xref: /linux/fs/btrfs/relocation.c (revision fd71def6d9abc5ae362fb9995d46049b7b0ed391)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2009 Oracle.  All rights reserved.
4   */
5  
6  #include <linux/sched.h>
7  #include <linux/pagemap.h>
8  #include <linux/writeback.h>
9  #include <linux/blkdev.h>
10  #include <linux/rbtree.h>
11  #include <linux/slab.h>
12  #include <linux/error-injection.h>
13  #include "ctree.h"
14  #include "disk-io.h"
15  #include "transaction.h"
16  #include "volumes.h"
17  #include "locking.h"
18  #include "btrfs_inode.h"
19  #include "async-thread.h"
20  #include "free-space-cache.h"
21  #include "qgroup.h"
22  #include "print-tree.h"
23  #include "delalloc-space.h"
24  #include "block-group.h"
25  #include "backref.h"
26  #include "misc.h"
27  #include "subpage.h"
28  #include "zoned.h"
29  #include "inode-item.h"
30  #include "space-info.h"
31  #include "fs.h"
32  #include "accessors.h"
33  #include "extent-tree.h"
34  #include "root-tree.h"
35  #include "file-item.h"
36  #include "relocation.h"
37  #include "super.h"
38  #include "tree-checker.h"
39  #include "raid-stripe-tree.h"
40  
41  /*
42   * Relocation overview
43   *
44   * [What does relocation do]
45   *
46   * The objective of relocation is to relocate all extents of the target block
47   * group to other block groups.
48   * This is utilized by resize (shrink only), profile converting, compacting
49   * space, or balance routine to spread chunks over devices.
50   *
51   * 		Before		|		After
52   * ------------------------------------------------------------------
53   *  BG A: 10 data extents	| BG A: deleted
54   *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
55   *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
56   *
57   * [How does relocation work]
58   *
59   * 1.   Mark the target block group read-only
60   *      New extents won't be allocated from the target block group.
61   *
62   * 2.1  Record each extent in the target block group
63   *      To build a proper map of extents to be relocated.
64   *
65   * 2.2  Build data reloc tree and reloc trees
66   *      Data reloc tree will contain an inode, recording all newly relocated
67   *      data extents.
68   *      There will be only one data reloc tree for one data block group.
69   *
70   *      Reloc tree will be a special snapshot of its source tree, containing
71   *      relocated tree blocks.
72   *      Each tree referring to a tree block in target block group will get its
73   *      reloc tree built.
74   *
75   * 2.3  Swap source tree with its corresponding reloc tree
76   *      Each involved tree only refers to new extents after swap.
77   *
78   * 3.   Cleanup reloc trees and data reloc tree.
79   *      As old extents in the target block group are still referenced by reloc
80   *      trees, we need to clean them up before really freeing the target block
81   *      group.
82   *
83   * The main complexity is in steps 2.2 and 2.3.
84   *
85   * The entry point of relocation is relocate_block_group() function.
86   */
87  
88  #define RELOCATION_RESERVED_NODES	256
89  /*
90   * map address of tree root to tree
91   */
92  struct mapping_node {
93  	struct {
94  		struct rb_node rb_node;
95  		u64 bytenr;
96  	}; /* Use rb_simle_node for search/insert */
97  	void *data;
98  };
99  
100  struct mapping_tree {
101  	struct rb_root rb_root;
102  	spinlock_t lock;
103  };
104  
105  /*
106   * present a tree block to process
107   */
108  struct tree_block {
109  	struct {
110  		struct rb_node rb_node;
111  		u64 bytenr;
112  	}; /* Use rb_simple_node for search/insert */
113  	u64 owner;
114  	struct btrfs_key key;
115  	u8 level;
116  	bool key_ready;
117  };
118  
119  #define MAX_EXTENTS 128
120  
121  struct file_extent_cluster {
122  	u64 start;
123  	u64 end;
124  	u64 boundary[MAX_EXTENTS];
125  	unsigned int nr;
126  	u64 owning_root;
127  };
128  
129  /* Stages of data relocation. */
130  enum reloc_stage {
131  	MOVE_DATA_EXTENTS,
132  	UPDATE_DATA_PTRS
133  };
134  
135  struct reloc_control {
136  	/* block group to relocate */
137  	struct btrfs_block_group *block_group;
138  	/* extent tree */
139  	struct btrfs_root *extent_root;
140  	/* inode for moving data */
141  	struct inode *data_inode;
142  
143  	struct btrfs_block_rsv *block_rsv;
144  
145  	struct btrfs_backref_cache backref_cache;
146  
147  	struct file_extent_cluster cluster;
148  	/* tree blocks have been processed */
149  	struct extent_io_tree processed_blocks;
150  	/* map start of tree root to corresponding reloc tree */
151  	struct mapping_tree reloc_root_tree;
152  	/* list of reloc trees */
153  	struct list_head reloc_roots;
154  	/* list of subvolume trees that get relocated */
155  	struct list_head dirty_subvol_roots;
156  	/* size of metadata reservation for merging reloc trees */
157  	u64 merging_rsv_size;
158  	/* size of relocated tree nodes */
159  	u64 nodes_relocated;
160  	/* reserved size for block group relocation*/
161  	u64 reserved_bytes;
162  
163  	u64 search_start;
164  	u64 extents_found;
165  
166  	enum reloc_stage stage;
167  	bool create_reloc_tree;
168  	bool merge_reloc_tree;
169  	bool found_file_extent;
170  };
171  
mark_block_processed(struct reloc_control * rc,struct btrfs_backref_node * node)172  static void mark_block_processed(struct reloc_control *rc,
173  				 struct btrfs_backref_node *node)
174  {
175  	u32 blocksize;
176  
177  	if (node->level == 0 ||
178  	    in_range(node->bytenr, rc->block_group->start,
179  		     rc->block_group->length)) {
180  		blocksize = rc->extent_root->fs_info->nodesize;
181  		set_extent_bit(&rc->processed_blocks, node->bytenr,
182  			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
183  	}
184  	node->processed = 1;
185  }
186  
187  /*
188   * walk up backref nodes until reach node presents tree root
189   */
walk_up_backref(struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[],int * index)190  static struct btrfs_backref_node *walk_up_backref(
191  		struct btrfs_backref_node *node,
192  		struct btrfs_backref_edge *edges[], int *index)
193  {
194  	struct btrfs_backref_edge *edge;
195  	int idx = *index;
196  
197  	while (!list_empty(&node->upper)) {
198  		edge = list_entry(node->upper.next,
199  				  struct btrfs_backref_edge, list[LOWER]);
200  		edges[idx++] = edge;
201  		node = edge->node[UPPER];
202  	}
203  	BUG_ON(node->detached);
204  	*index = idx;
205  	return node;
206  }
207  
208  /*
209   * walk down backref nodes to find start of next reference path
210   */
walk_down_backref(struct btrfs_backref_edge * edges[],int * index)211  static struct btrfs_backref_node *walk_down_backref(
212  		struct btrfs_backref_edge *edges[], int *index)
213  {
214  	struct btrfs_backref_edge *edge;
215  	struct btrfs_backref_node *lower;
216  	int idx = *index;
217  
218  	while (idx > 0) {
219  		edge = edges[idx - 1];
220  		lower = edge->node[LOWER];
221  		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
222  			idx--;
223  			continue;
224  		}
225  		edge = list_entry(edge->list[LOWER].next,
226  				  struct btrfs_backref_edge, list[LOWER]);
227  		edges[idx - 1] = edge;
228  		*index = idx;
229  		return edge->node[UPPER];
230  	}
231  	*index = 0;
232  	return NULL;
233  }
234  
reloc_root_is_dead(const struct btrfs_root * root)235  static bool reloc_root_is_dead(const struct btrfs_root *root)
236  {
237  	/*
238  	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
239  	 * btrfs_update_reloc_root. We need to see the updated bit before
240  	 * trying to access reloc_root
241  	 */
242  	smp_rmb();
243  	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
244  		return true;
245  	return false;
246  }
247  
248  /*
249   * Check if this subvolume tree has valid reloc tree.
250   *
251   * Reloc tree after swap is considered dead, thus not considered as valid.
252   * This is enough for most callers, as they don't distinguish dead reloc root
253   * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
254   * special case.
255   */
have_reloc_root(const struct btrfs_root * root)256  static bool have_reloc_root(const struct btrfs_root *root)
257  {
258  	if (reloc_root_is_dead(root))
259  		return false;
260  	if (!root->reloc_root)
261  		return false;
262  	return true;
263  }
264  
btrfs_should_ignore_reloc_root(const struct btrfs_root * root)265  bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
266  {
267  	struct btrfs_root *reloc_root;
268  
269  	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
270  		return false;
271  
272  	/* This root has been merged with its reloc tree, we can ignore it */
273  	if (reloc_root_is_dead(root))
274  		return true;
275  
276  	reloc_root = root->reloc_root;
277  	if (!reloc_root)
278  		return false;
279  
280  	if (btrfs_header_generation(reloc_root->commit_root) ==
281  	    root->fs_info->running_transaction->transid)
282  		return false;
283  	/*
284  	 * If there is reloc tree and it was created in previous transaction
285  	 * backref lookup can find the reloc tree, so backref node for the fs
286  	 * tree root is useless for relocation.
287  	 */
288  	return true;
289  }
290  
291  /*
292   * find reloc tree by address of tree root
293   */
find_reloc_root(struct btrfs_fs_info * fs_info,u64 bytenr)294  struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
295  {
296  	struct reloc_control *rc = fs_info->reloc_ctl;
297  	struct rb_node *rb_node;
298  	struct mapping_node *node;
299  	struct btrfs_root *root = NULL;
300  
301  	ASSERT(rc);
302  	spin_lock(&rc->reloc_root_tree.lock);
303  	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
304  	if (rb_node) {
305  		node = rb_entry(rb_node, struct mapping_node, rb_node);
306  		root = node->data;
307  	}
308  	spin_unlock(&rc->reloc_root_tree.lock);
309  	return btrfs_grab_root(root);
310  }
311  
312  /*
313   * For useless nodes, do two major clean ups:
314   *
315   * - Cleanup the children edges and nodes
316   *   If child node is also orphan (no parent) during cleanup, then the child
317   *   node will also be cleaned up.
318   *
319   * - Freeing up leaves (level 0), keeps nodes detached
320   *   For nodes, the node is still cached as "detached"
321   *
322   * Return false if @node is not in the @useless_nodes list.
323   * Return true if @node is in the @useless_nodes list.
324   */
handle_useless_nodes(struct reloc_control * rc,struct btrfs_backref_node * node)325  static bool handle_useless_nodes(struct reloc_control *rc,
326  				 struct btrfs_backref_node *node)
327  {
328  	struct btrfs_backref_cache *cache = &rc->backref_cache;
329  	struct list_head *useless_node = &cache->useless_node;
330  	bool ret = false;
331  
332  	while (!list_empty(useless_node)) {
333  		struct btrfs_backref_node *cur;
334  
335  		cur = list_first_entry(useless_node, struct btrfs_backref_node,
336  				 list);
337  		list_del_init(&cur->list);
338  
339  		/* Only tree root nodes can be added to @useless_nodes */
340  		ASSERT(list_empty(&cur->upper));
341  
342  		if (cur == node)
343  			ret = true;
344  
345  		/* Cleanup the lower edges */
346  		while (!list_empty(&cur->lower)) {
347  			struct btrfs_backref_edge *edge;
348  			struct btrfs_backref_node *lower;
349  
350  			edge = list_entry(cur->lower.next,
351  					struct btrfs_backref_edge, list[UPPER]);
352  			list_del(&edge->list[UPPER]);
353  			list_del(&edge->list[LOWER]);
354  			lower = edge->node[LOWER];
355  			btrfs_backref_free_edge(cache, edge);
356  
357  			/* Child node is also orphan, queue for cleanup */
358  			if (list_empty(&lower->upper))
359  				list_add(&lower->list, useless_node);
360  		}
361  		/* Mark this block processed for relocation */
362  		mark_block_processed(rc, cur);
363  
364  		/*
365  		 * Backref nodes for tree leaves are deleted from the cache.
366  		 * Backref nodes for upper level tree blocks are left in the
367  		 * cache to avoid unnecessary backref lookup.
368  		 */
369  		if (cur->level > 0) {
370  			cur->detached = 1;
371  		} else {
372  			rb_erase(&cur->rb_node, &cache->rb_root);
373  			btrfs_backref_free_node(cache, cur);
374  		}
375  	}
376  	return ret;
377  }
378  
379  /*
380   * Build backref tree for a given tree block. Root of the backref tree
381   * corresponds the tree block, leaves of the backref tree correspond roots of
382   * b-trees that reference the tree block.
383   *
384   * The basic idea of this function is check backrefs of a given block to find
385   * upper level blocks that reference the block, and then check backrefs of
386   * these upper level blocks recursively. The recursion stops when tree root is
387   * reached or backrefs for the block is cached.
388   *
389   * NOTE: if we find that backrefs for a block are cached, we know backrefs for
390   * all upper level blocks that directly/indirectly reference the block are also
391   * cached.
392   */
build_backref_tree(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_key * node_key,int level,u64 bytenr)393  static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
394  			struct btrfs_trans_handle *trans,
395  			struct reloc_control *rc, struct btrfs_key *node_key,
396  			int level, u64 bytenr)
397  {
398  	struct btrfs_backref_iter *iter;
399  	struct btrfs_backref_cache *cache = &rc->backref_cache;
400  	/* For searching parent of TREE_BLOCK_REF */
401  	struct btrfs_path *path;
402  	struct btrfs_backref_node *cur;
403  	struct btrfs_backref_node *node = NULL;
404  	struct btrfs_backref_edge *edge;
405  	int ret;
406  
407  	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
408  	if (!iter)
409  		return ERR_PTR(-ENOMEM);
410  	path = btrfs_alloc_path();
411  	if (!path) {
412  		ret = -ENOMEM;
413  		goto out;
414  	}
415  
416  	node = btrfs_backref_alloc_node(cache, bytenr, level);
417  	if (!node) {
418  		ret = -ENOMEM;
419  		goto out;
420  	}
421  
422  	cur = node;
423  
424  	/* Breadth-first search to build backref cache */
425  	do {
426  		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
427  						  node_key, cur);
428  		if (ret < 0)
429  			goto out;
430  
431  		edge = list_first_entry_or_null(&cache->pending_edge,
432  				struct btrfs_backref_edge, list[UPPER]);
433  		/*
434  		 * The pending list isn't empty, take the first block to
435  		 * process
436  		 */
437  		if (edge) {
438  			list_del_init(&edge->list[UPPER]);
439  			cur = edge->node[UPPER];
440  		}
441  	} while (edge);
442  
443  	/* Finish the upper linkage of newly added edges/nodes */
444  	ret = btrfs_backref_finish_upper_links(cache, node);
445  	if (ret < 0)
446  		goto out;
447  
448  	if (handle_useless_nodes(rc, node))
449  		node = NULL;
450  out:
451  	btrfs_free_path(iter->path);
452  	kfree(iter);
453  	btrfs_free_path(path);
454  	if (ret) {
455  		btrfs_backref_error_cleanup(cache, node);
456  		return ERR_PTR(ret);
457  	}
458  	ASSERT(!node || !node->detached);
459  	ASSERT(list_empty(&cache->useless_node) &&
460  	       list_empty(&cache->pending_edge));
461  	return node;
462  }
463  
464  /*
465   * helper to add 'address of tree root -> reloc tree' mapping
466   */
__add_reloc_root(struct btrfs_root * root)467  static int __add_reloc_root(struct btrfs_root *root)
468  {
469  	struct btrfs_fs_info *fs_info = root->fs_info;
470  	struct rb_node *rb_node;
471  	struct mapping_node *node;
472  	struct reloc_control *rc = fs_info->reloc_ctl;
473  
474  	node = kmalloc(sizeof(*node), GFP_NOFS);
475  	if (!node)
476  		return -ENOMEM;
477  
478  	node->bytenr = root->commit_root->start;
479  	node->data = root;
480  
481  	spin_lock(&rc->reloc_root_tree.lock);
482  	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
483  				   node->bytenr, &node->rb_node);
484  	spin_unlock(&rc->reloc_root_tree.lock);
485  	if (rb_node) {
486  		btrfs_err(fs_info,
487  			    "Duplicate root found for start=%llu while inserting into relocation tree",
488  			    node->bytenr);
489  		return -EEXIST;
490  	}
491  
492  	list_add_tail(&root->root_list, &rc->reloc_roots);
493  	return 0;
494  }
495  
496  /*
497   * helper to delete the 'address of tree root -> reloc tree'
498   * mapping
499   */
__del_reloc_root(struct btrfs_root * root)500  static void __del_reloc_root(struct btrfs_root *root)
501  {
502  	struct btrfs_fs_info *fs_info = root->fs_info;
503  	struct rb_node *rb_node;
504  	struct mapping_node *node = NULL;
505  	struct reloc_control *rc = fs_info->reloc_ctl;
506  	bool put_ref = false;
507  
508  	if (rc && root->node) {
509  		spin_lock(&rc->reloc_root_tree.lock);
510  		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
511  					   root->commit_root->start);
512  		if (rb_node) {
513  			node = rb_entry(rb_node, struct mapping_node, rb_node);
514  			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
515  			RB_CLEAR_NODE(&node->rb_node);
516  		}
517  		spin_unlock(&rc->reloc_root_tree.lock);
518  		ASSERT(!node || (struct btrfs_root *)node->data == root);
519  	}
520  
521  	/*
522  	 * We only put the reloc root here if it's on the list.  There's a lot
523  	 * of places where the pattern is to splice the rc->reloc_roots, process
524  	 * the reloc roots, and then add the reloc root back onto
525  	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
526  	 * list we don't want the reference being dropped, because the guy
527  	 * messing with the list is in charge of the reference.
