1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3 *
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
8 *
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12 *
13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
15 *
16 * Gianfar: AKA Lambda Draconis, "Dragon"
17 * RA 11 31 24.2
18 * Dec +69 19 52
19 * V 3.84
20 * B-V +1.62
21 *
22 * Theory of operation
23 *
24 * The driver is initialized through of_device. Configuration information
25 * is therefore conveyed through an OF-style device tree.
26 *
27 * The Gianfar Ethernet Controller uses a ring of buffer
28 * descriptors. The beginning is indicated by a register
29 * pointing to the physical address of the start of the ring.
30 * The end is determined by a "wrap" bit being set in the
31 * last descriptor of the ring.
32 *
33 * When a packet is received, the RXF bit in the
34 * IEVENT register is set, triggering an interrupt when the
35 * corresponding bit in the IMASK register is also set (if
36 * interrupt coalescing is active, then the interrupt may not
37 * happen immediately, but will wait until either a set number
38 * of frames or amount of time have passed). In NAPI, the
39 * interrupt handler will signal there is work to be done, and
40 * exit. This method will start at the last known empty
41 * descriptor, and process every subsequent descriptor until there
42 * are none left with data (NAPI will stop after a set number of
43 * packets to give time to other tasks, but will eventually
44 * process all the packets). The data arrives inside a
45 * pre-allocated skb, and so after the skb is passed up to the
46 * stack, a new skb must be allocated, and the address field in
47 * the buffer descriptor must be updated to indicate this new
48 * skb.
49 *
50 * When the kernel requests that a packet be transmitted, the
51 * driver starts where it left off last time, and points the
52 * descriptor at the buffer which was passed in. The driver
53 * then informs the DMA engine that there are packets ready to
54 * be transmitted. Once the controller is finished transmitting
55 * the packet, an interrupt may be triggered (under the same
56 * conditions as for reception, but depending on the TXF bit).
57 * The driver then cleans up the buffer.
58 */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/kernel.h>
63 #include <linux/platform_device.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 #include <linux/net_tstamp.h>
84
85 #include <asm/io.h>
86 #ifdef CONFIG_PPC
87 #include <asm/reg.h>
88 #include <asm/mpc85xx.h>
89 #endif
90 #include <asm/irq.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
98 #include <linux/of.h>
99 #include <linux/of_net.h>
100
101 #include "gianfar.h"
102
103 #define TX_TIMEOUT (5*HZ)
104
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
108
gfar_init_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,dma_addr_t buf)109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110 dma_addr_t buf)
111 {
112 u32 lstatus;
113
114 bdp->bufPtr = cpu_to_be32(buf);
115
116 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 lstatus |= BD_LFLAG(RXBD_WRAP);
119
120 gfar_wmb();
121
122 bdp->lstatus = cpu_to_be32(lstatus);
123 }
124
gfar_init_tx_rx_base(struct gfar_private * priv)125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
126 {
127 struct gfar __iomem *regs = priv->gfargrp[0].regs;
128 u32 __iomem *baddr;
129 int i;
130
131 baddr = ®s->tbase0;
132 for (i = 0; i < priv->num_tx_queues; i++) {
133 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134 baddr += 2;
135 }
136
137 baddr = ®s->rbase0;
138 for (i = 0; i < priv->num_rx_queues; i++) {
139 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140 baddr += 2;
141 }
142 }
143
gfar_init_rqprm(struct gfar_private * priv)144 static void gfar_init_rqprm(struct gfar_private *priv)
145 {
146 struct gfar __iomem *regs = priv->gfargrp[0].regs;
147 u32 __iomem *baddr;
148 int i;
149
150 baddr = ®s->rqprm0;
151 for (i = 0; i < priv->num_rx_queues; i++) {
152 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154 baddr++;
155 }
156 }
157
gfar_rx_offload_en(struct gfar_private * priv)158 static void gfar_rx_offload_en(struct gfar_private *priv)
159 {
160 /* set this when rx hw offload (TOE) functions are being used */
161 priv->uses_rxfcb = 0;
162
163 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 priv->uses_rxfcb = 1;
165
166 if (priv->hwts_rx_en || priv->rx_filer_enable)
167 priv->uses_rxfcb = 1;
168 }
169
gfar_mac_rx_config(struct gfar_private * priv)170 static void gfar_mac_rx_config(struct gfar_private *priv)
171 {
172 struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 u32 rctrl = 0;
174
175 if (priv->rx_filer_enable) {
176 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 /* Program the RIR0 reg with the required distribution */
178 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0);
179 }
180
181 /* Restore PROMISC mode */
182 if (priv->ndev->flags & IFF_PROMISC)
183 rctrl |= RCTRL_PROM;
184
185 if (priv->ndev->features & NETIF_F_RXCSUM)
186 rctrl |= RCTRL_CHECKSUMMING;
187
188 if (priv->extended_hash)
189 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
190
191 if (priv->padding) {
192 rctrl &= ~RCTRL_PAL_MASK;
193 rctrl |= RCTRL_PADDING(priv->padding);
194 }
195
196 /* Enable HW time stamping if requested from user space */
197 if (priv->hwts_rx_en)
198 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
199
200 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
202
203 /* Clear the LFC bit */
204 gfar_write(®s->rctrl, rctrl);
205 /* Init flow control threshold values */
206 gfar_init_rqprm(priv);
207 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL);
208 rctrl |= RCTRL_LFC;
209
210 /* Init rctrl based on our settings */
211 gfar_write(®s->rctrl, rctrl);
212 }
213
gfar_mac_tx_config(struct gfar_private * priv)214 static void gfar_mac_tx_config(struct gfar_private *priv)
215 {
216 struct gfar __iomem *regs = priv->gfargrp[0].regs;
217 u32 tctrl = 0;
218
219 if (priv->ndev->features & NETIF_F_IP_CSUM)
220 tctrl |= TCTRL_INIT_CSUM;
221
222 if (priv->prio_sched_en)
223 tctrl |= TCTRL_TXSCHED_PRIO;
224 else {
225 tctrl |= TCTRL_TXSCHED_WRRS;
226 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT);
227 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT);
228 }
229
230 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231 tctrl |= TCTRL_VLINS;
232
233 gfar_write(®s->tctrl, tctrl);
234 }
235
gfar_configure_coalescing(struct gfar_private * priv,unsigned long tx_mask,unsigned long rx_mask)236 static void gfar_configure_coalescing(struct gfar_private *priv,
237 unsigned long tx_mask, unsigned long rx_mask)
238 {
239 struct gfar __iomem *regs = priv->gfargrp[0].regs;
240 u32 __iomem *baddr;
241
242 if (priv->mode == MQ_MG_MODE) {
243 int i = 0;
244
245 baddr = ®s->txic0;
246 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247 gfar_write(baddr + i, 0);
248 if (likely(priv->tx_queue[i]->txcoalescing))
249 gfar_write(baddr + i, priv->tx_queue[i]->txic);
250 }
251
252 baddr = ®s->rxic0;
253 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254 gfar_write(baddr + i, 0);
255 if (likely(priv->rx_queue[i]->rxcoalescing))
256 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
257 }
258 } else {
259 /* Backward compatible case -- even if we enable
260 * multiple queues, there's only single reg to program
261 */
262 gfar_write(®s->txic, 0);
263 if (likely(priv->tx_queue[0]->txcoalescing))
264 gfar_write(®s->txic, priv->tx_queue[0]->txic);
265
266 gfar_write(®s->rxic, 0);
267 if (unlikely(priv->rx_queue[0]->rxcoalescing))
268 gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
269 }
270 }
271
gfar_configure_coalescing_all(struct gfar_private * priv)272 static void gfar_configure_coalescing_all(struct gfar_private *priv)
273 {
274 gfar_configure_coalescing(priv, 0xFF, 0xFF);
275 }
276
gfar_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)277 static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
278 {
279 struct gfar_private *priv = netdev_priv(dev);
280 int i;
281
282 for (i = 0; i < priv->num_rx_queues; i++) {
283 stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
284 stats->rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
285 stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
286 }
287
288 for (i = 0; i < priv->num_tx_queues; i++) {
289 stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
290 stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
291 }
292
293 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
294 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
295 unsigned long flags;
296 u32 rdrp, car, car_before;
297 u64 rdrp_offset;
298
299 spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
300 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
301 do {
302 car_before = car;
303 rdrp = gfar_read(&rmon->rdrp);
304 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
305 } while (car != car_before);
306 if (car) {
307 priv->rmon_overflow.rdrp++;
308 gfar_write(&rmon->car1, car);
309 }
310 rdrp_offset = priv->rmon_overflow.rdrp;
311 spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
312
313 stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
314 }
315 }
316
317 /* Set the appropriate hash bit for the given addr */
318 /* The algorithm works like so:
319 * 1) Take the Destination Address (ie the multicast address), and
320 * do a CRC on it (little endian), and reverse the bits of the
321 * result.
322 * 2) Use the 8 most significant bits as a hash into a 256-entry
323 * table. The table is controlled through 8 32-bit registers:
324 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
325 * gaddr7. This means that the 3 most significant bits in the
326 * hash index which gaddr register to use, and the 5 other bits
327 * indicate which bit (assuming an IBM numbering scheme, which
328 * for PowerPC (tm) is usually the case) in the register holds
329 * the entry.
330 */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)331 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
332 {
333 u32 tempval;
334 struct gfar_private *priv = netdev_priv(dev);
335 u32 result = ether_crc(ETH_ALEN, addr);
336 int width = priv->hash_width;
337 u8 whichbit = (result >> (32 - width)) & 0x1f;
338 u8 whichreg = result >> (32 - width + 5);
339 u32 value = (1 << (31-whichbit));
340
341 tempval = gfar_read(priv->hash_regs[whichreg]);
342 tempval |= value;
343 gfar_write(priv->hash_regs[whichreg], tempval);
344 }
345
346 /* There are multiple MAC Address register pairs on some controllers
347 * This function sets the numth pair to a given address
348 */
gfar_set_mac_for_addr(struct net_device * dev,int num,const u8 * addr)349 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
350 const u8 *addr)
351 {
352 struct gfar_private *priv = netdev_priv(dev);
353 struct gfar __iomem *regs = priv->gfargrp[0].regs;
354 u32 tempval;
355 u32 __iomem *macptr = ®s->macstnaddr1;
356
357 macptr += num*2;
358
359 /* For a station address of 0x12345678ABCD in transmission
360 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
361 * MACnADDR2 is set to 0x34120000.
362 */
363 tempval = (addr[5] << 24) | (addr[4] << 16) |
364 (addr[3] << 8) | addr[2];
365
366 gfar_write(macptr, tempval);
367
368 tempval = (addr[1] << 24) | (addr[0] << 16);
369
370 gfar_write(macptr+1, tempval);
371 }
372
gfar_set_mac_addr(struct net_device * dev,void * p)373 static int gfar_set_mac_addr(struct net_device *dev, void *p)
374 {
375 int ret;
376
377 ret = eth_mac_addr(dev, p);
378 if (ret)
379 return ret;
380
381 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
382
383 return 0;
384 }
385
gfar_ints_disable(struct gfar_private * priv)386 static void gfar_ints_disable(struct gfar_private *priv)
387 {
388 int i;
389 for (i = 0; i < priv->num_grps; i++) {
390 struct gfar __iomem *regs = priv->gfargrp[i].regs;
391 /* Clear IEVENT */
392 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
393
394 /* Initialize IMASK */
395 gfar_write(®s->imask, IMASK_INIT_CLEAR);
396 }
397 }
398
gfar_ints_enable(struct gfar_private * priv)399 static void gfar_ints_enable(struct gfar_private *priv)
400 {
401 int i;
402 for (i = 0; i < priv->num_grps; i++) {
403 struct gfar __iomem *regs = priv->gfargrp[i].regs;
404 /* Unmask the interrupts we look for */
405 gfar_write(®s->imask,
406 IMASK_DEFAULT | priv->rmon_overflow.imask);
407 }
408 }
409
gfar_alloc_tx_queues(struct gfar_private * priv)410 static int gfar_alloc_tx_queues(struct gfar_private *priv)
411 {
412 int i;
413
414 for (i = 0; i < priv->num_tx_queues; i++) {
415 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
416 GFP_KERNEL);
417 if (!priv->tx_queue[i])
418 return -ENOMEM;
419
420 priv->tx_queue[i]->tx_skbuff = NULL;
421 priv->tx_queue[i]->qindex = i;
422 priv->tx_queue[i]->dev = priv->ndev;
423 spin_lock_init(&(priv->tx_queue[i]->txlock));
424 }
425 return 0;
426 }
427
gfar_alloc_rx_queues(struct gfar_private * priv)428 static int gfar_alloc_rx_queues(struct gfar_private *priv)
429 {
430 int i;
431
432 for (i = 0; i < priv->num_rx_queues; i++) {
433 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
434 GFP_KERNEL);
435 if (!priv->rx_queue[i])
436 return -ENOMEM;
437
438 priv->rx_queue[i]->qindex = i;
439 priv->rx_queue[i]->ndev = priv->ndev;
440 }
441 return 0;
442 }
443
gfar_free_tx_queues(struct gfar_private * priv)444 static void gfar_free_tx_queues(struct gfar_private *priv)
445 {
446 int i;
447
448 for (i = 0; i < priv->num_tx_queues; i++)
449 kfree(priv->tx_queue[i]);
450 }
451
gfar_free_rx_queues(struct gfar_private * priv)452 static void gfar_free_rx_queues(struct gfar_private *priv)
453 {
454 int i;
455
456 for (i = 0; i < priv->num_rx_queues; i++)
457 kfree(priv->rx_queue[i]);
458 }
459
unmap_group_regs(struct gfar_private * priv)460 static void unmap_group_regs(struct gfar_private *priv)
461 {
462 int i;
463
464 for (i = 0; i < MAXGROUPS; i++)
465 if (priv->gfargrp[i].regs)
466 iounmap(priv->gfargrp[i].regs);
467 }
468
free_gfar_dev(struct gfar_private * priv)469 static void free_gfar_dev(struct gfar_private *priv)
470 {
471 int i, j;
472
473 for (i = 0; i < priv->num_grps; i++)
474 for (j = 0; j < GFAR_NUM_IRQS; j++) {
475 kfree(priv->gfargrp[i].irqinfo[j]);
476 priv->gfargrp[i].irqinfo[j] = NULL;
477 }
478
479 free_netdev(priv->ndev);
480 }
481
disable_napi(struct gfar_private * priv)482 static void disable_napi(struct gfar_private *priv)
483 {
484 int i;
485
486 for (i = 0; i < priv->num_grps; i++) {
487 napi_disable(&priv->gfargrp[i].napi_rx);
488 napi_disable(&priv->gfargrp[i].napi_tx);
489 }
490 }
491
enable_napi(struct gfar_private * priv)492 static void enable_napi(struct gfar_private *priv)
493 {
494 int i;
495
496 for (i = 0; i < priv->num_grps; i++) {
497 napi_enable(&priv->gfargrp[i].napi_rx);
498 napi_enable(&priv->gfargrp[i].napi_tx);
499 }
500 }
501
gfar_parse_group(struct device_node * np,struct gfar_private * priv,const char * model)502 static int gfar_parse_group(struct device_node *np,
503 struct gfar_private *priv, const char *model)
504 {
505 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
506 int i;
507
508 for (i = 0; i < GFAR_NUM_IRQS; i++) {
509 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
510 GFP_KERNEL);
511 if (!grp->irqinfo[i])
512 return -ENOMEM;
513 }
514
515 grp->regs = of_iomap(np, 0);
516 if (!grp->regs)
517 return -ENOMEM;
518
519 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
520
521 /* If we aren't the FEC we have multiple interrupts */
522 if (model && strcasecmp(model, "FEC")) {
523 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
524 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
525 if (!gfar_irq(grp, TX)->irq ||
526 !gfar_irq(grp, RX)->irq ||
527 !gfar_irq(grp, ER)->irq)
528 return -EINVAL;
529 }
530
531 grp->priv = priv;
532 spin_lock_init(&grp->grplock);
533 if (priv->mode == MQ_MG_MODE) {
534 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
535 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
536 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
537 } else {
538 grp->rx_bit_map = 0xFF;
539 grp->tx_bit_map = 0xFF;
540 }
541
542 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
543 * right to left, so we need to revert the 8 bits to get the q index
544 */
545 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
546 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
547
548 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
549 * also assign queues to groups
550 */
551 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
552 if (!grp->rx_queue)
553 grp->rx_queue = priv->rx_queue[i];
554 grp->num_rx_queues++;
555 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
556 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
557 priv->rx_queue[i]->grp = grp;
558 }
559
560 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
561 if (!grp->tx_queue)
562 grp->tx_queue = priv->tx_queue[i];
563 grp->num_tx_queues++;
564 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
565 priv->tqueue |= (TQUEUE_EN0 >> i);
566 priv->tx_queue[i]->grp = grp;
567 }
568
569 priv->num_grps++;
570
571 return 0;
572 }
573
gfar_of_group_count(struct device_node * np)574 static int gfar_of_group_count(struct device_node *np)
575 {
576 struct device_node *child;
577 int num = 0;
578
579 for_each_available_child_of_node(np, child)
580 if (of_node_name_eq(child, "queue-group"))
581 num++;
582
583 return num;
584 }
585
586 /* Reads the controller's registers to determine what interface
587 * connects it to the PHY.
