xref: /linux/drivers/net/ethernet/freescale/gianfar.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 
62 #include <linux/kernel.h>
63 #include <linux/platform_device.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/ip.h>
80 #include <linux/tcp.h>
81 #include <linux/udp.h>
82 #include <linux/in.h>
83 #include <linux/net_tstamp.h>
84 
85 #include <asm/io.h>
86 #ifdef CONFIG_PPC
87 #include <asm/reg.h>
88 #include <asm/mpc85xx.h>
89 #endif
90 #include <asm/irq.h>
91 #include <linux/uaccess.h>
92 #include <linux/module.h>
93 #include <linux/dma-mapping.h>
94 #include <linux/crc32.h>
95 #include <linux/mii.h>
96 #include <linux/phy.h>
97 #include <linux/phy_fixed.h>
98 #include <linux/of.h>
99 #include <linux/of_net.h>
100 
101 #include "gianfar.h"
102 
103 #define TX_TIMEOUT      (5*HZ)
104 
105 MODULE_AUTHOR("Freescale Semiconductor, Inc");
106 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
107 MODULE_LICENSE("GPL");
108 
gfar_init_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,dma_addr_t buf)109 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
110 			    dma_addr_t buf)
111 {
112 	u32 lstatus;
113 
114 	bdp->bufPtr = cpu_to_be32(buf);
115 
116 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
117 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
118 		lstatus |= BD_LFLAG(RXBD_WRAP);
119 
120 	gfar_wmb();
121 
122 	bdp->lstatus = cpu_to_be32(lstatus);
123 }
124 
gfar_init_tx_rx_base(struct gfar_private * priv)125 static void gfar_init_tx_rx_base(struct gfar_private *priv)
126 {
127 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
128 	u32 __iomem *baddr;
129 	int i;
130 
131 	baddr = &regs->tbase0;
132 	for (i = 0; i < priv->num_tx_queues; i++) {
133 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
134 		baddr += 2;
135 	}
136 
137 	baddr = &regs->rbase0;
138 	for (i = 0; i < priv->num_rx_queues; i++) {
139 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
140 		baddr += 2;
141 	}
142 }
143 
gfar_init_rqprm(struct gfar_private * priv)144 static void gfar_init_rqprm(struct gfar_private *priv)
145 {
146 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
147 	u32 __iomem *baddr;
148 	int i;
149 
150 	baddr = &regs->rqprm0;
151 	for (i = 0; i < priv->num_rx_queues; i++) {
152 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
153 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
154 		baddr++;
155 	}
156 }
157 
gfar_rx_offload_en(struct gfar_private * priv)158 static void gfar_rx_offload_en(struct gfar_private *priv)
159 {
160 	/* set this when rx hw offload (TOE) functions are being used */
161 	priv->uses_rxfcb = 0;
162 
163 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
164 		priv->uses_rxfcb = 1;
165 
166 	if (priv->hwts_rx_en || priv->rx_filer_enable)
167 		priv->uses_rxfcb = 1;
168 }
169 
gfar_mac_rx_config(struct gfar_private * priv)170 static void gfar_mac_rx_config(struct gfar_private *priv)
171 {
172 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
173 	u32 rctrl = 0;
174 
175 	if (priv->rx_filer_enable) {
176 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
177 		/* Program the RIR0 reg with the required distribution */
178 		gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
179 	}
180 
181 	/* Restore PROMISC mode */
182 	if (priv->ndev->flags & IFF_PROMISC)
183 		rctrl |= RCTRL_PROM;
184 
185 	if (priv->ndev->features & NETIF_F_RXCSUM)
186 		rctrl |= RCTRL_CHECKSUMMING;
187 
188 	if (priv->extended_hash)
189 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
190 
191 	if (priv->padding) {
192 		rctrl &= ~RCTRL_PAL_MASK;
193 		rctrl |= RCTRL_PADDING(priv->padding);
194 	}
195 
196 	/* Enable HW time stamping if requested from user space */
197 	if (priv->hwts_rx_en)
198 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
199 
200 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
201 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
202 
203 	/* Clear the LFC bit */
204 	gfar_write(&regs->rctrl, rctrl);
205 	/* Init flow control threshold values */
206 	gfar_init_rqprm(priv);
207 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
208 	rctrl |= RCTRL_LFC;
209 
210 	/* Init rctrl based on our settings */
211 	gfar_write(&regs->rctrl, rctrl);
212 }
213 
gfar_mac_tx_config(struct gfar_private * priv)214 static void gfar_mac_tx_config(struct gfar_private *priv)
215 {
216 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
217 	u32 tctrl = 0;
218 
219 	if (priv->ndev->features & NETIF_F_IP_CSUM)
220 		tctrl |= TCTRL_INIT_CSUM;
221 
222 	if (priv->prio_sched_en)
223 		tctrl |= TCTRL_TXSCHED_PRIO;
224 	else {
225 		tctrl |= TCTRL_TXSCHED_WRRS;
226 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
227 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
228 	}
229 
230 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
231 		tctrl |= TCTRL_VLINS;
232 
233 	gfar_write(&regs->tctrl, tctrl);
234 }
235 
gfar_configure_coalescing(struct gfar_private * priv,unsigned long tx_mask,unsigned long rx_mask)236 static void gfar_configure_coalescing(struct gfar_private *priv,
237 			       unsigned long tx_mask, unsigned long rx_mask)
238 {
239 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
240 	u32 __iomem *baddr;
241 
242 	if (priv->mode == MQ_MG_MODE) {
243 		int i = 0;
244 
245 		baddr = &regs->txic0;
246 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
247 			gfar_write(baddr + i, 0);
248 			if (likely(priv->tx_queue[i]->txcoalescing))
249 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
250 		}
251 
252 		baddr = &regs->rxic0;
253 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
254 			gfar_write(baddr + i, 0);
255 			if (likely(priv->rx_queue[i]->rxcoalescing))
256 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
257 		}
258 	} else {
259 		/* Backward compatible case -- even if we enable
260 		 * multiple queues, there's only single reg to program
261 		 */
262 		gfar_write(&regs->txic, 0);
263 		if (likely(priv->tx_queue[0]->txcoalescing))
264 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
265 
266 		gfar_write(&regs->rxic, 0);
267 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
268 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
269 	}
270 }
271 
gfar_configure_coalescing_all(struct gfar_private * priv)272 static void gfar_configure_coalescing_all(struct gfar_private *priv)
273 {
274 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
275 }
276 
gfar_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)277 static void gfar_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
278 {
279 	struct gfar_private *priv = netdev_priv(dev);
280 	int i;
281 
282 	for (i = 0; i < priv->num_rx_queues; i++) {
283 		stats->rx_packets += priv->rx_queue[i]->stats.rx_packets;
284 		stats->rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
285 		stats->rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
286 	}
287 
288 	for (i = 0; i < priv->num_tx_queues; i++) {
289 		stats->tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
290 		stats->tx_packets += priv->tx_queue[i]->stats.tx_packets;
291 	}
292 
293 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
294 		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
295 		unsigned long flags;
296 		u32 rdrp, car, car_before;
297 		u64 rdrp_offset;
298 
299 		spin_lock_irqsave(&priv->rmon_overflow.lock, flags);
300 		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
301 		do {
302 			car_before = car;
303 			rdrp = gfar_read(&rmon->rdrp);
304 			car = gfar_read(&rmon->car1) & CAR1_C1RDR;
305 		} while (car != car_before);
306 		if (car) {
307 			priv->rmon_overflow.rdrp++;
308 			gfar_write(&rmon->car1, car);
309 		}
310 		rdrp_offset = priv->rmon_overflow.rdrp;
311 		spin_unlock_irqrestore(&priv->rmon_overflow.lock, flags);
312 
313 		stats->rx_missed_errors = rdrp + (rdrp_offset << 16);
314 	}
315 }
316 
317 /* Set the appropriate hash bit for the given addr */
318 /* The algorithm works like so:
319  * 1) Take the Destination Address (ie the multicast address), and
320  * do a CRC on it (little endian), and reverse the bits of the
321  * result.
322  * 2) Use the 8 most significant bits as a hash into a 256-entry
323  * table.  The table is controlled through 8 32-bit registers:
324  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
325  * gaddr7.  This means that the 3 most significant bits in the
326  * hash index which gaddr register to use, and the 5 other bits
327  * indicate which bit (assuming an IBM numbering scheme, which
328  * for PowerPC (tm) is usually the case) in the register holds
329  * the entry.
330  */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)331 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
332 {
333 	u32 tempval;
334 	struct gfar_private *priv = netdev_priv(dev);
335 	u32 result = ether_crc(ETH_ALEN, addr);
336 	int width = priv->hash_width;
337 	u8 whichbit = (result >> (32 - width)) & 0x1f;
338 	u8 whichreg = result >> (32 - width + 5);
339 	u32 value = (1 << (31-whichbit));
340 
341 	tempval = gfar_read(priv->hash_regs[whichreg]);
342 	tempval |= value;
343 	gfar_write(priv->hash_regs[whichreg], tempval);
344 }
345 
346 /* There are multiple MAC Address register pairs on some controllers
347  * This function sets the numth pair to a given address
348  */
gfar_set_mac_for_addr(struct net_device * dev,int num,const u8 * addr)349 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
350 				  const u8 *addr)
351 {
352 	struct gfar_private *priv = netdev_priv(dev);
353 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
354 	u32 tempval;
355 	u32 __iomem *macptr = &regs->macstnaddr1;
356 
357 	macptr += num*2;
358 
359 	/* For a station address of 0x12345678ABCD in transmission
360 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
361 	 * MACnADDR2 is set to 0x34120000.
362 	 */
363 	tempval = (addr[5] << 24) | (addr[4] << 16) |
364 		  (addr[3] << 8)  |  addr[2];
365 
366 	gfar_write(macptr, tempval);
367 
368 	tempval = (addr[1] << 24) | (addr[0] << 16);
369 
370 	gfar_write(macptr+1, tempval);
371 }
372 
gfar_set_mac_addr(struct net_device * dev,void * p)373 static int gfar_set_mac_addr(struct net_device *dev, void *p)
374 {
375 	int ret;
376 
377 	ret = eth_mac_addr(dev, p);
378 	if (ret)
379 		return ret;
380 
381 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
382 
383 	return 0;
384 }
385 
gfar_ints_disable(struct gfar_private * priv)386 static void gfar_ints_disable(struct gfar_private *priv)
387 {
388 	int i;
389 	for (i = 0; i < priv->num_grps; i++) {
390 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
391 		/* Clear IEVENT */
392 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
393 
394 		/* Initialize IMASK */
395 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
396 	}
397 }
398 
gfar_ints_enable(struct gfar_private * priv)399 static void gfar_ints_enable(struct gfar_private *priv)
400 {
401 	int i;
402 	for (i = 0; i < priv->num_grps; i++) {
403 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
404 		/* Unmask the interrupts we look for */
405 		gfar_write(&regs->imask,
406 			   IMASK_DEFAULT | priv->rmon_overflow.imask);
407 	}
408 }
409 
gfar_alloc_tx_queues(struct gfar_private * priv)410 static int gfar_alloc_tx_queues(struct gfar_private *priv)
411 {
412 	int i;
413 
414 	for (i = 0; i < priv->num_tx_queues; i++) {
415 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
416 					    GFP_KERNEL);
417 		if (!priv->tx_queue[i])
418 			return -ENOMEM;
419 
420 		priv->tx_queue[i]->tx_skbuff = NULL;
421 		priv->tx_queue[i]->qindex = i;
422 		priv->tx_queue[i]->dev = priv->ndev;
423 		spin_lock_init(&(priv->tx_queue[i]->txlock));
424 	}
425 	return 0;
426 }
427 
gfar_alloc_rx_queues(struct gfar_private * priv)428 static int gfar_alloc_rx_queues(struct gfar_private *priv)
429 {
430 	int i;
431 
432 	for (i = 0; i < priv->num_rx_queues; i++) {
433 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
434 					    GFP_KERNEL);
435 		if (!priv->rx_queue[i])
436 			return -ENOMEM;
437 
438 		priv->rx_queue[i]->qindex = i;
439 		priv->rx_queue[i]->ndev = priv->ndev;
440 	}
441 	return 0;
442 }
443 
gfar_free_tx_queues(struct gfar_private * priv)444 static void gfar_free_tx_queues(struct gfar_private *priv)
445 {
446 	int i;
447 
448 	for (i = 0; i < priv->num_tx_queues; i++)
449 		kfree(priv->tx_queue[i]);
450 }
451 
gfar_free_rx_queues(struct gfar_private * priv)452 static void gfar_free_rx_queues(struct gfar_private *priv)
453 {
454 	int i;
455 
456 	for (i = 0; i < priv->num_rx_queues; i++)
457 		kfree(priv->rx_queue[i]);
458 }
459 
unmap_group_regs(struct gfar_private * priv)460 static void unmap_group_regs(struct gfar_private *priv)
461 {
462 	int i;
463 
464 	for (i = 0; i < MAXGROUPS; i++)
465 		if (priv->gfargrp[i].regs)
466 			iounmap(priv->gfargrp[i].regs);
467 }
468 
free_gfar_dev(struct gfar_private * priv)469 static void free_gfar_dev(struct gfar_private *priv)
470 {
471 	int i, j;
472 
473 	for (i = 0; i < priv->num_grps; i++)
474 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
475 			kfree(priv->gfargrp[i].irqinfo[j]);
476 			priv->gfargrp[i].irqinfo[j] = NULL;
477 		}
478 
479 	free_netdev(priv->ndev);
480 }
481 
disable_napi(struct gfar_private * priv)482 static void disable_napi(struct gfar_private *priv)
483 {
484 	int i;
485 
486 	for (i = 0; i < priv->num_grps; i++) {
487 		napi_disable(&priv->gfargrp[i].napi_rx);
488 		napi_disable(&priv->gfargrp[i].napi_tx);
489 	}
490 }
491 
enable_napi(struct gfar_private * priv)492 static void enable_napi(struct gfar_private *priv)
493 {
494 	int i;
495 
496 	for (i = 0; i < priv->num_grps; i++) {
497 		napi_enable(&priv->gfargrp[i].napi_rx);
498 		napi_enable(&priv->gfargrp[i].napi_tx);
499 	}
500 }
501 
gfar_parse_group(struct device_node * np,struct gfar_private * priv,const char * model)502 static int gfar_parse_group(struct device_node *np,
503 			    struct gfar_private *priv, const char *model)
504 {
505 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
506 	int i;
507 
508 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
509 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
510 					  GFP_KERNEL);
511 		if (!grp->irqinfo[i])
512 			return -ENOMEM;
513 	}
514 
515 	grp->regs = of_iomap(np, 0);
516 	if (!grp->regs)
517 		return -ENOMEM;
518 
519 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
520 
521 	/* If we aren't the FEC we have multiple interrupts */
522 	if (model && strcasecmp(model, "FEC")) {
523 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
524 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
525 		if (!gfar_irq(grp, TX)->irq ||
526 		    !gfar_irq(grp, RX)->irq ||
527 		    !gfar_irq(grp, ER)->irq)
528 			return -EINVAL;
529 	}
530 
531 	grp->priv = priv;
532 	spin_lock_init(&grp->grplock);
533 	if (priv->mode == MQ_MG_MODE) {
534 		/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
535 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
536 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
537 	} else {
538 		grp->rx_bit_map = 0xFF;
539 		grp->tx_bit_map = 0xFF;
540 	}
541 
542 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
543 	 * right to left, so we need to revert the 8 bits to get the q index
544 	 */
545 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
546 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
547 
548 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
549 	 * also assign queues to groups
550 	 */
551 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
552 		if (!grp->rx_queue)
553 			grp->rx_queue = priv->rx_queue[i];
554 		grp->num_rx_queues++;
555 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
556 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
557 		priv->rx_queue[i]->grp = grp;
558 	}
559 
560 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
561 		if (!grp->tx_queue)
562 			grp->tx_queue = priv->tx_queue[i];
563 		grp->num_tx_queues++;
564 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
565 		priv->tqueue |= (TQUEUE_EN0 >> i);
566 		priv->tx_queue[i]->grp = grp;
567 	}
568 
569 	priv->num_grps++;
570 
571 	return 0;
572 }
573 
gfar_of_group_count(struct device_node * np)574 static int gfar_of_group_count(struct device_node *np)
575 {
576 	struct device_node *child;
577 	int num = 0;
578 
579 	for_each_available_child_of_node(np, child)
580 		if (of_node_name_eq(child, "queue-group"))
581 			num++;
582 
583 	return num;
584 }
585 
586 /* Reads the controller's registers to determine what interface
587  * connects it to the PHY.