528  	 */
529  	spin_lock(&fs_info->trans_lock);
530  	if (!list_empty(&root->root_list)) {
531  		put_ref = true;
532  		list_del_init(&root->root_list);
533  	}
534  	spin_unlock(&fs_info->trans_lock);
535  	if (put_ref)
536  		btrfs_put_root(root);
537  	kfree(node);
538  }
539  
540  /*
541   * helper to update the 'address of tree root -> reloc tree'
542   * mapping
543   */
__update_reloc_root(struct btrfs_root * root)544  static int __update_reloc_root(struct btrfs_root *root)
545  {
546  	struct btrfs_fs_info *fs_info = root->fs_info;
547  	struct rb_node *rb_node;
548  	struct mapping_node *node = NULL;
549  	struct reloc_control *rc = fs_info->reloc_ctl;
550  
551  	spin_lock(&rc->reloc_root_tree.lock);
552  	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
553  				   root->commit_root->start);
554  	if (rb_node) {
555  		node = rb_entry(rb_node, struct mapping_node, rb_node);
556  		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
557  	}
558  	spin_unlock(&rc->reloc_root_tree.lock);
559  
560  	if (!node)
561  		return 0;
562  	BUG_ON((struct btrfs_root *)node->data != root);
563  
564  	spin_lock(&rc->reloc_root_tree.lock);
565  	node->bytenr = root->node->start;
566  	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
567  				   node->bytenr, &node->rb_node);
568  	spin_unlock(&rc->reloc_root_tree.lock);
569  	if (rb_node)
570  		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
571  	return 0;
572  }
573  
create_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)574  static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
575  					struct btrfs_root *root, u64 objectid)
576  {
577  	struct btrfs_fs_info *fs_info = root->fs_info;
578  	struct btrfs_root *reloc_root;
579  	struct extent_buffer *eb;
580  	struct btrfs_root_item *root_item;
581  	struct btrfs_key root_key;
582  	int ret = 0;
583  	bool must_abort = false;
584  
585  	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
586  	if (!root_item)
587  		return ERR_PTR(-ENOMEM);
588  
589  	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
590  	root_key.type = BTRFS_ROOT_ITEM_KEY;
591  	root_key.offset = objectid;
592  
593  	if (btrfs_root_id(root) == objectid) {
594  		u64 commit_root_gen;
595  
596  		/* called by btrfs_init_reloc_root */
597  		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
598  				      BTRFS_TREE_RELOC_OBJECTID);
599  		if (ret)
600  			goto fail;
601  
602  		/*
603  		 * Set the last_snapshot field to the generation of the commit
604  		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
605  		 * correctly (returns true) when the relocation root is created
606  		 * either inside the critical section of a transaction commit
607  		 * (through transaction.c:qgroup_account_snapshot()) and when
608  		 * it's created before the transaction commit is started.
609  		 */
610  		commit_root_gen = btrfs_header_generation(root->commit_root);
611  		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
612  	} else {
613  		/*
614  		 * called by btrfs_reloc_post_snapshot_hook.
615  		 * the source tree is a reloc tree, all tree blocks
616  		 * modified after it was created have RELOC flag
617  		 * set in their headers. so it's OK to not update
618  		 * the 'last_snapshot'.
619  		 */
620  		ret = btrfs_copy_root(trans, root, root->node, &eb,
621  				      BTRFS_TREE_RELOC_OBJECTID);
622  		if (ret)
623  			goto fail;
624  	}
625  
626  	/*
627  	 * We have changed references at this point, we must abort the
628  	 * transaction if anything fails.
629  	 */
630  	must_abort = true;
631  
632  	memcpy(root_item, &root->root_item, sizeof(*root_item));
633  	btrfs_set_root_bytenr(root_item, eb->start);
634  	btrfs_set_root_level(root_item, btrfs_header_level(eb));
635  	btrfs_set_root_generation(root_item, trans->transid);
636  
637  	if (btrfs_root_id(root) == objectid) {
638  		btrfs_set_root_refs(root_item, 0);
639  		memset(&root_item->drop_progress, 0,
640  		       sizeof(struct btrfs_disk_key));
641  		btrfs_set_root_drop_level(root_item, 0);
642  	}
643  
644  	btrfs_tree_unlock(eb);
645  	free_extent_buffer(eb);
646  
647  	ret = btrfs_insert_root(trans, fs_info->tree_root,
648  				&root_key, root_item);
649  	if (ret)
650  		goto fail;
651  
652  	kfree(root_item);
653  
654  	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
655  	if (IS_ERR(reloc_root)) {
656  		ret = PTR_ERR(reloc_root);
657  		goto abort;
658  	}
659  	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
660  	btrfs_set_root_last_trans(reloc_root, trans->transid);
661  	return reloc_root;
662  fail:
663  	kfree(root_item);
664  abort:
665  	if (must_abort)
666  		btrfs_abort_transaction(trans, ret);
667  	return ERR_PTR(ret);
668  }
669  
670  /*
671   * create reloc tree for a given fs tree. reloc tree is just a
672   * snapshot of the fs tree with special root objectid.
673   *
674   * The reloc_root comes out of here with two references, one for
675   * root->reloc_root, and another for being on the rc->reloc_roots list.
676   */
btrfs_init_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)677  int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
678  			  struct btrfs_root *root)
679  {
680  	struct btrfs_fs_info *fs_info = root->fs_info;
681  	struct btrfs_root *reloc_root;
682  	struct reloc_control *rc = fs_info->reloc_ctl;
683  	struct btrfs_block_rsv *rsv;
684  	int clear_rsv = 0;
685  	int ret;
686  
687  	if (!rc)
688  		return 0;
689  
690  	/*
691  	 * The subvolume has reloc tree but the swap is finished, no need to
692  	 * create/update the dead reloc tree
693  	 */
694  	if (reloc_root_is_dead(root))
695  		return 0;
696  
697  	/*
698  	 * This is subtle but important.  We do not do
699  	 * record_root_in_transaction for reloc roots, instead we record their
700  	 * corresponding fs root, and then here we update the last trans for the
701  	 * reloc root.  This means that we have to do this for the entire life
702  	 * of the reloc root, regardless of which stage of the relocation we are
703  	 * in.
704  	 */
705  	if (root->reloc_root) {
706  		reloc_root = root->reloc_root;
707  		btrfs_set_root_last_trans(reloc_root, trans->transid);
708  		return 0;
709  	}
710  
711  	/*
712  	 * We are merging reloc roots, we do not need new reloc trees.  Also
713  	 * reloc trees never need their own reloc tree.
714  	 */
715  	if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
716  		return 0;
717  
718  	if (!trans->reloc_reserved) {
719  		rsv = trans->block_rsv;
720  		trans->block_rsv = rc->block_rsv;
721  		clear_rsv = 1;
722  	}
723  	reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
724  	if (clear_rsv)
725  		trans->block_rsv = rsv;
726  	if (IS_ERR(reloc_root))
727  		return PTR_ERR(reloc_root);
728  
729  	ret = __add_reloc_root(reloc_root);
730  	ASSERT(ret != -EEXIST);
731  	if (ret) {
732  		/* Pairs with create_reloc_root */
733  		btrfs_put_root(reloc_root);
734  		return ret;
735  	}
736  	root->reloc_root = btrfs_grab_root(reloc_root);
737  	return 0;
738  }
739  
740  /*
741   * update root item of reloc tree
742   */
btrfs_update_reloc_root(struct btrfs_trans_handle * trans,struct btrfs_root * root)743  int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
744  			    struct btrfs_root *root)
745  {
746  	struct btrfs_fs_info *fs_info = root->fs_info;
747  	struct btrfs_root *reloc_root;
748  	struct btrfs_root_item *root_item;
749  	int ret;
750  
751  	if (!have_reloc_root(root))
752  		return 0;
753  
754  	reloc_root = root->reloc_root;
755  	root_item = &reloc_root->root_item;
756  
757  	/*
758  	 * We are probably ok here, but __del_reloc_root() will drop its ref of
759  	 * the root.  We have the ref for root->reloc_root, but just in case
760  	 * hold it while we update the reloc root.
761  	 */
762  	btrfs_grab_root(reloc_root);
763  
764  	/* root->reloc_root will stay until current relocation finished */
765  	if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
766  	    btrfs_root_refs(root_item) == 0) {
767  		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
768  		/*
769  		 * Mark the tree as dead before we change reloc_root so
770  		 * have_reloc_root will not touch it from now on.
771  		 */
772  		smp_wmb();
773  		__del_reloc_root(reloc_root);
774  	}
775  
776  	if (reloc_root->commit_root != reloc_root->node) {
777  		__update_reloc_root(reloc_root);
778  		btrfs_set_root_node(root_item, reloc_root->node);
779  		free_extent_buffer(reloc_root->commit_root);
780  		reloc_root->commit_root = btrfs_root_node(reloc_root);
781  	}
782  
783  	ret = btrfs_update_root(trans, fs_info->tree_root,
784  				&reloc_root->root_key, root_item);
785  	btrfs_put_root(reloc_root);
786  	return ret;
787  }
788  
789  /*
790   * get new location of data
791   */
get_new_location(struct inode * reloc_inode,u64 * new_bytenr,u64 bytenr,u64 num_bytes)792  static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
793  			    u64 bytenr, u64 num_bytes)
794  {
795  	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
796  	struct btrfs_path *path;
797  	struct btrfs_file_extent_item *fi;
798  	struct extent_buffer *leaf;
799  	int ret;
800  
801  	path = btrfs_alloc_path();
802  	if (!path)
803  		return -ENOMEM;
804  
805  	bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
806  	ret = btrfs_lookup_file_extent(NULL, root, path,
807  			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
808  	if (ret < 0)
809  		goto out;
810  	if (ret > 0) {
811  		ret = -ENOENT;
812  		goto out;
813  	}
814  
815  	leaf = path->nodes[0];
816  	fi = btrfs_item_ptr(leaf, path->slots[0],
817  			    struct btrfs_file_extent_item);
818  
819  	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
820  	       btrfs_file_extent_compression(leaf, fi) ||
821  	       btrfs_file_extent_encryption(leaf, fi) ||
822  	       btrfs_file_extent_other_encoding(leaf, fi));
823  
824  	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
825  		ret = -EINVAL;
826  		goto out;
827  	}
828  
829  	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
830  	ret = 0;
831  out:
832  	btrfs_free_path(path);
833  	return ret;
834  }
835  
836  /*
837   * update file extent items in the tree leaf to point to
838   * the new locations.
839   */
840  static noinline_for_stack
replace_file_extents(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root,struct extent_buffer * leaf)841  int replace_file_extents(struct btrfs_trans_handle *trans,
842  			 struct reloc_control *rc,
843  			 struct btrfs_root *root,
844  			 struct extent_buffer *leaf)
845  {
846  	struct btrfs_fs_info *fs_info = root->fs_info;
847  	struct btrfs_key key;
848  	struct btrfs_file_extent_item *fi;
849  	struct btrfs_inode *inode = NULL;
850  	u64 parent;
851  	u64 bytenr;
852  	u64 new_bytenr = 0;
853  	u64 num_bytes;
854  	u64 end;
855  	u32 nritems;
856  	u32 i;
857  	int ret = 0;
858  	int first = 1;
859  
860  	if (rc->stage != UPDATE_DATA_PTRS)
861  		return 0;
862  
863  	/* reloc trees always use full backref */
864  	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
865  		parent = leaf->start;
866  	else
867  		parent = 0;
868  
869  	nritems = btrfs_header_nritems(leaf);
870  	for (i = 0; i < nritems; i++) {
871  		struct btrfs_ref ref = { 0 };
872  
873  		cond_resched();
874  		btrfs_item_key_to_cpu(leaf, &key, i);
875  		if (key.type != BTRFS_EXTENT_DATA_KEY)
876  			continue;
877  		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
878  		if (btrfs_file_extent_type(leaf, fi) ==
879  		    BTRFS_FILE_EXTENT_INLINE)
880  			continue;
881  		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
882  		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
883  		if (bytenr == 0)
884  			continue;
885  		if (!in_range(bytenr, rc->block_group->start,
886  			      rc->block_group->length))
887  			continue;
888  
889  		/*
890  		 * if we are modifying block in fs tree, wait for read_folio
891  		 * to complete and drop the extent cache
892  		 */
893  		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
894  			if (first) {
895  				inode = btrfs_find_first_inode(root, key.objectid);
896  				first = 0;
897  			} else if (inode && btrfs_ino(inode) < key.objectid) {
898  				btrfs_add_delayed_iput(inode);
899  				inode = btrfs_find_first_inode(root, key.objectid);
900  			}
901  			if (inode && btrfs_ino(inode) == key.objectid) {
902  				struct extent_state *cached_state = NULL;
903  
904  				end = key.offset +
905  				      btrfs_file_extent_num_bytes(leaf, fi);
906  				WARN_ON(!IS_ALIGNED(key.offset,
907  						    fs_info->sectorsize));
908  				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
909  				end--;
910  				/* Take mmap lock to serialize with reflinks. */
911  				if (!down_read_trylock(&inode->i_mmap_lock))
912  					continue;
913  				ret = try_lock_extent(&inode->io_tree, key.offset,
914  						      end, &cached_state);
915  				if (!ret) {
916  					up_read(&inode->i_mmap_lock);
917  					continue;
918  				}
919  
920  				btrfs_drop_extent_map_range(inode, key.offset, end, true);
921  				unlock_extent(&inode->io_tree, key.offset, end,
922  					      &cached_state);
923  				up_read(&inode->i_mmap_lock);
924  			}
925  		}
926  
927  		ret = get_new_location(rc->data_inode, &new_bytenr,
928  				       bytenr, num_bytes);
929  		if (ret) {
930  			/*
931  			 * Don't have to abort since we've not changed anything
932  			 * in the file extent yet.
933  			 */
934  			break;
935  		}
936  
937  		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
938  
939  		key.offset -= btrfs_file_extent_offset(leaf, fi);
940  		ref.action = BTRFS_ADD_DELAYED_REF;
941  		ref.bytenr = new_bytenr;
942  		ref.num_bytes = num_bytes;
943  		ref.parent = parent;
944  		ref.owning_root = btrfs_root_id(root);
945  		ref.ref_root = btrfs_header_owner(leaf);
946  		btrfs_init_data_ref(&ref, key.objectid, key.offset,
947  				    btrfs_root_id(root), false);
948  		ret = btrfs_inc_extent_ref(trans, &ref);
949  		if (ret) {
950  			btrfs_abort_transaction(trans, ret);
951  			break;
952  		}
953  
954  		ref.action = BTRFS_DROP_DELAYED_REF;
955  		ref.bytenr = bytenr;
956  		ref.num_bytes = num_bytes;
957  		ref.parent = parent;
958  		ref.owning_root = btrfs_root_id(root);
959  		ref.ref_root = btrfs_header_owner(leaf);
960  		btrfs_init_data_ref(&ref, key.objectid, key.offset,
961  				    btrfs_root_id(root), false);
962  		ret = btrfs_free_extent(trans, &ref);
963  		if (ret) {
964  			btrfs_abort_transaction(trans, ret);
965  			break;
966  		}
967  	}
968  	if (inode)
969  		btrfs_add_delayed_iput(inode);
970  	return ret;
971  }
972  
memcmp_node_keys(const struct extent_buffer * eb,int slot,const struct btrfs_path * path,int level)973  static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
974  					       int slot, const struct btrfs_path *path,
975  					       int level)
976  {
977  	struct btrfs_disk_key key1;
978  	struct btrfs_disk_key key2;
979  	btrfs_node_key(eb, &key1, slot);
980  	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
981  	return memcmp(&key1, &key2, sizeof(key1));
982  }
983  
984  /*
985   * try to replace tree blocks in fs tree with the new blocks
986   * in reloc tree. tree blocks haven't been modified since the
987   * reloc tree was create can be replaced.
988   *
989   * if a block was replaced, level of the block + 1 is returned.
990   * if no block got replaced, 0 is returned. if there are other
991   * errors, a negative error number is returned.
992   */
993  static noinline_for_stack
replace_path(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * dest,struct btrfs_root * src,struct btrfs_path * path,struct btrfs_key * next_key,int lowest_level,int max_level)994  int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
995  		 struct btrfs_root *dest, struct btrfs_root *src,
996  		 struct btrfs_path *path, struct btrfs_key *next_key,
997  		 int lowest_level, int max_level)
998  {
999  	struct btrfs_fs_info *fs_info = dest->fs_info;
1000  	struct extent_buffer *eb;
1001  	struct extent_buffer *parent;
1002  	struct btrfs_ref ref = { 0 };
1003  	struct btrfs_key key;
1004  	u64 old_bytenr;
1005  	u64 new_bytenr;
1006  	u64 old_ptr_gen;
1007  	u64 new_ptr_gen;
1008  	u64 last_snapshot;
1009  	u32 blocksize;
1010  	int cow = 0;
1011  	int level;
1012  	int ret;
1013  	int slot;
1014  
1015  	ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
1016  	ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
1017  
1018  	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1019  again:
1020  	slot = path->slots[lowest_level];
1021  	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1022  
1023  	eb = btrfs_lock_root_node(dest);
1024  	level = btrfs_header_level(eb);
1025  
1026  	if (level < lowest_level) {
1027  		btrfs_tree_unlock(eb);
1028  		free_extent_buffer(eb);
1029  		return 0;
1030  	}
1031  
1032  	if (cow) {
1033  		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1034  				      BTRFS_NESTING_COW);
1035  		if (ret) {
1036  			btrfs_tree_unlock(eb);
1037  			free_extent_buffer(eb);
1038  			return ret;
1039  		}
1040  	}
1041  
1042  	if (next_key) {
1043  		next_key->objectid = (u64)-1;
1044  		next_key->type = (u8)-1;
1045  		next_key->offset = (u64)-1;
1046  	}
1047  
1048  	parent = eb;
1049  	while (1) {
1050  		level = btrfs_header_level(parent);
1051  		ASSERT(level >= lowest_level);
1052  
1053  		ret = btrfs_bin_search(parent, 0, &key, &slot);
1054  		if (ret < 0)
1055  			break;
1056  		if (ret && slot > 0)
1057  			slot--;
1058  
1059  		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1060  			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1061  
1062  		old_bytenr = btrfs_node_blockptr(parent, slot);
1063  		blocksize = fs_info->nodesize;
1064  		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1065  
1066  		if (level <= max_level) {
1067  			eb = path->nodes[level];
1068  			new_bytenr = btrfs_node_blockptr(eb,
1069  							path->slots[level]);
1070  			new_ptr_gen = btrfs_node_ptr_generation(eb,
1071  							path->slots[level]);
1072  		} else {
1073  			new_bytenr = 0;
1074  			new_ptr_gen = 0;
1075  		}
1076  
1077  		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1078  			ret = level;
1079  			break;
1080  		}
1081  
1082  		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1083  		    memcmp_node_keys(parent, slot, path, level)) {
1084  			if (level <= lowest_level) {
1085  				ret = 0;
1086  				break;
1087  			}
1088  
1089  			eb = btrfs_read_node_slot(parent, slot);
1090  			if (IS_ERR(eb)) {
1091  				ret = PTR_ERR(eb);
1092  				break;
1093  			}
1094  			btrfs_tree_lock(eb);
1095  			if (cow) {
1096  				ret = btrfs_cow_block(trans, dest, eb, parent,
1097  						      slot, &eb,
1098  						      BTRFS_NESTING_COW);
1099  				if (ret) {
1100  					btrfs_tree_unlock(eb);
1101  					free_extent_buffer(eb);
1102  					break;
1103  				}
1104  			}
1105  
1106  			btrfs_tree_unlock(parent);
1107  			free_extent_buffer(parent);
1108  
1109  			parent = eb;
1110  			continue;
1111  		}
1112  
1113  		if (!cow) {
1114  			btrfs_tree_unlock(parent);
1115  			free_extent_buffer(parent);
1116  			cow = 1;
1117  			goto again;
1118  		}
1119  
1120  		btrfs_node_key_to_cpu(path->nodes[level], &key,
1121  				      path->slots[level]);
1122  		btrfs_release_path(path);
1123  
1124  		path->lowest_level = level;
1125  		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1126  		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1127  		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1128  		path->lowest_level = 0;
1129  		if (ret) {
1130  			if (ret > 0)
1131  				ret = -ENOENT;
1132  			break;
1133  		}
1134  
1135  		/*
1136  		 * Info qgroup to trace both subtrees.
1137  		 *
1138  		 * We must trace both trees.