588 */
gfar_get_interface(struct net_device * dev)589 static phy_interface_t gfar_get_interface(struct net_device *dev)
590 {
591 struct gfar_private *priv = netdev_priv(dev);
592 struct gfar __iomem *regs = priv->gfargrp[0].regs;
593 u32 ecntrl;
594
595 ecntrl = gfar_read(®s->ecntrl);
596
597 if (ecntrl & ECNTRL_SGMII_MODE)
598 return PHY_INTERFACE_MODE_SGMII;
599
600 if (ecntrl & ECNTRL_TBI_MODE) {
601 if (ecntrl & ECNTRL_REDUCED_MODE)
602 return PHY_INTERFACE_MODE_RTBI;
603 else
604 return PHY_INTERFACE_MODE_TBI;
605 }
606
607 if (ecntrl & ECNTRL_REDUCED_MODE) {
608 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
609 return PHY_INTERFACE_MODE_RMII;
610 }
611 else {
612 phy_interface_t interface = priv->interface;
613
614 /* This isn't autodetected right now, so it must
615 * be set by the device tree or platform code.
616 */
617 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
618 return PHY_INTERFACE_MODE_RGMII_ID;
619
620 return PHY_INTERFACE_MODE_RGMII;
621 }
622 }
623
624 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
625 return PHY_INTERFACE_MODE_GMII;
626
627 return PHY_INTERFACE_MODE_MII;
628 }
629
gfar_of_init(struct platform_device * ofdev,struct net_device ** pdev)630 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
631 {
632 const char *model;
633 int err = 0, i;
634 phy_interface_t interface;
635 struct net_device *dev = NULL;
636 struct gfar_private *priv = NULL;
637 struct device_node *np = ofdev->dev.of_node;
638 struct device_node *child = NULL;
639 u32 stash_len = 0;
640 u32 stash_idx = 0;
641 unsigned int num_tx_qs, num_rx_qs;
642 unsigned short mode;
643
644 if (!np)
645 return -ENODEV;
646
647 if (of_device_is_compatible(np, "fsl,etsec2"))
648 mode = MQ_MG_MODE;
649 else
650 mode = SQ_SG_MODE;
651
652 if (mode == SQ_SG_MODE) {
653 num_tx_qs = 1;
654 num_rx_qs = 1;
655 } else { /* MQ_MG_MODE */
656 /* get the actual number of supported groups */
657 unsigned int num_grps = gfar_of_group_count(np);
658
659 if (num_grps == 0 || num_grps > MAXGROUPS) {
660 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
661 num_grps);
662 pr_err("Cannot do alloc_etherdev, aborting\n");
663 return -EINVAL;
664 }
665
666 num_tx_qs = num_grps; /* one txq per int group */
667 num_rx_qs = num_grps; /* one rxq per int group */
668 }
669
670 if (num_tx_qs > MAX_TX_QS) {
671 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
672 num_tx_qs, MAX_TX_QS);
673 pr_err("Cannot do alloc_etherdev, aborting\n");
674 return -EINVAL;
675 }
676
677 if (num_rx_qs > MAX_RX_QS) {
678 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
679 num_rx_qs, MAX_RX_QS);
680 pr_err("Cannot do alloc_etherdev, aborting\n");
681 return -EINVAL;
682 }
683
684 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
685 dev = *pdev;
686 if (NULL == dev)
687 return -ENOMEM;
688
689 priv = netdev_priv(dev);
690 priv->ndev = dev;
691
692 priv->mode = mode;
693
694 priv->num_tx_queues = num_tx_qs;
695 netif_set_real_num_rx_queues(dev, num_rx_qs);
696 priv->num_rx_queues = num_rx_qs;
697
698 err = gfar_alloc_tx_queues(priv);
699 if (err)
700 goto tx_alloc_failed;
701
702 err = gfar_alloc_rx_queues(priv);
703 if (err)
704 goto rx_alloc_failed;
705
706 err = of_property_read_string(np, "model", &model);
707 if (err) {
708 pr_err("Device model property missing, aborting\n");
709 goto rx_alloc_failed;
710 }
711
712 /* Init Rx queue filer rule set linked list */
713 INIT_LIST_HEAD(&priv->rx_list.list);
714 priv->rx_list.count = 0;
715 mutex_init(&priv->rx_queue_access);
716
717 for (i = 0; i < MAXGROUPS; i++)
718 priv->gfargrp[i].regs = NULL;
719
720 /* Parse and initialize group specific information */
721 if (priv->mode == MQ_MG_MODE) {
722 for_each_available_child_of_node(np, child) {
723 if (!of_node_name_eq(child, "queue-group"))
724 continue;
725
726 err = gfar_parse_group(child, priv, model);
727 if (err) {
728 of_node_put(child);
729 goto err_grp_init;
730 }
731 }
732 } else { /* SQ_SG_MODE */
733 err = gfar_parse_group(np, priv, model);
734 if (err)
735 goto err_grp_init;
736 }
737
738 if (of_property_read_bool(np, "bd-stash")) {
739 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
740 priv->bd_stash_en = 1;
741 }
742
743 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
744
745 if (err == 0)
746 priv->rx_stash_size = stash_len;
747
748 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
749
750 if (err == 0)
751 priv->rx_stash_index = stash_idx;
752
753 if (stash_len || stash_idx)
754 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
755
756 err = of_get_ethdev_address(np, dev);
757 if (err == -EPROBE_DEFER)
758 goto err_grp_init;
759 if (err) {
760 eth_hw_addr_random(dev);
761 dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
762 }
763
764 if (model && !strcasecmp(model, "TSEC"))
765 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
766 FSL_GIANFAR_DEV_HAS_COALESCE |
767 FSL_GIANFAR_DEV_HAS_RMON |
768 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
769
770 if (model && !strcasecmp(model, "eTSEC"))
771 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
772 FSL_GIANFAR_DEV_HAS_COALESCE |
773 FSL_GIANFAR_DEV_HAS_RMON |
774 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
775 FSL_GIANFAR_DEV_HAS_CSUM |
776 FSL_GIANFAR_DEV_HAS_VLAN |
777 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
778 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
779 FSL_GIANFAR_DEV_HAS_TIMER |
780 FSL_GIANFAR_DEV_HAS_RX_FILER;
781
782 /* Use PHY connection type from the DT node if one is specified there.
783 * rgmii-id really needs to be specified. Other types can be
784 * detected by hardware
785 */
786 err = of_get_phy_mode(np, &interface);
787 if (!err)
788 priv->interface = interface;
789 else
790 priv->interface = gfar_get_interface(dev);
791
792 if (of_property_read_bool(np, "fsl,magic-packet"))
793 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
794
795 if (of_property_read_bool(np, "fsl,wake-on-filer"))
796 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
797
798 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
799
800 /* In the case of a fixed PHY, the DT node associated
801 * to the PHY is the Ethernet MAC DT node.
802 */
803 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
804 err = of_phy_register_fixed_link(np);
805 if (err)
806 goto err_grp_init;
807
808 priv->phy_node = of_node_get(np);
809 }
810
811 /* Find the TBI PHY. If it's not there, we don't support SGMII */
812 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
813
814 return 0;
815
816 err_grp_init:
817 unmap_group_regs(priv);
818 rx_alloc_failed:
819 gfar_free_rx_queues(priv);
820 tx_alloc_failed:
821 gfar_free_tx_queues(priv);
822 free_gfar_dev(priv);
823 return err;
824 }
825
cluster_entry_per_class(struct gfar_private * priv,u32 rqfar,u32 class)826 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
827 u32 class)
828 {
829 u32 rqfpr = FPR_FILER_MASK;
830 u32 rqfcr = 0x0;
831
832 rqfar--;
833 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
834 priv->ftp_rqfpr[rqfar] = rqfpr;
835 priv->ftp_rqfcr[rqfar] = rqfcr;
836 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
837
838 rqfar--;
839 rqfcr = RQFCR_CMP_NOMATCH;
840 priv->ftp_rqfpr[rqfar] = rqfpr;
841 priv->ftp_rqfcr[rqfar] = rqfcr;
842 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
843
844 rqfar--;
845 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
846 rqfpr = class;
847 priv->ftp_rqfcr[rqfar] = rqfcr;
848 priv->ftp_rqfpr[rqfar] = rqfpr;
849 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
850
851 rqfar--;
852 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
853 rqfpr = class;
854 priv->ftp_rqfcr[rqfar] = rqfcr;
855 priv->ftp_rqfpr[rqfar] = rqfpr;
856 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
857
858 return rqfar;
859 }
860
gfar_init_filer_table(struct gfar_private * priv)861 static void gfar_init_filer_table(struct gfar_private *priv)
862 {
863 int i = 0x0;
864 u32 rqfar = MAX_FILER_IDX;
865 u32 rqfcr = 0x0;
866 u32 rqfpr = FPR_FILER_MASK;
867
868 /* Default rule */
869 rqfcr = RQFCR_CMP_MATCH;
870 priv->ftp_rqfcr[rqfar] = rqfcr;
871 priv->ftp_rqfpr[rqfar] = rqfpr;
872 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873
874 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
875 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
876 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
877 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
878 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
879 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
880
881 /* cur_filer_idx indicated the first non-masked rule */
882 priv->cur_filer_idx = rqfar;
883
884 /* Rest are masked rules */
885 rqfcr = RQFCR_CMP_NOMATCH;
886 for (i = 0; i < rqfar; i++) {
887 priv->ftp_rqfcr[i] = rqfcr;
888 priv->ftp_rqfpr[i] = rqfpr;
889 gfar_write_filer(priv, i, rqfcr, rqfpr);
890 }
891 }
892
893 #ifdef CONFIG_PPC
__gfar_detect_errata_83xx(struct gfar_private * priv)894 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
895 {
896 unsigned int pvr = mfspr(SPRN_PVR);
897 unsigned int svr = mfspr(SPRN_SVR);
898 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
899 unsigned int rev = svr & 0xffff;
900
901 /* MPC8313 Rev 2.0 and higher; All MPC837x */
902 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
903 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
904 priv->errata |= GFAR_ERRATA_74;
905
906 /* MPC8313 and MPC837x all rev */
907 if ((pvr == 0x80850010 && mod == 0x80b0) ||
908 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
909 priv->errata |= GFAR_ERRATA_76;
910
911 /* MPC8313 Rev < 2.0 */
912 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
913 priv->errata |= GFAR_ERRATA_12;
914 }
915
__gfar_detect_errata_85xx(struct gfar_private * priv)916 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
917 {
918 unsigned int svr = mfspr(SPRN_SVR);
919
920 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
921 priv->errata |= GFAR_ERRATA_12;
922 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
923 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
924 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
925 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
926 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
927 }
928 #endif
929
gfar_detect_errata(struct gfar_private * priv)930 static void gfar_detect_errata(struct gfar_private *priv)
931 {
932 struct device *dev = &priv->ofdev->dev;
933
934 /* no plans to fix */
935 priv->errata |= GFAR_ERRATA_A002;
936
937 #ifdef CONFIG_PPC
938 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
939 __gfar_detect_errata_85xx(priv);
940 else /* non-mpc85xx parts, i.e. e300 core based */
941 __gfar_detect_errata_83xx(priv);
942 #endif
943
944 if (priv->errata)
945 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
946 priv->errata);
947 }
948
gfar_init_addr_hash_table(struct gfar_private * priv)949 static void gfar_init_addr_hash_table(struct gfar_private *priv)
950 {
951 struct gfar __iomem *regs = priv->gfargrp[0].regs;
952
953 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
954 priv->extended_hash = 1;
955 priv->hash_width = 9;
956
957 priv->hash_regs[0] = ®s->igaddr0;
958 priv->hash_regs[1] = ®s->igaddr1;
959 priv->hash_regs[2] = ®s->igaddr2;
960 priv->hash_regs[3] = ®s->igaddr3;
961 priv->hash_regs[4] = ®s->igaddr4;
962 priv->hash_regs[5] = ®s->igaddr5;
963 priv->hash_regs[6] = ®s->igaddr6;
964 priv->hash_regs[7] = ®s->igaddr7;
965 priv->hash_regs[8] = ®s->gaddr0;
966 priv->hash_regs[9] = ®s->gaddr1;
967 priv->hash_regs[10] = ®s->gaddr2;
968 priv->hash_regs[11] = ®s->gaddr3;
969 priv->hash_regs[12] = ®s->gaddr4;
970 priv->hash_regs[13] = ®s->gaddr5;
971 priv->hash_regs[14] = ®s->gaddr6;
972 priv->hash_regs[15] = ®s->gaddr7;
973
974 } else {
975 priv->extended_hash = 0;
976 priv->hash_width = 8;
977
978 priv->hash_regs[0] = ®s->gaddr0;
979 priv->hash_regs[1] = ®s->gaddr1;
980 priv->hash_regs[2] = ®s->gaddr2;
981 priv->hash_regs[3] = ®s->gaddr3;
982 priv->hash_regs[4] = ®s->gaddr4;
983 priv->hash_regs[5] = ®s->gaddr5;
984 priv->hash_regs[6] = ®s->gaddr6;
985 priv->hash_regs[7] = ®s->gaddr7;
986 }
987 }
988
__gfar_is_rx_idle(struct gfar_private * priv)989 static int __gfar_is_rx_idle(struct gfar_private *priv)
990 {
991 u32 res;
992
993 /* Normaly TSEC should not hang on GRS commands, so we should
994 * actually wait for IEVENT_GRSC flag.
