xref: /linux/kernel/events/callchain.c (revision e4dcbdff114e2c0a8059c396e233aa5d9637afce)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events callchain code, extracted from core.c:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10 
11 #include <linux/perf_event.h>
12 #include <linux/slab.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/uprobes.h>
15 
16 #include "internal.h"
17 
18 struct callchain_cpus_entries {
19 	struct rcu_head			rcu_head;
20 	struct perf_callchain_entry	*cpu_entries[];
21 };
22 
23 int sysctl_perf_event_max_stack __read_mostly = PERF_MAX_STACK_DEPTH;
24 int sysctl_perf_event_max_contexts_per_stack __read_mostly = PERF_MAX_CONTEXTS_PER_STACK;
25 static const int six_hundred_forty_kb = 640 * 1024;
26 
perf_callchain_entry__sizeof(void)27 static inline size_t perf_callchain_entry__sizeof(void)
28 {
29 	return (sizeof(struct perf_callchain_entry) +
30 		sizeof(__u64) * (sysctl_perf_event_max_stack +
31 				 sysctl_perf_event_max_contexts_per_stack));
32 }
33 
34 static DEFINE_PER_CPU(u8, callchain_recursion[PERF_NR_CONTEXTS]);
35 static atomic_t nr_callchain_events;
36 static DEFINE_MUTEX(callchain_mutex);
37 static struct callchain_cpus_entries *callchain_cpus_entries;
38 
39 
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)40 __weak void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry,
41 				  struct pt_regs *regs)
42 {
43 }
44 
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)45 __weak void perf_callchain_user(struct perf_callchain_entry_ctx *entry,
46 				struct pt_regs *regs)
47 {
48 }
49 
release_callchain_buffers_rcu(struct rcu_head * head)50 static void release_callchain_buffers_rcu(struct rcu_head *head)
51 {
52 	struct callchain_cpus_entries *entries;
53 	int cpu;
54 
55 	entries = container_of(head, struct callchain_cpus_entries, rcu_head);
56 
57 	for_each_possible_cpu(cpu)
58 		kfree(entries->cpu_entries[cpu]);
59 
60 	kfree(entries);
61 }
62 
release_callchain_buffers(void)63 static void release_callchain_buffers(void)
64 {
65 	struct callchain_cpus_entries *entries;
66 
67 	entries = callchain_cpus_entries;
68 	RCU_INIT_POINTER(callchain_cpus_entries, NULL);
69 	call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
70 }
71 
alloc_callchain_buffers(void)72 static int alloc_callchain_buffers(void)
73 {
74 	int cpu;
75 	int size;
76 	struct callchain_cpus_entries *entries;
77 
78 	/*
79 	 * We can't use the percpu allocation API for data that can be
80 	 * accessed from NMI. Use a temporary manual per cpu allocation
81 	 * until that gets sorted out.
82 	 */
83 	size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
84 
85 	entries = kzalloc(size, GFP_KERNEL);
86 	if (!entries)
87 		return -ENOMEM;
88 
89 	size = perf_callchain_entry__sizeof() * PERF_NR_CONTEXTS;
90 
91 	for_each_possible_cpu(cpu) {
92 		entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
93 							 cpu_to_node(cpu));
94 		if (!entries->cpu_entries[cpu])
95 			goto fail;
96 	}
97 
98 	rcu_assign_pointer(callchain_cpus_entries, entries);
99 
100 	return 0;
101 
102 fail:
103 	for_each_possible_cpu(cpu)
104 		kfree(entries->cpu_entries[cpu]);
105 	kfree(entries);
106 
107 	return -ENOMEM;
108 }
109 
get_callchain_buffers(int event_max_stack)110 int get_callchain_buffers(int event_max_stack)
111 {
112 	int err = 0;
113 	int count;
114 
115 	mutex_lock(&callchain_mutex);
116 
117 	count = atomic_inc_return(&nr_callchain_events);
118 	if (WARN_ON_ONCE(count < 1)) {
119 		err = -EINVAL;
120 		goto exit;
121 	}
122 
123 	/*
124 	 * If requesting per event more than the global cap,
125 	 * return a different error to help userspace figure
126 	 * this out.
127 	 *
128 	 * And also do it here so that we have &callchain_mutex held.
129 	 */
130 	if (event_max_stack > sysctl_perf_event_max_stack) {
131 		err = -EOVERFLOW;
132 		goto exit;
133 	}
134 
135 	if (count == 1)
136 		err = alloc_callchain_buffers();
137 exit:
138 	if (err)
139 		atomic_dec(&nr_callchain_events);
140 
141 	mutex_unlock(&callchain_mutex);
142 
143 	return err;
144 }
145 
put_callchain_buffers(void)146 void put_callchain_buffers(void)
147 {
148 	if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
149 		release_callchain_buffers();
150 		mutex_unlock(&callchain_mutex);
151 	}
152 }
153 
get_callchain_entry(int * rctx)154 struct perf_callchain_entry *get_callchain_entry(int *rctx)
155 {
156 	int cpu;
157 	struct callchain_cpus_entries *entries;
158 
159 	*rctx = get_recursion_context(this_cpu_ptr(callchain_recursion));
160 	if (*rctx == -1)
161 		return NULL;
162 
163 	entries = rcu_dereference(callchain_cpus_entries);
164 	if (!entries) {
165 		put_recursion_context(this_cpu_ptr(callchain_recursion), *rctx);
166 		return NULL;
167 	}
168 
169 	cpu = smp_processor_id();
170 
171 	return (((void *)entries->cpu_entries[cpu]) +
172 		(*rctx * perf_callchain_entry__sizeof()));
173 }
174 
175 void
put_callchain_entry(int rctx)176 put_callchain_entry(int rctx)
177 {
178 	put_recursion_context(this_cpu_ptr(callchain_recursion), rctx);
179 }
180 
fixup_uretprobe_trampoline_entries(struct perf_callchain_entry * entry,int start_entry_idx)181 static void fixup_uretprobe_trampoline_entries(struct perf_callchain_entry *entry,
182 					       int start_entry_idx)
183 {
184 #ifdef CONFIG_UPROBES
185 	struct uprobe_task *utask = current->utask;
186 	struct return_instance *ri;
187 	__u64 *cur_ip, *last_ip, tramp_addr;
188 
189 	if (likely(!utask || !utask->return_instances))
190 		return;
191 
192 	cur_ip = &entry->ip[start_entry_idx];
193 	last_ip = &entry->ip[entry->nr - 1];
194 	ri = utask->return_instances;
195 	tramp_addr = uprobe_get_trampoline_vaddr();
196 
197 	/*
198 	 * If there are pending uretprobes for the current thread, they are
199 	 * recorded in a list inside utask->return_instances; each such
200 	 * pending uretprobe replaces traced user function's return address on
201 	 * the stack, so when stack trace is captured, instead of seeing
202 	 * actual function's return address, we'll have one or many uretprobe
203 	 * trampoline addresses in the stack trace, which are not helpful and
204 	 * misleading to users.
