1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1999-2001 Paul `Rusty' Russell
4 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
5 * (C) 2011 Patrick McHardy <kaber@trash.net>
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/timer.h>
13 #include <linux/skbuff.h>
14 #include <linux/gfp.h>
15 #include <net/xfrm.h>
16 #include <linux/siphash.h>
17 #include <linux/rtnetlink.h>
18
19 #include <net/netfilter/nf_conntrack_bpf.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_seqadj.h>
23 #include <net/netfilter/nf_conntrack_zones.h>
24 #include <net/netfilter/nf_nat.h>
25 #include <net/netfilter/nf_nat_helper.h>
26 #include <uapi/linux/netfilter/nf_nat.h>
27
28 #include "nf_internals.h"
29
30 #define NF_NAT_MAX_ATTEMPTS 128
31 #define NF_NAT_HARDER_THRESH (NF_NAT_MAX_ATTEMPTS / 4)
32
33 static spinlock_t nf_nat_locks[CONNTRACK_LOCKS];
34
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static unsigned int nat_net_id __read_mostly;
37
38 static struct hlist_head *nf_nat_bysource __read_mostly;
39 static unsigned int nf_nat_htable_size __read_mostly;
40 static siphash_aligned_key_t nf_nat_hash_rnd;
41
42 struct nf_nat_lookup_hook_priv {
43 struct nf_hook_entries __rcu *entries;
44
45 struct rcu_head rcu_head;
46 };
47
48 struct nf_nat_hooks_net {
49 struct nf_hook_ops *nat_hook_ops;
50 unsigned int users;
51 };
52
53 struct nat_net {
54 struct nf_nat_hooks_net nat_proto_net[NFPROTO_NUMPROTO];
55 };
56
57 #ifdef CONFIG_XFRM
nf_nat_ipv4_decode_session(struct sk_buff * skb,const struct nf_conn * ct,enum ip_conntrack_dir dir,unsigned long statusbit,struct flowi * fl)58 static void nf_nat_ipv4_decode_session(struct sk_buff *skb,
59 const struct nf_conn *ct,
60 enum ip_conntrack_dir dir,
61 unsigned long statusbit,
62 struct flowi *fl)
63 {
64 const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple;
65 struct flowi4 *fl4 = &fl->u.ip4;
66
67 if (ct->status & statusbit) {
68 fl4->daddr = t->dst.u3.ip;
69 if (t->dst.protonum == IPPROTO_TCP ||
70 t->dst.protonum == IPPROTO_UDP ||
71 t->dst.protonum == IPPROTO_UDPLITE ||
72 t->dst.protonum == IPPROTO_SCTP)
73 fl4->fl4_dport = t->dst.u.all;
74 }
75
76 statusbit ^= IPS_NAT_MASK;
77
78 if (ct->status & statusbit) {
79 fl4->saddr = t->src.u3.ip;
80 if (t->dst.protonum == IPPROTO_TCP ||
81 t->dst.protonum == IPPROTO_UDP ||
82 t->dst.protonum == IPPROTO_UDPLITE ||
83 t->dst.protonum == IPPROTO_SCTP)
84 fl4->fl4_sport = t->src.u.all;
85 }
86 }
87
nf_nat_ipv6_decode_session(struct sk_buff * skb,const struct nf_conn * ct,enum ip_conntrack_dir dir,unsigned long statusbit,struct flowi * fl)88 static void nf_nat_ipv6_decode_session(struct sk_buff *skb,
89 const struct nf_conn *ct,
90 enum ip_conntrack_dir dir,
91 unsigned long statusbit,
92 struct flowi *fl)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple;
96 struct flowi6 *fl6 = &fl->u.ip6;
97
98 if (ct->status & statusbit) {
99 fl6->daddr = t->dst.u3.in6;
100 if (t->dst.protonum == IPPROTO_TCP ||
101 t->dst.protonum == IPPROTO_UDP ||
102 t->dst.protonum == IPPROTO_UDPLITE ||
103 t->dst.protonum == IPPROTO_SCTP)
104 fl6->fl6_dport = t->dst.u.all;
105 }
106
107 statusbit ^= IPS_NAT_MASK;
108
109 if (ct->status & statusbit) {
110 fl6->saddr = t->src.u3.in6;
111 if (t->dst.protonum == IPPROTO_TCP ||
112 t->dst.protonum == IPPROTO_UDP ||
113 t->dst.protonum == IPPROTO_UDPLITE ||
114 t->dst.protonum == IPPROTO_SCTP)
115 fl6->fl6_sport = t->src.u.all;
116 }
117 #endif
118 }
119
__nf_nat_decode_session(struct sk_buff * skb,struct flowi * fl)120 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
121 {
122 const struct nf_conn *ct;
123 enum ip_conntrack_info ctinfo;
124 enum ip_conntrack_dir dir;
125 unsigned long statusbit;
126 u8 family;
127
128 ct = nf_ct_get(skb, &ctinfo);
129 if (ct == NULL)
130 return;
131
132 family = nf_ct_l3num(ct);
133 dir = CTINFO2DIR(ctinfo);
134 if (dir == IP_CT_DIR_ORIGINAL)
135 statusbit = IPS_DST_NAT;
136 else
137 statusbit = IPS_SRC_NAT;
138
139 switch (family) {
140 case NFPROTO_IPV4:
141 nf_nat_ipv4_decode_session(skb, ct, dir, statusbit, fl);
142 return;
143 case NFPROTO_IPV6:
144 nf_nat_ipv6_decode_session(skb, ct, dir, statusbit, fl);
145 return;
146 }
147 }
148 #endif /* CONFIG_XFRM */
149
150 /* We keep an extra hash for each conntrack, for fast searching. */
151 static unsigned int
hash_by_src(const struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)152 hash_by_src(const struct net *net,
153 const struct nf_conntrack_zone *zone,
154 const struct nf_conntrack_tuple *tuple)
155 {
156 unsigned int hash;
157 struct {
158 struct nf_conntrack_man src;
159 u32 net_mix;
160 u32 protonum;
161 u32 zone;
162 } __aligned(SIPHASH_ALIGNMENT) combined;
163
164 get_random_once(&nf_nat_hash_rnd, sizeof(nf_nat_hash_rnd));
165
166 memset(&combined, 0, sizeof(combined));
167
168 /* Original src, to ensure we map it consistently if poss. */
169 combined.src = tuple->src;
170 combined.net_mix = net_hash_mix(net);
171 combined.protonum = tuple->dst.protonum;
172
173 /* Zone ID can be used provided its valid for both directions */
174 if (zone->dir == NF_CT_DEFAULT_ZONE_DIR)
175 combined.zone = zone->id;
176
177 hash = siphash(&combined, sizeof(combined), &nf_nat_hash_rnd);
178
179 return reciprocal_scale(hash, nf_nat_htable_size);
180 }
181
182 /**
183 * nf_nat_used_tuple - check if proposed nat tuple clashes with existing entry
184 * @tuple: proposed NAT binding
185 * @ignored_conntrack: our (unconfirmed) conntrack entry
186 *
187 * A conntrack entry can be inserted to the connection tracking table
188 * if there is no existing entry with an identical tuple in either direction.