995 */
996 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
997 return 0;
998
999 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1000 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1001 * and the Rx can be safely reset.
1002 */
1003 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1004 res &= 0x7f807f80;
1005 if ((res & 0xffff) == (res >> 16))
1006 return 1;
1007
1008 return 0;
1009 }
1010
1011 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct gfar_private * priv)1012 static void gfar_halt_nodisable(struct gfar_private *priv)
1013 {
1014 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1015 u32 tempval;
1016 unsigned int timeout;
1017 int stopped;
1018
1019 gfar_ints_disable(priv);
1020
1021 if (gfar_is_dma_stopped(priv))
1022 return;
1023
1024 /* Stop the DMA, and wait for it to stop */
1025 tempval = gfar_read(®s->dmactrl);
1026 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1027 gfar_write(®s->dmactrl, tempval);
1028
1029 retry:
1030 timeout = 1000;
1031 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1032 cpu_relax();
1033 timeout--;
1034 }
1035
1036 if (!timeout)
1037 stopped = gfar_is_dma_stopped(priv);
1038
1039 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1040 !__gfar_is_rx_idle(priv))
1041 goto retry;
1042 }
1043
1044 /* Halt the receive and transmit queues */
gfar_halt(struct gfar_private * priv)1045 static void gfar_halt(struct gfar_private *priv)
1046 {
1047 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1048 u32 tempval;
1049
1050 /* Dissable the Rx/Tx hw queues */
1051 gfar_write(®s->rqueue, 0);
1052 gfar_write(®s->tqueue, 0);
1053
1054 mdelay(10);
1055
1056 gfar_halt_nodisable(priv);
1057
1058 /* Disable Rx/Tx DMA */
1059 tempval = gfar_read(®s->maccfg1);
1060 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1061 gfar_write(®s->maccfg1, tempval);
1062 }
1063
free_skb_tx_queue(struct gfar_priv_tx_q * tx_queue)1064 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1065 {
1066 struct txbd8 *txbdp;
1067 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1068 int i, j;
1069
1070 txbdp = tx_queue->tx_bd_base;
1071
1072 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1073 if (!tx_queue->tx_skbuff[i])
1074 continue;
1075
1076 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1077 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1078 txbdp->lstatus = 0;
1079 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1080 j++) {
1081 txbdp++;
1082 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1083 be16_to_cpu(txbdp->length),
1084 DMA_TO_DEVICE);
1085 }
1086 txbdp++;
1087 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1088 tx_queue->tx_skbuff[i] = NULL;
1089 }
1090 kfree(tx_queue->tx_skbuff);
1091 tx_queue->tx_skbuff = NULL;
1092 }
1093
free_skb_rx_queue(struct gfar_priv_rx_q * rx_queue)1094 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1095 {
1096 int i;
1097
1098 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1099
1100 dev_kfree_skb(rx_queue->skb);
1101
1102 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1103 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1104
1105 rxbdp->lstatus = 0;
1106 rxbdp->bufPtr = 0;
1107 rxbdp++;
1108
1109 if (!rxb->page)
1110 continue;
1111
1112 dma_unmap_page(rx_queue->dev, rxb->dma,
1113 PAGE_SIZE, DMA_FROM_DEVICE);
1114 __free_page(rxb->page);
1115
1116 rxb->page = NULL;
1117 }
1118
1119 kfree(rx_queue->rx_buff);
1120 rx_queue->rx_buff = NULL;
1121 }
1122
1123 /* If there are any tx skbs or rx skbs still around, free them.
1124 * Then free tx_skbuff and rx_skbuff
1125 */
free_skb_resources(struct gfar_private * priv)1126 static void free_skb_resources(struct gfar_private *priv)
1127 {
1128 struct gfar_priv_tx_q *tx_queue = NULL;
1129 struct gfar_priv_rx_q *rx_queue = NULL;
1130 int i;
1131
1132 /* Go through all the buffer descriptors and free their data buffers */
1133 for (i = 0; i < priv->num_tx_queues; i++) {
1134 struct netdev_queue *txq;
1135
1136 tx_queue = priv->tx_queue[i];
1137 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1138 if (tx_queue->tx_skbuff)
1139 free_skb_tx_queue(tx_queue);
1140 netdev_tx_reset_queue(txq);
1141 }
1142
1143 for (i = 0; i < priv->num_rx_queues; i++) {
1144 rx_queue = priv->rx_queue[i];
1145 if (rx_queue->rx_buff)
1146 free_skb_rx_queue(rx_queue);
1147 }
1148
1149 dma_free_coherent(priv->dev,
1150 sizeof(struct txbd8) * priv->total_tx_ring_size +
1151 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1152 priv->tx_queue[0]->tx_bd_base,
1153 priv->tx_queue[0]->tx_bd_dma_base);
1154 }
1155
stop_gfar(struct net_device * dev)1156 void stop_gfar(struct net_device *dev)
1157 {
1158 struct gfar_private *priv = netdev_priv(dev);
1159
1160 netif_tx_stop_all_queues(dev);
1161
1162 smp_mb__before_atomic();
1163 set_bit(GFAR_DOWN, &priv->state);
1164 smp_mb__after_atomic();
1165
1166 disable_napi(priv);
1167
1168 /* disable ints and gracefully shut down Rx/Tx DMA */
1169 gfar_halt(priv);
1170
1171 phy_stop(dev->phydev);
1172
1173 free_skb_resources(priv);
1174 }
1175
gfar_start(struct gfar_private * priv)1176 static void gfar_start(struct gfar_private *priv)
1177 {
1178 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1179 u32 tempval;
1180 int i = 0;
1181
1182 /* Enable Rx/Tx hw queues */
1183 gfar_write(®s->rqueue, priv->rqueue);
1184 gfar_write(®s->tqueue, priv->tqueue);
1185
1186 /* Initialize DMACTRL to have WWR and WOP */
1187 tempval = gfar_read(®s->dmactrl);
1188 tempval |= DMACTRL_INIT_SETTINGS;
1189 gfar_write(®s->dmactrl, tempval);
1190
1191 /* Make sure we aren't stopped */
1192 tempval = gfar_read(®s->dmactrl);
1193 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1194 gfar_write(®s->dmactrl, tempval);
1195
1196 for (i = 0; i < priv->num_grps; i++) {
1197 regs = priv->gfargrp[i].regs;
1198 /* Clear THLT/RHLT, so that the DMA starts polling now */
1199 gfar_write(®s->tstat, priv->gfargrp[i].tstat);
1200 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
1201 }
1202
1203 /* Enable Rx/Tx DMA */
1204 tempval = gfar_read(®s->maccfg1);
1205 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1206 gfar_write(®s->maccfg1, tempval);
1207
1208 gfar_ints_enable(priv);
1209
1210 netif_trans_update(priv->ndev); /* prevent tx timeout */
1211 }
1212
gfar_new_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * rxb)1213 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1214 {
1215 struct page *page;
1216 dma_addr_t addr;
1217
1218 page = dev_alloc_page();
1219 if (unlikely(!page))
1220 return false;
1221
1222 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1223 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1224 __free_page(page);
1225
1226 return false;
1227 }
1228
1229 rxb->dma = addr;
1230 rxb->page = page;
1231 rxb->page_offset = 0;
1232
1233 return true;
1234 }
1235
gfar_rx_alloc_err(struct gfar_priv_rx_q * rx_queue)1236 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1237 {
1238 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1239 struct gfar_extra_stats *estats = &priv->extra_stats;
1240
1241 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1242 atomic64_inc(&estats->rx_alloc_err);
1243 }
1244
gfar_alloc_rx_buffs(struct gfar_priv_rx_q * rx_queue,int alloc_cnt)1245 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1246 int alloc_cnt)
1247 {
1248 struct rxbd8 *bdp;
1249 struct gfar_rx_buff *rxb;
1250 int i;
1251
1252 i = rx_queue->next_to_use;
1253 bdp = &rx_queue->rx_bd_base[i];
1254 rxb = &rx_queue->rx_buff[i];
1255
1256 while (alloc_cnt--) {
1257 /* try reuse page */
1258 if (unlikely(!rxb->page)) {
1259 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1260 gfar_rx_alloc_err(rx_queue);
1261 break;
1262 }
1263 }
1264
1265 /* Setup the new RxBD */
1266 gfar_init_rxbdp(rx_queue, bdp,
1267 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1268
1269 /* Update to the next pointer */
1270 bdp++;
1271 rxb++;
1272
1273 if (unlikely(++i == rx_queue->rx_ring_size)) {
1274 i = 0;
1275 bdp = rx_queue->rx_bd_base;
1276 rxb = rx_queue->rx_buff;
1277 }
1278 }
1279
1280 rx_queue->next_to_use = i;
1281 rx_queue->next_to_alloc = i;
1282 }
1283
gfar_init_bds(struct net_device * ndev)1284 static void gfar_init_bds(struct net_device *ndev)
1285 {
1286 struct gfar_private *priv = netdev_priv(ndev);
1287 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1288 struct gfar_priv_tx_q *tx_queue = NULL;
1289 struct gfar_priv_rx_q *rx_queue = NULL;
1290 struct txbd8 *txbdp;
1291 u32 __iomem *rfbptr;
1292 int i, j;
1293
1294 for (i = 0; i < priv->num_tx_queues; i++) {
1295 tx_queue = priv->tx_queue[i];
1296 /* Initialize some variables in our dev structure */
1297 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1298 tx_queue->dirty_tx = tx_queue->tx_bd_base;
1299 tx_queue->cur_tx = tx_queue->tx_bd_base;
1300 tx_queue->skb_curtx = 0;
1301 tx_queue->skb_dirtytx = 0;
1302
1303 /* Initialize Transmit Descriptor Ring */
1304 txbdp = tx_queue->tx_bd_base;
1305 for (j = 0; j < tx_queue->tx_ring_size; j++) {
1306 txbdp->lstatus = 0;
1307 txbdp->bufPtr = 0;
1308 txbdp++;
1309 }
1310
1311 /* Set the last descriptor in the ring to indicate wrap */
1312 txbdp--;
1313 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1314 TXBD_WRAP);
1315 }
1316
1317 rfbptr = ®s->rfbptr0;
1318 for (i = 0; i < priv->num_rx_queues; i++) {
1319 rx_queue = priv->rx_queue[i];
1320
1321 rx_queue->next_to_clean = 0;
1322 rx_queue->next_to_use = 0;
1323 rx_queue->next_to_alloc = 0;
1324
1325 /* make sure next_to_clean != next_to_use after this
1326 * by leaving at least 1 unused descriptor
1327 */
1328 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1329
1330 rx_queue->rfbptr = rfbptr;
1331 rfbptr += 2;
1332 }
1333 }
1334
gfar_alloc_skb_resources(struct net_device * ndev)1335 static int gfar_alloc_skb_resources(struct net_device *ndev)
1336 {
1337 void *vaddr;
1338 dma_addr_t addr;
1339 int i, j;
1340 struct gfar_private *priv = netdev_priv(ndev);
1341 struct device *dev = priv->dev;
1342 struct gfar_priv_tx_q *tx_queue = NULL;
1343 struct gfar_priv_rx_q *rx_queue = NULL;
1344
1345 priv->total_tx_ring_size = 0;
1346 for (i = 0; i < priv->num_tx_queues; i++)
1347 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1348
1349 priv->total_rx_ring_size = 0;
1350 for (i = 0; i < priv->num_rx_queues; i++)
1351 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1352
1353 /* Allocate memory for the buffer descriptors */
1354 vaddr = dma_alloc_coherent(dev,
1355 (priv->total_tx_ring_size *
1356 sizeof(struct txbd8)) +
1357 (priv->total_rx_ring_size *
1358 sizeof(struct rxbd8)),
1359 &addr, GFP_KERNEL);
1360 if (!vaddr)
1361 return -ENOMEM;
1362
1363 for (i = 0; i < priv->num_tx_queues; i++) {
1364 tx_queue = priv->tx_queue[i];
1365 tx_queue->tx_bd_base = vaddr;
1366 tx_queue->tx_bd_dma_base = addr;
1367 tx_queue->dev = ndev;
1368 /* enet DMA only understands physical addresses */
1369 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1370 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1371 }
1372
1373 /* Start the rx descriptor ring where the tx ring leaves off */
1374 for (i = 0; i < priv->num_rx_queues; i++) {
1375 rx_queue = priv->rx_queue[i];
1376 rx_queue->rx_bd_base = vaddr;
1377 rx_queue->rx_bd_dma_base = addr;
1378 rx_queue->ndev = ndev;
1379 rx_queue->dev = dev;
1380 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1381 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1382 }
1383
1384 /* Setup the skbuff rings */
1385 for (i = 0; i < priv->num_tx_queues; i++) {
1386 tx_queue = priv->tx_queue[i];
1387 tx_queue->tx_skbuff =
1388 kmalloc_array(tx_queue->tx_ring_size,
1389 sizeof(*tx_queue->tx_skbuff),
1390 GFP_KERNEL);
1391 if (!tx_queue->tx_skbuff)
1392 goto cleanup;
1393
1394 for (j = 0; j < tx_queue->tx_ring_size; j++)
1395 tx_queue->tx_skbuff[j] = NULL;
1396 }
1397
1398 for (i = 0; i < priv->num_rx_queues; i++) {
1399 rx_queue = priv->rx_queue[i];
1400 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1401 sizeof(*rx_queue->rx_buff),
1402 GFP_KERNEL);
1403 if (!rx_queue->rx_buff)
1404 goto cleanup;
1405 }
1406
1407 gfar_init_bds(ndev);
1408
1409 return 0;
1410
1411 cleanup:
1412 free_skb_resources(priv);
1413 return -ENOMEM;
1414 }
1415
1416 /* Bring the controller up and running */
startup_gfar(struct net_device * ndev)1417 int startup_gfar(struct net_device *ndev)
1418 {
1419 struct gfar_private *priv = netdev_priv(ndev);
1420 int err;
1421
1422 gfar_mac_reset(priv);
1423
1424 err = gfar_alloc_skb_resources(ndev);
1425 if (err)
1426 return err;
1427
1428 gfar_init_tx_rx_base(priv);
1429
1430 smp_mb__before_atomic();
1431 clear_bit(GFAR_DOWN, &priv->state);
1432 smp_mb__after_atomic();
1433
1434 /* Start Rx/Tx DMA and enable the interrupts */
1435 gfar_start(priv);
1436
1437 /* force link state update after mac reset */
1438 priv->oldlink = 0;
1439 priv->oldspeed = 0;
1440 priv->oldduplex = -1;
1441
1442 phy_start(ndev->phydev);
1443
1444 enable_napi(priv);
1445
1446 netif_tx_wake_all_queues(ndev);
1447
1448 return 0;
1449 }
1450
gfar_get_flowctrl_cfg(struct gfar_private * priv)1451 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1452 {
1453 struct net_device *ndev = priv->ndev;
1454 struct phy_device *phydev = ndev->phydev;
1455 u32 val = 0;
1456
1457 if (!phydev->duplex)
1458 return val;
1459
1460 if (!priv->pause_aneg_en) {
1461 if (priv->tx_pause_en)
1462 val |= MACCFG1_TX_FLOW;
1463 if (priv->rx_pause_en)
1464 val |= MACCFG1_RX_FLOW;
1465 } else {
1466 u16 lcl_adv, rmt_adv;
1467 u8 flowctrl;
1468 /* get link partner capabilities */
1469 rmt_adv = 0;
1470 if (phydev->pause)
1471 rmt_adv = LPA_PAUSE_CAP;
1472 if (phydev->asym_pause)
1473 rmt_adv |= LPA_PAUSE_ASYM;
1474
1475 lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1476 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1477 if (flowctrl & FLOW_CTRL_TX)
1478 val |= MACCFG1_TX_FLOW;
1479 if (flowctrl & FLOW_CTRL_RX)
1480 val |= MACCFG1_RX_FLOW;
1481 }
1482
1483 return val;
1484 }
1485
gfar_update_link_state(struct gfar_private * priv)1486 static noinline void gfar_update_link_state(struct gfar_private *priv)
1487 {