588  */
gfar_get_interface(struct net_device * dev)589 static phy_interface_t gfar_get_interface(struct net_device *dev)
590 {
591 	struct gfar_private *priv = netdev_priv(dev);
592 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
593 	u32 ecntrl;
594 
595 	ecntrl = gfar_read(&regs->ecntrl);
596 
597 	if (ecntrl & ECNTRL_SGMII_MODE)
598 		return PHY_INTERFACE_MODE_SGMII;
599 
600 	if (ecntrl & ECNTRL_TBI_MODE) {
601 		if (ecntrl & ECNTRL_REDUCED_MODE)
602 			return PHY_INTERFACE_MODE_RTBI;
603 		else
604 			return PHY_INTERFACE_MODE_TBI;
605 	}
606 
607 	if (ecntrl & ECNTRL_REDUCED_MODE) {
608 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
609 			return PHY_INTERFACE_MODE_RMII;
610 		}
611 		else {
612 			phy_interface_t interface = priv->interface;
613 
614 			/* This isn't autodetected right now, so it must
615 			 * be set by the device tree or platform code.
616 			 */
617 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
618 				return PHY_INTERFACE_MODE_RGMII_ID;
619 
620 			return PHY_INTERFACE_MODE_RGMII;
621 		}
622 	}
623 
624 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
625 		return PHY_INTERFACE_MODE_GMII;
626 
627 	return PHY_INTERFACE_MODE_MII;
628 }
629 
gfar_of_init(struct platform_device * ofdev,struct net_device ** pdev)630 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
631 {
632 	const char *model;
633 	int err = 0, i;
634 	phy_interface_t interface;
635 	struct net_device *dev = NULL;
636 	struct gfar_private *priv = NULL;
637 	struct device_node *np = ofdev->dev.of_node;
638 	struct device_node *child = NULL;
639 	u32 stash_len = 0;
640 	u32 stash_idx = 0;
641 	unsigned int num_tx_qs, num_rx_qs;
642 	unsigned short mode;
643 
644 	if (!np)
645 		return -ENODEV;
646 
647 	if (of_device_is_compatible(np, "fsl,etsec2"))
648 		mode = MQ_MG_MODE;
649 	else
650 		mode = SQ_SG_MODE;
651 
652 	if (mode == SQ_SG_MODE) {
653 		num_tx_qs = 1;
654 		num_rx_qs = 1;
655 	} else { /* MQ_MG_MODE */
656 		/* get the actual number of supported groups */
657 		unsigned int num_grps = gfar_of_group_count(np);
658 
659 		if (num_grps == 0 || num_grps > MAXGROUPS) {
660 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
661 				num_grps);
662 			pr_err("Cannot do alloc_etherdev, aborting\n");
663 			return -EINVAL;
664 		}
665 
666 		num_tx_qs = num_grps; /* one txq per int group */
667 		num_rx_qs = num_grps; /* one rxq per int group */
668 	}
669 
670 	if (num_tx_qs > MAX_TX_QS) {
671 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
672 		       num_tx_qs, MAX_TX_QS);
673 		pr_err("Cannot do alloc_etherdev, aborting\n");
674 		return -EINVAL;
675 	}
676 
677 	if (num_rx_qs > MAX_RX_QS) {
678 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
679 		       num_rx_qs, MAX_RX_QS);
680 		pr_err("Cannot do alloc_etherdev, aborting\n");
681 		return -EINVAL;
682 	}
683 
684 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
685 	dev = *pdev;
686 	if (NULL == dev)
687 		return -ENOMEM;
688 
689 	priv = netdev_priv(dev);
690 	priv->ndev = dev;
691 
692 	priv->mode = mode;
693 
694 	priv->num_tx_queues = num_tx_qs;
695 	netif_set_real_num_rx_queues(dev, num_rx_qs);
696 	priv->num_rx_queues = num_rx_qs;
697 
698 	err = gfar_alloc_tx_queues(priv);
699 	if (err)
700 		goto tx_alloc_failed;
701 
702 	err = gfar_alloc_rx_queues(priv);
703 	if (err)
704 		goto rx_alloc_failed;
705 
706 	err = of_property_read_string(np, "model", &model);
707 	if (err) {
708 		pr_err("Device model property missing, aborting\n");
709 		goto rx_alloc_failed;
710 	}
711 
712 	/* Init Rx queue filer rule set linked list */
713 	INIT_LIST_HEAD(&priv->rx_list.list);
714 	priv->rx_list.count = 0;
715 	mutex_init(&priv->rx_queue_access);
716 
717 	for (i = 0; i < MAXGROUPS; i++)
718 		priv->gfargrp[i].regs = NULL;
719 
720 	/* Parse and initialize group specific information */
721 	if (priv->mode == MQ_MG_MODE) {
722 		for_each_available_child_of_node(np, child) {
723 			if (!of_node_name_eq(child, "queue-group"))
724 				continue;
725 
726 			err = gfar_parse_group(child, priv, model);
727 			if (err) {
728 				of_node_put(child);
729 				goto err_grp_init;
730 			}
731 		}
732 	} else { /* SQ_SG_MODE */
733 		err = gfar_parse_group(np, priv, model);
734 		if (err)
735 			goto err_grp_init;
736 	}
737 
738 	if (of_property_read_bool(np, "bd-stash")) {
739 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
740 		priv->bd_stash_en = 1;
741 	}
742 
743 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
744 
745 	if (err == 0)
746 		priv->rx_stash_size = stash_len;
747 
748 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
749 
750 	if (err == 0)
751 		priv->rx_stash_index = stash_idx;
752 
753 	if (stash_len || stash_idx)
754 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
755 
756 	err = of_get_ethdev_address(np, dev);
757 	if (err == -EPROBE_DEFER)
758 		goto err_grp_init;
759 	if (err) {
760 		eth_hw_addr_random(dev);
761 		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
762 	}
763 
764 	if (model && !strcasecmp(model, "TSEC"))
765 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
766 				     FSL_GIANFAR_DEV_HAS_COALESCE |
767 				     FSL_GIANFAR_DEV_HAS_RMON |
768 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
769 
770 	if (model && !strcasecmp(model, "eTSEC"))
771 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
772 				     FSL_GIANFAR_DEV_HAS_COALESCE |
773 				     FSL_GIANFAR_DEV_HAS_RMON |
774 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
775 				     FSL_GIANFAR_DEV_HAS_CSUM |
776 				     FSL_GIANFAR_DEV_HAS_VLAN |
777 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
778 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
779 				     FSL_GIANFAR_DEV_HAS_TIMER |
780 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
781 
782 	/* Use PHY connection type from the DT node if one is specified there.
783 	 * rgmii-id really needs to be specified. Other types can be
784 	 * detected by hardware
785 	 */
786 	err = of_get_phy_mode(np, &interface);
787 	if (!err)
788 		priv->interface = interface;
789 	else
790 		priv->interface = gfar_get_interface(dev);
791 
792 	if (of_property_read_bool(np, "fsl,magic-packet"))
793 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
794 
795 	if (of_property_read_bool(np, "fsl,wake-on-filer"))
796 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
797 
798 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
799 
800 	/* In the case of a fixed PHY, the DT node associated
801 	 * to the PHY is the Ethernet MAC DT node.
802 	 */
803 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
804 		err = of_phy_register_fixed_link(np);
805 		if (err)
806 			goto err_grp_init;
807 
808 		priv->phy_node = of_node_get(np);
809 	}
810 
811 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
812 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
813 
814 	return 0;
815 
816 err_grp_init:
817 	unmap_group_regs(priv);
818 rx_alloc_failed:
819 	gfar_free_rx_queues(priv);
820 tx_alloc_failed:
821 	gfar_free_tx_queues(priv);
822 	free_gfar_dev(priv);
823 	return err;
824 }
825 
cluster_entry_per_class(struct gfar_private * priv,u32 rqfar,u32 class)826 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
827 				   u32 class)
828 {
829 	u32 rqfpr = FPR_FILER_MASK;
830 	u32 rqfcr = 0x0;
831 
832 	rqfar--;
833 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
834 	priv->ftp_rqfpr[rqfar] = rqfpr;
835 	priv->ftp_rqfcr[rqfar] = rqfcr;
836 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
837 
838 	rqfar--;
839 	rqfcr = RQFCR_CMP_NOMATCH;
840 	priv->ftp_rqfpr[rqfar] = rqfpr;
841 	priv->ftp_rqfcr[rqfar] = rqfcr;
842 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
843 
844 	rqfar--;
845 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
846 	rqfpr = class;
847 	priv->ftp_rqfcr[rqfar] = rqfcr;
848 	priv->ftp_rqfpr[rqfar] = rqfpr;
849 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
850 
851 	rqfar--;
852 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
853 	rqfpr = class;
854 	priv->ftp_rqfcr[rqfar] = rqfcr;
855 	priv->ftp_rqfpr[rqfar] = rqfpr;
856 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
857 
858 	return rqfar;
859 }
860 
gfar_init_filer_table(struct gfar_private * priv)861 static void gfar_init_filer_table(struct gfar_private *priv)
862 {
863 	int i = 0x0;
864 	u32 rqfar = MAX_FILER_IDX;
865 	u32 rqfcr = 0x0;
866 	u32 rqfpr = FPR_FILER_MASK;
867 
868 	/* Default rule */
869 	rqfcr = RQFCR_CMP_MATCH;
870 	priv->ftp_rqfcr[rqfar] = rqfcr;
871 	priv->ftp_rqfpr[rqfar] = rqfpr;
872 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873 
874 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
875 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
876 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
877 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
878 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
879 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
880 
881 	/* cur_filer_idx indicated the first non-masked rule */
882 	priv->cur_filer_idx = rqfar;
883 
884 	/* Rest are masked rules */
885 	rqfcr = RQFCR_CMP_NOMATCH;
886 	for (i = 0; i < rqfar; i++) {
887 		priv->ftp_rqfcr[i] = rqfcr;
888 		priv->ftp_rqfpr[i] = rqfpr;
889 		gfar_write_filer(priv, i, rqfcr, rqfpr);
890 	}
891 }
892 
893 #ifdef CONFIG_PPC
__gfar_detect_errata_83xx(struct gfar_private * priv)894 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
895 {
896 	unsigned int pvr = mfspr(SPRN_PVR);
897 	unsigned int svr = mfspr(SPRN_SVR);
898 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
899 	unsigned int rev = svr & 0xffff;
900 
901 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
902 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
903 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
904 		priv->errata |= GFAR_ERRATA_74;
905 
906 	/* MPC8313 and MPC837x all rev */
907 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
908 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
909 		priv->errata |= GFAR_ERRATA_76;
910 
911 	/* MPC8313 Rev < 2.0 */
912 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
913 		priv->errata |= GFAR_ERRATA_12;
914 }
915 
__gfar_detect_errata_85xx(struct gfar_private * priv)916 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
917 {
918 	unsigned int svr = mfspr(SPRN_SVR);
919 
920 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
921 		priv->errata |= GFAR_ERRATA_12;
922 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
923 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
924 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
925 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
926 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
927 }
928 #endif
929 
gfar_detect_errata(struct gfar_private * priv)930 static void gfar_detect_errata(struct gfar_private *priv)
931 {
932 	struct device *dev = &priv->ofdev->dev;
933 
934 	/* no plans to fix */
935 	priv->errata |= GFAR_ERRATA_A002;
936 
937 #ifdef CONFIG_PPC
938 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
939 		__gfar_detect_errata_85xx(priv);
940 	else /* non-mpc85xx parts, i.e. e300 core based */
941 		__gfar_detect_errata_83xx(priv);
942 #endif
943 
944 	if (priv->errata)
945 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
946 			 priv->errata);
947 }
948 
gfar_init_addr_hash_table(struct gfar_private * priv)949 static void gfar_init_addr_hash_table(struct gfar_private *priv)
950 {
951 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
952 
953 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
954 		priv->extended_hash = 1;
955 		priv->hash_width = 9;
956 
957 		priv->hash_regs[0] = &regs->igaddr0;
958 		priv->hash_regs[1] = &regs->igaddr1;
959 		priv->hash_regs[2] = &regs->igaddr2;
960 		priv->hash_regs[3] = &regs->igaddr3;
961 		priv->hash_regs[4] = &regs->igaddr4;
962 		priv->hash_regs[5] = &regs->igaddr5;
963 		priv->hash_regs[6] = &regs->igaddr6;
964 		priv->hash_regs[7] = &regs->igaddr7;
965 		priv->hash_regs[8] = &regs->gaddr0;
966 		priv->hash_regs[9] = &regs->gaddr1;
967 		priv->hash_regs[10] = &regs->gaddr2;
968 		priv->hash_regs[11] = &regs->gaddr3;
969 		priv->hash_regs[12] = &regs->gaddr4;
970 		priv->hash_regs[13] = &regs->gaddr5;
971 		priv->hash_regs[14] = &regs->gaddr6;
972 		priv->hash_regs[15] = &regs->gaddr7;
973 
974 	} else {
975 		priv->extended_hash = 0;
976 		priv->hash_width = 8;
977 
978 		priv->hash_regs[0] = &regs->gaddr0;
979 		priv->hash_regs[1] = &regs->gaddr1;
980 		priv->hash_regs[2] = &regs->gaddr2;
981 		priv->hash_regs[3] = &regs->gaddr3;
982 		priv->hash_regs[4] = &regs->gaddr4;
983 		priv->hash_regs[5] = &regs->gaddr5;
984 		priv->hash_regs[6] = &regs->gaddr6;
985 		priv->hash_regs[7] = &regs->gaddr7;
986 	}
987 }
988 
__gfar_is_rx_idle(struct gfar_private * priv)989 static int __gfar_is_rx_idle(struct gfar_private *priv)
990 {
991 	u32 res;
992 
993 	/* Normaly TSEC should not hang on GRS commands, so we should
994 	 * actually wait for IEVENT_GRSC flag.
