2802 }
2803 }
2804 #endif
2805
free_grp_irqs(struct gfar_priv_grp * grp)2806 static void free_grp_irqs(struct gfar_priv_grp *grp)
2807 {
2808 free_irq(gfar_irq(grp, TX)->irq, grp);
2809 free_irq(gfar_irq(grp, RX)->irq, grp);
2810 free_irq(gfar_irq(grp, ER)->irq, grp);
2811 }
2812
register_grp_irqs(struct gfar_priv_grp * grp)2813 static int register_grp_irqs(struct gfar_priv_grp *grp)
2814 {
2815 struct gfar_private *priv = grp->priv;
2816 struct net_device *dev = priv->ndev;
2817 int err;
2818
2819 /* If the device has multiple interrupts, register for
2820 * them. Otherwise, only register for the one
2821 */
2822 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2823 /* Install our interrupt handlers for Error,
2824 * Transmit, and Receive
2825 */
2826 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2827 gfar_irq(grp, ER)->name, grp);
2828 if (err < 0) {
2829 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2830 gfar_irq(grp, ER)->irq);
2831
2832 goto err_irq_fail;
2833 }
2834 enable_irq_wake(gfar_irq(grp, ER)->irq);
2835
2836 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2837 gfar_irq(grp, TX)->name, grp);
2838 if (err < 0) {
2839 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2840 gfar_irq(grp, TX)->irq);
2841 goto tx_irq_fail;
2842 }
2843 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2844 gfar_irq(grp, RX)->name, grp);
2845 if (err < 0) {
2846 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2847 gfar_irq(grp, RX)->irq);
2848 goto rx_irq_fail;
2849 }
2850 enable_irq_wake(gfar_irq(grp, RX)->irq);
2851
2852 } else {
2853 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2854 gfar_irq(grp, TX)->name, grp);
2855 if (err < 0) {
2856 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2857 gfar_irq(grp, TX)->irq);
2858 goto err_irq_fail;
2859 }
2860 enable_irq_wake(gfar_irq(grp, TX)->irq);
2861 }
2862
2863 return 0;
2864
2865 rx_irq_fail:
2866 free_irq(gfar_irq(grp, TX)->irq, grp);
2867 tx_irq_fail:
2868 free_irq(gfar_irq(grp, ER)->irq, grp);
2869 err_irq_fail:
2870 return err;
2871
2872 }
2873
gfar_free_irq(struct gfar_private * priv)2874 static void gfar_free_irq(struct gfar_private *priv)
2875 {
2876 int i;
2877
2878 /* Free the IRQs */
2879 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2880 for (i = 0; i < priv->num_grps; i++)
2881 free_grp_irqs(&priv->gfargrp[i]);
2882 } else {
2883 for (i = 0; i < priv->num_grps; i++)
2884 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2885 &priv->gfargrp[i]);
2886 }
2887 }
2888
gfar_request_irq(struct gfar_private * priv)2889 static int gfar_request_irq(struct gfar_private *priv)
2890 {
2891 int err, i, j;
2892
2893 for (i = 0; i < priv->num_grps; i++) {
2894 err = register_grp_irqs(&priv->gfargrp[i]);
2895 if (err) {
2896 for (j = 0; j < i; j++)
2897 free_grp_irqs(&priv->gfargrp[j]);
2898 return err;
2899 }
2900 }
2901
2902 return 0;
2903 }
2904
2905 /* Called when something needs to use the ethernet device
2906 * Returns 0 for success.