1488 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1489 struct net_device *ndev = priv->ndev;
1490 struct phy_device *phydev = ndev->phydev;
1491 struct gfar_priv_rx_q *rx_queue = NULL;
1492 int i;
1493
1494 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1495 return;
1496
1497 if (phydev->link) {
1498 u32 tempval1 = gfar_read(®s->maccfg1);
1499 u32 tempval = gfar_read(®s->maccfg2);
1500 u32 ecntrl = gfar_read(®s->ecntrl);
1501 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1502
1503 if (phydev->duplex != priv->oldduplex) {
1504 if (!(phydev->duplex))
1505 tempval &= ~(MACCFG2_FULL_DUPLEX);
1506 else
1507 tempval |= MACCFG2_FULL_DUPLEX;
1508
1509 priv->oldduplex = phydev->duplex;
1510 }
1511
1512 if (phydev->speed != priv->oldspeed) {
1513 switch (phydev->speed) {
1514 case 1000:
1515 tempval =
1516 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1517
1518 ecntrl &= ~(ECNTRL_R100);
1519 break;
1520 case 100:
1521 case 10:
1522 tempval =
1523 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1524
1525 /* Reduced mode distinguishes
1526 * between 10 and 100
1527 */
1528 if (phydev->speed == SPEED_100)
1529 ecntrl |= ECNTRL_R100;
1530 else
1531 ecntrl &= ~(ECNTRL_R100);
1532 break;
1533 default:
1534 netif_warn(priv, link, priv->ndev,
1535 "Ack! Speed (%d) is not 10/100/1000!\n",
1536 phydev->speed);
1537 break;
1538 }
1539
1540 priv->oldspeed = phydev->speed;
1541 }
1542
1543 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1544 tempval1 |= gfar_get_flowctrl_cfg(priv);
1545
1546 /* Turn last free buffer recording on */
1547 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1548 for (i = 0; i < priv->num_rx_queues; i++) {
1549 u32 bdp_dma;
1550
1551 rx_queue = priv->rx_queue[i];
1552 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1553 gfar_write(rx_queue->rfbptr, bdp_dma);
1554 }
1555
1556 priv->tx_actual_en = 1;
1557 }
1558
1559 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1560 priv->tx_actual_en = 0;
1561
1562 gfar_write(®s->maccfg1, tempval1);
1563 gfar_write(®s->maccfg2, tempval);
1564 gfar_write(®s->ecntrl, ecntrl);
1565
1566 if (!priv->oldlink)
1567 priv->oldlink = 1;
1568
1569 } else if (priv->oldlink) {
1570 priv->oldlink = 0;
1571 priv->oldspeed = 0;
1572 priv->oldduplex = -1;
1573 }
1574
1575 if (netif_msg_link(priv))
1576 phy_print_status(phydev);
1577 }
1578
1579 /* Called every time the controller might need to be made
1580 * aware of new link state. The PHY code conveys this
1581 * information through variables in the phydev structure, and this
1582 * function converts those variables into the appropriate
1583 * register values, and can bring down the device if needed.
1584 */
adjust_link(struct net_device * dev)1585 static void adjust_link(struct net_device *dev)
1586 {
1587 struct gfar_private *priv = netdev_priv(dev);
1588 struct phy_device *phydev = dev->phydev;
1589
1590 if (unlikely(phydev->link != priv->oldlink ||
1591 (phydev->link && (phydev->duplex != priv->oldduplex ||
1592 phydev->speed != priv->oldspeed))))
1593 gfar_update_link_state(priv);
1594 }
1595
1596 /* Initialize TBI PHY interface for communicating with the
1597 * SERDES lynx PHY on the chip. We communicate with this PHY
1598 * through the MDIO bus on each controller, treating it as a
1599 * "normal" PHY at the address found in the TBIPA register. We assume
1600 * that the TBIPA register is valid. Either the MDIO bus code will set
1601 * it to a value that doesn't conflict with other PHYs on the bus, or the
1602 * value doesn't matter, as there are no other PHYs on the bus.
1603 */
gfar_configure_serdes(struct net_device * dev)1604 static void gfar_configure_serdes(struct net_device *dev)
1605 {
1606 struct gfar_private *priv = netdev_priv(dev);
1607 struct phy_device *tbiphy;
1608
1609 if (!priv->tbi_node) {
1610 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1611 "device tree specify a tbi-handle\n");
1612 return;
1613 }
1614
1615 tbiphy = of_phy_find_device(priv->tbi_node);
1616 if (!tbiphy) {
1617 dev_err(&dev->dev, "error: Could not get TBI device\n");
1618 return;
1619 }
1620
1621 /* If the link is already up, we must already be ok, and don't need to
1622 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1623 * everything for us? Resetting it takes the link down and requires
1624 * several seconds for it to come back.
1625 */
1626 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1627 put_device(&tbiphy->mdio.dev);
1628 return;
1629 }
1630
1631 /* Single clk mode, mii mode off(for serdes communication) */
1632 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1633
1634 phy_write(tbiphy, MII_ADVERTISE,
1635 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1636 ADVERTISE_1000XPSE_ASYM);
1637
1638 phy_write(tbiphy, MII_BMCR,
1639 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1640 BMCR_SPEED1000);
1641
1642 put_device(&tbiphy->mdio.dev);
1643 }
1644
1645 /* Initializes driver's PHY state, and attaches to the PHY.
1646 * Returns 0 on success.
1647 */
init_phy(struct net_device * dev)1648 static int init_phy(struct net_device *dev)
1649 {
1650 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1651 struct gfar_private *priv = netdev_priv(dev);
1652 phy_interface_t interface = priv->interface;
1653 struct phy_device *phydev;
1654 struct ethtool_keee edata;
1655
1656 linkmode_set_bit_array(phy_10_100_features_array,
1657 ARRAY_SIZE(phy_10_100_features_array),
1658 mask);
1659 linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1660 linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1661 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1662 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1663
1664 priv->oldlink = 0;
1665 priv->oldspeed = 0;
1666 priv->oldduplex = -1;
1667
1668 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1669 interface);
1670 if (!phydev) {
1671 dev_err(&dev->dev, "could not attach to PHY\n");
1672 return -ENODEV;
1673 }
1674
1675 if (interface == PHY_INTERFACE_MODE_SGMII)
1676 gfar_configure_serdes(dev);
1677
1678 /* Remove any features not supported by the controller */
1679 linkmode_and(phydev->supported, phydev->supported, mask);
1680 linkmode_copy(phydev->advertising, phydev->supported);
1681
1682 /* Add support for flow control */
1683 phy_support_asym_pause(phydev);
1684
1685 /* disable EEE autoneg, EEE not supported by eTSEC */
1686 memset(&edata, 0, sizeof(struct ethtool_keee));
1687 phy_ethtool_set_eee(phydev, &edata);
1688
1689 return 0;
1690 }
1691
gfar_add_fcb(struct sk_buff * skb)1692 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1693 {
1694 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1695
1696 memset(fcb, 0, GMAC_FCB_LEN);
1697
1698 return fcb;
1699 }
1700
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb,int fcb_length)1701 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1702 int fcb_length)
1703 {
1704 /* If we're here, it's a IP packet with a TCP or UDP
1705 * payload. We set it to checksum, using a pseudo-header
1706 * we provide
1707 */
1708 u8 flags = TXFCB_DEFAULT;
1709
1710 /* Tell the controller what the protocol is
1711 * And provide the already calculated phcs
1712 */
1713 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1714 flags |= TXFCB_UDP;
1715 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1716 } else
1717 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1718
1719 /* l3os is the distance between the start of the
1720 * frame (skb->data) and the start of the IP hdr.
1721 * l4os is the distance between the start of the
1722 * l3 hdr and the l4 hdr
1723 */
1724 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1725 fcb->l4os = skb_network_header_len(skb);
1726
1727 fcb->flags = flags;
1728 }
1729
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)1730 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1731 {
1732 fcb->flags |= TXFCB_VLN;
1733 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1734 }
1735
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)1736 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1737 struct txbd8 *base, int ring_size)
1738 {
1739 struct txbd8 *new_bd = bdp + stride;
1740
1741 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1742 }
1743
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)1744 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1745 int ring_size)
1746 {
1747 return skip_txbd(bdp, 1, base, ring_size);
1748 }
1749
1750 /* eTSEC12: csum generation not supported for some fcb offsets */
gfar_csum_errata_12(struct gfar_private * priv,unsigned long fcb_addr)1751 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1752 unsigned long fcb_addr)
1753 {
1754 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1755 (fcb_addr % 0x20) > 0x18);
1756 }
1757
1758 /* eTSEC76: csum generation for frames larger than 2500 may
1759 * cause excess delays before start of transmission
1760 */
gfar_csum_errata_76(struct gfar_private * priv,unsigned int len)1761 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1762 unsigned int len)
1763 {
1764 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1765 (len > 2500));
1766 }
1767
1768 /* This is called by the kernel when a frame is ready for transmission.
1769 * It is pointed to by the dev->hard_start_xmit function pointer
1770 */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)1771 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1772 {
1773 struct gfar_private *priv = netdev_priv(dev);
1774 struct gfar_priv_tx_q *tx_queue = NULL;
1775 struct netdev_queue *txq;
1776 struct gfar __iomem *regs = NULL;
1777 struct txfcb *fcb = NULL;
1778 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1779 u32 lstatus;
1780 skb_frag_t *frag;
1781 int i, rq = 0;
1782 int do_tstamp, do_csum, do_vlan;
1783 u32 bufaddr;
1784 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1785
1786 rq = skb->queue_mapping;
1787 tx_queue = priv->tx_queue[rq];
1788 txq = netdev_get_tx_queue(dev, rq);
1789 base = tx_queue->tx_bd_base;
1790 regs = tx_queue->grp->regs;
1791
1792 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1793 do_vlan = skb_vlan_tag_present(skb);
1794 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1795 priv->hwts_tx_en;
1796
1797 if (do_csum || do_vlan)
1798 fcb_len = GMAC_FCB_LEN;
1799
1800 /* check if time stamp should be generated */
1801 if (unlikely(do_tstamp))
1802 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1803
1804 /* make space for additional header when fcb is needed */
1805 if (fcb_len) {
1806 if (unlikely(skb_cow_head(skb, fcb_len))) {
1807 dev->stats.tx_errors++;
1808 dev_kfree_skb_any(skb);
1809 return NETDEV_TX_OK;
1810 }
1811 }
1812
1813 /* total number of fragments in the SKB */
1814 nr_frags = skb_shinfo(skb)->nr_frags;
1815
1816 /* calculate the required number of TxBDs for this skb */
1817 if (unlikely(do_tstamp))
1818 nr_txbds = nr_frags + 2;
1819 else
1820 nr_txbds = nr_frags + 1;
1821
1822 /* check if there is space to queue this packet */
1823 if (nr_txbds > tx_queue->num_txbdfree) {
1824 /* no space, stop the queue */
1825 netif_tx_stop_queue(txq);
1826 dev->stats.tx_fifo_errors++;
1827 return NETDEV_TX_BUSY;
1828 }
1829
1830 /* Update transmit stats */
1831 bytes_sent = skb->len;
1832 tx_queue->stats.tx_bytes += bytes_sent;
1833 /* keep Tx bytes on wire for BQL accounting */
1834 GFAR_CB(skb)->bytes_sent = bytes_sent;
1835 tx_queue->stats.tx_packets++;
1836
1837 txbdp = txbdp_start = tx_queue->cur_tx;
1838 lstatus = be32_to_cpu(txbdp->lstatus);
1839
1840 /* Add TxPAL between FCB and frame if required */
1841 if (unlikely(do_tstamp)) {
1842 skb_push(skb, GMAC_TXPAL_LEN);
1843 memset(skb->data, 0, GMAC_TXPAL_LEN);
1844 }
1845
1846 /* Add TxFCB if required */
1847 if (fcb_len) {
1848 fcb = gfar_add_fcb(skb);
1849 lstatus |= BD_LFLAG(TXBD_TOE);
1850 }
1851
1852 /* Set up checksumming */
1853 if (do_csum) {
1854 gfar_tx_checksum(skb, fcb, fcb_len);
1855
1856 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1857 unlikely(gfar_csum_errata_76(priv, skb->len))) {
1858 __skb_pull(skb, GMAC_FCB_LEN);
1859 skb_checksum_help(skb);
1860 if (do_vlan || do_tstamp) {
1861 /* put back a new fcb for vlan/tstamp TOE */
1862 fcb = gfar_add_fcb(skb);
1863 } else {
1864 /* Tx TOE not used */
1865 lstatus &= ~(BD_LFLAG(TXBD_TOE));
1866 fcb = NULL;
1867 }
1868 }
1869 }
1870
1871 if (do_vlan)
1872 gfar_tx_vlan(skb, fcb);
1873
1874 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1875 DMA_TO_DEVICE);
1876 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1877 goto dma_map_err;
1878
1879 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1880
1881 /* Time stamp insertion requires one additional TxBD */
1882 if (unlikely(do_tstamp))
1883 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1884 tx_queue->tx_ring_size);
1885
1886 if (likely(!nr_frags)) {
1887 if (likely(!do_tstamp))
1888 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1889 } else {
1890 u32 lstatus_start = lstatus;
1891
1892 /* Place the fragment addresses and lengths into the TxBDs */
1893 frag = &skb_shinfo(skb)->frags[0];
1894 for (i = 0; i < nr_frags; i++, frag++) {
1895 unsigned int size;
1896
1897 /* Point at the next BD, wrapping as needed */
1898 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1899
1900 size = skb_frag_size(frag);
1901
1902 lstatus = be32_to_cpu(txbdp->lstatus) | size |
1903 BD_LFLAG(TXBD_READY);
1904
1905 /* Handle the last BD specially */
1906 if (i == nr_frags - 1)
1907 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1908
1909 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1910 size, DMA_TO_DEVICE);
1911 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1912 goto dma_map_err;
1913
1914 /* set the TxBD length and buffer pointer */
1915 txbdp->bufPtr = cpu_to_be32(bufaddr);
1916 txbdp->lstatus = cpu_to_be32(lstatus);
1917 }
1918
1919 lstatus = lstatus_start;
1920 }
1921
1922 /* If time stamping is requested one additional TxBD must be set up. The
1923 * first TxBD points to the FCB and must have a data length of
1924 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1925 * the full frame length.