995 	 */
996 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
997 		return 0;
998 
999 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1000 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1001 	 * and the Rx can be safely reset.
1002 	 */
1003 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1004 	res &= 0x7f807f80;
1005 	if ((res & 0xffff) == (res >> 16))
1006 		return 1;
1007 
1008 	return 0;
1009 }
1010 
1011 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct gfar_private * priv)1012 static void gfar_halt_nodisable(struct gfar_private *priv)
1013 {
1014 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1015 	u32 tempval;
1016 	unsigned int timeout;
1017 	int stopped;
1018 
1019 	gfar_ints_disable(priv);
1020 
1021 	if (gfar_is_dma_stopped(priv))
1022 		return;
1023 
1024 	/* Stop the DMA, and wait for it to stop */
1025 	tempval = gfar_read(&regs->dmactrl);
1026 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1027 	gfar_write(&regs->dmactrl, tempval);
1028 
1029 retry:
1030 	timeout = 1000;
1031 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1032 		cpu_relax();
1033 		timeout--;
1034 	}
1035 
1036 	if (!timeout)
1037 		stopped = gfar_is_dma_stopped(priv);
1038 
1039 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1040 	    !__gfar_is_rx_idle(priv))
1041 		goto retry;
1042 }
1043 
1044 /* Halt the receive and transmit queues */
gfar_halt(struct gfar_private * priv)1045 static void gfar_halt(struct gfar_private *priv)
1046 {
1047 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1048 	u32 tempval;
1049 
1050 	/* Dissable the Rx/Tx hw queues */
1051 	gfar_write(&regs->rqueue, 0);
1052 	gfar_write(&regs->tqueue, 0);
1053 
1054 	mdelay(10);
1055 
1056 	gfar_halt_nodisable(priv);
1057 
1058 	/* Disable Rx/Tx DMA */
1059 	tempval = gfar_read(&regs->maccfg1);
1060 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1061 	gfar_write(&regs->maccfg1, tempval);
1062 }
1063 
free_skb_tx_queue(struct gfar_priv_tx_q * tx_queue)1064 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1065 {
1066 	struct txbd8 *txbdp;
1067 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1068 	int i, j;
1069 
1070 	txbdp = tx_queue->tx_bd_base;
1071 
1072 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1073 		if (!tx_queue->tx_skbuff[i])
1074 			continue;
1075 
1076 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1077 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1078 		txbdp->lstatus = 0;
1079 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1080 		     j++) {
1081 			txbdp++;
1082 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1083 				       be16_to_cpu(txbdp->length),
1084 				       DMA_TO_DEVICE);
1085 		}
1086 		txbdp++;
1087 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1088 		tx_queue->tx_skbuff[i] = NULL;
1089 	}
1090 	kfree(tx_queue->tx_skbuff);
1091 	tx_queue->tx_skbuff = NULL;
1092 }
1093 
free_skb_rx_queue(struct gfar_priv_rx_q * rx_queue)1094 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1095 {
1096 	int i;
1097 
1098 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1099 
1100 	dev_kfree_skb(rx_queue->skb);
1101 
1102 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1103 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1104 
1105 		rxbdp->lstatus = 0;
1106 		rxbdp->bufPtr = 0;
1107 		rxbdp++;
1108 
1109 		if (!rxb->page)
1110 			continue;
1111 
1112 		dma_unmap_page(rx_queue->dev, rxb->dma,
1113 			       PAGE_SIZE, DMA_FROM_DEVICE);
1114 		__free_page(rxb->page);
1115 
1116 		rxb->page = NULL;
1117 	}
1118 
1119 	kfree(rx_queue->rx_buff);
1120 	rx_queue->rx_buff = NULL;
1121 }
1122 
1123 /* If there are any tx skbs or rx skbs still around, free them.
1124  * Then free tx_skbuff and rx_skbuff
1125  */
free_skb_resources(struct gfar_private * priv)1126 static void free_skb_resources(struct gfar_private *priv)
1127 {
1128 	struct gfar_priv_tx_q *tx_queue = NULL;
1129 	struct gfar_priv_rx_q *rx_queue = NULL;
1130 	int i;
1131 
1132 	/* Go through all the buffer descriptors and free their data buffers */
1133 	for (i = 0; i < priv->num_tx_queues; i++) {
1134 		struct netdev_queue *txq;
1135 
1136 		tx_queue = priv->tx_queue[i];
1137 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1138 		if (tx_queue->tx_skbuff)
1139 			free_skb_tx_queue(tx_queue);
1140 		netdev_tx_reset_queue(txq);
1141 	}
1142 
1143 	for (i = 0; i < priv->num_rx_queues; i++) {
1144 		rx_queue = priv->rx_queue[i];
1145 		if (rx_queue->rx_buff)
1146 			free_skb_rx_queue(rx_queue);
1147 	}
1148 
1149 	dma_free_coherent(priv->dev,
1150 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1151 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1152 			  priv->tx_queue[0]->tx_bd_base,
1153 			  priv->tx_queue[0]->tx_bd_dma_base);
1154 }
1155 
stop_gfar(struct net_device * dev)1156 void stop_gfar(struct net_device *dev)
1157 {
1158 	struct gfar_private *priv = netdev_priv(dev);
1159 
1160 	netif_tx_stop_all_queues(dev);
1161 
1162 	smp_mb__before_atomic();
1163 	set_bit(GFAR_DOWN, &priv->state);
1164 	smp_mb__after_atomic();
1165 
1166 	disable_napi(priv);
1167 
1168 	/* disable ints and gracefully shut down Rx/Tx DMA */
1169 	gfar_halt(priv);
1170 
1171 	phy_stop(dev->phydev);
1172 
1173 	free_skb_resources(priv);
1174 }
1175 
gfar_start(struct gfar_private * priv)1176 static void gfar_start(struct gfar_private *priv)
1177 {
1178 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1179 	u32 tempval;
1180 	int i = 0;
1181 
1182 	/* Enable Rx/Tx hw queues */
1183 	gfar_write(&regs->rqueue, priv->rqueue);
1184 	gfar_write(&regs->tqueue, priv->tqueue);
1185 
1186 	/* Initialize DMACTRL to have WWR and WOP */
1187 	tempval = gfar_read(&regs->dmactrl);
1188 	tempval |= DMACTRL_INIT_SETTINGS;
1189 	gfar_write(&regs->dmactrl, tempval);
1190 
1191 	/* Make sure we aren't stopped */
1192 	tempval = gfar_read(&regs->dmactrl);
1193 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1194 	gfar_write(&regs->dmactrl, tempval);
1195 
1196 	for (i = 0; i < priv->num_grps; i++) {
1197 		regs = priv->gfargrp[i].regs;
1198 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1199 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1200 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1201 	}
1202 
1203 	/* Enable Rx/Tx DMA */
1204 	tempval = gfar_read(&regs->maccfg1);
1205 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1206 	gfar_write(&regs->maccfg1, tempval);
1207 
1208 	gfar_ints_enable(priv);
1209 
1210 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1211 }
1212 
gfar_new_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * rxb)1213 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1214 {
1215 	struct page *page;
1216 	dma_addr_t addr;
1217 
1218 	page = dev_alloc_page();
1219 	if (unlikely(!page))
1220 		return false;
1221 
1222 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1223 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1224 		__free_page(page);
1225 
1226 		return false;
1227 	}
1228 
1229 	rxb->dma = addr;
1230 	rxb->page = page;
1231 	rxb->page_offset = 0;
1232 
1233 	return true;
1234 }
1235 
gfar_rx_alloc_err(struct gfar_priv_rx_q * rx_queue)1236 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1237 {
1238 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1239 	struct gfar_extra_stats *estats = &priv->extra_stats;
1240 
1241 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1242 	atomic64_inc(&estats->rx_alloc_err);
1243 }
1244 
gfar_alloc_rx_buffs(struct gfar_priv_rx_q * rx_queue,int alloc_cnt)1245 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1246 				int alloc_cnt)
1247 {
1248 	struct rxbd8 *bdp;
1249 	struct gfar_rx_buff *rxb;
1250 	int i;
1251 
1252 	i = rx_queue->next_to_use;
1253 	bdp = &rx_queue->rx_bd_base[i];
1254 	rxb = &rx_queue->rx_buff[i];
1255 
1256 	while (alloc_cnt--) {
1257 		/* try reuse page */
1258 		if (unlikely(!rxb->page)) {
1259 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1260 				gfar_rx_alloc_err(rx_queue);
1261 				break;
1262 			}
1263 		}
1264 
1265 		/* Setup the new RxBD */
1266 		gfar_init_rxbdp(rx_queue, bdp,
1267 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1268 
1269 		/* Update to the next pointer */
1270 		bdp++;
1271 		rxb++;
1272 
1273 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1274 			i = 0;
1275 			bdp = rx_queue->rx_bd_base;
1276 			rxb = rx_queue->rx_buff;
1277 		}
1278 	}
1279 
1280 	rx_queue->next_to_use = i;
1281 	rx_queue->next_to_alloc = i;
1282 }
1283 
gfar_init_bds(struct net_device * ndev)1284 static void gfar_init_bds(struct net_device *ndev)
1285 {
1286 	struct gfar_private *priv = netdev_priv(ndev);
1287 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1288 	struct gfar_priv_tx_q *tx_queue = NULL;
1289 	struct gfar_priv_rx_q *rx_queue = NULL;
1290 	struct txbd8 *txbdp;
1291 	u32 __iomem *rfbptr;
1292 	int i, j;
1293 
1294 	for (i = 0; i < priv->num_tx_queues; i++) {
1295 		tx_queue = priv->tx_queue[i];
1296 		/* Initialize some variables in our dev structure */
1297 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1298 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1299 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1300 		tx_queue->skb_curtx = 0;
1301 		tx_queue->skb_dirtytx = 0;
1302 
1303 		/* Initialize Transmit Descriptor Ring */
1304 		txbdp = tx_queue->tx_bd_base;
1305 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1306 			txbdp->lstatus = 0;
1307 			txbdp->bufPtr = 0;
1308 			txbdp++;
1309 		}
1310 
1311 		/* Set the last descriptor in the ring to indicate wrap */
1312 		txbdp--;
1313 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1314 					    TXBD_WRAP);
1315 	}
1316 
1317 	rfbptr = &regs->rfbptr0;
1318 	for (i = 0; i < priv->num_rx_queues; i++) {
1319 		rx_queue = priv->rx_queue[i];
1320 
1321 		rx_queue->next_to_clean = 0;
1322 		rx_queue->next_to_use = 0;
1323 		rx_queue->next_to_alloc = 0;
1324 
1325 		/* make sure next_to_clean != next_to_use after this
1326 		 * by leaving at least 1 unused descriptor
1327 		 */
1328 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1329 
1330 		rx_queue->rfbptr = rfbptr;
1331 		rfbptr += 2;
1332 	}
1333 }
1334 
gfar_alloc_skb_resources(struct net_device * ndev)1335 static int gfar_alloc_skb_resources(struct net_device *ndev)
1336 {
1337 	void *vaddr;
1338 	dma_addr_t addr;
1339 	int i, j;
1340 	struct gfar_private *priv = netdev_priv(ndev);
1341 	struct device *dev = priv->dev;
1342 	struct gfar_priv_tx_q *tx_queue = NULL;
1343 	struct gfar_priv_rx_q *rx_queue = NULL;
1344 
1345 	priv->total_tx_ring_size = 0;
1346 	for (i = 0; i < priv->num_tx_queues; i++)
1347 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1348 
1349 	priv->total_rx_ring_size = 0;
1350 	for (i = 0; i < priv->num_rx_queues; i++)
1351 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1352 
1353 	/* Allocate memory for the buffer descriptors */
1354 	vaddr = dma_alloc_coherent(dev,
1355 				   (priv->total_tx_ring_size *
1356 				    sizeof(struct txbd8)) +
1357 				   (priv->total_rx_ring_size *
1358 				    sizeof(struct rxbd8)),
1359 				   &addr, GFP_KERNEL);
1360 	if (!vaddr)
1361 		return -ENOMEM;
1362 
1363 	for (i = 0; i < priv->num_tx_queues; i++) {
1364 		tx_queue = priv->tx_queue[i];
1365 		tx_queue->tx_bd_base = vaddr;
1366 		tx_queue->tx_bd_dma_base = addr;
1367 		tx_queue->dev = ndev;
1368 		/* enet DMA only understands physical addresses */
1369 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1370 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1371 	}
1372 
1373 	/* Start the rx descriptor ring where the tx ring leaves off */
1374 	for (i = 0; i < priv->num_rx_queues; i++) {
1375 		rx_queue = priv->rx_queue[i];
1376 		rx_queue->rx_bd_base = vaddr;
1377 		rx_queue->rx_bd_dma_base = addr;
1378 		rx_queue->ndev = ndev;
1379 		rx_queue->dev = dev;
1380 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1381 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1382 	}
1383 
1384 	/* Setup the skbuff rings */
1385 	for (i = 0; i < priv->num_tx_queues; i++) {
1386 		tx_queue = priv->tx_queue[i];
1387 		tx_queue->tx_skbuff =
1388 			kmalloc_array(tx_queue->tx_ring_size,
1389 				      sizeof(*tx_queue->tx_skbuff),
1390 				      GFP_KERNEL);
1391 		if (!tx_queue->tx_skbuff)
1392 			goto cleanup;
1393 
1394 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1395 			tx_queue->tx_skbuff[j] = NULL;
1396 	}
1397 
1398 	for (i = 0; i < priv->num_rx_queues; i++) {
1399 		rx_queue = priv->rx_queue[i];
1400 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1401 					    sizeof(*rx_queue->rx_buff),
1402 					    GFP_KERNEL);
1403 		if (!rx_queue->rx_buff)
1404 			goto cleanup;
1405 	}
1406 
1407 	gfar_init_bds(ndev);
1408 
1409 	return 0;
1410 
1411 cleanup:
1412 	free_skb_resources(priv);
1413 	return -ENOMEM;
1414 }
1415 
1416 /* Bring the controller up and running */
startup_gfar(struct net_device * ndev)1417 int startup_gfar(struct net_device *ndev)
1418 {
1419 	struct gfar_private *priv = netdev_priv(ndev);
1420 	int err;
1421 
1422 	gfar_mac_reset(priv);
1423 
1424 	err = gfar_alloc_skb_resources(ndev);
1425 	if (err)
1426 		return err;
1427 
1428 	gfar_init_tx_rx_base(priv);
1429 
1430 	smp_mb__before_atomic();
1431 	clear_bit(GFAR_DOWN, &priv->state);
1432 	smp_mb__after_atomic();
1433 
1434 	/* Start Rx/Tx DMA and enable the interrupts */
1435 	gfar_start(priv);
1436 
1437 	/* force link state update after mac reset */
1438 	priv->oldlink = 0;
1439 	priv->oldspeed = 0;
1440 	priv->oldduplex = -1;
1441 
1442 	phy_start(ndev->phydev);
1443 
1444 	enable_napi(priv);
1445 
1446 	netif_tx_wake_all_queues(ndev);
1447 
1448 	return 0;
1449 }
1450 
gfar_get_flowctrl_cfg(struct gfar_private * priv)1451 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1452 {
1453 	struct net_device *ndev = priv->ndev;
1454 	struct phy_device *phydev = ndev->phydev;
1455 	u32 val = 0;
1456 
1457 	if (!phydev->duplex)
1458 		return val;
1459 
1460 	if (!priv->pause_aneg_en) {
1461 		if (priv->tx_pause_en)
1462 			val |= MACCFG1_TX_FLOW;
1463 		if (priv->rx_pause_en)
1464 			val |= MACCFG1_RX_FLOW;
1465 	} else {
1466 		u16 lcl_adv, rmt_adv;
1467 		u8 flowctrl;
1468 		/* get link partner capabilities */
1469 		rmt_adv = 0;
1470 		if (phydev->pause)
1471 			rmt_adv = LPA_PAUSE_CAP;
1472 		if (phydev->asym_pause)
1473 			rmt_adv |= LPA_PAUSE_ASYM;
1474 
1475 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1476 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1477 		if (flowctrl & FLOW_CTRL_TX)
1478 			val |= MACCFG1_TX_FLOW;
1479 		if (flowctrl & FLOW_CTRL_RX)