2907 */
gfar_enet_open(struct net_device * dev)2908 static int gfar_enet_open(struct net_device *dev)
2909 {
2910 struct gfar_private *priv = netdev_priv(dev);
2911 int err;
2912
2913 err = init_phy(dev);
2914 if (err)
2915 return err;
2916
2917 err = gfar_request_irq(priv);
2918 if (err)
2919 return err;
2920
2921 err = startup_gfar(dev);
2922 if (err)
2923 return err;
2924
2925 return err;
2926 }
2927
2928 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)2929 static int gfar_close(struct net_device *dev)
2930 {
2931 struct gfar_private *priv = netdev_priv(dev);
2932
2933 cancel_work_sync(&priv->reset_task);
2934 stop_gfar(dev);
2935
2936 /* Disconnect from the PHY */
2937 phy_disconnect(dev->phydev);
2938
2939 gfar_free_irq(priv);
2940
2941 return 0;
2942 }
2943
2944 /* Clears each of the exact match registers to zero, so they
2945 * don't interfere with normal reception
2946 */
gfar_clear_exact_match(struct net_device * dev)2947 static void gfar_clear_exact_match(struct net_device *dev)
2948 {
2949 int idx;
2950 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2951
2952 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2953 gfar_set_mac_for_addr(dev, idx, zero_arr);
2954 }
2955
2956 /* Update the hash table based on the current list of multicast
2957 * addresses we subscribe to. Also, change the promiscuity of
2958 * the device based on the flags (this function is called
2959 * whenever dev->flags is changed
2960 */
gfar_set_multi(struct net_device * dev)2961 static void gfar_set_multi(struct net_device *dev)
2962 {
2963 struct netdev_hw_addr *ha;
2964 struct gfar_private *priv = netdev_priv(dev);
2965 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2966 u32 tempval;
2967
2968 if (dev->flags & IFF_PROMISC) {
2969 /* Set RCTRL to PROM */
2970 tempval = gfar_read(®s->rctrl);
2971 tempval |= RCTRL_PROM;
2972 gfar_write(®s->rctrl, tempval);
2973 } else {
2974 /* Set RCTRL to not PROM */
2975 tempval = gfar_read(®s->rctrl);
2976 tempval &= ~(RCTRL_PROM);
2977 gfar_write(®s->rctrl, tempval);
2978 }
2979
2980 if (dev->flags & IFF_ALLMULTI) {
2981 /* Set the hash to rx all multicast frames */
2982 gfar_write(®s->igaddr0, 0xffffffff);
2983 gfar_write(®s->igaddr1, 0xffffffff);
2984 gfar_write(®s->igaddr2, 0xffffffff);
2985 gfar_write(®s->igaddr3, 0xffffffff);
2986 gfar_write(®s->igaddr4, 0xffffffff);
2987 gfar_write(®s->igaddr5, 0xffffffff);
2988 gfar_write(®s->igaddr6, 0xffffffff);
2989 gfar_write(®s->igaddr7, 0xffffffff);
2990 gfar_write(®s->gaddr0, 0xffffffff);
2991 gfar_write(®s->gaddr1, 0xffffffff);
2992 gfar_write(®s->gaddr2, 0xffffffff);
2993 gfar_write(®s->gaddr3, 0xffffffff);
2994 gfar_write(®s->gaddr4, 0xffffffff);
2995 gfar_write(®s->gaddr5, 0xffffffff);
2996 gfar_write(®s->gaddr6, 0xffffffff);
2997 gfar_write(®s->gaddr7, 0xffffffff);
2998 } else {
2999 int em_num;
3000 int idx;
3001
3002 /* zero out the hash */
3003 gfar_write(®s->igaddr0, 0x0);
3004 gfar_write(®s->igaddr1, 0x0);
3005 gfar_write(®s->igaddr2, 0x0);
3006 gfar_write(®s->igaddr3, 0x0);
3007 gfar_write(®s->igaddr4, 0x0);
3008 gfar_write(®s->igaddr5, 0x0);
3009 gfar_write(®s->igaddr6, 0x0);
3010 gfar_write(®s->igaddr7, 0x0);
3011 gfar_write(®s->gaddr0, 0x0);
3012 gfar_write(®s->gaddr1, 0x0);
3013 gfar_write(®s->gaddr2, 0x0);
3014 gfar_write(®s->gaddr3, 0x0);
