1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
4 *
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/parser.h>
61
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64
65 #include <linux/swapops.h>
66 #include <linux/balloon_compaction.h>
67 #include <linux/sched/sysctl.h>
68
69 #include "internal.h"
70 #include "swap.h"
71
72 #define CREATE_TRACE_POINTS
73 #include <trace/events/vmscan.h>
74
75 struct scan_control {
76 /* How many pages shrink_list() should reclaim */
77 unsigned long nr_to_reclaim;
78
79 /*
80 * Nodemask of nodes allowed by the caller. If NULL, all nodes
81 * are scanned.
82 */
83 nodemask_t *nodemask;
84
85 /*
86 * The memory cgroup that hit its limit and as a result is the
87 * primary target of this reclaim invocation.
88 */
89 struct mem_cgroup *target_mem_cgroup;
90
91 /*
92 * Scan pressure balancing between anon and file LRUs
93 */
94 unsigned long anon_cost;
95 unsigned long file_cost;
96
97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 int *proactive_swappiness;
99
100 /* Can active folios be deactivated as part of reclaim? */
101 #define DEACTIVATE_ANON 1
102 #define DEACTIVATE_FILE 2
103 unsigned int may_deactivate:2;
104 unsigned int force_deactivate:1;
105 unsigned int skipped_deactivate:1;
106
107 /* Writepage batching in laptop mode; RECLAIM_WRITE */
108 unsigned int may_writepage:1;
109
110 /* Can mapped folios be reclaimed? */
111 unsigned int may_unmap:1;
112
113 /* Can folios be swapped as part of reclaim? */
114 unsigned int may_swap:1;
115
116 /* Not allow cache_trim_mode to be turned on as part of reclaim? */
117 unsigned int no_cache_trim_mode:1;
118
119 /* Has cache_trim_mode failed at least once? */
120 unsigned int cache_trim_mode_failed:1;
121
122 /* Proactive reclaim invoked by userspace */
123 unsigned int proactive:1;
124
125 /*
126 * Cgroup memory below memory.low is protected as long as we
127 * don't threaten to OOM. If any cgroup is reclaimed at
128 * reduced force or passed over entirely due to its memory.low
129 * setting (memcg_low_skipped), and nothing is reclaimed as a
130 * result, then go back for one more cycle that reclaims the protected
131 * memory (memcg_low_reclaim) to avert OOM.
132 */
133 unsigned int memcg_low_reclaim:1;
134 unsigned int memcg_low_skipped:1;
135
136 /* Shared cgroup tree walk failed, rescan the whole tree */
137 unsigned int memcg_full_walk:1;
138
139 unsigned int hibernation_mode:1;
140
141 /* One of the zones is ready for compaction */
142 unsigned int compaction_ready:1;
143
144 /* There is easily reclaimable cold cache in the current node */
145 unsigned int cache_trim_mode:1;
146
147 /* The file folios on the current node are dangerously low */
148 unsigned int file_is_tiny:1;
149
150 /* Always discard instead of demoting to lower tier memory */
151 unsigned int no_demotion:1;
152
153 /* Allocation order */
154 s8 order;
155
156 /* Scan (total_size >> priority) pages at once */
157 s8 priority;
158
159 /* The highest zone to isolate folios for reclaim from */
160 s8 reclaim_idx;
161
162 /* This context's GFP mask */
163 gfp_t gfp_mask;
164
165 /* Incremented by the number of inactive pages that were scanned */
166 unsigned long nr_scanned;
167
168 /* Number of pages freed so far during a call to shrink_zones() */
169 unsigned long nr_reclaimed;
170
171 struct {
172 unsigned int dirty;
173 unsigned int unqueued_dirty;
174 unsigned int congested;
175 unsigned int writeback;
176 unsigned int immediate;
177 unsigned int file_taken;
178 unsigned int taken;
179 } nr;
180
181 /* for recording the reclaimed slab by now */
182 struct reclaim_state reclaim_state;
183 };
184
185 #ifdef ARCH_HAS_PREFETCHW
186 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
187 do { \
188 if ((_folio)->lru.prev != _base) { \
189 struct folio *prev; \
190 \
191 prev = lru_to_folio(&(_folio->lru)); \
192 prefetchw(&prev->_field); \
193 } \
194 } while (0)
195 #else
196 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
197 #endif
198
199 /*
200 * From 0 .. MAX_SWAPPINESS. Higher means more swappy.
201 */
202 int vm_swappiness = 60;
203
204 #ifdef CONFIG_MEMCG
205
206 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
cgroup_reclaim(struct scan_control * sc)207 static bool cgroup_reclaim(struct scan_control *sc)
208 {
209 return sc->target_mem_cgroup;
210 }
211
212 /*
213 * Returns true for reclaim on the root cgroup. This is true for direct
214 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
215 */
root_reclaim(struct scan_control * sc)216 static bool root_reclaim(struct scan_control *sc)
217 {
218 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
219 }
220
221 /**
222 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
223 * @sc: scan_control in question
224 *
225 * The normal page dirty throttling mechanism in balance_dirty_pages() is
226 * completely broken with the legacy memcg and direct stalling in
227 * shrink_folio_list() is used for throttling instead, which lacks all the
228 * niceties such as fairness, adaptive pausing, bandwidth proportional
229 * allocation and configurability.
230 *
231 * This function tests whether the vmscan currently in progress can assume
232 * that the normal dirty throttling mechanism is operational.
233 */
writeback_throttling_sane(struct scan_control * sc)234 static bool writeback_throttling_sane(struct scan_control *sc)
235 {
236 if (!cgroup_reclaim(sc))
237 return true;
238 #ifdef CONFIG_CGROUP_WRITEBACK
239 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
240 return true;
241 #endif
242 return false;
243 }
244
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)245 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
246 {
247 if (sc->proactive && sc->proactive_swappiness)
248 return *sc->proactive_swappiness;
249 return mem_cgroup_swappiness(memcg);
250 }
251 #else
cgroup_reclaim(struct scan_control * sc)252 static bool cgroup_reclaim(struct scan_control *sc)
253 {
254 return false;
255 }
256
root_reclaim(struct scan_control * sc)257 static bool root_reclaim(struct scan_control *sc)
258 {
259 return true;
260 }
261
writeback_throttling_sane(struct scan_control * sc)262 static bool writeback_throttling_sane(struct scan_control *sc)
263 {
264 return true;
265 }
266
sc_swappiness(struct scan_control * sc,struct mem_cgroup * memcg)267 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
268 {
269 return READ_ONCE(vm_swappiness);
270 }
271 #endif
272
273 /* for_each_managed_zone_pgdat - helper macro to iterate over all managed zones in a pgdat up to
274 * and including the specified highidx
275 * @zone: The current zone in the iterator
276 * @pgdat: The pgdat which node_zones are being iterated
277 * @idx: The index variable
278 * @highidx: The index of the highest zone to return
279 *
280 * This macro iterates through all managed zones up to and including the specified highidx.
281 * The zone iterator enters an invalid state after macro call and must be reinitialized
282 * before it can be used again.
283 */
284 #define for_each_managed_zone_pgdat(zone, pgdat, idx, highidx) \
285 for ((idx) = 0, (zone) = (pgdat)->node_zones; \
286 (idx) <= (highidx); \
287 (idx)++, (zone)++) \
288 if (!managed_zone(zone)) \
289 continue; \
290 else
291
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)292 static void set_task_reclaim_state(struct task_struct *task,
293 struct reclaim_state *rs)
294 {
295 /* Check for an overwrite */
296 WARN_ON_ONCE(rs && task->reclaim_state);
297
298 /* Check for the nulling of an already-nulled member */
299 WARN_ON_ONCE(!rs && !task->reclaim_state);
300
301 task->reclaim_state = rs;
302 }
303
304 /*
305 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
306 * scan_control->nr_reclaimed.
307 */
flush_reclaim_state(struct scan_control * sc)308 static void flush_reclaim_state(struct scan_control *sc)
309 {
310 /*
311 * Currently, reclaim_state->reclaimed includes three types of pages
312 * freed outside of vmscan:
313 * (1) Slab pages.
314 * (2) Clean file pages from pruned inodes (on highmem systems).
315 * (3) XFS freed buffer pages.
316 *
317 * For all of these cases, we cannot universally link the pages to a
318 * single memcg. For example, a memcg-aware shrinker can free one object
319 * charged to the target memcg, causing an entire page to be freed.
320 * If we count the entire page as reclaimed from the memcg, we end up
321 * overestimating the reclaimed amount (potentially under-reclaiming).
322 *
323 * Only count such pages for global reclaim to prevent under-reclaiming
324 * from the target memcg; preventing unnecessary retries during memcg
325 * charging and false positives from proactive reclaim.
326 *
327 * For uncommon cases where the freed pages were actually mostly
328 * charged to the target memcg, we end up underestimating the reclaimed
329 * amount. This should be fine. The freed pages will be uncharged
330 * anyway, even if they are not counted here properly, and we will be
331 * able to make forward progress in charging (which is usually in a
332 * retry loop).
333 *
334 * We can go one step further, and report the uncharged objcg pages in
335 * memcg reclaim, to make reporting more accurate and reduce
336 * underestimation, but it's probably not worth the complexity for now.
337 */
338 if (current->reclaim_state && root_reclaim(sc)) {
339 sc->nr_reclaimed += current->reclaim_state->reclaimed;
340 current->reclaim_state->reclaimed = 0;
341 }
342 }
343
can_demote(int nid,struct scan_control * sc,struct mem_cgroup * memcg)344 static bool can_demote(int nid, struct scan_control *sc,
345 struct mem_cgroup *memcg)
346 {
347 int demotion_nid;
348
349 if (!numa_demotion_enabled)
350 return false;
351 if (sc && sc->no_demotion)
352 return false;
353
354 demotion_nid = next_demotion_node(nid);
355 if (demotion_nid == NUMA_NO_NODE)
356 return false;
357
358 /* If demotion node isn't in the cgroup's mems_allowed, fall back */
359 return mem_cgroup_node_allowed(memcg, demotion_nid);
360 }
361
can_reclaim_anon_pages(struct mem_cgroup * memcg,int nid,struct scan_control * sc)362 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
363 int nid,
364 struct scan_control *sc)
365 {
366 if (memcg == NULL) {
367 /*
368 * For non-memcg reclaim, is there
369 * space in any swap device?
370 */
371 if (get_nr_swap_pages() > 0)
372 return true;
373 } else {
374 /* Is the memcg below its swap limit? */
375 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
376 return true;
377 }
378
379 /*
380 * The page can not be swapped.
381 *
382 * Can it be reclaimed from this node via demotion?
383 */
384 return can_demote(nid, sc, memcg);
385 }
386
387 /*
388 * This misses isolated folios which are not accounted for to save counters.
389 * As the data only determines if reclaim or compaction continues, it is
390 * not expected that isolated folios will be a dominating factor.
391 */
zone_reclaimable_pages(struct zone * zone)392 unsigned long zone_reclaimable_pages(struct zone *zone)
393 {
394 unsigned long nr;
395
396 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
397 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
398 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
399 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
400 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
401
402 return nr;
403 }
404
405 /**
406 * lruvec_lru_size - Returns the number of pages on the given LRU list.
407 * @lruvec: lru vector
408 * @lru: lru to use
409 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
410 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)411 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
412 int zone_idx)
413 {
414 unsigned long size = 0;
415 int zid;
416 struct zone *zone;
417
418 for_each_managed_zone_pgdat(zone, lruvec_pgdat(lruvec), zid, zone_idx) {
419 if (!mem_cgroup_disabled())
420 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
421 else
422 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
423 }
424 return size;
425 }
426
drop_slab_node(int nid)427 static unsigned long drop_slab_node(int nid)
428 {
429 unsigned long freed = 0;
430 struct mem_cgroup *memcg = NULL;
431
432 memcg = mem_cgroup_iter(NULL, NULL, NULL);
433 do {
434 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
435 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
436
437 return freed;
438 }
439
drop_slab(void)440 void drop_slab(void)
441 {
442 int nid;
443 int shift = 0;
444 unsigned long freed;
445
446 do {
447 freed = 0;
448 for_each_online_node(nid) {
449 if (fatal_signal_pending(current))
450 return;
451
452 freed += drop_slab_node(nid);
453 }
454 } while ((freed >> shift++) > 1);
455 }
456
457 #define CHECK_RECLAIMER_OFFSET(type) \
458 do { \
459 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
460 PGDEMOTE_##type - PGDEMOTE_KSWAPD); \
461 BUILD_BUG_ON(PGSTEAL_##type - PGSTEAL_KSWAPD != \
462 PGSCAN_##type - PGSCAN_KSWAPD); \
463 } while (0)
464
reclaimer_offset(struct scan_control * sc)465 static int reclaimer_offset(struct scan_control *sc)
466 {
467 CHECK_RECLAIMER_OFFSET(DIRECT);
468 CHECK_RECLAIMER_OFFSET(KHUGEPAGED);
469 CHECK_RECLAIMER_OFFSET(PROACTIVE);
470
471 if (current_is_kswapd())
472 return 0;
473 if (current_is_khugepaged())
474 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
475 if (sc->proactive)
476 return PGSTEAL_PROACTIVE - PGSTEAL_KSWAPD;
477 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
478 }
479
480 /*
481 * We detected a synchronous write error writing a folio out. Probably
482 * -ENOSPC. We need to propagate that into the address_space for a subsequent
483 * fsync(), msync() or close().
484 *
485 * The tricky part is that after writepage we cannot touch the mapping: nothing
486 * prevents it from being freed up. But we have a ref on the folio and once
487 * that folio is locked, the mapping is pinned.
488 *
489 * We're allowed to run sleeping folio_lock() here because we know the caller has
490 * __GFP_FS.
491 */
handle_write_error(struct address_space * mapping,struct folio * folio,int error)492 static void handle_write_error(struct address_space *mapping,
493 struct folio *folio, int error)
494 {
495 folio_lock(folio);
496 if (folio_mapping(folio) == mapping)
497 mapping_set_error(mapping, error);
498 folio_unlock(folio);
499 }
500
skip_throttle_noprogress(pg_data_t * pgdat)501 static bool skip_throttle_noprogress(pg_data_t *pgdat)
502 {
503 int reclaimable = 0, write_pending = 0;
504 int i;
505 struct zone *zone;
506 /*
507 * If kswapd is disabled, reschedule if necessary but do not
508 * throttle as the system is likely near OOM.
509 */
510 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
511 return true;
512
513 /*
514 * If there are a lot of dirty/writeback folios then do not
515 * throttle as throttling will occur when the folios cycle
516 * towards the end of the LRU if still under writeback.
517 */
518 for_each_managed_zone_pgdat(zone, pgdat, i, MAX_NR_ZONES - 1) {
519 reclaimable += zone_reclaimable_pages(zone);
520 write_pending += zone_page_state_snapshot(zone,
521 NR_ZONE_WRITE_PENDING);
522 }
523 if (2 * write_pending <= reclaimable)
524 return true;
525
526 return false;
527 }
528
reclaim_throttle(pg_data_t * pgdat,enum vmscan_throttle_state reason)529 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
530 {
531 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
532 long timeout, ret;
533 DEFINE_WAIT(wait);
534
535 /*
536 * Do not throttle user workers, kthreads other than kswapd or
537 * workqueues. They may be required for reclaim to make
538 * forward progress (e.g. journalling workqueues or kthreads).
539 */
540 if (!current_is_kswapd() &&
541 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
542 cond_resched();
543 return;
544 }
545
546 /*
547 * These figures are pulled out of thin air.
548 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
549 * parallel reclaimers which is a short-lived event so the timeout is
550 * short. Failing to make progress or waiting on writeback are
551 * potentially long-lived events so use a longer timeout. This is shaky
552 * logic as a failure to make progress could be due to anything from
553 * writeback to a slow device to excessive referenced folios at the tail
554 * of the inactive LRU.
555 */
556 switch(reason) {
557 case VMSCAN_THROTTLE_WRITEBACK:
558 timeout = HZ/10;
559
560 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
561 WRITE_ONCE(pgdat->nr_reclaim_start,
562 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
563 }
564
565 break;
566 case VMSCAN_THROTTLE_CONGESTED:
567 fallthrough;
568 case VMSCAN_THROTTLE_NOPROGRESS:
569 if (skip_throttle_noprogress(pgdat)) {
570 cond_resched();
571 return;
572 }
573
574 timeout = 1;
575
576 break;
577 case VMSCAN_THROTTLE_ISOLATED:
578 timeout = HZ/50;
579 break;
580 default:
581 WARN_ON_ONCE(1);
582 timeout = HZ;
583 break;
584 }
585
586 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
587 ret = schedule_timeout(timeout);
588 finish_wait(wqh, &wait);
589
590 if (reason == VMSCAN_THROTTLE_WRITEBACK)
591 atomic_dec(&pgdat->nr_writeback_throttled);
592
593 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
594 jiffies_to_usecs(timeout - ret),
595 reason);
596 }
597
598 /*
599 * Account for folios written if tasks are throttled waiting on dirty
600 * folios to clean. If enough folios have been cleaned since throttling
601 * started then wakeup the throttled tasks.
602 */
__acct_reclaim_writeback(pg_data_t * pgdat,struct folio * folio,int nr_throttled)603 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
604 int nr_throttled)
605 {
606 unsigned long nr_written;
607
608 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
609
610 /*
611 * This is an inaccurate read as the per-cpu deltas may not
612 * be synchronised. However, given that the system is
613 * writeback throttled, it is not worth taking the penalty
614 * of getting an accurate count. At worst, the throttle
615 * timeout guarantees forward progress.
616 */
617 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
618 READ_ONCE(pgdat->nr_reclaim_start);
619
620 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
621 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
622 }
623
624 /* possible outcome of pageout() */
625 typedef enum {
626 /* failed to write folio out, folio is locked */
627 PAGE_KEEP,
628 /* move folio to the active list, folio is locked */
629 PAGE_ACTIVATE,
630 /* folio has been sent to the disk successfully, folio is unlocked */
631 PAGE_SUCCESS,
632 /* folio is clean and locked */
633 PAGE_CLEAN,
634 } pageout_t;
635
writeout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)636 static pageout_t writeout(struct folio *folio, struct address_space *mapping,
637 struct swap_iocb **plug, struct list_head *folio_list)
638 {
639 int res;
640
641 folio_set_reclaim(folio);
642
643 /*
644 * The large shmem folio can be split if CONFIG_THP_SWAP is not enabled
645 * or we failed to allocate contiguous swap entries, in which case
646 * the split out folios get added back to folio_list.
647 */
648 if (shmem_mapping(mapping))
649 res = shmem_writeout(folio, plug, folio_list);
650 else
651 res = swap_writeout(folio, plug);
652
653 if (res < 0)
654 handle_write_error(mapping, folio, res);
655 if (res == AOP_WRITEPAGE_ACTIVATE) {
656 folio_clear_reclaim(folio);
657 return PAGE_ACTIVATE;
658 }
659
660 /* synchronous write? */
661 if (!folio_test_writeback(folio))
662 folio_clear_reclaim(folio);
663
664 trace_mm_vmscan_write_folio(folio);
665 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
666 return PAGE_SUCCESS;
667 }
668
669 /*
670 * pageout is called by shrink_folio_list() for each dirty folio.
671 */
pageout(struct folio * folio,struct address_space * mapping,struct swap_iocb ** plug,struct list_head * folio_list)672 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
673 struct swap_iocb **plug, struct list_head *folio_list)
674 {
675 /*
676 * We no longer attempt to writeback filesystem folios here, other
677 * than tmpfs/shmem. That's taken care of in page-writeback.
678 * If we find a dirty filesystem folio at the end of the LRU list,
679 * typically that means the filesystem is saturating the storage
680 * with contiguous writes and telling it to write a folio here
681 * would only make the situation worse by injecting an element
682 * of random access.
683 *
684 * If the folio is swapcache, write it back even if that would
685 * block, for some throttling. This happens by accident, because
686 * swap_backing_dev_info is bust: it doesn't reflect the
687 * congestion state of the swapdevs. Easy to fix, if needed.
688 *
689 * A freeable shmem or swapcache folio is referenced only by the
690 * caller that isolated the folio and the page cache.
691 */
692 if (folio_ref_count(folio) != 1 + folio_nr_pages(folio) || !mapping)
693 return PAGE_KEEP;
694 if (!shmem_mapping(mapping) && !folio_test_anon(folio))
695 return PAGE_ACTIVATE;
696 if (!folio_clear_dirty_for_io(folio))
697 return PAGE_CLEAN;
698 return writeout(folio, mapping, plug, folio_list);
699 }
700
701 /*
702 * Same as remove_mapping, but if the folio is removed from the mapping, it
703 * gets returned with a refcount of 0.
704 */
__remove_mapping(struct address_space * mapping,struct folio * folio,bool reclaimed,struct mem_cgroup * target_memcg)705 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
706 bool reclaimed, struct mem_cgroup *target_memcg)
707 {
708 int refcount;
709 void *shadow = NULL;
710 struct swap_cluster_info *ci;
711
712 BUG_ON(!folio_test_locked(folio));
713 BUG_ON(mapping != folio_mapping(folio));
714
715 if (folio_test_swapcache(folio)) {
716 ci = swap_cluster_get_and_lock_irq(folio);
717 } else {
718 spin_lock(&mapping->host->i_lock);
719 xa_lock_irq(&mapping->i_pages);
720 }
721
722 /*
723 * The non racy check for a busy folio.
724 *
725 * Must be careful with the order of the tests. When someone has
726 * a ref to the folio, it may be possible that they dirty it then
727 * drop the reference. So if the dirty flag is tested before the
728 * refcount here, then the following race may occur:
729 *
730 * get_user_pages(&page);
731 * [user mapping goes away]
732 * write_to(page);
733 * !folio_test_dirty(folio) [good]
734 * folio_set_dirty(folio);
735 * folio_put(folio);
736 * !refcount(folio) [good, discard it]
737 *
738 * [oops, our write_to data is lost]
739 *
740 * Reversing the order of the tests ensures such a situation cannot
741 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
742 * load is not satisfied before that of folio->_refcount.
743 *
744 * Note that if the dirty flag is always set via folio_mark_dirty,
745 * and thus under the i_pages lock, then this ordering is not required.
746 */
747 refcount = 1 + folio_nr_pages(folio);
748 if (!folio_ref_freeze(folio, refcount))
749 goto cannot_free;
750 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
751 if (unlikely(folio_test_dirty(folio))) {
752 folio_ref_unfreeze(folio, refcount);
753 goto cannot_free;
754 }
755
756 if (folio_test_swapcache(folio)) {
757 swp_entry_t swap = folio->swap;
758
759 if (reclaimed && !mapping_exiting(mapping))
760 shadow = workingset_eviction(folio, target_memcg);
761 __swap_cache_del_folio(ci, folio, swap, shadow);
762 memcg1_swapout(folio, swap);
763 swap_cluster_unlock_irq(ci);
764 put_swap_folio(folio, swap);
765 } else {
766 void (*free_folio)(struct folio *);
767
768 free_folio = mapping->a_ops->free_folio;
769 /*
770 * Remember a shadow entry for reclaimed file cache in
771 * order to detect refaults, thus thrashing, later on.
772 *
773 * But don't store shadows in an address space that is
774 * already exiting. This is not just an optimization,
775 * inode reclaim needs to empty out the radix tree or
776 * the nodes are lost. Don't plant shadows behind its
777 * back.
778 *
779 * We also don't store shadows for DAX mappings because the
780 * only page cache folios found in these are zero pages
781 * covering holes, and because we don't want to mix DAX
782 * exceptional entries and shadow exceptional entries in the
783 * same address_space.
784 */
785 if (reclaimed && folio_is_file_lru(folio) &&
786 !mapping_exiting(mapping) && !dax_mapping(mapping))
787 shadow = workingset_eviction(folio, target_memcg);
788 __filemap_remove_folio(folio, shadow);
789 xa_unlock_irq(&mapping->i_pages);
790 if (mapping_shrinkable(mapping))
791 inode_lru_list_add(mapping->host);
792 spin_unlock(&mapping->host->i_lock);
793
794 if (free_folio)
795 free_folio(folio);
796 }
797
798 return 1;
799
800 cannot_free:
801 if (folio_test_swapcache(folio)) {
802 swap_cluster_unlock_irq(ci);
803 } else {
804 xa_unlock_irq(&mapping->i_pages);
805 spin_unlock(&mapping->host->i_lock);
806 }
807 return 0;
808 }
809
810 /**
811 * remove_mapping() - Attempt to remove a folio from its mapping.
812 * @mapping: The address space.
813 * @folio: The folio to remove.
814 *
815 * If the folio is dirty, under writeback or if someone else has a ref
816 * on it, removal will fail.
817 * Return: The number of pages removed from the mapping. 0 if the folio
818 * could not be removed.
819 * Context: The caller should have a single refcount on the folio and
820 * hold its lock.
821 */
remove_mapping(struct address_space * mapping,struct folio * folio)822 long remove_mapping(struct address_space *mapping, struct folio *folio)
823 {
824 if (__remove_mapping(mapping, folio, false, NULL)) {
825 /*
826 * Unfreezing the refcount with 1 effectively
827 * drops the pagecache ref for us without requiring another
828 * atomic operation.
829 */
830 folio_ref_unfreeze(folio, 1);
831 return folio_nr_pages(folio);
832 }
833 return 0;
834 }
835
836 /**
837 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
838 * @folio: Folio to be returned to an LRU list.
839 *
840 * Add previously isolated @folio to appropriate LRU list.
841 * The folio may still be unevictable for other reasons.
842 *
843 * Context: lru_lock must not be held, interrupts must be enabled.
844 */
folio_putback_lru(struct folio * folio)845 void folio_putback_lru(struct folio *folio)
846 {
847 folio_add_lru(folio);
848 folio_put(folio); /* drop ref from isolate */
849 }
850
851 enum folio_references {
852 FOLIOREF_RECLAIM,
853 FOLIOREF_RECLAIM_CLEAN,
854 FOLIOREF_KEEP,
855 FOLIOREF_ACTIVATE,
856 };
857
858 #ifdef CONFIG_LRU_GEN
859 /*
860 * Only used on a mapped folio in the eviction (rmap walk) path, where promotion
861 * needs to be done by taking the folio off the LRU list and then adding it back
862 * with PG_active set. In contrast, the aging (page table walk) path uses
863 * folio_update_gen().
864 */
lru_gen_set_refs(struct folio * folio)865 static bool lru_gen_set_refs(struct folio *folio)
866 {
867 /* see the comment on LRU_REFS_FLAGS */
868 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
869 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
870 return false;
871 }
872
873 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_workingset));
874 return true;
875 }
876 #else
lru_gen_set_refs(struct folio * folio)877 static bool lru_gen_set_refs(struct folio *folio)
878 {
879 return false;
880 }
881 #endif /* CONFIG_LRU_GEN */
882
folio_check_references(struct folio * folio,struct scan_control * sc)883 static enum folio_references folio_check_references(struct folio *folio,
884 struct scan_control *sc)
885 {
886 int referenced_ptes, referenced_folio;
887 vm_flags_t vm_flags;
888
889 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
890 &vm_flags);
891
892 /*
893 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
894 * Let the folio, now marked Mlocked, be moved to the unevictable list.
895 */
896 if (vm_flags & VM_LOCKED)
897 return FOLIOREF_ACTIVATE;
898
899 /*
900 * There are two cases to consider.
901 * 1) Rmap lock contention: rotate.
902 * 2) Skip the non-shared swapbacked folio mapped solely by
903 * the exiting or OOM-reaped process.
904 */
905 if (referenced_ptes == -1)
906 return FOLIOREF_KEEP;
907
908 if (lru_gen_enabled()) {
909 if (!referenced_ptes)
910 return FOLIOREF_RECLAIM;
911
912 return lru_gen_set_refs(folio) ? FOLIOREF_ACTIVATE : FOLIOREF_KEEP;
913 }
914
915 referenced_folio = folio_test_clear_referenced(folio);
916
917 if (referenced_ptes) {
918 /*
919 * All mapped folios start out with page table
920 * references from the instantiating fault, so we need
921 * to look twice if a mapped file/anon folio is used more
922 * than once.
923 *
924 * Mark it and spare it for another trip around the
925 * inactive list. Another page table reference will
926 * lead to its activation.
927 *
928 * Note: the mark is set for activated folios as well
929 * so that recently deactivated but used folios are
930 * quickly recovered.
931 */
932 folio_set_referenced(folio);
933
934 if (referenced_folio || referenced_ptes > 1)
935 return FOLIOREF_ACTIVATE;
936
937 /*
938 * Activate file-backed executable folios after first usage.
939 */
940 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
941 return FOLIOREF_ACTIVATE;
942
943 return FOLIOREF_KEEP;
944 }
945
946 /* Reclaim if clean, defer dirty folios to writeback */
947 if (referenced_folio && folio_is_file_lru(folio))
948 return FOLIOREF_RECLAIM_CLEAN;
949
950 return FOLIOREF_RECLAIM;
951 }
952
953 /* Check if a folio is dirty or under writeback */
folio_check_dirty_writeback(struct folio * folio,bool * dirty,bool * writeback)954 static void folio_check_dirty_writeback(struct folio *folio,
955 bool *dirty, bool *writeback)
956 {
957 struct address_space *mapping;
958
959 /*
960 * Anonymous folios are not handled by flushers and must be written
961 * from reclaim context. Do not stall reclaim based on them.
962 * MADV_FREE anonymous folios are put into inactive file list too.
963 * They could be mistakenly treated as file lru. So further anon
964 * test is needed.