1480 			val |= MACCFG1_RX_FLOW;
1481 	}
1482 
1483 	return val;
1484 }
1485 
gfar_update_link_state(struct gfar_private * priv)1486 static noinline void gfar_update_link_state(struct gfar_private *priv)
1487 {
1488 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1489 	struct net_device *ndev = priv->ndev;
1490 	struct phy_device *phydev = ndev->phydev;
1491 	struct gfar_priv_rx_q *rx_queue = NULL;
1492 	int i;
1493 
1494 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1495 		return;
1496 
1497 	if (phydev->link) {
1498 		u32 tempval1 = gfar_read(&regs->maccfg1);
1499 		u32 tempval = gfar_read(&regs->maccfg2);
1500 		u32 ecntrl = gfar_read(&regs->ecntrl);
1501 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1502 
1503 		if (phydev->duplex != priv->oldduplex) {
1504 			if (!(phydev->duplex))
1505 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1506 			else
1507 				tempval |= MACCFG2_FULL_DUPLEX;
1508 
1509 			priv->oldduplex = phydev->duplex;
1510 		}
1511 
1512 		if (phydev->speed != priv->oldspeed) {
1513 			switch (phydev->speed) {
1514 			case 1000:
1515 				tempval =
1516 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1517 
1518 				ecntrl &= ~(ECNTRL_R100);
1519 				break;
1520 			case 100:
1521 			case 10:
1522 				tempval =
1523 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1524 
1525 				/* Reduced mode distinguishes
1526 				 * between 10 and 100
1527 				 */
1528 				if (phydev->speed == SPEED_100)
1529 					ecntrl |= ECNTRL_R100;
1530 				else
1531 					ecntrl &= ~(ECNTRL_R100);
1532 				break;
1533 			default:
1534 				netif_warn(priv, link, priv->ndev,
1535 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1536 					   phydev->speed);
1537 				break;
1538 			}
1539 
1540 			priv->oldspeed = phydev->speed;
1541 		}
1542 
1543 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1544 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1545 
1546 		/* Turn last free buffer recording on */
1547 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1548 			for (i = 0; i < priv->num_rx_queues; i++) {
1549 				u32 bdp_dma;
1550 
1551 				rx_queue = priv->rx_queue[i];
1552 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1553 				gfar_write(rx_queue->rfbptr, bdp_dma);
1554 			}
1555 
1556 			priv->tx_actual_en = 1;
1557 		}
1558 
1559 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1560 			priv->tx_actual_en = 0;
1561 
1562 		gfar_write(&regs->maccfg1, tempval1);
1563 		gfar_write(&regs->maccfg2, tempval);
1564 		gfar_write(&regs->ecntrl, ecntrl);
1565 
1566 		if (!priv->oldlink)
1567 			priv->oldlink = 1;
1568 
1569 	} else if (priv->oldlink) {
1570 		priv->oldlink = 0;
1571 		priv->oldspeed = 0;
1572 		priv->oldduplex = -1;
1573 	}
1574 
1575 	if (netif_msg_link(priv))
1576 		phy_print_status(phydev);
1577 }
1578 
1579 /* Called every time the controller might need to be made
1580  * aware of new link state.  The PHY code conveys this
1581  * information through variables in the phydev structure, and this
1582  * function converts those variables into the appropriate
1583  * register values, and can bring down the device if needed.
1584  */
adjust_link(struct net_device * dev)1585 static void adjust_link(struct net_device *dev)
1586 {
1587 	struct gfar_private *priv = netdev_priv(dev);
1588 	struct phy_device *phydev = dev->phydev;
1589 
1590 	if (unlikely(phydev->link != priv->oldlink ||
1591 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1592 				       phydev->speed != priv->oldspeed))))
1593 		gfar_update_link_state(priv);
1594 }
1595 
1596 /* Initialize TBI PHY interface for communicating with the
1597  * SERDES lynx PHY on the chip.  We communicate with this PHY
1598  * through the MDIO bus on each controller, treating it as a
1599  * "normal" PHY at the address found in the TBIPA register.  We assume
1600  * that the TBIPA register is valid.  Either the MDIO bus code will set
1601  * it to a value that doesn't conflict with other PHYs on the bus, or the
1602  * value doesn't matter, as there are no other PHYs on the bus.
1603  */
gfar_configure_serdes(struct net_device * dev)1604 static void gfar_configure_serdes(struct net_device *dev)
1605 {
1606 	struct gfar_private *priv = netdev_priv(dev);
1607 	struct phy_device *tbiphy;
1608 
1609 	if (!priv->tbi_node) {
1610 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1611 				    "device tree specify a tbi-handle\n");
1612 		return;
1613 	}
1614 
1615 	tbiphy = of_phy_find_device(priv->tbi_node);
1616 	if (!tbiphy) {
1617 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1618 		return;
1619 	}
1620 
1621 	/* If the link is already up, we must already be ok, and don't need to
1622 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1623 	 * everything for us?  Resetting it takes the link down and requires
1624 	 * several seconds for it to come back.
1625 	 */
1626 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1627 		put_device(&tbiphy->mdio.dev);
1628 		return;
1629 	}
1630 
1631 	/* Single clk mode, mii mode off(for serdes communication) */
1632 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1633 
1634 	phy_write(tbiphy, MII_ADVERTISE,
1635 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1636 		  ADVERTISE_1000XPSE_ASYM);
1637 
1638 	phy_write(tbiphy, MII_BMCR,
1639 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1640 		  BMCR_SPEED1000);
1641 
1642 	put_device(&tbiphy->mdio.dev);
1643 }
1644 
1645 /* Initializes driver's PHY state, and attaches to the PHY.
1646  * Returns 0 on success.
1647  */
init_phy(struct net_device * dev)1648 static int init_phy(struct net_device *dev)
1649 {
1650 	struct gfar_private *priv = netdev_priv(dev);
1651 	phy_interface_t interface = priv->interface;
1652 	struct phy_device *phydev;
1653 	struct ethtool_keee edata;
1654 
1655 	priv->oldlink = 0;
1656 	priv->oldspeed = 0;
1657 	priv->oldduplex = -1;
1658 
1659 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1660 				interface);
1661 	if (!phydev) {
1662 		dev_err(&dev->dev, "could not attach to PHY\n");
1663 		return -ENODEV;
1664 	}
1665 
1666 	if (interface == PHY_INTERFACE_MODE_SGMII)
1667 		gfar_configure_serdes(dev);
1668 
1669 	if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT))
1670 		phy_set_max_speed(phydev, SPEED_100);
1671 
1672 	/* Add support for flow control */
1673 	phy_support_asym_pause(phydev);
1674 
1675 	/* disable EEE autoneg, EEE not supported by eTSEC */
1676 	memset(&edata, 0, sizeof(struct ethtool_keee));
1677 	phy_ethtool_set_eee(phydev, &edata);
1678 
1679 	return 0;
1680 }
1681 
gfar_add_fcb(struct sk_buff * skb)1682 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1683 {
1684 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1685 
1686 	memset(fcb, 0, GMAC_FCB_LEN);
1687 
1688 	return fcb;
1689 }
1690 
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb,int fcb_length)1691 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1692 				    int fcb_length)
1693 {
1694 	/* If we're here, it's a IP packet with a TCP or UDP
1695 	 * payload.  We set it to checksum, using a pseudo-header
1696 	 * we provide
1697 	 */
1698 	u8 flags = TXFCB_DEFAULT;
1699 
1700 	/* Tell the controller what the protocol is
1701 	 * And provide the already calculated phcs
1702 	 */
1703 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1704 		flags |= TXFCB_UDP;
1705 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1706 	} else
1707 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1708 
1709 	/* l3os is the distance between the start of the
1710 	 * frame (skb->data) and the start of the IP hdr.
1711 	 * l4os is the distance between the start of the
1712 	 * l3 hdr and the l4 hdr
1713 	 */
1714 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1715 	fcb->l4os = skb_network_header_len(skb);
1716 
1717 	fcb->flags = flags;
1718 }
1719 
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)1720 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1721 {
1722 	fcb->flags |= TXFCB_VLN;
1723 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1724 }
1725 
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)1726 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1727 				      struct txbd8 *base, int ring_size)
1728 {
1729 	struct txbd8 *new_bd = bdp + stride;
1730 
1731 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1732 }
1733 
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)1734 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1735 				      int ring_size)
1736 {
1737 	return skip_txbd(bdp, 1, base, ring_size);
1738 }
1739 
1740 /* eTSEC12: csum generation not supported for some fcb offsets */
gfar_csum_errata_12(struct gfar_private * priv,unsigned long fcb_addr)1741 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1742 				       unsigned long fcb_addr)
1743 {
1744 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1745 	       (fcb_addr % 0x20) > 0x18);
1746 }
1747 
1748 /* eTSEC76: csum generation for frames larger than 2500 may
1749  * cause excess delays before start of transmission
1750  */
gfar_csum_errata_76(struct gfar_private * priv,unsigned int len)1751 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1752 				       unsigned int len)
1753 {
1754 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1755 	       (len > 2500));
1756 }
1757 
1758 /* This is called by the kernel when a frame is ready for transmission.
1759  * It is pointed to by the dev->hard_start_xmit function pointer
1760  */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)1761 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1762 {
1763 	struct gfar_private *priv = netdev_priv(dev);
1764 	struct gfar_priv_tx_q *tx_queue = NULL;
1765 	struct netdev_queue *txq;
1766 	struct gfar __iomem *regs = NULL;
1767 	struct txfcb *fcb = NULL;
1768 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1769 	u32 lstatus;
1770 	skb_frag_t *frag;
1771 	int i, rq = 0;
1772 	int do_tstamp, do_csum, do_vlan;
1773 	u32 bufaddr;
1774 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1775 
1776 	rq = skb->queue_mapping;
1777 	tx_queue = priv->tx_queue[rq];
1778 	txq = netdev_get_tx_queue(dev, rq);
1779 	base = tx_queue->tx_bd_base;
1780 	regs = tx_queue->grp->regs;
1781 
1782 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1783 	do_vlan = skb_vlan_tag_present(skb);
1784 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1785 		    priv->hwts_tx_en;
1786 
1787 	if (do_csum || do_vlan)
1788 		fcb_len = GMAC_FCB_LEN;
1789 
1790 	/* check if time stamp should be generated */
1791 	if (unlikely(do_tstamp))
1792 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1793 
1794 	/* make space for additional header when fcb is needed */
1795 	if (fcb_len) {
1796 		if (unlikely(skb_cow_head(skb, fcb_len))) {
1797 			dev->stats.tx_errors++;
1798 			dev_kfree_skb_any(skb);
1799 			return NETDEV_TX_OK;
1800 		}
1801 	}
1802 
1803 	/* total number of fragments in the SKB */
1804 	nr_frags = skb_shinfo(skb)->nr_frags;
1805 
1806 	/* calculate the required number of TxBDs for this skb */
1807 	if (unlikely(do_tstamp))
1808 		nr_txbds = nr_frags + 2;
1809 	else
1810 		nr_txbds = nr_frags + 1;
1811 
1812 	/* check if there is space to queue this packet */
1813 	if (nr_txbds > tx_queue->num_txbdfree) {
1814 		/* no space, stop the queue */
1815 		netif_tx_stop_queue(txq);
1816 		dev->stats.tx_fifo_errors++;
1817 		return NETDEV_TX_BUSY;
1818 	}
1819 
1820 	/* Update transmit stats */
1821 	bytes_sent = skb->len;
1822 	tx_queue->stats.tx_bytes += bytes_sent;
1823 	/* keep Tx bytes on wire for BQL accounting */
1824 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1825 	tx_queue->stats.tx_packets++;
1826 
1827 	txbdp = txbdp_start = tx_queue->cur_tx;
1828 	lstatus = be32_to_cpu(txbdp->lstatus);
1829 
1830 	/* Add TxPAL between FCB and frame if required */
1831 	if (unlikely(do_tstamp)) {
1832 		skb_push(skb, GMAC_TXPAL_LEN);
1833 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1834 	}
1835 
1836 	/* Add TxFCB if required */
1837 	if (fcb_len) {
1838 		fcb = gfar_add_fcb(skb);
1839 		lstatus |= BD_LFLAG(TXBD_TOE);
1840 	}
1841 
1842 	/* Set up checksumming */
1843 	if (do_csum) {
1844 		gfar_tx_checksum(skb, fcb, fcb_len);
1845 
1846 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1847 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1848 			__skb_pull(skb, GMAC_FCB_LEN);
1849 			skb_checksum_help(skb);
1850 			if (do_vlan || do_tstamp) {
1851 				/* put back a new fcb for vlan/tstamp TOE */
1852 				fcb = gfar_add_fcb(skb);
1853 			} else {
1854 				/* Tx TOE not used */
1855 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1856 				fcb = NULL;
1857 			}
1858 		}
1859 	}
1860 
1861 	if (do_vlan)
1862 		gfar_tx_vlan(skb, fcb);
1863 
1864 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1865 				 DMA_TO_DEVICE);
1866 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1867 		goto dma_map_err;
1868 
1869 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1870 
1871 	/* Time stamp insertion requires one additional TxBD */
1872 	if (unlikely(do_tstamp))
1873 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1874 						 tx_queue->tx_ring_size);
1875 
1876 	if (likely(!nr_frags)) {
1877 		if (likely(!do_tstamp))
1878 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1879 	} else {
1880 		u32 lstatus_start = lstatus;
1881 
1882 		/* Place the fragment addresses and lengths into the TxBDs */
1883 		frag = &skb_shinfo(skb)->frags[0];
1884 		for (i = 0; i < nr_frags; i++, frag++) {
1885 			unsigned int size;
1886 
1887 			/* Point at the next BD, wrapping as needed */
1888 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1889 
1890 			size = skb_frag_size(frag);
1891 
1892 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1893 				  BD_LFLAG(TXBD_READY);
1894 
1895 			/* Handle the last BD specially */
1896 			if (i == nr_frags - 1)
1897 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1898 
1899 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1900 						   size, DMA_TO_DEVICE);
1901 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1902 				goto dma_map_err;
1903 
1904 			/* set the TxBD length and buffer pointer */
1905 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1906 			txbdp->lstatus = cpu_to_be32(lstatus);
1907 		}
1908 
1909 		lstatus = lstatus_start;
1910 	}
1911 
1912 	/* If time stamping is requested one additional TxBD must be set up. The
1913 	 * first TxBD points to the FCB and must have a data length of
1914 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1915 	 * the full frame length.