189 *
190 * Example:
191 * INITIATOR -> NAT/PAT -> RESPONDER
192 *
193 * INITIATOR passes through NAT/PAT ("us") and SNAT is done (saddr rewrite).
194 * Then, later, NAT/PAT itself also connects to RESPONDER.
195 *
196 * This will not work if the SNAT done earlier has same IP:PORT source pair.
197 *
198 * Conntrack table has:
199 * ORIGINAL: $IP_INITIATOR:$SPORT -> $IP_RESPONDER:$DPORT
200 * REPLY: $IP_RESPONDER:$DPORT -> $IP_NAT:$SPORT
201 *
202 * and new locally originating connection wants:
203 * ORIGINAL: $IP_NAT:$SPORT -> $IP_RESPONDER:$DPORT
204 * REPLY: $IP_RESPONDER:$DPORT -> $IP_NAT:$SPORT
205 *
206 * ... which would mean incoming packets cannot be distinguished between
207 * the existing and the newly added entry (identical IP_CT_DIR_REPLY tuple).
208 *
209 * @return: true if the proposed NAT mapping collides with an existing entry.
210 */
211 static int
nf_nat_used_tuple(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)212 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
213 const struct nf_conn *ignored_conntrack)
214 {
215 /* Conntrack tracking doesn't keep track of outgoing tuples; only
216 * incoming ones. NAT means they don't have a fixed mapping,
217 * so we invert the tuple and look for the incoming reply.
218 *
219 * We could keep a separate hash if this proves too slow.
220 */
221 struct nf_conntrack_tuple reply;
222
223 nf_ct_invert_tuple(&reply, tuple);
224 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
225 }
226
nf_nat_allow_clash(const struct nf_conn * ct)227 static bool nf_nat_allow_clash(const struct nf_conn *ct)
228 {
229 return nf_ct_l4proto_find(nf_ct_protonum(ct))->allow_clash;
230 }
231
232 /**
233 * nf_nat_used_tuple_new - check if to-be-inserted conntrack collides with existing entry
234 * @tuple: proposed NAT binding
235 * @ignored_ct: our (unconfirmed) conntrack entry
236 *
237 * Same as nf_nat_used_tuple, but also check for rare clash in reverse
238 * direction. Should be called only when @tuple has not been altered, i.e.
239 * @ignored_conntrack will not be subject to NAT.
240 *
241 * @return: true if the proposed NAT mapping collides with existing entry.
242 */
243 static noinline bool
nf_nat_used_tuple_new(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_ct)244 nf_nat_used_tuple_new(const struct nf_conntrack_tuple *tuple,
245 const struct nf_conn *ignored_ct)
246 {
247 static const unsigned long uses_nat = IPS_NAT_MASK | IPS_SEQ_ADJUST;
248 const struct nf_conntrack_tuple_hash *thash;
249 const struct nf_conntrack_zone *zone;
250 struct nf_conn *ct;
251 bool taken = true;
252 struct net *net;
253
254 if (!nf_nat_used_tuple(tuple, ignored_ct))
255 return false;
256
257 if (!nf_nat_allow_clash(ignored_ct))
258 return true;
259
260 /* Initial choice clashes with existing conntrack.
261 * Check for (rare) reverse collision.
262 *
263 * This can happen when new packets are received in both directions
264 * at the exact same time on different CPUs.
265 *
266 * Without SMP, first packet creates new conntrack entry and second
267 * packet is resolved as established reply packet.
268 *
269 * With parallel processing, both packets could be picked up as
270 * new and both get their own ct entry allocated.
271 *
272 * If ignored_conntrack and colliding ct are not subject to NAT then
273 * pretend the tuple is available and let later clash resolution
274 * handle this at insertion time.
275 *
276 * Without it, the 'reply' packet has its source port rewritten
277 * by nat engine.
278 */
279 if (READ_ONCE(ignored_ct->status) & uses_nat)
280 return true;
281
282 net = nf_ct_net(ignored_ct);
283 zone = nf_ct_zone(ignored_ct);
284
285 thash = nf_conntrack_find_get(net, zone, tuple);
286 if (unlikely(!thash)) {
287 struct nf_conntrack_tuple reply;
288
289 nf_ct_invert_tuple(&reply, tuple);
290 thash = nf_conntrack_find_get(net, zone, &reply);
291 if (!thash) /* clashing entry went away */
292 return false;
293 }
294
295 ct = nf_ct_tuplehash_to_ctrack(thash);
296
297 /* clashing connection subject to NAT? Retry with new tuple. */
298 if (READ_ONCE(ct->status) & uses_nat)
299 goto out;
300
301 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
302 &ignored_ct->tuplehash[IP_CT_DIR_REPLY].tuple))
303 taken = false;
304 out:
305 nf_ct_put(ct);
306 return taken;
307 }
308
nf_nat_may_kill(struct nf_conn * ct,unsigned long flags)309 static bool nf_nat_may_kill(struct nf_conn *ct, unsigned long flags)
310 {
311 static const unsigned long flags_refuse = IPS_FIXED_TIMEOUT |
312 IPS_DYING;
313 static const unsigned long flags_needed = IPS_SRC_NAT;
314 enum tcp_conntrack old_state;
315
316 old_state = READ_ONCE(ct->proto.tcp.state);
317 if (old_state < TCP_CONNTRACK_TIME_WAIT)
318 return false;
319
320 if (flags & flags_refuse)
321 return false;
322
323 return (flags & flags_needed) == flags_needed;
324 }
325
326 /* reverse direction will send packets to new source, so
327 * make sure such packets are invalid.