1926 */
1927 if (unlikely(do_tstamp)) {
1928 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1929
1930 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1931 bufaddr += fcb_len;
1932
1933 lstatus_ts |= BD_LFLAG(TXBD_READY) |
1934 (skb_headlen(skb) - fcb_len);
1935 if (!nr_frags)
1936 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1937
1938 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1939 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1940 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1941
1942 /* Setup tx hardware time stamping */
1943 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1944 fcb->ptp = 1;
1945 } else {
1946 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1947 }
1948
1949 skb_tx_timestamp(skb);
1950 netdev_tx_sent_queue(txq, bytes_sent);
1951
1952 gfar_wmb();
1953
1954 txbdp_start->lstatus = cpu_to_be32(lstatus);
1955
1956 gfar_wmb(); /* force lstatus write before tx_skbuff */
1957
1958 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1959
1960 /* Update the current skb pointer to the next entry we will use
1961 * (wrapping if necessary)
1962 */
1963 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1964 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1965
1966 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1967
1968 /* We can work in parallel with gfar_clean_tx_ring(), except
1969 * when modifying num_txbdfree. Note that we didn't grab the lock
1970 * when we were reading the num_txbdfree and checking for available
1971 * space, that's because outside of this function it can only grow.
1972 */
1973 spin_lock_bh(&tx_queue->txlock);
1974 /* reduce TxBD free count */
1975 tx_queue->num_txbdfree -= (nr_txbds);
1976 spin_unlock_bh(&tx_queue->txlock);
1977
1978 /* If the next BD still needs to be cleaned up, then the bds
1979 * are full. We need to tell the kernel to stop sending us stuff.
1980 */
1981 if (!tx_queue->num_txbdfree) {
1982 netif_tx_stop_queue(txq);
1983
1984 dev->stats.tx_fifo_errors++;
1985 }
1986
1987 /* Tell the DMA to go go go */
1988 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1989
1990 return NETDEV_TX_OK;
1991
1992 dma_map_err:
1993 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1994 if (do_tstamp)
1995 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1996 for (i = 0; i < nr_frags; i++) {
1997 lstatus = be32_to_cpu(txbdp->lstatus);
1998 if (!(lstatus & BD_LFLAG(TXBD_READY)))
1999 break;
2000
2001 lstatus &= ~BD_LFLAG(TXBD_READY);
2002 txbdp->lstatus = cpu_to_be32(lstatus);
2003 bufaddr = be32_to_cpu(txbdp->bufPtr);
2004 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2005 DMA_TO_DEVICE);
2006 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2007 }
2008 gfar_wmb();
2009 dev_kfree_skb_any(skb);
2010 return NETDEV_TX_OK;
2011 }
2012
2013 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)2014 static int gfar_set_mac_address(struct net_device *dev)
2015 {
2016 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2017
2018 return 0;
2019 }
2020
gfar_change_mtu(struct net_device * dev,int new_mtu)2021 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2022 {
2023 struct gfar_private *priv = netdev_priv(dev);
2024
2025 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2026 cpu_relax();
2027
2028 if (dev->flags & IFF_UP)
2029 stop_gfar(dev);
2030
2031 WRITE_ONCE(dev->mtu, new_mtu);
2032
2033 if (dev->flags & IFF_UP)
2034 startup_gfar(dev);
2035
2036 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2037
2038 return 0;
2039 }
2040
reset_gfar(struct net_device * ndev)2041 static void reset_gfar(struct net_device *ndev)
2042 {
2043 struct gfar_private *priv = netdev_priv(ndev);
2044
2045 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2046 cpu_relax();
2047
2048 stop_gfar(ndev);
2049 startup_gfar(ndev);
2050
2051 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2052 }
2053
2054 /* gfar_reset_task gets scheduled when a packet has not been
2055 * transmitted after a set amount of time.
2056 * For now, assume that clearing out all the structures, and
2057 * starting over will fix the problem.
2058 */
gfar_reset_task(struct work_struct * work)2059 static void gfar_reset_task(struct work_struct *work)
2060 {
2061 struct gfar_private *priv = container_of(work, struct gfar_private,
2062 reset_task);
2063 reset_gfar(priv->ndev);
2064 }
2065
gfar_timeout(struct net_device * dev,unsigned int txqueue)2066 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2067 {
2068 struct gfar_private *priv = netdev_priv(dev);
2069
2070 dev->stats.tx_errors++;
2071 schedule_work(&priv->reset_task);
2072 }
2073
gfar_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)2074 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2075 {
2076 struct hwtstamp_config config;
2077 struct gfar_private *priv = netdev_priv(netdev);
2078
2079 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2080 return -EFAULT;
2081
2082 switch (config.tx_type) {
2083 case HWTSTAMP_TX_OFF:
2084 priv->hwts_tx_en = 0;
2085 break;
2086 case HWTSTAMP_TX_ON:
2087 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2088 return -ERANGE;
2089 priv->hwts_tx_en = 1;
2090 break;
2091 default:
2092 return -ERANGE;
2093 }
2094
2095 switch (config.rx_filter) {
2096 case HWTSTAMP_FILTER_NONE:
2097 if (priv->hwts_rx_en) {
2098 priv->hwts_rx_en = 0;
2099 reset_gfar(netdev);
2100 }
2101 break;
2102 default:
2103 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2104 return -ERANGE;
2105 if (!priv->hwts_rx_en) {
2106 priv->hwts_rx_en = 1;
2107 reset_gfar(netdev);
2108 }
2109 config.rx_filter = HWTSTAMP_FILTER_ALL;
2110 break;
2111 }
2112
2113 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2114 -EFAULT : 0;
2115 }
2116
gfar_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)2117 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2118 {
2119 struct hwtstamp_config config;
2120 struct gfar_private *priv = netdev_priv(netdev);
2121
2122 config.flags = 0;
2123 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2124 config.rx_filter = (priv->hwts_rx_en ?
2125 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2126
2127 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2128 -EFAULT : 0;
2129 }
2130
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2131 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2132 {
2133 struct phy_device *phydev = dev->phydev;
2134
2135 if (!netif_running(dev))
2136 return -EINVAL;
2137
2138 if (cmd == SIOCSHWTSTAMP)
2139 return gfar_hwtstamp_set(dev, rq);
2140 if (cmd == SIOCGHWTSTAMP)
2141 return gfar_hwtstamp_get(dev, rq);
2142
2143 if (!phydev)
2144 return -ENODEV;
2145
2146 return phy_mii_ioctl(phydev, rq, cmd);
2147 }
2148
2149 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct gfar_priv_tx_q * tx_queue)2150 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2151 {
2152 struct net_device *dev = tx_queue->dev;
2153 struct netdev_queue *txq;
2154 struct gfar_private *priv = netdev_priv(dev);
2155 struct txbd8 *bdp, *next = NULL;
2156 struct txbd8 *lbdp = NULL;
2157 struct txbd8 *base = tx_queue->tx_bd_base;
2158 struct sk_buff *skb;
2159 int skb_dirtytx;
2160 int tx_ring_size = tx_queue->tx_ring_size;
2161 int frags = 0, nr_txbds = 0;
2162 int i;
2163 int howmany = 0;
2164 int tqi = tx_queue->qindex;
2165 unsigned int bytes_sent = 0;
2166 u32 lstatus;
2167 size_t buflen;
2168
2169 txq = netdev_get_tx_queue(dev, tqi);
2170 bdp = tx_queue->dirty_tx;
2171 skb_dirtytx = tx_queue->skb_dirtytx;
2172
2173 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2174 bool do_tstamp;
2175
2176 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2177 priv->hwts_tx_en;
2178
2179 frags = skb_shinfo(skb)->nr_frags;
2180
2181 /* When time stamping, one additional TxBD must be freed.
2182 * Also, we need to dma_unmap_single() the TxPAL.
2183 */
2184 if (unlikely(do_tstamp))
2185 nr_txbds = frags + 2;
2186 else
2187 nr_txbds = frags + 1;
2188
2189 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2190
2191 lstatus = be32_to_cpu(lbdp->lstatus);
2192
2193 /* Only clean completed frames */
2194 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2195 (lstatus & BD_LENGTH_MASK))
2196 break;
2197
2198 if (unlikely(do_tstamp)) {
2199 next = next_txbd(bdp, base, tx_ring_size);
2200 buflen = be16_to_cpu(next->length) +
2201 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2202 } else
2203 buflen = be16_to_cpu(bdp->length);
2204
2205 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2206 buflen, DMA_TO_DEVICE);
2207
2208 if (unlikely(do_tstamp)) {
2209 struct skb_shared_hwtstamps shhwtstamps;
2210 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2211 ~0x7UL);
2212
2213 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2214 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2215 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2216 skb_tstamp_tx(skb, &shhwtstamps);
2217 gfar_clear_txbd_status(bdp);
2218 bdp = next;
2219 }
2220
2221 gfar_clear_txbd_status(bdp);
2222 bdp = next_txbd(bdp, base, tx_ring_size);
2223
2224 for (i = 0; i < frags; i++) {
2225 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2226 be16_to_cpu(bdp->length),
2227 DMA_TO_DEVICE);
2228 gfar_clear_txbd_status(bdp);
2229 bdp = next_txbd(bdp, base, tx_ring_size);
2230 }
2231
2232 bytes_sent += GFAR_CB(skb)->bytes_sent;
2233
2234 dev_kfree_skb_any(skb);
2235
2236 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2237
2238 skb_dirtytx = (skb_dirtytx + 1) &
2239 TX_RING_MOD_MASK(tx_ring_size);
2240
2241 howmany++;
2242 spin_lock(&tx_queue->txlock);
2243 tx_queue->num_txbdfree += nr_txbds;
2244 spin_unlock(&tx_queue->txlock);
2245 }
2246
2247 /* If we freed a buffer, we can restart transmission, if necessary */
2248 if (tx_queue->num_txbdfree &&
2249 netif_tx_queue_stopped(txq) &&
2250 !(test_bit(GFAR_DOWN, &priv->state)))
2251 netif_wake_subqueue(priv->ndev, tqi);
2252
2253 /* Update dirty indicators */
2254 tx_queue->skb_dirtytx = skb_dirtytx;
2255 tx_queue->dirty_tx = bdp;
2256
2257 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2258 }
2259
count_errors(u32 lstatus,struct net_device * ndev)2260 static void count_errors(u32 lstatus, struct net_device *ndev)
2261 {
2262 struct gfar_private *priv = netdev_priv(ndev);
2263 struct net_device_stats *stats = &ndev->stats;
2264 struct gfar_extra_stats *estats = &priv->extra_stats;
2265
2266 /* If the packet was truncated, none of the other errors matter */
2267 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2268 stats->rx_length_errors++;
2269
2270 atomic64_inc(&estats->rx_trunc);
2271
2272 return;
2273 }
2274 /* Count the errors, if there were any */
2275 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2276 stats->rx_length_errors++;
2277
2278 if (lstatus & BD_LFLAG(RXBD_LARGE))
2279 atomic64_inc(&estats->rx_large);
2280 else
2281 atomic64_inc(&estats->rx_short);
2282 }
2283 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2284 stats->rx_frame_errors++;
2285 atomic64_inc(&estats->rx_nonoctet);
2286 }
2287 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2288 atomic64_inc(&estats->rx_crcerr);
2289 stats->rx_crc_errors++;
2290 }
2291 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2292 atomic64_inc(&estats->rx_overrun);
2293 stats->rx_over_errors++;
2294 }
2295 }
2296
gfar_receive(int irq,void * grp_id)2297 static irqreturn_t gfar_receive(int irq, void *grp_id)
2298 {
2299 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2300 unsigned long flags;
2301 u32 imask, ievent;
2302
2303 ievent = gfar_read(&grp->regs->ievent);
2304
2305 if (unlikely(ievent & IEVENT_FGPI)) {
2306 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2307 return IRQ_HANDLED;
2308 }
2309
2310 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2311 spin_lock_irqsave(&grp->grplock, flags);
2312 imask = gfar_read(&grp->regs->imask);
2313 imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2314 gfar_write(&grp->regs->imask, imask);
2315 spin_unlock_irqrestore(&grp->grplock, flags);
2316 __napi_schedule(&grp->napi_rx);
2317 } else {
2318 /* Clear IEVENT, so interrupts aren't called again
2319 * because of the packets that have already arrived.