1916 	 */
1917 	if (unlikely(do_tstamp)) {
1918 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1919 
1920 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1921 		bufaddr += fcb_len;
1922 
1923 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1924 			      (skb_headlen(skb) - fcb_len);
1925 		if (!nr_frags)
1926 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1927 
1928 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1929 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1930 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1931 
1932 		/* Setup tx hardware time stamping */
1933 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1934 		fcb->ptp = 1;
1935 	} else {
1936 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1937 	}
1938 
1939 	skb_tx_timestamp(skb);
1940 	netdev_tx_sent_queue(txq, bytes_sent);
1941 
1942 	gfar_wmb();
1943 
1944 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1945 
1946 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1947 
1948 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1949 
1950 	/* Update the current skb pointer to the next entry we will use
1951 	 * (wrapping if necessary)
1952 	 */
1953 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1954 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1955 
1956 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1957 
1958 	/* We can work in parallel with gfar_clean_tx_ring(), except
1959 	 * when modifying num_txbdfree. Note that we didn't grab the lock
1960 	 * when we were reading the num_txbdfree and checking for available
1961 	 * space, that's because outside of this function it can only grow.
1962 	 */
1963 	spin_lock_bh(&tx_queue->txlock);
1964 	/* reduce TxBD free count */
1965 	tx_queue->num_txbdfree -= (nr_txbds);
1966 	spin_unlock_bh(&tx_queue->txlock);
1967 
1968 	/* If the next BD still needs to be cleaned up, then the bds
1969 	 * are full.  We need to tell the kernel to stop sending us stuff.
1970 	 */
1971 	if (!tx_queue->num_txbdfree) {
1972 		netif_tx_stop_queue(txq);
1973 
1974 		dev->stats.tx_fifo_errors++;
1975 	}
1976 
1977 	/* Tell the DMA to go go go */
1978 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
1979 
1980 	return NETDEV_TX_OK;
1981 
1982 dma_map_err:
1983 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
1984 	if (do_tstamp)
1985 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1986 	for (i = 0; i < nr_frags; i++) {
1987 		lstatus = be32_to_cpu(txbdp->lstatus);
1988 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
1989 			break;
1990 
1991 		lstatus &= ~BD_LFLAG(TXBD_READY);
1992 		txbdp->lstatus = cpu_to_be32(lstatus);
1993 		bufaddr = be32_to_cpu(txbdp->bufPtr);
1994 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
1995 			       DMA_TO_DEVICE);
1996 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1997 	}
1998 	gfar_wmb();
1999 	dev_kfree_skb_any(skb);
2000 	return NETDEV_TX_OK;
2001 }
2002 
2003 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)2004 static int gfar_set_mac_address(struct net_device *dev)
2005 {
2006 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2007 
2008 	return 0;
2009 }
2010 
gfar_change_mtu(struct net_device * dev,int new_mtu)2011 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2012 {
2013 	struct gfar_private *priv = netdev_priv(dev);
2014 
2015 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2016 		cpu_relax();
2017 
2018 	if (dev->flags & IFF_UP)
2019 		stop_gfar(dev);
2020 
2021 	WRITE_ONCE(dev->mtu, new_mtu);
2022 
2023 	if (dev->flags & IFF_UP)
2024 		startup_gfar(dev);
2025 
2026 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2027 
2028 	return 0;
2029 }
2030 
reset_gfar(struct net_device * ndev)2031 static void reset_gfar(struct net_device *ndev)
2032 {
2033 	struct gfar_private *priv = netdev_priv(ndev);
2034 
2035 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2036 		cpu_relax();
2037 
2038 	stop_gfar(ndev);
2039 	startup_gfar(ndev);
2040 
2041 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2042 }
2043 
2044 /* gfar_reset_task gets scheduled when a packet has not been
2045  * transmitted after a set amount of time.
2046  * For now, assume that clearing out all the structures, and
2047  * starting over will fix the problem.
2048  */
gfar_reset_task(struct work_struct * work)2049 static void gfar_reset_task(struct work_struct *work)
2050 {
2051 	struct gfar_private *priv = container_of(work, struct gfar_private,
2052 						 reset_task);
2053 	reset_gfar(priv->ndev);
2054 }
2055 
gfar_timeout(struct net_device * dev,unsigned int txqueue)2056 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2057 {
2058 	struct gfar_private *priv = netdev_priv(dev);
2059 
2060 	dev->stats.tx_errors++;
2061 	schedule_work(&priv->reset_task);
2062 }
2063 
gfar_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)2064 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2065 {
2066 	struct hwtstamp_config config;
2067 	struct gfar_private *priv = netdev_priv(netdev);
2068 
2069 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2070 		return -EFAULT;
2071 
2072 	switch (config.tx_type) {
2073 	case HWTSTAMP_TX_OFF:
2074 		priv->hwts_tx_en = 0;
2075 		break;
2076 	case HWTSTAMP_TX_ON:
2077 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2078 			return -ERANGE;
2079 		priv->hwts_tx_en = 1;
2080 		break;
2081 	default:
2082 		return -ERANGE;
2083 	}
2084 
2085 	switch (config.rx_filter) {
2086 	case HWTSTAMP_FILTER_NONE:
2087 		if (priv->hwts_rx_en) {
2088 			priv->hwts_rx_en = 0;
2089 			reset_gfar(netdev);
2090 		}
2091 		break;
2092 	default:
2093 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2094 			return -ERANGE;
2095 		if (!priv->hwts_rx_en) {
2096 			priv->hwts_rx_en = 1;
2097 			reset_gfar(netdev);
2098 		}
2099 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2100 		break;
2101 	}
2102 
2103 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2104 		-EFAULT : 0;
2105 }
2106 
gfar_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)2107 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2108 {
2109 	struct hwtstamp_config config;
2110 	struct gfar_private *priv = netdev_priv(netdev);
2111 
2112 	config.flags = 0;
2113 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2114 	config.rx_filter = (priv->hwts_rx_en ?
2115 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2116 
2117 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2118 		-EFAULT : 0;
2119 }
2120 
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2121 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2122 {
2123 	struct phy_device *phydev = dev->phydev;
2124 
2125 	if (!netif_running(dev))
2126 		return -EINVAL;
2127 
2128 	if (cmd == SIOCSHWTSTAMP)
2129 		return gfar_hwtstamp_set(dev, rq);
2130 	if (cmd == SIOCGHWTSTAMP)
2131 		return gfar_hwtstamp_get(dev, rq);
2132 
2133 	if (!phydev)
2134 		return -ENODEV;
2135 
2136 	return phy_mii_ioctl(phydev, rq, cmd);
2137 }
2138 
2139 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct gfar_priv_tx_q * tx_queue)2140 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2141 {
2142 	struct net_device *dev = tx_queue->dev;
2143 	struct netdev_queue *txq;
2144 	struct gfar_private *priv = netdev_priv(dev);
2145 	struct txbd8 *bdp, *next = NULL;
2146 	struct txbd8 *lbdp = NULL;
2147 	struct txbd8 *base = tx_queue->tx_bd_base;
2148 	struct sk_buff *skb;
2149 	int skb_dirtytx;
2150 	int tx_ring_size = tx_queue->tx_ring_size;
2151 	int frags = 0, nr_txbds = 0;
2152 	int i;
2153 	int howmany = 0;
2154 	int tqi = tx_queue->qindex;
2155 	unsigned int bytes_sent = 0;
2156 	u32 lstatus;
2157 	size_t buflen;
2158 
2159 	txq = netdev_get_tx_queue(dev, tqi);
2160 	bdp = tx_queue->dirty_tx;
2161 	skb_dirtytx = tx_queue->skb_dirtytx;
2162 
2163 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2164 		bool do_tstamp;
2165 
2166 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2167 			    priv->hwts_tx_en;
2168 
2169 		frags = skb_shinfo(skb)->nr_frags;
2170 
2171 		/* When time stamping, one additional TxBD must be freed.
2172 		 * Also, we need to dma_unmap_single() the TxPAL.
2173 		 */
2174 		if (unlikely(do_tstamp))
2175 			nr_txbds = frags + 2;
2176 		else
2177 			nr_txbds = frags + 1;
2178 
2179 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2180 
2181 		lstatus = be32_to_cpu(lbdp->lstatus);
2182 
2183 		/* Only clean completed frames */
2184 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2185 		    (lstatus & BD_LENGTH_MASK))
2186 			break;
2187 
2188 		if (unlikely(do_tstamp)) {
2189 			next = next_txbd(bdp, base, tx_ring_size);
2190 			buflen = be16_to_cpu(next->length) +
2191 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2192 		} else
2193 			buflen = be16_to_cpu(bdp->length);
2194 
2195 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2196 				 buflen, DMA_TO_DEVICE);
2197 
2198 		if (unlikely(do_tstamp)) {
2199 			struct skb_shared_hwtstamps shhwtstamps;
2200 			__be64 *ns;
2201 
2202 			ns = (__be64 *)(((uintptr_t)skb->data + 0x10) & ~0x7UL);
2203 
2204 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2205 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2206 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2207 			skb_tstamp_tx(skb, &shhwtstamps);
2208 			gfar_clear_txbd_status(bdp);
2209 			bdp = next;
2210 		}
2211 
2212 		gfar_clear_txbd_status(bdp);
2213 		bdp = next_txbd(bdp, base, tx_ring_size);
2214 
2215 		for (i = 0; i < frags; i++) {
2216 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2217 				       be16_to_cpu(bdp->length),
2218 				       DMA_TO_DEVICE);
2219 			gfar_clear_txbd_status(bdp);
2220 			bdp = next_txbd(bdp, base, tx_ring_size);
2221 		}
2222 
2223 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2224 
2225 		dev_kfree_skb_any(skb);
2226 
2227 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2228 
2229 		skb_dirtytx = (skb_dirtytx + 1) &
2230 			      TX_RING_MOD_MASK(tx_ring_size);
2231 
2232 		howmany++;
2233 		spin_lock(&tx_queue->txlock);
2234 		tx_queue->num_txbdfree += nr_txbds;
2235 		spin_unlock(&tx_queue->txlock);
2236 	}
2237 
2238 	/* If we freed a buffer, we can restart transmission, if necessary */
2239 	if (tx_queue->num_txbdfree &&
2240 	    netif_tx_queue_stopped(txq) &&
2241 	    !(test_bit(GFAR_DOWN, &priv->state)))
2242 		netif_wake_subqueue(priv->ndev, tqi);
2243 
2244 	/* Update dirty indicators */
2245 	tx_queue->skb_dirtytx = skb_dirtytx;
2246 	tx_queue->dirty_tx = bdp;
2247 
2248 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2249 }
2250 
count_errors(u32 lstatus,struct net_device * ndev)2251 static void count_errors(u32 lstatus, struct net_device *ndev)
2252 {
2253 	struct gfar_private *priv = netdev_priv(ndev);
2254 	struct net_device_stats *stats = &ndev->stats;
2255 	struct gfar_extra_stats *estats = &priv->extra_stats;
2256 
2257 	/* If the packet was truncated, none of the other errors matter */
2258 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2259 		stats->rx_length_errors++;
2260 
2261 		atomic64_inc(&estats->rx_trunc);
2262 
2263 		return;
2264 	}
2265 	/* Count the errors, if there were any */
2266 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2267 		stats->rx_length_errors++;
2268 
2269 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2270 			atomic64_inc(&estats->rx_large);
2271 		else
2272 			atomic64_inc(&estats->rx_short);
2273 	}
2274 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2275 		stats->rx_frame_errors++;
2276 		atomic64_inc(&estats->rx_nonoctet);
2277 	}
2278 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2279 		atomic64_inc(&estats->rx_crcerr);
2280 		stats->rx_crc_errors++;
2281 	}
2282 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2283 		atomic64_inc(&estats->rx_overrun);
2284 		stats->rx_over_errors++;
2285 	}
2286 }
2287 
gfar_receive(int irq,void * grp_id)2288 static irqreturn_t gfar_receive(int irq, void *grp_id)
2289 {
2290 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2291 	unsigned long flags;
2292 	u32 imask, ievent;
2293 
2294 	ievent = gfar_read(&grp->regs->ievent);
2295 
2296 	if (unlikely(ievent & IEVENT_FGPI)) {
2297 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2298 		return IRQ_HANDLED;
2299 	}
2300 
2301 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2302 		spin_lock_irqsave(&grp->grplock, flags);
2303 		imask = gfar_read(&grp->regs->imask);
2304 		imask &= IMASK_RX_DISABLED | grp->priv->rmon_overflow.imask;
2305 		gfar_write(&grp->regs->imask, imask);
2306 		spin_unlock_irqrestore(&grp->grplock, flags);
2307 		__napi_schedule(&grp->napi_rx);
2308 	} else {
2309 		/* Clear IEVENT, so interrupts aren't called again
2310 		 * because of the packets that have already arrived.
2311 		 */
2312 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2313 	}
2314 
2315 	return IRQ_HANDLED;
2316 }
2317 
2318 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * grp_id)2319 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2320 {
2321 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2322 	unsigned long flags;
2323 	u32 imask;
2324 
2325 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2326 		spin_lock_irqsave(&grp->grplock, flags);
2327 		imask = gfar_read(&grp->regs->imask);
2328 		imask &= IMASK_TX_DISABLED | grp->priv->rmon_overflow.imask;
2329 		gfar_write(&grp->regs->imask, imask);
2330 		spin_unlock_irqrestore(&grp->grplock, flags);
2331 		__napi_schedule(&grp->napi_tx);
2332 	} else {
2333 		/* Clear IEVENT, so interrupts aren't called again
2334 		 * because of the packets that have already arrived.