965 */
966 if (!folio_is_file_lru(folio) ||
967 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
968 *dirty = false;
969 *writeback = false;
970 return;
971 }
972
973 /* By default assume that the folio flags are accurate */
974 *dirty = folio_test_dirty(folio);
975 *writeback = folio_test_writeback(folio);
976
977 /* Verify dirty/writeback state if the filesystem supports it */
978 if (!folio_test_private(folio))
979 return;
980
981 mapping = folio_mapping(folio);
982 if (mapping && mapping->a_ops->is_dirty_writeback)
983 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
984 }
985
alloc_demote_folio(struct folio * src,unsigned long private)986 static struct folio *alloc_demote_folio(struct folio *src,
987 unsigned long private)
988 {
989 struct folio *dst;
990 nodemask_t *allowed_mask;
991 struct migration_target_control *mtc;
992
993 mtc = (struct migration_target_control *)private;
994
995 allowed_mask = mtc->nmask;
996 /*
997 * make sure we allocate from the target node first also trying to
998 * demote or reclaim pages from the target node via kswapd if we are
999 * low on free memory on target node. If we don't do this and if
1000 * we have free memory on the slower(lower) memtier, we would start
1001 * allocating pages from slower(lower) memory tiers without even forcing
1002 * a demotion of cold pages from the target memtier. This can result
1003 * in the kernel placing hot pages in slower(lower) memory tiers.
1004 */
1005 mtc->nmask = NULL;
1006 mtc->gfp_mask |= __GFP_THISNODE;
1007 dst = alloc_migration_target(src, (unsigned long)mtc);
1008 if (dst)
1009 return dst;
1010
1011 mtc->gfp_mask &= ~__GFP_THISNODE;
1012 mtc->nmask = allowed_mask;
1013
1014 return alloc_migration_target(src, (unsigned long)mtc);
1015 }
1016
1017 /*
1018 * Take folios on @demote_folios and attempt to demote them to another node.
1019 * Folios which are not demoted are left on @demote_folios.
1020 */
demote_folio_list(struct list_head * demote_folios,struct pglist_data * pgdat)1021 static unsigned int demote_folio_list(struct list_head *demote_folios,
1022 struct pglist_data *pgdat)
1023 {
1024 int target_nid = next_demotion_node(pgdat->node_id);
1025 unsigned int nr_succeeded;
1026 nodemask_t allowed_mask;
1027
1028 struct migration_target_control mtc = {
1029 /*
1030 * Allocate from 'node', or fail quickly and quietly.
1031 * When this happens, 'page' will likely just be discarded
1032 * instead of migrated.
1033 */
1034 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1035 __GFP_NOMEMALLOC | GFP_NOWAIT,
1036 .nid = target_nid,
1037 .nmask = &allowed_mask,
1038 .reason = MR_DEMOTION,
1039 };
1040
1041 if (list_empty(demote_folios))
1042 return 0;
1043
1044 if (target_nid == NUMA_NO_NODE)
1045 return 0;
1046
1047 node_get_allowed_targets(pgdat, &allowed_mask);
1048
1049 /* Demotion ignores all cpuset and mempolicy settings */
1050 migrate_pages(demote_folios, alloc_demote_folio, NULL,
1051 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1052 &nr_succeeded);
1053
1054 return nr_succeeded;
1055 }
1056
may_enter_fs(struct folio * folio,gfp_t gfp_mask)1057 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1058 {
1059 if (gfp_mask & __GFP_FS)
1060 return true;
1061 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1062 return false;
1063 /*
1064 * We can "enter_fs" for swap-cache with only __GFP_IO
1065 * providing this isn't SWP_FS_OPS.
1066 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1067 * but that will never affect SWP_FS_OPS, so the data_race
1068 * is safe.
1069 */
1070 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1071 }
1072
1073 /*
1074 * shrink_folio_list() returns the number of reclaimed pages
1075 */
shrink_folio_list(struct list_head * folio_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references,struct mem_cgroup * memcg)1076 static unsigned int shrink_folio_list(struct list_head *folio_list,
1077 struct pglist_data *pgdat, struct scan_control *sc,
1078 struct reclaim_stat *stat, bool ignore_references,
1079 struct mem_cgroup *memcg)
1080 {
1081 struct folio_batch free_folios;
1082 LIST_HEAD(ret_folios);
1083 LIST_HEAD(demote_folios);
1084 unsigned int nr_reclaimed = 0, nr_demoted = 0;
1085 unsigned int pgactivate = 0;
1086 bool do_demote_pass;
1087 struct swap_iocb *plug = NULL;
1088
1089 folio_batch_init(&free_folios);
1090 memset(stat, 0, sizeof(*stat));
1091 cond_resched();
1092 do_demote_pass = can_demote(pgdat->node_id, sc, memcg);
1093
1094 retry:
1095 while (!list_empty(folio_list)) {
1096 struct address_space *mapping;
1097 struct folio *folio;
1098 enum folio_references references = FOLIOREF_RECLAIM;
1099 bool dirty, writeback;
1100 unsigned int nr_pages;
1101
1102 cond_resched();
1103
1104 folio = lru_to_folio(folio_list);
1105 list_del(&folio->lru);
1106
1107 if (!folio_trylock(folio))
1108 goto keep;
1109
1110 if (folio_contain_hwpoisoned_page(folio)) {
1111 /*
1112 * unmap_poisoned_folio() can't handle large
1113 * folio, just skip it. memory_failure() will
1114 * handle it if the UCE is triggered again.
1115 */
1116 if (folio_test_large(folio))
1117 goto keep_locked;
1118
1119 unmap_poisoned_folio(folio, folio_pfn(folio), false);
1120 folio_unlock(folio);
1121 folio_put(folio);
1122 continue;
1123 }
1124
1125 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1126
1127 nr_pages = folio_nr_pages(folio);
1128
1129 /* Account the number of base pages */
1130 sc->nr_scanned += nr_pages;
1131
1132 if (unlikely(!folio_evictable(folio)))
1133 goto activate_locked;
1134
1135 if (!sc->may_unmap && folio_mapped(folio))
1136 goto keep_locked;
1137
1138 /*
1139 * The number of dirty pages determines if a node is marked
1140 * reclaim_congested. kswapd will stall and start writing
1141 * folios if the tail of the LRU is all dirty unqueued folios.
1142 */
1143 folio_check_dirty_writeback(folio, &dirty, &writeback);
1144 if (dirty || writeback)
1145 stat->nr_dirty += nr_pages;
1146
1147 if (dirty && !writeback)
1148 stat->nr_unqueued_dirty += nr_pages;
1149
1150 /*
1151 * Treat this folio as congested if folios are cycling
1152 * through the LRU so quickly that the folios marked
1153 * for immediate reclaim are making it to the end of
1154 * the LRU a second time.
1155 */
1156 if (writeback && folio_test_reclaim(folio))
1157 stat->nr_congested += nr_pages;
1158
1159 /*
1160 * If a folio at the tail of the LRU is under writeback, there
1161 * are three cases to consider.
1162 *
1163 * 1) If reclaim is encountering an excessive number
1164 * of folios under writeback and this folio has both
1165 * the writeback and reclaim flags set, then it
1166 * indicates that folios are being queued for I/O but
1167 * are being recycled through the LRU before the I/O
1168 * can complete. Waiting on the folio itself risks an
1169 * indefinite stall if it is impossible to writeback
1170 * the folio due to I/O error or disconnected storage
1171 * so instead note that the LRU is being scanned too
1172 * quickly and the caller can stall after the folio
1173 * list has been processed.
1174 *
1175 * 2) Global or new memcg reclaim encounters a folio that is
1176 * not marked for immediate reclaim, or the caller does not
1177 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1178 * not to fs), or the folio belongs to a mapping where
1179 * waiting on writeback during reclaim may lead to a deadlock.
1180 * In this case mark the folio for immediate reclaim and
1181 * continue scanning.
1182 *
1183 * Require may_enter_fs() because we would wait on fs, which
1184 * may not have submitted I/O yet. And the loop driver might
1185 * enter reclaim, and deadlock if it waits on a folio for
1186 * which it is needed to do the write (loop masks off
1187 * __GFP_IO|__GFP_FS for this reason); but more thought
1188 * would probably show more reasons.
1189 *
1190 * 3) Legacy memcg encounters a folio that already has the
1191 * reclaim flag set. memcg does not have any dirty folio
1192 * throttling so we could easily OOM just because too many
1193 * folios are in writeback and there is nothing else to
1194 * reclaim. Wait for the writeback to complete.
1195 *
1196 * In cases 1) and 2) we activate the folios to get them out of
1197 * the way while we continue scanning for clean folios on the
1198 * inactive list and refilling from the active list. The
1199 * observation here is that waiting for disk writes is more
1200 * expensive than potentially causing reloads down the line.
1201 * Since they're marked for immediate reclaim, they won't put
1202 * memory pressure on the cache working set any longer than it
1203 * takes to write them to disk.
1204 */
1205 if (folio_test_writeback(folio)) {
1206 mapping = folio_mapping(folio);
1207
1208 /* Case 1 above */
1209 if (current_is_kswapd() &&
1210 folio_test_reclaim(folio) &&
1211 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1212 stat->nr_immediate += nr_pages;
1213 goto activate_locked;
1214
1215 /* Case 2 above */
1216 } else if (writeback_throttling_sane(sc) ||
1217 !folio_test_reclaim(folio) ||
1218 !may_enter_fs(folio, sc->gfp_mask) ||
1219 (mapping &&
1220 mapping_writeback_may_deadlock_on_reclaim(mapping))) {
1221 /*
1222 * This is slightly racy -
1223 * folio_end_writeback() might have
1224 * just cleared the reclaim flag, then
1225 * setting the reclaim flag here ends up
1226 * interpreted as the readahead flag - but
1227 * that does not matter enough to care.
1228 * What we do want is for this folio to
1229 * have the reclaim flag set next time
1230 * memcg reclaim reaches the tests above,
1231 * so it will then wait for writeback to
1232 * avoid OOM; and it's also appropriate
1233 * in global reclaim.
1234 */
1235 folio_set_reclaim(folio);
1236 stat->nr_writeback += nr_pages;
1237 goto activate_locked;
1238
1239 /* Case 3 above */
1240 } else {
1241 folio_unlock(folio);
1242 folio_wait_writeback(folio);
1243 /* then go back and try same folio again */
1244 list_add_tail(&folio->lru, folio_list);
1245 continue;
1246 }
1247 }
1248
1249 if (!ignore_references)
1250 references = folio_check_references(folio, sc);
1251
1252 switch (references) {
1253 case FOLIOREF_ACTIVATE:
1254 goto activate_locked;
1255 case FOLIOREF_KEEP:
1256 stat->nr_ref_keep += nr_pages;
1257 goto keep_locked;
1258 case FOLIOREF_RECLAIM:
1259 case FOLIOREF_RECLAIM_CLEAN:
1260 ; /* try to reclaim the folio below */
1261 }
1262
1263 /*
1264 * Before reclaiming the folio, try to relocate
1265 * its contents to another node.
1266 */
1267 if (do_demote_pass &&
1268 (thp_migration_supported() || !folio_test_large(folio))) {
1269 list_add(&folio->lru, &demote_folios);
1270 folio_unlock(folio);
1271 continue;
1272 }
1273
1274 /*
1275 * Anonymous process memory has backing store?
1276 * Try to allocate it some swap space here.
1277 * Lazyfree folio could be freed directly
1278 */
1279 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1280 if (!folio_test_swapcache(folio)) {
1281 if (!(sc->gfp_mask & __GFP_IO))
1282 goto keep_locked;
1283 if (folio_maybe_dma_pinned(folio))
1284 goto keep_locked;
1285 if (folio_test_large(folio)) {
1286 /* cannot split folio, skip it */
1287 if (folio_expected_ref_count(folio) !=
1288 folio_ref_count(folio) - 1)
1289 goto activate_locked;
1290 /*
1291 * Split partially mapped folios right away.
1292 * We can free the unmapped pages without IO.
1293 */
1294 if (data_race(!list_empty(&folio->_deferred_list) &&
1295 folio_test_partially_mapped(folio)) &&
1296 split_folio_to_list(folio, folio_list))
1297 goto activate_locked;
1298 }
1299 if (folio_alloc_swap(folio)) {
1300 int __maybe_unused order = folio_order(folio);
1301
1302 if (!folio_test_large(folio))
1303 goto activate_locked_split;
1304 /* Fallback to swap normal pages */
1305 if (split_folio_to_list(folio, folio_list))
1306 goto activate_locked;
1307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1308 if (nr_pages >= HPAGE_PMD_NR) {
1309 count_memcg_folio_events(folio,
1310 THP_SWPOUT_FALLBACK, 1);
1311 count_vm_event(THP_SWPOUT_FALLBACK);
1312 }
1313 #endif
1314 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1315 if (folio_alloc_swap(folio))
1316 goto activate_locked_split;
1317 }
1318 /*
1319 * Normally the folio will be dirtied in unmap because its
1320 * pte should be dirty. A special case is MADV_FREE page. The
1321 * page's pte could have dirty bit cleared but the folio's
1322 * SwapBacked flag is still set because clearing the dirty bit
1323 * and SwapBacked flag has no lock protected. For such folio,
1324 * unmap will not set dirty bit for it, so folio reclaim will
1325 * not write the folio out. This can cause data corruption when
1326 * the folio is swapped in later. Always setting the dirty flag
1327 * for the folio solves the problem.
1328 */
1329 folio_mark_dirty(folio);
1330 }
1331 }
1332
1333 /*
1334 * If the folio was split above, the tail pages will make
1335 * their own pass through this function and be accounted
1336 * then.
1337 */
1338 if ((nr_pages > 1) && !folio_test_large(folio)) {
1339 sc->nr_scanned -= (nr_pages - 1);
1340 nr_pages = 1;
1341 }
1342
1343 /*
1344 * The folio is mapped into the page tables of one or more
1345 * processes. Try to unmap it here.
1346 */
1347 if (folio_mapped(folio)) {
1348 enum ttu_flags flags = TTU_BATCH_FLUSH;
1349 bool was_swapbacked = folio_test_swapbacked(folio);
1350
1351 if (folio_test_pmd_mappable(folio))
1352 flags |= TTU_SPLIT_HUGE_PMD;
1353 /*
1354 * Without TTU_SYNC, try_to_unmap will only begin to
1355 * hold PTL from the first present PTE within a large
1356 * folio. Some initial PTEs might be skipped due to
1357 * races with parallel PTE writes in which PTEs can be
1358 * cleared temporarily before being written new present
1359 * values. This will lead to a large folio is still
1360 * mapped while some subpages have been partially
1361 * unmapped after try_to_unmap; TTU_SYNC helps
1362 * try_to_unmap acquire PTL from the first PTE,
1363 * eliminating the influence of temporary PTE values.
1364 */
1365 if (folio_test_large(folio))
1366 flags |= TTU_SYNC;
1367
1368 try_to_unmap(folio, flags);
1369 if (folio_mapped(folio)) {
1370 stat->nr_unmap_fail += nr_pages;
1371 if (!was_swapbacked &&
1372 folio_test_swapbacked(folio))
1373 stat->nr_lazyfree_fail += nr_pages;
1374 goto activate_locked;
1375 }
1376 }
1377
1378 /*
1379 * Folio is unmapped now so it cannot be newly pinned anymore.
1380 * No point in trying to reclaim folio if it is pinned.
1381 * Furthermore we don't want to reclaim underlying fs metadata
1382 * if the folio is pinned and thus potentially modified by the
1383 * pinning process as that may upset the filesystem.
1384 */
1385 if (folio_maybe_dma_pinned(folio))
1386 goto activate_locked;
1387
1388 mapping = folio_mapping(folio);
1389 if (folio_test_dirty(folio)) {
1390 if (folio_is_file_lru(folio)) {
1391 /*
1392 * Immediately reclaim when written back.
1393 * Similar in principle to folio_deactivate()
1394 * except we already have the folio isolated
1395 * and know it's dirty
1396 */
1397 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1398 nr_pages);
1399 if (!folio_test_reclaim(folio))
1400 folio_set_reclaim(folio);
1401
1402 goto activate_locked;
1403 }
1404
1405 if (references == FOLIOREF_RECLAIM_CLEAN)
1406 goto keep_locked;
1407 if (!may_enter_fs(folio, sc->gfp_mask))
1408 goto keep_locked;
1409 if (!sc->may_writepage)
1410 goto keep_locked;
1411
1412 /*
1413 * Folio is dirty. Flush the TLB if a writable entry
1414 * potentially exists to avoid CPU writes after I/O
1415 * starts and then write it out here.
1416 */
1417 try_to_unmap_flush_dirty();
1418 switch (pageout(folio, mapping, &plug, folio_list)) {
1419 case PAGE_KEEP:
1420 goto keep_locked;
1421 case PAGE_ACTIVATE:
1422 /*
1423 * If shmem folio is split when writeback to swap,
1424 * the tail pages will make their own pass through
1425 * this function and be accounted then.
1426 */
1427 if (nr_pages > 1 && !folio_test_large(folio)) {
1428 sc->nr_scanned -= (nr_pages - 1);
1429 nr_pages = 1;
1430 }
1431 goto activate_locked;
1432 case PAGE_SUCCESS:
1433 if (nr_pages > 1 && !folio_test_large(folio)) {
1434 sc->nr_scanned -= (nr_pages - 1);
1435 nr_pages = 1;
1436 }
1437 stat->nr_pageout += nr_pages;
1438
1439 if (folio_test_writeback(folio))
1440 goto keep;
1441 if (folio_test_dirty(folio))
1442 goto keep;
1443
1444 /*
1445 * A synchronous write - probably a ramdisk. Go
1446 * ahead and try to reclaim the folio.
1447 */
1448 if (!folio_trylock(folio))
1449 goto keep;
1450 if (folio_test_dirty(folio) ||
1451 folio_test_writeback(folio))
1452 goto keep_locked;
1453 mapping = folio_mapping(folio);
1454 fallthrough;
1455 case PAGE_CLEAN:
1456 ; /* try to free the folio below */
1457 }
1458 }
1459
1460 /*
1461 * If the folio has buffers, try to free the buffer
1462 * mappings associated with this folio. If we succeed
1463 * we try to free the folio as well.
1464 *
1465 * We do this even if the folio is dirty.
1466 * filemap_release_folio() does not perform I/O, but it
1467 * is possible for a folio to have the dirty flag set,
1468 * but it is actually clean (all its buffers are clean).
1469 * This happens if the buffers were written out directly,
1470 * with submit_bh(). ext3 will do this, as well as
1471 * the blockdev mapping. filemap_release_folio() will
1472 * discover that cleanness and will drop the buffers
1473 * and mark the folio clean - it can be freed.
1474 *
1475 * Rarely, folios can have buffers and no ->mapping.
1476 * These are the folios which were not successfully
1477 * invalidated in truncate_cleanup_folio(). We try to
1478 * drop those buffers here and if that worked, and the
1479 * folio is no longer mapped into process address space
1480 * (refcount == 1) it can be freed. Otherwise, leave
1481 * the folio on the LRU so it is swappable.
1482 */
1483 if (folio_needs_release(folio)) {
1484 if (!filemap_release_folio(folio, sc->gfp_mask))
1485 goto activate_locked;
1486 if (!mapping && folio_ref_count(folio) == 1) {
1487 folio_unlock(folio);
1488 if (folio_put_testzero(folio))
1489 goto free_it;
1490 else {
1491 /*
1492 * rare race with speculative reference.
1493 * the speculative reference will free
1494 * this folio shortly, so we may
1495 * increment nr_reclaimed here (and
1496 * leave it off the LRU).
1497 */
1498 nr_reclaimed += nr_pages;
1499 continue;
1500 }
1501 }
1502 }
1503
1504 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1505 /* follow __remove_mapping for reference */
1506 if (!folio_ref_freeze(folio, 1))
1507 goto keep_locked;
1508 /*
1509 * The folio has only one reference left, which is
1510 * from the isolation. After the caller puts the
1511 * folio back on the lru and drops the reference, the
1512 * folio will be freed anyway. It doesn't matter
1513 * which lru it goes on. So we don't bother checking
1514 * the dirty flag here.
1515 */
1516 count_vm_events(PGLAZYFREED, nr_pages);
1517 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1518 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1519 sc->target_mem_cgroup))
1520 goto keep_locked;
1521
1522 folio_unlock(folio);
1523 free_it:
1524 /*
1525 * Folio may get swapped out as a whole, need to account
1526 * all pages in it.
1527 */
1528 nr_reclaimed += nr_pages;
1529
1530 folio_unqueue_deferred_split(folio);
1531 if (folio_batch_add(&free_folios, folio) == 0) {
1532 mem_cgroup_uncharge_folios(&free_folios);
1533 try_to_unmap_flush();
1534 free_unref_folios(&free_folios);
1535 }
1536 continue;
1537
1538 activate_locked_split:
1539 /*
1540 * The tail pages that are failed to add into swap cache
1541 * reach here. Fixup nr_scanned and nr_pages.
1542 */
1543 if (nr_pages > 1) {
1544 sc->nr_scanned -= (nr_pages - 1);
1545 nr_pages = 1;
1546 }
1547 activate_locked:
1548 /* Not a candidate for swapping, so reclaim swap space. */
1549 if (folio_test_swapcache(folio) &&
1550 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1551 folio_free_swap(folio);
1552 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1553 if (!folio_test_mlocked(folio)) {
1554 int type = folio_is_file_lru(folio);
1555 folio_set_active(folio);
1556 stat->nr_activate[type] += nr_pages;
1557 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1558 }
1559 keep_locked:
1560 folio_unlock(folio);
1561 keep:
1562 list_add(&folio->lru, &ret_folios);
1563 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1564 folio_test_unevictable(folio), folio);
1565 }
1566 /* 'folio_list' is always empty here */
1567
1568 /* Migrate folios selected for demotion */
1569 nr_demoted = demote_folio_list(&demote_folios, pgdat);
1570 nr_reclaimed += nr_demoted;
1571 stat->nr_demoted += nr_demoted;
1572 /* Folios that could not be demoted are still in @demote_folios */
1573 if (!list_empty(&demote_folios)) {
1574 /* Folios which weren't demoted go back on @folio_list */
1575 list_splice_init(&demote_folios, folio_list);
1576
1577 /*
1578 * goto retry to reclaim the undemoted folios in folio_list if
1579 * desired.
1580 *
1581 * Reclaiming directly from top tier nodes is not often desired
1582 * due to it breaking the LRU ordering: in general memory
1583 * should be reclaimed from lower tier nodes and demoted from
1584 * top tier nodes.
1585 *
1586 * However, disabling reclaim from top tier nodes entirely
1587 * would cause ooms in edge scenarios where lower tier memory
1588 * is unreclaimable for whatever reason, eg memory being
1589 * mlocked or too hot to reclaim. We can disable reclaim
1590 * from top tier nodes in proactive reclaim though as that is
1591 * not real memory pressure.
1592 */
1593 if (!sc->proactive) {
1594 do_demote_pass = false;
1595 goto retry;
1596 }
1597 }
1598
1599 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1600
1601 mem_cgroup_uncharge_folios(&free_folios);
1602 try_to_unmap_flush();
1603 free_unref_folios(&free_folios);
1604
1605 list_splice(&ret_folios, folio_list);
1606 count_vm_events(PGACTIVATE, pgactivate);
1607
1608 if (plug)
1609 swap_write_unplug(plug);
1610 return nr_reclaimed;
1611 }
1612
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * folio_list)1613 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1614 struct list_head *folio_list)
1615 {
1616 struct scan_control sc = {
1617 .gfp_mask = GFP_KERNEL,
1618 .may_unmap = 1,
1619 };
1620 struct reclaim_stat stat;
1621 unsigned int nr_reclaimed;
1622 struct folio *folio, *next;
1623 LIST_HEAD(clean_folios);
1624 unsigned int noreclaim_flag;
1625
1626 list_for_each_entry_safe(folio, next, folio_list, lru) {
1627 /* TODO: these pages should not even appear in this list. */
1628 if (page_has_movable_ops(&folio->page))
1629 continue;
1630 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1631 !folio_test_dirty(folio) && !folio_test_unevictable(folio)) {
1632 folio_clear_active(folio);
1633 list_move(&folio->lru, &clean_folios);
1634 }
1635 }
1636
1637 /*
1638 * We should be safe here since we are only dealing with file pages and
1639 * we are not kswapd and therefore cannot write dirty file pages. But
1640 * call memalloc_noreclaim_save() anyway, just in case these conditions
1641 * change in the future.
1642 */
1643 noreclaim_flag = memalloc_noreclaim_save();
1644 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1645 &stat, true, NULL);
1646 memalloc_noreclaim_restore(noreclaim_flag);
1647
1648 list_splice(&clean_folios, folio_list);
1649 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1650 -(long)nr_reclaimed);
1651 /*
1652 * Since lazyfree pages are isolated from file LRU from the beginning,
1653 * they will rotate back to anonymous LRU in the end if it failed to
1654 * discard so isolated count will be mismatched.
1655 * Compensate the isolated count for both LRU lists.
1656 */
1657 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1658 stat.nr_lazyfree_fail);
1659 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1660 -(long)stat.nr_lazyfree_fail);
1661 return nr_reclaimed;
1662 }
1663
1664 /*
1665 * Update LRU sizes after isolating pages. The LRU size updates must
1666 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1667 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1668 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1669 enum lru_list lru, unsigned long *nr_zone_taken)
1670 {
1671 int zid;
1672
1673 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1674 if (!nr_zone_taken[zid])
1675 continue;
1676
1677 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1678 }
1679
1680 }
1681
1682 /*
1683 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1684 *
1685 * lruvec->lru_lock is heavily contended. Some of the functions that
1686 * shrink the lists perform better by taking out a batch of pages
1687 * and working on them outside the LRU lock.
1688 *
1689 * For pagecache intensive workloads, this function is the hottest
1690 * spot in the kernel (apart from copy_*_user functions).
1691 *
1692 * Lru_lock must be held before calling this function.
1693 *
1694 * @nr_to_scan: The number of eligible pages to look through on the list.
1695 * @lruvec: The LRU vector to pull pages from.
1696 * @dst: The temp list to put pages on to.
1697 * @nr_scanned: The number of pages that were scanned.
1698 * @sc: The scan_control struct for this reclaim session
1699 * @lru: LRU list id for isolating
1700 *
1701 * returns how many pages were moved onto *@dst.
1702 */
isolate_lru_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1703 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1704 struct lruvec *lruvec, struct list_head *dst,
1705 unsigned long *nr_scanned, struct scan_control *sc,
1706 enum lru_list lru)
1707 {
1708 struct list_head *src = &lruvec->lists[lru];
1709 unsigned long nr_taken = 0;
1710 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1711 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1712 unsigned long skipped = 0, total_scan = 0, scan = 0;
1713 unsigned long nr_pages;
1714 unsigned long max_nr_skipped = 0;
1715 LIST_HEAD(folios_skipped);
1716
1717 while (scan < nr_to_scan && !list_empty(src)) {
1718 struct list_head *move_to = src;
1719 struct folio *folio;
1720
1721 folio = lru_to_folio(src);
1722 prefetchw_prev_lru_folio(folio, src, flags);
1723
1724 nr_pages = folio_nr_pages(folio);
1725 total_scan += nr_pages;
1726
1727 /* Using max_nr_skipped to prevent hard LOCKUP*/
1728 if (max_nr_skipped < SWAP_CLUSTER_MAX_SKIPPED &&
1729 (folio_zonenum(folio) > sc->reclaim_idx)) {
1730 nr_skipped[folio_zonenum(folio)] += nr_pages;
1731 move_to = &folios_skipped;
1732 max_nr_skipped++;
1733 goto move;
1734 }
1735
1736 /*
1737 * Do not count skipped folios because that makes the function
1738 * return with no isolated folios if the LRU mostly contains
1739 * ineligible folios. This causes the VM to not reclaim any
1740 * folios, triggering a premature OOM.
1741 * Account all pages in a folio.
1742 */
1743 scan += nr_pages;
1744
1745 if (!folio_test_lru(folio))
1746 goto move;
1747 if (!sc->may_unmap && folio_mapped(folio))
1748 goto move;
1749
1750 /*
1751 * Be careful not to clear the lru flag until after we're
1752 * sure the folio is not being freed elsewhere -- the
1753 * folio release code relies on it.
1754 */
1755 if (unlikely(!folio_try_get(folio)))
1756 goto move;
1757
1758 if (!folio_test_clear_lru(folio)) {
1759 /* Another thread is already isolating this folio */
1760 folio_put(folio);
1761 goto move;
1762 }
1763
1764 nr_taken += nr_pages;
1765 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1766 move_to = dst;
1767 move:
1768 list_move(&folio->lru, move_to);
1769 }
1770
1771 /*
1772 * Splice any skipped folios to the start of the LRU list. Note that
1773 * this disrupts the LRU order when reclaiming for lower zones but
1774 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1775 * scanning would soon rescan the same folios to skip and waste lots
1776 * of cpu cycles.
1777 */
1778 if (!list_empty(&folios_skipped)) {
1779 int zid;
1780
1781 list_splice(&folios_skipped, src);
1782 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1783 if (!nr_skipped[zid])
1784 continue;
1785
1786 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1787 skipped += nr_skipped[zid];
1788 }
1789 }
1790 *nr_scanned = total_scan;
1791 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1792 total_scan, skipped, nr_taken, lru);
1793 update_lru_sizes(lruvec, lru, nr_zone_taken);
1794 return nr_taken;
1795 }
1796
1797 /**
1798 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1799 * @folio: Folio to isolate from its LRU list.
1800 *
1801 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1802 * corresponding to whatever LRU list the folio was on.
1803 *
1804 * The folio will have its LRU flag cleared. If it was found on the
1805 * active list, it will have the Active flag set. If it was found on the
1806 * unevictable list, it will have the Unevictable flag set. These flags
1807 * may need to be cleared by the caller before letting the page go.
1808 *
1809 * Context:
1810 *
1811 * (1) Must be called with an elevated refcount on the folio. This is a
1812 * fundamental difference from isolate_lru_folios() (which is called
1813 * without a stable reference).
1814 * (2) The lru_lock must not be held.
1815 * (3) Interrupts must be enabled.
1816 *
1817 * Return: true if the folio was removed from an LRU list.
1818 * false if the folio was not on an LRU list.
1819 */
folio_isolate_lru(struct folio * folio)1820 bool folio_isolate_lru(struct folio *folio)
1821 {
1822 bool ret = false;
1823
1824 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1825
1826 if (folio_test_clear_lru(folio)) {
1827 struct lruvec *lruvec;
1828
1829 folio_get(folio);
1830 lruvec = folio_lruvec_lock_irq(folio);
1831 lruvec_del_folio(lruvec, folio);
1832 unlock_page_lruvec_irq(lruvec);
1833 ret = true;
1834 }
1835
1836 return ret;
1837 }
1838
1839 /*
1840 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1841 * then get rescheduled. When there are massive number of tasks doing page
1842 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1843 * the LRU list will go small and be scanned faster than necessary, leading to
1844 * unnecessary swapping, thrashing and OOM.