2320 */
2321 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2322 }
2323
2324 return IRQ_HANDLED;
2325 }
2326
2327 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * grp_id)2328 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2329 {
2330 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2331 unsigned long flags;
2332 u32 imask;
2333
2334 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2335 spin_lock_irqsave(&grp->grplock, flags);
2336 imask = gfar_read(&grp->regs->imask);
2337 imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2338 gfar_write(&grp->regs->imask, imask);
2339 spin_unlock_irqrestore(&grp->grplock, flags);
2340 __napi_schedule(&grp->napi_tx);
2341 } else {
2342 /* Clear IEVENT, so interrupts aren't called again
2343 * because of the packets that have already arrived.
2344 */
2345 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2346 }
2347
2348 return IRQ_HANDLED;
2349 }
2350
gfar_add_rx_frag(struct gfar_rx_buff * rxb,u32 lstatus,struct sk_buff * skb,bool first)2351 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2352 struct sk_buff *skb, bool first)
2353 {
2354 int size = lstatus & BD_LENGTH_MASK;
2355 struct page *page = rxb->page;
2356
2357 if (likely(first)) {
2358 skb_put(skb, size);
2359 } else {
2360 /* the last fragments' length contains the full frame length */
2361 if (lstatus & BD_LFLAG(RXBD_LAST))
2362 size -= skb->len;
2363
2364 WARN(size < 0, "gianfar: rx fragment size underflow");
2365 if (size < 0)
2366 return false;
2367
2368 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2369 rxb->page_offset + RXBUF_ALIGNMENT,
2370 size, GFAR_RXB_TRUESIZE);
2371 }
2372
2373 /* try reuse page */
2374 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2375 return false;
2376
2377 /* change offset to the other half */
2378 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2379
2380 page_ref_inc(page);
2381
2382 return true;
2383 }
2384
gfar_reuse_rx_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * old_rxb)2385 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2386 struct gfar_rx_buff *old_rxb)
2387 {
2388 struct gfar_rx_buff *new_rxb;
2389 u16 nta = rxq->next_to_alloc;
2390
2391 new_rxb = &rxq->rx_buff[nta];
2392
2393 /* find next buf that can reuse a page */
2394 nta++;
2395 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2396
2397 /* copy page reference */
2398 *new_rxb = *old_rxb;
2399
2400 /* sync for use by the device */
2401 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2402 old_rxb->page_offset,
2403 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2404 }
2405
gfar_get_next_rxbuff(struct gfar_priv_rx_q * rx_queue,u32 lstatus,struct sk_buff * skb)2406 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2407 u32 lstatus, struct sk_buff *skb)
2408 {
2409 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2410 struct page *page = rxb->page;
2411 bool first = false;
2412
2413 if (likely(!skb)) {
2414 void *buff_addr = page_address(page) + rxb->page_offset;
2415
2416 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2417 if (unlikely(!skb)) {
2418 gfar_rx_alloc_err(rx_queue);
2419 return NULL;
2420 }
2421 skb_reserve(skb, RXBUF_ALIGNMENT);
2422 first = true;
2423 }
2424
2425 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2426 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2427
2428 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2429 /* reuse the free half of the page */
2430 gfar_reuse_rx_page(rx_queue, rxb);
2431 } else {
2432 /* page cannot be reused, unmap it */
2433 dma_unmap_page(rx_queue->dev, rxb->dma,
2434 PAGE_SIZE, DMA_FROM_DEVICE);
2435 }
2436
2437 /* clear rxb content */
2438 rxb->page = NULL;
2439
2440 return skb;
2441 }
2442
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)2443 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2444 {
2445 /* If valid headers were found, and valid sums
2446 * were verified, then we tell the kernel that no
2447 * checksumming is necessary. Otherwise, it is [FIXME]
2448 */
2449 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2450 (RXFCB_CIP | RXFCB_CTU))
2451 skb->ip_summed = CHECKSUM_UNNECESSARY;
2452 else
2453 skb_checksum_none_assert(skb);
2454 }
2455
2456 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
gfar_process_frame(struct net_device * ndev,struct sk_buff * skb)2457 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2458 {
2459 struct gfar_private *priv = netdev_priv(ndev);
2460 struct rxfcb *fcb = NULL;
2461
2462 /* fcb is at the beginning if exists */
2463 fcb = (struct rxfcb *)skb->data;
2464
2465 /* Remove the FCB from the skb
2466 * Remove the padded bytes, if there are any
2467 */
2468 if (priv->uses_rxfcb)
2469 skb_pull(skb, GMAC_FCB_LEN);
2470
2471 /* Get receive timestamp from the skb */
2472 if (priv->hwts_rx_en) {
2473 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2474 u64 *ns = (u64 *) skb->data;
2475
2476 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2477 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2478 }
2479
2480 if (priv->padding)
2481 skb_pull(skb, priv->padding);
2482
2483 /* Trim off the FCS */
2484 pskb_trim(skb, skb->len - ETH_FCS_LEN);
2485
2486 if (ndev->features & NETIF_F_RXCSUM)
2487 gfar_rx_checksum(skb, fcb);
2488
2489 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2490 * Even if vlan rx accel is disabled, on some chips
2491 * RXFCB_VLN is pseudo randomly set.
2492 */
2493 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2494 be16_to_cpu(fcb->flags) & RXFCB_VLN)
2495 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2496 be16_to_cpu(fcb->vlctl));
2497 }
2498
2499 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2500 * until the budget/quota has been reached. Returns the number
2501 * of frames handled
2502 */
gfar_clean_rx_ring(struct gfar_priv_rx_q * rx_queue,int rx_work_limit)2503 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2504 int rx_work_limit)
2505 {
2506 struct net_device *ndev = rx_queue->ndev;
2507 struct gfar_private *priv = netdev_priv(ndev);
2508 struct rxbd8 *bdp;
2509 int i, howmany = 0;
2510 struct sk_buff *skb = rx_queue->skb;
2511 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2512 unsigned int total_bytes = 0, total_pkts = 0;
2513
2514 /* Get the first full descriptor */
2515 i = rx_queue->next_to_clean;
2516
2517 while (rx_work_limit--) {
2518 u32 lstatus;
2519
2520 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2521 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2522 cleaned_cnt = 0;
2523 }
2524
2525 bdp = &rx_queue->rx_bd_base[i];
2526 lstatus = be32_to_cpu(bdp->lstatus);
2527 if (lstatus & BD_LFLAG(RXBD_EMPTY))
2528 break;
2529
2530 /* lost RXBD_LAST descriptor due to overrun */
2531 if (skb &&
2532 (lstatus & BD_LFLAG(RXBD_FIRST))) {
2533 /* discard faulty buffer */
2534 dev_kfree_skb(skb);
2535 skb = NULL;
2536 rx_queue->stats.rx_dropped++;
2537
2538 /* can continue normally */
2539 }
2540
2541 /* order rx buffer descriptor reads */
2542 rmb();
2543
2544 /* fetch next to clean buffer from the ring */
2545 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2546 if (unlikely(!skb))
2547 break;
2548
2549 cleaned_cnt++;
2550 howmany++;
2551
2552 if (unlikely(++i == rx_queue->rx_ring_size))
2553 i = 0;
2554
2555 rx_queue->next_to_clean = i;
2556
2557 /* fetch next buffer if not the last in frame */
2558 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2559 continue;
2560
2561 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2562 count_errors(lstatus, ndev);
2563
2564 /* discard faulty buffer */
2565 dev_kfree_skb(skb);
2566 skb = NULL;
2567 rx_queue->stats.rx_dropped++;
2568 continue;
2569 }
2570
2571 gfar_process_frame(ndev, skb);
2572
2573 /* Increment the number of packets */
2574 total_pkts++;
2575 total_bytes += skb->len;
2576
2577 skb_record_rx_queue(skb, rx_queue->qindex);
2578
2579 skb->protocol = eth_type_trans(skb, ndev);
2580
2581 /* Send the packet up the stack */
2582 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2583
2584 skb = NULL;
2585 }
2586
2587 /* Store incomplete frames for completion */
2588 rx_queue->skb = skb;
2589
2590 rx_queue->stats.rx_packets += total_pkts;
2591 rx_queue->stats.rx_bytes += total_bytes;
2592
2593 if (cleaned_cnt)
2594 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2595
2596 /* Update Last Free RxBD pointer for LFC */
2597 if (unlikely(priv->tx_actual_en)) {
2598 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2599
2600 gfar_write(rx_queue->rfbptr, bdp_dma);
2601 }
2602
2603 return howmany;
2604 }
2605
gfar_poll_rx_sq(struct napi_struct * napi,int budget)2606 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2607 {
2608 struct gfar_priv_grp *gfargrp =
2609 container_of(napi, struct gfar_priv_grp, napi_rx);
2610 struct gfar __iomem *regs = gfargrp->regs;
2611 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2612 int work_done = 0;
2613
2614 /* Clear IEVENT, so interrupts aren't called again
2615 * because of the packets that have already arrived
2616 */
2617 gfar_write(®s->ievent, IEVENT_RX_MASK);
2618
2619 work_done = gfar_clean_rx_ring(rx_queue, budget);
2620
2621 if (work_done < budget) {
2622 u32 imask;
2623 napi_complete_done(napi, work_done);
2624 /* Clear the halt bit in RSTAT */
2625 gfar_write(®s->rstat, gfargrp->rstat);
2626
2627 spin_lock_irq(&gfargrp->grplock);
2628 imask = gfar_read(®s->imask);
2629 imask |= IMASK_RX_DEFAULT;
2630 gfar_write(®s->imask, imask);
2631 spin_unlock_irq(&gfargrp->grplock);
2632 }
2633
2634 return work_done;
2635 }
2636
gfar_poll_tx_sq(struct napi_struct * napi,int budget)2637 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2638 {
2639 struct gfar_priv_grp *gfargrp =
2640 container_of(napi, struct gfar_priv_grp, napi_tx);
2641 struct gfar __iomem *regs = gfargrp->regs;
2642 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2643 u32 imask;
2644
2645 /* Clear IEVENT, so interrupts aren't called again
2646 * because of the packets that have already arrived
2647 */
2648 gfar_write(®s->ievent, IEVENT_TX_MASK);
2649
2650 /* run Tx cleanup to completion */
2651 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2652 gfar_clean_tx_ring(tx_queue);
2653
2654 napi_complete(napi);
2655
2656 spin_lock_irq(&gfargrp->grplock);
2657 imask = gfar_read(®s->imask);
2658 imask |= IMASK_TX_DEFAULT;
2659 gfar_write(®s->imask, imask);
2660 spin_unlock_irq(&gfargrp->grplock);
2661
2662 return 0;
2663 }
2664
2665 /* GFAR error interrupt handler */
gfar_error(int irq,void * grp_id)2666 static irqreturn_t gfar_error(int irq, void *grp_id)
2667 {
2668 struct gfar_priv_grp *gfargrp = grp_id;
2669 struct gfar __iomem *regs = gfargrp->regs;
2670 struct gfar_private *priv= gfargrp->priv;
2671 struct net_device *dev = priv->ndev;
2672
2673 /* Save ievent for future reference */
2674 u32 events = gfar_read(®s->ievent);
2675
2676 /* Clear IEVENT */
2677 gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
2678
2679 /* Magic Packet is not an error. */
2680 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2681 (events & IEVENT_MAG))
2682 events &= ~IEVENT_MAG;
2683
2684 /* Hmm... */
2685 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2686 netdev_dbg(dev,
2687 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2688 events, gfar_read(®s->imask));
2689
2690 /* Update the error counters */
2691 if (events & IEVENT_TXE) {
2692 dev->stats.tx_errors++;
2693
2694 if (events & IEVENT_LC)
2695 dev->stats.tx_window_errors++;
2696 if (events & IEVENT_CRL)
2697 dev->stats.tx_aborted_errors++;
2698 if (events & IEVENT_XFUN) {
2699 netif_dbg(priv, tx_err, dev,
2700 "TX FIFO underrun, packet dropped\n");
2701 dev->stats.tx_dropped++;
2702 atomic64_inc(&priv->extra_stats.tx_underrun);
2703
2704 schedule_work(&priv->reset_task);
2705 }
2706 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2707 }
2708 if (events & IEVENT_MSRO) {
2709 struct rmon_mib __iomem *rmon = ®s->rmon;
2710 u32 car;
2711
2712 spin_lock(&priv->rmon_overflow.lock);
2713 car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2714 if (car) {
2715 priv->rmon_overflow.rdrp++;
2716 gfar_write(&rmon->car1, car);
2717 }
2718 spin_unlock(&priv->rmon_overflow.lock);
2719 }
2720 if (events & IEVENT_BSY) {
2721 dev->stats.rx_over_errors++;
2722 atomic64_inc(&priv->extra_stats.rx_bsy);
2723
2724 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2725 gfar_read(®s->rstat));
2726 }
2727 if (events & IEVENT_BABR) {
2728 dev->stats.rx_errors++;
2729 atomic64_inc(&priv->extra_stats.rx_babr);
2730
2731 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2732 }
2733 if (events & IEVENT_EBERR) {
2734 atomic64_inc(&priv->extra_stats.eberr);
2735 netif_dbg(priv, rx_err, dev, "bus error\n");
2736 }
2737 if (events & IEVENT_RXC)
2738 netif_dbg(priv, rx_status, dev, "control frame\n");
2739
2740 if (events & IEVENT_BABT) {
2741 atomic64_inc(&priv->extra_stats.tx_babt);
2742 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2743 }
2744 return IRQ_HANDLED;
2745 }
2746
2747 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * grp_id)2748 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2749 {
2750 struct gfar_priv_grp *gfargrp = grp_id;
2751
2752 /* Save ievent for future reference */
2753 u32 events = gfar_read(&gfargrp->regs->ievent);
2754
2755 /* Check for reception */
2756 if (events & IEVENT_RX_MASK)
2757 gfar_receive(irq, grp_id);
2758
2759 /* Check for transmit completion */
2760 if (events & IEVENT_TX_MASK)
2761 gfar_transmit(irq, grp_id);
2762
2763 /* Check for errors */
2764 if (events & IEVENT_ERR_MASK)
2765 gfar_error(irq, grp_id);
2766
2767 return IRQ_HANDLED;
2768 }
2769
2770 #ifdef CONFIG_NET_POLL_CONTROLLER
2771 /* Polling 'interrupt' - used by things like netconsole to send skbs
2772 * without having to re-enable interrupts. It's not called while
2773 * the interrupt routine is executing.
