xref: /linux/lib/crypto/gf128mul.c (revision 13150742b09e720fdf021de14cd2b98b37415a89)
1 /* gf128mul.c - GF(2^128) multiplication functions
2  *
3  * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4  * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on Dr Brian Gladman's (GPL'd) work published at
7  * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
8  * See the original copyright notice below.
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms of the GNU General Public License as published by the Free
12  * Software Foundation; either version 2 of the License, or (at your option)
13  * any later version.
14  */
15 
16 /*
17  ---------------------------------------------------------------------------
18  Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
19 
20  LICENSE TERMS
21 
22  The free distribution and use of this software in both source and binary
23  form is allowed (with or without changes) provided that:
24 
25    1. distributions of this source code include the above copyright
26       notice, this list of conditions and the following disclaimer;
27 
28    2. distributions in binary form include the above copyright
29       notice, this list of conditions and the following disclaimer
30       in the documentation and/or other associated materials;
31 
32    3. the copyright holder's name is not used to endorse products
33       built using this software without specific written permission.
34 
35  ALTERNATIVELY, provided that this notice is retained in full, this product
36  may be distributed under the terms of the GNU General Public License (GPL),
37  in which case the provisions of the GPL apply INSTEAD OF those given above.
38 
39  DISCLAIMER
40 
41  This software is provided 'as is' with no explicit or implied warranties
42  in respect of its properties, including, but not limited to, correctness
43  and/or fitness for purpose.
44  ---------------------------------------------------------------------------
45  Issue 31/01/2006
46 
47  This file provides fast multiplication in GF(2^128) as required by several
48  cryptographic authentication modes
49 */
50 
51 #include <crypto/gf128mul.h>
52 #include <linux/export.h>
53 #include <linux/kernel.h>
54 #include <linux/module.h>
55 #include <linux/slab.h>
56 
57 #define gf128mul_dat(q) { \
58 	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
59 	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
60 	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
61 	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
62 	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
63 	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
64 	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
65 	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
66 	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
67 	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
68 	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
69 	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
70 	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
71 	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
72 	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
73 	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
74 	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
75 	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
76 	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
77 	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
78 	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
79 	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
80 	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
81 	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
82 	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
83 	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
84 	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
85 	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
86 	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
87 	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
88 	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
89 	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
90 }
91 
92 /*
93  * Given a value i in 0..255 as the byte overflow when a field element
94  * in GF(2^128) is multiplied by x^8, the following macro returns the
95  * 16-bit value that must be XOR-ed into the low-degree end of the
96  * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
97  *
98  * There are two versions of the macro, and hence two tables: one for
99  * the "be" convention where the highest-order bit is the coefficient of
100  * the highest-degree polynomial term, and one for the "le" convention
101  * where the highest-order bit is the coefficient of the lowest-degree
102  * polynomial term.  In both cases the values are stored in CPU byte
103  * endianness such that the coefficients are ordered consistently across
104  * bytes, i.e. in the "be" table bits 15..0 of the stored value
105  * correspond to the coefficients of x^15..x^0, and in the "le" table
106  * bits 15..0 correspond to the coefficients of x^0..x^15.
107  *
108  * Therefore, provided that the appropriate byte endianness conversions
109  * are done by the multiplication functions (and these must be in place
110  * anyway to support both little endian and big endian CPUs), the "be"
111  * table can be used for multiplications of both "bbe" and "ble"
112  * elements, and the "le" table can be used for multiplications of both
113  * "lle" and "lbe" elements.
114  */
115 
116 #define xda_be(i) ( \
117 	(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
118 	(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
119 	(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
120 	(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
121 )
122 
123 #define xda_le(i) ( \
124 	(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
125 	(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
126 	(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
127 	(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
128 )
129 
130 static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
131 static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
132 
133 /*
134  * The following functions multiply a field element by x^8 in
135  * the polynomial field representation.  They use 64-bit word operations
136  * to gain speed but compensate for machine endianness and hence work
137  * correctly on both styles of machine.