1845 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1846 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1847 struct scan_control *sc)
1848 {
1849 unsigned long inactive, isolated;
1850 bool too_many;
1851
1852 if (current_is_kswapd())
1853 return false;
1854
1855 if (!writeback_throttling_sane(sc))
1856 return false;
1857
1858 if (file) {
1859 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1860 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1861 } else {
1862 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1863 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1864 }
1865
1866 /*
1867 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1868 * won't get blocked by normal direct-reclaimers, forming a circular
1869 * deadlock.
1870 */
1871 if (gfp_has_io_fs(sc->gfp_mask))
1872 inactive >>= 3;
1873
1874 too_many = isolated > inactive;
1875
1876 /* Wake up tasks throttled due to too_many_isolated. */
1877 if (!too_many)
1878 wake_throttle_isolated(pgdat);
1879
1880 return too_many;
1881 }
1882
1883 /*
1884 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1885 *
1886 * Returns the number of pages moved to the given lruvec.
1887 */
move_folios_to_lru(struct lruvec * lruvec,struct list_head * list)1888 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1889 struct list_head *list)
1890 {
1891 int nr_pages, nr_moved = 0;
1892 struct folio_batch free_folios;
1893
1894 folio_batch_init(&free_folios);
1895 while (!list_empty(list)) {
1896 struct folio *folio = lru_to_folio(list);
1897
1898 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1899 list_del(&folio->lru);
1900 if (unlikely(!folio_evictable(folio))) {
1901 spin_unlock_irq(&lruvec->lru_lock);
1902 folio_putback_lru(folio);
1903 spin_lock_irq(&lruvec->lru_lock);
1904 continue;
1905 }
1906
1907 /*
1908 * The folio_set_lru needs to be kept here for list integrity.
1909 * Otherwise:
1910 * #0 move_folios_to_lru #1 release_pages
1911 * if (!folio_put_testzero())
1912 * if (folio_put_testzero())
1913 * !lru //skip lru_lock
1914 * folio_set_lru()
1915 * list_add(&folio->lru,)
1916 * list_add(&folio->lru,)
1917 */
1918 folio_set_lru(folio);
1919
1920 if (unlikely(folio_put_testzero(folio))) {
1921 __folio_clear_lru_flags(folio);
1922
1923 folio_unqueue_deferred_split(folio);
1924 if (folio_batch_add(&free_folios, folio) == 0) {
1925 spin_unlock_irq(&lruvec->lru_lock);
1926 mem_cgroup_uncharge_folios(&free_folios);
1927 free_unref_folios(&free_folios);
1928 spin_lock_irq(&lruvec->lru_lock);
1929 }
1930
1931 continue;
1932 }
1933
1934 /*
1935 * All pages were isolated from the same lruvec (and isolation
1936 * inhibits memcg migration).
1937 */
1938 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1939 lruvec_add_folio(lruvec, folio);
1940 nr_pages = folio_nr_pages(folio);
1941 nr_moved += nr_pages;
1942 if (folio_test_active(folio))
1943 workingset_age_nonresident(lruvec, nr_pages);
1944 }
1945
1946 if (free_folios.nr) {
1947 spin_unlock_irq(&lruvec->lru_lock);
1948 mem_cgroup_uncharge_folios(&free_folios);
1949 free_unref_folios(&free_folios);
1950 spin_lock_irq(&lruvec->lru_lock);
1951 }
1952
1953 return nr_moved;
1954 }
1955
1956 /*
1957 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1958 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1959 * we should not throttle. Otherwise it is safe to do so.
1960 */
current_may_throttle(void)1961 static int current_may_throttle(void)
1962 {
1963 return !(current->flags & PF_LOCAL_THROTTLE);
1964 }
1965
1966 /*
1967 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1968 * of reclaimed pages
1969 */
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1970 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1971 struct lruvec *lruvec, struct scan_control *sc,
1972 enum lru_list lru)
1973 {
1974 LIST_HEAD(folio_list);
1975 unsigned long nr_scanned;
1976 unsigned int nr_reclaimed = 0;
1977 unsigned long nr_taken;
1978 struct reclaim_stat stat;
1979 bool file = is_file_lru(lru);
1980 enum vm_event_item item;
1981 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1982 bool stalled = false;
1983
1984 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1985 if (stalled)
1986 return 0;
1987
1988 /* wait a bit for the reclaimer. */
1989 stalled = true;
1990 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1991
1992 /* We are about to die and free our memory. Return now. */
1993 if (fatal_signal_pending(current))
1994 return SWAP_CLUSTER_MAX;
1995 }
1996
1997 lru_add_drain();
1998
1999 spin_lock_irq(&lruvec->lru_lock);
2000
2001 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
2002 &nr_scanned, sc, lru);
2003
2004 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2005 item = PGSCAN_KSWAPD + reclaimer_offset(sc);
2006 if (!cgroup_reclaim(sc))
2007 __count_vm_events(item, nr_scanned);
2008 count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2009 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2010
2011 spin_unlock_irq(&lruvec->lru_lock);
2012
2013 if (nr_taken == 0)
2014 return 0;
2015
2016 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false,
2017 lruvec_memcg(lruvec));
2018
2019 spin_lock_irq(&lruvec->lru_lock);
2020 move_folios_to_lru(lruvec, &folio_list);
2021
2022 mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
2023 stat.nr_demoted);
2024 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2025 item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
2026 if (!cgroup_reclaim(sc))
2027 __count_vm_events(item, nr_reclaimed);
2028 count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2029 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2030
2031 lru_note_cost_unlock_irq(lruvec, file, stat.nr_pageout,
2032 nr_scanned - nr_reclaimed);
2033
2034 /*
2035 * If dirty folios are scanned that are not queued for IO, it
2036 * implies that flushers are not doing their job. This can
2037 * happen when memory pressure pushes dirty folios to the end of
2038 * the LRU before the dirty limits are breached and the dirty
2039 * data has expired. It can also happen when the proportion of
2040 * dirty folios grows not through writes but through memory
2041 * pressure reclaiming all the clean cache. And in some cases,
2042 * the flushers simply cannot keep up with the allocation
2043 * rate. Nudge the flusher threads in case they are asleep.
2044 */
2045 if (stat.nr_unqueued_dirty == nr_taken) {
2046 wakeup_flusher_threads(WB_REASON_VMSCAN);
2047 /*
2048 * For cgroupv1 dirty throttling is achieved by waking up
2049 * the kernel flusher here and later waiting on folios
2050 * which are in writeback to finish (see shrink_folio_list()).
2051 *
2052 * Flusher may not be able to issue writeback quickly
2053 * enough for cgroupv1 writeback throttling to work
2054 * on a large system.
2055 */
2056 if (!writeback_throttling_sane(sc))
2057 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2058 }
2059
2060 sc->nr.dirty += stat.nr_dirty;
2061 sc->nr.congested += stat.nr_congested;
2062 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2063 sc->nr.writeback += stat.nr_writeback;
2064 sc->nr.immediate += stat.nr_immediate;
2065 sc->nr.taken += nr_taken;
2066 if (file)
2067 sc->nr.file_taken += nr_taken;
2068
2069 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2070 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2071 return nr_reclaimed;
2072 }
2073
2074 /*
2075 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2076 *
2077 * We move them the other way if the folio is referenced by one or more
2078 * processes.
2079 *
2080 * If the folios are mostly unmapped, the processing is fast and it is
2081 * appropriate to hold lru_lock across the whole operation. But if
2082 * the folios are mapped, the processing is slow (folio_referenced()), so
2083 * we should drop lru_lock around each folio. It's impossible to balance
2084 * this, so instead we remove the folios from the LRU while processing them.
2085 * It is safe to rely on the active flag against the non-LRU folios in here
2086 * because nobody will play with that bit on a non-LRU folio.
2087 *
2088 * The downside is that we have to touch folio->_refcount against each folio.
2089 * But we had to alter folio->flags anyway.
2090 */
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2091 static void shrink_active_list(unsigned long nr_to_scan,
2092 struct lruvec *lruvec,
2093 struct scan_control *sc,
2094 enum lru_list lru)
2095 {
2096 unsigned long nr_taken;
2097 unsigned long nr_scanned;
2098 vm_flags_t vm_flags;
2099 LIST_HEAD(l_hold); /* The folios which were snipped off */
2100 LIST_HEAD(l_active);
2101 LIST_HEAD(l_inactive);
2102 unsigned nr_deactivate, nr_activate;
2103 unsigned nr_rotated = 0;
2104 bool file = is_file_lru(lru);
2105 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2106
2107 lru_add_drain();
2108
2109 spin_lock_irq(&lruvec->lru_lock);
2110
2111 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2112 &nr_scanned, sc, lru);
2113
2114 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2115
2116 if (!cgroup_reclaim(sc))
2117 __count_vm_events(PGREFILL, nr_scanned);
2118 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2119
2120 spin_unlock_irq(&lruvec->lru_lock);
2121
2122 while (!list_empty(&l_hold)) {
2123 struct folio *folio;
2124
2125 cond_resched();
2126 folio = lru_to_folio(&l_hold);
2127 list_del(&folio->lru);
2128
2129 if (unlikely(!folio_evictable(folio))) {
2130 folio_putback_lru(folio);
2131 continue;
2132 }
2133
2134 if (unlikely(buffer_heads_over_limit)) {
2135 if (folio_needs_release(folio) &&
2136 folio_trylock(folio)) {
2137 filemap_release_folio(folio, 0);
2138 folio_unlock(folio);
2139 }
2140 }
2141
2142 /* Referenced or rmap lock contention: rotate */
2143 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2144 &vm_flags) != 0) {
2145 /*
2146 * Identify referenced, file-backed active folios and
2147 * give them one more trip around the active list. So
2148 * that executable code get better chances to stay in
2149 * memory under moderate memory pressure. Anon folios
2150 * are not likely to be evicted by use-once streaming
2151 * IO, plus JVM can create lots of anon VM_EXEC folios,
2152 * so we ignore them here.
2153 */
2154 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2155 nr_rotated += folio_nr_pages(folio);
2156 list_add(&folio->lru, &l_active);
2157 continue;
2158 }
2159 }
2160
2161 folio_clear_active(folio); /* we are de-activating */
2162 folio_set_workingset(folio);
2163 list_add(&folio->lru, &l_inactive);
2164 }
2165
2166 /*
2167 * Move folios back to the lru list.
2168 */
2169 spin_lock_irq(&lruvec->lru_lock);
2170
2171 nr_activate = move_folios_to_lru(lruvec, &l_active);
2172 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2173
2174 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2175 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2176
2177 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2178
2179 lru_note_cost_unlock_irq(lruvec, file, 0, nr_rotated);
2180 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2181 nr_deactivate, nr_rotated, sc->priority, file);
2182 }
2183
reclaim_folio_list(struct list_head * folio_list,struct pglist_data * pgdat)2184 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2185 struct pglist_data *pgdat)
2186 {
2187 struct reclaim_stat stat;
2188 unsigned int nr_reclaimed;
2189 struct folio *folio;
2190 struct scan_control sc = {
2191 .gfp_mask = GFP_KERNEL,
2192 .may_writepage = 1,
2193 .may_unmap = 1,
2194 .may_swap = 1,
2195 .no_demotion = 1,
2196 };
2197
2198 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true, NULL);
2199 while (!list_empty(folio_list)) {
2200 folio = lru_to_folio(folio_list);
2201 list_del(&folio->lru);
2202 folio_putback_lru(folio);
2203 }
2204 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2205
2206 return nr_reclaimed;
2207 }
2208
reclaim_pages(struct list_head * folio_list)2209 unsigned long reclaim_pages(struct list_head *folio_list)
2210 {
2211 int nid;
2212 unsigned int nr_reclaimed = 0;
2213 LIST_HEAD(node_folio_list);
2214 unsigned int noreclaim_flag;
2215
2216 if (list_empty(folio_list))
2217 return nr_reclaimed;
2218
2219 noreclaim_flag = memalloc_noreclaim_save();
2220
2221 nid = folio_nid(lru_to_folio(folio_list));
2222 do {
2223 struct folio *folio = lru_to_folio(folio_list);
2224
2225 if (nid == folio_nid(folio)) {
2226 folio_clear_active(folio);
2227 list_move(&folio->lru, &node_folio_list);
2228 continue;
2229 }
2230
2231 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2232 nid = folio_nid(lru_to_folio(folio_list));
2233 } while (!list_empty(folio_list));
2234
2235 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2236
2237 memalloc_noreclaim_restore(noreclaim_flag);
2238
2239 return nr_reclaimed;
2240 }
2241
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2242 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2243 struct lruvec *lruvec, struct scan_control *sc)
2244 {
2245 if (is_active_lru(lru)) {
2246 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2247 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2248 else
2249 sc->skipped_deactivate = 1;
2250 return 0;
2251 }
2252
2253 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2254 }
2255
2256 /*
2257 * The inactive anon list should be small enough that the VM never has
2258 * to do too much work.
2259 *
2260 * The inactive file list should be small enough to leave most memory
2261 * to the established workingset on the scan-resistant active list,
2262 * but large enough to avoid thrashing the aggregate readahead window.
2263 *
2264 * Both inactive lists should also be large enough that each inactive
2265 * folio has a chance to be referenced again before it is reclaimed.
2266 *
2267 * If that fails and refaulting is observed, the inactive list grows.
2268 *
2269 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2270 * on this LRU, maintained by the pageout code. An inactive_ratio
2271 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2272 *
2273 * total target max
2274 * memory ratio inactive
2275 * -------------------------------------
2276 * 10MB 1 5MB
2277 * 100MB 1 50MB
2278 * 1GB 3 250MB
2279 * 10GB 10 0.9GB
2280 * 100GB 31 3GB
2281 * 1TB 101 10GB
2282 * 10TB 320 32GB
2283 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2284 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2285 {
2286 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2287 unsigned long inactive, active;
2288 unsigned long inactive_ratio;
2289 unsigned long gb;
2290
2291 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2292 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2293
2294 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2295 if (gb)
2296 inactive_ratio = int_sqrt(10 * gb);
2297 else
2298 inactive_ratio = 1;
2299
2300 return inactive * inactive_ratio < active;
2301 }
2302
2303 enum scan_balance {
2304 SCAN_EQUAL,
2305 SCAN_FRACT,
2306 SCAN_ANON,
2307 SCAN_FILE,
2308 };
2309
prepare_scan_control(pg_data_t * pgdat,struct scan_control * sc)2310 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2311 {
2312 unsigned long file;
2313 struct lruvec *target_lruvec;
2314
2315 if (lru_gen_enabled())
2316 return;
2317
2318 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2319
2320 /*
2321 * Flush the memory cgroup stats in rate-limited way as we don't need
2322 * most accurate stats here. We may switch to regular stats flushing
2323 * in the future once it is cheap enough.
2324 */
2325 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2326
2327 /*
2328 * Determine the scan balance between anon and file LRUs.
2329 */
2330 spin_lock_irq(&target_lruvec->lru_lock);
2331 sc->anon_cost = target_lruvec->anon_cost;
2332 sc->file_cost = target_lruvec->file_cost;
2333 spin_unlock_irq(&target_lruvec->lru_lock);
2334
2335 /*
2336 * Target desirable inactive:active list ratios for the anon
2337 * and file LRU lists.
2338 */
2339 if (!sc->force_deactivate) {
2340 unsigned long refaults;
2341
2342 /*
2343 * When refaults are being observed, it means a new
2344 * workingset is being established. Deactivate to get
2345 * rid of any stale active pages quickly.
2346 */
2347 refaults = lruvec_page_state(target_lruvec,
2348 WORKINGSET_ACTIVATE_ANON);
2349 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2350 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2351 sc->may_deactivate |= DEACTIVATE_ANON;
2352 else
2353 sc->may_deactivate &= ~DEACTIVATE_ANON;
2354
2355 refaults = lruvec_page_state(target_lruvec,
2356 WORKINGSET_ACTIVATE_FILE);
2357 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2358 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2359 sc->may_deactivate |= DEACTIVATE_FILE;
2360 else
2361 sc->may_deactivate &= ~DEACTIVATE_FILE;
2362 } else
2363 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2364
2365 /*
2366 * If we have plenty of inactive file pages that aren't
2367 * thrashing, try to reclaim those first before touching
2368 * anonymous pages.
2369 */
2370 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2371 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2372 !sc->no_cache_trim_mode)
2373 sc->cache_trim_mode = 1;
2374 else
2375 sc->cache_trim_mode = 0;
2376
2377 /*
2378 * Prevent the reclaimer from falling into the cache trap: as
2379 * cache pages start out inactive, every cache fault will tip
2380 * the scan balance towards the file LRU. And as the file LRU
2381 * shrinks, so does the window for rotation from references.
2382 * This means we have a runaway feedback loop where a tiny
2383 * thrashing file LRU becomes infinitely more attractive than
2384 * anon pages. Try to detect this based on file LRU size.
2385 */
2386 if (!cgroup_reclaim(sc)) {
2387 unsigned long total_high_wmark = 0;
2388 unsigned long free, anon;
2389 int z;
2390 struct zone *zone;
2391
2392 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2393 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2394 node_page_state(pgdat, NR_INACTIVE_FILE);
2395
2396 for_each_managed_zone_pgdat(zone, pgdat, z, MAX_NR_ZONES - 1) {
2397 total_high_wmark += high_wmark_pages(zone);
2398 }
2399
2400 /*
2401 * Consider anon: if that's low too, this isn't a
2402 * runaway file reclaim problem, but rather just
2403 * extreme pressure. Reclaim as per usual then.
2404 */
2405 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2406
2407 sc->file_is_tiny =
2408 file + free <= total_high_wmark &&
2409 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2410 anon >> sc->priority;
2411 }
2412 }
2413
calculate_pressure_balance(struct scan_control * sc,int swappiness,u64 * fraction,u64 * denominator)2414 static inline void calculate_pressure_balance(struct scan_control *sc,
2415 int swappiness, u64 *fraction, u64 *denominator)
2416 {
2417 unsigned long anon_cost, file_cost, total_cost;
2418 unsigned long ap, fp;
2419
2420 /*
2421 * Calculate the pressure balance between anon and file pages.
2422 *
2423 * The amount of pressure we put on each LRU is inversely
2424 * proportional to the cost of reclaiming each list, as
2425 * determined by the share of pages that are refaulting, times
2426 * the relative IO cost of bringing back a swapped out
2427 * anonymous page vs reloading a filesystem page (swappiness).
2428 *
2429 * Although we limit that influence to ensure no list gets
2430 * left behind completely: at least a third of the pressure is
2431 * applied, before swappiness.
2432 *
2433 * With swappiness at 100, anon and file have equal IO cost.
2434 */
2435 total_cost = sc->anon_cost + sc->file_cost;
2436 anon_cost = total_cost + sc->anon_cost;
2437 file_cost = total_cost + sc->file_cost;
2438 total_cost = anon_cost + file_cost;
2439
2440 ap = swappiness * (total_cost + 1);
2441 ap /= anon_cost + 1;
2442
2443 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2444 fp /= file_cost + 1;
2445
2446 fraction[WORKINGSET_ANON] = ap;
2447 fraction[WORKINGSET_FILE] = fp;
2448 *denominator = ap + fp;
2449 }
2450
apply_proportional_protection(struct mem_cgroup * memcg,struct scan_control * sc,unsigned long scan)2451 static unsigned long apply_proportional_protection(struct mem_cgroup *memcg,
2452 struct scan_control *sc, unsigned long scan)
2453 {
2454 unsigned long min, low;
2455
2456 mem_cgroup_protection(sc->target_mem_cgroup, memcg, &min, &low);
2457
2458 if (min || low) {
2459 /*
2460 * Scale a cgroup's reclaim pressure by proportioning
2461 * its current usage to its memory.low or memory.min
2462 * setting.
2463 *
2464 * This is important, as otherwise scanning aggression
2465 * becomes extremely binary -- from nothing as we
2466 * approach the memory protection threshold, to totally
2467 * nominal as we exceed it. This results in requiring
2468 * setting extremely liberal protection thresholds. It
2469 * also means we simply get no protection at all if we
2470 * set it too low, which is not ideal.
2471 *
2472 * If there is any protection in place, we reduce scan
2473 * pressure by how much of the total memory used is
2474 * within protection thresholds.
2475 *
2476 * There is one special case: in the first reclaim pass,
2477 * we skip over all groups that are within their low
2478 * protection. If that fails to reclaim enough pages to
2479 * satisfy the reclaim goal, we come back and override
2480 * the best-effort low protection. However, we still
2481 * ideally want to honor how well-behaved groups are in
2482 * that case instead of simply punishing them all
2483 * equally. As such, we reclaim them based on how much
2484 * memory they are using, reducing the scan pressure
2485 * again by how much of the total memory used is under
2486 * hard protection.
2487 */
2488 unsigned long cgroup_size = mem_cgroup_size(memcg);
2489 unsigned long protection;
2490
2491 /* memory.low scaling, make sure we retry before OOM */
2492 if (!sc->memcg_low_reclaim && low > min) {
2493 protection = low;
2494 sc->memcg_low_skipped = 1;
2495 } else {
2496 protection = min;
2497 }
2498
2499 /* Avoid TOCTOU with earlier protection check */
2500 cgroup_size = max(cgroup_size, protection);
2501
2502 scan -= scan * protection / (cgroup_size + 1);
2503
2504 /*
2505 * Minimally target SWAP_CLUSTER_MAX pages to keep
2506 * reclaim moving forwards, avoiding decrementing
2507 * sc->priority further than desirable.
2508 */
2509 scan = max(scan, SWAP_CLUSTER_MAX);
2510 }
2511 return scan;
2512 }
2513
2514 /*
2515 * Determine how aggressively the anon and file LRU lists should be
2516 * scanned.
2517 *
2518 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2519 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2520 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2521 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2522 unsigned long *nr)
2523 {
2524 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2525 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2526 int swappiness = sc_swappiness(sc, memcg);
2527 u64 fraction[ANON_AND_FILE];
2528 u64 denominator = 0; /* gcc */
2529 enum scan_balance scan_balance;
2530 enum lru_list lru;
2531
2532 /* If we have no swap space, do not bother scanning anon folios. */
2533 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2534 scan_balance = SCAN_FILE;
2535 goto out;
2536 }
2537
2538 /*
2539 * Global reclaim will swap to prevent OOM even with no
2540 * swappiness, but memcg users want to use this knob to
2541 * disable swapping for individual groups completely when
2542 * using the memory controller's swap limit feature would be
2543 * too expensive.
2544 */
2545 if (cgroup_reclaim(sc) && !swappiness) {
2546 scan_balance = SCAN_FILE;
2547 goto out;
2548 }
2549
2550 /* Proactive reclaim initiated by userspace for anonymous memory only */
2551 if (swappiness == SWAPPINESS_ANON_ONLY) {
2552 WARN_ON_ONCE(!sc->proactive);
2553 scan_balance = SCAN_ANON;
2554 goto out;
2555 }
2556
2557 /*
2558 * Do not apply any pressure balancing cleverness when the
2559 * system is close to OOM, scan both anon and file equally
2560 * (unless the swappiness setting disagrees with swapping).
2561 */
2562 if (!sc->priority && swappiness) {
2563 scan_balance = SCAN_EQUAL;
2564 goto out;
2565 }
2566
2567 /*
2568 * If the system is almost out of file pages, force-scan anon.
2569 */
2570 if (sc->file_is_tiny) {
2571 scan_balance = SCAN_ANON;
2572 goto out;
2573 }
2574
2575 /*
2576 * If there is enough inactive page cache, we do not reclaim
2577 * anything from the anonymous working right now to make sure
2578 * a streaming file access pattern doesn't cause swapping.
2579 */
2580 if (sc->cache_trim_mode) {
2581 scan_balance = SCAN_FILE;
2582 goto out;
2583 }
2584
2585 scan_balance = SCAN_FRACT;
2586 calculate_pressure_balance(sc, swappiness, fraction, &denominator);
2587
2588 out:
2589 for_each_evictable_lru(lru) {
2590 bool file = is_file_lru(lru);
2591 unsigned long lruvec_size;
2592 unsigned long scan;
2593
2594 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2595 scan = apply_proportional_protection(memcg, sc, lruvec_size);
2596 scan >>= sc->priority;
2597
2598 /*
2599 * If the cgroup's already been deleted, make sure to
2600 * scrape out the remaining cache.
2601 */
2602 if (!scan && !mem_cgroup_online(memcg))
2603 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2604
2605 switch (scan_balance) {
2606 case SCAN_EQUAL:
2607 /* Scan lists relative to size */
2608 break;
2609 case SCAN_FRACT:
2610 /*
2611 * Scan types proportional to swappiness and
2612 * their relative recent reclaim efficiency.
2613 * Make sure we don't miss the last page on
2614 * the offlined memory cgroups because of a
2615 * round-off error.
2616 */
2617 scan = mem_cgroup_online(memcg) ?
2618 div64_u64(scan * fraction[file], denominator) :
2619 DIV64_U64_ROUND_UP(scan * fraction[file],
2620 denominator);
2621 break;
2622 case SCAN_FILE:
2623 case SCAN_ANON:
2624 /* Scan one type exclusively */
2625 if ((scan_balance == SCAN_FILE) != file)
2626 scan = 0;
2627 break;
2628 default:
2629 /* Look ma, no brain */
2630 BUG();
2631 }
2632
2633 nr[lru] = scan;
2634 }
2635 }
2636
2637 /*
2638 * Anonymous LRU management is a waste if there is
2639 * ultimately no way to reclaim the memory.
2640 */
can_age_anon_pages(struct lruvec * lruvec,struct scan_control * sc)2641 static bool can_age_anon_pages(struct lruvec *lruvec,
2642 struct scan_control *sc)
2643 {
2644 /* Aging the anon LRU is valuable if swap is present: */
2645 if (total_swap_pages > 0)
2646 return true;
2647
2648 /* Also valuable if anon pages can be demoted: */
2649 return can_demote(lruvec_pgdat(lruvec)->node_id, sc,
2650 lruvec_memcg(lruvec));
2651 }
2652
2653 #ifdef CONFIG_LRU_GEN
2654
2655 #ifdef CONFIG_LRU_GEN_ENABLED
2656 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2657 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2658 #else
2659 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2660 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2661 #endif
2662
should_walk_mmu(void)2663 static bool should_walk_mmu(void)
2664 {
2665 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2666 }
2667
should_clear_pmd_young(void)2668 static bool should_clear_pmd_young(void)
2669 {
2670 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2671 }
2672
2673 /******************************************************************************
2674 * shorthand helpers
2675 ******************************************************************************/
2676
2677 #define DEFINE_MAX_SEQ(lruvec) \
2678 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2679
2680 #define DEFINE_MIN_SEQ(lruvec) \
2681 unsigned long min_seq[ANON_AND_FILE] = { \
2682 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2683 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2684 }
2685
2686 /* Get the min/max evictable type based on swappiness */
2687 #define min_type(swappiness) (!(swappiness))
2688 #define max_type(swappiness) ((swappiness) < SWAPPINESS_ANON_ONLY)
2689
2690 #define evictable_min_seq(min_seq, swappiness) \
2691 min((min_seq)[min_type(swappiness)], (min_seq)[max_type(swappiness)])
2692
2693 #define for_each_gen_type_zone(gen, type, zone) \
2694 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2695 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2696 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2697
2698 #define for_each_evictable_type(type, swappiness) \
2699 for ((type) = min_type(swappiness); (type) <= max_type(swappiness); (type)++)
2700
2701 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2702 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2703
get_lruvec(struct mem_cgroup * memcg,int nid)2704 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2705 {
2706 struct pglist_data *pgdat = NODE_DATA(nid);
2707
2708 #ifdef CONFIG_MEMCG
2709 if (memcg) {
2710 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2711
2712 /* see the comment in mem_cgroup_lruvec() */
2713 if (!lruvec->pgdat)
2714 lruvec->pgdat = pgdat;
2715
2716 return lruvec;
2717 }
2718 #endif
2719 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2720
2721 return &pgdat->__lruvec;
2722 }
2723
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2724 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2725 {
2726 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2727 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2728
2729 if (!sc->may_swap)
2730 return 0;
2731
2732 if (!can_demote(pgdat->node_id, sc, memcg) &&
2733 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2734 return 0;
2735
2736 return sc_swappiness(sc, memcg);
2737 }
2738
get_nr_gens(struct lruvec * lruvec,int type)2739 static int get_nr_gens(struct lruvec *lruvec, int type)
2740 {
2741 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2742 }
2743
seq_is_valid(struct lruvec * lruvec)2744 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2745 {
2746 int type;
2747
2748 for (type = 0; type < ANON_AND_FILE; type++) {
2749 int n = get_nr_gens(lruvec, type);
2750
2751 if (n < MIN_NR_GENS || n > MAX_NR_GENS)
2752 return false;
2753 }
2754
2755 return true;
2756 }
2757
2758 /******************************************************************************
2759 * Bloom filters
2760 ******************************************************************************/
2761
2762 /*
2763 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2764 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2765 * bits in a bitmap, k is the number of hash functions and n is the number of
2766 * inserted items.
2767 *
2768 * Page table walkers use one of the two filters to reduce their search space.
2769 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2770 * aging uses the double-buffering technique to flip to the other filter each
2771 * time it produces a new generation. For non-leaf entries that have enough
2772 * leaf entries, the aging carries them over to the next generation in
2773 * walk_pmd_range(); the eviction also report them when walking the rmap
2774 * in lru_gen_look_around().
2775 *
2776 * For future optimizations:
2777 * 1. It's not necessary to keep both filters all the time. The spare one can be
2778 * freed after the RCU grace period and reallocated if needed again.
2779 * 2. And when reallocating, it's worth scaling its size according to the number
2780 * of inserted entries in the other filter, to reduce the memory overhead on
2781 * small systems and false positives on large systems.
2782 * 3. Jenkins' hash function is an alternative to Knuth's.