328 */
nf_seq_has_advanced(const struct nf_conn * old,const struct nf_conn * new)329 static bool nf_seq_has_advanced(const struct nf_conn *old, const struct nf_conn *new)
330 {
331 return (__s32)(new->proto.tcp.seen[0].td_end -
332 old->proto.tcp.seen[0].td_end) > 0;
333 }
334
335 static int
nf_nat_used_tuple_harder(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack,unsigned int attempts_left)336 nf_nat_used_tuple_harder(const struct nf_conntrack_tuple *tuple,
337 const struct nf_conn *ignored_conntrack,
338 unsigned int attempts_left)
339 {
340 static const unsigned long flags_offload = IPS_OFFLOAD | IPS_HW_OFFLOAD;
341 struct nf_conntrack_tuple_hash *thash;
342 const struct nf_conntrack_zone *zone;
343 struct nf_conntrack_tuple reply;
344 unsigned long flags;
345 struct nf_conn *ct;
346 bool taken = true;
347 struct net *net;
348
349 nf_ct_invert_tuple(&reply, tuple);
350
351 if (attempts_left > NF_NAT_HARDER_THRESH ||
352 tuple->dst.protonum != IPPROTO_TCP ||
353 ignored_conntrack->proto.tcp.state != TCP_CONNTRACK_SYN_SENT)
354 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
355
356 /* :ast few attempts to find a free tcp port. Destructive
357 * action: evict colliding if its in timewait state and the
358 * tcp sequence number has advanced past the one used by the
359 * old entry.
360 */
361 net = nf_ct_net(ignored_conntrack);
362 zone = nf_ct_zone(ignored_conntrack);
363
364 thash = nf_conntrack_find_get(net, zone, &reply);
365 if (!thash)
366 return false;
367
368 ct = nf_ct_tuplehash_to_ctrack(thash);
369
370 if (thash->tuple.dst.dir == IP_CT_DIR_ORIGINAL)
371 goto out;
372
373 if (WARN_ON_ONCE(ct == ignored_conntrack))
374 goto out;
375
376 flags = READ_ONCE(ct->status);
377 if (!nf_nat_may_kill(ct, flags))
378 goto out;
379
380 if (!nf_seq_has_advanced(ct, ignored_conntrack))
381 goto out;
382
383 /* Even if we can evict do not reuse if entry is offloaded. */
384 if (nf_ct_kill(ct))
385 taken = flags & flags_offload;
386 out:
387 nf_ct_put(ct);
388 return taken;
389 }
390
nf_nat_inet_in_range(const struct nf_conntrack_tuple * t,const struct nf_nat_range2 * range)391 static bool nf_nat_inet_in_range(const struct nf_conntrack_tuple *t,
392 const struct nf_nat_range2 *range)
393 {
394 if (t->src.l3num == NFPROTO_IPV4)
395 return ntohl(t->src.u3.ip) >= ntohl(range->min_addr.ip) &&
396 ntohl(t->src.u3.ip) <= ntohl(range->max_addr.ip);
397
398 return ipv6_addr_cmp(&t->src.u3.in6, &range->min_addr.in6) >= 0 &&
399 ipv6_addr_cmp(&t->src.u3.in6, &range->max_addr.in6) <= 0;
400 }
401
402 /* Is the manipable part of the tuple between min and max incl? */
l4proto_in_range(const struct nf_conntrack_tuple * tuple,enum nf_nat_manip_type maniptype,const union nf_conntrack_man_proto * min,const union nf_conntrack_man_proto * max)403 static bool l4proto_in_range(const struct nf_conntrack_tuple *tuple,
404 enum nf_nat_manip_type maniptype,
405 const union nf_conntrack_man_proto *min,
406 const union nf_conntrack_man_proto *max)
407 {
408 __be16 port;
409
410 switch (tuple->dst.protonum) {
411 case IPPROTO_ICMP:
412 case IPPROTO_ICMPV6:
413 return ntohs(tuple->src.u.icmp.id) >= ntohs(min->icmp.id) &&
414 ntohs(tuple->src.u.icmp.id) <= ntohs(max->icmp.id);
415 case IPPROTO_GRE: /* all fall though */
416 case IPPROTO_TCP:
417 case IPPROTO_UDP:
418 case IPPROTO_UDPLITE:
419 case IPPROTO_SCTP:
420 if (maniptype == NF_NAT_MANIP_SRC)
421 port = tuple->src.u.all;
422 else
423 port = tuple->dst.u.all;
424
425 return ntohs(port) >= ntohs(min->all) &&
426 ntohs(port) <= ntohs(max->all);
427 default:
428 return true;
429 }
430 }
431
432 /* If we source map this tuple so reply looks like reply_tuple, will
433 * that meet the constraints of range.
434 */
nf_in_range(const struct nf_conntrack_tuple * tuple,const struct nf_nat_range2 * range)435 static int nf_in_range(const struct nf_conntrack_tuple *tuple,
436 const struct nf_nat_range2 *range)
437 {
438 /* If we are supposed to map IPs, then we must be in the
439 * range specified, otherwise let this drag us onto a new src IP.
440 */
441 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
442 !nf_nat_inet_in_range(tuple, range))
443 return 0;
444
445 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED))
446 return 1;
447
448 return l4proto_in_range(tuple, NF_NAT_MANIP_SRC,
449 &range->min_proto, &range->max_proto);
450 }
451
452 static inline int
same_src(const struct nf_conn * ct,const struct nf_conntrack_tuple * tuple)453 same_src(const struct nf_conn *ct,
454 const struct nf_conntrack_tuple *tuple)
455 {
456 const struct nf_conntrack_tuple *t;
457
458 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
459 return (t->dst.protonum == tuple->dst.protonum &&
460 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
461 t->src.u.all == tuple->src.u.all);
462 }
463
464 /* Only called for SRC manip */
465 static int
find_appropriate_src(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,struct nf_conntrack_tuple * result,const struct nf_nat_range2 * range)466 find_appropriate_src(struct net *net,
467 const struct nf_conntrack_zone *zone,
468 const struct nf_conntrack_tuple *tuple,
469 struct nf_conntrack_tuple *result,
470 const struct nf_nat_range2 *range)
471 {
472 unsigned int h = hash_by_src(net, zone, tuple);
473 const struct nf_conn *ct;
474
475 hlist_for_each_entry_rcu(ct, &nf_nat_bysource[h], nat_bysource) {
476 if (same_src(ct, tuple) &&
477 net_eq(net, nf_ct_net(ct)) &&
478 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) {
479 /* Copy source part from reply tuple. */
480 nf_ct_invert_tuple(result,
481 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
482 result->dst = tuple->dst;
483
484 if (nf_in_range(result, range))
485 return 1;
486 }
487 }
488 return 0;
489 }
490
491 /* For [FUTURE] fragmentation handling, we want the least-used
492 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
493 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
494 * 1-65535, we don't do pro-rata allocation based on ports; we choose
495 * the ip with the lowest src-ip/dst-ip/proto usage.