1139  		 * 1) Tree reloc subtree
1140  		 *    If not traced, we will leak data numbers
1141  		 * 2) Fs subtree
1142  		 *    If not traced, we will double count old data
1143  		 *
1144  		 * We don't scan the subtree right now, but only record
1145  		 * the swapped tree blocks.
1146  		 * The real subtree rescan is delayed until we have new
1147  		 * CoW on the subtree root node before transaction commit.
1148  		 */
1149  		ret = btrfs_qgroup_add_swapped_blocks(dest,
1150  				rc->block_group, parent, slot,
1151  				path->nodes[level], path->slots[level],
1152  				last_snapshot);
1153  		if (ret < 0)
1154  			break;
1155  		/*
1156  		 * swap blocks in fs tree and reloc tree.
1157  		 */
1158  		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1159  		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1160  
1161  		btrfs_set_node_blockptr(path->nodes[level],
1162  					path->slots[level], old_bytenr);
1163  		btrfs_set_node_ptr_generation(path->nodes[level],
1164  					      path->slots[level], old_ptr_gen);
1165  
1166  		ref.action = BTRFS_ADD_DELAYED_REF;
1167  		ref.bytenr = old_bytenr;
1168  		ref.num_bytes = blocksize;
1169  		ref.parent = path->nodes[level]->start;
1170  		ref.owning_root = btrfs_root_id(src);
1171  		ref.ref_root = btrfs_root_id(src);
1172  		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1173  		ret = btrfs_inc_extent_ref(trans, &ref);
1174  		if (ret) {
1175  			btrfs_abort_transaction(trans, ret);
1176  			break;
1177  		}
1178  
1179  		ref.action = BTRFS_ADD_DELAYED_REF;
1180  		ref.bytenr = new_bytenr;
1181  		ref.num_bytes = blocksize;
1182  		ref.parent = 0;
1183  		ref.owning_root = btrfs_root_id(dest);
1184  		ref.ref_root = btrfs_root_id(dest);
1185  		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1186  		ret = btrfs_inc_extent_ref(trans, &ref);
1187  		if (ret) {
1188  			btrfs_abort_transaction(trans, ret);
1189  			break;
1190  		}
1191  
1192  		/* We don't know the real owning_root, use 0. */
1193  		ref.action = BTRFS_DROP_DELAYED_REF;
1194  		ref.bytenr = new_bytenr;
1195  		ref.num_bytes = blocksize;
1196  		ref.parent = path->nodes[level]->start;
1197  		ref.owning_root = 0;
1198  		ref.ref_root = btrfs_root_id(src);
1199  		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1200  		ret = btrfs_free_extent(trans, &ref);
1201  		if (ret) {
1202  			btrfs_abort_transaction(trans, ret);
1203  			break;
1204  		}
1205  
1206  		/* We don't know the real owning_root, use 0. */
1207  		ref.action = BTRFS_DROP_DELAYED_REF;
1208  		ref.bytenr = old_bytenr;
1209  		ref.num_bytes = blocksize;
1210  		ref.parent = 0;
1211  		ref.owning_root = 0;
1212  		ref.ref_root = btrfs_root_id(dest);
1213  		btrfs_init_tree_ref(&ref, level - 1, 0, true);
1214  		ret = btrfs_free_extent(trans, &ref);
1215  		if (ret) {
1216  			btrfs_abort_transaction(trans, ret);
1217  			break;
1218  		}
1219  
1220  		btrfs_unlock_up_safe(path, 0);
1221  
1222  		ret = level;
1223  		break;
1224  	}
1225  	btrfs_tree_unlock(parent);
1226  	free_extent_buffer(parent);
1227  	return ret;
1228  }
1229  
1230  /*
1231   * helper to find next relocated block in reloc tree
1232   */
1233  static noinline_for_stack
walk_up_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1234  int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1235  		       int *level)
1236  {
1237  	struct extent_buffer *eb;
1238  	int i;
1239  	u64 last_snapshot;
1240  	u32 nritems;
1241  
1242  	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1243  
1244  	for (i = 0; i < *level; i++) {
1245  		free_extent_buffer(path->nodes[i]);
1246  		path->nodes[i] = NULL;
1247  	}
1248  
1249  	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1250  		eb = path->nodes[i];
1251  		nritems = btrfs_header_nritems(eb);
1252  		while (path->slots[i] + 1 < nritems) {
1253  			path->slots[i]++;
1254  			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1255  			    last_snapshot)
1256  				continue;
1257  
1258  			*level = i;
1259  			return 0;
1260  		}
1261  		free_extent_buffer(path->nodes[i]);
1262  		path->nodes[i] = NULL;
1263  	}
1264  	return 1;
1265  }
1266  
1267  /*
1268   * walk down reloc tree to find relocated block of lowest level
1269   */
1270  static noinline_for_stack
walk_down_reloc_tree(struct btrfs_root * root,struct btrfs_path * path,int * level)1271  int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1272  			 int *level)
1273  {
1274  	struct extent_buffer *eb = NULL;
1275  	int i;
1276  	u64 ptr_gen = 0;
1277  	u64 last_snapshot;
1278  	u32 nritems;
1279  
1280  	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1281  
1282  	for (i = *level; i > 0; i--) {
1283  		eb = path->nodes[i];
1284  		nritems = btrfs_header_nritems(eb);
1285  		while (path->slots[i] < nritems) {
1286  			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1287  			if (ptr_gen > last_snapshot)
1288  				break;
1289  			path->slots[i]++;
1290  		}
1291  		if (path->slots[i] >= nritems) {
1292  			if (i == *level)
1293  				break;
1294  			*level = i + 1;
1295  			return 0;
1296  		}
1297  		if (i == 1) {
1298  			*level = i;
1299  			return 0;
1300  		}
1301  
1302  		eb = btrfs_read_node_slot(eb, path->slots[i]);
1303  		if (IS_ERR(eb))
1304  			return PTR_ERR(eb);
1305  		BUG_ON(btrfs_header_level(eb) != i - 1);
1306  		path->nodes[i - 1] = eb;
1307  		path->slots[i - 1] = 0;
1308  	}
1309  	return 1;
1310  }
1311  
1312  /*
1313   * invalidate extent cache for file extents whose key in range of
1314   * [min_key, max_key)
1315   */
invalidate_extent_cache(struct btrfs_root * root,const struct btrfs_key * min_key,const struct btrfs_key * max_key)1316  static int invalidate_extent_cache(struct btrfs_root *root,
1317  				   const struct btrfs_key *min_key,
1318  				   const struct btrfs_key *max_key)
1319  {
1320  	struct btrfs_fs_info *fs_info = root->fs_info;
1321  	struct btrfs_inode *inode = NULL;
1322  	u64 objectid;
1323  	u64 start, end;
1324  	u64 ino;
1325  
1326  	objectid = min_key->objectid;
1327  	while (1) {
1328  		struct extent_state *cached_state = NULL;
1329  
1330  		cond_resched();
1331  		if (inode)
1332  			iput(&inode->vfs_inode);
1333  
1334  		if (objectid > max_key->objectid)
1335  			break;
1336  
1337  		inode = btrfs_find_first_inode(root, objectid);
1338  		if (!inode)
1339  			break;
1340  		ino = btrfs_ino(inode);
1341  
1342  		if (ino > max_key->objectid) {
1343  			iput(&inode->vfs_inode);
1344  			break;
1345  		}
1346  
1347  		objectid = ino + 1;
1348  		if (!S_ISREG(inode->vfs_inode.i_mode))
1349  			continue;
1350  
1351  		if (unlikely(min_key->objectid == ino)) {
1352  			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1353  				continue;
1354  			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1355  				start = 0;
1356  			else {
1357  				start = min_key->offset;
1358  				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1359  			}
1360  		} else {
1361  			start = 0;
1362  		}
1363  
1364  		if (unlikely(max_key->objectid == ino)) {
1365  			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1366  				continue;
1367  			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1368  				end = (u64)-1;
1369  			} else {
1370  				if (max_key->offset == 0)
1371  					continue;
1372  				end = max_key->offset;
1373  				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1374  				end--;
1375  			}
1376  		} else {
1377  			end = (u64)-1;
1378  		}
1379  
1380  		/* the lock_extent waits for read_folio to complete */
1381  		lock_extent(&inode->io_tree, start, end, &cached_state);
1382  		btrfs_drop_extent_map_range(inode, start, end, true);
1383  		unlock_extent(&inode->io_tree, start, end, &cached_state);
1384  	}
1385  	return 0;
1386  }
1387  
find_next_key(struct btrfs_path * path,int level,struct btrfs_key * key)1388  static int find_next_key(struct btrfs_path *path, int level,
1389  			 struct btrfs_key *key)
1390  
1391  {
1392  	while (level < BTRFS_MAX_LEVEL) {
1393  		if (!path->nodes[level])
1394  			break;
1395  		if (path->slots[level] + 1 <
1396  		    btrfs_header_nritems(path->nodes[level])) {
1397  			btrfs_node_key_to_cpu(path->nodes[level], key,
1398  					      path->slots[level] + 1);
1399  			return 0;
1400  		}
1401  		level++;
1402  	}
1403  	return 1;
1404  }
1405  
1406  /*
1407   * Insert current subvolume into reloc_control::dirty_subvol_roots
1408   */
insert_dirty_subvol(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_root * root)1409  static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1410  			       struct reloc_control *rc,
1411  			       struct btrfs_root *root)
1412  {
1413  	struct btrfs_root *reloc_root = root->reloc_root;
1414  	struct btrfs_root_item *reloc_root_item;
1415  	int ret;
1416  
1417  	/* @root must be a subvolume tree root with a valid reloc tree */
1418  	ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
1419  	ASSERT(reloc_root);
1420  
1421  	reloc_root_item = &reloc_root->root_item;
1422  	memset(&reloc_root_item->drop_progress, 0,
1423  		sizeof(reloc_root_item->drop_progress));
1424  	btrfs_set_root_drop_level(reloc_root_item, 0);
1425  	btrfs_set_root_refs(reloc_root_item, 0);
1426  	ret = btrfs_update_reloc_root(trans, root);
1427  	if (ret)
1428  		return ret;
1429  
1430  	if (list_empty(&root->reloc_dirty_list)) {
1431  		btrfs_grab_root(root);
1432  		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1433  	}
1434  
1435  	return 0;
1436  }
1437  
clean_dirty_subvols(struct reloc_control * rc)1438  static int clean_dirty_subvols(struct reloc_control *rc)
1439  {
1440  	struct btrfs_root *root;
1441  	struct btrfs_root *next;
1442  	int ret = 0;
1443  	int ret2;
1444  
1445  	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1446  				 reloc_dirty_list) {
1447  		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
1448  			/* Merged subvolume, cleanup its reloc root */
1449  			struct btrfs_root *reloc_root = root->reloc_root;
1450  
1451  			list_del_init(&root->reloc_dirty_list);
1452  			root->reloc_root = NULL;
1453  			/*
1454  			 * Need barrier to ensure clear_bit() only happens after
1455  			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1456  			 */
1457  			smp_wmb();
1458  			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1459  			if (reloc_root) {
1460  				/*
1461  				 * btrfs_drop_snapshot drops our ref we hold for
1462  				 * ->reloc_root.  If it fails however we must
1463  				 * drop the ref ourselves.
1464  				 */
1465  				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1466  				if (ret2 < 0) {
1467  					btrfs_put_root(reloc_root);
1468  					if (!ret)
1469  						ret = ret2;
1470  				}
1471  			}
1472  			btrfs_put_root(root);
1473  		} else {
1474  			/* Orphan reloc tree, just clean it up */
1475  			ret2 = btrfs_drop_snapshot(root, 0, 1);
1476  			if (ret2 < 0) {
1477  				btrfs_put_root(root);
1478  				if (!ret)
1479  					ret = ret2;
1480  			}
1481  		}
1482  	}
1483  	return ret;
1484  }
1485  
1486  /*
1487   * merge the relocated tree blocks in reloc tree with corresponding
1488   * fs tree.
1489   */
merge_reloc_root(struct reloc_control * rc,struct btrfs_root * root)1490  static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1491  					       struct btrfs_root *root)
1492  {
1493  	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1494  	struct btrfs_key key;
1495  	struct btrfs_key next_key;
1496  	struct btrfs_trans_handle *trans = NULL;
1497  	struct btrfs_root *reloc_root;
1498  	struct btrfs_root_item *root_item;
1499  	struct btrfs_path *path;
1500  	struct extent_buffer *leaf;
1501  	int reserve_level;
1502  	int level;
1503  	int max_level;
1504  	int replaced = 0;
1505  	int ret = 0;
1506  	u32 min_reserved;
1507  
1508  	path = btrfs_alloc_path();
1509  	if (!path)
1510  		return -ENOMEM;
1511  	path->reada = READA_FORWARD;
1512  
1513  	reloc_root = root->reloc_root;
1514  	root_item = &reloc_root->root_item;
1515  
1516  	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1517  		level = btrfs_root_level(root_item);
1518  		atomic_inc(&reloc_root->node->refs);
1519  		path->nodes[level] = reloc_root->node;
1520  		path->slots[level] = 0;
1521  	} else {
1522  		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1523  
1524  		level = btrfs_root_drop_level(root_item);
1525  		BUG_ON(level == 0);
1526  		path->lowest_level = level;
1527  		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1528  		path->lowest_level = 0;
1529  		if (ret < 0) {
1530  			btrfs_free_path(path);
1531  			return ret;
1532  		}
1533  
1534  		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1535  				      path->slots[level]);
1536  		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1537  
1538  		btrfs_unlock_up_safe(path, 0);
1539  	}
1540  
1541  	/*
1542  	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1543  	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1544  	 * block COW, we COW at most from level 1 to root level for each tree.
1545  	 *
1546  	 * Thus the needed metadata size is at most root_level * nodesize,
1547  	 * and * 2 since we have two trees to COW.
1548  	 */
1549  	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1550  	min_reserved = fs_info->nodesize * reserve_level * 2;
1551  	memset(&next_key, 0, sizeof(next_key));
1552  
1553  	while (1) {
1554  		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1555  					     min_reserved,
1556  					     BTRFS_RESERVE_FLUSH_LIMIT);
1557  		if (ret)
1558  			goto out;
1559  		trans = btrfs_start_transaction(root, 0);
1560  		if (IS_ERR(trans)) {
1561  			ret = PTR_ERR(trans);
1562  			trans = NULL;
1563  			goto out;
1564  		}
1565  
1566  		/*
1567  		 * At this point we no longer have a reloc_control, so we can't
1568  		 * depend on btrfs_init_reloc_root to update our last_trans.
1569  		 *
1570  		 * But that's ok, we started the trans handle on our
1571  		 * corresponding fs_root, which means it's been added to the
1572  		 * dirty list.  At commit time we'll still call
1573  		 * btrfs_update_reloc_root() and update our root item
1574  		 * appropriately.
1575  		 */
1576  		btrfs_set_root_last_trans(reloc_root, trans->transid);
1577  		trans->block_rsv = rc->block_rsv;
1578  
1579  		replaced = 0;
1580  		max_level = level;
1581  
1582  		ret = walk_down_reloc_tree(reloc_root, path, &level);
1583  		if (ret < 0)
1584  			goto out;
1585  		if (ret > 0)
1586  			break;
1587  
1588  		if (!find_next_key(path, level, &key) &&
1589  		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1590  			ret = 0;
1591  		} else {
1592  			ret = replace_path(trans, rc, root, reloc_root, path,
1593  					   &next_key, level, max_level);
1594  		}
1595  		if (ret < 0)
1596  			goto out;
1597  		if (ret > 0) {
1598  			level = ret;
1599  			btrfs_node_key_to_cpu(path->nodes[level], &key,
1600  					      path->slots[level]);
1601  			replaced = 1;
1602  		}
1603  
1604  		ret = walk_up_reloc_tree(reloc_root, path, &level);
1605  		if (ret > 0)
1606  			break;
1607  
1608  		BUG_ON(level == 0);
1609  		/*
1610  		 * save the merging progress in the drop_progress.
1611  		 * this is OK since root refs == 1 in this case.
1612  		 */
1613  		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1614  			       path->slots[level]);
1615  		btrfs_set_root_drop_level(root_item, level);
1616  
1617  		btrfs_end_transaction_throttle(trans);
1618  		trans = NULL;
1619  
1620  		btrfs_btree_balance_dirty(fs_info);
1621  
1622  		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1623  			invalidate_extent_cache(root, &key, &next_key);
1624  	}
1625  
1626  	/*
1627  	 * handle the case only one block in the fs tree need to be
1628  	 * relocated and the block is tree root.
1629  	 */
1630  	leaf = btrfs_lock_root_node(root);
1631  	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1632  			      BTRFS_NESTING_COW);
1633  	btrfs_tree_unlock(leaf);
1634  	free_extent_buffer(leaf);
1635  out:
1636  	btrfs_free_path(path);
1637  
1638  	if (ret == 0) {
1639  		ret = insert_dirty_subvol(trans, rc, root);
1640  		if (ret)
1641  			btrfs_abort_transaction(trans, ret);
1642  	}
1643  
1644  	if (trans)
1645  		btrfs_end_transaction_throttle(trans);
1646  
1647  	btrfs_btree_balance_dirty(fs_info);
1648  
1649  	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1650  		invalidate_extent_cache(root, &key, &next_key);
1651  
1652  	return ret;
1653  }
1654  
1655  static noinline_for_stack
prepare_to_merge(struct reloc_control * rc,int err)1656  int prepare_to_merge(struct reloc_control *rc, int err)
1657  {
1658  	struct btrfs_root *root = rc->extent_root;
1659  	struct btrfs_fs_info *fs_info = root->fs_info;
1660  	struct btrfs_root *reloc_root;
1661  	struct btrfs_trans_handle *trans;
1662  	LIST_HEAD(reloc_roots);
1663  	u64 num_bytes = 0;
1664  	int ret;
1665  
1666  	mutex_lock(&fs_info->reloc_mutex);
1667  	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1668  	rc->merging_rsv_size += rc->nodes_relocated * 2;
1669  	mutex_unlock(&fs_info->reloc_mutex);
1670  
1671  again:
1672  	if (!err) {
1673  		num_bytes = rc->merging_rsv_size;
1674  		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1675  					  BTRFS_RESERVE_FLUSH_ALL);
1676  		if (ret)
1677  			err = ret;
1678  	}
1679  
1680  	trans = btrfs_join_transaction(rc->extent_root);
1681  	if (IS_ERR(trans)) {
1682  		if (!err)
1683  			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1684  						num_bytes, NULL);
1685  		return PTR_ERR(trans);
1686  	}
1687  
1688  	if (!err) {
1689  		if (num_bytes != rc->merging_rsv_size) {
1690  			btrfs_end_transaction(trans);
1691  			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1692  						num_bytes, NULL);
1693  			goto again;
1694  		}
1695  	}
1696  
1697  	rc->merge_reloc_tree = true;
1698  
1699  	while (!list_empty(&rc->reloc_roots)) {
1700  		reloc_root = list_entry(rc->reloc_roots.next,
1701  					struct btrfs_root, root_list);
1702  		list_del_init(&reloc_root->root_list);
1703  
1704  		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1705  				false);
1706  		if (IS_ERR(root)) {
1707  			/*
1708  			 * Even if we have an error we need this reloc root
1709  			 * back on our list so we can clean up properly.