2783 */
2784 #define BLOOM_FILTER_SHIFT 15
2785
filter_gen_from_seq(unsigned long seq)2786 static inline int filter_gen_from_seq(unsigned long seq)
2787 {
2788 return seq % NR_BLOOM_FILTERS;
2789 }
2790
get_item_key(void * item,int * key)2791 static void get_item_key(void *item, int *key)
2792 {
2793 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2794
2795 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2796
2797 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2798 key[1] = hash >> BLOOM_FILTER_SHIFT;
2799 }
2800
test_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2801 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2802 void *item)
2803 {
2804 int key[2];
2805 unsigned long *filter;
2806 int gen = filter_gen_from_seq(seq);
2807
2808 filter = READ_ONCE(mm_state->filters[gen]);
2809 if (!filter)
2810 return true;
2811
2812 get_item_key(item, key);
2813
2814 return test_bit(key[0], filter) && test_bit(key[1], filter);
2815 }
2816
update_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq,void * item)2817 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2818 void *item)
2819 {
2820 int key[2];
2821 unsigned long *filter;
2822 int gen = filter_gen_from_seq(seq);
2823
2824 filter = READ_ONCE(mm_state->filters[gen]);
2825 if (!filter)
2826 return;
2827
2828 get_item_key(item, key);
2829
2830 if (!test_bit(key[0], filter))
2831 set_bit(key[0], filter);
2832 if (!test_bit(key[1], filter))
2833 set_bit(key[1], filter);
2834 }
2835
reset_bloom_filter(struct lru_gen_mm_state * mm_state,unsigned long seq)2836 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2837 {
2838 unsigned long *filter;
2839 int gen = filter_gen_from_seq(seq);
2840
2841 filter = mm_state->filters[gen];
2842 if (filter) {
2843 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2844 return;
2845 }
2846
2847 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2848 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2849 WRITE_ONCE(mm_state->filters[gen], filter);
2850 }
2851
2852 /******************************************************************************
2853 * mm_struct list
2854 ******************************************************************************/
2855
2856 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2857
get_mm_list(struct mem_cgroup * memcg)2858 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2859 {
2860 static struct lru_gen_mm_list mm_list = {
2861 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2862 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2863 };
2864
2865 #ifdef CONFIG_MEMCG
2866 if (memcg)
2867 return &memcg->mm_list;
2868 #endif
2869 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2870
2871 return &mm_list;
2872 }
2873
get_mm_state(struct lruvec * lruvec)2874 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2875 {
2876 return &lruvec->mm_state;
2877 }
2878
get_next_mm(struct lru_gen_mm_walk * walk)2879 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2880 {
2881 int key;
2882 struct mm_struct *mm;
2883 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2884 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2885
2886 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2887 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2888
2889 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2890 return NULL;
2891
2892 clear_bit(key, &mm->lru_gen.bitmap);
2893
2894 return mmget_not_zero(mm) ? mm : NULL;
2895 }
2896
lru_gen_add_mm(struct mm_struct * mm)2897 void lru_gen_add_mm(struct mm_struct *mm)
2898 {
2899 int nid;
2900 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2901 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2902
2903 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2904 #ifdef CONFIG_MEMCG
2905 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2906 mm->lru_gen.memcg = memcg;
2907 #endif
2908 spin_lock(&mm_list->lock);
2909
2910 for_each_node_state(nid, N_MEMORY) {
2911 struct lruvec *lruvec = get_lruvec(memcg, nid);
2912 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2913
2914 /* the first addition since the last iteration */
2915 if (mm_state->tail == &mm_list->fifo)
2916 mm_state->tail = &mm->lru_gen.list;
2917 }
2918
2919 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2920
2921 spin_unlock(&mm_list->lock);
2922 }
2923
lru_gen_del_mm(struct mm_struct * mm)2924 void lru_gen_del_mm(struct mm_struct *mm)
2925 {
2926 int nid;
2927 struct lru_gen_mm_list *mm_list;
2928 struct mem_cgroup *memcg = NULL;
2929
2930 if (list_empty(&mm->lru_gen.list))
2931 return;
2932
2933 #ifdef CONFIG_MEMCG
2934 memcg = mm->lru_gen.memcg;
2935 #endif
2936 mm_list = get_mm_list(memcg);
2937
2938 spin_lock(&mm_list->lock);
2939
2940 for_each_node(nid) {
2941 struct lruvec *lruvec = get_lruvec(memcg, nid);
2942 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2943
2944 /* where the current iteration continues after */
2945 if (mm_state->head == &mm->lru_gen.list)
2946 mm_state->head = mm_state->head->prev;
2947
2948 /* where the last iteration ended before */
2949 if (mm_state->tail == &mm->lru_gen.list)
2950 mm_state->tail = mm_state->tail->next;
2951 }
2952
2953 list_del_init(&mm->lru_gen.list);
2954
2955 spin_unlock(&mm_list->lock);
2956
2957 #ifdef CONFIG_MEMCG
2958 mem_cgroup_put(mm->lru_gen.memcg);
2959 mm->lru_gen.memcg = NULL;
2960 #endif
2961 }
2962
2963 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2964 void lru_gen_migrate_mm(struct mm_struct *mm)
2965 {
2966 struct mem_cgroup *memcg;
2967 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2968
2969 VM_WARN_ON_ONCE(task->mm != mm);
2970 lockdep_assert_held(&task->alloc_lock);
2971
2972 /* for mm_update_next_owner() */
2973 if (mem_cgroup_disabled())
2974 return;
2975
2976 /* migration can happen before addition */
2977 if (!mm->lru_gen.memcg)
2978 return;
2979
2980 rcu_read_lock();
2981 memcg = mem_cgroup_from_task(task);
2982 rcu_read_unlock();
2983 if (memcg == mm->lru_gen.memcg)
2984 return;
2985
2986 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2987
2988 lru_gen_del_mm(mm);
2989 lru_gen_add_mm(mm);
2990 }
2991 #endif
2992
2993 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2994
get_mm_list(struct mem_cgroup * memcg)2995 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2996 {
2997 return NULL;
2998 }
2999
get_mm_state(struct lruvec * lruvec)3000 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
3001 {
3002 return NULL;
3003 }
3004
get_next_mm(struct lru_gen_mm_walk * walk)3005 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
3006 {
3007 return NULL;
3008 }
3009
3010 #endif
3011
reset_mm_stats(struct lru_gen_mm_walk * walk,bool last)3012 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
3013 {
3014 int i;
3015 int hist;
3016 struct lruvec *lruvec = walk->lruvec;
3017 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3018
3019 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
3020
3021 hist = lru_hist_from_seq(walk->seq);
3022
3023 for (i = 0; i < NR_MM_STATS; i++) {
3024 WRITE_ONCE(mm_state->stats[hist][i],
3025 mm_state->stats[hist][i] + walk->mm_stats[i]);
3026 walk->mm_stats[i] = 0;
3027 }
3028
3029 if (NR_HIST_GENS > 1 && last) {
3030 hist = lru_hist_from_seq(walk->seq + 1);
3031
3032 for (i = 0; i < NR_MM_STATS; i++)
3033 WRITE_ONCE(mm_state->stats[hist][i], 0);
3034 }
3035 }
3036
iterate_mm_list(struct lru_gen_mm_walk * walk,struct mm_struct ** iter)3037 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
3038 {
3039 bool first = false;
3040 bool last = false;
3041 struct mm_struct *mm = NULL;
3042 struct lruvec *lruvec = walk->lruvec;
3043 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3044 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3045 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3046
3047 /*
3048 * mm_state->seq is incremented after each iteration of mm_list. There
3049 * are three interesting cases for this page table walker:
3050 * 1. It tries to start a new iteration with a stale max_seq: there is
3051 * nothing left to do.
3052 * 2. It started the next iteration: it needs to reset the Bloom filter
3053 * so that a fresh set of PTE tables can be recorded.
3054 * 3. It ended the current iteration: it needs to reset the mm stats
3055 * counters and tell its caller to increment max_seq.
3056 */
3057 spin_lock(&mm_list->lock);
3058
3059 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
3060
3061 if (walk->seq <= mm_state->seq)
3062 goto done;
3063
3064 if (!mm_state->head)
3065 mm_state->head = &mm_list->fifo;
3066
3067 if (mm_state->head == &mm_list->fifo)
3068 first = true;
3069
3070 do {
3071 mm_state->head = mm_state->head->next;
3072 if (mm_state->head == &mm_list->fifo) {
3073 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3074 last = true;
3075 break;
3076 }
3077
3078 /* force scan for those added after the last iteration */
3079 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3080 mm_state->tail = mm_state->head->next;
3081 walk->force_scan = true;
3082 }
3083 } while (!(mm = get_next_mm(walk)));
3084 done:
3085 if (*iter || last)
3086 reset_mm_stats(walk, last);
3087
3088 spin_unlock(&mm_list->lock);
3089
3090 if (mm && first)
3091 reset_bloom_filter(mm_state, walk->seq + 1);
3092
3093 if (*iter)
3094 mmput_async(*iter);
3095
3096 *iter = mm;
3097
3098 return last;
3099 }
3100
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long seq)3101 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3102 {
3103 bool success = false;
3104 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3105 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3106 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3107
3108 spin_lock(&mm_list->lock);
3109
3110 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3111
3112 if (seq > mm_state->seq) {
3113 mm_state->head = NULL;
3114 mm_state->tail = NULL;
3115 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3116 success = true;
3117 }
3118
3119 spin_unlock(&mm_list->lock);
3120
3121 return success;
3122 }
3123
3124 /******************************************************************************
3125 * PID controller
3126 ******************************************************************************/
3127
3128 /*
3129 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3130 *
3131 * The P term is refaulted/(evicted+protected) from a tier in the generation
3132 * currently being evicted; the I term is the exponential moving average of the
3133 * P term over the generations previously evicted, using the smoothing factor
3134 * 1/2; the D term isn't supported.
3135 *
3136 * The setpoint (SP) is always the first tier of one type; the process variable
3137 * (PV) is either any tier of the other type or any other tier of the same
3138 * type.
3139 *
3140 * The error is the difference between the SP and the PV; the correction is to
3141 * turn off protection when SP>PV or turn on protection when SP<PV.
3142 *
3143 * For future optimizations:
3144 * 1. The D term may discount the other two terms over time so that long-lived
3145 * generations can resist stale information.
3146 */
3147 struct ctrl_pos {
3148 unsigned long refaulted;
3149 unsigned long total;
3150 int gain;
3151 };
3152
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3153 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3154 struct ctrl_pos *pos)
3155 {
3156 int i;
3157 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3158 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3159
3160 pos->gain = gain;
3161 pos->refaulted = pos->total = 0;
3162
3163 for (i = tier % MAX_NR_TIERS; i <= min(tier, MAX_NR_TIERS - 1); i++) {
3164 pos->refaulted += lrugen->avg_refaulted[type][i] +
3165 atomic_long_read(&lrugen->refaulted[hist][type][i]);
3166 pos->total += lrugen->avg_total[type][i] +
3167 lrugen->protected[hist][type][i] +
3168 atomic_long_read(&lrugen->evicted[hist][type][i]);
3169 }
3170 }
3171
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3172 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3173 {
3174 int hist, tier;
3175 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3176 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3177 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3178
3179 lockdep_assert_held(&lruvec->lru_lock);
3180
3181 if (!carryover && !clear)
3182 return;
3183
3184 hist = lru_hist_from_seq(seq);
3185
3186 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3187 if (carryover) {
3188 unsigned long sum;
3189
3190 sum = lrugen->avg_refaulted[type][tier] +
3191 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3192 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3193
3194 sum = lrugen->avg_total[type][tier] +
3195 lrugen->protected[hist][type][tier] +
3196 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3197 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3198 }
3199
3200 if (clear) {
3201 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3202 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3203 WRITE_ONCE(lrugen->protected[hist][type][tier], 0);
3204 }
3205 }
3206 }
3207
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3208 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3209 {
3210 /*
3211 * Return true if the PV has a limited number of refaults or a lower
3212 * refaulted/total than the SP.
3213 */
3214 return pv->refaulted < MIN_LRU_BATCH ||
3215 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3216 (sp->refaulted + 1) * pv->total * pv->gain;
3217 }
3218
3219 /******************************************************************************
3220 * the aging
3221 ******************************************************************************/
3222
3223 /* promote pages accessed through page tables */
folio_update_gen(struct folio * folio,int gen)3224 static int folio_update_gen(struct folio *folio, int gen)
3225 {
3226 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3227
3228 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3229
3230 /* see the comment on LRU_REFS_FLAGS */
3231 if (!folio_test_referenced(folio) && !folio_test_workingset(folio)) {
3232 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, BIT(PG_referenced));
3233 return -1;
3234 }
3235
3236 do {
3237 /* lru_gen_del_folio() has isolated this page? */
3238 if (!(old_flags & LRU_GEN_MASK))
3239 return -1;
3240
3241 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3242 new_flags |= ((gen + 1UL) << LRU_GEN_PGOFF) | BIT(PG_workingset);
3243 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3244
3245 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3246 }
3247
3248 /* protect pages accessed multiple times through file descriptors */
folio_inc_gen(struct lruvec * lruvec,struct folio * folio,bool reclaiming)3249 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3250 {
3251 int type = folio_is_file_lru(folio);
3252 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3253 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3254 unsigned long new_flags, old_flags = READ_ONCE(folio->flags.f);
3255
3256 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3257
3258 do {
3259 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3260 /* folio_update_gen() has promoted this page? */
3261 if (new_gen >= 0 && new_gen != old_gen)
3262 return new_gen;
3263
3264 new_gen = (old_gen + 1) % MAX_NR_GENS;
3265
3266 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_FLAGS);
3267 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3268 /* for folio_end_writeback() */
3269 if (reclaiming)
3270 new_flags |= BIT(PG_reclaim);
3271 } while (!try_cmpxchg(&folio->flags.f, &old_flags, new_flags));
3272
3273 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3274
3275 return new_gen;
3276 }
3277
update_batch_size(struct lru_gen_mm_walk * walk,struct folio * folio,int old_gen,int new_gen)3278 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3279 int old_gen, int new_gen)
3280 {
3281 int type = folio_is_file_lru(folio);
3282 int zone = folio_zonenum(folio);
3283 int delta = folio_nr_pages(folio);
3284
3285 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3286 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3287
3288 walk->batched++;
3289
3290 walk->nr_pages[old_gen][type][zone] -= delta;
3291 walk->nr_pages[new_gen][type][zone] += delta;
3292 }
3293
reset_batch_size(struct lru_gen_mm_walk * walk)3294 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3295 {
3296 int gen, type, zone;
3297 struct lruvec *lruvec = walk->lruvec;
3298 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3299
3300 walk->batched = 0;
3301
3302 for_each_gen_type_zone(gen, type, zone) {
3303 enum lru_list lru = type * LRU_INACTIVE_FILE;
3304 int delta = walk->nr_pages[gen][type][zone];
3305
3306 if (!delta)
3307 continue;
3308
3309 walk->nr_pages[gen][type][zone] = 0;
3310 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3311 lrugen->nr_pages[gen][type][zone] + delta);
3312
3313 if (lru_gen_is_active(lruvec, gen))
3314 lru += LRU_ACTIVE;
3315 __update_lru_size(lruvec, lru, zone, delta);
3316 }
3317 }
3318
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3319 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3320 {
3321 struct address_space *mapping;
3322 struct vm_area_struct *vma = args->vma;
3323 struct lru_gen_mm_walk *walk = args->private;
3324
3325 if (!vma_is_accessible(vma))
3326 return true;
3327
3328 if (is_vm_hugetlb_page(vma))
3329 return true;
3330
3331 if (!vma_has_recency(vma))
3332 return true;
3333
3334 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3335 return true;
3336
3337 if (vma == get_gate_vma(vma->vm_mm))
3338 return true;
3339
3340 if (vma_is_anonymous(vma))
3341 return !walk->swappiness;
3342
3343 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3344 return true;
3345
3346 mapping = vma->vm_file->f_mapping;
3347 if (mapping_unevictable(mapping))
3348 return true;
3349
3350 if (shmem_mapping(mapping))
3351 return !walk->swappiness;
3352
3353 if (walk->swappiness > MAX_SWAPPINESS)
3354 return true;
3355
3356 /* to exclude special mappings like dax, etc. */
3357 return !mapping->a_ops->read_folio;
3358 }
3359
3360 /*
3361 * Some userspace memory allocators map many single-page VMAs. Instead of
3362 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3363 * table to reduce zigzags and improve cache performance.
3364 */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3365 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3366 unsigned long *vm_start, unsigned long *vm_end)
3367 {
3368 unsigned long start = round_up(*vm_end, size);
3369 unsigned long end = (start | ~mask) + 1;
3370 VMA_ITERATOR(vmi, args->mm, start);
3371
3372 VM_WARN_ON_ONCE(mask & size);
3373 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3374
3375 for_each_vma(vmi, args->vma) {
3376 if (end && end <= args->vma->vm_start)
3377 return false;
3378
3379 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3380 continue;
3381
3382 *vm_start = max(start, args->vma->vm_start);
3383 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3384
3385 return true;
3386 }
3387
3388 return false;
3389 }
3390
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3391 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3392 struct pglist_data *pgdat)
3393 {
3394 unsigned long pfn = pte_pfn(pte);
3395
3396 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3397
3398 if (!pte_present(pte) || is_zero_pfn(pfn))
3399 return -1;
3400
3401 if (WARN_ON_ONCE(pte_special(pte)))
3402 return -1;
3403
3404 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3405 return -1;
3406
3407 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3408 return -1;
3409
3410 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3411 return -1;
3412
3413 return pfn;
3414 }
3415
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr,struct pglist_data * pgdat)3416 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3417 struct pglist_data *pgdat)
3418 {
3419 unsigned long pfn = pmd_pfn(pmd);
3420
3421 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3422
3423 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3424 return -1;
3425
3426 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3427 return -1;
3428
3429 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3430 return -1;
3431
3432 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3433 return -1;
3434
3435 return pfn;
3436 }
3437
get_pfn_folio(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat)3438 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3439 struct pglist_data *pgdat)
3440 {
3441 struct folio *folio = pfn_folio(pfn);
3442
3443 if (folio_lru_gen(folio) < 0)
3444 return NULL;
3445
3446 if (folio_nid(folio) != pgdat->node_id)
3447 return NULL;
3448
3449 if (folio_memcg(folio) != memcg)
3450 return NULL;
3451
3452 return folio;
3453 }
3454
suitable_to_scan(int total,int young)3455 static bool suitable_to_scan(int total, int young)
3456 {
3457 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3458
3459 /* suitable if the average number of young PTEs per cacheline is >=1 */
3460 return young * n >= total;
3461 }
3462
walk_update_folio(struct lru_gen_mm_walk * walk,struct folio * folio,int new_gen,bool dirty)3463 static void walk_update_folio(struct lru_gen_mm_walk *walk, struct folio *folio,
3464 int new_gen, bool dirty)
3465 {
3466 int old_gen;
3467
3468 if (!folio)
3469 return;
3470
3471 if (dirty && !folio_test_dirty(folio) &&
3472 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3473 !folio_test_swapcache(folio)))
3474 folio_mark_dirty(folio);
3475
3476 if (walk) {
3477 old_gen = folio_update_gen(folio, new_gen);
3478 if (old_gen >= 0 && old_gen != new_gen)
3479 update_batch_size(walk, folio, old_gen, new_gen);
3480 } else if (lru_gen_set_refs(folio)) {
3481 old_gen = folio_lru_gen(folio);
3482 if (old_gen >= 0 && old_gen != new_gen)
3483 folio_activate(folio);
3484 }
3485 }
3486
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3487 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3488 struct mm_walk *args)
3489 {
3490 int i;
3491 bool dirty;
3492 pte_t *pte;
3493 spinlock_t *ptl;
3494 unsigned long addr;
3495 int total = 0;
3496 int young = 0;
3497 struct folio *last = NULL;
3498 struct lru_gen_mm_walk *walk = args->private;
3499 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3500 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3501 DEFINE_MAX_SEQ(walk->lruvec);
3502 int gen = lru_gen_from_seq(max_seq);
3503 pmd_t pmdval;
3504
3505 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval, &ptl);
3506 if (!pte)
3507 return false;
3508
3509 if (!spin_trylock(ptl)) {
3510 pte_unmap(pte);
3511 return true;
3512 }
3513
3514 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3515 pte_unmap_unlock(pte, ptl);
3516 return false;
3517 }
3518
3519 arch_enter_lazy_mmu_mode();
3520 restart:
3521 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3522 unsigned long pfn;
3523 struct folio *folio;
3524 pte_t ptent = ptep_get(pte + i);
3525
3526 total++;
3527 walk->mm_stats[MM_LEAF_TOTAL]++;
3528
3529 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3530 if (pfn == -1)
3531 continue;
3532
3533 folio = get_pfn_folio(pfn, memcg, pgdat);
3534 if (!folio)
3535 continue;
3536
3537 if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3538 continue;
3539
3540 if (last != folio) {
3541 walk_update_folio(walk, last, gen, dirty);
3542
3543 last = folio;
3544 dirty = false;
3545 }
3546
3547 if (pte_dirty(ptent))
3548 dirty = true;
3549
3550 young++;
3551 walk->mm_stats[MM_LEAF_YOUNG]++;
3552 }
3553
3554 walk_update_folio(walk, last, gen, dirty);
3555 last = NULL;
3556
3557 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3558 goto restart;
3559
3560 arch_leave_lazy_mmu_mode();
3561 pte_unmap_unlock(pte, ptl);
3562
3563 return suitable_to_scan(total, young);
3564 }
3565
walk_pmd_range_locked(pud_t * pud,unsigned long addr,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * first)3566 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3567 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3568 {
3569 int i;
3570 bool dirty;
3571 pmd_t *pmd;
3572 spinlock_t *ptl;
3573 struct folio *last = NULL;
3574 struct lru_gen_mm_walk *walk = args->private;
3575 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3576 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3577 DEFINE_MAX_SEQ(walk->lruvec);
3578 int gen = lru_gen_from_seq(max_seq);
3579
3580 VM_WARN_ON_ONCE(pud_leaf(*pud));
3581
3582 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3583 if (*first == -1) {
3584 *first = addr;
3585 bitmap_zero(bitmap, MIN_LRU_BATCH);
3586 return;
3587 }
3588
3589 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3590 if (i && i <= MIN_LRU_BATCH) {
3591 __set_bit(i - 1, bitmap);
3592 return;
3593 }
3594
3595 pmd = pmd_offset(pud, *first);
3596
3597 ptl = pmd_lockptr(args->mm, pmd);
3598 if (!spin_trylock(ptl))
3599 goto done;
3600
3601 arch_enter_lazy_mmu_mode();
3602
3603 do {
3604 unsigned long pfn;
3605 struct folio *folio;
3606
3607 /* don't round down the first address */
3608 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3609
3610 if (!pmd_present(pmd[i]))
3611 goto next;
3612
3613 if (!pmd_trans_huge(pmd[i])) {
3614 if (!walk->force_scan && should_clear_pmd_young() &&
3615 !mm_has_notifiers(args->mm))
3616 pmdp_test_and_clear_young(vma, addr, pmd + i);
3617 goto next;
3618 }
3619
3620 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3621 if (pfn == -1)
3622 goto next;
3623
3624 folio = get_pfn_folio(pfn, memcg, pgdat);
3625 if (!folio)
3626 goto next;
3627
3628 if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3629 goto next;
3630
3631 if (last != folio) {
3632 walk_update_folio(walk, last, gen, dirty);
3633
3634 last = folio;
3635 dirty = false;
3636 }
3637
3638 if (pmd_dirty(pmd[i]))
3639 dirty = true;
3640
3641 walk->mm_stats[MM_LEAF_YOUNG]++;
3642 next:
3643 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3644 } while (i <= MIN_LRU_BATCH);
3645
3646 walk_update_folio(walk, last, gen, dirty);
3647
3648 arch_leave_lazy_mmu_mode();
3649 spin_unlock(ptl);
3650 done:
3651 *first = -1;
3652 }
3653
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3654 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3655 struct mm_walk *args)
3656 {
3657 int i;
3658 pmd_t *pmd;
3659 unsigned long next;
3660 unsigned long addr;
3661 struct vm_area_struct *vma;
3662 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3663 unsigned long first = -1;
3664 struct lru_gen_mm_walk *walk = args->private;
3665 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3666
3667 VM_WARN_ON_ONCE(pud_leaf(*pud));
3668
3669 /*
3670 * Finish an entire PMD in two passes: the first only reaches to PTE
3671 * tables to avoid taking the PMD lock; the second, if necessary, takes
3672 * the PMD lock to clear the accessed bit in PMD entries.
3673 */
3674 pmd = pmd_offset(pud, start & PUD_MASK);
3675 restart:
3676 /* walk_pte_range() may call get_next_vma() */
3677 vma = args->vma;
3678 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3679 pmd_t val = pmdp_get_lockless(pmd + i);
3680
3681 next = pmd_addr_end(addr, end);
3682
3683 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3684 walk->mm_stats[MM_LEAF_TOTAL]++;
3685 continue;
3686 }
3687
3688 if (pmd_trans_huge(val)) {
3689 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3690 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3691
3692 walk->mm_stats[MM_LEAF_TOTAL]++;
3693
3694 if (pfn != -1)
3695 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3696 continue;
3697 }
3698
3699 if (!walk->force_scan && should_clear_pmd_young() &&
3700 !mm_has_notifiers(args->mm)) {
3701 if (!pmd_young(val))
3702 continue;
3703
3704 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3705 }
3706
3707 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3708 continue;
3709
3710 walk->mm_stats[MM_NONLEAF_FOUND]++;
3711
3712 if (!walk_pte_range(&val, addr, next, args))
3713 continue;
3714
3715 walk->mm_stats[MM_NONLEAF_ADDED]++;
3716
3717 /* carry over to the next generation */
3718 update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3719 }
3720
3721 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3722
3723 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3724 goto restart;
3725 }
3726
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3727 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3728 struct mm_walk *args)
3729 {
3730 int i;
3731 pud_t *pud;
3732 unsigned long addr;
3733 unsigned long next;
3734 struct lru_gen_mm_walk *walk = args->private;
3735
3736 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3737
3738 pud = pud_offset(p4d, start & P4D_MASK);
3739 restart:
3740 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3741 pud_t val = pudp_get(pud + i);
3742
3743 next = pud_addr_end(addr, end);
3744
3745 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3746 continue;
3747
3748 walk_pmd_range(&val, addr, next, args);
3749
3750 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3751 end = (addr | ~PUD_MASK) + 1;
3752 goto done;
3753 }
3754 }
3755
3756 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3757 goto restart;
3758
3759 end = round_up(end, P4D_SIZE);
3760 done:
3761 if (!end || !args->vma)
3762 return 1;
3763
3764 walk->next_addr = max(end, args->vma->vm_start);
3765
3766 return -EAGAIN;
3767 }
3768
walk_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)3769 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3770 {
3771 static const struct mm_walk_ops mm_walk_ops = {
3772 .test_walk = should_skip_vma,
3773 .p4d_entry = walk_pud_range,
3774 .walk_lock = PGWALK_RDLOCK,
3775 };
3776 int err;
3777 struct lruvec *lruvec = walk->lruvec;
3778
3779 walk->next_addr = FIRST_USER_ADDRESS;
3780
3781 do {
3782 DEFINE_MAX_SEQ(lruvec);
3783
3784 err = -EBUSY;
3785
3786 /* another thread might have called inc_max_seq() */
3787 if (walk->seq != max_seq)
3788 break;
3789
3790 /* the caller might be holding the lock for write */
3791 if (mmap_read_trylock(mm)) {
3792 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3793
3794 mmap_read_unlock(mm);
3795 }
3796
3797 if (walk->batched) {
3798 spin_lock_irq(&lruvec->lru_lock);
3799 reset_batch_size(walk);
3800 spin_unlock_irq(&lruvec->lru_lock);
3801 }
3802
3803 cond_resched();
3804 } while (err == -EAGAIN);
3805 }
3806
set_mm_walk(struct pglist_data * pgdat,bool force_alloc)3807 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3808 {
3809 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3810
3811 if (pgdat && current_is_kswapd()) {
3812 VM_WARN_ON_ONCE(walk);
3813
3814 walk = &pgdat->mm_walk;
3815 } else if (!walk && force_alloc) {
3816 VM_WARN_ON_ONCE(current_is_kswapd());
3817
3818 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3819 }
3820
3821 current->reclaim_state->mm_walk = walk;
3822
3823 return walk;
3824 }
3825
clear_mm_walk(void)3826 static void clear_mm_walk(void)
3827 {
3828 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3829
3830 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3831 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3832
3833 current->reclaim_state->mm_walk = NULL;
3834
3835 if (!current_is_kswapd())
3836 kfree(walk);
3837 }
3838
inc_min_seq(struct lruvec * lruvec,int type,int swappiness)3839 static bool inc_min_seq(struct lruvec *lruvec, int type, int swappiness)
3840 {
3841 int zone;
3842 int remaining = MAX_LRU_BATCH;
3843 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3844 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3845 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3846
3847 /* For file type, skip the check if swappiness is anon only */
3848 if (type && (swappiness == SWAPPINESS_ANON_ONLY))
3849 goto done;
3850
3851 /* For anon type, skip the check if swappiness is zero (file only) */
3852 if (!type && !swappiness)
3853 goto done;
3854
3855 /* prevent cold/hot inversion if the type is evictable */
3856 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3857 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3858
3859 while (!list_empty(head)) {
3860 struct folio *folio = lru_to_folio(head);
3861 int refs = folio_lru_refs(folio);
3862 bool workingset = folio_test_workingset(folio);
3863
3864 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3865 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3866 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3867 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3868
3869 new_gen = folio_inc_gen(lruvec, folio, false);
3870 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3871
3872 /* don't count the workingset being lazily promoted */
3873 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
3874 int tier = lru_tier_from_refs(refs, workingset);
3875 int delta = folio_nr_pages(folio);
3876
3877 WRITE_ONCE(lrugen->protected[hist][type][tier],
3878 lrugen->protected[hist][type][tier] + delta);
3879 }
3880
3881 if (!--remaining)
3882 return false;
3883 }
3884 }
3885 done:
3886 reset_ctrl_pos(lruvec, type, true);
3887 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3888
3889 return true;
3890 }
3891
try_to_inc_min_seq(struct lruvec * lruvec,int swappiness)3892 static bool try_to_inc_min_seq(struct lruvec *lruvec, int swappiness)
3893 {
3894 int gen, type, zone;
3895 bool success = false;
3896 bool seq_inc_flag = false;
3897 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3898 DEFINE_MIN_SEQ(lruvec);
3899
3900 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3901
3902 /* find the oldest populated generation */
3903 for_each_evictable_type(type, swappiness) {
3904 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3905 gen = lru_gen_from_seq(min_seq[type]);
3906
3907 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3908 if (!list_empty(&lrugen->folios[gen][type][zone]))
3909 goto next;
3910 }
3911
3912 min_seq[type]++;
3913 seq_inc_flag = true;
3914 }
3915 next:
3916 ;
3917 }
3918
3919 /*
3920 * If min_seq[type] of both anonymous and file is not increased,
3921 * we can directly return false to avoid unnecessary checking
3922 * overhead later.