496 */
497 static void
find_best_ips_proto(const struct nf_conntrack_zone * zone,struct nf_conntrack_tuple * tuple,const struct nf_nat_range2 * range,const struct nf_conn * ct,enum nf_nat_manip_type maniptype)498 find_best_ips_proto(const struct nf_conntrack_zone *zone,
499 struct nf_conntrack_tuple *tuple,
500 const struct nf_nat_range2 *range,
501 const struct nf_conn *ct,
502 enum nf_nat_manip_type maniptype)
503 {
504 union nf_inet_addr *var_ipp;
505 unsigned int i, max;
506 /* Host order */
507 u32 minip, maxip, j, dist;
508 bool full_range;
509
510 /* No IP mapping? Do nothing. */
511 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
512 return;
513
514 if (maniptype == NF_NAT_MANIP_SRC)
515 var_ipp = &tuple->src.u3;
516 else
517 var_ipp = &tuple->dst.u3;
518
519 /* Fast path: only one choice. */
520 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
521 *var_ipp = range->min_addr;
522 return;
523 }
524
525 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
526 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
527 else
528 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
529
530 /* Hashing source and destination IPs gives a fairly even
531 * spread in practice (if there are a small number of IPs
532 * involved, there usually aren't that many connections
533 * anyway). The consistency means that servers see the same
534 * client coming from the same IP (some Internet Banking sites
535 * like this), even across reboots.
536 */
537 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
538 range->flags & NF_NAT_RANGE_PERSISTENT ?
539 0 : (__force u32)tuple->dst.u3.all[max] ^ zone->id);
540
541 full_range = false;
542 for (i = 0; i <= max; i++) {
543 /* If first bytes of the address are at the maximum, use the
544 * distance. Otherwise use the full range.
545 */
546 if (!full_range) {
547 minip = ntohl((__force __be32)range->min_addr.all[i]);
548 maxip = ntohl((__force __be32)range->max_addr.all[i]);
549 dist = maxip - minip + 1;
550 } else {
551 minip = 0;
552 dist = ~0;
553 }
554
555 var_ipp->all[i] = (__force __u32)
556 htonl(minip + reciprocal_scale(j, dist));
557 if (var_ipp->all[i] != range->max_addr.all[i])
558 full_range = true;
559
560 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
561 j ^= (__force u32)tuple->dst.u3.all[i];
562 }
563 }
564
565 /* Alter the per-proto part of the tuple (depending on maniptype), to
566 * give a unique tuple in the given range if possible.
567 *
568 * Per-protocol part of tuple is initialized to the incoming packet.
569 */
nf_nat_l4proto_unique_tuple(struct nf_conntrack_tuple * tuple,const struct nf_nat_range2 * range,enum nf_nat_manip_type maniptype,const struct nf_conn * ct)570 static void nf_nat_l4proto_unique_tuple(struct nf_conntrack_tuple *tuple,
571 const struct nf_nat_range2 *range,
572 enum nf_nat_manip_type maniptype,
573 const struct nf_conn *ct)
574 {
575 unsigned int range_size, min, max, i, attempts;
576 __be16 *keyptr;
577 u16 off;
578
579 switch (tuple->dst.protonum) {
580 case IPPROTO_ICMP:
581 case IPPROTO_ICMPV6:
582 /* id is same for either direction... */
583 keyptr = &tuple->src.u.icmp.id;
584 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
585 min = 0;
586 range_size = 65536;
587 } else {
588 min = ntohs(range->min_proto.icmp.id);
589 range_size = ntohs(range->max_proto.icmp.id) -
590 ntohs(range->min_proto.icmp.id) + 1;
591 }
592 goto find_free_id;
593 #if IS_ENABLED(CONFIG_NF_CT_PROTO_GRE)
594 case IPPROTO_GRE:
595 /* If there is no master conntrack we are not PPTP,
596 do not change tuples */
597 if (!ct->master)
598 return;
599
600 if (maniptype == NF_NAT_MANIP_SRC)
601 keyptr = &tuple->src.u.gre.key;
602 else
603 keyptr = &tuple->dst.u.gre.key;
604
605 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
606 min = 1;
607 range_size = 65535;
608 } else {
609 min = ntohs(range->min_proto.gre.key);
610 range_size = ntohs(range->max_proto.gre.key) - min + 1;
611 }
612 goto find_free_id;
613 #endif
614 case IPPROTO_UDP:
615 case IPPROTO_UDPLITE:
616 case IPPROTO_TCP:
617 case IPPROTO_SCTP:
618 if (maniptype == NF_NAT_MANIP_SRC)
619 keyptr = &tuple->src.u.all;
620 else
621 keyptr = &tuple->dst.u.all;
622
623 break;
624 default:
625 return;
626 }
627
628 /* If no range specified... */
629 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
630 /* If it's dst rewrite, can't change port */
631 if (maniptype == NF_NAT_MANIP_DST)
632 return;
633
634 if (ntohs(*keyptr) < 1024) {
635 /* Loose convention: >> 512 is credential passing */
636 if (ntohs(*keyptr) < 512) {
637 min = 1;
638 range_size = 511 - min + 1;
639 } else {
640 min = 600;
641 range_size = 1023 - min + 1;
642 }
643 } else {
644 min = 1024;
645 range_size = 65535 - 1024 + 1;
646 }
647 } else {
648 min = ntohs(range->min_proto.all);
649 max = ntohs(range->max_proto.all);
650 if (unlikely(max < min))
651 swap(max, min);
652 range_size = max - min + 1;
653 }
654
655 find_free_id:
656 if (range->flags & NF_NAT_RANGE_PROTO_OFFSET)
657 off = (ntohs(*keyptr) - ntohs(range->base_proto.all));
658 else if ((range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL) ||
659 maniptype != NF_NAT_MANIP_DST)
660 off = get_random_u16();
661 else
662 off = 0;
663
664 attempts = range_size;
665 if (attempts > NF_NAT_MAX_ATTEMPTS)
666 attempts = NF_NAT_MAX_ATTEMPTS;
667
668 /* We are in softirq; doing a search of the entire range risks
669 * soft lockup when all tuples are already used.
670 *
671 * If we can't find any free port from first offset, pick a new
672 * one and try again, with ever smaller search window.
673 */
674 another_round:
675 for (i = 0; i < attempts; i++, off++) {
676 *keyptr = htons(min + off % range_size);
677 if (!nf_nat_used_tuple_harder(tuple, ct, attempts - i))
678 return;
679 }
680
681 if (attempts >= range_size || attempts < 16)
682 return;
683 attempts /= 2;
684 off = get_random_u16();
685 goto another_round;
686 }
687
688 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
689 * we change the source to map into the range. For NF_INET_PRE_ROUTING
690 * and NF_INET_LOCAL_OUT, we change the destination to map into the
691 * range. It might not be possible to get a unique tuple, but we try.