3015 gfar_write(®s->gaddr4, 0x0);
3016 gfar_write(®s->gaddr5, 0x0);
3017 gfar_write(®s->gaddr6, 0x0);
3018 gfar_write(®s->gaddr7, 0x0);
3019
3020 /* If we have extended hash tables, we need to
3021 * clear the exact match registers to prepare for
3022 * setting them
3023 */
3024 if (priv->extended_hash) {
3025 em_num = GFAR_EM_NUM + 1;
3026 gfar_clear_exact_match(dev);
3027 idx = 1;
3028 } else {
3029 idx = 0;
3030 em_num = 0;
3031 }
3032
3033 if (netdev_mc_empty(dev))
3034 return;
3035
3036 /* Parse the list, and set the appropriate bits */
3037 netdev_for_each_mc_addr(ha, dev) {
3038 if (idx < em_num) {
3039 gfar_set_mac_for_addr(dev, idx, ha->addr);
3040 idx++;
3041 } else
3042 gfar_set_hash_for_addr(dev, ha->addr);
3043 }
3044 }
3045 }
3046
gfar_mac_reset(struct gfar_private * priv)3047 void gfar_mac_reset(struct gfar_private *priv)
3048 {
3049 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3050 u32 tempval;
3051
3052 /* Reset MAC layer */
3053 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
3054
3055 /* We need to delay at least 3 TX clocks */
3056 udelay(3);
3057
3058 /* the soft reset bit is not self-resetting, so we need to
3059 * clear it before resuming normal operation
3060 */
3061 gfar_write(®s->maccfg1, 0);
3062
3063 udelay(3);
3064
3065 gfar_rx_offload_en(priv);
3066
3067 /* Initialize the max receive frame/buffer lengths */
3068 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3069 gfar_write(®s->mrblr, GFAR_RXB_SIZE);
3070
3071 /* Initialize the Minimum Frame Length Register */
3072 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
3073
3074 /* Initialize MACCFG2. */
3075 tempval = MACCFG2_INIT_SETTINGS;
3076
3077 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3078 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
3079 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3080 */
3081 if (gfar_has_errata(priv, GFAR_ERRATA_74))
3082 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3083
3084 gfar_write(®s->maccfg2, tempval);
3085
3086 /* Clear mac addr hash registers */
3087 gfar_write(®s->igaddr0, 0);
3088 gfar_write(®s->igaddr1, 0);
3089 gfar_write(®s->igaddr2, 0);
3090 gfar_write(®s->igaddr3, 0);
3091 gfar_write(®s->igaddr4, 0);
3092 gfar_write(®s->igaddr5, 0);
3093 gfar_write(®s->igaddr6, 0);
3094 gfar_write(®s->igaddr7, 0);
3095
3096 gfar_write(®s->gaddr0, 0);
3097 gfar_write(®s->gaddr1, 0);
3098 gfar_write(®s->gaddr2, 0);
3099 gfar_write(®s->gaddr3, 0);
3100 gfar_write(®s->gaddr4, 0);
3101 gfar_write(®s->gaddr5, 0);
3102 gfar_write(®s->gaddr6, 0);
3103 gfar_write(®s->gaddr7, 0);
3104
3105 if (priv->extended_hash)
3106 gfar_clear_exact_match(priv->ndev);
3107
3108 gfar_mac_rx_config(priv);
3109
3110 gfar_mac_tx_config(priv);
3111
3112 gfar_set_mac_address(priv->ndev);
3113
3114 gfar_set_multi(priv->ndev);
3115
3116 /* clear ievent and imask before configuring coalescing */
3117 gfar_ints_disable(priv);
3118
3119 /* Configure the coalescing support */
3120 gfar_configure_coalescing_all(priv);
3121 }
3122
gfar_hw_init(struct gfar_private * priv)3123 static void gfar_hw_init(struct gfar_private *priv)
3124 {
3125 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3126 u32 attrs;
3127
3128 /* Stop the DMA engine now, in case it was running before
3129 * (The firmware could have used it, and left it running).