2774 */
gfar_netpoll(struct net_device * dev)2775 static void gfar_netpoll(struct net_device *dev)
2776 {
2777 struct gfar_private *priv = netdev_priv(dev);
2778 int i;
2779
2780 /* If the device has multiple interrupts, run tx/rx */
2781 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2782 for (i = 0; i < priv->num_grps; i++) {
2783 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2784
2785 disable_irq(gfar_irq(grp, TX)->irq);
2786 disable_irq(gfar_irq(grp, RX)->irq);
2787 disable_irq(gfar_irq(grp, ER)->irq);
2788 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2789 enable_irq(gfar_irq(grp, ER)->irq);
2790 enable_irq(gfar_irq(grp, RX)->irq);
2791 enable_irq(gfar_irq(grp, TX)->irq);
2792 }
2793 } else {
2794 for (i = 0; i < priv->num_grps; i++) {
2795 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2796
2797 disable_irq(gfar_irq(grp, TX)->irq);
2798 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2799 enable_irq(gfar_irq(grp, TX)->irq);
2800 }
2801 }
2802 }
2803 #endif
2804
free_grp_irqs(struct gfar_priv_grp * grp)2805 static void free_grp_irqs(struct gfar_priv_grp *grp)
2806 {
2807 free_irq(gfar_irq(grp, TX)->irq, grp);
2808 free_irq(gfar_irq(grp, RX)->irq, grp);
2809 free_irq(gfar_irq(grp, ER)->irq, grp);
2810 }
2811
register_grp_irqs(struct gfar_priv_grp * grp)2812 static int register_grp_irqs(struct gfar_priv_grp *grp)
2813 {
2814 struct gfar_private *priv = grp->priv;
2815 struct net_device *dev = priv->ndev;
2816 int err;
2817
2818 /* If the device has multiple interrupts, register for
2819 * them. Otherwise, only register for the one
2820 */
2821 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2822 /* Install our interrupt handlers for Error,
2823 * Transmit, and Receive
2824 */
2825 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2826 gfar_irq(grp, ER)->name, grp);
2827 if (err < 0) {
2828 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2829 gfar_irq(grp, ER)->irq);
2830
2831 goto err_irq_fail;
2832 }
2833 enable_irq_wake(gfar_irq(grp, ER)->irq);
2834
2835 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2836 gfar_irq(grp, TX)->name, grp);
2837 if (err < 0) {
2838 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2839 gfar_irq(grp, TX)->irq);
2840 goto tx_irq_fail;
2841 }
2842 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2843 gfar_irq(grp, RX)->name, grp);
2844 if (err < 0) {
2845 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2846 gfar_irq(grp, RX)->irq);
2847 goto rx_irq_fail;
2848 }
2849 enable_irq_wake(gfar_irq(grp, RX)->irq);
2850
2851 } else {
2852 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2853 gfar_irq(grp, TX)->name, grp);
2854 if (err < 0) {
2855 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2856 gfar_irq(grp, TX)->irq);
2857 goto err_irq_fail;
2858 }
2859 enable_irq_wake(gfar_irq(grp, TX)->irq);
2860 }
2861
2862 return 0;
2863
2864 rx_irq_fail:
2865 free_irq(gfar_irq(grp, TX)->irq, grp);
2866 tx_irq_fail:
2867 free_irq(gfar_irq(grp, ER)->irq, grp);
2868 err_irq_fail:
2869 return err;
2870
2871 }
2872
gfar_free_irq(struct gfar_private * priv)2873 static void gfar_free_irq(struct gfar_private *priv)
2874 {
2875 int i;
2876
2877 /* Free the IRQs */
2878 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2879 for (i = 0; i < priv->num_grps; i++)
2880 free_grp_irqs(&priv->gfargrp[i]);
2881 } else {
2882 for (i = 0; i < priv->num_grps; i++)
2883 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2884 &priv->gfargrp[i]);
2885 }
2886 }
2887
gfar_request_irq(struct gfar_private * priv)2888 static int gfar_request_irq(struct gfar_private *priv)
2889 {
2890 int err, i, j;
2891
2892 for (i = 0; i < priv->num_grps; i++) {
2893 err = register_grp_irqs(&priv->gfargrp[i]);
2894 if (err) {
2895 for (j = 0; j < i; j++)
2896 free_grp_irqs(&priv->gfargrp[j]);
2897 return err;
2898 }
2899 }
2900
2901 return 0;
2902 }
2903
2904 /* Called when something needs to use the ethernet device
2905 * Returns 0 for success.
2906 */
gfar_enet_open(struct net_device * dev)2907 static int gfar_enet_open(struct net_device *dev)
2908 {
2909 struct gfar_private *priv = netdev_priv(dev);
2910 int err;
2911
2912 err = init_phy(dev);
2913 if (err)
2914 return err;
2915
2916 err = gfar_request_irq(priv);
2917 if (err)
2918 return err;
2919
2920 err = startup_gfar(dev);
2921 if (err)
2922 return err;
2923
2924 return err;
2925 }
2926
2927 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)2928 static int gfar_close(struct net_device *dev)
2929 {
2930 struct gfar_private *priv = netdev_priv(dev);
2931
2932 cancel_work_sync(&priv->reset_task);
2933 stop_gfar(dev);
2934
2935 /* Disconnect from the PHY */
2936 phy_disconnect(dev->phydev);
2937
2938 gfar_free_irq(priv);
2939
2940 return 0;
2941 }
2942
2943 /* Clears each of the exact match registers to zero, so they
2944 * don't interfere with normal reception
2945 */
gfar_clear_exact_match(struct net_device * dev)2946 static void gfar_clear_exact_match(struct net_device *dev)
2947 {
2948 int idx;
2949 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2950
2951 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2952 gfar_set_mac_for_addr(dev, idx, zero_arr);
2953 }
2954
2955 /* Update the hash table based on the current list of multicast
2956 * addresses we subscribe to. Also, change the promiscuity of
2957 * the device based on the flags (this function is called
2958 * whenever dev->flags is changed
2959 */
gfar_set_multi(struct net_device * dev)2960 static void gfar_set_multi(struct net_device *dev)
2961 {
2962 struct netdev_hw_addr *ha;
2963 struct gfar_private *priv = netdev_priv(dev);
2964 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2965 u32 tempval;
2966
2967 if (dev->flags & IFF_PROMISC) {
2968 /* Set RCTRL to PROM */
2969 tempval = gfar_read(®s->rctrl);
2970 tempval |= RCTRL_PROM;
2971 gfar_write(®s->rctrl, tempval);
2972 } else {
2973 /* Set RCTRL to not PROM */
2974 tempval = gfar_read(®s->rctrl);
2975 tempval &= ~(RCTRL_PROM);
2976 gfar_write(®s->rctrl, tempval);
2977 }
2978
2979 if (dev->flags & IFF_ALLMULTI) {
2980 /* Set the hash to rx all multicast frames */
2981 gfar_write(®s->igaddr0, 0xffffffff);
2982 gfar_write(®s->igaddr1, 0xffffffff);
2983 gfar_write(®s->igaddr2, 0xffffffff);
2984 gfar_write(®s->igaddr3, 0xffffffff);
2985 gfar_write(®s->igaddr4, 0xffffffff);
2986 gfar_write(®s->igaddr5, 0xffffffff);
2987 gfar_write(®s->igaddr6, 0xffffffff);
2988 gfar_write(®s->igaddr7, 0xffffffff);
2989 gfar_write(®s->gaddr0, 0xffffffff);
2990 gfar_write(®s->gaddr1, 0xffffffff);
2991 gfar_write(®s->gaddr2, 0xffffffff);
2992 gfar_write(®s->gaddr3, 0xffffffff);
2993 gfar_write(®s->gaddr4, 0xffffffff);
2994 gfar_write(®s->gaddr5, 0xffffffff);
2995 gfar_write(®s->gaddr6, 0xffffffff);
2996 gfar_write(®s->gaddr7, 0xffffffff);
2997 } else {
2998 int em_num;
2999 int idx;
3000
3001 /* zero out the hash */
3002 gfar_write(®s->igaddr0, 0x0);
3003 gfar_write(®s->igaddr1, 0x0);
3004 gfar_write(®s->igaddr2, 0x0);
3005 gfar_write(®s->igaddr3, 0x0);
3006 gfar_write(®s->igaddr4, 0x0);
3007 gfar_write(®s->igaddr5, 0x0);
3008 gfar_write(®s->igaddr6, 0x0);
3009 gfar_write(®s->igaddr7, 0x0);
3010 gfar_write(®s->gaddr0, 0x0);
3011 gfar_write(®s->gaddr1, 0x0);
3012 gfar_write(®s->gaddr2, 0x0);
3013 gfar_write(®s->gaddr3, 0x0);
3014 gfar_write(®s->gaddr4, 0x0);
3015 gfar_write(®s->gaddr5, 0x0);
3016 gfar_write(®s->gaddr6, 0x0);
3017 gfar_write(®s->gaddr7, 0x0);
3018
3019 /* If we have extended hash tables, we need to
3020 * clear the exact match registers to prepare for
3021 * setting them
3022 */
3023 if (priv->extended_hash) {
3024 em_num = GFAR_EM_NUM + 1;
3025 gfar_clear_exact_match(dev);
3026 idx = 1;
3027 } else {
3028 idx = 0;
3029 em_num = 0;
3030 }
3031
3032 if (netdev_mc_empty(dev))
3033 return;
3034
3035 /* Parse the list, and set the appropriate bits */
3036 netdev_for_each_mc_addr(ha, dev) {
3037 if (idx < em_num) {
3038 gfar_set_mac_for_addr(dev, idx, ha->addr);
3039 idx++;
3040 } else
3041 gfar_set_hash_for_addr(dev, ha->addr);
3042 }
3043 }
3044 }
3045
gfar_mac_reset(struct gfar_private * priv)3046 void gfar_mac_reset(struct gfar_private *priv)
3047 {
3048 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3049 u32 tempval;
3050
3051 /* Reset MAC layer */
3052 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
3053
3054 /* We need to delay at least 3 TX clocks */
3055 udelay(3);
3056
3057 /* the soft reset bit is not self-resetting, so we need to
3058 * clear it before resuming normal operation
3059 */
3060 gfar_write(®s->maccfg1, 0);
3061
3062 udelay(3);
3063
3064 gfar_rx_offload_en(priv);
3065
3066 /* Initialize the max receive frame/buffer lengths */
3067 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3068 gfar_write(®s->mrblr, GFAR_RXB_SIZE);
3069
3070 /* Initialize the Minimum Frame Length Register */
3071 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
3072
3073 /* Initialize MACCFG2. */
3074 tempval = MACCFG2_INIT_SETTINGS;
3075
3076 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3077 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
3078 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3079 */
3080 if (gfar_has_errata(priv, GFAR_ERRATA_74))
3081 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3082
3083 gfar_write(®s->maccfg2, tempval);
3084
3085 /* Clear mac addr hash registers */
3086 gfar_write(®s->igaddr0, 0);
3087 gfar_write(®s->igaddr1, 0);
3088 gfar_write(®s->igaddr2, 0);
3089 gfar_write(®s->igaddr3, 0);
3090 gfar_write(®s->igaddr4, 0);
3091 gfar_write(®s->igaddr5, 0);
3092 gfar_write(®s->igaddr6, 0);
3093 gfar_write(®s->igaddr7, 0);
3094
3095 gfar_write(®s->gaddr0, 0);
3096 gfar_write(®s->gaddr1, 0);
3097 gfar_write(®s->gaddr2, 0);
3098 gfar_write(®s->gaddr3, 0);
3099 gfar_write(®s->gaddr4, 0);
3100 gfar_write(®s->gaddr5, 0);
3101 gfar_write(®s->gaddr6, 0);
3102 gfar_write(®s->gaddr7, 0);
3103
3104 if (priv->extended_hash)
3105 gfar_clear_exact_match(priv->ndev);
3106
3107 gfar_mac_rx_config(priv);
3108
3109 gfar_mac_tx_config(priv);
3110
3111 gfar_set_mac_address(priv->ndev);
3112
3113 gfar_set_multi(priv->ndev);
3114
3115 /* clear ievent and imask before configuring coalescing */
3116 gfar_ints_disable(priv);
3117
3118 /* Configure the coalescing support */
3119 gfar_configure_coalescing_all(priv);
3120 }
3121
gfar_hw_init(struct gfar_private * priv)3122 static void gfar_hw_init(struct gfar_private *priv)
3123 {
3124 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3125 u32 attrs;
3126
3127 /* Stop the DMA engine now, in case it was running before
3128 * (The firmware could have used it, and left it running).
3129 */
3130 gfar_halt(priv);
3131
3132 gfar_mac_reset(priv);
3133
3134 /* Zero out the rmon mib registers if it has them */
3135 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3136 memset_io(®s->rmon, 0, offsetof(struct rmon_mib, car1));
3137
3138 /* Mask off the CAM interrupts */
3139 gfar_write(®s->rmon.cam1, 0xffffffff);
3140 gfar_write(®s->rmon.cam2, 0xffffffff);
3141 /* Clear the CAR registers (w1c style) */
3142 gfar_write(®s->rmon.car1, 0xffffffff);
3143 gfar_write(®s->rmon.car2, 0xffffffff);
3144 }
3145
3146 /* Initialize ECNTRL */
3147 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
3148
3149 /* Set the extraction length and index */
3150 attrs = ATTRELI_EL(priv->rx_stash_size) |
3151 ATTRELI_EI(priv->rx_stash_index);
3152
3153 gfar_write(®s->attreli, attrs);
3154
3155 /* Start with defaults, and add stashing
3156 * depending on driver parameters
3157 */
3158 attrs = ATTR_INIT_SETTINGS;
3159
3160 if (priv->bd_stash_en)
3161 attrs |= ATTR_BDSTASH;
3162
3163 if (priv->rx_stash_size != 0)
3164 attrs |= ATTR_BUFSTASH;
3165
3166 gfar_write(®s->attr, attrs);
3167
3168 /* FIFO configs */
3169 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3170 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3171 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3172
3173 /* Program the interrupt steering regs, only for MG devices */
3174 if (priv->num_grps > 1)
3175 gfar_write_isrg(priv);
3176 }
3177
3178 static const struct net_device_ops gfar_netdev_ops = {
3179 .ndo_open = gfar_enet_open,
3180 .ndo_start_xmit = gfar_start_xmit,
3181 .ndo_stop = gfar_close,
3182 .ndo_change_mtu = gfar_change_mtu,
3183 .ndo_set_features = gfar_set_features,
3184 .ndo_set_rx_mode = gfar_set_multi,
3185 .ndo_tx_timeout = gfar_timeout,
3186 .ndo_eth_ioctl = gfar_ioctl,
3187 .ndo_get_stats64 = gfar_get_stats64,
3188 .ndo_change_carrier = fixed_phy_change_carrier,
3189 .ndo_set_mac_address = gfar_set_mac_addr,
3190 .ndo_validate_addr = eth_validate_addr,
3191 #ifdef CONFIG_NET_POLL_CONTROLLER
3192 .ndo_poll_controller = gfar_netpoll,
3193 #endif
3194 };
3195
3196 /* Set up the ethernet device structure, private data,
3197 * and anything else we need before we start
3198 */
gfar_probe(struct platform_device * ofdev)3199 static int gfar_probe(struct platform_device *ofdev)
3200 {
3201 struct device_node *np = ofdev->dev.of_node;
3202 struct net_device *dev = NULL;
3203 struct gfar_private *priv = NULL;
3204 int err = 0, i;
3205
3206 err = gfar_of_init(ofdev, &dev);
3207
3208 if (err)
3209 return err;
3210
3211 priv = netdev_priv(dev);
3212 priv->ndev = dev;
3213 priv->ofdev = ofdev;
3214 priv->dev = &ofdev->dev;
3215 SET_NETDEV_DEV(dev, &ofdev->dev);
3216
3217 INIT_WORK(&priv->reset_task, gfar_reset_task);
3218
3219 platform_set_drvdata(ofdev, priv);
3220
3221 gfar_detect_errata(priv);
3222
3223 /* Set the dev->base_addr to the gfar reg region */
3224 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3225
3226 /* Fill in the dev structure */
3227 dev->watchdog_timeo = TX_TIMEOUT;
3228 /* MTU range: 50 - 9586 */
3229 dev->mtu = 1500;
3230 dev->min_mtu = 50;
3231 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3232 dev->netdev_ops = &gfar_netdev_ops;
3233 dev->ethtool_ops = &gfar_ethtool_ops;
3234
3235 /* Register for napi ...We are registering NAPI for each grp */
3236 for (i = 0; i < priv->num_grps; i++) {
3237 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3238 gfar_poll_rx_sq);
3239 netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3240 gfar_poll_tx_sq, 2);
3241 }
3242
3243 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3244 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3245 NETIF_F_RXCSUM;
3246 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3247 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3248 }
3249
3250 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3251 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3252 NETIF_F_HW_VLAN_CTAG_RX;
3253 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3254 }
3255
3256 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3257
3258 gfar_init_addr_hash_table(priv);
3259
3260 /* Insert receive time stamps into padding alignment bytes, and
3261 * plus 2 bytes padding to ensure the cpu alignment.