3923 */
3924 if (!seq_inc_flag)
3925 return success;
3926
3927 /* see the comment on lru_gen_folio */
3928 if (swappiness && swappiness <= MAX_SWAPPINESS) {
3929 unsigned long seq = lrugen->max_seq - MIN_NR_GENS;
3930
3931 if (min_seq[LRU_GEN_ANON] > seq && min_seq[LRU_GEN_FILE] < seq)
3932 min_seq[LRU_GEN_ANON] = seq;
3933 else if (min_seq[LRU_GEN_FILE] > seq && min_seq[LRU_GEN_ANON] < seq)
3934 min_seq[LRU_GEN_FILE] = seq;
3935 }
3936
3937 for_each_evictable_type(type, swappiness) {
3938 if (min_seq[type] <= lrugen->min_seq[type])
3939 continue;
3940
3941 reset_ctrl_pos(lruvec, type, true);
3942 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3943 success = true;
3944 }
3945
3946 return success;
3947 }
3948
inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness)3949 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq, int swappiness)
3950 {
3951 bool success;
3952 int prev, next;
3953 int type, zone;
3954 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3955 restart:
3956 if (seq < READ_ONCE(lrugen->max_seq))
3957 return false;
3958
3959 spin_lock_irq(&lruvec->lru_lock);
3960
3961 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3962
3963 success = seq == lrugen->max_seq;
3964 if (!success)
3965 goto unlock;
3966
3967 for (type = 0; type < ANON_AND_FILE; type++) {
3968 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3969 continue;
3970
3971 if (inc_min_seq(lruvec, type, swappiness))
3972 continue;
3973
3974 spin_unlock_irq(&lruvec->lru_lock);
3975 cond_resched();
3976 goto restart;
3977 }
3978
3979 /*
3980 * Update the active/inactive LRU sizes for compatibility. Both sides of
3981 * the current max_seq need to be covered, since max_seq+1 can overlap
3982 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3983 * overlap, cold/hot inversion happens.
3984 */
3985 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3986 next = lru_gen_from_seq(lrugen->max_seq + 1);
3987
3988 for (type = 0; type < ANON_AND_FILE; type++) {
3989 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3990 enum lru_list lru = type * LRU_INACTIVE_FILE;
3991 long delta = lrugen->nr_pages[prev][type][zone] -
3992 lrugen->nr_pages[next][type][zone];
3993
3994 if (!delta)
3995 continue;
3996
3997 __update_lru_size(lruvec, lru, zone, delta);
3998 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3999 }
4000 }
4001
4002 for (type = 0; type < ANON_AND_FILE; type++)
4003 reset_ctrl_pos(lruvec, type, false);
4004
4005 WRITE_ONCE(lrugen->timestamps[next], jiffies);
4006 /* make sure preceding modifications appear */
4007 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
4008 unlock:
4009 spin_unlock_irq(&lruvec->lru_lock);
4010
4011 return success;
4012 }
4013
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)4014 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
4015 int swappiness, bool force_scan)
4016 {
4017 bool success;
4018 struct lru_gen_mm_walk *walk;
4019 struct mm_struct *mm = NULL;
4020 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4021 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4022
4023 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
4024
4025 if (!mm_state)
4026 return inc_max_seq(lruvec, seq, swappiness);
4027
4028 /* see the comment in iterate_mm_list() */
4029 if (seq <= READ_ONCE(mm_state->seq))
4030 return false;
4031
4032 /*
4033 * If the hardware doesn't automatically set the accessed bit, fallback
4034 * to lru_gen_look_around(), which only clears the accessed bit in a
4035 * handful of PTEs. Spreading the work out over a period of time usually
4036 * is less efficient, but it avoids bursty page faults.
4037 */
4038 if (!should_walk_mmu()) {
4039 success = iterate_mm_list_nowalk(lruvec, seq);
4040 goto done;
4041 }
4042
4043 walk = set_mm_walk(NULL, true);
4044 if (!walk) {
4045 success = iterate_mm_list_nowalk(lruvec, seq);
4046 goto done;
4047 }
4048
4049 walk->lruvec = lruvec;
4050 walk->seq = seq;
4051 walk->swappiness = swappiness;
4052 walk->force_scan = force_scan;
4053
4054 do {
4055 success = iterate_mm_list(walk, &mm);
4056 if (mm)
4057 walk_mm(mm, walk);
4058 } while (mm);
4059 done:
4060 if (success) {
4061 success = inc_max_seq(lruvec, seq, swappiness);
4062 WARN_ON_ONCE(!success);
4063 }
4064
4065 return success;
4066 }
4067
4068 /******************************************************************************
4069 * working set protection
4070 ******************************************************************************/
4071
set_initial_priority(struct pglist_data * pgdat,struct scan_control * sc)4072 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
4073 {
4074 int priority;
4075 unsigned long reclaimable;
4076
4077 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
4078 return;
4079 /*
4080 * Determine the initial priority based on
4081 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
4082 * where reclaimed_to_scanned_ratio = inactive / total.
4083 */
4084 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
4085 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
4086 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
4087
4088 /* round down reclaimable and round up sc->nr_to_reclaim */
4089 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
4090
4091 /*
4092 * The estimation is based on LRU pages only, so cap it to prevent
4093 * overshoots of shrinker objects by large margins.
4094 */
4095 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
4096 }
4097
lruvec_is_sizable(struct lruvec * lruvec,struct scan_control * sc)4098 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
4099 {
4100 int gen, type, zone;
4101 unsigned long total = 0;
4102 int swappiness = get_swappiness(lruvec, sc);
4103 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4104 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4105 DEFINE_MAX_SEQ(lruvec);
4106 DEFINE_MIN_SEQ(lruvec);
4107
4108 for_each_evictable_type(type, swappiness) {
4109 unsigned long seq;
4110
4111 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4112 gen = lru_gen_from_seq(seq);
4113
4114 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4115 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4116 }
4117 }
4118
4119 /* whether the size is big enough to be helpful */
4120 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
4121 }
4122
lruvec_is_reclaimable(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4123 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
4124 unsigned long min_ttl)
4125 {
4126 int gen;
4127 unsigned long birth;
4128 int swappiness = get_swappiness(lruvec, sc);
4129 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4130 DEFINE_MIN_SEQ(lruvec);
4131
4132 if (mem_cgroup_below_min(NULL, memcg))
4133 return false;
4134
4135 if (!lruvec_is_sizable(lruvec, sc))
4136 return false;
4137
4138 gen = lru_gen_from_seq(evictable_min_seq(min_seq, swappiness));
4139 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4140
4141 return time_is_before_jiffies(birth + min_ttl);
4142 }
4143
4144 /* to protect the working set of the last N jiffies */
4145 static unsigned long lru_gen_min_ttl __read_mostly;
4146
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4147 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4148 {
4149 struct mem_cgroup *memcg;
4150 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4151 bool reclaimable = !min_ttl;
4152
4153 VM_WARN_ON_ONCE(!current_is_kswapd());
4154
4155 set_initial_priority(pgdat, sc);
4156
4157 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4158 do {
4159 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4160
4161 mem_cgroup_calculate_protection(NULL, memcg);
4162
4163 if (!reclaimable)
4164 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4165 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4166
4167 /*
4168 * The main goal is to OOM kill if every generation from all memcgs is
4169 * younger than min_ttl. However, another possibility is all memcgs are
4170 * either too small or below min.
4171 */
4172 if (!reclaimable && mutex_trylock(&oom_lock)) {
4173 struct oom_control oc = {
4174 .gfp_mask = sc->gfp_mask,
4175 };
4176
4177 out_of_memory(&oc);
4178
4179 mutex_unlock(&oom_lock);
4180 }
4181 }
4182
4183 /******************************************************************************
4184 * rmap/PT walk feedback
4185 ******************************************************************************/
4186
4187 /*
4188 * This function exploits spatial locality when shrink_folio_list() walks the
4189 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4190 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4191 * the PTE table to the Bloom filter. This forms a feedback loop between the
4192 * eviction and the aging.
4193 */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4194 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4195 {
4196 int i;
4197 bool dirty;
4198 unsigned long start;
4199 unsigned long end;
4200 struct lru_gen_mm_walk *walk;
4201 struct folio *last = NULL;
4202 int young = 1;
4203 pte_t *pte = pvmw->pte;
4204 unsigned long addr = pvmw->address;
4205 struct vm_area_struct *vma = pvmw->vma;
4206 struct folio *folio = pfn_folio(pvmw->pfn);
4207 struct mem_cgroup *memcg = folio_memcg(folio);
4208 struct pglist_data *pgdat = folio_pgdat(folio);
4209 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4210 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4211 DEFINE_MAX_SEQ(lruvec);
4212 int gen = lru_gen_from_seq(max_seq);
4213
4214 lockdep_assert_held(pvmw->ptl);
4215 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4216
4217 if (!ptep_clear_young_notify(vma, addr, pte))
4218 return false;
4219
4220 if (spin_is_contended(pvmw->ptl))
4221 return true;
4222
4223 /* exclude special VMAs containing anon pages from COW */
4224 if (vma->vm_flags & VM_SPECIAL)
4225 return true;
4226
4227 /* avoid taking the LRU lock under the PTL when possible */
4228 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4229
4230 start = max(addr & PMD_MASK, vma->vm_start);
4231 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4232
4233 if (end - start == PAGE_SIZE)
4234 return true;
4235
4236 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4237 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4238 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4239 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4240 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4241 else {
4242 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4243 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4244 }
4245 }
4246
4247 arch_enter_lazy_mmu_mode();
4248
4249 pte -= (addr - start) / PAGE_SIZE;
4250
4251 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4252 unsigned long pfn;
4253 pte_t ptent = ptep_get(pte + i);
4254
4255 pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4256 if (pfn == -1)
4257 continue;
4258
4259 folio = get_pfn_folio(pfn, memcg, pgdat);
4260 if (!folio)
4261 continue;
4262
4263 if (!ptep_clear_young_notify(vma, addr, pte + i))
4264 continue;
4265
4266 if (last != folio) {
4267 walk_update_folio(walk, last, gen, dirty);
4268
4269 last = folio;
4270 dirty = false;
4271 }
4272
4273 if (pte_dirty(ptent))
4274 dirty = true;
4275
4276 young++;
4277 }
4278
4279 walk_update_folio(walk, last, gen, dirty);
4280
4281 arch_leave_lazy_mmu_mode();
4282
4283 /* feedback from rmap walkers to page table walkers */
4284 if (mm_state && suitable_to_scan(i, young))
4285 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4286
4287 return true;
4288 }
4289
4290 /******************************************************************************
4291 * memcg LRU
4292 ******************************************************************************/
4293
4294 /* see the comment on MEMCG_NR_GENS */
4295 enum {
4296 MEMCG_LRU_NOP,
4297 MEMCG_LRU_HEAD,
4298 MEMCG_LRU_TAIL,
4299 MEMCG_LRU_OLD,
4300 MEMCG_LRU_YOUNG,
4301 };
4302
lru_gen_rotate_memcg(struct lruvec * lruvec,int op)4303 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4304 {
4305 int seg;
4306 int old, new;
4307 unsigned long flags;
4308 int bin = get_random_u32_below(MEMCG_NR_BINS);
4309 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4310
4311 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4312
4313 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4314
4315 seg = 0;
4316 new = old = lruvec->lrugen.gen;
4317
4318 /* see the comment on MEMCG_NR_GENS */
4319 if (op == MEMCG_LRU_HEAD)
4320 seg = MEMCG_LRU_HEAD;
4321 else if (op == MEMCG_LRU_TAIL)
4322 seg = MEMCG_LRU_TAIL;
4323 else if (op == MEMCG_LRU_OLD)
4324 new = get_memcg_gen(pgdat->memcg_lru.seq);
4325 else if (op == MEMCG_LRU_YOUNG)
4326 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4327 else
4328 VM_WARN_ON_ONCE(true);
4329
4330 WRITE_ONCE(lruvec->lrugen.seg, seg);
4331 WRITE_ONCE(lruvec->lrugen.gen, new);
4332
4333 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4334
4335 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4336 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4337 else
4338 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4339
4340 pgdat->memcg_lru.nr_memcgs[old]--;
4341 pgdat->memcg_lru.nr_memcgs[new]++;
4342
4343 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4344 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4345
4346 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4347 }
4348
4349 #ifdef CONFIG_MEMCG
4350
lru_gen_online_memcg(struct mem_cgroup * memcg)4351 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4352 {
4353 int gen;
4354 int nid;
4355 int bin = get_random_u32_below(MEMCG_NR_BINS);
4356
4357 for_each_node(nid) {
4358 struct pglist_data *pgdat = NODE_DATA(nid);
4359 struct lruvec *lruvec = get_lruvec(memcg, nid);
4360
4361 spin_lock_irq(&pgdat->memcg_lru.lock);
4362
4363 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4364
4365 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4366
4367 lruvec->lrugen.gen = gen;
4368
4369 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4370 pgdat->memcg_lru.nr_memcgs[gen]++;
4371
4372 spin_unlock_irq(&pgdat->memcg_lru.lock);
4373 }
4374 }
4375
lru_gen_offline_memcg(struct mem_cgroup * memcg)4376 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4377 {
4378 int nid;
4379
4380 for_each_node(nid) {
4381 struct lruvec *lruvec = get_lruvec(memcg, nid);
4382
4383 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4384 }
4385 }
4386
lru_gen_release_memcg(struct mem_cgroup * memcg)4387 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4388 {
4389 int gen;
4390 int nid;
4391
4392 for_each_node(nid) {
4393 struct pglist_data *pgdat = NODE_DATA(nid);
4394 struct lruvec *lruvec = get_lruvec(memcg, nid);
4395
4396 spin_lock_irq(&pgdat->memcg_lru.lock);
4397
4398 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4399 goto unlock;
4400
4401 gen = lruvec->lrugen.gen;
4402
4403 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4404 pgdat->memcg_lru.nr_memcgs[gen]--;
4405
4406 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4407 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4408 unlock:
4409 spin_unlock_irq(&pgdat->memcg_lru.lock);
4410 }
4411 }
4412
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)4413 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4414 {
4415 struct lruvec *lruvec = get_lruvec(memcg, nid);
4416
4417 /* see the comment on MEMCG_NR_GENS */
4418 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4419 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4420 }
4421
4422 #endif /* CONFIG_MEMCG */
4423
4424 /******************************************************************************
4425 * the eviction
4426 ******************************************************************************/
4427
sort_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc,int tier_idx)4428 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4429 int tier_idx)
4430 {
4431 bool success;
4432 bool dirty, writeback;
4433 int gen = folio_lru_gen(folio);
4434 int type = folio_is_file_lru(folio);
4435 int zone = folio_zonenum(folio);
4436 int delta = folio_nr_pages(folio);
4437 int refs = folio_lru_refs(folio);
4438 bool workingset = folio_test_workingset(folio);
4439 int tier = lru_tier_from_refs(refs, workingset);
4440 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4441
4442 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4443
4444 /* unevictable */
4445 if (!folio_evictable(folio)) {
4446 success = lru_gen_del_folio(lruvec, folio, true);
4447 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4448 folio_set_unevictable(folio);
4449 lruvec_add_folio(lruvec, folio);
4450 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4451 return true;
4452 }
4453
4454 /* promoted */
4455 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4456 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4457 return true;
4458 }
4459
4460 /* protected */
4461 if (tier > tier_idx || refs + workingset == BIT(LRU_REFS_WIDTH) + 1) {
4462 gen = folio_inc_gen(lruvec, folio, false);
4463 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4464
4465 /* don't count the workingset being lazily promoted */
4466 if (refs + workingset != BIT(LRU_REFS_WIDTH) + 1) {
4467 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4468
4469 WRITE_ONCE(lrugen->protected[hist][type][tier],
4470 lrugen->protected[hist][type][tier] + delta);
4471 }
4472 return true;
4473 }
4474
4475 /* ineligible */
4476 if (zone > sc->reclaim_idx) {
4477 gen = folio_inc_gen(lruvec, folio, false);
4478 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4479 return true;
4480 }
4481
4482 dirty = folio_test_dirty(folio);
4483 writeback = folio_test_writeback(folio);
4484 if (type == LRU_GEN_FILE && dirty) {
4485 sc->nr.file_taken += delta;
4486 if (!writeback)
4487 sc->nr.unqueued_dirty += delta;
4488 }
4489
4490 /* waiting for writeback */
4491 if (writeback || (type == LRU_GEN_FILE && dirty)) {
4492 gen = folio_inc_gen(lruvec, folio, true);
4493 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4494 return true;
4495 }
4496
4497 return false;
4498 }
4499
isolate_folio(struct lruvec * lruvec,struct folio * folio,struct scan_control * sc)4500 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4501 {
4502 bool success;
4503
4504 /* swap constrained */
4505 if (!(sc->gfp_mask & __GFP_IO) &&
4506 (folio_test_dirty(folio) ||
4507 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4508 return false;
4509
4510 /* raced with release_pages() */
4511 if (!folio_try_get(folio))
4512 return false;
4513
4514 /* raced with another isolation */
4515 if (!folio_test_clear_lru(folio)) {
4516 folio_put(folio);
4517 return false;
4518 }
4519
4520 /* see the comment on LRU_REFS_FLAGS */
4521 if (!folio_test_referenced(folio))
4522 set_mask_bits(&folio->flags.f, LRU_REFS_MASK, 0);
4523
4524 /* for shrink_folio_list() */
4525 folio_clear_reclaim(folio);
4526
4527 success = lru_gen_del_folio(lruvec, folio, true);
4528 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4529
4530 return true;
4531 }
4532
scan_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4533 static int scan_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4534 struct scan_control *sc, int type, int tier,
4535 struct list_head *list)
4536 {
4537 int i;
4538 int gen;
4539 enum vm_event_item item;
4540 int sorted = 0;
4541 int scanned = 0;
4542 int isolated = 0;
4543 int skipped = 0;
4544 int scan_batch = min(nr_to_scan, MAX_LRU_BATCH);
4545 int remaining = scan_batch;
4546 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4547 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4548
4549 VM_WARN_ON_ONCE(!list_empty(list));
4550
4551 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4552 return 0;
4553
4554 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4555
4556 for (i = MAX_NR_ZONES; i > 0; i--) {
4557 LIST_HEAD(moved);
4558 int skipped_zone = 0;
4559 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4560 struct list_head *head = &lrugen->folios[gen][type][zone];
4561
4562 while (!list_empty(head)) {
4563 struct folio *folio = lru_to_folio(head);
4564 int delta = folio_nr_pages(folio);
4565
4566 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4567 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4568 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4569 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4570
4571 scanned += delta;
4572
4573 if (sort_folio(lruvec, folio, sc, tier))
4574 sorted += delta;
4575 else if (isolate_folio(lruvec, folio, sc)) {
4576 list_add(&folio->lru, list);
4577 isolated += delta;
4578 } else {
4579 list_move(&folio->lru, &moved);
4580 skipped_zone += delta;
4581 }
4582
4583 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4584 break;
4585 }
4586
4587 if (skipped_zone) {
4588 list_splice(&moved, head);
4589 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4590 skipped += skipped_zone;
4591 }
4592
4593 if (!remaining || isolated >= MIN_LRU_BATCH)
4594 break;
4595 }
4596
4597 item = PGSCAN_KSWAPD + reclaimer_offset(sc);
4598 if (!cgroup_reclaim(sc)) {
4599 __count_vm_events(item, isolated);
4600 __count_vm_events(PGREFILL, sorted);
4601 }
4602 count_memcg_events(memcg, item, isolated);
4603 count_memcg_events(memcg, PGREFILL, sorted);
4604 __count_vm_events(PGSCAN_ANON + type, isolated);
4605 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, scan_batch,
4606 scanned, skipped, isolated,
4607 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4608 if (type == LRU_GEN_FILE)
4609 sc->nr.file_taken += isolated;
4610 /*
4611 * There might not be eligible folios due to reclaim_idx. Check the
4612 * remaining to prevent livelock if it's not making progress.
4613 */
4614 return isolated || !remaining ? scanned : 0;
4615 }
4616
get_tier_idx(struct lruvec * lruvec,int type)4617 static int get_tier_idx(struct lruvec *lruvec, int type)
4618 {
4619 int tier;
4620 struct ctrl_pos sp, pv;
4621
4622 /*
4623 * To leave a margin for fluctuations, use a larger gain factor (2:3).
4624 * This value is chosen because any other tier would have at least twice
4625 * as many refaults as the first tier.
4626 */
4627 read_ctrl_pos(lruvec, type, 0, 2, &sp);
4628 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4629 read_ctrl_pos(lruvec, type, tier, 3, &pv);
4630 if (!positive_ctrl_err(&sp, &pv))
4631 break;
4632 }
4633
4634 return tier - 1;
4635 }
4636
get_type_to_scan(struct lruvec * lruvec,int swappiness)4637 static int get_type_to_scan(struct lruvec *lruvec, int swappiness)
4638 {
4639 struct ctrl_pos sp, pv;
4640
4641 if (swappiness <= MIN_SWAPPINESS + 1)
4642 return LRU_GEN_FILE;
4643
4644 if (swappiness >= MAX_SWAPPINESS)
4645 return LRU_GEN_ANON;
4646 /*
4647 * Compare the sum of all tiers of anon with that of file to determine
4648 * which type to scan.
4649 */
4650 read_ctrl_pos(lruvec, LRU_GEN_ANON, MAX_NR_TIERS, swappiness, &sp);
4651 read_ctrl_pos(lruvec, LRU_GEN_FILE, MAX_NR_TIERS, MAX_SWAPPINESS - swappiness, &pv);
4652
4653 return positive_ctrl_err(&sp, &pv);
4654 }
4655
isolate_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4656 static int isolate_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4657 struct scan_control *sc, int swappiness,
4658 int *type_scanned, struct list_head *list)
4659 {
4660 int i;
4661 int type = get_type_to_scan(lruvec, swappiness);
4662
4663 for_each_evictable_type(i, swappiness) {
4664 int scanned;
4665 int tier = get_tier_idx(lruvec, type);
4666
4667 *type_scanned = type;
4668
4669 scanned = scan_folios(nr_to_scan, lruvec, sc, type, tier, list);
4670 if (scanned)
4671 return scanned;
4672
4673 type = !type;
4674 }
4675
4676 return 0;
4677 }
4678
evict_folios(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,int swappiness)4679 static int evict_folios(unsigned long nr_to_scan, struct lruvec *lruvec,
4680 struct scan_control *sc, int swappiness)
4681 {
4682 int type;
4683 int scanned;
4684 int reclaimed;
4685 LIST_HEAD(list);
4686 LIST_HEAD(clean);
4687 struct folio *folio;
4688 struct folio *next;
4689 enum vm_event_item item;
4690 struct reclaim_stat stat;
4691 struct lru_gen_mm_walk *walk;
4692 bool skip_retry = false;
4693 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4694 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4695 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4696
4697 spin_lock_irq(&lruvec->lru_lock);
4698
4699 scanned = isolate_folios(nr_to_scan, lruvec, sc, swappiness, &type, &list);
4700
4701 scanned += try_to_inc_min_seq(lruvec, swappiness);
4702
4703 if (evictable_min_seq(lrugen->min_seq, swappiness) + MIN_NR_GENS > lrugen->max_seq)
4704 scanned = 0;
4705
4706 spin_unlock_irq(&lruvec->lru_lock);
4707
4708 if (list_empty(&list))
4709 return scanned;
4710 retry:
4711 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false, memcg);
4712 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4713 sc->nr_reclaimed += reclaimed;
4714 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4715 scanned, reclaimed, &stat, sc->priority,
4716 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4717
4718 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4719 DEFINE_MIN_SEQ(lruvec);
4720
4721 if (!folio_evictable(folio)) {
4722 list_del(&folio->lru);
4723 folio_putback_lru(folio);
4724 continue;
4725 }
4726
4727 /* retry folios that may have missed folio_rotate_reclaimable() */
4728 if (!skip_retry && !folio_test_active(folio) && !folio_mapped(folio) &&
4729 !folio_test_dirty(folio) && !folio_test_writeback(folio)) {
4730 list_move(&folio->lru, &clean);
4731 continue;
4732 }
4733
4734 /* don't add rejected folios to the oldest generation */
4735 if (lru_gen_folio_seq(lruvec, folio, false) == min_seq[type])
4736 set_mask_bits(&folio->flags.f, LRU_REFS_FLAGS, BIT(PG_active));
4737 }
4738
4739 spin_lock_irq(&lruvec->lru_lock);
4740
4741 move_folios_to_lru(lruvec, &list);
4742
4743 walk = current->reclaim_state->mm_walk;
4744 if (walk && walk->batched) {
4745 walk->lruvec = lruvec;
4746 reset_batch_size(walk);
4747 }
4748
4749 mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(sc),
4750 stat.nr_demoted);
4751
4752 item = PGSTEAL_KSWAPD + reclaimer_offset(sc);
4753 if (!cgroup_reclaim(sc))
4754 __count_vm_events(item, reclaimed);
4755 count_memcg_events(memcg, item, reclaimed);
4756 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4757
4758 spin_unlock_irq(&lruvec->lru_lock);
4759
4760 list_splice_init(&clean, &list);
4761
4762 if (!list_empty(&list)) {
4763 skip_retry = true;
4764 goto retry;
4765 }
4766
4767 return scanned;
4768 }
4769
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,int swappiness,unsigned long * nr_to_scan)4770 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4771 int swappiness, unsigned long *nr_to_scan)
4772 {
4773 int gen, type, zone;
4774 unsigned long size = 0;
4775 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4776 DEFINE_MIN_SEQ(lruvec);
4777
4778 *nr_to_scan = 0;
4779 /* have to run aging, since eviction is not possible anymore */
4780 if (evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS > max_seq)
4781 return true;
4782
4783 for_each_evictable_type(type, swappiness) {
4784 unsigned long seq;
4785
4786 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4787 gen = lru_gen_from_seq(seq);
4788
4789 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4790 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4791 }
4792 }
4793
4794 *nr_to_scan = size;
4795 /* better to run aging even though eviction is still possible */
4796 return evictable_min_seq(min_seq, swappiness) + MIN_NR_GENS == max_seq;
4797 }
4798
4799 /*
4800 * For future optimizations:
4801 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4802 * reclaim.
4803 */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,int swappiness)4804 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4805 {
4806 bool success;
4807 unsigned long nr_to_scan;
4808 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4809 DEFINE_MAX_SEQ(lruvec);
4810
4811 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4812 return -1;
4813
4814 success = should_run_aging(lruvec, max_seq, swappiness, &nr_to_scan);
4815
4816 /* try to scrape all its memory if this memcg was deleted */
4817 if (nr_to_scan && !mem_cgroup_online(memcg))
4818 return nr_to_scan;
4819
4820 nr_to_scan = apply_proportional_protection(memcg, sc, nr_to_scan);
4821
4822 /* try to get away with not aging at the default priority */
4823 if (!success || sc->priority == DEF_PRIORITY)
4824 return nr_to_scan >> sc->priority;
4825
4826 /* stop scanning this lruvec as it's low on cold folios */
4827 return try_to_inc_max_seq(lruvec, max_seq, swappiness, false) ? -1 : 0;
4828 }
4829
should_abort_scan(struct lruvec * lruvec,struct scan_control * sc)4830 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4831 {
4832 int i;
4833 enum zone_watermarks mark;
4834
4835 /* don't abort memcg reclaim to ensure fairness */
4836 if (!root_reclaim(sc))
4837 return false;
4838
4839 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4840 return true;
4841
4842 /* check the order to exclude compaction-induced reclaim */
4843 if (!current_is_kswapd() || sc->order)
4844 return false;
4845
4846 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4847 WMARK_PROMO : WMARK_HIGH;
4848
4849 for (i = 0; i <= sc->reclaim_idx; i++) {
4850 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4851 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4852
4853 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4854 return false;
4855 }
4856
4857 /* kswapd should abort if all eligible zones are safe */
4858 return true;
4859 }
4860
try_to_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4861 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4862 {
4863 long nr_to_scan;
4864 unsigned long scanned = 0;
4865 int swappiness = get_swappiness(lruvec, sc);
4866
4867 while (true) {
4868 int delta;
4869
4870 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4871 if (nr_to_scan <= 0)
4872 break;
4873
4874 delta = evict_folios(nr_to_scan, lruvec, sc, swappiness);
4875 if (!delta)
4876 break;
4877
4878 scanned += delta;
4879 if (scanned >= nr_to_scan)
4880 break;
4881
4882 if (should_abort_scan(lruvec, sc))
4883 break;
4884
4885 cond_resched();
4886 }
4887
4888 /*
4889 * If too many file cache in the coldest generation can't be evicted
4890 * due to being dirty, wake up the flusher.