2335 		 */
2336 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2337 	}
2338 
2339 	return IRQ_HANDLED;
2340 }
2341 
gfar_add_rx_frag(struct gfar_rx_buff * rxb,u32 lstatus,struct sk_buff * skb,bool first)2342 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2343 			     struct sk_buff *skb, bool first)
2344 {
2345 	int size = lstatus & BD_LENGTH_MASK;
2346 	struct page *page = rxb->page;
2347 
2348 	if (likely(first)) {
2349 		skb_put(skb, size);
2350 	} else {
2351 		/* the last fragments' length contains the full frame length */
2352 		if (lstatus & BD_LFLAG(RXBD_LAST))
2353 			size -= skb->len;
2354 
2355 		WARN(size < 0, "gianfar: rx fragment size underflow");
2356 		if (size < 0)
2357 			return false;
2358 
2359 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2360 				rxb->page_offset + RXBUF_ALIGNMENT,
2361 				size, GFAR_RXB_TRUESIZE);
2362 	}
2363 
2364 	/* try reuse page */
2365 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2366 		return false;
2367 
2368 	/* change offset to the other half */
2369 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2370 
2371 	page_ref_inc(page);
2372 
2373 	return true;
2374 }
2375 
gfar_reuse_rx_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * old_rxb)2376 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2377 			       struct gfar_rx_buff *old_rxb)
2378 {
2379 	struct gfar_rx_buff *new_rxb;
2380 	u16 nta = rxq->next_to_alloc;
2381 
2382 	new_rxb = &rxq->rx_buff[nta];
2383 
2384 	/* find next buf that can reuse a page */
2385 	nta++;
2386 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2387 
2388 	/* copy page reference */
2389 	*new_rxb = *old_rxb;
2390 
2391 	/* sync for use by the device */
2392 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2393 					 old_rxb->page_offset,
2394 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2395 }
2396 
gfar_get_next_rxbuff(struct gfar_priv_rx_q * rx_queue,u32 lstatus,struct sk_buff * skb)2397 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2398 					    u32 lstatus, struct sk_buff *skb)
2399 {
2400 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2401 	struct page *page = rxb->page;
2402 	bool first = false;
2403 
2404 	if (likely(!skb)) {
2405 		void *buff_addr = page_address(page) + rxb->page_offset;
2406 
2407 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2408 		if (unlikely(!skb)) {
2409 			gfar_rx_alloc_err(rx_queue);
2410 			return NULL;
2411 		}
2412 		skb_reserve(skb, RXBUF_ALIGNMENT);
2413 		first = true;
2414 	}
2415 
2416 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2417 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2418 
2419 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2420 		/* reuse the free half of the page */
2421 		gfar_reuse_rx_page(rx_queue, rxb);
2422 	} else {
2423 		/* page cannot be reused, unmap it */
2424 		dma_unmap_page(rx_queue->dev, rxb->dma,
2425 			       PAGE_SIZE, DMA_FROM_DEVICE);
2426 	}
2427 
2428 	/* clear rxb content */
2429 	rxb->page = NULL;
2430 
2431 	return skb;
2432 }
2433 
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)2434 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2435 {
2436 	/* If valid headers were found, and valid sums
2437 	 * were verified, then we tell the kernel that no
2438 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2439 	 */
2440 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2441 	    (RXFCB_CIP | RXFCB_CTU))
2442 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2443 	else
2444 		skb_checksum_none_assert(skb);
2445 }
2446 
2447 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
gfar_process_frame(struct net_device * ndev,struct sk_buff * skb)2448 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2449 {
2450 	struct gfar_private *priv = netdev_priv(ndev);
2451 	struct rxfcb *fcb = NULL;
2452 
2453 	/* fcb is at the beginning if exists */
2454 	fcb = (struct rxfcb *)skb->data;
2455 
2456 	/* Remove the FCB from the skb
2457 	 * Remove the padded bytes, if there are any
2458 	 */
2459 	if (priv->uses_rxfcb)
2460 		skb_pull(skb, GMAC_FCB_LEN);
2461 
2462 	/* Get receive timestamp from the skb */
2463 	if (priv->hwts_rx_en) {
2464 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2465 		__be64 *ns = (__be64 *)skb->data;
2466 
2467 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2468 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2469 	}
2470 
2471 	if (priv->padding)
2472 		skb_pull(skb, priv->padding);
2473 
2474 	/* Trim off the FCS */
2475 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2476 
2477 	if (ndev->features & NETIF_F_RXCSUM)
2478 		gfar_rx_checksum(skb, fcb);
2479 
2480 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2481 	 * Even if vlan rx accel is disabled, on some chips
2482 	 * RXFCB_VLN is pseudo randomly set.
2483 	 */
2484 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2485 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2486 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2487 				       be16_to_cpu(fcb->vlctl));
2488 }
2489 
2490 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2491  * until the budget/quota has been reached. Returns the number
2492  * of frames handled
2493  */
gfar_clean_rx_ring(struct gfar_priv_rx_q * rx_queue,int rx_work_limit)2494 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2495 			      int rx_work_limit)
2496 {
2497 	struct net_device *ndev = rx_queue->ndev;
2498 	struct gfar_private *priv = netdev_priv(ndev);
2499 	struct rxbd8 *bdp;
2500 	int i, howmany = 0;
2501 	struct sk_buff *skb = rx_queue->skb;
2502 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2503 	unsigned int total_bytes = 0, total_pkts = 0;
2504 
2505 	/* Get the first full descriptor */
2506 	i = rx_queue->next_to_clean;
2507 
2508 	while (rx_work_limit--) {
2509 		u32 lstatus;
2510 
2511 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2512 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2513 			cleaned_cnt = 0;
2514 		}
2515 
2516 		bdp = &rx_queue->rx_bd_base[i];
2517 		lstatus = be32_to_cpu(bdp->lstatus);
2518 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2519 			break;
2520 
2521 		/* lost RXBD_LAST descriptor due to overrun */
2522 		if (skb &&
2523 		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
2524 			/* discard faulty buffer */
2525 			dev_kfree_skb(skb);
2526 			skb = NULL;
2527 			rx_queue->stats.rx_dropped++;
2528 
2529 			/* can continue normally */
2530 		}
2531 
2532 		/* order rx buffer descriptor reads */
2533 		rmb();
2534 
2535 		/* fetch next to clean buffer from the ring */
2536 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2537 		if (unlikely(!skb))
2538 			break;
2539 
2540 		cleaned_cnt++;
2541 		howmany++;
2542 
2543 		if (unlikely(++i == rx_queue->rx_ring_size))
2544 			i = 0;
2545 
2546 		rx_queue->next_to_clean = i;
2547 
2548 		/* fetch next buffer if not the last in frame */
2549 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2550 			continue;
2551 
2552 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2553 			count_errors(lstatus, ndev);
2554 
2555 			/* discard faulty buffer */
2556 			dev_kfree_skb(skb);
2557 			skb = NULL;
2558 			rx_queue->stats.rx_dropped++;
2559 			continue;
2560 		}
2561 
2562 		gfar_process_frame(ndev, skb);
2563 
2564 		/* Increment the number of packets */
2565 		total_pkts++;
2566 		total_bytes += skb->len;
2567 
2568 		skb_record_rx_queue(skb, rx_queue->qindex);
2569 
2570 		skb->protocol = eth_type_trans(skb, ndev);
2571 
2572 		/* Send the packet up the stack */
2573 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2574 
2575 		skb = NULL;
2576 	}
2577 
2578 	/* Store incomplete frames for completion */
2579 	rx_queue->skb = skb;
2580 
2581 	rx_queue->stats.rx_packets += total_pkts;
2582 	rx_queue->stats.rx_bytes += total_bytes;
2583 
2584 	if (cleaned_cnt)
2585 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2586 
2587 	/* Update Last Free RxBD pointer for LFC */
2588 	if (unlikely(priv->tx_actual_en)) {
2589 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2590 
2591 		gfar_write(rx_queue->rfbptr, bdp_dma);
2592 	}
2593 
2594 	return howmany;
2595 }
2596 
gfar_poll_rx_sq(struct napi_struct * napi,int budget)2597 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2598 {
2599 	struct gfar_priv_grp *gfargrp =
2600 		container_of(napi, struct gfar_priv_grp, napi_rx);
2601 	struct gfar __iomem *regs = gfargrp->regs;
2602 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2603 	int work_done = 0;
2604 
2605 	/* Clear IEVENT, so interrupts aren't called again
2606 	 * because of the packets that have already arrived
2607 	 */
2608 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2609 
2610 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2611 
2612 	if (work_done < budget) {
2613 		u32 imask;
2614 		napi_complete_done(napi, work_done);
2615 		/* Clear the halt bit in RSTAT */
2616 		gfar_write(&regs->rstat, gfargrp->rstat);
2617 
2618 		spin_lock_irq(&gfargrp->grplock);
2619 		imask = gfar_read(&regs->imask);
2620 		imask |= IMASK_RX_DEFAULT;
2621 		gfar_write(&regs->imask, imask);
2622 		spin_unlock_irq(&gfargrp->grplock);
2623 	}
2624 
2625 	return work_done;
2626 }
2627 
gfar_poll_tx_sq(struct napi_struct * napi,int budget)2628 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2629 {
2630 	struct gfar_priv_grp *gfargrp =
2631 		container_of(napi, struct gfar_priv_grp, napi_tx);
2632 	struct gfar __iomem *regs = gfargrp->regs;
2633 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2634 	u32 imask;
2635 
2636 	/* Clear IEVENT, so interrupts aren't called again
2637 	 * because of the packets that have already arrived
2638 	 */
2639 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2640 
2641 	/* run Tx cleanup to completion */
2642 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2643 		gfar_clean_tx_ring(tx_queue);
2644 
2645 	napi_complete(napi);
2646 
2647 	spin_lock_irq(&gfargrp->grplock);
2648 	imask = gfar_read(&regs->imask);
2649 	imask |= IMASK_TX_DEFAULT;
2650 	gfar_write(&regs->imask, imask);
2651 	spin_unlock_irq(&gfargrp->grplock);
2652 
2653 	return 0;
2654 }
2655 
2656 /* GFAR error interrupt handler */
gfar_error(int irq,void * grp_id)2657 static irqreturn_t gfar_error(int irq, void *grp_id)
2658 {
2659 	struct gfar_priv_grp *gfargrp = grp_id;
2660 	struct gfar __iomem *regs = gfargrp->regs;
2661 	struct gfar_private *priv= gfargrp->priv;
2662 	struct net_device *dev = priv->ndev;
2663 
2664 	/* Save ievent for future reference */
2665 	u32 events = gfar_read(&regs->ievent);
2666 
2667 	/* Clear IEVENT */
2668 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2669 
2670 	/* Magic Packet is not an error. */
2671 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2672 	    (events & IEVENT_MAG))
2673 		events &= ~IEVENT_MAG;
2674 
2675 	/* Hmm... */
2676 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2677 		netdev_dbg(dev,
2678 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2679 			   events, gfar_read(&regs->imask));
2680 
2681 	/* Update the error counters */
2682 	if (events & IEVENT_TXE) {
2683 		dev->stats.tx_errors++;
2684 
2685 		if (events & IEVENT_LC)
2686 			dev->stats.tx_window_errors++;
2687 		if (events & IEVENT_CRL)
2688 			dev->stats.tx_aborted_errors++;
2689 		if (events & IEVENT_XFUN) {
2690 			netif_dbg(priv, tx_err, dev,
2691 				  "TX FIFO underrun, packet dropped\n");
2692 			dev->stats.tx_dropped++;
2693 			atomic64_inc(&priv->extra_stats.tx_underrun);
2694 
2695 			schedule_work(&priv->reset_task);
2696 		}
2697 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2698 	}
2699 	if (events & IEVENT_MSRO) {
2700 		struct rmon_mib __iomem *rmon = &regs->rmon;
2701 		u32 car;
2702 
2703 		spin_lock(&priv->rmon_overflow.lock);
2704 		car = gfar_read(&rmon->car1) & CAR1_C1RDR;
2705 		if (car) {
2706 			priv->rmon_overflow.rdrp++;
2707 			gfar_write(&rmon->car1, car);
2708 		}
2709 		spin_unlock(&priv->rmon_overflow.lock);
2710 	}
2711 	if (events & IEVENT_BSY) {
2712 		dev->stats.rx_over_errors++;
2713 		atomic64_inc(&priv->extra_stats.rx_bsy);
2714 
2715 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2716 			  gfar_read(&regs->rstat));
2717 	}
2718 	if (events & IEVENT_BABR) {
2719 		dev->stats.rx_errors++;
2720 		atomic64_inc(&priv->extra_stats.rx_babr);
2721 
2722 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2723 	}
2724 	if (events & IEVENT_EBERR) {
2725 		atomic64_inc(&priv->extra_stats.eberr);
2726 		netif_dbg(priv, rx_err, dev, "bus error\n");
2727 	}
2728 	if (events & IEVENT_RXC)
2729 		netif_dbg(priv, rx_status, dev, "control frame\n");
2730 
2731 	if (events & IEVENT_BABT) {
2732 		atomic64_inc(&priv->extra_stats.tx_babt);
2733 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2734 	}
2735 	return IRQ_HANDLED;
2736 }
2737 
2738 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * grp_id)2739 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2740 {
2741 	struct gfar_priv_grp *gfargrp = grp_id;
2742 
2743 	/* Save ievent for future reference */
2744 	u32 events = gfar_read(&gfargrp->regs->ievent);
2745 
2746 	/* Check for reception */
2747 	if (events & IEVENT_RX_MASK)
2748 		gfar_receive(irq, grp_id);
2749 
2750 	/* Check for transmit completion */
2751 	if (events & IEVENT_TX_MASK)
2752 		gfar_transmit(irq, grp_id);
2753 
2754 	/* Check for errors */
2755 	if (events & IEVENT_ERR_MASK)
2756 		gfar_error(irq, grp_id);
2757 
2758 	return IRQ_HANDLED;
2759 }
2760 
2761 #ifdef CONFIG_NET_POLL_CONTROLLER
2762 /* Polling 'interrupt' - used by things like netconsole to send skbs
2763  * without having to re-enable interrupts. It's not called while
2764  * the interrupt routine is executing.