1710  			 */
1711  			list_add(&reloc_root->root_list, &reloc_roots);
1712  			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1713  			if (!err)
1714  				err = PTR_ERR(root);
1715  			break;
1716  		}
1717  
1718  		if (unlikely(root->reloc_root != reloc_root)) {
1719  			if (root->reloc_root) {
1720  				btrfs_err(fs_info,
1721  "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1722  					  btrfs_root_id(root),
1723  					  btrfs_root_id(root->reloc_root),
1724  					  root->reloc_root->root_key.type,
1725  					  root->reloc_root->root_key.offset,
1726  					  btrfs_root_generation(
1727  						  &root->reloc_root->root_item),
1728  					  btrfs_root_id(reloc_root),
1729  					  reloc_root->root_key.type,
1730  					  reloc_root->root_key.offset,
1731  					  btrfs_root_generation(
1732  						  &reloc_root->root_item));
1733  			} else {
1734  				btrfs_err(fs_info,
1735  "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1736  					  btrfs_root_id(root),
1737  					  btrfs_root_id(reloc_root),
1738  					  reloc_root->root_key.type,
1739  					  reloc_root->root_key.offset,
1740  					  btrfs_root_generation(
1741  						  &reloc_root->root_item));
1742  			}
1743  			list_add(&reloc_root->root_list, &reloc_roots);
1744  			btrfs_put_root(root);
1745  			btrfs_abort_transaction(trans, -EUCLEAN);
1746  			if (!err)
1747  				err = -EUCLEAN;
1748  			break;
1749  		}
1750  
1751  		/*
1752  		 * set reference count to 1, so btrfs_recover_relocation
1753  		 * knows it should resumes merging
1754  		 */
1755  		if (!err)
1756  			btrfs_set_root_refs(&reloc_root->root_item, 1);
1757  		ret = btrfs_update_reloc_root(trans, root);
1758  
1759  		/*
1760  		 * Even if we have an error we need this reloc root back on our
1761  		 * list so we can clean up properly.
1762  		 */
1763  		list_add(&reloc_root->root_list, &reloc_roots);
1764  		btrfs_put_root(root);
1765  
1766  		if (ret) {
1767  			btrfs_abort_transaction(trans, ret);
1768  			if (!err)
1769  				err = ret;
1770  			break;
1771  		}
1772  	}
1773  
1774  	list_splice(&reloc_roots, &rc->reloc_roots);
1775  
1776  	if (!err)
1777  		err = btrfs_commit_transaction(trans);
1778  	else
1779  		btrfs_end_transaction(trans);
1780  	return err;
1781  }
1782  
1783  static noinline_for_stack
free_reloc_roots(struct list_head * list)1784  void free_reloc_roots(struct list_head *list)
1785  {
1786  	struct btrfs_root *reloc_root, *tmp;
1787  
1788  	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1789  		__del_reloc_root(reloc_root);
1790  }
1791  
1792  static noinline_for_stack
merge_reloc_roots(struct reloc_control * rc)1793  void merge_reloc_roots(struct reloc_control *rc)
1794  {
1795  	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1796  	struct btrfs_root *root;
1797  	struct btrfs_root *reloc_root;
1798  	LIST_HEAD(reloc_roots);
1799  	int found = 0;
1800  	int ret = 0;
1801  again:
1802  	root = rc->extent_root;
1803  
1804  	/*
1805  	 * this serializes us with btrfs_record_root_in_transaction,
1806  	 * we have to make sure nobody is in the middle of
1807  	 * adding their roots to the list while we are
1808  	 * doing this splice
1809  	 */
1810  	mutex_lock(&fs_info->reloc_mutex);
1811  	list_splice_init(&rc->reloc_roots, &reloc_roots);
1812  	mutex_unlock(&fs_info->reloc_mutex);
1813  
1814  	while (!list_empty(&reloc_roots)) {
1815  		found = 1;
1816  		reloc_root = list_entry(reloc_roots.next,
1817  					struct btrfs_root, root_list);
1818  
1819  		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1820  					 false);
1821  		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1822  			if (WARN_ON(IS_ERR(root))) {
1823  				/*
1824  				 * For recovery we read the fs roots on mount,
1825  				 * and if we didn't find the root then we marked
1826  				 * the reloc root as a garbage root.  For normal
1827  				 * relocation obviously the root should exist in
1828  				 * memory.  However there's no reason we can't
1829  				 * handle the error properly here just in case.
1830  				 */
1831  				ret = PTR_ERR(root);
1832  				goto out;
1833  			}
1834  			if (WARN_ON(root->reloc_root != reloc_root)) {
1835  				/*
1836  				 * This can happen if on-disk metadata has some
1837  				 * corruption, e.g. bad reloc tree key offset.
1838  				 */
1839  				ret = -EINVAL;
1840  				goto out;
1841  			}
1842  			ret = merge_reloc_root(rc, root);
1843  			btrfs_put_root(root);
1844  			if (ret) {
1845  				if (list_empty(&reloc_root->root_list))
1846  					list_add_tail(&reloc_root->root_list,
1847  						      &reloc_roots);
1848  				goto out;
1849  			}
1850  		} else {
1851  			if (!IS_ERR(root)) {
1852  				if (root->reloc_root == reloc_root) {
1853  					root->reloc_root = NULL;
1854  					btrfs_put_root(reloc_root);
1855  				}
1856  				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1857  					  &root->state);
1858  				btrfs_put_root(root);
1859  			}
1860  
1861  			list_del_init(&reloc_root->root_list);
1862  			/* Don't forget to queue this reloc root for cleanup */
1863  			list_add_tail(&reloc_root->reloc_dirty_list,
1864  				      &rc->dirty_subvol_roots);
1865  		}
1866  	}
1867  
1868  	if (found) {
1869  		found = 0;
1870  		goto again;
1871  	}
1872  out:
1873  	if (ret) {
1874  		btrfs_handle_fs_error(fs_info, ret, NULL);
1875  		free_reloc_roots(&reloc_roots);
1876  
1877  		/* new reloc root may be added */
1878  		mutex_lock(&fs_info->reloc_mutex);
1879  		list_splice_init(&rc->reloc_roots, &reloc_roots);
1880  		mutex_unlock(&fs_info->reloc_mutex);
1881  		free_reloc_roots(&reloc_roots);
1882  	}
1883  
1884  	/*
1885  	 * We used to have
1886  	 *
1887  	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1888  	 *
1889  	 * here, but it's wrong.  If we fail to start the transaction in
1890  	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1891  	 * have actually been removed from the reloc_root_tree rb tree.  This is
1892  	 * fine because we're bailing here, and we hold a reference on the root
1893  	 * for the list that holds it, so these roots will be cleaned up when we
1894  	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1895  	 * will be cleaned up on unmount.
1896  	 *
1897  	 * The remaining nodes will be cleaned up by free_reloc_control.
1898  	 */
1899  }
1900  
free_block_list(struct rb_root * blocks)1901  static void free_block_list(struct rb_root *blocks)
1902  {
1903  	struct tree_block *block;
1904  	struct rb_node *rb_node;
1905  	while ((rb_node = rb_first(blocks))) {
1906  		block = rb_entry(rb_node, struct tree_block, rb_node);
1907  		rb_erase(rb_node, blocks);
1908  		kfree(block);
1909  	}
1910  }
1911  
record_reloc_root_in_trans(struct btrfs_trans_handle * trans,struct btrfs_root * reloc_root)1912  static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1913  				      struct btrfs_root *reloc_root)
1914  {
1915  	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1916  	struct btrfs_root *root;
1917  	int ret;
1918  
1919  	if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
1920  		return 0;
1921  
1922  	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1923  
1924  	/*
1925  	 * This should succeed, since we can't have a reloc root without having
1926  	 * already looked up the actual root and created the reloc root for this
1927  	 * root.
1928  	 *
1929  	 * However if there's some sort of corruption where we have a ref to a
1930  	 * reloc root without a corresponding root this could return ENOENT.
1931  	 */
1932  	if (IS_ERR(root)) {
1933  		ASSERT(0);
1934  		return PTR_ERR(root);
1935  	}
1936  	if (root->reloc_root != reloc_root) {
1937  		ASSERT(0);
1938  		btrfs_err(fs_info,
1939  			  "root %llu has two reloc roots associated with it",
1940  			  reloc_root->root_key.offset);
1941  		btrfs_put_root(root);
1942  		return -EUCLEAN;
1943  	}
1944  	ret = btrfs_record_root_in_trans(trans, root);
1945  	btrfs_put_root(root);
1946  
1947  	return ret;
1948  }
1949  
1950  static noinline_for_stack
select_reloc_root(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_backref_edge * edges[])1951  struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1952  				     struct reloc_control *rc,
1953  				     struct btrfs_backref_node *node,
1954  				     struct btrfs_backref_edge *edges[])
1955  {
1956  	struct btrfs_backref_node *next;
1957  	struct btrfs_root *root;
1958  	int index = 0;
1959  	int ret;
1960  
1961  	next = walk_up_backref(node, edges, &index);
1962  	root = next->root;
1963  
1964  	/*
1965  	 * If there is no root, then our references for this block are
1966  	 * incomplete, as we should be able to walk all the way up to a block
1967  	 * that is owned by a root.
1968  	 *
1969  	 * This path is only for SHAREABLE roots, so if we come upon a
1970  	 * non-SHAREABLE root then we have backrefs that resolve improperly.
1971  	 *
1972  	 * Both of these cases indicate file system corruption, or a bug in the
1973  	 * backref walking code.
1974  	 */
1975  	if (unlikely(!root)) {
1976  		btrfs_err(trans->fs_info,
1977  			  "bytenr %llu doesn't have a backref path ending in a root",
1978  			  node->bytenr);
1979  		return ERR_PTR(-EUCLEAN);
1980  	}
1981  	if (unlikely(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))) {
1982  		btrfs_err(trans->fs_info,
1983  			  "bytenr %llu has multiple refs with one ending in a non-shareable root",
1984  			  node->bytenr);
1985  		return ERR_PTR(-EUCLEAN);
1986  	}
1987  
1988  	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
1989  		ret = record_reloc_root_in_trans(trans, root);
1990  		if (ret)
1991  			return ERR_PTR(ret);
1992  		goto found;
1993  	}
1994  
1995  	ret = btrfs_record_root_in_trans(trans, root);
1996  	if (ret)
1997  		return ERR_PTR(ret);
1998  	root = root->reloc_root;
1999  
2000  	/*
2001  	 * We could have raced with another thread which failed, so
2002  	 * root->reloc_root may not be set, return ENOENT in this case.
2003  	 */
2004  	if (!root)
2005  		return ERR_PTR(-ENOENT);
2006  
2007  	if (next->new_bytenr) {
2008  		/*
2009  		 * We just created the reloc root, so we shouldn't have
2010  		 * ->new_bytenr set yet. If it is then we have multiple roots
2011  		 *  pointing at the same bytenr which indicates corruption, or
2012  		 *  we've made a mistake in the backref walking code.
2013  		 */
2014  		ASSERT(next->new_bytenr == 0);
2015  		btrfs_err(trans->fs_info,
2016  			  "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2017  			  node->bytenr, next->bytenr);
2018  		return ERR_PTR(-EUCLEAN);
2019  	}
2020  
2021  	next->new_bytenr = root->node->start;
2022  	btrfs_put_root(next->root);
2023  	next->root = btrfs_grab_root(root);
2024  	ASSERT(next->root);
2025  	mark_block_processed(rc, next);
2026  found:
2027  	next = node;
2028  	/* setup backref node path for btrfs_reloc_cow_block */
2029  	while (1) {
2030  		rc->backref_cache.path[next->level] = next;
2031  		if (--index < 0)
2032  			break;
2033  		next = edges[index]->node[UPPER];
2034  	}
2035  	return root;
2036  }
2037  
2038  /*
2039   * Select a tree root for relocation.
2040   *
2041   * Return NULL if the block is not shareable. We should use do_relocation() in
2042   * this case.
2043   *
2044   * Return a tree root pointer if the block is shareable.
2045   * Return -ENOENT if the block is root of reloc tree.
2046   */
2047  static noinline_for_stack
select_one_root(struct btrfs_backref_node * node)2048  struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2049  {
2050  	struct btrfs_backref_node *next;
2051  	struct btrfs_root *root;
2052  	struct btrfs_root *fs_root = NULL;
2053  	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2054  	int index = 0;
2055  
2056  	next = node;
2057  	while (1) {
2058  		cond_resched();
2059  		next = walk_up_backref(next, edges, &index);
2060  		root = next->root;
2061  
2062  		/*
2063  		 * This can occur if we have incomplete extent refs leading all
2064  		 * the way up a particular path, in this case return -EUCLEAN.
2065  		 */
2066  		if (!root)
2067  			return ERR_PTR(-EUCLEAN);
2068  
2069  		/* No other choice for non-shareable tree */
2070  		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2071  			return root;
2072  
2073  		if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
2074  			fs_root = root;
2075  
2076  		if (next != node)
2077  			return NULL;
2078  
2079  		next = walk_down_backref(edges, &index);
2080  		if (!next || next->level <= node->level)
2081  			break;
2082  	}
2083  
2084  	if (!fs_root)
2085  		return ERR_PTR(-ENOENT);
2086  	return fs_root;
2087  }
2088  
calcu_metadata_size(struct reloc_control * rc,struct btrfs_backref_node * node)2089  static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
2090  						  struct btrfs_backref_node *node)
2091  {
2092  	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2093  	struct btrfs_backref_node *next = node;
2094  	struct btrfs_backref_edge *edge;
2095  	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2096  	u64 num_bytes = 0;
2097  	int index = 0;
2098  
2099  	BUG_ON(node->processed);
2100  
2101  	while (next) {
2102  		cond_resched();
2103  		while (1) {
2104  			if (next->processed)
2105  				break;
2106  
2107  			num_bytes += fs_info->nodesize;
2108  
2109  			if (list_empty(&next->upper))
2110  				break;
2111  
2112  			edge = list_entry(next->upper.next,
2113  					struct btrfs_backref_edge, list[LOWER]);
2114  			edges[index++] = edge;
2115  			next = edge->node[UPPER];
2116  		}
2117  		next = walk_down_backref(edges, &index);
2118  	}
2119  	return num_bytes;
2120  }
2121  
refill_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,u64 num_bytes)2122  static int refill_metadata_space(struct btrfs_trans_handle *trans,
2123  				 struct reloc_control *rc, u64 num_bytes)
2124  {
2125  	struct btrfs_fs_info *fs_info = trans->fs_info;
2126  	int ret;
2127  
2128  	trans->block_rsv = rc->block_rsv;
2129  	rc->reserved_bytes += num_bytes;
2130  
2131  	/*
2132  	 * We are under a transaction here so we can only do limited flushing.
2133  	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2134  	 * transaction and try to refill when we can flush all the things.
2135  	 */
2136  	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2137  				     BTRFS_RESERVE_FLUSH_LIMIT);
2138  	if (ret) {
2139  		u64 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2140  
2141  		while (tmp <= rc->reserved_bytes)
2142  			tmp <<= 1;
2143  		/*
2144  		 * only one thread can access block_rsv at this point,
2145  		 * so we don't need hold lock to protect block_rsv.
2146  		 * we expand more reservation size here to allow enough
2147  		 * space for relocation and we will return earlier in
2148  		 * enospc case.
2149  		 */
2150  		rc->block_rsv->size = tmp + fs_info->nodesize *
2151  				      RELOCATION_RESERVED_NODES;
2152  		return -EAGAIN;
2153  	}
2154  
2155  	return 0;
2156  }
2157  
reserve_metadata_space(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node)2158  static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2159  				  struct reloc_control *rc,
2160  				  struct btrfs_backref_node *node)
2161  {
2162  	u64 num_bytes;
2163  
2164  	num_bytes = calcu_metadata_size(rc, node) * 2;
2165  	return refill_metadata_space(trans, rc, num_bytes);
2166  }
2167  
2168  /*
2169   * relocate a block tree, and then update pointers in upper level
2170   * blocks that reference the block to point to the new location.
2171   *
2172   * if called by link_to_upper, the block has already been relocated.
2173   * in that case this function just updates pointers.
2174   */
do_relocation(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path,int lowest)2175  static int do_relocation(struct btrfs_trans_handle *trans,
2176  			 struct reloc_control *rc,
2177  			 struct btrfs_backref_node *node,
2178  			 struct btrfs_key *key,
2179  			 struct btrfs_path *path, int lowest)
2180  {
2181  	struct btrfs_backref_node *upper;
2182  	struct btrfs_backref_edge *edge;
2183  	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2184  	struct btrfs_root *root;
2185  	struct extent_buffer *eb;
2186  	u32 blocksize;
2187  	u64 bytenr;
2188  	int slot;
2189  	int ret = 0;
2190  
2191  	/*
2192  	 * If we are lowest then this is the first time we're processing this
2193  	 * block, and thus shouldn't have an eb associated with it yet.
2194  	 */
2195  	ASSERT(!lowest || !node->eb);
2196  
2197  	path->lowest_level = node->level + 1;
2198  	rc->backref_cache.path[node->level] = node;
2199  	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2200  		cond_resched();
2201  
2202  		upper = edge->node[UPPER];
2203  		root = select_reloc_root(trans, rc, upper, edges);
2204  		if (IS_ERR(root)) {
2205  			ret = PTR_ERR(root);
2206  			goto next;
2207  		}
2208  
2209  		if (upper->eb && !upper->locked) {
2210  			if (!lowest) {
2211  				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2212  				if (ret < 0)
2213  					goto next;
2214  				BUG_ON(ret);
2215  				bytenr = btrfs_node_blockptr(upper->eb, slot);
2216  				if (node->eb->start == bytenr)
2217  					goto next;
2218  			}
2219  			btrfs_backref_drop_node_buffer(upper);
2220  		}
2221  
2222  		if (!upper->eb) {
2223  			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2224  			if (ret) {
2225  				if (ret > 0)
2226  					ret = -ENOENT;
2227  
2228  				btrfs_release_path(path);
2229  				break;
2230  			}
2231  
2232  			if (!upper->eb) {
2233  				upper->eb = path->nodes[upper->level];
2234  				path->nodes[upper->level] = NULL;
2235  			} else {
2236  				BUG_ON(upper->eb != path->nodes[upper->level]);
2237  			}
2238  
2239  			upper->locked = 1;
2240  			path->locks[upper->level] = 0;
2241  
2242  			slot = path->slots[upper->level];
2243  			btrfs_release_path(path);
2244  		} else {
2245  			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2246  			if (ret < 0)
2247  				goto next;
2248  			BUG_ON(ret);
2249  		}
2250  
2251  		bytenr = btrfs_node_blockptr(upper->eb, slot);
2252  		if (lowest) {
2253  			if (bytenr != node->bytenr) {
2254  				btrfs_err(root->fs_info,
2255  		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2256  					  bytenr, node->bytenr, slot,
2257  					  upper->eb->start);
2258  				ret = -EIO;
2259  				goto next;
2260  			}
2261  		} else {
2262  			if (node->eb->start == bytenr)
2263  				goto next;
2264  		}
2265  
2266  		blocksize = root->fs_info->nodesize;
2267  		eb = btrfs_read_node_slot(upper->eb, slot);
2268  		if (IS_ERR(eb)) {
2269  			ret = PTR_ERR(eb);
2270  			goto next;
2271  		}
2272  		btrfs_tree_lock(eb);
2273  
2274  		if (!node->eb) {
2275  			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2276  					      slot, &eb, BTRFS_NESTING_COW);
2277  			btrfs_tree_unlock(eb);
2278  			free_extent_buffer(eb);
2279  			if (ret < 0)
2280  				goto next;
2281  			/*
2282  			 * We've just COWed this block, it should have updated
2283  			 * the correct backref node entry.