692 * At worst (or if we race), we will end up with a final duplicate in
693 * __nf_conntrack_confirm and drop the packet. */
694 static void
get_unique_tuple(struct nf_conntrack_tuple * tuple,const struct nf_conntrack_tuple * orig_tuple,const struct nf_nat_range2 * range,struct nf_conn * ct,enum nf_nat_manip_type maniptype)695 get_unique_tuple(struct nf_conntrack_tuple *tuple,
696 const struct nf_conntrack_tuple *orig_tuple,
697 const struct nf_nat_range2 *range,
698 struct nf_conn *ct,
699 enum nf_nat_manip_type maniptype)
700 {
701 const struct nf_conntrack_zone *zone;
702 struct net *net = nf_ct_net(ct);
703
704 zone = nf_ct_zone(ct);
705
706 /* 1) If this srcip/proto/src-proto-part is currently mapped,
707 * and that same mapping gives a unique tuple within the given
708 * range, use that.
709 *
710 * This is only required for source (ie. NAT/masq) mappings.
711 * So far, we don't do local source mappings, so multiple
712 * manips not an issue.
713 */
714 if (maniptype == NF_NAT_MANIP_SRC &&
715 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
716 /* try the original tuple first */
717 if (nf_in_range(orig_tuple, range)) {
718 if (!nf_nat_used_tuple_new(orig_tuple, ct)) {
719 *tuple = *orig_tuple;
720 return;
721 }
722 } else if (find_appropriate_src(net, zone,
723 orig_tuple, tuple, range)) {
724 pr_debug("get_unique_tuple: Found current src map\n");
725 if (!nf_nat_used_tuple(tuple, ct))
726 return;
727 }
728 }
729
730 /* 2) Select the least-used IP/proto combination in the given range */
731 *tuple = *orig_tuple;
732 find_best_ips_proto(zone, tuple, range, ct, maniptype);
733
734 /* 3) The per-protocol part of the manip is made to map into
735 * the range to make a unique tuple.
736 */
737
738 /* Only bother mapping if it's not already in range and unique */
739 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
740 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
741 if (!(range->flags & NF_NAT_RANGE_PROTO_OFFSET) &&
742 l4proto_in_range(tuple, maniptype,
743 &range->min_proto,
744 &range->max_proto) &&
745 (range->min_proto.all == range->max_proto.all ||
746 !nf_nat_used_tuple(tuple, ct)))
747 return;
748 } else if (!nf_nat_used_tuple(tuple, ct)) {
749 return;
750 }
751 }
752
753 /* Last chance: get protocol to try to obtain unique tuple. */
754 nf_nat_l4proto_unique_tuple(tuple, range, maniptype, ct);
755 }
756
nf_ct_nat_ext_add(struct nf_conn * ct)757 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
758 {
759 struct nf_conn_nat *nat = nfct_nat(ct);
760 if (nat)
761 return nat;
762
763 if (!nf_ct_is_confirmed(ct))
764 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
765
766 return nat;
767 }
768 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
769
770 unsigned int
nf_nat_setup_info(struct nf_conn * ct,const struct nf_nat_range2 * range,enum nf_nat_manip_type maniptype)771 nf_nat_setup_info(struct nf_conn *ct,
772 const struct nf_nat_range2 *range,
773 enum nf_nat_manip_type maniptype)
774 {
775 struct net *net = nf_ct_net(ct);
776 struct nf_conntrack_tuple curr_tuple, new_tuple;
777
778 /* Can't setup nat info for confirmed ct. */
779 if (nf_ct_is_confirmed(ct))
780 return NF_ACCEPT;
781
782 WARN_ON(maniptype != NF_NAT_MANIP_SRC &&
783 maniptype != NF_NAT_MANIP_DST);
784
785 if (WARN_ON(nf_nat_initialized(ct, maniptype)))
786 return NF_DROP;
787
788 /* What we've got will look like inverse of reply. Normally
789 * this is what is in the conntrack, except for prior
790 * manipulations (future optimization: if num_manips == 0,
791 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
792 */
793 nf_ct_invert_tuple(&curr_tuple,
794 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
795
796 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
797
798 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
799 struct nf_conntrack_tuple reply;
800
801 /* Alter conntrack table so will recognize replies. */
802 nf_ct_invert_tuple(&reply, &new_tuple);
803 nf_conntrack_alter_reply(ct, &reply);
804
805 /* Non-atomic: we own this at the moment. */
806 if (maniptype == NF_NAT_MANIP_SRC)
807 ct->status |= IPS_SRC_NAT;
808 else
809 ct->status |= IPS_DST_NAT;
810
811 if (nfct_help(ct) && !nfct_seqadj(ct))
812 if (!nfct_seqadj_ext_add(ct))
813 return NF_DROP;
814 }
815
816 if (maniptype == NF_NAT_MANIP_SRC) {
817 unsigned int srchash;
818 spinlock_t *lock;
819
820 srchash = hash_by_src(net, nf_ct_zone(ct),
821 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
822 lock = &nf_nat_locks[srchash % CONNTRACK_LOCKS];
823 spin_lock_bh(lock);
824 hlist_add_head_rcu(&ct->nat_bysource,
825 &nf_nat_bysource[srchash]);
826 spin_unlock_bh(lock);
827 }
828
829 /* It's done. */
830 if (maniptype == NF_NAT_MANIP_DST)
831 ct->status |= IPS_DST_NAT_DONE;
832 else
833 ct->status |= IPS_SRC_NAT_DONE;
834
835 return NF_ACCEPT;
836 }
837 EXPORT_SYMBOL(nf_nat_setup_info);
838
839 static unsigned int
__nf_nat_alloc_null_binding(struct nf_conn * ct,enum nf_nat_manip_type manip)840 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
841 {
842 /* Force range to this IP; let proto decide mapping for
843 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
844 * Use reply in case it's already been mangled (eg local packet).
845 */
846 union nf_inet_addr ip =
847 (manip == NF_NAT_MANIP_SRC ?