2765  */
gfar_netpoll(struct net_device * dev)2766 static void gfar_netpoll(struct net_device *dev)
2767 {
2768 	struct gfar_private *priv = netdev_priv(dev);
2769 	int i;
2770 
2771 	/* If the device has multiple interrupts, run tx/rx */
2772 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2773 		for (i = 0; i < priv->num_grps; i++) {
2774 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2775 
2776 			disable_irq(gfar_irq(grp, TX)->irq);
2777 			disable_irq(gfar_irq(grp, RX)->irq);
2778 			disable_irq(gfar_irq(grp, ER)->irq);
2779 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2780 			enable_irq(gfar_irq(grp, ER)->irq);
2781 			enable_irq(gfar_irq(grp, RX)->irq);
2782 			enable_irq(gfar_irq(grp, TX)->irq);
2783 		}
2784 	} else {
2785 		for (i = 0; i < priv->num_grps; i++) {
2786 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2787 
2788 			disable_irq(gfar_irq(grp, TX)->irq);
2789 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2790 			enable_irq(gfar_irq(grp, TX)->irq);
2791 		}
2792 	}
2793 }
2794 #endif
2795 
free_grp_irqs(struct gfar_priv_grp * grp)2796 static void free_grp_irqs(struct gfar_priv_grp *grp)
2797 {
2798 	free_irq(gfar_irq(grp, TX)->irq, grp);
2799 	free_irq(gfar_irq(grp, RX)->irq, grp);
2800 	free_irq(gfar_irq(grp, ER)->irq, grp);
2801 }
2802 
register_grp_irqs(struct gfar_priv_grp * grp)2803 static int register_grp_irqs(struct gfar_priv_grp *grp)
2804 {
2805 	struct gfar_private *priv = grp->priv;
2806 	struct net_device *dev = priv->ndev;
2807 	int err;
2808 
2809 	/* If the device has multiple interrupts, register for
2810 	 * them.  Otherwise, only register for the one
2811 	 */
2812 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2813 		/* Install our interrupt handlers for Error,
2814 		 * Transmit, and Receive
2815 		 */
2816 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2817 				  gfar_irq(grp, ER)->name, grp);
2818 		if (err < 0) {
2819 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2820 				  gfar_irq(grp, ER)->irq);
2821 
2822 			goto err_irq_fail;
2823 		}
2824 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2825 
2826 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2827 				  gfar_irq(grp, TX)->name, grp);
2828 		if (err < 0) {
2829 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2830 				  gfar_irq(grp, TX)->irq);
2831 			goto tx_irq_fail;
2832 		}
2833 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2834 				  gfar_irq(grp, RX)->name, grp);
2835 		if (err < 0) {
2836 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2837 				  gfar_irq(grp, RX)->irq);
2838 			goto rx_irq_fail;
2839 		}
2840 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2841 
2842 	} else {
2843 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2844 				  gfar_irq(grp, TX)->name, grp);
2845 		if (err < 0) {
2846 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2847 				  gfar_irq(grp, TX)->irq);
2848 			goto err_irq_fail;
2849 		}
2850 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2851 	}
2852 
2853 	return 0;
2854 
2855 rx_irq_fail:
2856 	free_irq(gfar_irq(grp, TX)->irq, grp);
2857 tx_irq_fail:
2858 	free_irq(gfar_irq(grp, ER)->irq, grp);
2859 err_irq_fail:
2860 	return err;
2861 
2862 }
2863 
gfar_free_irq(struct gfar_private * priv)2864 static void gfar_free_irq(struct gfar_private *priv)
2865 {
2866 	int i;
2867 
2868 	/* Free the IRQs */
2869 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2870 		for (i = 0; i < priv->num_grps; i++)
2871 			free_grp_irqs(&priv->gfargrp[i]);
2872 	} else {
2873 		for (i = 0; i < priv->num_grps; i++)
2874 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2875 				 &priv->gfargrp[i]);
2876 	}
2877 }
2878 
gfar_request_irq(struct gfar_private * priv)2879 static int gfar_request_irq(struct gfar_private *priv)
2880 {
2881 	int err, i, j;
2882 
2883 	for (i = 0; i < priv->num_grps; i++) {
2884 		err = register_grp_irqs(&priv->gfargrp[i]);
2885 		if (err) {
2886 			for (j = 0; j < i; j++)
2887 				free_grp_irqs(&priv->gfargrp[j]);
2888 			return err;
2889 		}
2890 	}
2891 
2892 	return 0;
2893 }
2894 
2895 /* Called when something needs to use the ethernet device
2896  * Returns 0 for success.
2897  */
gfar_enet_open(struct net_device * dev)2898 static int gfar_enet_open(struct net_device *dev)
2899 {
2900 	struct gfar_private *priv = netdev_priv(dev);
2901 	int err;
2902 
2903 	err = init_phy(dev);
2904 	if (err)
2905 		return err;
2906 
2907 	err = gfar_request_irq(priv);
2908 	if (err)
2909 		return err;
2910 
2911 	err = startup_gfar(dev);
2912 	if (err)
2913 		return err;
2914 
2915 	return err;
2916 }
2917 
2918 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)2919 static int gfar_close(struct net_device *dev)
2920 {
2921 	struct gfar_private *priv = netdev_priv(dev);
2922 
2923 	cancel_work_sync(&priv->reset_task);
2924 	stop_gfar(dev);
2925 
2926 	/* Disconnect from the PHY */
2927 	phy_disconnect(dev->phydev);
2928 
2929 	gfar_free_irq(priv);
2930 
2931 	return 0;
2932 }
2933 
2934 /* Clears each of the exact match registers to zero, so they
2935  * don't interfere with normal reception
2936  */
gfar_clear_exact_match(struct net_device * dev)2937 static void gfar_clear_exact_match(struct net_device *dev)
2938 {
2939 	int idx;
2940 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
2941 
2942 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
2943 		gfar_set_mac_for_addr(dev, idx, zero_arr);
2944 }
2945 
2946 /* Update the hash table based on the current list of multicast
2947  * addresses we subscribe to.  Also, change the promiscuity of
2948  * the device based on the flags (this function is called
2949  * whenever dev->flags is changed
2950  */
gfar_set_multi(struct net_device * dev)2951 static void gfar_set_multi(struct net_device *dev)
2952 {
2953 	struct netdev_hw_addr *ha;
2954 	struct gfar_private *priv = netdev_priv(dev);
2955 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2956 	u32 tempval;
2957 
2958 	if (dev->flags & IFF_PROMISC) {
2959 		/* Set RCTRL to PROM */
2960 		tempval = gfar_read(&regs->rctrl);
2961 		tempval |= RCTRL_PROM;
2962 		gfar_write(&regs->rctrl, tempval);
2963 	} else {
2964 		/* Set RCTRL to not PROM */
2965 		tempval = gfar_read(&regs->rctrl);
2966 		tempval &= ~(RCTRL_PROM);
2967 		gfar_write(&regs->rctrl, tempval);
2968 	}
2969 
2970 	if (dev->flags & IFF_ALLMULTI) {
2971 		/* Set the hash to rx all multicast frames */
2972 		gfar_write(&regs->igaddr0, 0xffffffff);
2973 		gfar_write(&regs->igaddr1, 0xffffffff);
2974 		gfar_write(&regs->igaddr2, 0xffffffff);
2975 		gfar_write(&regs->igaddr3, 0xffffffff);
2976 		gfar_write(&regs->igaddr4, 0xffffffff);
2977 		gfar_write(&regs->igaddr5, 0xffffffff);
2978 		gfar_write(&regs->igaddr6, 0xffffffff);
2979 		gfar_write(&regs->igaddr7, 0xffffffff);
2980 		gfar_write(&regs->gaddr0, 0xffffffff);
2981 		gfar_write(&regs->gaddr1, 0xffffffff);
2982 		gfar_write(&regs->gaddr2, 0xffffffff);
2983 		gfar_write(&regs->gaddr3, 0xffffffff);
2984 		gfar_write(&regs->gaddr4, 0xffffffff);
2985 		gfar_write(&regs->gaddr5, 0xffffffff);
2986 		gfar_write(&regs->gaddr6, 0xffffffff);
2987 		gfar_write(&regs->gaddr7, 0xffffffff);
2988 	} else {
2989 		int em_num;
2990 		int idx;
2991 
2992 		/* zero out the hash */
2993 		gfar_write(&regs->igaddr0, 0x0);
2994 		gfar_write(&regs->igaddr1, 0x0);
2995 		gfar_write(&regs->igaddr2, 0x0);
2996 		gfar_write(&regs->igaddr3, 0x0);
2997 		gfar_write(&regs->igaddr4, 0x0);
2998 		gfar_write(&regs->igaddr5, 0x0);
2999 		gfar_write(&regs->igaddr6, 0x0);
3000 		gfar_write(&regs->igaddr7, 0x0);
3001 		gfar_write(&regs->gaddr0, 0x0);
3002 		gfar_write(&regs->gaddr1, 0x0);
3003 		gfar_write(&regs->gaddr2, 0x0);
3004 		gfar_write(&regs->gaddr3, 0x0);
3005 		gfar_write(&regs->gaddr4, 0x0);
3006 		gfar_write(&regs->gaddr5, 0x0);
3007 		gfar_write(&regs->gaddr6, 0x0);
3008 		gfar_write(&regs->gaddr7, 0x0);
3009 
3010 		/* If we have extended hash tables, we need to
3011 		 * clear the exact match registers to prepare for
3012 		 * setting them
3013 		 */
3014 		if (priv->extended_hash) {
3015 			em_num = GFAR_EM_NUM + 1;
3016 			gfar_clear_exact_match(dev);
3017 			idx = 1;
3018 		} else {
3019 			idx = 0;
3020 			em_num = 0;
3021 		}
3022 
3023 		if (netdev_mc_empty(dev))
3024 			return;
3025 
3026 		/* Parse the list, and set the appropriate bits */
3027 		netdev_for_each_mc_addr(ha, dev) {
3028 			if (idx < em_num) {
3029 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3030 				idx++;
3031 			} else
3032 				gfar_set_hash_for_addr(dev, ha->addr);
3033 		}
3034 	}
3035 }
3036 
gfar_mac_reset(struct gfar_private * priv)3037 void gfar_mac_reset(struct gfar_private *priv)
3038 {
3039 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3040 	u32 tempval;
3041 
3042 	/* Reset MAC layer */
3043 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3044 
3045 	/* We need to delay at least 3 TX clocks */
3046 	udelay(3);
3047 
3048 	/* the soft reset bit is not self-resetting, so we need to
3049 	 * clear it before resuming normal operation
3050 	 */
3051 	gfar_write(&regs->maccfg1, 0);
3052 
3053 	udelay(3);
3054 
3055 	gfar_rx_offload_en(priv);
3056 
3057 	/* Initialize the max receive frame/buffer lengths */
3058 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3059 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3060 
3061 	/* Initialize the Minimum Frame Length Register */
3062 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3063 
3064 	/* Initialize MACCFG2. */
3065 	tempval = MACCFG2_INIT_SETTINGS;
3066 
3067 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3068 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3069 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3070 	 */
3071 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3072 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3073 
3074 	gfar_write(&regs->maccfg2, tempval);
3075 
3076 	/* Clear mac addr hash registers */
3077 	gfar_write(&regs->igaddr0, 0);
3078 	gfar_write(&regs->igaddr1, 0);
3079 	gfar_write(&regs->igaddr2, 0);
3080 	gfar_write(&regs->igaddr3, 0);
3081 	gfar_write(&regs->igaddr4, 0);
3082 	gfar_write(&regs->igaddr5, 0);
3083 	gfar_write(&regs->igaddr6, 0);
3084 	gfar_write(&regs->igaddr7, 0);
3085 
3086 	gfar_write(&regs->gaddr0, 0);
3087 	gfar_write(&regs->gaddr1, 0);
3088 	gfar_write(&regs->gaddr2, 0);
3089 	gfar_write(&regs->gaddr3, 0);
3090 	gfar_write(&regs->gaddr4, 0);
3091 	gfar_write(&regs->gaddr5, 0);
3092 	gfar_write(&regs->gaddr6, 0);
3093 	gfar_write(&regs->gaddr7, 0);
3094 
3095 	if (priv->extended_hash)
3096 		gfar_clear_exact_match(priv->ndev);
3097 
3098 	gfar_mac_rx_config(priv);
3099 
3100 	gfar_mac_tx_config(priv);
3101 
3102 	gfar_set_mac_address(priv->ndev);
3103 
3104 	gfar_set_multi(priv->ndev);
3105 
3106 	/* clear ievent and imask before configuring coalescing */
3107 	gfar_ints_disable(priv);
3108 
3109 	/* Configure the coalescing support */
3110 	gfar_configure_coalescing_all(priv);
3111 }
3112 
gfar_hw_init(struct gfar_private * priv)3113 static void gfar_hw_init(struct gfar_private *priv)
3114 {
3115 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3116 	u32 attrs;
3117 
3118 	/* Stop the DMA engine now, in case it was running before
3119 	 * (The firmware could have used it, and left it running).
3120 	 */
3121 	gfar_halt(priv);
3122 
3123 	gfar_mac_reset(priv);
3124 
3125 	/* Zero out the rmon mib registers if it has them */
3126 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3127 		memset_io(&regs->rmon, 0, offsetof(struct rmon_mib, car1));
3128 
3129 		/* Mask off the CAM interrupts */
3130 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3131 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3132 		/* Clear the CAR registers (w1c style) */
3133 		gfar_write(&regs->rmon.car1, 0xffffffff);
3134 		gfar_write(&regs->rmon.car2, 0xffffffff);
3135 	}
3136 
3137 	/* Initialize ECNTRL */
3138 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3139 
3140 	/* Set the extraction length and index */
3141 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3142 		ATTRELI_EI(priv->rx_stash_index);
3143 
3144 	gfar_write(&regs->attreli, attrs);
3145 
3146 	/* Start with defaults, and add stashing
3147 	 * depending on driver parameters
3148 	 */
3149 	attrs = ATTR_INIT_SETTINGS;
3150 
3151 	if (priv->bd_stash_en)
3152 		attrs |= ATTR_BDSTASH;
3153 
3154 	if (priv->rx_stash_size != 0)
3155 		attrs |= ATTR_BUFSTASH;
3156 
3157 	gfar_write(&regs->attr, attrs);
3158 
3159 	/* FIFO configs */
3160 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3161 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3162 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3163 
3164 	/* Program the interrupt steering regs, only for MG devices */
3165 	if (priv->num_grps > 1)
3166 		gfar_write_isrg(priv);
3167 }
3168 
3169 static const struct net_device_ops gfar_netdev_ops = {
3170 	.ndo_open = gfar_enet_open,
3171 	.ndo_start_xmit = gfar_start_xmit,
3172 	.ndo_stop = gfar_close,
3173 	.ndo_change_mtu = gfar_change_mtu,
3174 	.ndo_set_features = gfar_set_features,
3175 	.ndo_set_rx_mode = gfar_set_multi,
3176 	.ndo_tx_timeout = gfar_timeout,
3177 	.ndo_eth_ioctl = gfar_ioctl,
3178 	.ndo_get_stats64 = gfar_get_stats64,
3179 	.ndo_change_carrier = fixed_phy_change_carrier,
3180 	.ndo_set_mac_address = gfar_set_mac_addr,
3181 	.ndo_validate_addr = eth_validate_addr,
3182 #ifdef CONFIG_NET_POLL_CONTROLLER
3183 	.ndo_poll_controller = gfar_netpoll,
3184 #endif
3185 };
3186 
3187 /* Set up the ethernet device structure, private data,
3188  * and anything else we need before we start
3189  */
gfar_probe(struct platform_device * ofdev)3190 static int gfar_probe(struct platform_device *ofdev)
3191 {
3192 	struct device_node *np = ofdev->dev.of_node;
3193 	struct net_device *dev = NULL;
3194 	struct gfar_private *priv = NULL;
3195 	int err = 0, i;
3196 
3197 	err = gfar_of_init(ofdev, &dev);
3198 
3199 	if (err)
3200 		return err;
3201 
3202 	priv = netdev_priv(dev);
3203 	priv->ndev = dev;
3204 	priv->ofdev = ofdev;
3205 	priv->dev = &ofdev->dev;
3206 	SET_NETDEV_DEV(dev, &ofdev->dev);
3207 
3208 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3209 
3210 	platform_set_drvdata(ofdev, priv);
3211 
3212 	gfar_detect_errata(priv);
3213 
3214 	/* Set the dev->base_addr to the gfar reg region */
3215 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3216 
3217 	/* Fill in the dev structure */
3218 	dev->watchdog_timeo = TX_TIMEOUT;
3219 	/* MTU range: 50 - 9586 */
3220 	dev->mtu = 1500;
3221 	dev->min_mtu = 50;
3222 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3223 	dev->netdev_ops = &gfar_netdev_ops;
3224 	dev->ethtool_ops = &gfar_ethtool_ops;
3225 
3226 	/* Register for napi ...We are registering NAPI for each grp */
3227 	for (i = 0; i < priv->num_grps; i++) {
3228 		netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3229 			       gfar_poll_rx_sq);
3230 		netif_napi_add_tx_weight(dev, &priv->gfargrp[i].napi_tx,
3231 					 gfar_poll_tx_sq, 2);
3232 	}
3233 
3234 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3235 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3236 				   NETIF_F_RXCSUM;
3237 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3238 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3239 	}
3240 
3241 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3242 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3243 				    NETIF_F_HW_VLAN_CTAG_RX;
3244 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3245 	}
3246 
3247 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3248 
3249 	gfar_init_addr_hash_table(priv);
3250 
3251 	/* Insert receive time stamps into padding alignment bytes, and
3252 	 * plus 2 bytes padding to ensure the cpu alignment.