3130 */
3131 gfar_halt(priv);
3132
3133 gfar_mac_reset(priv);
3134
3135 /* Zero out the rmon mib registers if it has them */
3136 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3137 memset_io(®s->rmon, 0, offsetof(struct rmon_mib, car1));
3138
3139 /* Mask off the CAM interrupts */
3140 gfar_write(®s->rmon.cam1, 0xffffffff);
3141 gfar_write(®s->rmon.cam2, 0xffffffff);
3142 /* Clear the CAR registers (w1c style) */
3143 gfar_write(®s->rmon.car1, 0xffffffff);
3144 gfar_write(®s->rmon.car2, 0xffffffff);
3145 }
3146
3147 /* Initialize ECNTRL */
3148 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
3149
3150 /* Set the extraction length and index */
3151 attrs = ATTRELI_EL(priv->rx_stash_size) |
3152 ATTRELI_EI(priv->rx_stash_index);
3153
3154 gfar_write(®s->attreli, attrs);
3155
3156 /* Start with defaults, and add stashing
3157 * depending on driver parameters
3158 */
3159 attrs = ATTR_INIT_SETTINGS;
3160
3161 if (priv->bd_stash_en)
3162 attrs |= ATTR_BDSTASH;
3163
3164 if (priv->rx_stash_size != 0)
3165 attrs |= ATTR_BUFSTASH;
3166
3167 gfar_write(®s->attr, attrs);
3168
3169 /* FIFO configs */
3170 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3171 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3172 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3173
3174 /* Program the interrupt steering regs, only for MG devices */
3175 if (priv->num_grps > 1)
3176 gfar_write_isrg(priv);
3177 }
3178
3179 static const struct net_device_ops gfar_netdev_ops = {
3180 .ndo_open = gfar_enet_open,
3181 .ndo_start_xmit = gfar_start_xmit,
3182 .ndo_stop = gfar_close,
3183 .ndo_change_mtu = gfar_change_mtu,
3184 .ndo_set_features = gfar_set_features,
3185 .ndo_set_rx_mode = gfar_set_multi,
3186 .ndo_tx_timeout = gfar_timeout,
3187 .ndo_eth_ioctl = gfar_ioctl,
3188 .ndo_get_stats64 = gfar_get_stats64,
3189 .ndo_change_carrier = fixed_phy_change_carrier,
3190 .ndo_set_mac_address = gfar_set_mac_addr,
3191 .ndo_validate_addr = eth_validate_addr,
3192 #ifdef CONFIG_NET_POLL_CONTROLLER
3193 .ndo_poll_controller = gfar_netpoll,
3194 #endif
3195 };
3196
3197 /* Set up the ethernet device structure, private data,
3198 * and anything else we need before we start
3199 */
gfar_probe(struct platform_device * ofdev)3200 static int gfar_probe(struct platform_device *ofdev)
3201 {
3202 struct device_node *np = ofdev->dev.of_node;
3203 struct net_device *dev = NULL;
3204 struct gfar_private *priv = NULL;
3205 int err = 0, i;
3206
3207 err = gfar_of_init(ofdev, &dev);
3208
3209 if (err)
3210 return err;
3211
3212 priv = netdev_priv(dev);
3213 priv->ndev = dev;
3214 priv->ofdev = ofdev;
3215 priv->dev = &ofdev->dev;
3216 SET_NETDEV_DEV(dev, &ofdev->dev);
3217
3218 INIT_WORK(&priv->reset_task, gfar_reset_task);
3219
3220 platform_set_drvdata(ofdev, priv);
3221
3222 gfar_detect_errata(priv);
3223
3224 /* Set the dev->base_addr to the gfar reg region */
3225 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3226
3227 /* Fill in the dev structure */
3228 dev->watchdog_timeo = TX_TIMEOUT;
3229 /* MTU range: 50 - 9586 */
3230 dev->mtu = 1500;
3231 dev->min_mtu = 50;
3232 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3233 dev->netdev_ops = &gfar_netdev_ops;
3234 dev->ethtool_ops = &gfar_ethtool_ops;
3235
3236 /* Register for napi ...We are registering NAPI for each grp */
3237 for (i = 0; i < priv->num_grps; i++) {
3238 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3239 gfar_poll_rx_sq);
3240 netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3241 gfar_poll_tx_sq, 2);
3242 }
3243
3244 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3245 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3246 NETIF_F_RXCSUM;
3247 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3248 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3249 }
3250
3251 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3252 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3253 NETIF_F_HW_VLAN_CTAG_RX;
3254 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3255 }
3256
3257 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3258
3259 gfar_init_addr_hash_table(priv);
3260
3261 /* Insert receive time stamps into padding alignment bytes, and
3262 * plus 2 bytes padding to ensure the cpu alignment.