2284  			 */
2285  			ASSERT(node->eb == eb);
2286  		} else {
2287  			struct btrfs_ref ref = {
2288  				.action = BTRFS_ADD_DELAYED_REF,
2289  				.bytenr = node->eb->start,
2290  				.num_bytes = blocksize,
2291  				.parent = upper->eb->start,
2292  				.owning_root = btrfs_header_owner(upper->eb),
2293  				.ref_root = btrfs_header_owner(upper->eb),
2294  			};
2295  
2296  			btrfs_set_node_blockptr(upper->eb, slot,
2297  						node->eb->start);
2298  			btrfs_set_node_ptr_generation(upper->eb, slot,
2299  						      trans->transid);
2300  			btrfs_mark_buffer_dirty(trans, upper->eb);
2301  
2302  			btrfs_init_tree_ref(&ref, node->level,
2303  					    btrfs_root_id(root), false);
2304  			ret = btrfs_inc_extent_ref(trans, &ref);
2305  			if (!ret)
2306  				ret = btrfs_drop_subtree(trans, root, eb,
2307  							 upper->eb);
2308  			if (ret)
2309  				btrfs_abort_transaction(trans, ret);
2310  		}
2311  next:
2312  		if (!upper->pending)
2313  			btrfs_backref_drop_node_buffer(upper);
2314  		else
2315  			btrfs_backref_unlock_node_buffer(upper);
2316  		if (ret)
2317  			break;
2318  	}
2319  
2320  	if (!ret && node->pending) {
2321  		btrfs_backref_drop_node_buffer(node);
2322  		list_del_init(&node->list);
2323  		node->pending = 0;
2324  	}
2325  
2326  	path->lowest_level = 0;
2327  
2328  	/*
2329  	 * We should have allocated all of our space in the block rsv and thus
2330  	 * shouldn't ENOSPC.
2331  	 */
2332  	ASSERT(ret != -ENOSPC);
2333  	return ret;
2334  }
2335  
link_to_upper(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_path * path)2336  static int link_to_upper(struct btrfs_trans_handle *trans,
2337  			 struct reloc_control *rc,
2338  			 struct btrfs_backref_node *node,
2339  			 struct btrfs_path *path)
2340  {
2341  	struct btrfs_key key;
2342  
2343  	btrfs_node_key_to_cpu(node->eb, &key, 0);
2344  	return do_relocation(trans, rc, node, &key, path, 0);
2345  }
2346  
finish_pending_nodes(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_path * path,int err)2347  static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2348  				struct reloc_control *rc,
2349  				struct btrfs_path *path, int err)
2350  {
2351  	LIST_HEAD(list);
2352  	struct btrfs_backref_cache *cache = &rc->backref_cache;
2353  	struct btrfs_backref_node *node;
2354  	int level;
2355  	int ret;
2356  
2357  	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2358  		while (!list_empty(&cache->pending[level])) {
2359  			node = list_entry(cache->pending[level].next,
2360  					  struct btrfs_backref_node, list);
2361  			list_move_tail(&node->list, &list);
2362  			BUG_ON(!node->pending);
2363  
2364  			if (!err) {
2365  				ret = link_to_upper(trans, rc, node, path);
2366  				if (ret < 0)
2367  					err = ret;
2368  			}
2369  		}
2370  		list_splice_init(&list, &cache->pending[level]);
2371  	}
2372  	return err;
2373  }
2374  
2375  /*
2376   * mark a block and all blocks directly/indirectly reference the block
2377   * as processed.
2378   */
update_processed_blocks(struct reloc_control * rc,struct btrfs_backref_node * node)2379  static void update_processed_blocks(struct reloc_control *rc,
2380  				    struct btrfs_backref_node *node)
2381  {
2382  	struct btrfs_backref_node *next = node;
2383  	struct btrfs_backref_edge *edge;
2384  	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2385  	int index = 0;
2386  
2387  	while (next) {
2388  		cond_resched();
2389  		while (1) {
2390  			if (next->processed)
2391  				break;
2392  
2393  			mark_block_processed(rc, next);
2394  
2395  			if (list_empty(&next->upper))
2396  				break;
2397  
2398  			edge = list_entry(next->upper.next,
2399  					struct btrfs_backref_edge, list[LOWER]);
2400  			edges[index++] = edge;
2401  			next = edge->node[UPPER];
2402  		}
2403  		next = walk_down_backref(edges, &index);
2404  	}
2405  }
2406  
tree_block_processed(u64 bytenr,struct reloc_control * rc)2407  static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2408  {
2409  	u32 blocksize = rc->extent_root->fs_info->nodesize;
2410  
2411  	if (test_range_bit(&rc->processed_blocks, bytenr,
2412  			   bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2413  		return 1;
2414  	return 0;
2415  }
2416  
get_tree_block_key(struct btrfs_fs_info * fs_info,struct tree_block * block)2417  static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2418  			      struct tree_block *block)
2419  {
2420  	struct btrfs_tree_parent_check check = {
2421  		.level = block->level,
2422  		.owner_root = block->owner,
2423  		.transid = block->key.offset
2424  	};
2425  	struct extent_buffer *eb;
2426  
2427  	eb = read_tree_block(fs_info, block->bytenr, &check);
2428  	if (IS_ERR(eb))
2429  		return PTR_ERR(eb);
2430  	if (!extent_buffer_uptodate(eb)) {
2431  		free_extent_buffer(eb);
2432  		return -EIO;
2433  	}
2434  	if (block->level == 0)
2435  		btrfs_item_key_to_cpu(eb, &block->key, 0);
2436  	else
2437  		btrfs_node_key_to_cpu(eb, &block->key, 0);
2438  	free_extent_buffer(eb);
2439  	block->key_ready = true;
2440  	return 0;
2441  }
2442  
2443  /*
2444   * helper function to relocate a tree block
2445   */
relocate_tree_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct btrfs_backref_node * node,struct btrfs_key * key,struct btrfs_path * path)2446  static int relocate_tree_block(struct btrfs_trans_handle *trans,
2447  				struct reloc_control *rc,
2448  				struct btrfs_backref_node *node,
2449  				struct btrfs_key *key,
2450  				struct btrfs_path *path)
2451  {
2452  	struct btrfs_root *root;
2453  	int ret = 0;
2454  
2455  	if (!node)
2456  		return 0;
2457  
2458  	/*
2459  	 * If we fail here we want to drop our backref_node because we are going
2460  	 * to start over and regenerate the tree for it.
2461  	 */
2462  	ret = reserve_metadata_space(trans, rc, node);
2463  	if (ret)
2464  		goto out;
2465  
2466  	BUG_ON(node->processed);
2467  	root = select_one_root(node);
2468  	if (IS_ERR(root)) {
2469  		ret = PTR_ERR(root);
2470  
2471  		/* See explanation in select_one_root for the -EUCLEAN case. */
2472  		ASSERT(ret == -ENOENT);
2473  		if (ret == -ENOENT) {
2474  			ret = 0;
2475  			update_processed_blocks(rc, node);
2476  		}
2477  		goto out;
2478  	}
2479  
2480  	if (root) {
2481  		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2482  			/*
2483  			 * This block was the root block of a root, and this is
2484  			 * the first time we're processing the block and thus it
2485  			 * should not have had the ->new_bytenr modified.
2486  			 *
2487  			 * However in the case of corruption we could have
2488  			 * multiple refs pointing to the same block improperly,
2489  			 * and thus we would trip over these checks.  ASSERT()
2490  			 * for the developer case, because it could indicate a
2491  			 * bug in the backref code, however error out for a
2492  			 * normal user in the case of corruption.
2493  			 */
2494  			ASSERT(node->new_bytenr == 0);
2495  			if (node->new_bytenr) {
2496  				btrfs_err(root->fs_info,
2497  				  "bytenr %llu has improper references to it",
2498  					  node->bytenr);
2499  				ret = -EUCLEAN;
2500  				goto out;
2501  			}
2502  			ret = btrfs_record_root_in_trans(trans, root);
2503  			if (ret)
2504  				goto out;
2505  			/*
2506  			 * Another thread could have failed, need to check if we
2507  			 * have reloc_root actually set.
2508  			 */
2509  			if (!root->reloc_root) {
2510  				ret = -ENOENT;
2511  				goto out;
2512  			}
2513  			root = root->reloc_root;
2514  			node->new_bytenr = root->node->start;
2515  			btrfs_put_root(node->root);
2516  			node->root = btrfs_grab_root(root);
2517  			ASSERT(node->root);
2518  		} else {
2519  			btrfs_err(root->fs_info,
2520  				  "bytenr %llu resolved to a non-shareable root",
2521  				  node->bytenr);
2522  			ret = -EUCLEAN;
2523  			goto out;
2524  		}
2525  		if (!ret)
2526  			update_processed_blocks(rc, node);
2527  	} else {
2528  		ret = do_relocation(trans, rc, node, key, path, 1);
2529  	}
2530  out:
2531  	if (ret || node->level == 0)
2532  		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2533  	return ret;
2534  }
2535  
relocate_cowonly_block(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct tree_block * block,struct btrfs_path * path)2536  static int relocate_cowonly_block(struct btrfs_trans_handle *trans,
2537  				  struct reloc_control *rc, struct tree_block *block,
2538  				  struct btrfs_path *path)
2539  {
2540  	struct btrfs_fs_info *fs_info = trans->fs_info;
2541  	struct btrfs_root *root;
2542  	u64 num_bytes;
2543  	int nr_levels;
2544  	int ret;
2545  
2546  	root = btrfs_get_fs_root(fs_info, block->owner, true);
2547  	if (IS_ERR(root))
2548  		return PTR_ERR(root);
2549  
2550  	nr_levels = max(btrfs_header_level(root->node) - block->level, 0) + 1;
2551  
2552  	num_bytes = fs_info->nodesize * nr_levels;
2553  	ret = refill_metadata_space(trans, rc, num_bytes);
2554  	if (ret) {
2555  		btrfs_put_root(root);
2556  		return ret;
2557  	}
2558  	path->lowest_level = block->level;
2559  	if (root == root->fs_info->chunk_root)
2560  		btrfs_reserve_chunk_metadata(trans, false);
2561  
2562  	ret = btrfs_search_slot(trans, root, &block->key, path, 0, 1);
2563  	path->lowest_level = 0;
2564  	btrfs_release_path(path);
2565  
2566  	if (root == root->fs_info->chunk_root)
2567  		btrfs_trans_release_chunk_metadata(trans);
2568  	if (ret > 0)
2569  		ret = 0;
2570  	btrfs_put_root(root);
2571  
2572  	return ret;
2573  }
2574  
2575  /*
2576   * relocate a list of blocks
2577   */
2578  static noinline_for_stack
relocate_tree_blocks(struct btrfs_trans_handle * trans,struct reloc_control * rc,struct rb_root * blocks)2579  int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2580  			 struct reloc_control *rc, struct rb_root *blocks)
2581  {
2582  	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2583  	struct btrfs_backref_node *node;
2584  	struct btrfs_path *path;
2585  	struct tree_block *block;
2586  	struct tree_block *next;
2587  	int ret = 0;
2588  
2589  	path = btrfs_alloc_path();
2590  	if (!path) {
2591  		ret = -ENOMEM;
2592  		goto out_free_blocks;
2593  	}
2594  
2595  	/* Kick in readahead for tree blocks with missing keys */
2596  	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2597  		if (!block->key_ready)
2598  			btrfs_readahead_tree_block(fs_info, block->bytenr,
2599  						   block->owner, 0,
2600  						   block->level);
2601  	}
2602  
2603  	/* Get first keys */
2604  	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2605  		if (!block->key_ready) {
2606  			ret = get_tree_block_key(fs_info, block);
2607  			if (ret)
2608  				goto out_free_path;
2609  		}
2610  	}
2611  
2612  	/* Do tree relocation */
2613  	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2614  		/*
2615  		 * For COWonly blocks, or the data reloc tree, we only need to
2616  		 * COW down to the block, there's no need to generate a backref
2617  		 * tree.
2618  		 */
2619  		if (block->owner &&
2620  		    (!is_fstree(block->owner) ||
2621  		     block->owner == BTRFS_DATA_RELOC_TREE_OBJECTID)) {
2622  			ret = relocate_cowonly_block(trans, rc, block, path);
2623  			if (ret)
2624  				break;
2625  			continue;
2626  		}
2627  
2628  		node = build_backref_tree(trans, rc, &block->key,
2629  					  block->level, block->bytenr);
2630  		if (IS_ERR(node)) {
2631  			ret = PTR_ERR(node);
2632  			goto out;
2633  		}
2634  
2635  		ret = relocate_tree_block(trans, rc, node, &block->key,
2636  					  path);
2637  		if (ret < 0)
2638  			break;
2639  	}
2640  out:
2641  	ret = finish_pending_nodes(trans, rc, path, ret);
2642  
2643  out_free_path:
2644  	btrfs_free_path(path);
2645  out_free_blocks:
2646  	free_block_list(blocks);
2647  	return ret;
2648  }
2649  
prealloc_file_extent_cluster(struct reloc_control * rc)2650  static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
2651  {
2652  	const struct file_extent_cluster *cluster = &rc->cluster;
2653  	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2654  	u64 alloc_hint = 0;
2655  	u64 start;
2656  	u64 end;
2657  	u64 offset = inode->reloc_block_group_start;
2658  	u64 num_bytes;
2659  	int nr;
2660  	int ret = 0;
2661  	u64 i_size = i_size_read(&inode->vfs_inode);
2662  	u64 prealloc_start = cluster->start - offset;
2663  	u64 prealloc_end = cluster->end - offset;
2664  	u64 cur_offset = prealloc_start;
2665  
2666  	/*
2667  	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2668  	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2669  	 * btrfs_do_readpage() call of previously relocated file cluster.
2670  	 *
2671  	 * If the current cluster starts in the above range, btrfs_do_readpage()
2672  	 * will skip the read, and relocate_one_folio() will later writeback
2673  	 * the padding zeros as new data, causing data corruption.
2674  	 *
2675  	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2676  	 */
2677  	if (!PAGE_ALIGNED(i_size)) {
2678  		struct address_space *mapping = inode->vfs_inode.i_mapping;
2679  		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2680  		const u32 sectorsize = fs_info->sectorsize;
2681  		struct folio *folio;
2682  
2683  		ASSERT(sectorsize < PAGE_SIZE);
2684  		ASSERT(IS_ALIGNED(i_size, sectorsize));
2685  
2686  		/*
2687  		 * Subpage can't handle page with DIRTY but without UPTODATE
2688  		 * bit as it can lead to the following deadlock:
2689  		 *
2690  		 * btrfs_read_folio()
2691  		 * | Page already *locked*
2692  		 * |- btrfs_lock_and_flush_ordered_range()
2693  		 *    |- btrfs_start_ordered_extent()
2694  		 *       |- extent_write_cache_pages()
2695  		 *          |- lock_page()
2696  		 *             We try to lock the page we already hold.
2697  		 *
2698  		 * Here we just writeback the whole data reloc inode, so that
2699  		 * we will be ensured to have no dirty range in the page, and
2700  		 * are safe to clear the uptodate bits.
2701  		 *
2702  		 * This shouldn't cause too much overhead, as we need to write
2703  		 * the data back anyway.
2704  		 */
2705  		ret = filemap_write_and_wait(mapping);
2706  		if (ret < 0)
2707  			return ret;
2708  
2709  		clear_extent_bits(&inode->io_tree, i_size,
2710  				  round_up(i_size, PAGE_SIZE) - 1,
2711  				  EXTENT_UPTODATE);
2712  		folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
2713  		/*
2714  		 * If page is freed we don't need to do anything then, as we
2715  		 * will re-read the whole page anyway.
2716  		 */
2717  		if (!IS_ERR(folio)) {
2718  			btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
2719  					round_up(i_size, PAGE_SIZE) - i_size);
2720  			folio_unlock(folio);
2721  			folio_put(folio);
2722  		}
2723  	}
2724  
2725  	BUG_ON(cluster->start != cluster->boundary[0]);
2726  	ret = btrfs_alloc_data_chunk_ondemand(inode,
2727  					      prealloc_end + 1 - prealloc_start);
2728  	if (ret)
2729  		return ret;
2730  
2731  	btrfs_inode_lock(inode, 0);
2732  	for (nr = 0; nr < cluster->nr; nr++) {
2733  		struct extent_state *cached_state = NULL;
2734  
2735  		start = cluster->boundary[nr] - offset;
2736  		if (nr + 1 < cluster->nr)
2737  			end = cluster->boundary[nr + 1] - 1 - offset;
2738  		else
2739  			end = cluster->end - offset;
2740  
2741  		lock_extent(&inode->io_tree, start, end, &cached_state);
2742  		num_bytes = end + 1 - start;
2743  		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2744  						num_bytes, num_bytes,
2745  						end + 1, &alloc_hint);
2746  		cur_offset = end + 1;
2747  		unlock_extent(&inode->io_tree, start, end, &cached_state);
2748  		if (ret)
2749  			break;
2750  	}
2751  	btrfs_inode_unlock(inode, 0);
2752  
2753  	if (cur_offset < prealloc_end)
2754  		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2755  					       prealloc_end + 1 - cur_offset);
2756  	return ret;
2757  }
2758  
setup_relocation_extent_mapping(struct reloc_control * rc)2759  static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
2760  {
2761  	struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
2762  	struct extent_map *em;
2763  	struct extent_state *cached_state = NULL;
2764  	u64 offset = inode->reloc_block_group_start;
2765  	u64 start = rc->cluster.start - offset;
2766  	u64 end = rc->cluster.end - offset;
2767  	int ret = 0;
2768  
2769  	em = alloc_extent_map();
2770  	if (!em)
2771  		return -ENOMEM;
2772  
2773  	em->start = start;
2774  	em->len = end + 1 - start;
2775  	em->disk_bytenr = rc->cluster.start;
2776  	em->disk_num_bytes = em->len;
2777  	em->ram_bytes = em->len;
2778  	em->flags |= EXTENT_FLAG_PINNED;
2779  
2780  	lock_extent(&inode->io_tree, start, end, &cached_state);
2781  	ret = btrfs_replace_extent_map_range(inode, em, false);
2782  	unlock_extent(&inode->io_tree, start, end, &cached_state);
2783  	free_extent_map(em);
2784  
2785  	return ret;
2786  }
2787  
2788  /*
2789   * Allow error injection to test balance/relocation cancellation
2790   */
btrfs_should_cancel_balance(const struct btrfs_fs_info * fs_info)2791  noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2792  {
2793  	return atomic_read(&fs_info->balance_cancel_req) ||
2794  		atomic_read(&fs_info->reloc_cancel_req) ||
2795  		fatal_signal_pending(current);
2796  }
2797  ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2798  
get_cluster_boundary_end(const struct file_extent_cluster * cluster,int cluster_nr)2799  static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2800  				    int cluster_nr)
2801  {
2802  	/* Last extent, use cluster end directly */
2803  	if (cluster_nr >= cluster->nr - 1)
2804  		return cluster->end;
2805  
2806  	/* Use next boundary start*/
2807  	return cluster->boundary[cluster_nr + 1] - 1;
2808  }
2809  
relocate_one_folio(struct reloc_control * rc,struct file_ra_state * ra,int * cluster_nr,unsigned long index)2810  static int relocate_one_folio(struct reloc_control *rc,
2811  			      struct file_ra_state *ra,
2812  			      int *cluster_nr, unsigned long index)
2813  {
2814  	const struct file_extent_cluster *cluster = &rc->cluster;
2815  	struct inode *inode = rc->data_inode;
2816  	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2817  	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2818  	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2819  	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2820  	struct folio *folio;
2821  	u64 folio_start;
2822  	u64 folio_end;
2823  	u64 cur;
2824  	int ret;
2825  	const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
2826  
2827  	ASSERT(index <= last_index);
2828  again:
2829  	folio = filemap_lock_folio(inode->i_mapping, index);
2830  	if (IS_ERR(folio)) {
2831  
2832  		/*
2833  		 * On relocation we're doing readahead on the relocation inode,
2834  		 * but if the filesystem is backed by a RAID stripe tree we can
2835  		 * get ENOENT (e.g. due to preallocated extents not being
2836  		 * mapped in the RST) from the lookup.