3253 	 */
3254 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3255 		priv->padding = 8 + DEFAULT_PADDING;
3256 
3257 	if (dev->features & NETIF_F_IP_CSUM ||
3258 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3259 		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3260 
3261 	/* Initializing some of the rx/tx queue level parameters */
3262 	for (i = 0; i < priv->num_tx_queues; i++) {
3263 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3264 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3265 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3266 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3267 	}
3268 
3269 	for (i = 0; i < priv->num_rx_queues; i++) {
3270 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3271 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3272 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3273 	}
3274 
3275 	/* Always enable rx filer if available */
3276 	priv->rx_filer_enable =
3277 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3278 	/* Enable most messages by default */
3279 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3280 	/* use pritority h/w tx queue scheduling for single queue devices */
3281 	if (priv->num_tx_queues == 1)
3282 		priv->prio_sched_en = 1;
3283 
3284 	set_bit(GFAR_DOWN, &priv->state);
3285 
3286 	gfar_hw_init(priv);
3287 
3288 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3289 		struct rmon_mib __iomem *rmon = &priv->gfargrp[0].regs->rmon;
3290 
3291 		spin_lock_init(&priv->rmon_overflow.lock);
3292 		priv->rmon_overflow.imask = IMASK_MSRO;
3293 		gfar_write(&rmon->cam1, gfar_read(&rmon->cam1) & ~CAM1_M1RDR);
3294 	}
3295 
3296 	/* Carrier starts down, phylib will bring it up */
3297 	netif_carrier_off(dev);
3298 
3299 	err = register_netdev(dev);
3300 
3301 	if (err) {
3302 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3303 		goto register_fail;
3304 	}
3305 
3306 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3307 		priv->wol_supported |= GFAR_WOL_MAGIC;
3308 
3309 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3310 	    priv->rx_filer_enable)
3311 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3312 
3313 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3314 
3315 	/* fill out IRQ number and name fields */
3316 	for (i = 0; i < priv->num_grps; i++) {
3317 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3318 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3319 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3320 				dev->name, "_g", '0' + i, "_tx");
3321 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3322 				dev->name, "_g", '0' + i, "_rx");
3323 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3324 				dev->name, "_g", '0' + i, "_er");
3325 		} else
3326 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3327 	}
3328 
3329 	/* Initialize the filer table */
3330 	gfar_init_filer_table(priv);
3331 
3332 	/* Print out the device info */
3333 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3334 
3335 	/* Even more device info helps when determining which kernel
3336 	 * provided which set of benchmarks.
3337 	 */
3338 	netdev_info(dev, "Running with NAPI enabled\n");
3339 	for (i = 0; i < priv->num_rx_queues; i++)
3340 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3341 			    i, priv->rx_queue[i]->rx_ring_size);
3342 	for (i = 0; i < priv->num_tx_queues; i++)
3343 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3344 			    i, priv->tx_queue[i]->tx_ring_size);
3345 
3346 	return 0;
3347 
3348 register_fail:
3349 	if (of_phy_is_fixed_link(np))
3350 		of_phy_deregister_fixed_link(np);
3351 	unmap_group_regs(priv);
3352 	gfar_free_rx_queues(priv);
3353 	gfar_free_tx_queues(priv);
3354 	of_node_put(priv->phy_node);
3355 	of_node_put(priv->tbi_node);
3356 	free_gfar_dev(priv);
3357 	return err;
3358 }
3359 
gfar_remove(struct platform_device * ofdev)3360 static void gfar_remove(struct platform_device *ofdev)
3361 {
3362 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3363 	struct device_node *np = ofdev->dev.of_node;
3364 
3365 	of_node_put(priv->phy_node);
3366 	of_node_put(priv->tbi_node);
3367 
3368 	unregister_netdev(priv->ndev);
3369 
3370 	if (of_phy_is_fixed_link(np))
3371 		of_phy_deregister_fixed_link(np);
3372 
3373 	unmap_group_regs(priv);
3374 	gfar_free_rx_queues(priv);
3375 	gfar_free_tx_queues(priv);
3376 	free_gfar_dev(priv);
3377 }
3378 
3379 #ifdef CONFIG_PM
3380 
__gfar_filer_disable(struct gfar_private * priv)3381 static void __gfar_filer_disable(struct gfar_private *priv)
3382 {
3383 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3384 	u32 temp;
3385 
3386 	temp = gfar_read(&regs->rctrl);
3387 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3388 	gfar_write(&regs->rctrl, temp);
3389 }
3390 
__gfar_filer_enable(struct gfar_private * priv)3391 static void __gfar_filer_enable(struct gfar_private *priv)
3392 {
3393 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3394 	u32 temp;
3395 
3396 	temp = gfar_read(&regs->rctrl);
3397 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3398 	gfar_write(&regs->rctrl, temp);
3399 }
3400 
3401 /* Filer rules implementing wol capabilities */
gfar_filer_config_wol(struct gfar_private * priv)3402 static void gfar_filer_config_wol(struct gfar_private *priv)
3403 {
3404 	unsigned int i;
3405 	u32 rqfcr;
3406 
3407 	__gfar_filer_disable(priv);
3408 
3409 	/* clear the filer table, reject any packet by default */
3410 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3411 	for (i = 0; i <= MAX_FILER_IDX; i++)
3412 		gfar_write_filer(priv, i, rqfcr, 0);
3413 
3414 	i = 0;
3415 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3416 		/* unicast packet, accept it */
3417 		struct net_device *ndev = priv->ndev;
3418 		/* get the default rx queue index */
3419 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3420 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3421 				    (ndev->dev_addr[1] << 8) |
3422 				     ndev->dev_addr[2];
3423 
3424 		rqfcr = (qindex << 10) | RQFCR_AND |
3425 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3426 
3427 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3428 
3429 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3430 				(ndev->dev_addr[4] << 8) |
3431 				 ndev->dev_addr[5];
3432 		rqfcr = (qindex << 10) | RQFCR_GPI |
3433 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3434 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3435 	}
3436 
3437 	__gfar_filer_enable(priv);
3438 }
3439 
gfar_filer_restore_table(struct gfar_private * priv)3440 static void gfar_filer_restore_table(struct gfar_private *priv)
3441 {
3442 	u32 rqfcr, rqfpr;
3443 	unsigned int i;
3444 
3445 	__gfar_filer_disable(priv);
3446 
3447 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3448 		rqfcr = priv->ftp_rqfcr[i];
3449 		rqfpr = priv->ftp_rqfpr[i];
3450 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3451 	}
3452 
3453 	__gfar_filer_enable(priv);
3454 }
3455 
3456 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
gfar_start_wol_filer(struct gfar_private * priv)3457 static void gfar_start_wol_filer(struct gfar_private *priv)
3458 {
3459 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3460 	u32 tempval;
3461 	int i = 0;
3462 
3463 	/* Enable Rx hw queues */
3464 	gfar_write(&regs->rqueue, priv->rqueue);
3465 
3466 	/* Initialize DMACTRL to have WWR and WOP */
3467 	tempval = gfar_read(&regs->dmactrl);
3468 	tempval |= DMACTRL_INIT_SETTINGS;
3469 	gfar_write(&regs->dmactrl, tempval);
3470 
3471 	/* Make sure we aren't stopped */
3472 	tempval = gfar_read(&regs->dmactrl);
3473 	tempval &= ~DMACTRL_GRS;
3474 	gfar_write(&regs->dmactrl, tempval);
3475 
3476 	for (i = 0; i < priv->num_grps; i++) {
3477 		regs = priv->gfargrp[i].regs;
3478 		/* Clear RHLT, so that the DMA starts polling now */
3479 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3480 		/* enable the Filer General Purpose Interrupt */
3481 		gfar_write(&regs->imask, IMASK_FGPI);
3482 	}
3483 
3484 	/* Enable Rx DMA */
3485 	tempval = gfar_read(&regs->maccfg1);
3486 	tempval |= MACCFG1_RX_EN;
3487 	gfar_write(&regs->maccfg1, tempval);
3488 }
3489 
gfar_suspend(struct device * dev)3490 static int gfar_suspend(struct device *dev)
3491 {
3492 	struct gfar_private *priv = dev_get_drvdata(dev);
3493 	struct net_device *ndev = priv->ndev;
3494 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3495 	u32 tempval;
3496 	u16 wol = priv->wol_opts;
3497 
3498 	if (!netif_running(ndev))
3499 		return 0;
3500 
3501 	disable_napi(priv);
3502 	netif_tx_lock(ndev);
3503 	netif_device_detach(ndev);
3504 	netif_tx_unlock(ndev);
3505 
3506 	gfar_halt(priv);
3507 
3508 	if (wol & GFAR_WOL_MAGIC) {
3509 		/* Enable interrupt on Magic Packet */
3510 		gfar_write(&regs->imask, IMASK_MAG);
3511 
3512 		/* Enable Magic Packet mode */
3513 		tempval = gfar_read(&regs->maccfg2);
3514 		tempval |= MACCFG2_MPEN;
3515 		gfar_write(&regs->maccfg2, tempval);
3516 
3517 		/* re-enable the Rx block */
3518 		tempval = gfar_read(&regs->maccfg1);
3519 		tempval |= MACCFG1_RX_EN;
3520 		gfar_write(&regs->maccfg1, tempval);
3521 
3522 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3523 		gfar_filer_config_wol(priv);
3524 		gfar_start_wol_filer(priv);
3525 
3526 	} else {
3527 		phy_stop(ndev->phydev);
3528 	}
3529 
3530 	return 0;
3531 }
3532 
gfar_resume(struct device * dev)3533 static int gfar_resume(struct device *dev)
3534 {
3535 	struct gfar_private *priv = dev_get_drvdata(dev);
3536 	struct net_device *ndev = priv->ndev;
3537 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3538 	u32 tempval;
3539 	u16 wol = priv->wol_opts;
3540 
3541 	if (!netif_running(ndev))
3542 		return 0;
3543 
3544 	if (wol & GFAR_WOL_MAGIC) {
3545 		/* Disable Magic Packet mode */
3546 		tempval = gfar_read(&regs->maccfg2);
3547 		tempval &= ~MACCFG2_MPEN;
3548 		gfar_write(&regs->maccfg2, tempval);
3549 
3550 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3551 		/* need to stop rx only, tx is already down */
3552 		gfar_halt(priv);
3553 		gfar_filer_restore_table(priv);
3554 
3555 	} else {
3556 		phy_start(ndev->phydev);
3557 	}
3558 
3559 	gfar_start(priv);
3560 
3561 	netif_device_attach(ndev);
3562 	enable_napi(priv);
3563 
3564 	return 0;
3565 }
3566 
gfar_restore(struct device * dev)3567 static int gfar_restore(struct device *dev)
3568 {
3569 	struct gfar_private *priv = dev_get_drvdata(dev);
3570 	struct net_device *ndev = priv->ndev;
3571 
3572 	if (!netif_running(ndev)) {
3573 		netif_device_attach(ndev);
3574 
3575 		return 0;
3576 	}
3577 
3578 	gfar_init_bds(ndev);
3579 
3580 	gfar_mac_reset(priv);
3581 
3582 	gfar_init_tx_rx_base(priv);
3583 
3584 	gfar_start(priv);
3585 
3586 	priv->oldlink = 0;
3587 	priv->oldspeed = 0;
3588 	priv->oldduplex = -1;
3589 
3590 	if (ndev->phydev)
3591 		phy_start(ndev->phydev);
3592 
3593 	netif_device_attach(ndev);
3594 	enable_napi(priv);
3595 
3596 	return 0;
3597 }
3598 
3599 static const struct dev_pm_ops gfar_pm_ops = {
3600 	.suspend = gfar_suspend,
3601 	.resume = gfar_resume,
3602 	.freeze = gfar_suspend,
3603 	.thaw = gfar_resume,
3604 	.restore = gfar_restore,
3605 };
3606 
3607 #define GFAR_PM_OPS (&gfar_pm_ops)
3608 
3609 #else
3610 
3611 #define GFAR_PM_OPS NULL
3612 
3613 #endif
3614 
3615 static const struct of_device_id gfar_match[] =
3616 {
3617 	{
3618 		.type = "network",
3619 		.compatible = "gianfar",
3620 	},
3621 	{
3622 		.compatible = "fsl,etsec2",
3623 	},
3624 	{},
3625 };
3626 MODULE_DEVICE_TABLE(of, gfar_match);
3627 
3628 /* Structure for a device driver */
3629 static struct platform_driver gfar_driver = {
3630 	.driver = {
3631 		.name = "fsl-gianfar",
3632 		.pm = GFAR_PM_OPS,
3633 		.of_match_table = gfar_match,
3634 	},
3635 	.probe = gfar_probe,
3636 	.remove = gfar_remove,
3637 };
3638 
3639 module_platform_driver(gfar_driver);
3640