3262 */
3263 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3264 priv->padding = 8 + DEFAULT_PADDING;
3265
3266 if (dev->features & NETIF_F_IP_CSUM ||
3267 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3268 dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3269
3270 /* Initializing some of the rx/tx queue level parameters */
3271 for (i = 0; i < priv->num_tx_queues; i++) {
3272 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3273 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3274 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3275 priv->tx_queue[i]->txic = DEFAULT_TXIC;
3276 }
3277
3278 for (i = 0; i < priv->num_rx_queues; i++) {
3279 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3280 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3281 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3282 }
3283
3284 /* Always enable rx filer if available */
3285 priv->rx_filer_enable =
3286 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3287 /* Enable most messages by default */
3288 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3289 /* use pritority h/w tx queue scheduling for single queue devices */
3290 if (priv->num_tx_queues == 1)
3291 priv->prio_sched_en = 1;
3292
3293 set_bit(GFAR_DOWN, &priv->state);
3294
3295 gfar_hw_init(priv);
3296
3297 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3298 struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3299
3300 spin_lock_init(&priv->rmon_overflow.lock);
3301 priv->rmon_overflow.imask = IMASK_MSRO;
3302 gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3303 }
3304
3305 /* Carrier starts down, phylib will bring it up */
3306 netif_carrier_off(dev);
3307
3308 err = register_netdev(dev);
3309
3310 if (err) {
3311 pr_err("%s: Cannot register net device, aborting\n", dev->name);
3312 goto register_fail;
3313 }
3314
3315 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3316 priv->wol_supported |= GFAR_WOL_MAGIC;
3317
3318 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3319 priv->rx_filer_enable)
3320 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3321
3322 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3323
3324 /* fill out IRQ number and name fields */
3325 for (i = 0; i < priv->num_grps; i++) {
3326 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3327 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3328 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3329 dev->name, "_g", '0' + i, "_tx");
3330 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3331 dev->name, "_g", '0' + i, "_rx");
3332 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3333 dev->name, "_g", '0' + i, "_er");
3334 } else
3335 strcpy(gfar_irq(grp, TX)->name, dev->name);
3336 }
3337
3338 /* Initialize the filer table */
3339 gfar_init_filer_table(priv);
3340
3341 /* Print out the device info */
3342 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3343
3344 /* Even more device info helps when determining which kernel
3345 * provided which set of benchmarks.
3346 */
3347 netdev_info(dev, "Running with NAPI enabled\n");
3348 for (i = 0; i < priv->num_rx_queues; i++)
3349 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3350 i, priv->rx_queue[i]->rx_ring_size);
3351 for (i = 0; i < priv->num_tx_queues; i++)
3352 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3353 i, priv->tx_queue[i]->tx_ring_size);
3354
3355 return 0;
3356
3357 register_fail:
3358 if (of_phy_is_fixed_link(np))
3359 of_phy_deregister_fixed_link(np);
3360 unmap_group_regs(priv);
3361 gfar_free_rx_queues(priv);
3362 gfar_free_tx_queues(priv);
3363 of_node_put(priv->phy_node);
3364 of_node_put(priv->tbi_node);
3365 free_gfar_dev(priv);
3366 return err;
3367 }
3368
gfar_remove(struct platform_device * ofdev)3369 static void gfar_remove(struct platform_device *ofdev)
3370 {
3371 struct gfar_private *priv = platform_get_drvdata(ofdev);
3372 struct device_node *np = ofdev->dev.of_node;
3373
3374 of_node_put(priv->phy_node);
3375 of_node_put(priv->tbi_node);
3376
3377 unregister_netdev(priv->ndev);
3378
3379 if (of_phy_is_fixed_link(np))
3380 of_phy_deregister_fixed_link(np);
3381
3382 unmap_group_regs(priv);
3383 gfar_free_rx_queues(priv);
3384 gfar_free_tx_queues(priv);
3385 free_gfar_dev(priv);
3386 }
3387
3388 #ifdef CONFIG_PM
3389
__gfar_filer_disable(struct gfar_private * priv)3390 static void __gfar_filer_disable(struct gfar_private *priv)
3391 {
3392 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3393 u32 temp;
3394
3395 temp = gfar_read(®s->rctrl);
3396 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3397 gfar_write(®s->rctrl, temp);
3398 }
3399
__gfar_filer_enable(struct gfar_private * priv)3400 static void __gfar_filer_enable(struct gfar_private *priv)
3401 {
3402 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3403 u32 temp;
3404
3405 temp = gfar_read(®s->rctrl);
3406 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3407 gfar_write(®s->rctrl, temp);
3408 }
3409
3410 /* Filer rules implementing wol capabilities */
gfar_filer_config_wol(struct gfar_private * priv)3411 static void gfar_filer_config_wol(struct gfar_private *priv)
3412 {
3413 unsigned int i;
3414 u32 rqfcr;
3415
3416 __gfar_filer_disable(priv);
3417
3418 /* clear the filer table, reject any packet by default */
3419 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3420 for (i = 0; i <= MAX_FILER_IDX; i++)
3421 gfar_write_filer(priv, i, rqfcr, 0);
3422
3423 i = 0;
3424 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3425 /* unicast packet, accept it */
3426 struct net_device *ndev = priv->ndev;
3427 /* get the default rx queue index */
3428 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3429 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3430 (ndev->dev_addr[1] << 8) |
3431 ndev->dev_addr[2];
3432
3433 rqfcr = (qindex << 10) | RQFCR_AND |
3434 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3435
3436 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3437
3438 dest_mac_addr = (ndev->dev_addr[3] << 16) |
3439 (ndev->dev_addr[4] << 8) |
3440 ndev->dev_addr[5];
3441 rqfcr = (qindex << 10) | RQFCR_GPI |
3442 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3443 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3444 }
3445
3446 __gfar_filer_enable(priv);
3447 }
3448
gfar_filer_restore_table(struct gfar_private * priv)3449 static void gfar_filer_restore_table(struct gfar_private *priv)
3450 {
3451 u32 rqfcr, rqfpr;
3452 unsigned int i;
3453
3454 __gfar_filer_disable(priv);
3455
3456 for (i = 0; i <= MAX_FILER_IDX; i++) {
3457 rqfcr = priv->ftp_rqfcr[i];
3458 rqfpr = priv->ftp_rqfpr[i];
3459 gfar_write_filer(priv, i, rqfcr, rqfpr);
3460 }
3461
3462 __gfar_filer_enable(priv);
3463 }
3464
3465 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
gfar_start_wol_filer(struct gfar_private * priv)3466 static void gfar_start_wol_filer(struct gfar_private *priv)
3467 {
3468 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3469 u32 tempval;
3470 int i = 0;
3471
3472 /* Enable Rx hw queues */
3473 gfar_write(®s->rqueue, priv->rqueue);
3474
3475 /* Initialize DMACTRL to have WWR and WOP */
3476 tempval = gfar_read(®s->dmactrl);
3477 tempval |= DMACTRL_INIT_SETTINGS;
3478 gfar_write(®s->dmactrl, tempval);
3479
3480 /* Make sure we aren't stopped */
3481 tempval = gfar_read(®s->dmactrl);
3482 tempval &= ~DMACTRL_GRS;
3483 gfar_write(®s->dmactrl, tempval);
3484
3485 for (i = 0; i < priv->num_grps; i++) {
3486 regs = priv->gfargrp[i].regs;
3487 /* Clear RHLT, so that the DMA starts polling now */
3488 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
3489 /* enable the Filer General Purpose Interrupt */
3490 gfar_write(®s->imask, IMASK_FGPI);
3491 }
3492
3493 /* Enable Rx DMA */
3494 tempval = gfar_read(®s->maccfg1);
3495 tempval |= MACCFG1_RX_EN;
3496 gfar_write(®s->maccfg1, tempval);
3497 }
3498
gfar_suspend(struct device * dev)3499 static int gfar_suspend(struct device *dev)
3500 {
3501 struct gfar_private *priv = dev_get_drvdata(dev);
3502 struct net_device *ndev = priv->ndev;
3503 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3504 u32 tempval;
3505 u16 wol = priv->wol_opts;
3506
3507 if (!netif_running(ndev))
3508 return 0;
3509
3510 disable_napi(priv);
3511 netif_tx_lock(ndev);
3512 netif_device_detach(ndev);
3513 netif_tx_unlock(ndev);
3514
3515 gfar_halt(priv);
3516
3517 if (wol & GFAR_WOL_MAGIC) {
3518 /* Enable interrupt on Magic Packet */
3519 gfar_write(®s->imask, IMASK_MAG);
3520
3521 /* Enable Magic Packet mode */
3522 tempval = gfar_read(®s->maccfg2);
3523 tempval |= MACCFG2_MPEN;
3524 gfar_write(®s->maccfg2, tempval);
3525
3526 /* re-enable the Rx block */
3527 tempval = gfar_read(®s->maccfg1);
3528 tempval |= MACCFG1_RX_EN;
3529 gfar_write(®s->maccfg1, tempval);
3530
3531 } else if (wol & GFAR_WOL_FILER_UCAST) {
3532 gfar_filer_config_wol(priv);
3533 gfar_start_wol_filer(priv);
3534
3535 } else {
3536 phy_stop(ndev->phydev);
3537 }
3538
3539 return 0;
3540 }
3541
gfar_resume(struct device * dev)3542 static int gfar_resume(struct device *dev)
3543 {
3544 struct gfar_private *priv = dev_get_drvdata(dev);
3545 struct net_device *ndev = priv->ndev;
3546 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3547 u32 tempval;
3548 u16 wol = priv->wol_opts;
3549
3550 if (!netif_running(ndev))
3551 return 0;
3552
3553 if (wol & GFAR_WOL_MAGIC) {
3554 /* Disable Magic Packet mode */
3555 tempval = gfar_read(®s->maccfg2);
3556 tempval &= ~MACCFG2_MPEN;
3557 gfar_write(®s->maccfg2, tempval);
3558
3559 } else if (wol & GFAR_WOL_FILER_UCAST) {
3560 /* need to stop rx only, tx is already down */
3561 gfar_halt(priv);
3562 gfar_filer_restore_table(priv);
3563
3564 } else {
3565 phy_start(ndev->phydev);
3566 }
3567
3568 gfar_start(priv);
3569
3570 netif_device_attach(ndev);
3571 enable_napi(priv);
3572
3573 return 0;
3574 }
3575
gfar_restore(struct device * dev)3576 static int gfar_restore(struct device *dev)
3577 {
3578 struct gfar_private *priv = dev_get_drvdata(dev);
3579 struct net_device *ndev = priv->ndev;
3580
3581 if (!netif_running(ndev)) {
3582 netif_device_attach(ndev);
3583
3584 return 0;
3585 }
3586
3587 gfar_init_bds(ndev);
3588
3589 gfar_mac_reset(priv);
3590
3591 gfar_init_tx_rx_base(priv);
3592
3593 gfar_start(priv);
3594
3595 priv->oldlink = 0;
3596 priv->oldspeed = 0;
3597 priv->oldduplex = -1;
3598
3599 if (ndev->phydev)
3600 phy_start(ndev->phydev);
3601
3602 netif_device_attach(ndev);
3603 enable_napi(priv);
3604
3605 return 0;
3606 }
3607
3608 static const struct dev_pm_ops gfar_pm_ops = {
3609 .suspend = gfar_suspend,
3610 .resume = gfar_resume,
3611 .freeze = gfar_suspend,
3612 .thaw = gfar_resume,
3613 .restore = gfar_restore,
3614 };
3615
3616 #define GFAR_PM_OPS (&gfar_pm_ops)
3617
3618 #else
3619
3620 #define GFAR_PM_OPS NULL
3621
3622 #endif
3623
3624 static const struct of_device_id gfar_match[] =
3625 {
3626 {
3627 .type = "network",
3628 .compatible = "gianfar",
3629 },
3630 {
3631 .compatible = "fsl,etsec2",
3632 },
3633 {},
3634 };
3635 MODULE_DEVICE_TABLE(of, gfar_match);
3636
3637 /* Structure for a device driver */
3638 static struct platform_driver gfar_driver = {
3639 .driver = {
3640 .name = "fsl-gianfar",
3641 .pm = GFAR_PM_OPS,
3642 .of_match_table = gfar_match,
3643 },
3644 .probe = gfar_probe,
3645 .remove_new = gfar_remove,
3646 };
3647
3648 module_platform_driver(gfar_driver);
3649