2837  		 *
2838  		 * But readahead doesn't handle the error and submits invalid
2839  		 * reads to the device, causing a assertion failures.
2840  		 */
2841  		if (!use_rst)
2842  			page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2843  						  index, last_index + 1 - index);
2844  		folio = __filemap_get_folio(inode->i_mapping, index,
2845  					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
2846  					    mask);
2847  		if (IS_ERR(folio))
2848  			return PTR_ERR(folio);
2849  	}
2850  
2851  	WARN_ON(folio_order(folio));
2852  
2853  	if (folio_test_readahead(folio) && !use_rst)
2854  		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2855  					   folio, last_index + 1 - index);
2856  
2857  	if (!folio_test_uptodate(folio)) {
2858  		btrfs_read_folio(NULL, folio);
2859  		folio_lock(folio);
2860  		if (!folio_test_uptodate(folio)) {
2861  			ret = -EIO;
2862  			goto release_folio;
2863  		}
2864  		if (folio->mapping != inode->i_mapping) {
2865  			folio_unlock(folio);
2866  			folio_put(folio);
2867  			goto again;
2868  		}
2869  	}
2870  
2871  	/*
2872  	 * We could have lost folio private when we dropped the lock to read the
2873  	 * folio above, make sure we set_folio_extent_mapped() here so we have any
2874  	 * of the subpage blocksize stuff we need in place.
2875  	 */
2876  	ret = set_folio_extent_mapped(folio);
2877  	if (ret < 0)
2878  		goto release_folio;
2879  
2880  	folio_start = folio_pos(folio);
2881  	folio_end = folio_start + PAGE_SIZE - 1;
2882  
2883  	/*
2884  	 * Start from the cluster, as for subpage case, the cluster can start
2885  	 * inside the folio.
2886  	 */
2887  	cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
2888  	while (cur <= folio_end) {
2889  		struct extent_state *cached_state = NULL;
2890  		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2891  		u64 extent_end = get_cluster_boundary_end(cluster,
2892  						*cluster_nr) - offset;
2893  		u64 clamped_start = max(folio_start, extent_start);
2894  		u64 clamped_end = min(folio_end, extent_end);
2895  		u32 clamped_len = clamped_end + 1 - clamped_start;
2896  
2897  		/* Reserve metadata for this range */
2898  		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2899  						      clamped_len, clamped_len,
2900  						      false);
2901  		if (ret)
2902  			goto release_folio;
2903  
2904  		/* Mark the range delalloc and dirty for later writeback */
2905  		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2906  			    &cached_state);
2907  		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
2908  						clamped_end, 0, &cached_state);
2909  		if (ret) {
2910  			clear_extent_bit(&BTRFS_I(inode)->io_tree,
2911  					 clamped_start, clamped_end,
2912  					 EXTENT_LOCKED | EXTENT_BOUNDARY,
2913  					 &cached_state);
2914  			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2915  							clamped_len, true);
2916  			btrfs_delalloc_release_extents(BTRFS_I(inode),
2917  						       clamped_len);
2918  			goto release_folio;
2919  		}
2920  		btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
2921  
2922  		/*
2923  		 * Set the boundary if it's inside the folio.
2924  		 * Data relocation requires the destination extents to have the
2925  		 * same size as the source.
2926  		 * EXTENT_BOUNDARY bit prevents current extent from being merged
2927  		 * with previous extent.
2928  		 */
2929  		if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
2930  			u64 boundary_start = cluster->boundary[*cluster_nr] -
2931  						offset;
2932  			u64 boundary_end = boundary_start +
2933  					   fs_info->sectorsize - 1;
2934  
2935  			set_extent_bit(&BTRFS_I(inode)->io_tree,
2936  				       boundary_start, boundary_end,
2937  				       EXTENT_BOUNDARY, NULL);
2938  		}
2939  		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
2940  			      &cached_state);
2941  		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
2942  		cur += clamped_len;
2943  
2944  		/* Crossed extent end, go to next extent */
2945  		if (cur >= extent_end) {
2946  			(*cluster_nr)++;
2947  			/* Just finished the last extent of the cluster, exit. */
2948  			if (*cluster_nr >= cluster->nr)
2949  				break;
2950  		}
2951  	}
2952  	folio_unlock(folio);
2953  	folio_put(folio);
2954  
2955  	balance_dirty_pages_ratelimited(inode->i_mapping);
2956  	btrfs_throttle(fs_info);
2957  	if (btrfs_should_cancel_balance(fs_info))
2958  		ret = -ECANCELED;
2959  	return ret;
2960  
2961  release_folio:
2962  	folio_unlock(folio);
2963  	folio_put(folio);
2964  	return ret;
2965  }
2966  
relocate_file_extent_cluster(struct reloc_control * rc)2967  static int relocate_file_extent_cluster(struct reloc_control *rc)
2968  {
2969  	struct inode *inode = rc->data_inode;
2970  	const struct file_extent_cluster *cluster = &rc->cluster;
2971  	u64 offset = BTRFS_I(inode)->reloc_block_group_start;
2972  	unsigned long index;
2973  	unsigned long last_index;
2974  	struct file_ra_state *ra;
2975  	int cluster_nr = 0;
2976  	int ret = 0;
2977  
2978  	if (!cluster->nr)
2979  		return 0;
2980  
2981  	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2982  	if (!ra)
2983  		return -ENOMEM;
2984  
2985  	ret = prealloc_file_extent_cluster(rc);
2986  	if (ret)
2987  		goto out;
2988  
2989  	file_ra_state_init(ra, inode->i_mapping);
2990  
2991  	ret = setup_relocation_extent_mapping(rc);
2992  	if (ret)
2993  		goto out;
2994  
2995  	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2996  	for (index = (cluster->start - offset) >> PAGE_SHIFT;
2997  	     index <= last_index && !ret; index++)
2998  		ret = relocate_one_folio(rc, ra, &cluster_nr, index);
2999  	if (ret == 0)
3000  		WARN_ON(cluster_nr != cluster->nr);
3001  out:
3002  	kfree(ra);
3003  	return ret;
3004  }
3005  
relocate_data_extent(struct reloc_control * rc,const struct btrfs_key * extent_key)3006  static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
3007  					   const struct btrfs_key *extent_key)
3008  {
3009  	struct inode *inode = rc->data_inode;
3010  	struct file_extent_cluster *cluster = &rc->cluster;
3011  	int ret;
3012  	struct btrfs_root *root = BTRFS_I(inode)->root;
3013  
3014  	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3015  		ret = relocate_file_extent_cluster(rc);
3016  		if (ret)
3017  			return ret;
3018  		cluster->nr = 0;
3019  	}
3020  
3021  	/*
3022  	 * Under simple quotas, we set root->relocation_src_root when we find
3023  	 * the extent. If adjacent extents have different owners, we can't merge
3024  	 * them while relocating. Handle this by storing the owning root that
3025  	 * started a cluster and if we see an extent from a different root break
3026  	 * cluster formation (just like the above case of non-adjacent extents).
3027  	 *
3028  	 * Without simple quotas, relocation_src_root is always 0, so we should
3029  	 * never see a mismatch, and it should have no effect on relocation
3030  	 * clusters.
3031  	 */
3032  	if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3033  		u64 tmp = root->relocation_src_root;
3034  
3035  		/*
3036  		 * root->relocation_src_root is the state that actually affects
3037  		 * the preallocation we do here, so set it to the root owning
3038  		 * the cluster we need to relocate.
3039  		 */
3040  		root->relocation_src_root = cluster->owning_root;
3041  		ret = relocate_file_extent_cluster(rc);
3042  		if (ret)
3043  			return ret;
3044  		cluster->nr = 0;
3045  		/* And reset it back for the current extent's owning root. */
3046  		root->relocation_src_root = tmp;
3047  	}
3048  
3049  	if (!cluster->nr) {
3050  		cluster->start = extent_key->objectid;
3051  		cluster->owning_root = root->relocation_src_root;
3052  	}
3053  	else
3054  		BUG_ON(cluster->nr >= MAX_EXTENTS);
3055  	cluster->end = extent_key->objectid + extent_key->offset - 1;
3056  	cluster->boundary[cluster->nr] = extent_key->objectid;
3057  	cluster->nr++;
3058  
3059  	if (cluster->nr >= MAX_EXTENTS) {
3060  		ret = relocate_file_extent_cluster(rc);
3061  		if (ret)
3062  			return ret;
3063  		cluster->nr = 0;
3064  	}
3065  	return 0;
3066  }
3067  
3068  /*
3069   * helper to add a tree block to the list.
3070   * the major work is getting the generation and level of the block
3071   */
add_tree_block(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3072  static int add_tree_block(struct reloc_control *rc,
3073  			  const struct btrfs_key *extent_key,
3074  			  struct btrfs_path *path,
3075  			  struct rb_root *blocks)
3076  {
3077  	struct extent_buffer *eb;
3078  	struct btrfs_extent_item *ei;
3079  	struct btrfs_tree_block_info *bi;
3080  	struct tree_block *block;
3081  	struct rb_node *rb_node;
3082  	u32 item_size;
3083  	int level = -1;
3084  	u64 generation;
3085  	u64 owner = 0;
3086  
3087  	eb =  path->nodes[0];
3088  	item_size = btrfs_item_size(eb, path->slots[0]);
3089  
3090  	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3091  	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3092  		unsigned long ptr = 0, end;
3093  
3094  		ei = btrfs_item_ptr(eb, path->slots[0],
3095  				struct btrfs_extent_item);
3096  		end = (unsigned long)ei + item_size;
3097  		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3098  			bi = (struct btrfs_tree_block_info *)(ei + 1);
3099  			level = btrfs_tree_block_level(eb, bi);
3100  			ptr = (unsigned long)(bi + 1);
3101  		} else {
3102  			level = (int)extent_key->offset;
3103  			ptr = (unsigned long)(ei + 1);
3104  		}
3105  		generation = btrfs_extent_generation(eb, ei);
3106  
3107  		/*
3108  		 * We're reading random blocks without knowing their owner ahead
3109  		 * of time.  This is ok most of the time, as all reloc roots and
3110  		 * fs roots have the same lock type.  However normal trees do
3111  		 * not, and the only way to know ahead of time is to read the
3112  		 * inline ref offset.  We know it's an fs root if
3113  		 *
3114  		 * 1. There's more than one ref.
3115  		 * 2. There's a SHARED_DATA_REF_KEY set.
3116  		 * 3. FULL_BACKREF is set on the flags.
3117  		 *
3118  		 * Otherwise it's safe to assume that the ref offset == the
3119  		 * owner of this block, so we can use that when calling
3120  		 * read_tree_block.
3121  		 */
3122  		if (btrfs_extent_refs(eb, ei) == 1 &&
3123  		    !(btrfs_extent_flags(eb, ei) &
3124  		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3125  		    ptr < end) {
3126  			struct btrfs_extent_inline_ref *iref;
3127  			int type;
3128  
3129  			iref = (struct btrfs_extent_inline_ref *)ptr;
3130  			type = btrfs_get_extent_inline_ref_type(eb, iref,
3131  							BTRFS_REF_TYPE_BLOCK);
3132  			if (type == BTRFS_REF_TYPE_INVALID)
3133  				return -EINVAL;
3134  			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3135  				owner = btrfs_extent_inline_ref_offset(eb, iref);
3136  		}
3137  	} else {
3138  		btrfs_print_leaf(eb);
3139  		btrfs_err(rc->block_group->fs_info,
3140  			  "unrecognized tree backref at tree block %llu slot %u",
3141  			  eb->start, path->slots[0]);
3142  		btrfs_release_path(path);
3143  		return -EUCLEAN;
3144  	}
3145  
3146  	btrfs_release_path(path);
3147  
3148  	BUG_ON(level == -1);
3149  
3150  	block = kmalloc(sizeof(*block), GFP_NOFS);
3151  	if (!block)
3152  		return -ENOMEM;
3153  
3154  	block->bytenr = extent_key->objectid;
3155  	block->key.objectid = rc->extent_root->fs_info->nodesize;
3156  	block->key.offset = generation;
3157  	block->level = level;
3158  	block->key_ready = false;
3159  	block->owner = owner;
3160  
3161  	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3162  	if (rb_node)
3163  		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3164  				    -EEXIST);
3165  
3166  	return 0;
3167  }
3168  
3169  /*
3170   * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3171   */
__add_tree_block(struct reloc_control * rc,u64 bytenr,u32 blocksize,struct rb_root * blocks)3172  static int __add_tree_block(struct reloc_control *rc,
3173  			    u64 bytenr, u32 blocksize,
3174  			    struct rb_root *blocks)
3175  {
3176  	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3177  	struct btrfs_path *path;
3178  	struct btrfs_key key;
3179  	int ret;
3180  	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3181  
3182  	if (tree_block_processed(bytenr, rc))
3183  		return 0;
3184  
3185  	if (rb_simple_search(blocks, bytenr))
3186  		return 0;
3187  
3188  	path = btrfs_alloc_path();
3189  	if (!path)
3190  		return -ENOMEM;
3191  again:
3192  	key.objectid = bytenr;
3193  	if (skinny) {
3194  		key.type = BTRFS_METADATA_ITEM_KEY;
3195  		key.offset = (u64)-1;
3196  	} else {
3197  		key.type = BTRFS_EXTENT_ITEM_KEY;
3198  		key.offset = blocksize;
3199  	}
3200  
3201  	path->search_commit_root = 1;
3202  	path->skip_locking = 1;
3203  	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3204  	if (ret < 0)
3205  		goto out;
3206  
3207  	if (ret > 0 && skinny) {
3208  		if (path->slots[0]) {
3209  			path->slots[0]--;
3210  			btrfs_item_key_to_cpu(path->nodes[0], &key,
3211  					      path->slots[0]);
3212  			if (key.objectid == bytenr &&
3213  			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3214  			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3215  			      key.offset == blocksize)))
3216  				ret = 0;
3217  		}
3218  
3219  		if (ret) {
3220  			skinny = false;
3221  			btrfs_release_path(path);
3222  			goto again;
3223  		}
3224  	}
3225  	if (ret) {
3226  		ASSERT(ret == 1);
3227  		btrfs_print_leaf(path->nodes[0]);
3228  		btrfs_err(fs_info,
3229  	     "tree block extent item (%llu) is not found in extent tree",
3230  		     bytenr);
3231  		WARN_ON(1);
3232  		ret = -EINVAL;
3233  		goto out;
3234  	}
3235  
3236  	ret = add_tree_block(rc, &key, path, blocks);
3237  out:
3238  	btrfs_free_path(path);
3239  	return ret;
3240  }
3241  
delete_block_group_cache(struct btrfs_block_group * block_group,struct inode * inode,u64 ino)3242  static int delete_block_group_cache(struct btrfs_block_group *block_group,
3243  				    struct inode *inode,
3244  				    u64 ino)
3245  {
3246  	struct btrfs_fs_info *fs_info = block_group->fs_info;
3247  	struct btrfs_root *root = fs_info->tree_root;
3248  	struct btrfs_trans_handle *trans;
3249  	struct btrfs_inode *btrfs_inode;
3250  	int ret = 0;
3251  
3252  	if (inode)
3253  		goto truncate;
3254  
3255  	btrfs_inode = btrfs_iget(ino, root);
3256  	if (IS_ERR(btrfs_inode))
3257  		return -ENOENT;
3258  	inode = &btrfs_inode->vfs_inode;
3259  
3260  truncate:
3261  	ret = btrfs_check_trunc_cache_free_space(fs_info,
3262  						 &fs_info->global_block_rsv);
3263  	if (ret)
3264  		goto out;
3265  
3266  	trans = btrfs_join_transaction(root);
3267  	if (IS_ERR(trans)) {
3268  		ret = PTR_ERR(trans);
3269  		goto out;
3270  	}
3271  
3272  	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3273  
3274  	btrfs_end_transaction(trans);
3275  	btrfs_btree_balance_dirty(fs_info);
3276  out:
3277  	iput(inode);
3278  	return ret;
3279  }
3280  
3281  /*
3282   * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3283   * cache inode, to avoid free space cache data extent blocking data relocation.