3263 */
3264 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3265 priv->padding = 8 + DEFAULT_PADDING;
3266
3267 if (dev->features & NETIF_F_IP_CSUM ||
3268 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3269 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3270
3271 /* Initializing some of the rx/tx queue level parameters */
3272 for (i = 0; i < priv->num_tx_queues; i++) {
3273 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3274 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3275 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3276 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3277 }
3278
3279 for (i = 0; i < priv->num_rx_queues; i++) {
3280 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3281 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3282 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3283 }
3284
3285 /* Always enable rx filer if available */
3286 priv->rx_filer_enable =
3287 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3288 /* Enable most messages by default */
3289 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3290 /* use pritority h/w tx queue scheduling for single queue devices */
3291 if (priv->num_tx_queues == 1)
3292 priv->prio_sched_en = 1;
3293
3294 set_bit(GFAR_DOWN, &priv->state);
3295
3296 gfar_hw_init(priv);
3297
3298 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3299 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3300
3301 spin_lock_init(&priv->rmon_overflow.lock);
3302 priv->rmon_overflow.imask = IMASK_MSRO;
3303 gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3304 }
3305
3306 /* Carrier starts down, phylib will bring it up */
3307 netif_carrier_off(dev);
3308
3309 err = register_netdev(dev);
3310
3311 if (err) {
3312 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3313 goto register_fail;
3314 }
3315
3316 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3317 priv->wol_supported |= GFAR_WOL_MAGIC;
3318
3319 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3320 priv->rx_filer_enable)
3321 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3322
3323 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3324
3325 /* fill out IRQ number and name fields */
3326 for (i = 0; i < priv->num_grps; i++) {
3327 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3328 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3329 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3330 dev->name, "_g", '0' + i, "_tx");
3331 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3332 dev->name, "_g", '0' + i, "_rx");
3333 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3334 dev->name, "_g", '0' + i, "_er");
3335 } else
3336 strcpy(gfar_irq(grp, TX)->name, dev->name);
3337 }
3338
3339 /* Initialize the filer table */
3340 gfar_init_filer_table(priv);
3341
3342 /* Print out the device info */
3343 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3344
3345 /* Even more device info helps when determining which kernel
3346 * provided which set of benchmarks.
3347 */
3348 netdev_info(dev, "Running with NAPI enabled\n");
3349 for (i = 0; i < priv->num_rx_queues; i++)
3350 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3351 i, priv->rx_queue[i]->rx_ring_size);
3352 for (i = 0; i < priv->num_tx_queues; i++)
3353 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3354 i, priv->tx_queue[i]->tx_ring_size);
3355
3356 return 0;
3357
3358 register_fail:
3359 if (of_phy_is_fixed_link(np))
3360 of_phy_deregister_fixed_link(np);
3361 unmap_group_regs(priv);
3362 gfar_free_rx_queues(priv);
3363 gfar_free_tx_queues(priv);
3364 of_node_put(priv->phy_node);
3365 of_node_put(priv->tbi_node);
3366 free_gfar_dev(priv);
3367 return err;
3368 }
3369
gfar_remove(struct platform_device * ofdev)3370 static void gfar_remove(struct platform_device *ofdev)