848 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
849 ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
850 struct nf_nat_range2 range = {
851 .flags = NF_NAT_RANGE_MAP_IPS,
852 .min_addr = ip,
853 .max_addr = ip,
854 };
855 return nf_nat_setup_info(ct, &range, manip);
856 }
857
858 unsigned int
nf_nat_alloc_null_binding(struct nf_conn * ct,unsigned int hooknum)859 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
860 {
861 return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
862 }
863 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
864
865 /* Do packet manipulations according to nf_nat_setup_info. */
nf_nat_packet(struct nf_conn * ct,enum ip_conntrack_info ctinfo,unsigned int hooknum,struct sk_buff * skb)866 unsigned int nf_nat_packet(struct nf_conn *ct,
867 enum ip_conntrack_info ctinfo,
868 unsigned int hooknum,
869 struct sk_buff *skb)
870 {
871 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
872 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
873 unsigned int verdict = NF_ACCEPT;
874 unsigned long statusbit;
875
876 if (mtype == NF_NAT_MANIP_SRC)
877 statusbit = IPS_SRC_NAT;
878 else
879 statusbit = IPS_DST_NAT;
880
881 /* Invert if this is reply dir. */
882 if (dir == IP_CT_DIR_REPLY)
883 statusbit ^= IPS_NAT_MASK;
884
885 /* Non-atomic: these bits don't change. */
886 if (ct->status & statusbit)
887 verdict = nf_nat_manip_pkt(skb, ct, mtype, dir);
888
889 return verdict;
890 }
891 EXPORT_SYMBOL_GPL(nf_nat_packet);
892
in_vrf_postrouting(const struct nf_hook_state * state)893 static bool in_vrf_postrouting(const struct nf_hook_state *state)
894 {
895 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
896 if (state->hook == NF_INET_POST_ROUTING &&
897 netif_is_l3_master(state->out))
898 return true;
899 #endif
900 return false;
901 }
902
903 unsigned int
nf_nat_inet_fn(void * priv,struct sk_buff * skb,const struct nf_hook_state * state)904 nf_nat_inet_fn(void *priv, struct sk_buff *skb,
905 const struct nf_hook_state *state)
906 {
907 struct nf_conn *ct;
908 enum ip_conntrack_info ctinfo;
909 struct nf_conn_nat *nat;
910 /* maniptype == SRC for postrouting. */
911 enum nf_nat_manip_type maniptype = HOOK2MANIP(state->hook);
912
913 ct = nf_ct_get(skb, &ctinfo);
914 /* Can't track? It's not due to stress, or conntrack would
915 * have dropped it. Hence it's the user's responsibilty to
916 * packet filter it out, or implement conntrack/NAT for that
917 * protocol. 8) --RR
918 */
919 if (!ct || in_vrf_postrouting(state))
920 return NF_ACCEPT;
921
922 nat = nfct_nat(ct);
923
924 switch (ctinfo) {
925 case IP_CT_RELATED:
926 case IP_CT_RELATED_REPLY:
927 /* Only ICMPs can be IP_CT_IS_REPLY. Fallthrough */
928 case IP_CT_NEW:
929 /* Seen it before? This can happen for loopback, retrans,
930 * or local packets.
931 */
932 if (!nf_nat_initialized(ct, maniptype)) {
933 struct nf_nat_lookup_hook_priv *lpriv = priv;
934 struct nf_hook_entries *e = rcu_dereference(lpriv->entries);
935 unsigned int ret;
936 int i;
937
938 if (!e)
939 goto null_bind;
940
941 for (i = 0; i < e->num_hook_entries; i++) {
942 ret = e->hooks[i].hook(e->hooks[i].priv, skb,
943 state);
944 if (ret != NF_ACCEPT)
945 return ret;
946 if (nf_nat_initialized(ct, maniptype))
947 goto do_nat;
948 }
949 null_bind:
950 ret = nf_nat_alloc_null_binding(ct, state->hook);
951 if (ret != NF_ACCEPT)
952 return ret;
953 } else {
954 pr_debug("Already setup manip %s for ct %p (status bits 0x%lx)\n",
955 maniptype == NF_NAT_MANIP_SRC ? "SRC" : "DST",
956 ct, ct->status);
957 if (nf_nat_oif_changed(state->hook, ctinfo, nat,
958 state->out))
959 goto oif_changed;
960 }
961 break;
962 default:
963 /* ESTABLISHED */
964 WARN_ON(ctinfo != IP_CT_ESTABLISHED &&
965 ctinfo != IP_CT_ESTABLISHED_REPLY);
966 if (nf_nat_oif_changed(state->hook, ctinfo, nat, state->out))
967 goto oif_changed;
968 }
969 do_nat:
970 return nf_nat_packet(ct, ctinfo, state->hook, skb);
971
972 oif_changed:
973 nf_ct_kill_acct(ct, ctinfo, skb);
974 return NF_DROP;
975 }
976 EXPORT_SYMBOL_GPL(nf_nat_inet_fn);
977
978 struct nf_nat_proto_clean {
979 u8 l3proto;
980 u8 l4proto;
981 };
982
983 /* kill conntracks with affected NAT section */
nf_nat_proto_remove(struct nf_conn * i,void * data)984 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
985 {
986 const struct nf_nat_proto_clean *clean = data;
987
988 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
989 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
990 return 0;
991
992 return i->status & IPS_NAT_MASK ? 1 : 0;
993 }
994
nf_nat_cleanup_conntrack(struct nf_conn * ct)995 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
996 {
997 unsigned int h;
998
999 h = hash_by_src(nf_ct_net(ct), nf_ct_zone(ct), &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
1000 spin_lock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
1001 hlist_del_rcu(&ct->nat_bysource);
1002 spin_unlock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
1003 }
1004
nf_nat_proto_clean(struct nf_conn * ct,void * data)1005 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
1006 {
1007 if (nf_nat_proto_remove(ct, data))
1008 return 1;
1009
1010 /* This module is being removed and conntrack has nat null binding.
1011 * Remove it from bysource hash, as the table will be freed soon.
1012 *
1013 * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
1014 * will delete entry from already-freed table.
1015 */
1016 if (test_and_clear_bit(IPS_SRC_NAT_DONE_BIT, &ct->status))
1017 nf_nat_cleanup_conntrack(ct);
1018
1019 /* don't delete conntrack. Although that would make things a lot
1020 * simpler, we'd end up flushing all conntracks on nat rmmod.