4891 */
4892 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4893 wakeup_flusher_threads(WB_REASON_VMSCAN);
4894
4895 /* whether this lruvec should be rotated */
4896 return nr_to_scan < 0;
4897 }
4898
shrink_one(struct lruvec * lruvec,struct scan_control * sc)4899 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4900 {
4901 bool success;
4902 unsigned long scanned = sc->nr_scanned;
4903 unsigned long reclaimed = sc->nr_reclaimed;
4904 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4905 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4906
4907 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4908 if (mem_cgroup_below_min(NULL, memcg))
4909 return MEMCG_LRU_YOUNG;
4910
4911 if (mem_cgroup_below_low(NULL, memcg)) {
4912 /* see the comment on MEMCG_NR_GENS */
4913 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4914 return MEMCG_LRU_TAIL;
4915
4916 memcg_memory_event(memcg, MEMCG_LOW);
4917 }
4918
4919 success = try_to_shrink_lruvec(lruvec, sc);
4920
4921 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4922
4923 if (!sc->proactive)
4924 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4925 sc->nr_reclaimed - reclaimed);
4926
4927 flush_reclaim_state(sc);
4928
4929 if (success && mem_cgroup_online(memcg))
4930 return MEMCG_LRU_YOUNG;
4931
4932 if (!success && lruvec_is_sizable(lruvec, sc))
4933 return 0;
4934
4935 /* one retry if offlined or too small */
4936 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4937 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4938 }
4939
shrink_many(struct pglist_data * pgdat,struct scan_control * sc)4940 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4941 {
4942 int op;
4943 int gen;
4944 int bin;
4945 int first_bin;
4946 struct lruvec *lruvec;
4947 struct lru_gen_folio *lrugen;
4948 struct mem_cgroup *memcg;
4949 struct hlist_nulls_node *pos;
4950
4951 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4952 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4953 restart:
4954 op = 0;
4955 memcg = NULL;
4956
4957 rcu_read_lock();
4958
4959 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4960 if (op) {
4961 lru_gen_rotate_memcg(lruvec, op);
4962 op = 0;
4963 }
4964
4965 mem_cgroup_put(memcg);
4966 memcg = NULL;
4967
4968 if (gen != READ_ONCE(lrugen->gen))
4969 continue;
4970
4971 lruvec = container_of(lrugen, struct lruvec, lrugen);
4972 memcg = lruvec_memcg(lruvec);
4973
4974 if (!mem_cgroup_tryget(memcg)) {
4975 lru_gen_release_memcg(memcg);
4976 memcg = NULL;
4977 continue;
4978 }
4979
4980 rcu_read_unlock();
4981
4982 op = shrink_one(lruvec, sc);
4983
4984 rcu_read_lock();
4985
4986 if (should_abort_scan(lruvec, sc))
4987 break;
4988 }
4989
4990 rcu_read_unlock();
4991
4992 if (op)
4993 lru_gen_rotate_memcg(lruvec, op);
4994
4995 mem_cgroup_put(memcg);
4996
4997 if (!is_a_nulls(pos))
4998 return;
4999
5000 /* restart if raced with lru_gen_rotate_memcg() */
5001 if (gen != get_nulls_value(pos))
5002 goto restart;
5003
5004 /* try the rest of the bins of the current generation */
5005 bin = get_memcg_bin(bin + 1);
5006 if (bin != first_bin)
5007 goto restart;
5008 }
5009
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5010 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5011 {
5012 struct blk_plug plug;
5013
5014 VM_WARN_ON_ONCE(root_reclaim(sc));
5015 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
5016
5017 lru_add_drain();
5018
5019 blk_start_plug(&plug);
5020
5021 set_mm_walk(NULL, sc->proactive);
5022
5023 if (try_to_shrink_lruvec(lruvec, sc))
5024 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
5025
5026 clear_mm_walk();
5027
5028 blk_finish_plug(&plug);
5029 }
5030
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5031 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5032 {
5033 struct blk_plug plug;
5034 unsigned long reclaimed = sc->nr_reclaimed;
5035
5036 VM_WARN_ON_ONCE(!root_reclaim(sc));
5037
5038 /*
5039 * Unmapped clean folios are already prioritized. Scanning for more of
5040 * them is likely futile and can cause high reclaim latency when there
5041 * is a large number of memcgs.
5042 */
5043 if (!sc->may_writepage || !sc->may_unmap)
5044 goto done;
5045
5046 lru_add_drain();
5047
5048 blk_start_plug(&plug);
5049
5050 set_mm_walk(pgdat, sc->proactive);
5051
5052 set_initial_priority(pgdat, sc);
5053
5054 if (current_is_kswapd())
5055 sc->nr_reclaimed = 0;
5056
5057 if (mem_cgroup_disabled())
5058 shrink_one(&pgdat->__lruvec, sc);
5059 else
5060 shrink_many(pgdat, sc);
5061
5062 if (current_is_kswapd())
5063 sc->nr_reclaimed += reclaimed;
5064
5065 clear_mm_walk();
5066
5067 blk_finish_plug(&plug);
5068 done:
5069 if (sc->nr_reclaimed > reclaimed)
5070 atomic_set(&pgdat->kswapd_failures, 0);
5071 }
5072
5073 /******************************************************************************
5074 * state change
5075 ******************************************************************************/
5076
state_is_valid(struct lruvec * lruvec)5077 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5078 {
5079 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5080
5081 if (lrugen->enabled) {
5082 enum lru_list lru;
5083
5084 for_each_evictable_lru(lru) {
5085 if (!list_empty(&lruvec->lists[lru]))
5086 return false;
5087 }
5088 } else {
5089 int gen, type, zone;
5090
5091 for_each_gen_type_zone(gen, type, zone) {
5092 if (!list_empty(&lrugen->folios[gen][type][zone]))
5093 return false;
5094 }
5095 }
5096
5097 return true;
5098 }
5099
fill_evictable(struct lruvec * lruvec)5100 static bool fill_evictable(struct lruvec *lruvec)
5101 {
5102 enum lru_list lru;
5103 int remaining = MAX_LRU_BATCH;
5104
5105 for_each_evictable_lru(lru) {
5106 int type = is_file_lru(lru);
5107 bool active = is_active_lru(lru);
5108 struct list_head *head = &lruvec->lists[lru];
5109
5110 while (!list_empty(head)) {
5111 bool success;
5112 struct folio *folio = lru_to_folio(head);
5113
5114 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5115 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5116 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5117 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5118
5119 lruvec_del_folio(lruvec, folio);
5120 success = lru_gen_add_folio(lruvec, folio, false);
5121 VM_WARN_ON_ONCE(!success);
5122
5123 if (!--remaining)
5124 return false;
5125 }
5126 }
5127
5128 return true;
5129 }
5130
drain_evictable(struct lruvec * lruvec)5131 static bool drain_evictable(struct lruvec *lruvec)
5132 {
5133 int gen, type, zone;
5134 int remaining = MAX_LRU_BATCH;
5135
5136 for_each_gen_type_zone(gen, type, zone) {
5137 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5138
5139 while (!list_empty(head)) {
5140 bool success;
5141 struct folio *folio = lru_to_folio(head);
5142
5143 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5144 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5145 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5146 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5147
5148 success = lru_gen_del_folio(lruvec, folio, false);
5149 VM_WARN_ON_ONCE(!success);
5150 lruvec_add_folio(lruvec, folio);
5151
5152 if (!--remaining)
5153 return false;
5154 }
5155 }
5156
5157 return true;
5158 }
5159
lru_gen_change_state(bool enabled)5160 static void lru_gen_change_state(bool enabled)
5161 {
5162 static DEFINE_MUTEX(state_mutex);
5163
5164 struct mem_cgroup *memcg;
5165
5166 cgroup_lock();
5167 cpus_read_lock();
5168 get_online_mems();
5169 mutex_lock(&state_mutex);
5170
5171 if (enabled == lru_gen_enabled())
5172 goto unlock;
5173
5174 if (enabled)
5175 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5176 else
5177 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5178
5179 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5180 do {
5181 int nid;
5182
5183 for_each_node(nid) {
5184 struct lruvec *lruvec = get_lruvec(memcg, nid);
5185
5186 spin_lock_irq(&lruvec->lru_lock);
5187
5188 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5189 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5190
5191 lruvec->lrugen.enabled = enabled;
5192
5193 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5194 spin_unlock_irq(&lruvec->lru_lock);
5195 cond_resched();
5196 spin_lock_irq(&lruvec->lru_lock);
5197 }
5198
5199 spin_unlock_irq(&lruvec->lru_lock);
5200 }
5201
5202 cond_resched();
5203 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5204 unlock:
5205 mutex_unlock(&state_mutex);
5206 put_online_mems();
5207 cpus_read_unlock();
5208 cgroup_unlock();
5209 }
5210
5211 /******************************************************************************
5212 * sysfs interface
5213 ******************************************************************************/
5214
min_ttl_ms_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5215 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5216 {
5217 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5218 }
5219
5220 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
min_ttl_ms_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5221 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5222 const char *buf, size_t len)
5223 {
5224 unsigned int msecs;
5225
5226 if (kstrtouint(buf, 0, &msecs))
5227 return -EINVAL;
5228
5229 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5230
5231 return len;
5232 }
5233
5234 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5235
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5236 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5237 {
5238 unsigned int caps = 0;
5239
5240 if (get_cap(LRU_GEN_CORE))
5241 caps |= BIT(LRU_GEN_CORE);
5242
5243 if (should_walk_mmu())
5244 caps |= BIT(LRU_GEN_MM_WALK);
5245
5246 if (should_clear_pmd_young())
5247 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5248
5249 return sysfs_emit(buf, "0x%04x\n", caps);
5250 }
5251
5252 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)5253 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5254 const char *buf, size_t len)
5255 {
5256 int i;
5257 unsigned int caps;
5258
5259 if (tolower(*buf) == 'n')
5260 caps = 0;
5261 else if (tolower(*buf) == 'y')
5262 caps = -1;
5263 else if (kstrtouint(buf, 0, &caps))
5264 return -EINVAL;
5265
5266 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5267 bool enabled = caps & BIT(i);
5268
5269 if (i == LRU_GEN_CORE)
5270 lru_gen_change_state(enabled);
5271 else if (enabled)
5272 static_branch_enable(&lru_gen_caps[i]);
5273 else
5274 static_branch_disable(&lru_gen_caps[i]);
5275 }
5276
5277 return len;
5278 }
5279
5280 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5281
5282 static struct attribute *lru_gen_attrs[] = {
5283 &lru_gen_min_ttl_attr.attr,
5284 &lru_gen_enabled_attr.attr,
5285 NULL
5286 };
5287
5288 static const struct attribute_group lru_gen_attr_group = {
5289 .name = "lru_gen",
5290 .attrs = lru_gen_attrs,
5291 };
5292
5293 /******************************************************************************
5294 * debugfs interface
5295 ******************************************************************************/
5296
lru_gen_seq_start(struct seq_file * m,loff_t * pos)5297 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5298 {
5299 struct mem_cgroup *memcg;
5300 loff_t nr_to_skip = *pos;
5301
5302 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5303 if (!m->private)
5304 return ERR_PTR(-ENOMEM);
5305
5306 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5307 do {
5308 int nid;
5309
5310 for_each_node_state(nid, N_MEMORY) {
5311 if (!nr_to_skip--)
5312 return get_lruvec(memcg, nid);
5313 }
5314 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5315
5316 return NULL;
5317 }
5318
lru_gen_seq_stop(struct seq_file * m,void * v)5319 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5320 {
5321 if (!IS_ERR_OR_NULL(v))
5322 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5323
5324 kvfree(m->private);
5325 m->private = NULL;
5326 }
5327
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5328 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5329 {
5330 int nid = lruvec_pgdat(v)->node_id;
5331 struct mem_cgroup *memcg = lruvec_memcg(v);
5332
5333 ++*pos;
5334
5335 nid = next_memory_node(nid);
5336 if (nid == MAX_NUMNODES) {
5337 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5338 if (!memcg)
5339 return NULL;
5340
5341 nid = first_memory_node;
5342 }
5343
5344 return get_lruvec(memcg, nid);
5345 }
5346
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5347 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5348 unsigned long max_seq, unsigned long *min_seq,
5349 unsigned long seq)
5350 {
5351 int i;
5352 int type, tier;
5353 int hist = lru_hist_from_seq(seq);
5354 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5355 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5356
5357 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5358 seq_printf(m, " %10d", tier);
5359 for (type = 0; type < ANON_AND_FILE; type++) {
5360 const char *s = "xxx";
5361 unsigned long n[3] = {};
5362
5363 if (seq == max_seq) {
5364 s = "RTx";
5365 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5366 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5367 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5368 s = "rep";
5369 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5370 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5371 n[2] = READ_ONCE(lrugen->protected[hist][type][tier]);
5372 }
5373
5374 for (i = 0; i < 3; i++)
5375 seq_printf(m, " %10lu%c", n[i], s[i]);
5376 }
5377 seq_putc(m, '\n');
5378 }
5379
5380 if (!mm_state)
5381 return;
5382
5383 seq_puts(m, " ");
5384 for (i = 0; i < NR_MM_STATS; i++) {
5385 const char *s = "xxxx";
5386 unsigned long n = 0;
5387
5388 if (seq == max_seq && NR_HIST_GENS == 1) {
5389 s = "TYFA";
5390 n = READ_ONCE(mm_state->stats[hist][i]);
5391 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5392 s = "tyfa";
5393 n = READ_ONCE(mm_state->stats[hist][i]);
5394 }
5395
5396 seq_printf(m, " %10lu%c", n, s[i]);
5397 }
5398 seq_putc(m, '\n');
5399 }
5400
5401 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5402 static int lru_gen_seq_show(struct seq_file *m, void *v)
5403 {
5404 unsigned long seq;
5405 bool full = debugfs_get_aux_num(m->file);
5406 struct lruvec *lruvec = v;
5407 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5408 int nid = lruvec_pgdat(lruvec)->node_id;
5409 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5410 DEFINE_MAX_SEQ(lruvec);
5411 DEFINE_MIN_SEQ(lruvec);
5412
5413 if (nid == first_memory_node) {
5414 const char *path = memcg ? m->private : "";
5415
5416 #ifdef CONFIG_MEMCG
5417 if (memcg)
5418 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5419 #endif
5420 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5421 }
5422
5423 seq_printf(m, " node %5d\n", nid);
5424
5425 if (!full)
5426 seq = evictable_min_seq(min_seq, MAX_SWAPPINESS / 2);
5427 else if (max_seq >= MAX_NR_GENS)
5428 seq = max_seq - MAX_NR_GENS + 1;
5429 else
5430 seq = 0;
5431
5432 for (; seq <= max_seq; seq++) {
5433 int type, zone;
5434 int gen = lru_gen_from_seq(seq);
5435 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5436
5437 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5438
5439 for (type = 0; type < ANON_AND_FILE; type++) {
5440 unsigned long size = 0;
5441 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5442
5443 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5444 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5445
5446 seq_printf(m, " %10lu%c", size, mark);
5447 }
5448
5449 seq_putc(m, '\n');
5450
5451 if (full)
5452 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5453 }
5454
5455 return 0;
5456 }
5457
5458 static const struct seq_operations lru_gen_seq_ops = {
5459 .start = lru_gen_seq_start,
5460 .stop = lru_gen_seq_stop,
5461 .next = lru_gen_seq_next,
5462 .show = lru_gen_seq_show,
5463 };
5464
run_aging(struct lruvec * lruvec,unsigned long seq,int swappiness,bool force_scan)5465 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5466 int swappiness, bool force_scan)
5467 {
5468 DEFINE_MAX_SEQ(lruvec);
5469
5470 if (seq > max_seq)
5471 return -EINVAL;
5472
5473 return try_to_inc_max_seq(lruvec, max_seq, swappiness, force_scan) ? 0 : -EEXIST;
5474 }
5475
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5476 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5477 int swappiness, unsigned long nr_to_reclaim)
5478 {
5479 DEFINE_MAX_SEQ(lruvec);
5480
5481 if (seq + MIN_NR_GENS > max_seq)
5482 return -EINVAL;
5483
5484 sc->nr_reclaimed = 0;
5485
5486 while (!signal_pending(current)) {
5487 DEFINE_MIN_SEQ(lruvec);
5488
5489 if (seq < evictable_min_seq(min_seq, swappiness))
5490 return 0;
5491
5492 if (sc->nr_reclaimed >= nr_to_reclaim)
5493 return 0;
5494
5495 if (!evict_folios(nr_to_reclaim - sc->nr_reclaimed, lruvec, sc,
5496 swappiness))
5497 return 0;
5498
5499 cond_resched();
5500 }
5501
5502 return -EINTR;
5503 }
5504
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5505 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5506 struct scan_control *sc, int swappiness, unsigned long opt)
5507 {
5508 struct lruvec *lruvec;
5509 int err = -EINVAL;
5510 struct mem_cgroup *memcg = NULL;
5511
5512 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5513 return -EINVAL;
5514
5515 if (!mem_cgroup_disabled()) {
5516 rcu_read_lock();
5517
5518 memcg = mem_cgroup_from_id(memcg_id);
5519 if (!mem_cgroup_tryget(memcg))
5520 memcg = NULL;
5521
5522 rcu_read_unlock();
5523
5524 if (!memcg)
5525 return -EINVAL;
5526 }
5527
5528 if (memcg_id != mem_cgroup_id(memcg))
5529 goto done;
5530
5531 sc->target_mem_cgroup = memcg;
5532 lruvec = get_lruvec(memcg, nid);
5533
5534 if (swappiness < MIN_SWAPPINESS)
5535 swappiness = get_swappiness(lruvec, sc);
5536 else if (swappiness > SWAPPINESS_ANON_ONLY)
5537 goto done;
5538
5539 switch (cmd) {
5540 case '+':
5541 err = run_aging(lruvec, seq, swappiness, opt);
5542 break;
5543 case '-':
5544 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5545 break;
5546 }
5547 done:
5548 mem_cgroup_put(memcg);
5549
5550 return err;
5551 }
5552
5553 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5554 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5555 size_t len, loff_t *pos)
5556 {
5557 void *buf;
5558 char *cur, *next;
5559 unsigned int flags;
5560 struct blk_plug plug;
5561 int err = -EINVAL;
5562 struct scan_control sc = {
5563 .may_writepage = true,
5564 .may_unmap = true,
5565 .may_swap = true,
5566 .reclaim_idx = MAX_NR_ZONES - 1,
5567 .gfp_mask = GFP_KERNEL,
5568 .proactive = true,
5569 };
5570
5571 buf = kvmalloc(len + 1, GFP_KERNEL);
5572 if (!buf)
5573 return -ENOMEM;
5574
5575 if (copy_from_user(buf, src, len)) {
5576 kvfree(buf);
5577 return -EFAULT;
5578 }
5579
5580 set_task_reclaim_state(current, &sc.reclaim_state);
5581 flags = memalloc_noreclaim_save();
5582 blk_start_plug(&plug);
5583 if (!set_mm_walk(NULL, true)) {
5584 err = -ENOMEM;
5585 goto done;
5586 }
5587
5588 next = buf;
5589 next[len] = '\0';
5590
5591 while ((cur = strsep(&next, ",;\n"))) {
5592 int n;
5593 int end;
5594 char cmd, swap_string[5];
5595 unsigned int memcg_id;
5596 unsigned int nid;
5597 unsigned long seq;
5598 unsigned int swappiness;
5599 unsigned long opt = -1;
5600
5601 cur = skip_spaces(cur);
5602 if (!*cur)
5603 continue;
5604
5605 n = sscanf(cur, "%c %u %u %lu %n %4s %n %lu %n", &cmd, &memcg_id, &nid,
5606 &seq, &end, swap_string, &end, &opt, &end);
5607 if (n < 4 || cur[end]) {
5608 err = -EINVAL;
5609 break;
5610 }
5611
5612 if (n == 4) {
5613 swappiness = -1;
5614 } else if (!strcmp("max", swap_string)) {
5615 /* set by userspace for anonymous memory only */
5616 swappiness = SWAPPINESS_ANON_ONLY;
5617 } else {
5618 err = kstrtouint(swap_string, 0, &swappiness);
5619 if (err)
5620 break;
5621 }
5622
5623 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5624 if (err)
5625 break;
5626 }
5627 done:
5628 clear_mm_walk();
5629 blk_finish_plug(&plug);
5630 memalloc_noreclaim_restore(flags);
5631 set_task_reclaim_state(current, NULL);
5632
5633 kvfree(buf);
5634
5635 return err ? : len;
5636 }
5637
lru_gen_seq_open(struct inode * inode,struct file * file)5638 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5639 {
5640 return seq_open(file, &lru_gen_seq_ops);
5641 }
5642
5643 static const struct file_operations lru_gen_rw_fops = {
5644 .open = lru_gen_seq_open,
5645 .read = seq_read,
5646 .write = lru_gen_seq_write,
5647 .llseek = seq_lseek,
5648 .release = seq_release,
5649 };
5650
5651 static const struct file_operations lru_gen_ro_fops = {
5652 .open = lru_gen_seq_open,
5653 .read = seq_read,
5654 .llseek = seq_lseek,
5655 .release = seq_release,
5656 };
5657
5658 /******************************************************************************
5659 * initialization
5660 ******************************************************************************/
5661
lru_gen_init_pgdat(struct pglist_data * pgdat)5662 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5663 {
5664 int i, j;
5665
5666 spin_lock_init(&pgdat->memcg_lru.lock);
5667
5668 for (i = 0; i < MEMCG_NR_GENS; i++) {
5669 for (j = 0; j < MEMCG_NR_BINS; j++)
5670 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5671 }
5672 }
5673
lru_gen_init_lruvec(struct lruvec * lruvec)5674 void lru_gen_init_lruvec(struct lruvec *lruvec)
5675 {
5676 int i;
5677 int gen, type, zone;
5678 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5679 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5680
5681 lrugen->max_seq = MIN_NR_GENS + 1;
5682 lrugen->enabled = lru_gen_enabled();
5683
5684 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5685 lrugen->timestamps[i] = jiffies;
5686
5687 for_each_gen_type_zone(gen, type, zone)
5688 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5689
5690 if (mm_state)
5691 mm_state->seq = MIN_NR_GENS;
5692 }
5693
5694 #ifdef CONFIG_MEMCG
5695
lru_gen_init_memcg(struct mem_cgroup * memcg)5696 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5697 {
5698 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5699
5700 if (!mm_list)
5701 return;
5702
5703 INIT_LIST_HEAD(&mm_list->fifo);
5704 spin_lock_init(&mm_list->lock);
5705 }
5706
lru_gen_exit_memcg(struct mem_cgroup * memcg)5707 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5708 {
5709 int i;
5710 int nid;
5711 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5712
5713 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5714
5715 for_each_node(nid) {
5716 struct lruvec *lruvec = get_lruvec(memcg, nid);
5717 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5718
5719 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5720 sizeof(lruvec->lrugen.nr_pages)));
5721
5722 lruvec->lrugen.list.next = LIST_POISON1;
5723
5724 if (!mm_state)
5725 continue;
5726
5727 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5728 bitmap_free(mm_state->filters[i]);
5729 mm_state->filters[i] = NULL;
5730 }
5731 }
5732 }
5733
5734 #endif /* CONFIG_MEMCG */
5735
init_lru_gen(void)5736 static int __init init_lru_gen(void)
5737 {
5738 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5739 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5740
5741 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5742 pr_err("lru_gen: failed to create sysfs group\n");
5743
5744 debugfs_create_file_aux_num("lru_gen", 0644, NULL, NULL, false,
5745 &lru_gen_rw_fops);
5746 debugfs_create_file_aux_num("lru_gen_full", 0444, NULL, NULL, true,
5747 &lru_gen_ro_fops);
5748
5749 return 0;
5750 };
5751 late_initcall(init_lru_gen);
5752
5753 #else /* !CONFIG_LRU_GEN */
5754
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5755 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5756 {
5757 BUILD_BUG();
5758 }
5759
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5760 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5761 {
5762 BUILD_BUG();
5763 }
5764
lru_gen_shrink_node(struct pglist_data * pgdat,struct scan_control * sc)5765 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5766 {
5767 BUILD_BUG();
5768 }
5769
5770 #endif /* CONFIG_LRU_GEN */
5771
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5772 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5773 {
5774 unsigned long nr[NR_LRU_LISTS];
5775 unsigned long targets[NR_LRU_LISTS];
5776 unsigned long nr_to_scan;
5777 enum lru_list lru;
5778 unsigned long nr_reclaimed = 0;
5779 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5780 bool proportional_reclaim;
5781 struct blk_plug plug;
5782
5783 if (lru_gen_enabled() && !root_reclaim(sc)) {
5784 lru_gen_shrink_lruvec(lruvec, sc);
5785 return;
5786 }
5787
5788 get_scan_count(lruvec, sc, nr);
5789
5790 /* Record the original scan target for proportional adjustments later */
5791 memcpy(targets, nr, sizeof(nr));
5792
5793 /*
5794 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5795 * event that can occur when there is little memory pressure e.g.
5796 * multiple streaming readers/writers. Hence, we do not abort scanning
5797 * when the requested number of pages are reclaimed when scanning at
5798 * DEF_PRIORITY on the assumption that the fact we are direct
5799 * reclaiming implies that kswapd is not keeping up and it is best to
5800 * do a batch of work at once. For memcg reclaim one check is made to
5801 * abort proportional reclaim if either the file or anon lru has already
5802 * dropped to zero at the first pass.
5803 */
5804 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5805 sc->priority == DEF_PRIORITY);
5806
5807 blk_start_plug(&plug);
5808 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5809 nr[LRU_INACTIVE_FILE]) {
5810 unsigned long nr_anon, nr_file, percentage;
5811 unsigned long nr_scanned;
5812
5813 for_each_evictable_lru(lru) {
5814 if (nr[lru]) {
5815 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5816 nr[lru] -= nr_to_scan;
5817
5818 nr_reclaimed += shrink_list(lru, nr_to_scan,
5819 lruvec, sc);
5820 }
5821 }
5822
5823 cond_resched();
5824
5825 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5826 continue;
5827
5828 /*
5829 * For kswapd and memcg, reclaim at least the number of pages
5830 * requested. Ensure that the anon and file LRUs are scanned
5831 * proportionally what was requested by get_scan_count(). We
5832 * stop reclaiming one LRU and reduce the amount scanning
5833 * proportional to the original scan target.
5834 */
5835 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5836 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5837
5838 /*
5839 * It's just vindictive to attack the larger once the smaller
5840 * has gone to zero. And given the way we stop scanning the
5841 * smaller below, this makes sure that we only make one nudge
5842 * towards proportionality once we've got nr_to_reclaim.
5843 */
5844 if (!nr_file || !nr_anon)
5845 break;
5846
5847 if (nr_file > nr_anon) {
5848 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5849 targets[LRU_ACTIVE_ANON] + 1;
5850 lru = LRU_BASE;
5851 percentage = nr_anon * 100 / scan_target;
5852 } else {
5853 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5854 targets[LRU_ACTIVE_FILE] + 1;
5855 lru = LRU_FILE;
5856 percentage = nr_file * 100 / scan_target;
5857 }
5858
5859 /* Stop scanning the smaller of the LRU */
5860 nr[lru] = 0;
5861 nr[lru + LRU_ACTIVE] = 0;
5862
5863 /*
5864 * Recalculate the other LRU scan count based on its original
5865 * scan target and the percentage scanning already complete
5866 */
5867 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5868 nr_scanned = targets[lru] - nr[lru];
5869 nr[lru] = targets[lru] * (100 - percentage) / 100;
5870 nr[lru] -= min(nr[lru], nr_scanned);
5871
5872 lru += LRU_ACTIVE;
5873 nr_scanned = targets[lru] - nr[lru];
5874 nr[lru] = targets[lru] * (100 - percentage) / 100;
5875 nr[lru] -= min(nr[lru], nr_scanned);
5876 }
5877 blk_finish_plug(&plug);
5878 sc->nr_reclaimed += nr_reclaimed;
5879
5880 /*
5881 * Even if we did not try to evict anon pages at all, we want to
5882 * rebalance the anon lru active/inactive ratio.
5883 */
5884 if (can_age_anon_pages(lruvec, sc) &&
5885 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5886 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5887 sc, LRU_ACTIVE_ANON);
5888 }
5889
5890 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5891 static bool in_reclaim_compaction(struct scan_control *sc)
5892 {
5893 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5894 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5895 sc->priority < DEF_PRIORITY - 2))
5896 return true;
5897
5898 return false;
5899 }
5900
5901 /*
5902 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5903 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5904 * true if more pages should be reclaimed such that when the page allocator
5905 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5906 * It will give up earlier than that if there is difficulty reclaiming pages.
5907 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5908 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5909 unsigned long nr_reclaimed,
5910 struct scan_control *sc)
5911 {
5912 unsigned long pages_for_compaction;
5913 unsigned long inactive_lru_pages;
5914 int z;
5915 struct zone *zone;
5916
5917 /* If not in reclaim/compaction mode, stop */
5918 if (!in_reclaim_compaction(sc))
5919 return false;
5920
5921 /*
5922 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5923 * number of pages that were scanned. This will return to the caller
5924 * with the risk reclaim/compaction and the resulting allocation attempt
5925 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5926 * allocations through requiring that the full LRU list has been scanned
5927 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5928 * scan, but that approximation was wrong, and there were corner cases
5929 * where always a non-zero amount of pages were scanned.
5930 */
5931 if (!nr_reclaimed)
5932 return false;
5933
5934 /* If compaction would go ahead or the allocation would succeed, stop */
5935 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
5936 unsigned long watermark = min_wmark_pages(zone);
5937
5938 /* Allocation can already succeed, nothing to do */
5939 if (zone_watermark_ok(zone, sc->order, watermark,
5940 sc->reclaim_idx, 0))
5941 return false;
5942
5943 if (compaction_suitable(zone, sc->order, watermark,
5944 sc->reclaim_idx))
5945 return false;
5946 }
5947
5948 /*
5949 * If we have not reclaimed enough pages for compaction and the
5950 * inactive lists are large enough, continue reclaiming
5951 */
5952 pages_for_compaction = compact_gap(sc->order);
5953 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5954 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5955 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5956
5957 return inactive_lru_pages > pages_for_compaction;
5958 }
5959
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5960 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5961 {
5962 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5963 struct mem_cgroup_reclaim_cookie reclaim = {
5964 .pgdat = pgdat,
5965 };
5966 struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5967 struct mem_cgroup *memcg;
5968
5969 /*
5970 * In most cases, direct reclaimers can do partial walks
5971 * through the cgroup tree, using an iterator state that
5972 * persists across invocations. This strikes a balance between
5973 * fairness and allocation latency.