3371 {
3372 struct gfar_private *priv = platform_get_drvdata(ofdev);
3373 struct device_node *np = ofdev->dev.of_node;
3374
3375 of_node_put(priv->phy_node);
3376 of_node_put(priv->tbi_node);
3377
3378 unregister_netdev(priv->ndev);
3379
3380 if (of_phy_is_fixed_link(np))
3381 of_phy_deregister_fixed_link(np);
3382
3383 unmap_group_regs(priv);
3384 gfar_free_rx_queues(priv);
3385 gfar_free_tx_queues(priv);
3386 free_gfar_dev(priv);
3387 }
3388
3389 #ifdef CONFIG_PM
3390
__gfar_filer_disable(struct gfar_private * priv)3391 static void __gfar_filer_disable(struct gfar_private *priv)
3392 {
3393 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3394 u32 temp;
3395
3396 temp = gfar_read(®s->rctrl);
3397 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3398 gfar_write(®s->rctrl, temp);
3399 }
3400
__gfar_filer_enable(struct gfar_private * priv)3401 static void __gfar_filer_enable(struct gfar_private *priv)
3402 {
3403 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3404 u32 temp;
3405
3406 temp = gfar_read(®s->rctrl);
3407 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3408 gfar_write(®s->rctrl, temp);
3409 }
3410
3411 /* Filer rules implementing wol capabilities */
gfar_filer_config_wol(struct gfar_private * priv)3412 static void gfar_filer_config_wol(struct gfar_private *priv)
3413 {
3414 unsigned int i;
3415 u32 rqfcr;
3416
3417 __gfar_filer_disable(priv);
3418
3419 /* clear the filer table, reject any packet by default */
3420 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3421 for (i = 0; i <= MAX_FILER_IDX; i++)
3422 gfar_write_filer(priv, i, rqfcr, 0);
3423
3424 i = 0;
3425 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3426 /* unicast packet, accept it */
3427 struct net_device *ndev = priv->ndev;
3428 /* get the default rx queue index */
3429 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3430 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3431 (ndev->dev_addr[1] << 8) |
3432 ndev->dev_addr[2];
3433
3434 rqfcr = (qindex << 10) | RQFCR_AND |
3435 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3436
3437 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3438
3439 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3440 (ndev->dev_addr[4] << 8) |
3441 ndev->dev_addr[5];
3442 rqfcr = (qindex << 10) | RQFCR_GPI |
3443 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3444 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3445 }
3446
3447 __gfar_filer_enable(priv);
3448 }
3449
gfar_filer_restore_table(struct gfar_private * priv)3450 static void gfar_filer_restore_table(struct gfar_private *priv)
3451 {
3452 u32 rqfcr, rqfpr;
3453 unsigned int i;
3454
3455 __gfar_filer_disable(priv);
3456
3457 for (i = 0; i <= MAX_FILER_IDX; i++) {
3458 rqfcr = priv->ftp_rqfcr[i];
3459 rqfpr = priv->ftp_rqfpr[i];
3460 gfar_write_filer(priv, i, rqfcr, rqfpr);
3461 }
3462
3463 __gfar_filer_enable(priv);
3464 }
3465
3466 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
gfar_start_wol_filer(struct gfar_private * priv)3467 static void gfar_start_wol_filer(struct gfar_private *priv)
3468 {
3469 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3470 u32 tempval;
3471 int i = 0;
3472
3473 /* Enable Rx hw queues */
3474 gfar_write(®s->rqueue, priv->rqueue);
3475
3476 /* Initialize DMACTRL to have WWR and WOP */
3477 tempval = gfar_read(®s->dmactrl);
3478 tempval |= DMACTRL_INIT_SETTINGS;
3479 gfar_write(®s->dmactrl, tempval);
3480
3481 /* Make sure we aren't stopped */
3482 tempval = gfar_read(®s->dmactrl);
3483 tempval &= ~DMACTRL_GRS;
3484 gfar_write(®s->dmactrl, tempval);
3485
3486 for (i = 0; i < priv->num_grps; i++) {
3487 regs = priv->gfargrp[i].regs;
3488 /* Clear RHLT, so that the DMA starts polling now */
3489 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