1021 */
1022 return 0;
1023 }
1024
1025 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1026
1027 #include <linux/netfilter/nfnetlink.h>
1028 #include <linux/netfilter/nfnetlink_conntrack.h>
1029
1030 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
1031 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
1032 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
1033 };
1034
nf_nat_l4proto_nlattr_to_range(struct nlattr * tb[],struct nf_nat_range2 * range)1035 static int nf_nat_l4proto_nlattr_to_range(struct nlattr *tb[],
1036 struct nf_nat_range2 *range)
1037 {
1038 if (tb[CTA_PROTONAT_PORT_MIN]) {
1039 range->min_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MIN]);
1040 range->max_proto.all = range->min_proto.all;
1041 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1042 }
1043 if (tb[CTA_PROTONAT_PORT_MAX]) {
1044 range->max_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MAX]);
1045 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1046 }
1047 return 0;
1048 }
1049
nfnetlink_parse_nat_proto(struct nlattr * attr,const struct nf_conn * ct,struct nf_nat_range2 * range)1050 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
1051 const struct nf_conn *ct,
1052 struct nf_nat_range2 *range)
1053 {
1054 struct nlattr *tb[CTA_PROTONAT_MAX+1];
1055 int err;
1056
1057 err = nla_parse_nested_deprecated(tb, CTA_PROTONAT_MAX, attr,
1058 protonat_nla_policy, NULL);
1059 if (err < 0)
1060 return err;
1061
1062 return nf_nat_l4proto_nlattr_to_range(tb, range);
1063 }
1064
1065 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
1066 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
1067 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
1068 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
1069 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
1070 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
1071 };
1072
nf_nat_ipv4_nlattr_to_range(struct nlattr * tb[],struct nf_nat_range2 * range)1073 static int nf_nat_ipv4_nlattr_to_range(struct nlattr *tb[],
1074 struct nf_nat_range2 *range)
1075 {
1076 if (tb[CTA_NAT_V4_MINIP]) {
1077 range->min_addr.ip = nla_get_be32(tb[CTA_NAT_V4_MINIP]);
1078 range->flags |= NF_NAT_RANGE_MAP_IPS;
1079 }
1080
1081 range->max_addr.ip = nla_get_be32_default(tb[CTA_NAT_V4_MAXIP],
1082 range->min_addr.ip);
1083
1084 return 0;
1085 }
1086
nf_nat_ipv6_nlattr_to_range(struct nlattr * tb[],struct nf_nat_range2 * range)1087 static int nf_nat_ipv6_nlattr_to_range(struct nlattr *tb[],
1088 struct nf_nat_range2 *range)
1089 {
1090 if (tb[CTA_NAT_V6_MINIP]) {
1091 nla_memcpy(&range->min_addr.ip6, tb[CTA_NAT_V6_MINIP],
1092 sizeof(struct in6_addr));
1093 range->flags |= NF_NAT_RANGE_MAP_IPS;
1094 }
1095
1096 if (tb[CTA_NAT_V6_MAXIP])
1097 nla_memcpy(&range->max_addr.ip6, tb[CTA_NAT_V6_MAXIP],
1098 sizeof(struct in6_addr));
1099 else
1100 range->max_addr = range->min_addr;
1101
1102 return 0;
1103 }
1104
1105 static int
nfnetlink_parse_nat(const struct nlattr * nat,const struct nf_conn * ct,struct nf_nat_range2 * range)1106 nfnetlink_parse_nat(const struct nlattr *nat,
1107 const struct nf_conn *ct, struct nf_nat_range2 *range)
1108 {
1109 struct nlattr *tb[CTA_NAT_MAX+1];
1110 int err;
1111
1112 memset(range, 0, sizeof(*range));
1113
1114 err = nla_parse_nested_deprecated(tb, CTA_NAT_MAX, nat,
1115 nat_nla_policy, NULL);
1116 if (err < 0)
1117 return err;
1118
1119 switch (nf_ct_l3num(ct)) {
1120 case NFPROTO_IPV4:
1121 err = nf_nat_ipv4_nlattr_to_range(tb, range);
1122 break;
1123 case NFPROTO_IPV6:
1124 err = nf_nat_ipv6_nlattr_to_range(tb, range);
1125 break;
1126 default:
1127 err = -EPROTONOSUPPORT;
1128 break;
1129 }
1130
1131 if (err)
1132 return err;
1133
1134 if (!tb[CTA_NAT_PROTO])
1135 return 0;
1136
1137 return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
1138 }
1139
1140 /* This function is called under rcu_read_lock() */
1141 static int
nfnetlink_parse_nat_setup(struct nf_conn * ct,enum nf_nat_manip_type manip,const struct nlattr * attr)1142 nfnetlink_parse_nat_setup(struct nf_conn *ct,
1143 enum nf_nat_manip_type manip,
1144 const struct nlattr *attr)
1145 {
1146 struct nf_nat_range2 range;
1147 int err;
1148
1149 /* Should not happen, restricted to creating new conntracks
1150 * via ctnetlink.
1151 */
1152 if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
1153 return -EEXIST;
1154
1155 /* No NAT information has been passed, allocate the null-binding */
1156 if (attr == NULL)
1157 return __nf_nat_alloc_null_binding(ct, manip) == NF_DROP ? -ENOMEM : 0;
1158
1159 err = nfnetlink_parse_nat(attr, ct, &range);
1160 if (err < 0)
1161 return err;
1162
1163 return nf_nat_setup_info(ct, &range, manip) == NF_DROP ? -ENOMEM : 0;
1164 }
1165 #else
1166 static int
nfnetlink_parse_nat_setup(struct nf_conn * ct,enum nf_nat_manip_type manip,const struct nlattr * attr)1167 nfnetlink_parse_nat_setup(struct nf_conn *ct,
1168 enum nf_nat_manip_type manip,
1169 const struct nlattr *attr)
1170 {
1171 return -EOPNOTSUPP;
1172 }
1173 #endif
1174
1175 static struct nf_ct_helper_expectfn follow_master_nat = {
1176 .name = "nat-follow-master",
1177 .expectfn = nf_nat_follow_master,
1178 };
1179
nf_nat_register_fn(struct net * net,u8 pf,const struct nf_hook_ops * ops,const struct nf_hook_ops * orig_nat_ops,unsigned int ops_count)1180 int nf_nat_register_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops,