5974 *
5975 * For kswapd, reliable forward progress is more important
5976 * than a quick return to idle. Always do full walks.
5977 */
5978 if (current_is_kswapd() || sc->memcg_full_walk)
5979 partial = NULL;
5980
5981 memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5982 do {
5983 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5984 unsigned long reclaimed;
5985 unsigned long scanned;
5986
5987 /*
5988 * This loop can become CPU-bound when target memcgs
5989 * aren't eligible for reclaim - either because they
5990 * don't have any reclaimable pages, or because their
5991 * memory is explicitly protected. Avoid soft lockups.
5992 */
5993 cond_resched();
5994
5995 mem_cgroup_calculate_protection(target_memcg, memcg);
5996
5997 if (mem_cgroup_below_min(target_memcg, memcg)) {
5998 /*
5999 * Hard protection.
6000 * If there is no reclaimable memory, OOM.
6001 */
6002 continue;
6003 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
6004 /*
6005 * Soft protection.
6006 * Respect the protection only as long as
6007 * there is an unprotected supply
6008 * of reclaimable memory from other cgroups.
6009 */
6010 if (!sc->memcg_low_reclaim) {
6011 sc->memcg_low_skipped = 1;
6012 continue;
6013 }
6014 memcg_memory_event(memcg, MEMCG_LOW);
6015 }
6016
6017 reclaimed = sc->nr_reclaimed;
6018 scanned = sc->nr_scanned;
6019
6020 shrink_lruvec(lruvec, sc);
6021
6022 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
6023 sc->priority);
6024
6025 /* Record the group's reclaim efficiency */
6026 if (!sc->proactive)
6027 vmpressure(sc->gfp_mask, memcg, false,
6028 sc->nr_scanned - scanned,
6029 sc->nr_reclaimed - reclaimed);
6030
6031 /* If partial walks are allowed, bail once goal is reached */
6032 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
6033 mem_cgroup_iter_break(target_memcg, memcg);
6034 break;
6035 }
6036 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
6037 }
6038
shrink_node(pg_data_t * pgdat,struct scan_control * sc)6039 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
6040 {
6041 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
6042 struct lruvec *target_lruvec;
6043 bool reclaimable = false;
6044
6045 if (lru_gen_enabled() && root_reclaim(sc)) {
6046 memset(&sc->nr, 0, sizeof(sc->nr));
6047 lru_gen_shrink_node(pgdat, sc);
6048 return;
6049 }
6050
6051 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
6052
6053 again:
6054 memset(&sc->nr, 0, sizeof(sc->nr));
6055
6056 nr_reclaimed = sc->nr_reclaimed;
6057 nr_scanned = sc->nr_scanned;
6058
6059 prepare_scan_control(pgdat, sc);
6060
6061 shrink_node_memcgs(pgdat, sc);
6062
6063 flush_reclaim_state(sc);
6064
6065 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
6066
6067 /* Record the subtree's reclaim efficiency */
6068 if (!sc->proactive)
6069 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
6070 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
6071
6072 if (nr_node_reclaimed)
6073 reclaimable = true;
6074
6075 if (current_is_kswapd()) {
6076 /*
6077 * If reclaim is isolating dirty pages under writeback,
6078 * it implies that the long-lived page allocation rate
6079 * is exceeding the page laundering rate. Either the
6080 * global limits are not being effective at throttling
6081 * processes due to the page distribution throughout
6082 * zones or there is heavy usage of a slow backing
6083 * device. The only option is to throttle from reclaim
6084 * context which is not ideal as there is no guarantee
6085 * the dirtying process is throttled in the same way
6086 * balance_dirty_pages() manages.
6087 *
6088 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6089 * count the number of pages under pages flagged for
6090 * immediate reclaim and stall if any are encountered
6091 * in the nr_immediate check below.
6092 */
6093 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6094 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6095
6096 /*
6097 * If kswapd scans pages marked for immediate
6098 * reclaim and under writeback (nr_immediate), it
6099 * implies that pages are cycling through the LRU
6100 * faster than they are written so forcibly stall
6101 * until some pages complete writeback.
6102 */
6103 if (sc->nr.immediate)
6104 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6105 }
6106
6107 /*
6108 * Tag a node/memcg as congested if all the dirty pages were marked
6109 * for writeback and immediate reclaim (counted in nr.congested).
6110 *
6111 * Legacy memcg will stall in page writeback so avoid forcibly
6112 * stalling in reclaim_throttle().
6113 */
6114 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6115 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6116 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6117
6118 if (current_is_kswapd())
6119 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6120 }
6121
6122 /*
6123 * Stall direct reclaim for IO completions if the lruvec is
6124 * node is congested. Allow kswapd to continue until it
6125 * starts encountering unqueued dirty pages or cycling through
6126 * the LRU too quickly.
6127 */
6128 if (!current_is_kswapd() && current_may_throttle() &&
6129 !sc->hibernation_mode &&
6130 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6131 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6132 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6133
6134 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6135 goto again;
6136
6137 /*
6138 * Kswapd gives up on balancing particular nodes after too
6139 * many failures to reclaim anything from them and goes to
6140 * sleep. On reclaim progress, reset the failure counter. A
6141 * successful direct reclaim run will revive a dormant kswapd.
6142 */
6143 if (reclaimable)
6144 atomic_set(&pgdat->kswapd_failures, 0);
6145 else if (sc->cache_trim_mode)
6146 sc->cache_trim_mode_failed = 1;
6147 }
6148
6149 /*
6150 * Returns true if compaction should go ahead for a costly-order request, or
6151 * the allocation would already succeed without compaction. Return false if we
6152 * should reclaim first.
6153 */
compaction_ready(struct zone * zone,struct scan_control * sc)6154 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6155 {
6156 unsigned long watermark;
6157
6158 if (!gfp_compaction_allowed(sc->gfp_mask))
6159 return false;
6160
6161 /* Allocation can already succeed, nothing to do */
6162 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6163 sc->reclaim_idx, 0))
6164 return true;
6165
6166 /*
6167 * Direct reclaim usually targets the min watermark, but compaction
6168 * takes time to run and there are potentially other callers using the
6169 * pages just freed. So target a higher buffer to give compaction a
6170 * reasonable chance of completing and allocating the pages.
6171 *
6172 * Note that we won't actually reclaim the whole buffer in one attempt
6173 * as the target watermark in should_continue_reclaim() is lower. But if
6174 * we are already above the high+gap watermark, don't reclaim at all.
6175 */
6176 watermark = high_wmark_pages(zone);
6177 if (compaction_suitable(zone, sc->order, watermark, sc->reclaim_idx))
6178 return true;
6179
6180 return false;
6181 }
6182
consider_reclaim_throttle(pg_data_t * pgdat,struct scan_control * sc)6183 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6184 {
6185 /*
6186 * If reclaim is making progress greater than 12% efficiency then
6187 * wake all the NOPROGRESS throttled tasks.
6188 */
6189 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6190 wait_queue_head_t *wqh;
6191
6192 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6193 if (waitqueue_active(wqh))
6194 wake_up(wqh);
6195
6196 return;
6197 }
6198
6199 /*
6200 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6201 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6202 * under writeback and marked for immediate reclaim at the tail of the
6203 * LRU.
6204 */
6205 if (current_is_kswapd() || cgroup_reclaim(sc))
6206 return;
6207
6208 /* Throttle if making no progress at high prioities. */
6209 if (sc->priority == 1 && !sc->nr_reclaimed)
6210 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6211 }
6212
6213 /*
6214 * This is the direct reclaim path, for page-allocating processes. We only
6215 * try to reclaim pages from zones which will satisfy the caller's allocation
6216 * request.
6217 *
6218 * If a zone is deemed to be full of pinned pages then just give it a light
6219 * scan then give up on it.
6220 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)6221 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6222 {
6223 struct zoneref *z;
6224 struct zone *zone;
6225 unsigned long nr_soft_reclaimed;
6226 unsigned long nr_soft_scanned;
6227 gfp_t orig_mask;
6228 pg_data_t *last_pgdat = NULL;
6229 pg_data_t *first_pgdat = NULL;
6230
6231 /*
6232 * If the number of buffer_heads in the machine exceeds the maximum
6233 * allowed level, force direct reclaim to scan the highmem zone as
6234 * highmem pages could be pinning lowmem pages storing buffer_heads
6235 */
6236 orig_mask = sc->gfp_mask;
6237 if (buffer_heads_over_limit) {
6238 sc->gfp_mask |= __GFP_HIGHMEM;
6239 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6240 }
6241
6242 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6243 sc->reclaim_idx, sc->nodemask) {
6244 /*
6245 * Take care memory controller reclaiming has small influence
6246 * to global LRU.
6247 */
6248 if (!cgroup_reclaim(sc)) {
6249 if (!cpuset_zone_allowed(zone,
6250 GFP_KERNEL | __GFP_HARDWALL))
6251 continue;
6252
6253 /*
6254 * If we already have plenty of memory free for
6255 * compaction in this zone, don't free any more.
6256 * Even though compaction is invoked for any
6257 * non-zero order, only frequent costly order
6258 * reclamation is disruptive enough to become a
6259 * noticeable problem, like transparent huge
6260 * page allocations.
6261 */
6262 if (IS_ENABLED(CONFIG_COMPACTION) &&
6263 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6264 compaction_ready(zone, sc)) {
6265 sc->compaction_ready = true;
6266 continue;
6267 }
6268
6269 /*
6270 * Shrink each node in the zonelist once. If the
6271 * zonelist is ordered by zone (not the default) then a
6272 * node may be shrunk multiple times but in that case
6273 * the user prefers lower zones being preserved.
6274 */
6275 if (zone->zone_pgdat == last_pgdat)
6276 continue;
6277
6278 /*
6279 * This steals pages from memory cgroups over softlimit
6280 * and returns the number of reclaimed pages and
6281 * scanned pages. This works for global memory pressure
6282 * and balancing, not for a memcg's limit.
6283 */
6284 nr_soft_scanned = 0;
6285 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6286 sc->order, sc->gfp_mask,
6287 &nr_soft_scanned);
6288 sc->nr_reclaimed += nr_soft_reclaimed;
6289 sc->nr_scanned += nr_soft_scanned;
6290 /* need some check for avoid more shrink_zone() */
6291 }
6292
6293 if (!first_pgdat)
6294 first_pgdat = zone->zone_pgdat;
6295
6296 /* See comment about same check for global reclaim above */
6297 if (zone->zone_pgdat == last_pgdat)
6298 continue;
6299 last_pgdat = zone->zone_pgdat;
6300 shrink_node(zone->zone_pgdat, sc);
6301 }
6302
6303 if (first_pgdat)
6304 consider_reclaim_throttle(first_pgdat, sc);
6305
6306 /*
6307 * Restore to original mask to avoid the impact on the caller if we
6308 * promoted it to __GFP_HIGHMEM.
6309 */
6310 sc->gfp_mask = orig_mask;
6311 }
6312
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)6313 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6314 {
6315 struct lruvec *target_lruvec;
6316 unsigned long refaults;
6317
6318 if (lru_gen_enabled())
6319 return;
6320
6321 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6322 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6323 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6324 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6325 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6326 }
6327
6328 /*
6329 * This is the main entry point to direct page reclaim.
6330 *
6331 * If a full scan of the inactive list fails to free enough memory then we
6332 * are "out of memory" and something needs to be killed.
6333 *
6334 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6335 * high - the zone may be full of dirty or under-writeback pages, which this
6336 * caller can't do much about. We kick the writeback threads and take explicit
6337 * naps in the hope that some of these pages can be written. But if the
6338 * allocating task holds filesystem locks which prevent writeout this might not
6339 * work, and the allocation attempt will fail.
6340 *
6341 * returns: 0, if no pages reclaimed
6342 * else, the number of pages reclaimed
6343 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)6344 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6345 struct scan_control *sc)
6346 {
6347 int initial_priority = sc->priority;
6348 pg_data_t *last_pgdat;
6349 struct zoneref *z;
6350 struct zone *zone;
6351 retry:
6352 delayacct_freepages_start();
6353
6354 if (!cgroup_reclaim(sc))
6355 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6356
6357 do {
6358 if (!sc->proactive)
6359 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6360 sc->priority);
6361 sc->nr_scanned = 0;
6362 shrink_zones(zonelist, sc);
6363
6364 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6365 break;
6366
6367 if (sc->compaction_ready)
6368 break;
6369
6370 /*
6371 * If we're getting trouble reclaiming, start doing
6372 * writepage even in laptop mode.
6373 */
6374 if (sc->priority < DEF_PRIORITY - 2)
6375 sc->may_writepage = 1;
6376 } while (--sc->priority >= 0);
6377
6378 last_pgdat = NULL;
6379 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6380 sc->nodemask) {
6381 if (zone->zone_pgdat == last_pgdat)
6382 continue;
6383 last_pgdat = zone->zone_pgdat;
6384
6385 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6386
6387 if (cgroup_reclaim(sc)) {
6388 struct lruvec *lruvec;
6389
6390 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6391 zone->zone_pgdat);
6392 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6393 }
6394 }
6395
6396 delayacct_freepages_end();
6397
6398 if (sc->nr_reclaimed)
6399 return sc->nr_reclaimed;
6400
6401 /* Aborted reclaim to try compaction? don't OOM, then */
6402 if (sc->compaction_ready)
6403 return 1;
6404
6405 /*
6406 * In most cases, direct reclaimers can do partial walks
6407 * through the cgroup tree to meet the reclaim goal while
6408 * keeping latency low. Since the iterator state is shared
6409 * among all direct reclaim invocations (to retain fairness
6410 * among cgroups), though, high concurrency can result in
6411 * individual threads not seeing enough cgroups to make
6412 * meaningful forward progress. Avoid false OOMs in this case.
6413 */
6414 if (!sc->memcg_full_walk) {
6415 sc->priority = initial_priority;
6416 sc->memcg_full_walk = 1;
6417 goto retry;
6418 }
6419
6420 /*
6421 * We make inactive:active ratio decisions based on the node's
6422 * composition of memory, but a restrictive reclaim_idx or a
6423 * memory.low cgroup setting can exempt large amounts of
6424 * memory from reclaim. Neither of which are very common, so
6425 * instead of doing costly eligibility calculations of the
6426 * entire cgroup subtree up front, we assume the estimates are
6427 * good, and retry with forcible deactivation if that fails.
6428 */
6429 if (sc->skipped_deactivate) {
6430 sc->priority = initial_priority;
6431 sc->force_deactivate = 1;
6432 sc->skipped_deactivate = 0;
6433 goto retry;
6434 }
6435
6436 /* Untapped cgroup reserves? Don't OOM, retry. */
6437 if (sc->memcg_low_skipped) {
6438 sc->priority = initial_priority;
6439 sc->force_deactivate = 0;
6440 sc->memcg_low_reclaim = 1;
6441 sc->memcg_low_skipped = 0;
6442 goto retry;
6443 }
6444
6445 return 0;
6446 }
6447
allow_direct_reclaim(pg_data_t * pgdat)6448 static bool allow_direct_reclaim(pg_data_t *pgdat)
6449 {
6450 struct zone *zone;
6451 unsigned long pfmemalloc_reserve = 0;
6452 unsigned long free_pages = 0;
6453 int i;
6454 bool wmark_ok;
6455
6456 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
6457 return true;
6458
6459 for_each_managed_zone_pgdat(zone, pgdat, i, ZONE_NORMAL) {
6460 if (!zone_reclaimable_pages(zone) && zone_page_state_snapshot(zone, NR_FREE_PAGES))
6461 continue;
6462
6463 pfmemalloc_reserve += min_wmark_pages(zone);
6464 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6465 }
6466
6467 /* If there are no reserves (unexpected config) then do not throttle */
6468 if (!pfmemalloc_reserve)
6469 return true;
6470
6471 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6472
6473 /* kswapd must be awake if processes are being throttled */
6474 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6475 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6476 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6477
6478 wake_up_interruptible(&pgdat->kswapd_wait);
6479 }
6480
6481 return wmark_ok;
6482 }
6483
6484 /*
6485 * Throttle direct reclaimers if backing storage is backed by the network
6486 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6487 * depleted. kswapd will continue to make progress and wake the processes
6488 * when the low watermark is reached.
6489 *
6490 * Returns true if a fatal signal was delivered during throttling. If this
6491 * happens, the page allocator should not consider triggering the OOM killer.
6492 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6493 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6494 nodemask_t *nodemask)
6495 {
6496 struct zoneref *z;
6497 struct zone *zone;
6498 pg_data_t *pgdat = NULL;
6499
6500 /*
6501 * Kernel threads should not be throttled as they may be indirectly
6502 * responsible for cleaning pages necessary for reclaim to make forward
6503 * progress. kjournald for example may enter direct reclaim while
6504 * committing a transaction where throttling it could forcing other
6505 * processes to block on log_wait_commit().
6506 */
6507 if (current->flags & PF_KTHREAD)
6508 goto out;
6509
6510 /*
6511 * If a fatal signal is pending, this process should not throttle.
6512 * It should return quickly so it can exit and free its memory
6513 */
6514 if (fatal_signal_pending(current))
6515 goto out;
6516
6517 /*
6518 * Check if the pfmemalloc reserves are ok by finding the first node
6519 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6520 * GFP_KERNEL will be required for allocating network buffers when
6521 * swapping over the network so ZONE_HIGHMEM is unusable.
6522 *
6523 * Throttling is based on the first usable node and throttled processes
6524 * wait on a queue until kswapd makes progress and wakes them. There
6525 * is an affinity then between processes waking up and where reclaim
6526 * progress has been made assuming the process wakes on the same node.
6527 * More importantly, processes running on remote nodes will not compete
6528 * for remote pfmemalloc reserves and processes on different nodes
6529 * should make reasonable progress.
6530 */
6531 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6532 gfp_zone(gfp_mask), nodemask) {
6533 if (zone_idx(zone) > ZONE_NORMAL)
6534 continue;
6535
6536 /* Throttle based on the first usable node */
6537 pgdat = zone->zone_pgdat;
6538 if (allow_direct_reclaim(pgdat))
6539 goto out;
6540 break;
6541 }
6542
6543 /* If no zone was usable by the allocation flags then do not throttle */
6544 if (!pgdat)
6545 goto out;
6546
6547 /* Account for the throttling */
6548 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6549
6550 /*
6551 * If the caller cannot enter the filesystem, it's possible that it
6552 * is due to the caller holding an FS lock or performing a journal
6553 * transaction in the case of a filesystem like ext[3|4]. In this case,
6554 * it is not safe to block on pfmemalloc_wait as kswapd could be
6555 * blocked waiting on the same lock. Instead, throttle for up to a
6556 * second before continuing.
6557 */
6558 if (!(gfp_mask & __GFP_FS))
6559 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6560 allow_direct_reclaim(pgdat), HZ);
6561 else
6562 /* Throttle until kswapd wakes the process */
6563 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6564 allow_direct_reclaim(pgdat));
6565
6566 if (fatal_signal_pending(current))
6567 return true;
6568
6569 out:
6570 return false;
6571 }
6572
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6573 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6574 gfp_t gfp_mask, nodemask_t *nodemask)
6575 {
6576 unsigned long nr_reclaimed;
6577 struct scan_control sc = {
6578 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6579 .gfp_mask = current_gfp_context(gfp_mask),
6580 .reclaim_idx = gfp_zone(gfp_mask),
6581 .order = order,
6582 .nodemask = nodemask,
6583 .priority = DEF_PRIORITY,
6584 .may_writepage = !laptop_mode,
6585 .may_unmap = 1,
6586 .may_swap = 1,
6587 };
6588
6589 /*
6590 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6591 * Confirm they are large enough for max values.
6592 */
6593 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6594 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6595 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6596
6597 /*
6598 * Do not enter reclaim if fatal signal was delivered while throttled.
6599 * 1 is returned so that the page allocator does not OOM kill at this
6600 * point.
6601 */
6602 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6603 return 1;
6604
6605 set_task_reclaim_state(current, &sc.reclaim_state);
6606 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6607
6608 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6609
6610 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6611 set_task_reclaim_state(current, NULL);
6612
6613 return nr_reclaimed;
6614 }
6615
6616 #ifdef CONFIG_MEMCG
6617
6618 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6619 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6620 gfp_t gfp_mask, bool noswap,
6621 pg_data_t *pgdat,
6622 unsigned long *nr_scanned)
6623 {
6624 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6625 struct scan_control sc = {
6626 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6627 .target_mem_cgroup = memcg,
6628 .may_writepage = !laptop_mode,
6629 .may_unmap = 1,
6630 .reclaim_idx = MAX_NR_ZONES - 1,
6631 .may_swap = !noswap,
6632 };
6633
6634 WARN_ON_ONCE(!current->reclaim_state);
6635
6636 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6637 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6638
6639 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6640 sc.gfp_mask);
6641
6642 /*
6643 * NOTE: Although we can get the priority field, using it
6644 * here is not a good idea, since it limits the pages we can scan.
6645 * if we don't reclaim here, the shrink_node from balance_pgdat
6646 * will pick up pages from other mem cgroup's as well. We hack
6647 * the priority and make it zero.
6648 */
6649 shrink_lruvec(lruvec, &sc);
6650
6651 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6652
6653 *nr_scanned = sc.nr_scanned;
6654
6655 return sc.nr_reclaimed;
6656 }
6657
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6658 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6659 unsigned long nr_pages,
6660 gfp_t gfp_mask,
6661 unsigned int reclaim_options,
6662 int *swappiness)
6663 {
6664 unsigned long nr_reclaimed;
6665 unsigned int noreclaim_flag;
6666 struct scan_control sc = {
6667 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6668 .proactive_swappiness = swappiness,
6669 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6670 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6671 .reclaim_idx = MAX_NR_ZONES - 1,
6672 .target_mem_cgroup = memcg,
6673 .priority = DEF_PRIORITY,
6674 .may_writepage = !laptop_mode,
6675 .may_unmap = 1,
6676 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6677 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6678 };
6679 /*
6680 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6681 * equal pressure on all the nodes. This is based on the assumption that
6682 * the reclaim does not bail out early.
6683 */
6684 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6685
6686 set_task_reclaim_state(current, &sc.reclaim_state);
6687 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6688 noreclaim_flag = memalloc_noreclaim_save();
6689
6690 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6691
6692 memalloc_noreclaim_restore(noreclaim_flag);
6693 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6694 set_task_reclaim_state(current, NULL);
6695
6696 return nr_reclaimed;
6697 }
6698 #else
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,unsigned int reclaim_options,int * swappiness)6699 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6700 unsigned long nr_pages,
6701 gfp_t gfp_mask,
6702 unsigned int reclaim_options,
6703 int *swappiness)
6704 {
6705 return 0;
6706 }
6707 #endif
6708
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6709 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6710 {
6711 struct mem_cgroup *memcg;
6712 struct lruvec *lruvec;
6713
6714 if (lru_gen_enabled()) {
6715 lru_gen_age_node(pgdat, sc);
6716 return;
6717 }
6718
6719 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6720 if (!can_age_anon_pages(lruvec, sc))
6721 return;
6722
6723 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6724 return;
6725
6726 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6727 do {
6728 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6729 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6730 sc, LRU_ACTIVE_ANON);
6731 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6732 } while (memcg);
6733 }
6734
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6735 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6736 {
6737 int i;
6738 struct zone *zone;
6739
6740 /*
6741 * Check for watermark boosts top-down as the higher zones
6742 * are more likely to be boosted. Both watermarks and boosts
6743 * should not be checked at the same time as reclaim would
6744 * start prematurely when there is no boosting and a lower
6745 * zone is balanced.
6746 */
6747 for (i = highest_zoneidx; i >= 0; i--) {
6748 zone = pgdat->node_zones + i;
6749 if (!managed_zone(zone))
6750 continue;
6751
6752 if (zone->watermark_boost)
6753 return true;
6754 }
6755
6756 return false;
6757 }
6758
6759 /*
6760 * Returns true if there is an eligible zone balanced for the request order
6761 * and highest_zoneidx
6762 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6763 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6764 {
6765 int i;
6766 unsigned long mark = -1;
6767 struct zone *zone;
6768
6769 /*
6770 * Check watermarks bottom-up as lower zones are more likely to
6771 * meet watermarks.
6772 */
6773 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6774 enum zone_stat_item item;
6775 unsigned long free_pages;
6776
6777 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6778 mark = promo_wmark_pages(zone);
6779 else
6780 mark = high_wmark_pages(zone);
6781
6782 /*
6783 * In defrag_mode, watermarks must be met in whole
6784 * blocks to avoid polluting allocator fallbacks.
6785 *
6786 * However, kswapd usually cannot accomplish this on
6787 * its own and needs kcompactd support. Once it's
6788 * reclaimed a compaction gap, and kswapd_shrink_node
6789 * has dropped order, simply ensure there are enough
6790 * base pages for compaction, wake kcompactd & sleep.
6791 */
6792 if (defrag_mode && order)
6793 item = NR_FREE_PAGES_BLOCKS;
6794 else
6795 item = NR_FREE_PAGES;
6796
6797 /*
6798 * When there is a high number of CPUs in the system,
6799 * the cumulative error from the vmstat per-cpu cache
6800 * can blur the line between the watermarks. In that
6801 * case, be safe and get an accurate snapshot.
6802 *
6803 * TODO: NR_FREE_PAGES_BLOCKS moves in steps of
6804 * pageblock_nr_pages, while the vmstat pcp threshold
6805 * is limited to 125. On many configurations that
6806 * counter won't actually be per-cpu cached. But keep
6807 * things simple for now; revisit when somebody cares.
6808 */
6809 free_pages = zone_page_state(zone, item);
6810 if (zone->percpu_drift_mark && free_pages < zone->percpu_drift_mark)
6811 free_pages = zone_page_state_snapshot(zone, item);
6812
6813 if (__zone_watermark_ok(zone, order, mark, highest_zoneidx,
6814 0, free_pages))
6815 return true;
6816 }
6817
6818 /*
6819 * If a node has no managed zone within highest_zoneidx, it does not
6820 * need balancing by definition. This can happen if a zone-restricted
6821 * allocation tries to wake a remote kswapd.
6822 */
6823 if (mark == -1)
6824 return true;
6825
6826 return false;
6827 }
6828
6829 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6830 static void clear_pgdat_congested(pg_data_t *pgdat)
6831 {
6832 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6833
6834 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6835 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6836 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6837 }
6838
6839 /*
6840 * Prepare kswapd for sleeping. This verifies that there are no processes
6841 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6842 *
6843 * Returns true if kswapd is ready to sleep
6844 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6845 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6846 int highest_zoneidx)
6847 {
6848 /*
6849 * The throttled processes are normally woken up in balance_pgdat() as
6850 * soon as allow_direct_reclaim() is true. But there is a potential
6851 * race between when kswapd checks the watermarks and a process gets
6852 * throttled. There is also a potential race if processes get
6853 * throttled, kswapd wakes, a large process exits thereby balancing the
6854 * zones, which causes kswapd to exit balance_pgdat() before reaching
6855 * the wake up checks. If kswapd is going to sleep, no process should
6856 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6857 * the wake up is premature, processes will wake kswapd and get
6858 * throttled again. The difference from wake ups in balance_pgdat() is
6859 * that here we are under prepare_to_wait().
6860 */
6861 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6862 wake_up_all(&pgdat->pfmemalloc_wait);
6863
6864 /* Hopeless node, leave it to direct reclaim */
6865 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES)
6866 return true;
6867
6868 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6869 clear_pgdat_congested(pgdat);
6870 return true;
6871 }
6872
6873 return false;
6874 }
6875
6876 /*
6877 * kswapd shrinks a node of pages that are at or below the highest usable
6878 * zone that is currently unbalanced.
6879 *
6880 * Returns true if kswapd scanned at least the requested number of pages to
6881 * reclaim or if the lack of progress was due to pages under writeback.
6882 * This is used to determine if the scanning priority needs to be raised.
6883 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6884 static bool kswapd_shrink_node(pg_data_t *pgdat,
6885 struct scan_control *sc)
6886 {
6887 struct zone *zone;
6888 int z;
6889 unsigned long nr_reclaimed = sc->nr_reclaimed;
6890
6891 /* Reclaim a number of pages proportional to the number of zones */
6892 sc->nr_to_reclaim = 0;
6893 for_each_managed_zone_pgdat(zone, pgdat, z, sc->reclaim_idx) {
6894 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6895 }
6896
6897 /*
6898 * Historically care was taken to put equal pressure on all zones but
6899 * now pressure is applied based on node LRU order.
6900 */
6901 shrink_node(pgdat, sc);
6902
6903 /*
6904 * Fragmentation may mean that the system cannot be rebalanced for
6905 * high-order allocations. If twice the allocation size has been
6906 * reclaimed then recheck watermarks only at order-0 to prevent
6907 * excessive reclaim. Assume that a process requested a high-order
6908 * can direct reclaim/compact.
6909 */
6910 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6911 sc->order = 0;
6912
6913 /* account for progress from mm_account_reclaimed_pages() */
6914 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6915 }
6916
6917 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6918 static inline void
update_reclaim_active(pg_data_t * pgdat,int highest_zoneidx,bool active)6919 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6920 {
6921 int i;
6922 struct zone *zone;
6923
6924 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6925 if (active)
6926 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6927 else
6928 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6929 }
6930 }
6931
6932 static inline void
set_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6933 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6934 {
6935 update_reclaim_active(pgdat, highest_zoneidx, true);
6936 }
6937
6938 static inline void
clear_reclaim_active(pg_data_t * pgdat,int highest_zoneidx)6939 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6940 {
6941 update_reclaim_active(pgdat, highest_zoneidx, false);
6942 }
6943
6944 /*
6945 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6946 * that are eligible for use by the caller until at least one zone is
6947 * balanced.
6948 *
6949 * Returns the order kswapd finished reclaiming at.
6950 *
6951 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6952 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6953 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6954 * or lower is eligible for reclaim until at least one usable zone is
6955 * balanced.