3490 /* enable the Filer General Purpose Interrupt */
3491 gfar_write(®s->imask, IMASK_FGPI);
3492 }
3493
3494 /* Enable Rx DMA */
3495 tempval = gfar_read(®s->maccfg1);
3496 tempval |= MACCFG1_RX_EN;
3497 gfar_write(®s->maccfg1, tempval);
3498 }
3499
gfar_suspend(struct device * dev)3500 static int gfar_suspend(struct device *dev)
3501 {
3502 struct gfar_private *priv = dev_get_drvdata(dev);
3503 struct net_device *ndev = priv->ndev;
3504 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3505 u32 tempval;
3506 u16 wol = priv->wol_opts;
3507
3508 if (!netif_running(ndev))
3509 return 0;
3510
3511 disable_napi(priv);
3512 netif_tx_lock(ndev);
3513 netif_device_detach(ndev);
3514 netif_tx_unlock(ndev);
3515
3516 gfar_halt(priv);
3517
3518 if (wol & GFAR_WOL_MAGIC) {
3519 /* Enable interrupt on Magic Packet */
3520 gfar_write(®s->imask, IMASK_MAG);
3521
3522 /* Enable Magic Packet mode */
3523 tempval = gfar_read(®s->maccfg2);
3524 tempval |= MACCFG2_MPEN;
3525 gfar_write(®s->maccfg2, tempval);
3526
3527 /* re-enable the Rx block */
3528 tempval = gfar_read(®s->maccfg1);
3529 tempval |= MACCFG1_RX_EN;
3530 gfar_write(®s->maccfg1, tempval);
3531
3532 } else if (wol & GFAR_WOL_FILER_UCAST) {
3533 gfar_filer_config_wol(priv);
3534 gfar_start_wol_filer(priv);
3535
3536 } else {
3537 phy_stop(ndev->phydev);
3538 }
3539
3540 return 0;
3541 }
3542
gfar_resume(struct device * dev)3543 static int gfar_resume(struct device *dev)
3544 {
3545 struct gfar_private *priv = dev_get_drvdata(dev);
3546 struct net_device *ndev = priv->ndev;
3547 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3548 u32 tempval;
3549 u16 wol = priv->wol_opts;
3550
3551 if (!netif_running(ndev))
3552 return 0;
3553
3554 if (wol & GFAR_WOL_MAGIC) {
3555 /* Disable Magic Packet mode */
3556 tempval = gfar_read(®s->maccfg2);
3557 tempval &= ~MACCFG2_MPEN;
3558 gfar_write(®s->maccfg2, tempval);
3559
3560 } else if (wol & GFAR_WOL_FILER_UCAST) {
3561 /* need to stop rx only, tx is already down */
3562 gfar_halt(priv);
3563 gfar_filer_restore_table(priv);
3564
3565 } else {
3566 phy_start(ndev->phydev);
3567 }
3568
3569 gfar_start(priv);
3570
3571 netif_device_attach(ndev);
3572 enable_napi(priv);
3573
3574 return 0;
3575 }
3576
gfar_restore(struct device * dev)3577 static int gfar_restore(struct device *dev)
3578 {
3579 struct gfar_private *priv = dev_get_drvdata(dev);
3580 struct net_device *ndev = priv->ndev;
3581
3582 if (!netif_running(ndev)) {
3583 netif_device_attach(ndev);
3584
3585 return 0;
3586 }
3587
3588 gfar_init_bds(ndev);
3589
3590 gfar_mac_reset(priv);
3591
3592 gfar_init_tx_rx_base(priv);
3593
3594 gfar_start(priv);
3595
3596 priv->oldlink = 0;
3597 priv->oldspeed = 0;
3598 priv->oldduplex = -1;
3599
3600 if (ndev->phydev)
3601 phy_start(ndev->phydev);
3602
3603 netif_device_attach(ndev);
3604 enable_napi(priv);
3605
3606 return 0;
3607 }
3608
3609 static const struct dev_pm_ops gfar_pm_ops = {
3610 .suspend = gfar_suspend,
3611 .resume = gfar_resume,
3612 .freeze = gfar_suspend,
3613 .thaw = gfar_resume,
3614 .restore = gfar_restore,
3615 };
3616
3617 #define GFAR_PM_OPS (&gfar_pm_ops)
3618
3619 #else
3620
3621 #define GFAR_PM_OPS NULL
3622
3623 #endif
3624
3625 static const struct of_device_id gfar_match[] =
3626 {
3627 {
3628 .type = "network",
3629 .compatible = "gianfar",
3630 },
3631 {
3632 .compatible = "fsl,etsec2",
3633 },
3634 {},
3635 };
3636 MODULE_DEVICE_TABLE(of, gfar_match);
3637
3638 /* Structure for a device driver */
3639 static struct platform_driver gfar_driver = {
3640 .driver = {
3641 .name = "fsl-gianfar",
3642 .pm = GFAR_PM_OPS,
3643 .of_match_table = gfar_match,
3644 },
3645 .probe = gfar_probe,
3646 .remove = gfar_remove,
3647 };
3648
3649 module_platform_driver(gfar_driver);
3650