1181 const struct nf_hook_ops *orig_nat_ops, unsigned int ops_count)
1182 {
1183 struct nat_net *nat_net = net_generic(net, nat_net_id);
1184 struct nf_nat_hooks_net *nat_proto_net;
1185 struct nf_nat_lookup_hook_priv *priv;
1186 unsigned int hooknum = ops->hooknum;
1187 struct nf_hook_ops *nat_ops;
1188 int i, ret;
1189
1190 if (WARN_ON_ONCE(pf >= ARRAY_SIZE(nat_net->nat_proto_net)))
1191 return -EINVAL;
1192
1193 nat_proto_net = &nat_net->nat_proto_net[pf];
1194
1195 for (i = 0; i < ops_count; i++) {
1196 if (orig_nat_ops[i].hooknum == hooknum) {
1197 hooknum = i;
1198 break;
1199 }
1200 }
1201
1202 if (WARN_ON_ONCE(i == ops_count))
1203 return -EINVAL;
1204
1205 mutex_lock(&nf_nat_proto_mutex);
1206 if (!nat_proto_net->nat_hook_ops) {
1207 WARN_ON(nat_proto_net->users != 0);
1208
1209 nat_ops = kmemdup_array(orig_nat_ops, ops_count, sizeof(*orig_nat_ops), GFP_KERNEL);
1210 if (!nat_ops) {
1211 mutex_unlock(&nf_nat_proto_mutex);
1212 return -ENOMEM;
1213 }
1214
1215 for (i = 0; i < ops_count; i++) {
1216 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1217 if (priv) {
1218 nat_ops[i].priv = priv;
1219 continue;
1220 }
1221 mutex_unlock(&nf_nat_proto_mutex);
1222 while (i)
1223 kfree(nat_ops[--i].priv);
1224 kfree(nat_ops);
1225 return -ENOMEM;
1226 }
1227
1228 ret = nf_register_net_hooks(net, nat_ops, ops_count);
1229 if (ret < 0) {
1230 mutex_unlock(&nf_nat_proto_mutex);
1231 for (i = 0; i < ops_count; i++)
1232 kfree(nat_ops[i].priv);
1233 kfree(nat_ops);
1234 return ret;
1235 }
1236
1237 nat_proto_net->nat_hook_ops = nat_ops;
1238 }
1239
1240 nat_ops = nat_proto_net->nat_hook_ops;
1241 priv = nat_ops[hooknum].priv;
1242 if (WARN_ON_ONCE(!priv)) {
1243 mutex_unlock(&nf_nat_proto_mutex);
1244 return -EOPNOTSUPP;
1245 }
1246
1247 ret = nf_hook_entries_insert_raw(&priv->entries, ops);
1248 if (ret == 0)
1249 nat_proto_net->users++;
1250
1251 mutex_unlock(&nf_nat_proto_mutex);
1252 return ret;
1253 }
1254
nf_nat_unregister_fn(struct net * net,u8 pf,const struct nf_hook_ops * ops,unsigned int ops_count)1255 void nf_nat_unregister_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops,
1256 unsigned int ops_count)
1257 {
1258 struct nat_net *nat_net = net_generic(net, nat_net_id);
1259 struct nf_nat_hooks_net *nat_proto_net;
1260 struct nf_nat_lookup_hook_priv *priv;
1261 struct nf_hook_ops *nat_ops;
1262 int hooknum = ops->hooknum;
1263 int i;
1264
1265 if (pf >= ARRAY_SIZE(nat_net->nat_proto_net))
1266 return;
1267
1268 nat_proto_net = &nat_net->nat_proto_net[pf];
1269
1270 mutex_lock(&nf_nat_proto_mutex);
1271 if (WARN_ON(nat_proto_net->users == 0))
1272 goto unlock;
1273
1274 nat_proto_net->users--;
1275
1276 nat_ops = nat_proto_net->nat_hook_ops;
1277 for (i = 0; i < ops_count; i++) {
1278 if (nat_ops[i].hooknum == hooknum) {
1279 hooknum = i;
1280 break;
1281 }
1282 }
1283 if (WARN_ON_ONCE(i == ops_count))
1284 goto unlock;
1285 priv = nat_ops[hooknum].priv;
1286 nf_hook_entries_delete_raw(&priv->entries, ops);
1287
1288 if (nat_proto_net->users == 0) {
1289 nf_unregister_net_hooks(net, nat_ops, ops_count);
1290
1291 for (i = 0; i < ops_count; i++) {
1292 priv = nat_ops[i].priv;
1293 kfree_rcu(priv, rcu_head);
1294 }
1295
1296 nat_proto_net->nat_hook_ops = NULL;
1297 kfree(nat_ops);
1298 }
1299 unlock:
1300 mutex_unlock(&nf_nat_proto_mutex);
1301 }
1302
1303 static struct pernet_operations nat_net_ops = {
1304 .id = &nat_net_id,
1305 .size = sizeof(struct nat_net),
1306 };
1307
1308 static const struct nf_nat_hook nat_hook = {
1309 .parse_nat_setup = nfnetlink_parse_nat_setup,
1310 #ifdef CONFIG_XFRM
1311 .decode_session = __nf_nat_decode_session,
1312 #endif
1313 .remove_nat_bysrc = nf_nat_cleanup_conntrack,
1314 };
1315
nf_nat_init(void)1316 static int __init nf_nat_init(void)
1317 {
1318 int ret, i;
1319
1320 /* Leave them the same for the moment. */
1321 nf_nat_htable_size = nf_conntrack_htable_size;
1322 if (nf_nat_htable_size < CONNTRACK_LOCKS)
1323 nf_nat_htable_size = CONNTRACK_LOCKS;
1324
1325 nf_nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size, 0);
1326 if (!nf_nat_bysource)
1327 return -ENOMEM;
1328
1329 for (i = 0; i < CONNTRACK_LOCKS; i++)
1330 spin_lock_init(&nf_nat_locks[i]);
1331
1332 ret = register_pernet_subsys(&nat_net_ops);
1333 if (ret < 0) {
1334 kvfree(nf_nat_bysource);
1335 return ret;
1336 }
1337
1338 nf_ct_helper_expectfn_register(&follow_master_nat);
1339
1340 WARN_ON(nf_nat_hook != NULL);
1341 RCU_INIT_POINTER(nf_nat_hook, &nat_hook);
1342
1343 ret = register_nf_nat_bpf();
1344 if (ret < 0) {
1345 RCU_INIT_POINTER(nf_nat_hook, NULL);
1346 nf_ct_helper_expectfn_unregister(&follow_master_nat);
1347 synchronize_net();
1348 unregister_pernet_subsys(&nat_net_ops);
1349 kvfree(nf_nat_bysource);
1350 }
1351
1352 return ret;
1353 }
1354
nf_nat_cleanup(void)1355 static void __exit nf_nat_cleanup(void)
1356 {
1357 struct nf_nat_proto_clean clean = {};
1358
1359 nf_ct_iterate_destroy(nf_nat_proto_clean, &clean);
1360
1361 nf_ct_helper_expectfn_unregister(&follow_master_nat);
1362 RCU_INIT_POINTER(nf_nat_hook, NULL);
1363
1364 synchronize_net();
1365 kvfree(nf_nat_bysource);
1366 unregister_pernet_subsys(&nat_net_ops);
1367 }
1368
1369 MODULE_LICENSE("GPL");
1370 MODULE_DESCRIPTION("Network address translation core");
1371
1372 module_init(nf_nat_init);
1373 module_exit(nf_nat_cleanup);
1374