138  */
139 
gf128mul_x8_lle(be128 * x)140 static void gf128mul_x8_lle(be128 *x)
141 {
142 	u64 a = be64_to_cpu(x->a);
143 	u64 b = be64_to_cpu(x->b);
144 	u64 _tt = gf128mul_table_le[b & 0xff];
145 
146 	x->b = cpu_to_be64((b >> 8) | (a << 56));
147 	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
148 }
149 
150 /* time invariant version of gf128mul_x8_lle */
gf128mul_x8_lle_ti(be128 * x)151 static void gf128mul_x8_lle_ti(be128 *x)
152 {
153 	u64 a = be64_to_cpu(x->a);
154 	u64 b = be64_to_cpu(x->b);
155 	u64 _tt = xda_le(b & 0xff); /* avoid table lookup */
156 
157 	x->b = cpu_to_be64((b >> 8) | (a << 56));
158 	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
159 }
160 
gf128mul_x8_bbe(be128 * x)161 static void gf128mul_x8_bbe(be128 *x)
162 {
163 	u64 a = be64_to_cpu(x->a);
164 	u64 b = be64_to_cpu(x->b);
165 	u64 _tt = gf128mul_table_be[a >> 56];
166 
167 	x->a = cpu_to_be64((a << 8) | (b >> 56));
168 	x->b = cpu_to_be64((b << 8) ^ _tt);
169 }
170 
gf128mul_x8_ble(le128 * r,const le128 * x)171 void gf128mul_x8_ble(le128 *r, const le128 *x)
172 {
173 	u64 a = le64_to_cpu(x->a);
174 	u64 b = le64_to_cpu(x->b);
175 	u64 _tt = gf128mul_table_be[a >> 56];
176 
177 	r->a = cpu_to_le64((a << 8) | (b >> 56));
178 	r->b = cpu_to_le64((b << 8) ^ _tt);
179 }
180 EXPORT_SYMBOL(gf128mul_x8_ble);
181 
gf128mul_lle(be128 * r,const be128 * b)182 void gf128mul_lle(be128 *r, const be128 *b)
183 {
184 	/*
185 	 * The p array should be aligned to twice the size of its element type,
186 	 * so that every even/odd pair is guaranteed to share a cacheline
187 	 * (assuming a cacheline size of 32 bytes or more, which is by far the
188 	 * most common). This ensures that each be128_xor() call in the loop
189 	 * takes the same amount of time regardless of the value of 'ch', which
190 	 * is derived from function parameter 'b', which is commonly used as a
191 	 * key, e.g., for GHASH. The odd array elements are all set to zero,
192 	 * making each be128_xor() a NOP if its associated bit in 'ch' is not
193 	 * set, and this is equivalent to calling be128_xor() conditionally.
194 	 * This approach aims to avoid leaking information about such keys
195 	 * through execution time variances.
196 	 *
197 	 * Unfortunately, __aligned(16) or higher does not work on x86 for
198 	 * variables on the stack so we need to perform the alignment by hand.
199 	 */
200 	be128 array[16 + 3] = {};
201 	be128 *p = PTR_ALIGN(&array[0], 2 * sizeof(be128));
202 	int i;
203 
204 	p[0] = *r;
205 	for (i = 0; i < 7; ++i)
206 		gf128mul_x_lle(&p[2 * i + 2], &p[2 * i]);
207 
208 	memset(r, 0, sizeof(*r));
209 	for (i = 0;;) {
210 		u8 ch = ((u8 *)b)[15 - i];
211 
212 		be128_xor(r, r, &p[ 0 + !(ch & 0x80)]);
213 		be128_xor(r, r, &p[ 2 + !(ch & 0x40)]);
214 		be128_xor(r, r, &p[ 4 + !(ch & 0x20)]);
215 		be128_xor(r, r, &p[ 6 + !(ch & 0x10)]);
216 		be128_xor(r, r, &p[ 8 + !(ch & 0x08)]);
217 		be128_xor(r, r, &p[10 + !(ch & 0x04)]);
218 		be128_xor(r, r, &p[12 + !(ch & 0x02)]);
219 		be128_xor(r, r, &p[14 + !(ch & 0x01)]);
220 
221 		if (++i >= 16)
222 			break;
223 
224 		gf128mul_x8_lle_ti(r); /* use the time invariant version */
225 	}
226 }
227 EXPORT_SYMBOL(gf128mul_lle);
228 
229 /*      This version uses 64k bytes of table space.
230     A 16 byte buffer has to be multiplied by a 16 byte key
231     value in GF(2^128).  If we consider a GF(2^128) value in
232     the buffer's lowest byte, we can construct a table of
233     the 256 16 byte values that result from the 256 values
234     of this byte.  This requires 4096 bytes. But we also
235     need tables for each of the 16 higher bytes in the
236     buffer as well, which makes 64 kbytes in total.