3284   */
delete_v1_space_cache(struct extent_buffer * leaf,struct btrfs_block_group * block_group,u64 data_bytenr)3285  static int delete_v1_space_cache(struct extent_buffer *leaf,
3286  				 struct btrfs_block_group *block_group,
3287  				 u64 data_bytenr)
3288  {
3289  	u64 space_cache_ino;
3290  	struct btrfs_file_extent_item *ei;
3291  	struct btrfs_key key;
3292  	bool found = false;
3293  	int i;
3294  	int ret;
3295  
3296  	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3297  		return 0;
3298  
3299  	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3300  		u8 type;
3301  
3302  		btrfs_item_key_to_cpu(leaf, &key, i);
3303  		if (key.type != BTRFS_EXTENT_DATA_KEY)
3304  			continue;
3305  		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3306  		type = btrfs_file_extent_type(leaf, ei);
3307  
3308  		if ((type == BTRFS_FILE_EXTENT_REG ||
3309  		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3310  		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3311  			found = true;
3312  			space_cache_ino = key.objectid;
3313  			break;
3314  		}
3315  	}
3316  	if (!found)
3317  		return -ENOENT;
3318  	ret = delete_block_group_cache(block_group, NULL, space_cache_ino);
3319  	return ret;
3320  }
3321  
3322  /*
3323   * helper to find all tree blocks that reference a given data extent
3324   */
add_data_references(struct reloc_control * rc,const struct btrfs_key * extent_key,struct btrfs_path * path,struct rb_root * blocks)3325  static noinline_for_stack int add_data_references(struct reloc_control *rc,
3326  						  const struct btrfs_key *extent_key,
3327  						  struct btrfs_path *path,
3328  						  struct rb_root *blocks)
3329  {
3330  	struct btrfs_backref_walk_ctx ctx = { 0 };
3331  	struct ulist_iterator leaf_uiter;
3332  	struct ulist_node *ref_node = NULL;
3333  	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3334  	int ret = 0;
3335  
3336  	btrfs_release_path(path);
3337  
3338  	ctx.bytenr = extent_key->objectid;
3339  	ctx.skip_inode_ref_list = true;
3340  	ctx.fs_info = rc->extent_root->fs_info;
3341  
3342  	ret = btrfs_find_all_leafs(&ctx);
3343  	if (ret < 0)
3344  		return ret;
3345  
3346  	ULIST_ITER_INIT(&leaf_uiter);
3347  	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3348  		struct btrfs_tree_parent_check check = { 0 };
3349  		struct extent_buffer *eb;
3350  
3351  		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3352  		if (IS_ERR(eb)) {
3353  			ret = PTR_ERR(eb);
3354  			break;
3355  		}
3356  		ret = delete_v1_space_cache(eb, rc->block_group,
3357  					    extent_key->objectid);
3358  		free_extent_buffer(eb);
3359  		if (ret < 0)
3360  			break;
3361  		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3362  		if (ret < 0)
3363  			break;
3364  	}
3365  	if (ret < 0)
3366  		free_block_list(blocks);
3367  	ulist_free(ctx.refs);
3368  	return ret;
3369  }
3370  
3371  /*
3372   * helper to find next unprocessed extent
3373   */
3374  static noinline_for_stack
find_next_extent(struct reloc_control * rc,struct btrfs_path * path,struct btrfs_key * extent_key)3375  int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3376  		     struct btrfs_key *extent_key)
3377  {
3378  	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3379  	struct btrfs_key key;
3380  	struct extent_buffer *leaf;
3381  	u64 start, end, last;
3382  	int ret;
3383  
3384  	last = rc->block_group->start + rc->block_group->length;
3385  	while (1) {
3386  		bool block_found;
3387  
3388  		cond_resched();
3389  		if (rc->search_start >= last) {
3390  			ret = 1;
3391  			break;
3392  		}
3393  
3394  		key.objectid = rc->search_start;
3395  		key.type = BTRFS_EXTENT_ITEM_KEY;
3396  		key.offset = 0;
3397  
3398  		path->search_commit_root = 1;
3399  		path->skip_locking = 1;
3400  		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3401  					0, 0);
3402  		if (ret < 0)
3403  			break;
3404  next:
3405  		leaf = path->nodes[0];
3406  		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3407  			ret = btrfs_next_leaf(rc->extent_root, path);
3408  			if (ret != 0)
3409  				break;
3410  			leaf = path->nodes[0];
3411  		}
3412  
3413  		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3414  		if (key.objectid >= last) {
3415  			ret = 1;
3416  			break;
3417  		}
3418  
3419  		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3420  		    key.type != BTRFS_METADATA_ITEM_KEY) {
3421  			path->slots[0]++;
3422  			goto next;
3423  		}
3424  
3425  		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3426  		    key.objectid + key.offset <= rc->search_start) {
3427  			path->slots[0]++;
3428  			goto next;
3429  		}
3430  
3431  		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3432  		    key.objectid + fs_info->nodesize <=
3433  		    rc->search_start) {
3434  			path->slots[0]++;
3435  			goto next;
3436  		}
3437  
3438  		block_found = find_first_extent_bit(&rc->processed_blocks,
3439  						    key.objectid, &start, &end,
3440  						    EXTENT_DIRTY, NULL);
3441  
3442  		if (block_found && start <= key.objectid) {
3443  			btrfs_release_path(path);
3444  			rc->search_start = end + 1;
3445  		} else {
3446  			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3447  				rc->search_start = key.objectid + key.offset;
3448  			else
3449  				rc->search_start = key.objectid +
3450  					fs_info->nodesize;
3451  			memcpy(extent_key, &key, sizeof(key));
3452  			return 0;
3453  		}
3454  	}
3455  	btrfs_release_path(path);
3456  	return ret;
3457  }
3458  
set_reloc_control(struct reloc_control * rc)3459  static void set_reloc_control(struct reloc_control *rc)
3460  {
3461  	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3462  
3463  	mutex_lock(&fs_info->reloc_mutex);
3464  	fs_info->reloc_ctl = rc;
3465  	mutex_unlock(&fs_info->reloc_mutex);
3466  }
3467  
unset_reloc_control(struct reloc_control * rc)3468  static void unset_reloc_control(struct reloc_control *rc)
3469  {
3470  	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3471  
3472  	mutex_lock(&fs_info->reloc_mutex);
3473  	fs_info->reloc_ctl = NULL;
3474  	mutex_unlock(&fs_info->reloc_mutex);
3475  }
3476  
3477  static noinline_for_stack
prepare_to_relocate(struct reloc_control * rc)3478  int prepare_to_relocate(struct reloc_control *rc)
3479  {
3480  	struct btrfs_trans_handle *trans;
3481  	int ret;
3482  
3483  	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3484  					      BTRFS_BLOCK_RSV_TEMP);
3485  	if (!rc->block_rsv)
3486  		return -ENOMEM;
3487  
3488  	memset(&rc->cluster, 0, sizeof(rc->cluster));
3489  	rc->search_start = rc->block_group->start;
3490  	rc->extents_found = 0;
3491  	rc->nodes_relocated = 0;
3492  	rc->merging_rsv_size = 0;
3493  	rc->reserved_bytes = 0;
3494  	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3495  			      RELOCATION_RESERVED_NODES;
3496  	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3497  				     rc->block_rsv, rc->block_rsv->size,
3498  				     BTRFS_RESERVE_FLUSH_ALL);
3499  	if (ret)
3500  		return ret;
3501  
3502  	rc->create_reloc_tree = true;
3503  	set_reloc_control(rc);
3504  
3505  	trans = btrfs_join_transaction(rc->extent_root);
3506  	if (IS_ERR(trans)) {
3507  		unset_reloc_control(rc);
3508  		/*
3509  		 * extent tree is not a ref_cow tree and has no reloc_root to
3510  		 * cleanup.  And callers are responsible to free the above
3511  		 * block rsv.
3512  		 */
3513  		return PTR_ERR(trans);
3514  	}
3515  
3516  	ret = btrfs_commit_transaction(trans);
3517  	if (ret)
3518  		unset_reloc_control(rc);
3519  
3520  	return ret;
3521  }
3522  
relocate_block_group(struct reloc_control * rc)3523  static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3524  {
3525  	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3526  	struct rb_root blocks = RB_ROOT;
3527  	struct btrfs_key key;
3528  	struct btrfs_trans_handle *trans = NULL;
3529  	struct btrfs_path *path;
3530  	struct btrfs_extent_item *ei;
3531  	u64 flags;
3532  	int ret;
3533  	int err = 0;
3534  	int progress = 0;
3535  
3536  	path = btrfs_alloc_path();
3537  	if (!path)
3538  		return -ENOMEM;
3539  	path->reada = READA_FORWARD;
3540  
3541  	ret = prepare_to_relocate(rc);
3542  	if (ret) {
3543  		err = ret;
3544  		goto out_free;
3545  	}
3546  
3547  	while (1) {
3548  		rc->reserved_bytes = 0;
3549  		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3550  					     rc->block_rsv->size,
3551  					     BTRFS_RESERVE_FLUSH_ALL);
3552  		if (ret) {
3553  			err = ret;
3554  			break;
3555  		}
3556  		progress++;
3557  		trans = btrfs_start_transaction(rc->extent_root, 0);
3558  		if (IS_ERR(trans)) {
3559  			err = PTR_ERR(trans);
3560  			trans = NULL;
3561  			break;
3562  		}
3563  restart:
3564  		if (rc->backref_cache.last_trans != trans->transid)
3565  			btrfs_backref_release_cache(&rc->backref_cache);
3566  		rc->backref_cache.last_trans = trans->transid;
3567  
3568  		ret = find_next_extent(rc, path, &key);
3569  		if (ret < 0)
3570  			err = ret;
3571  		if (ret != 0)
3572  			break;
3573  
3574  		rc->extents_found++;
3575  
3576  		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3577  				    struct btrfs_extent_item);
3578  		flags = btrfs_extent_flags(path->nodes[0], ei);
3579  
3580  		/*
3581  		 * If we are relocating a simple quota owned extent item, we
3582  		 * need to note the owner on the reloc data root so that when
3583  		 * we allocate the replacement item, we can attribute it to the
3584  		 * correct eventual owner (rather than the reloc data root).
3585  		 */
3586  		if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3587  			struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3588  			u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3589  								 path->nodes[0],
3590  								 path->slots[0]);
3591  
3592  			root->relocation_src_root = owning_root_id;
3593  		}
3594  
3595  		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3596  			ret = add_tree_block(rc, &key, path, &blocks);
3597  		} else if (rc->stage == UPDATE_DATA_PTRS &&
3598  			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3599  			ret = add_data_references(rc, &key, path, &blocks);
3600  		} else {
3601  			btrfs_release_path(path);
3602  			ret = 0;
3603  		}
3604  		if (ret < 0) {
3605  			err = ret;
3606  			break;
3607  		}
3608  
3609  		if (!RB_EMPTY_ROOT(&blocks)) {
3610  			ret = relocate_tree_blocks(trans, rc, &blocks);
3611  			if (ret < 0) {
3612  				if (ret != -EAGAIN) {
3613  					err = ret;
3614  					break;
3615  				}
3616  				rc->extents_found--;
3617  				rc->search_start = key.objectid;
3618  			}
3619  		}
3620  
3621  		btrfs_end_transaction_throttle(trans);
3622  		btrfs_btree_balance_dirty(fs_info);
3623  		trans = NULL;
3624  
3625  		if (rc->stage == MOVE_DATA_EXTENTS &&
3626  		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3627  			rc->found_file_extent = true;
3628  			ret = relocate_data_extent(rc, &key);
3629  			if (ret < 0) {
3630  				err = ret;
3631  				break;
3632  			}
3633  		}
3634  		if (btrfs_should_cancel_balance(fs_info)) {
3635  			err = -ECANCELED;
3636  			break;
3637  		}
3638  	}
3639  	if (trans && progress && err == -ENOSPC) {
3640  		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3641  		if (ret == 1) {
3642  			err = 0;
3643  			progress = 0;
3644  			goto restart;
3645  		}
3646  	}
3647  
3648  	btrfs_release_path(path);
3649  	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3650  
3651  	if (trans) {
3652  		btrfs_end_transaction_throttle(trans);
3653  		btrfs_btree_balance_dirty(fs_info);
3654  	}
3655  
3656  	if (!err) {
3657  		ret = relocate_file_extent_cluster(rc);
3658  		if (ret < 0)
3659  			err = ret;
3660  	}
3661  
3662  	rc->create_reloc_tree = false;
3663  	set_reloc_control(rc);
3664  
3665  	btrfs_backref_release_cache(&rc->backref_cache);
3666  	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3667  
3668  	/*
3669  	 * Even in the case when the relocation is cancelled, we should all go
3670  	 * through prepare_to_merge() and merge_reloc_roots().
3671  	 *
3672  	 * For error (including cancelled balance), prepare_to_merge() will
3673  	 * mark all reloc trees orphan, then queue them for cleanup in
3674  	 * merge_reloc_roots()
3675  	 */
3676  	err = prepare_to_merge(rc, err);
3677  
3678  	merge_reloc_roots(rc);
3679  
3680  	rc->merge_reloc_tree = false;
3681  	unset_reloc_control(rc);
3682  	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3683  
3684  	/* get rid of pinned extents */
3685  	trans = btrfs_join_transaction(rc->extent_root);
3686  	if (IS_ERR(trans)) {
3687  		err = PTR_ERR(trans);
3688  		goto out_free;
3689  	}
3690  	ret = btrfs_commit_transaction(trans);
3691  	if (ret && !err)
3692  		err = ret;
3693  out_free:
3694  	ret = clean_dirty_subvols(rc);
3695  	if (ret < 0 && !err)
3696  		err = ret;
3697  	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3698  	btrfs_free_path(path);
3699  	return err;
3700  }
3701  
__insert_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3702  static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3703  				 struct btrfs_root *root, u64 objectid)
3704  {
3705  	struct btrfs_path *path;
3706  	struct btrfs_inode_item *item;
3707  	struct extent_buffer *leaf;
3708  	int ret;
3709  
3710  	path = btrfs_alloc_path();
3711  	if (!path)
3712  		return -ENOMEM;
3713  
3714  	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3715  	if (ret)
3716  		goto out;
3717  
3718  	leaf = path->nodes[0];
3719  	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3720  	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3721  	btrfs_set_inode_generation(leaf, item, 1);
3722  	btrfs_set_inode_size(leaf, item, 0);
3723  	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3724  	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3725  					  BTRFS_INODE_PREALLOC);
3726  out:
3727  	btrfs_free_path(path);
3728  	return ret;
3729  }
3730  
delete_orphan_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 objectid)3731  static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3732  				struct btrfs_root *root, u64 objectid)
3733  {
3734  	struct btrfs_path *path;
3735  	struct btrfs_key key;
3736  	int ret = 0;
3737  
3738  	path = btrfs_alloc_path();
3739  	if (!path) {
3740  		ret = -ENOMEM;
3741  		goto out;
3742  	}
3743  
3744  	key.objectid = objectid;
3745  	key.type = BTRFS_INODE_ITEM_KEY;
3746  	key.offset = 0;
3747  	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3748  	if (ret) {
3749  		if (ret > 0)
3750  			ret = -ENOENT;
3751  		goto out;
3752  	}
3753  	ret = btrfs_del_item(trans, root, path);
3754  out:
3755  	if (ret)
3756  		btrfs_abort_transaction(trans, ret);
3757  	btrfs_free_path(path);
3758  }
3759  
3760  /*
3761   * helper to create inode for data relocation.
3762   * the inode is in data relocation tree and its link count is 0
3763   */
create_reloc_inode(const struct btrfs_block_group * group)3764  static noinline_for_stack struct inode *create_reloc_inode(
3765  					const struct btrfs_block_group *group)
3766  {
3767  	struct btrfs_fs_info *fs_info = group->fs_info;
3768  	struct btrfs_inode *inode = NULL;
3769  	struct btrfs_trans_handle *trans;
3770  	struct btrfs_root *root;
3771  	u64 objectid;
3772  	int ret = 0;
3773  
3774  	root = btrfs_grab_root(fs_info->data_reloc_root);
3775  	trans = btrfs_start_transaction(root, 6);
3776  	if (IS_ERR(trans)) {
3777  		btrfs_put_root(root);
3778  		return ERR_CAST(trans);
3779  	}
3780  
3781  	ret = btrfs_get_free_objectid(root, &objectid);
3782  	if (ret)
3783  		goto out;
3784  
3785  	ret = __insert_orphan_inode(trans, root, objectid);
3786  	if (ret)
3787  		goto out;
3788  
3789  	inode = btrfs_iget(objectid, root);
3790  	if (IS_ERR(inode)) {
3791  		delete_orphan_inode(trans, root, objectid);
3792  		ret = PTR_ERR(inode);
3793  		inode = NULL;
3794  		goto out;
3795  	}
3796  	inode->reloc_block_group_start = group->start;
3797  
3798  	ret = btrfs_orphan_add(trans, inode);
3799  out:
3800  	btrfs_put_root(root);
3801  	btrfs_end_transaction(trans);
3802  	btrfs_btree_balance_dirty(fs_info);
3803  	if (ret) {
3804  		if (inode)
3805  			iput(&inode->vfs_inode);
3806  		inode = ERR_PTR(ret);
3807  	}
3808  	return &inode->vfs_inode;
3809  }
3810  
3811  /*
3812   * Mark start of chunk relocation that is cancellable. Check if the cancellation
3813   * has been requested meanwhile and don't start in that case.
3814   *
3815   * Return:
3816   *   0             success
3817   *   -EINPROGRESS  operation is already in progress, that's probably a bug
3818   *   -ECANCELED    cancellation request was set before the operation started
3819   */
reloc_chunk_start(struct btrfs_fs_info * fs_info)3820  static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3821  {
3822  	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3823  		/* This should not happen */
3824  		btrfs_err(fs_info, "reloc already running, cannot start");
3825  		return -EINPROGRESS;
3826  	}
3827  
3828  	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3829  		btrfs_info(fs_info, "chunk relocation canceled on start");
3830  		/*
3831  		 * On cancel, clear all requests but let the caller mark
3832  		 * the end after cleanup operations.
3833  		 */
3834  		atomic_set(&fs_info->reloc_cancel_req, 0);
3835  		return -ECANCELED;
3836  	}
3837  	return 0;
3838  }
3839  
3840  /*
3841   * Mark end of chunk relocation that is cancellable and wake any waiters.
3842   */
reloc_chunk_end(struct btrfs_fs_info * fs_info)3843  static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3844  {
3845  	/* Requested after start, clear bit first so any waiters can continue */
3846  	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3847  		btrfs_info(fs_info, "chunk relocation canceled during operation");
3848  	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3849  	atomic_set(&fs_info->reloc_cancel_req, 0);
3850  }
3851  
alloc_reloc_control(struct btrfs_fs_info * fs_info)3852  static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3853  {
3854  	struct reloc_control *rc;
3855  
3856  	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3857  	if (!rc)
3858  		return NULL;
3859  
3860  	INIT_LIST_HEAD(&rc->reloc_roots);
3861  	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3862  	btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
3863  	rc->reloc_root_tree.rb_root = RB_ROOT;
3864  	spin_lock_init(&rc->reloc_root_tree.lock);
3865  	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3866  	return rc;
3867  }
3868  
free_reloc_control(struct reloc_control * rc)3869  static void free_reloc_control(struct reloc_control *rc)
3870  {
3871  	struct mapping_node *node, *tmp;
3872  
3873  	free_reloc_roots(&rc->reloc_roots);
3874  	rbtree_postorder_for_each_entry_safe(node, tmp,
3875  			&rc->reloc_root_tree.rb_root, rb_node)
3876  		kfree(node);
3877  
3878  	kfree(rc);
3879  }
3880  
3881  /*
3882   * Print the block group being relocated
3883   */
describe_relocation(struct btrfs_block_group * block_group)3884  static void describe_relocation(struct btrfs_block_group *block_group)
3885  {
3886  	char buf[128] = {'\0'};
3887  
3888  	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3889  
3890  	btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
3891  		   block_group->start, buf);
3892  }
3893  
stage_to_string(enum reloc_stage stage)3894  static const char *stage_to_string(enum reloc_stage stage)
3895  {
3896  	if (stage == MOVE_DATA_EXTENTS)
3897  		return "move data extents";
3898  	if (stage == UPDATE_DATA_PTRS)
3899  		return "update data pointers";
3900  	return "unknown";
3901  }
3902  
3903  /*
3904   * function to relocate all extents in a block group.