205 	 * So here we go over the pending list of uretprobes, and each
206 	 * encountered trampoline address is replaced with actual return
207 	 * address.
208 	 */
209 	while (ri && cur_ip <= last_ip) {
210 		if (*cur_ip == tramp_addr) {
211 			*cur_ip = ri->orig_ret_vaddr;
212 			ri = ri->next;
213 		}
214 		cur_ip++;
215 	}
216 #endif
217 }
218 
219 struct perf_callchain_entry *
get_perf_callchain(struct pt_regs * regs,bool kernel,bool user,u32 max_stack,bool crosstask,bool add_mark)220 get_perf_callchain(struct pt_regs *regs, bool kernel, bool user,
221 		   u32 max_stack, bool crosstask, bool add_mark)
222 {
223 	struct perf_callchain_entry *entry;
224 	struct perf_callchain_entry_ctx ctx;
225 	int rctx, start_entry_idx;
226 
227 	/* crosstask is not supported for user stacks */
228 	if (crosstask && user && !kernel)
229 		return NULL;
230 
231 	entry = get_callchain_entry(&rctx);
232 	if (!entry)
233 		return NULL;
234 
235 	ctx.entry		= entry;
236 	ctx.max_stack		= max_stack;
237 	ctx.nr			= entry->nr = 0;
238 	ctx.contexts		= 0;
239 	ctx.contexts_maxed	= false;
240 
241 	if (kernel && !user_mode(regs)) {
242 		if (add_mark)
243 			perf_callchain_store_context(&ctx, PERF_CONTEXT_KERNEL);
244 		perf_callchain_kernel(&ctx, regs);
245 	}
246 
247 	if (user && !crosstask) {
248 		if (!user_mode(regs)) {
249 			if (current->flags & (PF_KTHREAD | PF_USER_WORKER))
250 				goto exit_put;
251 			regs = task_pt_regs(current);
252 		}
253 
254 		if (add_mark)
255 			perf_callchain_store_context(&ctx, PERF_CONTEXT_USER);
256 
257 		start_entry_idx = entry->nr;
258 		perf_callchain_user(&ctx, regs);
259 		fixup_uretprobe_trampoline_entries(entry, start_entry_idx);
260 	}
261 
262 exit_put:
263 	put_callchain_entry(rctx);
264 
265 	return entry;
266 }
267 
perf_event_max_stack_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)268 static int perf_event_max_stack_handler(const struct ctl_table *table, int write,
269 					void *buffer, size_t *lenp, loff_t *ppos)
270 {
271 	int *value = table->data;
272 	int new_value = *value, ret;
273 	struct ctl_table new_table = *table;
274 
275 	new_table.data = &new_value;
276 	ret = proc_dointvec_minmax(&new_table, write, buffer, lenp, ppos);
277 	if (ret || !write)
278 		return ret;
279 
280 	mutex_lock(&callchain_mutex);
281 	if (atomic_read(&nr_callchain_events))
282 		ret = -EBUSY;
283 	else
284 		*value = new_value;
285 
286 	mutex_unlock(&callchain_mutex);
287 
288 	return ret;
289 }
290 
291 static const struct ctl_table callchain_sysctl_table[] = {
292 	{
293 		.procname	= "perf_event_max_stack",
294 		.data		= &sysctl_perf_event_max_stack,
295 		.maxlen		= sizeof(sysctl_perf_event_max_stack),
296 		.mode		= 0644,
297 		.proc_handler	= perf_event_max_stack_handler,
298 		.extra1		= SYSCTL_ZERO,
299 		.extra2		= (void *)&six_hundred_forty_kb,
300 	},
301 	{
302 		.procname	= "perf_event_max_contexts_per_stack",
303 		.data		= &sysctl_perf_event_max_contexts_per_stack,
304 		.maxlen		= sizeof(sysctl_perf_event_max_contexts_per_stack),
305 		.mode		= 0644,
306 		.proc_handler	= perf_event_max_stack_handler,
307 		.extra1		= SYSCTL_ZERO,
308 		.extra2		= SYSCTL_ONE_THOUSAND,
309 	},
310 };
311 
init_callchain_sysctls(void)312 static int __init init_callchain_sysctls(void)
313 {
314 	register_sysctl_init("kernel", callchain_sysctl_table);
315 	return 0;
316 }
317 core_initcall(init_callchain_sysctls);
318 
319