237 */
238 /* additional explanation
239  * t[0][BYTE] contains g*BYTE
240  * t[1][BYTE] contains g*x^8*BYTE
241  *  ..
242  * t[15][BYTE] contains g*x^120*BYTE */
gf128mul_init_64k_bbe(const be128 * g)243 struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
244 {
245 	struct gf128mul_64k *t;
246 	int i, j, k;
247 
248 	t = kzalloc(sizeof(*t), GFP_KERNEL);
249 	if (!t)
250 		goto out;
251 
252 	for (i = 0; i < 16; i++) {
253 		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
254 		if (!t->t[i]) {
255 			gf128mul_free_64k(t);
256 			t = NULL;
257 			goto out;
258 		}
259 	}
260 
261 	t->t[0]->t[1] = *g;
262 	for (j = 1; j <= 64; j <<= 1)
263 		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
264 
265 	for (i = 0;;) {
266 		for (j = 2; j < 256; j += j)
267 			for (k = 1; k < j; ++k)
268 				be128_xor(&t->t[i]->t[j + k],
269 					  &t->t[i]->t[j], &t->t[i]->t[k]);
270 
271 		if (++i >= 16)
272 			break;
273 
274 		for (j = 128; j > 0; j >>= 1) {
275 			t->t[i]->t[j] = t->t[i - 1]->t[j];
276 			gf128mul_x8_bbe(&t->t[i]->t[j]);
277 		}
278 	}
279 
280 out:
281 	return t;
282 }
283 EXPORT_SYMBOL(gf128mul_init_64k_bbe);
284 
gf128mul_free_64k(struct gf128mul_64k * t)285 void gf128mul_free_64k(struct gf128mul_64k *t)
286 {
287 	int i;
288 
289 	for (i = 0; i < 16; i++)
290 		kfree_sensitive(t->t[i]);
291 	kfree_sensitive(t);
292 }
293 EXPORT_SYMBOL(gf128mul_free_64k);
294 
gf128mul_64k_bbe(be128 * a,const struct gf128mul_64k * t)295 void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
296 {
297 	u8 *ap = (u8 *)a;
298 	be128 r[1];
299 	int i;
300 
301 	*r = t->t[0]->t[ap[15]];
302 	for (i = 1; i < 16; ++i)
303 		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
304 	*a = *r;
305 }
306 EXPORT_SYMBOL(gf128mul_64k_bbe);
307 
308 /*      This version uses 4k bytes of table space.
309     A 16 byte buffer has to be multiplied by a 16 byte key
310     value in GF(2^128).  If we consider a GF(2^128) value in a
311     single byte, we can construct a table of the 256 16 byte
312     values that result from the 256 values of this byte.
313     This requires 4096 bytes. If we take the highest byte in
314     the buffer and use this table to get the result, we then
315     have to multiply by x^120 to get the final value. For the
316     next highest byte the result has to be multiplied by x^112
317     and so on. But we can do this by accumulating the result
318     in an accumulator starting with the result for the top
319     byte.  We repeatedly multiply the accumulator value by
320     x^8 and then add in (i.e. xor) the 16 bytes of the next
321     lower byte in the buffer, stopping when we reach the
322     lowest byte. This requires a 4096 byte table.
323 */
gf128mul_init_4k_lle(const be128 * g)324 struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
325 {
326 	struct gf128mul_4k *t;
327 	int j, k;
328 
329 	t = kzalloc(sizeof(*t), GFP_KERNEL);
330 	if (!t)
331 		goto out;
332 
333 	t->t[128] = *g;
334 	for (j = 64; j > 0; j >>= 1)
335 		gf128mul_x_lle(&t->t[j], &t->t[j+j]);
336 
337 	for (j = 2; j < 256; j += j)
338 		for (k = 1; k < j; ++k)
339 			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
340 
341 out:
342 	return t;
343 }
344 EXPORT_SYMBOL(gf128mul_init_4k_lle);
345 
gf128mul_4k_lle(be128 * a,const struct gf128mul_4k * t)346 void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
347 {
348 	u8 *ap = (u8 *)a;
349 	be128 r[1];
350 	int i = 15;
351 
352 	*r = t->t[ap[15]];
353 	while (i--) {
354 		gf128mul_x8_lle(r);
355 		be128_xor(r, r, &t->t[ap[i]]);
356 	}
357 	*a = *r;
358 }
359 EXPORT_SYMBOL(gf128mul_4k_lle);
360 
361 MODULE_LICENSE("GPL");
362 MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
363