3905   */
btrfs_relocate_block_group(struct btrfs_fs_info * fs_info,u64 group_start)3906  int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3907  {
3908  	struct btrfs_block_group *bg;
3909  	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3910  	struct reloc_control *rc;
3911  	struct inode *inode;
3912  	struct btrfs_path *path;
3913  	int ret;
3914  	int rw = 0;
3915  	int err = 0;
3916  
3917  	/*
3918  	 * This only gets set if we had a half-deleted snapshot on mount.  We
3919  	 * cannot allow relocation to start while we're still trying to clean up
3920  	 * these pending deletions.
3921  	 */
3922  	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3923  	if (ret)
3924  		return ret;
3925  
3926  	/* We may have been woken up by close_ctree, so bail if we're closing. */
3927  	if (btrfs_fs_closing(fs_info))
3928  		return -EINTR;
3929  
3930  	bg = btrfs_lookup_block_group(fs_info, group_start);
3931  	if (!bg)
3932  		return -ENOENT;
3933  
3934  	/*
3935  	 * Relocation of a data block group creates ordered extents.  Without
3936  	 * sb_start_write(), we can freeze the filesystem while unfinished
3937  	 * ordered extents are left. Such ordered extents can cause a deadlock
3938  	 * e.g. when syncfs() is waiting for their completion but they can't
3939  	 * finish because they block when joining a transaction, due to the
3940  	 * fact that the freeze locks are being held in write mode.
3941  	 */
3942  	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3943  		ASSERT(sb_write_started(fs_info->sb));
3944  
3945  	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3946  		btrfs_put_block_group(bg);
3947  		return -ETXTBSY;
3948  	}
3949  
3950  	rc = alloc_reloc_control(fs_info);
3951  	if (!rc) {
3952  		btrfs_put_block_group(bg);
3953  		return -ENOMEM;
3954  	}
3955  
3956  	ret = reloc_chunk_start(fs_info);
3957  	if (ret < 0) {
3958  		err = ret;
3959  		goto out_put_bg;
3960  	}
3961  
3962  	rc->extent_root = extent_root;
3963  	rc->block_group = bg;
3964  
3965  	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3966  	if (ret) {
3967  		err = ret;
3968  		goto out;
3969  	}
3970  	rw = 1;
3971  
3972  	path = btrfs_alloc_path();
3973  	if (!path) {
3974  		err = -ENOMEM;
3975  		goto out;
3976  	}
3977  
3978  	inode = lookup_free_space_inode(rc->block_group, path);
3979  	btrfs_free_path(path);
3980  
3981  	if (!IS_ERR(inode))
3982  		ret = delete_block_group_cache(rc->block_group, inode, 0);
3983  	else
3984  		ret = PTR_ERR(inode);
3985  
3986  	if (ret && ret != -ENOENT) {
3987  		err = ret;
3988  		goto out;
3989  	}
3990  
3991  	rc->data_inode = create_reloc_inode(rc->block_group);
3992  	if (IS_ERR(rc->data_inode)) {
3993  		err = PTR_ERR(rc->data_inode);
3994  		rc->data_inode = NULL;
3995  		goto out;
3996  	}
3997  
3998  	describe_relocation(rc->block_group);
3999  
4000  	btrfs_wait_block_group_reservations(rc->block_group);
4001  	btrfs_wait_nocow_writers(rc->block_group);
4002  	btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
4003  
4004  	ret = btrfs_zone_finish(rc->block_group);
4005  	WARN_ON(ret && ret != -EAGAIN);
4006  
4007  	while (1) {
4008  		enum reloc_stage finishes_stage;
4009  
4010  		mutex_lock(&fs_info->cleaner_mutex);
4011  		ret = relocate_block_group(rc);
4012  		mutex_unlock(&fs_info->cleaner_mutex);
4013  		if (ret < 0)
4014  			err = ret;
4015  
4016  		finishes_stage = rc->stage;
4017  		/*
4018  		 * We may have gotten ENOSPC after we already dirtied some
4019  		 * extents.  If writeout happens while we're relocating a
4020  		 * different block group we could end up hitting the
4021  		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4022  		 * btrfs_reloc_cow_block.  Make sure we write everything out
4023  		 * properly so we don't trip over this problem, and then break
4024  		 * out of the loop if we hit an error.
4025  		 */
4026  		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4027  			ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
4028  						       (u64)-1);
4029  			if (ret)
4030  				err = ret;
4031  			invalidate_mapping_pages(rc->data_inode->i_mapping,
4032  						 0, -1);
4033  			rc->stage = UPDATE_DATA_PTRS;
4034  		}
4035  
4036  		if (err < 0)
4037  			goto out;
4038  
4039  		if (rc->extents_found == 0)
4040  			break;
4041  
4042  		btrfs_info(fs_info, "found %llu extents, stage: %s",
4043  			   rc->extents_found, stage_to_string(finishes_stage));
4044  	}
4045  
4046  	WARN_ON(rc->block_group->pinned > 0);
4047  	WARN_ON(rc->block_group->reserved > 0);
4048  	WARN_ON(rc->block_group->used > 0);
4049  out:
4050  	if (err && rw)
4051  		btrfs_dec_block_group_ro(rc->block_group);
4052  	iput(rc->data_inode);
4053  out_put_bg:
4054  	btrfs_put_block_group(bg);
4055  	reloc_chunk_end(fs_info);
4056  	free_reloc_control(rc);
4057  	return err;
4058  }
4059  
mark_garbage_root(struct btrfs_root * root)4060  static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4061  {
4062  	struct btrfs_fs_info *fs_info = root->fs_info;
4063  	struct btrfs_trans_handle *trans;
4064  	int ret, err;
4065  
4066  	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4067  	if (IS_ERR(trans))
4068  		return PTR_ERR(trans);
4069  
4070  	memset(&root->root_item.drop_progress, 0,
4071  		sizeof(root->root_item.drop_progress));
4072  	btrfs_set_root_drop_level(&root->root_item, 0);
4073  	btrfs_set_root_refs(&root->root_item, 0);
4074  	ret = btrfs_update_root(trans, fs_info->tree_root,
4075  				&root->root_key, &root->root_item);
4076  
4077  	err = btrfs_end_transaction(trans);
4078  	if (err)
4079  		return err;
4080  	return ret;
4081  }
4082  
4083  /*
4084   * recover relocation interrupted by system crash.
4085   *
4086   * this function resumes merging reloc trees with corresponding fs trees.
4087   * this is important for keeping the sharing of tree blocks
4088   */
btrfs_recover_relocation(struct btrfs_fs_info * fs_info)4089  int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4090  {
4091  	LIST_HEAD(reloc_roots);
4092  	struct btrfs_key key;
4093  	struct btrfs_root *fs_root;
4094  	struct btrfs_root *reloc_root;
4095  	struct btrfs_path *path;
4096  	struct extent_buffer *leaf;
4097  	struct reloc_control *rc = NULL;
4098  	struct btrfs_trans_handle *trans;
4099  	int ret2;
4100  	int ret = 0;
4101  
4102  	path = btrfs_alloc_path();
4103  	if (!path)
4104  		return -ENOMEM;
4105  	path->reada = READA_BACK;
4106  
4107  	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4108  	key.type = BTRFS_ROOT_ITEM_KEY;
4109  	key.offset = (u64)-1;
4110  
4111  	while (1) {
4112  		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4113  					path, 0, 0);
4114  		if (ret < 0)
4115  			goto out;
4116  		if (ret > 0) {
4117  			if (path->slots[0] == 0)
4118  				break;
4119  			path->slots[0]--;
4120  		}
4121  		ret = 0;
4122  		leaf = path->nodes[0];
4123  		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4124  		btrfs_release_path(path);
4125  
4126  		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4127  		    key.type != BTRFS_ROOT_ITEM_KEY)
4128  			break;
4129  
4130  		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4131  		if (IS_ERR(reloc_root)) {
4132  			ret = PTR_ERR(reloc_root);
4133  			goto out;
4134  		}
4135  
4136  		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4137  		list_add(&reloc_root->root_list, &reloc_roots);
4138  
4139  		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4140  			fs_root = btrfs_get_fs_root(fs_info,
4141  					reloc_root->root_key.offset, false);
4142  			if (IS_ERR(fs_root)) {
4143  				ret = PTR_ERR(fs_root);
4144  				if (ret != -ENOENT)
4145  					goto out;
4146  				ret = mark_garbage_root(reloc_root);
4147  				if (ret < 0)
4148  					goto out;
4149  				ret = 0;
4150  			} else {
4151  				btrfs_put_root(fs_root);
4152  			}
4153  		}
4154  
4155  		if (key.offset == 0)
4156  			break;
4157  
4158  		key.offset--;
4159  	}
4160  	btrfs_release_path(path);
4161  
4162  	if (list_empty(&reloc_roots))
4163  		goto out;
4164  
4165  	rc = alloc_reloc_control(fs_info);
4166  	if (!rc) {
4167  		ret = -ENOMEM;
4168  		goto out;
4169  	}
4170  
4171  	ret = reloc_chunk_start(fs_info);
4172  	if (ret < 0)
4173  		goto out_end;
4174  
4175  	rc->extent_root = btrfs_extent_root(fs_info, 0);
4176  
4177  	set_reloc_control(rc);
4178  
4179  	trans = btrfs_join_transaction(rc->extent_root);
4180  	if (IS_ERR(trans)) {
4181  		ret = PTR_ERR(trans);
4182  		goto out_unset;
4183  	}
4184  
4185  	rc->merge_reloc_tree = true;
4186  
4187  	while (!list_empty(&reloc_roots)) {
4188  		reloc_root = list_entry(reloc_roots.next,
4189  					struct btrfs_root, root_list);
4190  		list_del(&reloc_root->root_list);
4191  
4192  		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4193  			list_add_tail(&reloc_root->root_list,
4194  				      &rc->reloc_roots);
4195  			continue;
4196  		}
4197  
4198  		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4199  					    false);
4200  		if (IS_ERR(fs_root)) {
4201  			ret = PTR_ERR(fs_root);
4202  			list_add_tail(&reloc_root->root_list, &reloc_roots);
4203  			btrfs_end_transaction(trans);
4204  			goto out_unset;
4205  		}
4206  
4207  		ret = __add_reloc_root(reloc_root);
4208  		ASSERT(ret != -EEXIST);
4209  		if (ret) {
4210  			list_add_tail(&reloc_root->root_list, &reloc_roots);
4211  			btrfs_put_root(fs_root);
4212  			btrfs_end_transaction(trans);
4213  			goto out_unset;
4214  		}
4215  		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4216  		btrfs_put_root(fs_root);
4217  	}
4218  
4219  	ret = btrfs_commit_transaction(trans);
4220  	if (ret)
4221  		goto out_unset;
4222  
4223  	merge_reloc_roots(rc);
4224  
4225  	unset_reloc_control(rc);
4226  
4227  	trans = btrfs_join_transaction(rc->extent_root);
4228  	if (IS_ERR(trans)) {
4229  		ret = PTR_ERR(trans);
4230  		goto out_clean;
4231  	}
4232  	ret = btrfs_commit_transaction(trans);
4233  out_clean:
4234  	ret2 = clean_dirty_subvols(rc);
4235  	if (ret2 < 0 && !ret)
4236  		ret = ret2;
4237  out_unset:
4238  	unset_reloc_control(rc);
4239  out_end:
4240  	reloc_chunk_end(fs_info);
4241  	free_reloc_control(rc);
4242  out:
4243  	free_reloc_roots(&reloc_roots);
4244  
4245  	btrfs_free_path(path);
4246  
4247  	if (ret == 0) {
4248  		/* cleanup orphan inode in data relocation tree */
4249  		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4250  		ASSERT(fs_root);
4251  		ret = btrfs_orphan_cleanup(fs_root);
4252  		btrfs_put_root(fs_root);
4253  	}
4254  	return ret;
4255  }
4256  
4257  /*
4258   * helper to add ordered checksum for data relocation.
4259   *
4260   * cloning checksum properly handles the nodatasum extents.
4261   * it also saves CPU time to re-calculate the checksum.
4262   */
btrfs_reloc_clone_csums(struct btrfs_ordered_extent * ordered)4263  int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4264  {
4265  	struct btrfs_inode *inode = ordered->inode;
4266  	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4267  	u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
4268  	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4269  	LIST_HEAD(list);
4270  	int ret;
4271  
4272  	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4273  				      disk_bytenr + ordered->num_bytes - 1,
4274  				      &list, false);
4275  	if (ret < 0) {
4276  		btrfs_mark_ordered_extent_error(ordered);
4277  		return ret;
4278  	}
4279  
4280  	while (!list_empty(&list)) {
4281  		struct btrfs_ordered_sum *sums =
4282  			list_entry(list.next, struct btrfs_ordered_sum, list);
4283  
4284  		list_del_init(&sums->list);
4285  
4286  		/*
4287  		 * We need to offset the new_bytenr based on where the csum is.
4288  		 * We need to do this because we will read in entire prealloc
4289  		 * extents but we may have written to say the middle of the
4290  		 * prealloc extent, so we need to make sure the csum goes with
4291  		 * the right disk offset.
4292  		 *
4293  		 * We can do this because the data reloc inode refers strictly
4294  		 * to the on disk bytes, so we don't have to worry about
4295  		 * disk_len vs real len like with real inodes since it's all
4296  		 * disk length.
4297  		 */
4298  		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4299  		btrfs_add_ordered_sum(ordered, sums);
4300  	}
4301  
4302  	return 0;
4303  }
4304  
btrfs_reloc_cow_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct extent_buffer * buf,struct extent_buffer * cow)4305  int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4306  			  struct btrfs_root *root,
4307  			  const struct extent_buffer *buf,
4308  			  struct extent_buffer *cow)
4309  {
4310  	struct btrfs_fs_info *fs_info = root->fs_info;
4311  	struct reloc_control *rc;
4312  	struct btrfs_backref_node *node;
4313  	int first_cow = 0;
4314  	int level;
4315  	int ret = 0;
4316  
4317  	rc = fs_info->reloc_ctl;
4318  	if (!rc)
4319  		return 0;
4320  
4321  	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4322  
4323  	level = btrfs_header_level(buf);
4324  	if (btrfs_header_generation(buf) <=
4325  	    btrfs_root_last_snapshot(&root->root_item))
4326  		first_cow = 1;
4327  
4328  	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
4329  		WARN_ON(!first_cow && level == 0);
4330  
4331  		node = rc->backref_cache.path[level];
4332  
4333  		/*
4334  		 * If node->bytenr != buf->start and node->new_bytenr !=
4335  		 * buf->start then we've got the wrong backref node for what we
4336  		 * expected to see here and the cache is incorrect.
4337  		 */
4338  		if (unlikely(node->bytenr != buf->start && node->new_bytenr != buf->start)) {
4339  			btrfs_err(fs_info,
4340  "bytenr %llu was found but our backref cache was expecting %llu or %llu",
4341  				  buf->start, node->bytenr, node->new_bytenr);
4342  			return -EUCLEAN;
4343  		}
4344  
4345  		btrfs_backref_drop_node_buffer(node);
4346  		atomic_inc(&cow->refs);
4347  		node->eb = cow;
4348  		node->new_bytenr = cow->start;
4349  
4350  		if (!node->pending) {
4351  			list_move_tail(&node->list,
4352  				       &rc->backref_cache.pending[level]);
4353  			node->pending = 1;
4354  		}
4355  
4356  		if (first_cow)
4357  			mark_block_processed(rc, node);
4358  
4359  		if (first_cow && level > 0)
4360  			rc->nodes_relocated += buf->len;
4361  	}
4362  
4363  	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4364  		ret = replace_file_extents(trans, rc, root, cow);
4365  	return ret;
4366  }
4367  
4368  /*
4369   * called before creating snapshot. it calculates metadata reservation
4370   * required for relocating tree blocks in the snapshot
4371   */
btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot * pending,u64 * bytes_to_reserve)4372  void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4373  			      u64 *bytes_to_reserve)
4374  {
4375  	struct btrfs_root *root = pending->root;
4376  	struct reloc_control *rc = root->fs_info->reloc_ctl;
4377  
4378  	if (!rc || !have_reloc_root(root))
4379  		return;
4380  
4381  	if (!rc->merge_reloc_tree)
4382  		return;
4383  
4384  	root = root->reloc_root;
4385  	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4386  	/*
4387  	 * relocation is in the stage of merging trees. the space
4388  	 * used by merging a reloc tree is twice the size of
4389  	 * relocated tree nodes in the worst case. half for cowing
4390  	 * the reloc tree, half for cowing the fs tree. the space
4391  	 * used by cowing the reloc tree will be freed after the
4392  	 * tree is dropped. if we create snapshot, cowing the fs
4393  	 * tree may use more space than it frees. so we need
4394  	 * reserve extra space.
4395  	 */
4396  	*bytes_to_reserve += rc->nodes_relocated;
4397  }
4398  
4399  /*
4400   * called after snapshot is created. migrate block reservation
4401   * and create reloc root for the newly created snapshot
4402   *
4403   * This is similar to btrfs_init_reloc_root(), we come out of here with two
4404   * references held on the reloc_root, one for root->reloc_root and one for
4405   * rc->reloc_roots.
4406   */
btrfs_reloc_post_snapshot(struct btrfs_trans_handle * trans,struct btrfs_pending_snapshot * pending)4407  int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4408  			       struct btrfs_pending_snapshot *pending)
4409  {
4410  	struct btrfs_root *root = pending->root;
4411  	struct btrfs_root *reloc_root;
4412  	struct btrfs_root *new_root;
4413  	struct reloc_control *rc = root->fs_info->reloc_ctl;
4414  	int ret;
4415  
4416  	if (!rc || !have_reloc_root(root))
4417  		return 0;
4418  
4419  	rc = root->fs_info->reloc_ctl;
4420  	rc->merging_rsv_size += rc->nodes_relocated;
4421  
4422  	if (rc->merge_reloc_tree) {
4423  		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4424  					      rc->block_rsv,
4425  					      rc->nodes_relocated, true);
4426  		if (ret)
4427  			return ret;
4428  	}
4429  
4430  	new_root = pending->snap;
4431  	reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
4432  	if (IS_ERR(reloc_root))
4433  		return PTR_ERR(reloc_root);
4434  
4435  	ret = __add_reloc_root(reloc_root);
4436  	ASSERT(ret != -EEXIST);
4437  	if (ret) {
4438  		/* Pairs with create_reloc_root */
4439  		btrfs_put_root(reloc_root);
4440  		return ret;
4441  	}
4442  	new_root->reloc_root = btrfs_grab_root(reloc_root);
4443  	return 0;
4444  }
4445  
4446  /*
4447   * Get the current bytenr for the block group which is being relocated.
4448   *
4449   * Return U64_MAX if no running relocation.
4450   */
btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info * fs_info)4451  u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4452  {
4453  	u64 logical = U64_MAX;
4454  
4455  	lockdep_assert_held(&fs_info->reloc_mutex);
4456  
4457  	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4458  		logical = fs_info->reloc_ctl->block_group->start;
4459  	return logical;
4460  }
4461