6956 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6957 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6958 {
6959 int i;
6960 unsigned long nr_soft_reclaimed;
6961 unsigned long nr_soft_scanned;
6962 unsigned long pflags;
6963 unsigned long nr_boost_reclaim;
6964 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6965 bool boosted;
6966 struct zone *zone;
6967 struct scan_control sc = {
6968 .gfp_mask = GFP_KERNEL,
6969 .order = order,
6970 .may_unmap = 1,
6971 };
6972
6973 set_task_reclaim_state(current, &sc.reclaim_state);
6974 psi_memstall_enter(&pflags);
6975 __fs_reclaim_acquire(_THIS_IP_);
6976
6977 count_vm_event(PAGEOUTRUN);
6978
6979 /*
6980 * Account for the reclaim boost. Note that the zone boost is left in
6981 * place so that parallel allocations that are near the watermark will
6982 * stall or direct reclaim until kswapd is finished.
6983 */
6984 nr_boost_reclaim = 0;
6985 for_each_managed_zone_pgdat(zone, pgdat, i, highest_zoneidx) {
6986 nr_boost_reclaim += zone->watermark_boost;
6987 zone_boosts[i] = zone->watermark_boost;
6988 }
6989 boosted = nr_boost_reclaim;
6990
6991 restart:
6992 set_reclaim_active(pgdat, highest_zoneidx);
6993 sc.priority = DEF_PRIORITY;
6994 do {
6995 unsigned long nr_reclaimed = sc.nr_reclaimed;
6996 bool raise_priority = true;
6997 bool balanced;
6998 bool ret;
6999 bool was_frozen;
7000
7001 sc.reclaim_idx = highest_zoneidx;
7002
7003 /*
7004 * If the number of buffer_heads exceeds the maximum allowed
7005 * then consider reclaiming from all zones. This has a dual
7006 * purpose -- on 64-bit systems it is expected that
7007 * buffer_heads are stripped during active rotation. On 32-bit
7008 * systems, highmem pages can pin lowmem memory and shrinking
7009 * buffers can relieve lowmem pressure. Reclaim may still not
7010 * go ahead if all eligible zones for the original allocation
7011 * request are balanced to avoid excessive reclaim from kswapd.
7012 */
7013 if (buffer_heads_over_limit) {
7014 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
7015 zone = pgdat->node_zones + i;
7016 if (!managed_zone(zone))
7017 continue;
7018
7019 sc.reclaim_idx = i;
7020 break;
7021 }
7022 }
7023
7024 /*
7025 * If the pgdat is imbalanced then ignore boosting and preserve
7026 * the watermarks for a later time and restart. Note that the
7027 * zone watermarks will be still reset at the end of balancing
7028 * on the grounds that the normal reclaim should be enough to
7029 * re-evaluate if boosting is required when kswapd next wakes.
7030 */
7031 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
7032 if (!balanced && nr_boost_reclaim) {
7033 nr_boost_reclaim = 0;
7034 goto restart;
7035 }
7036
7037 /*
7038 * If boosting is not active then only reclaim if there are no
7039 * eligible zones. Note that sc.reclaim_idx is not used as
7040 * buffer_heads_over_limit may have adjusted it.
7041 */
7042 if (!nr_boost_reclaim && balanced)
7043 goto out;
7044
7045 /* Limit the priority of boosting to avoid reclaim writeback */
7046 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
7047 raise_priority = false;
7048
7049 /*
7050 * Do not writeback or swap pages for boosted reclaim. The
7051 * intent is to relieve pressure not issue sub-optimal IO
7052 * from reclaim context. If no pages are reclaimed, the
7053 * reclaim will be aborted.
7054 */
7055 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
7056 sc.may_swap = !nr_boost_reclaim;
7057
7058 /*
7059 * Do some background aging, to give pages a chance to be
7060 * referenced before reclaiming. All pages are rotated
7061 * regardless of classzone as this is about consistent aging.
7062 */
7063 kswapd_age_node(pgdat, &sc);
7064
7065 /*
7066 * If we're getting trouble reclaiming, start doing writepage
7067 * even in laptop mode.
7068 */
7069 if (sc.priority < DEF_PRIORITY - 2)
7070 sc.may_writepage = 1;
7071
7072 /* Call soft limit reclaim before calling shrink_node. */
7073 sc.nr_scanned = 0;
7074 nr_soft_scanned = 0;
7075 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
7076 sc.gfp_mask, &nr_soft_scanned);
7077 sc.nr_reclaimed += nr_soft_reclaimed;
7078
7079 /*
7080 * There should be no need to raise the scanning priority if
7081 * enough pages are already being scanned that that high
7082 * watermark would be met at 100% efficiency.
7083 */
7084 if (kswapd_shrink_node(pgdat, &sc))
7085 raise_priority = false;
7086
7087 /*
7088 * If the low watermark is met there is no need for processes
7089 * to be throttled on pfmemalloc_wait as they should not be
7090 * able to safely make forward progress. Wake them
7091 */
7092 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
7093 allow_direct_reclaim(pgdat))
7094 wake_up_all(&pgdat->pfmemalloc_wait);
7095
7096 /* Check if kswapd should be suspending */
7097 __fs_reclaim_release(_THIS_IP_);
7098 ret = kthread_freezable_should_stop(&was_frozen);
7099 __fs_reclaim_acquire(_THIS_IP_);
7100 if (was_frozen || ret)
7101 break;
7102
7103 /*
7104 * Raise priority if scanning rate is too low or there was no
7105 * progress in reclaiming pages
7106 */
7107 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7108 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7109
7110 /*
7111 * If reclaim made no progress for a boost, stop reclaim as
7112 * IO cannot be queued and it could be an infinite loop in
7113 * extreme circumstances.
7114 */
7115 if (nr_boost_reclaim && !nr_reclaimed)
7116 break;
7117
7118 if (raise_priority || !nr_reclaimed)
7119 sc.priority--;
7120 } while (sc.priority >= 1);
7121
7122 /*
7123 * Restart only if it went through the priority loop all the way,
7124 * but cache_trim_mode didn't work.
7125 */
7126 if (!sc.nr_reclaimed && sc.priority < 1 &&
7127 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7128 sc.no_cache_trim_mode = 1;
7129 goto restart;
7130 }
7131
7132 /*
7133 * If the reclaim was boosted, we might still be far from the
7134 * watermark_high at this point. We need to avoid increasing the
7135 * failure count to prevent the kswapd thread from stopping.
7136 */
7137 if (!sc.nr_reclaimed && !boosted)
7138 atomic_inc(&pgdat->kswapd_failures);
7139
7140 out:
7141 clear_reclaim_active(pgdat, highest_zoneidx);
7142
7143 /* If reclaim was boosted, account for the reclaim done in this pass */
7144 if (boosted) {
7145 unsigned long flags;
7146
7147 for (i = 0; i <= highest_zoneidx; i++) {
7148 if (!zone_boosts[i])
7149 continue;
7150
7151 /* Increments are under the zone lock */
7152 zone = pgdat->node_zones + i;
7153 spin_lock_irqsave(&zone->lock, flags);
7154 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7155 spin_unlock_irqrestore(&zone->lock, flags);
7156 }
7157
7158 /*
7159 * As there is now likely space, wakeup kcompact to defragment
7160 * pageblocks.
7161 */
7162 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7163 }
7164
7165 snapshot_refaults(NULL, pgdat);
7166 __fs_reclaim_release(_THIS_IP_);
7167 psi_memstall_leave(&pflags);
7168 set_task_reclaim_state(current, NULL);
7169
7170 /*
7171 * Return the order kswapd stopped reclaiming at as
7172 * prepare_kswapd_sleep() takes it into account. If another caller
7173 * entered the allocator slow path while kswapd was awake, order will
7174 * remain at the higher level.
7175 */
7176 return sc.order;
7177 }
7178
7179 /*
7180 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7181 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7182 * not a valid index then either kswapd runs for first time or kswapd couldn't
7183 * sleep after previous reclaim attempt (node is still unbalanced). In that
7184 * case return the zone index of the previous kswapd reclaim cycle.
7185 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)7186 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7187 enum zone_type prev_highest_zoneidx)
7188 {
7189 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7190
7191 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7192 }
7193
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)7194 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7195 unsigned int highest_zoneidx)
7196 {
7197 long remaining = 0;
7198 DEFINE_WAIT(wait);
7199
7200 if (freezing(current) || kthread_should_stop())
7201 return;
7202
7203 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7204
7205 /*
7206 * Try to sleep for a short interval. Note that kcompactd will only be
7207 * woken if it is possible to sleep for a short interval. This is
7208 * deliberate on the assumption that if reclaim cannot keep an
7209 * eligible zone balanced that it's also unlikely that compaction will
7210 * succeed.
7211 */
7212 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7213 /*
7214 * Compaction records what page blocks it recently failed to
7215 * isolate pages from and skips them in the future scanning.
7216 * When kswapd is going to sleep, it is reasonable to assume
7217 * that pages and compaction may succeed so reset the cache.
7218 */
7219 reset_isolation_suitable(pgdat);
7220
7221 /*
7222 * We have freed the memory, now we should compact it to make
7223 * allocation of the requested order possible.
7224 */
7225 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7226
7227 remaining = schedule_timeout(HZ/10);
7228
7229 /*
7230 * If woken prematurely then reset kswapd_highest_zoneidx and
7231 * order. The values will either be from a wakeup request or
7232 * the previous request that slept prematurely.
7233 */
7234 if (remaining) {
7235 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7236 kswapd_highest_zoneidx(pgdat,
7237 highest_zoneidx));
7238
7239 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7240 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7241 }
7242
7243 finish_wait(&pgdat->kswapd_wait, &wait);
7244 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7245 }
7246
7247 /*
7248 * After a short sleep, check if it was a premature sleep. If not, then
7249 * go fully to sleep until explicitly woken up.
7250 */
7251 if (!remaining &&
7252 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7253 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7254
7255 /*
7256 * vmstat counters are not perfectly accurate and the estimated
7257 * value for counters such as NR_FREE_PAGES can deviate from the
7258 * true value by nr_online_cpus * threshold. To avoid the zone
7259 * watermarks being breached while under pressure, we reduce the
7260 * per-cpu vmstat threshold while kswapd is awake and restore
7261 * them before going back to sleep.
7262 */
7263 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7264
7265 if (!kthread_should_stop())
7266 schedule();
7267
7268 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7269 } else {
7270 if (remaining)
7271 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7272 else
7273 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7274 }
7275 finish_wait(&pgdat->kswapd_wait, &wait);
7276 }
7277
7278 /*
7279 * The background pageout daemon, started as a kernel thread
7280 * from the init process.
7281 *
7282 * This basically trickles out pages so that we have _some_
7283 * free memory available even if there is no other activity
7284 * that frees anything up. This is needed for things like routing
7285 * etc, where we otherwise might have all activity going on in
7286 * asynchronous contexts that cannot page things out.
7287 *
7288 * If there are applications that are active memory-allocators
7289 * (most normal use), this basically shouldn't matter.
7290 */
kswapd(void * p)7291 static int kswapd(void *p)
7292 {
7293 unsigned int alloc_order, reclaim_order;
7294 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7295 pg_data_t *pgdat = (pg_data_t *)p;
7296 struct task_struct *tsk = current;
7297
7298 /*
7299 * Tell the memory management that we're a "memory allocator",
7300 * and that if we need more memory we should get access to it
7301 * regardless (see "__alloc_pages()"). "kswapd" should
7302 * never get caught in the normal page freeing logic.
7303 *
7304 * (Kswapd normally doesn't need memory anyway, but sometimes
7305 * you need a small amount of memory in order to be able to
7306 * page out something else, and this flag essentially protects
7307 * us from recursively trying to free more memory as we're
7308 * trying to free the first piece of memory in the first place).
7309 */
7310 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7311 set_freezable();
7312
7313 WRITE_ONCE(pgdat->kswapd_order, 0);
7314 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7315 atomic_set(&pgdat->nr_writeback_throttled, 0);
7316 for ( ; ; ) {
7317 bool was_frozen;
7318
7319 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7320 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7321 highest_zoneidx);
7322
7323 kswapd_try_sleep:
7324 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7325 highest_zoneidx);
7326
7327 /* Read the new order and highest_zoneidx */
7328 alloc_order = READ_ONCE(pgdat->kswapd_order);
7329 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7330 highest_zoneidx);
7331 WRITE_ONCE(pgdat->kswapd_order, 0);
7332 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7333
7334 if (kthread_freezable_should_stop(&was_frozen))
7335 break;
7336
7337 /*
7338 * We can speed up thawing tasks if we don't call balance_pgdat
7339 * after returning from the refrigerator
7340 */
7341 if (was_frozen)
7342 continue;
7343
7344 /*
7345 * Reclaim begins at the requested order but if a high-order
7346 * reclaim fails then kswapd falls back to reclaiming for
7347 * order-0. If that happens, kswapd will consider sleeping
7348 * for the order it finished reclaiming at (reclaim_order)
7349 * but kcompactd is woken to compact for the original
7350 * request (alloc_order).
7351 */
7352 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7353 alloc_order);
7354 reclaim_order = balance_pgdat(pgdat, alloc_order,
7355 highest_zoneidx);
7356 if (reclaim_order < alloc_order)
7357 goto kswapd_try_sleep;
7358 }
7359
7360 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7361
7362 return 0;
7363 }
7364
7365 /*
7366 * A zone is low on free memory or too fragmented for high-order memory. If
7367 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7368 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7369 * has failed or is not needed, still wake up kcompactd if only compaction is
7370 * needed.
7371 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)7372 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7373 enum zone_type highest_zoneidx)
7374 {
7375 pg_data_t *pgdat;
7376 enum zone_type curr_idx;
7377
7378 if (!managed_zone(zone))
7379 return;
7380
7381 if (!cpuset_zone_allowed(zone, gfp_flags))
7382 return;
7383
7384 pgdat = zone->zone_pgdat;
7385 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7386
7387 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7388 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7389
7390 if (READ_ONCE(pgdat->kswapd_order) < order)
7391 WRITE_ONCE(pgdat->kswapd_order, order);
7392
7393 if (!waitqueue_active(&pgdat->kswapd_wait))
7394 return;
7395
7396 /* Hopeless node, leave it to direct reclaim if possible */
7397 if (atomic_read(&pgdat->kswapd_failures) >= MAX_RECLAIM_RETRIES ||
7398 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7399 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7400 /*
7401 * There may be plenty of free memory available, but it's too
7402 * fragmented for high-order allocations. Wake up kcompactd
7403 * and rely on compaction_suitable() to determine if it's
7404 * needed. If it fails, it will defer subsequent attempts to
7405 * ratelimit its work.
7406 */
7407 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7408 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7409 return;
7410 }
7411
7412 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7413 gfp_flags);
7414 wake_up_interruptible(&pgdat->kswapd_wait);
7415 }
7416
7417 #ifdef CONFIG_HIBERNATION
7418 /*
7419 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7420 * freed pages.
7421 *
7422 * Rather than trying to age LRUs the aim is to preserve the overall
7423 * LRU order by reclaiming preferentially
7424 * inactive > active > active referenced > active mapped
7425 */
shrink_all_memory(unsigned long nr_to_reclaim)7426 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7427 {
7428 struct scan_control sc = {
7429 .nr_to_reclaim = nr_to_reclaim,
7430 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7431 .reclaim_idx = MAX_NR_ZONES - 1,
7432 .priority = DEF_PRIORITY,
7433 .may_writepage = 1,
7434 .may_unmap = 1,
7435 .may_swap = 1,
7436 .hibernation_mode = 1,
7437 };
7438 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7439 unsigned long nr_reclaimed;
7440 unsigned int noreclaim_flag;
7441
7442 fs_reclaim_acquire(sc.gfp_mask);
7443 noreclaim_flag = memalloc_noreclaim_save();
7444 set_task_reclaim_state(current, &sc.reclaim_state);
7445
7446 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7447
7448 set_task_reclaim_state(current, NULL);
7449 memalloc_noreclaim_restore(noreclaim_flag);
7450 fs_reclaim_release(sc.gfp_mask);
7451
7452 return nr_reclaimed;
7453 }
7454 #endif /* CONFIG_HIBERNATION */
7455
7456 /*
7457 * This kswapd start function will be called by init and node-hot-add.
7458 */
kswapd_run(int nid)7459 void __meminit kswapd_run(int nid)
7460 {
7461 pg_data_t *pgdat = NODE_DATA(nid);
7462
7463 pgdat_kswapd_lock(pgdat);
7464 if (!pgdat->kswapd) {
7465 pgdat->kswapd = kthread_create_on_node(kswapd, pgdat, nid, "kswapd%d", nid);
7466 if (IS_ERR(pgdat->kswapd)) {
7467 /* failure at boot is fatal */
7468 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7469 nid, PTR_ERR(pgdat->kswapd));
7470 BUG_ON(system_state < SYSTEM_RUNNING);
7471 pgdat->kswapd = NULL;
7472 } else {
7473 wake_up_process(pgdat->kswapd);
7474 }
7475 }
7476 pgdat_kswapd_unlock(pgdat);
7477 }
7478
7479 /*
7480 * Called by memory hotplug when all memory in a node is offlined. Caller must
7481 * be holding mem_hotplug_begin/done().
7482 */
kswapd_stop(int nid)7483 void __meminit kswapd_stop(int nid)
7484 {
7485 pg_data_t *pgdat = NODE_DATA(nid);
7486 struct task_struct *kswapd;
7487
7488 pgdat_kswapd_lock(pgdat);
7489 kswapd = pgdat->kswapd;
7490 if (kswapd) {
7491 kthread_stop(kswapd);
7492 pgdat->kswapd = NULL;
7493 }
7494 pgdat_kswapd_unlock(pgdat);
7495 }
7496
7497 static const struct ctl_table vmscan_sysctl_table[] = {
7498 {
7499 .procname = "swappiness",
7500 .data = &vm_swappiness,
7501 .maxlen = sizeof(vm_swappiness),
7502 .mode = 0644,
7503 .proc_handler = proc_dointvec_minmax,
7504 .extra1 = SYSCTL_ZERO,
7505 .extra2 = SYSCTL_TWO_HUNDRED,
7506 },
7507 #ifdef CONFIG_NUMA
7508 {
7509 .procname = "zone_reclaim_mode",
7510 .data = &node_reclaim_mode,
7511 .maxlen = sizeof(node_reclaim_mode),
7512 .mode = 0644,
7513 .proc_handler = proc_dointvec_minmax,
7514 .extra1 = SYSCTL_ZERO,
7515 }
7516 #endif
7517 };
7518
kswapd_init(void)7519 static int __init kswapd_init(void)
7520 {
7521 int nid;
7522
7523 swap_setup();
7524 for_each_node_state(nid, N_MEMORY)
7525 kswapd_run(nid);
7526 register_sysctl_init("vm", vmscan_sysctl_table);
7527 return 0;
7528 }
7529
7530 module_init(kswapd_init)
7531
7532 #ifdef CONFIG_NUMA
7533 /*
7534 * Node reclaim mode
7535 *
7536 * If non-zero call node_reclaim when the number of free pages falls below
7537 * the watermarks.
7538 */
7539 int node_reclaim_mode __read_mostly;
7540
7541 /*
7542 * Priority for NODE_RECLAIM. This determines the fraction of pages
7543 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7544 * a zone.
7545 */
7546 #define NODE_RECLAIM_PRIORITY 4
7547
7548 /*
7549 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7550 * occur.
7551 */
7552 int sysctl_min_unmapped_ratio = 1;
7553
7554 /*
7555 * If the number of slab pages in a zone grows beyond this percentage then
7556 * slab reclaim needs to occur.
7557 */
7558 int sysctl_min_slab_ratio = 5;
7559
node_unmapped_file_pages(struct pglist_data * pgdat)7560 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7561 {
7562 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7563 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7564 node_page_state(pgdat, NR_ACTIVE_FILE);
7565
7566 /*
7567 * It's possible for there to be more file mapped pages than
7568 * accounted for by the pages on the file LRU lists because
7569 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7570 */
7571 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7572 }
7573
7574 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7575 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7576 {
7577 unsigned long nr_pagecache_reclaimable;
7578 unsigned long delta = 0;
7579
7580 /*
7581 * If RECLAIM_UNMAP is set, then all file pages are considered
7582 * potentially reclaimable. Otherwise, we have to worry about
7583 * pages like swapcache and node_unmapped_file_pages() provides
7584 * a better estimate
7585 */
7586 if (node_reclaim_mode & RECLAIM_UNMAP)
7587 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7588 else
7589 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7590
7591 /*
7592 * Since we can't clean folios through reclaim, remove dirty file
7593 * folios from consideration.
7594 */
7595 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7596
7597 /* Watch for any possible underflows due to delta */
7598 if (unlikely(delta > nr_pagecache_reclaimable))
7599 delta = nr_pagecache_reclaimable;
7600
7601 return nr_pagecache_reclaimable - delta;
7602 }
7603
7604 /*
7605 * Try to free up some pages from this node through reclaim.
7606 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned long nr_pages,struct scan_control * sc)7607 static unsigned long __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask,
7608 unsigned long nr_pages,
7609 struct scan_control *sc)
7610 {
7611 struct task_struct *p = current;
7612 unsigned int noreclaim_flag;
7613 unsigned long pflags;
7614
7615 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, sc->order,
7616 sc->gfp_mask);
7617
7618 cond_resched();
7619 psi_memstall_enter(&pflags);
7620 delayacct_freepages_start();
7621 fs_reclaim_acquire(sc->gfp_mask);
7622 /*
7623 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7624 */
7625 noreclaim_flag = memalloc_noreclaim_save();
7626 set_task_reclaim_state(p, &sc->reclaim_state);
7627
7628 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7629 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7630 /*
7631 * Free memory by calling shrink node with increasing
7632 * priorities until we have enough memory freed.
7633 */
7634 do {
7635 shrink_node(pgdat, sc);
7636 } while (sc->nr_reclaimed < nr_pages && --sc->priority >= 0);
7637 }
7638
7639 set_task_reclaim_state(p, NULL);
7640 memalloc_noreclaim_restore(noreclaim_flag);
7641 fs_reclaim_release(sc->gfp_mask);
7642 delayacct_freepages_end();
7643 psi_memstall_leave(&pflags);
7644
7645 trace_mm_vmscan_node_reclaim_end(sc->nr_reclaimed);
7646
7647 return sc->nr_reclaimed;
7648 }
7649
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7650 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7651 {
7652 int ret;
7653 /* Minimum pages needed in order to stay on node */
7654 const unsigned long nr_pages = 1 << order;
7655 struct scan_control sc = {
7656 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7657 .gfp_mask = current_gfp_context(gfp_mask),
7658 .order = order,
7659 .priority = NODE_RECLAIM_PRIORITY,
7660 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7661 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7662 .may_swap = 1,
7663 .reclaim_idx = gfp_zone(gfp_mask),
7664 };
7665
7666 /*
7667 * Node reclaim reclaims unmapped file backed pages and
7668 * slab pages if we are over the defined limits.
7669 *
7670 * A small portion of unmapped file backed pages is needed for
7671 * file I/O otherwise pages read by file I/O will be immediately
7672 * thrown out if the node is overallocated. So we do not reclaim
7673 * if less than a specified percentage of the node is used by
7674 * unmapped file backed pages.
7675 */
7676 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7677 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7678 pgdat->min_slab_pages)
7679 return NODE_RECLAIM_FULL;
7680
7681 /*
7682 * Do not scan if the allocation should not be delayed.
7683 */
7684 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7685 return NODE_RECLAIM_NOSCAN;
7686
7687 /*
7688 * Only run node reclaim on the local node or on nodes that do not
7689 * have associated processors. This will favor the local processor
7690 * over remote processors and spread off node memory allocations
7691 * as wide as possible.
7692 */
7693 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7694 return NODE_RECLAIM_NOSCAN;
7695
7696 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7697 return NODE_RECLAIM_NOSCAN;
7698
7699 ret = __node_reclaim(pgdat, gfp_mask, nr_pages, &sc) >= nr_pages;
7700 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7701
7702 if (ret)
7703 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7704 else
7705 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7706
7707 return ret;
7708 }
7709
7710 enum {
7711 MEMORY_RECLAIM_SWAPPINESS = 0,
7712 MEMORY_RECLAIM_SWAPPINESS_MAX,
7713 MEMORY_RECLAIM_NULL,
7714 };
7715 static const match_table_t tokens = {
7716 { MEMORY_RECLAIM_SWAPPINESS, "swappiness=%d"},
7717 { MEMORY_RECLAIM_SWAPPINESS_MAX, "swappiness=max"},
7718 { MEMORY_RECLAIM_NULL, NULL },
7719 };
7720
user_proactive_reclaim(char * buf,struct mem_cgroup * memcg,pg_data_t * pgdat)7721 int user_proactive_reclaim(char *buf,
7722 struct mem_cgroup *memcg, pg_data_t *pgdat)
7723 {
7724 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
7725 unsigned long nr_to_reclaim, nr_reclaimed = 0;
7726 int swappiness = -1;
7727 char *old_buf, *start;
7728 substring_t args[MAX_OPT_ARGS];
7729 gfp_t gfp_mask = GFP_KERNEL;
7730
7731 if (!buf || (!memcg && !pgdat) || (memcg && pgdat))
7732 return -EINVAL;
7733
7734 buf = strstrip(buf);
7735
7736 old_buf = buf;
7737 nr_to_reclaim = memparse(buf, &buf) / PAGE_SIZE;
7738 if (buf == old_buf)
7739 return -EINVAL;
7740
7741 buf = strstrip(buf);
7742
7743 while ((start = strsep(&buf, " ")) != NULL) {
7744 if (!strlen(start))
7745 continue;
7746 switch (match_token(start, tokens, args)) {
7747 case MEMORY_RECLAIM_SWAPPINESS:
7748 if (match_int(&args[0], &swappiness))
7749 return -EINVAL;
7750 if (swappiness < MIN_SWAPPINESS ||
7751 swappiness > MAX_SWAPPINESS)
7752 return -EINVAL;
7753 break;
7754 case MEMORY_RECLAIM_SWAPPINESS_MAX:
7755 swappiness = SWAPPINESS_ANON_ONLY;
7756 break;
7757 default:
7758 return -EINVAL;
7759 }
7760 }
7761
7762 while (nr_reclaimed < nr_to_reclaim) {
7763 /* Will converge on zero, but reclaim enforces a minimum */
7764 unsigned long batch_size = (nr_to_reclaim - nr_reclaimed) / 4;
7765 unsigned long reclaimed;
7766
7767 if (signal_pending(current))
7768 return -EINTR;
7769
7770 /*
7771 * This is the final attempt, drain percpu lru caches in the
7772 * hope of introducing more evictable pages.
7773 */
7774 if (!nr_retries)
7775 lru_add_drain_all();
7776
7777 if (memcg) {
7778 unsigned int reclaim_options;
7779
7780 reclaim_options = MEMCG_RECLAIM_MAY_SWAP |
7781 MEMCG_RECLAIM_PROACTIVE;
7782 reclaimed = try_to_free_mem_cgroup_pages(memcg,
7783 batch_size, gfp_mask,
7784 reclaim_options,
7785 swappiness == -1 ? NULL : &swappiness);
7786 } else {
7787 struct scan_control sc = {
7788 .gfp_mask = current_gfp_context(gfp_mask),
7789 .reclaim_idx = gfp_zone(gfp_mask),
7790 .proactive_swappiness = swappiness == -1 ? NULL : &swappiness,
7791 .priority = DEF_PRIORITY,
7792 .may_writepage = !laptop_mode,
7793 .nr_to_reclaim = max(batch_size, SWAP_CLUSTER_MAX),
7794 .may_unmap = 1,
7795 .may_swap = 1,
7796 .proactive = 1,
7797 };
7798
7799 if (test_and_set_bit_lock(PGDAT_RECLAIM_LOCKED,
7800 &pgdat->flags))
7801 return -EBUSY;
7802
7803 reclaimed = __node_reclaim(pgdat, gfp_mask,
7804 batch_size, &sc);
7805 clear_bit_unlock(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7806 }
7807
7808 if (!reclaimed && !nr_retries--)
7809 return -EAGAIN;
7810
7811 nr_reclaimed += reclaimed;
7812 }
7813
7814 return 0;
7815 }
7816
7817 #endif
7818
7819 /**
7820 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7821 * lru list
7822 * @fbatch: Batch of lru folios to check.
7823 *
7824 * Checks folios for evictability, if an evictable folio is in the unevictable
7825 * lru list, moves it to the appropriate evictable lru list. This function
7826 * should be only used for lru folios.
7827 */
check_move_unevictable_folios(struct folio_batch * fbatch)7828 void check_move_unevictable_folios(struct folio_batch *fbatch)
7829 {
7830 struct lruvec *lruvec = NULL;
7831 int pgscanned = 0;
7832 int pgrescued = 0;
7833 int i;
7834
7835 for (i = 0; i < fbatch->nr; i++) {
7836 struct folio *folio = fbatch->folios[i];
7837 int nr_pages = folio_nr_pages(folio);
7838
7839 pgscanned += nr_pages;
7840
7841 /* block memcg migration while the folio moves between lrus */
7842 if (!folio_test_clear_lru(folio))
7843 continue;
7844
7845 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7846 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7847 lruvec_del_folio(lruvec, folio);
7848 folio_clear_unevictable(folio);
7849 lruvec_add_folio(lruvec, folio);
7850 pgrescued += nr_pages;
7851 }
7852 folio_set_lru(folio);
7853 }
7854
7855 if (lruvec) {
7856 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7857 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7858 unlock_page_lruvec_irq(lruvec);
7859 } else if (pgscanned) {
7860 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7861 }
7862 }
7863 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);
7864
7865 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
reclaim_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)7866 static ssize_t reclaim_store(struct device *dev,
7867 struct device_attribute *attr,
7868 const char *buf, size_t count)
7869 {
7870 int ret, nid = dev->id;
7871
7872 ret = user_proactive_reclaim((char *)buf, NULL, NODE_DATA(nid));
7873 return ret ? -EAGAIN : count;
7874 }
7875
7876 static DEVICE_ATTR_WO(reclaim);
reclaim_register_node(struct node * node)7877 int reclaim_register_node(struct node *node)
7878 {
7879 return device_create_file(&node->dev, &dev_attr_reclaim);
7880 }
7881
reclaim_unregister_node(struct node * node)7882 void reclaim_unregister_node(struct node *node)
7883 {
7884 return device_remove_file(&node->dev, &dev_attr_reclaim);
7885 }
7886 #endif
7887