1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/prio.h>
41
42 #include <linux/cpuidle.h>
43 #include <linux/interrupt.h>
44 #include <linux/memory-tiers.h>
45 #include <linux/mempolicy.h>
46 #include <linux/mutex_api.h>
47 #include <linux/profile.h>
48 #include <linux/psi.h>
49 #include <linux/ratelimit.h>
50 #include <linux/task_work.h>
51 #include <linux/rbtree_augmented.h>
52
53 #include <asm/switch_to.h>
54
55 #include <uapi/linux/sched/types.h>
56
57 #include "sched.h"
58 #include "stats.h"
59 #include "autogroup.h"
60
61 /*
62 * The initial- and re-scaling of tunables is configurable
63 *
64 * Options are:
65 *
66 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
67 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
68 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
69 *
70 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
71 */
72 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
73
74 /*
75 * Minimal preemption granularity for CPU-bound tasks:
76 *
77 * (default: 0.70 msec * (1 + ilog(ncpus)), units: nanoseconds)
78 */
79 unsigned int sysctl_sched_base_slice = 700000ULL;
80 static unsigned int normalized_sysctl_sched_base_slice = 700000ULL;
81
82 __read_mostly unsigned int sysctl_sched_migration_cost = 500000UL;
83
setup_sched_thermal_decay_shift(char * str)84 static int __init setup_sched_thermal_decay_shift(char *str)
85 {
86 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
87 return 1;
88 }
89 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
90
91 /*
92 * For asym packing, by default the lower numbered CPU has higher priority.
93 */
arch_asym_cpu_priority(int cpu)94 int __weak arch_asym_cpu_priority(int cpu)
95 {
96 return -cpu;
97 }
98
99 /*
100 * The margin used when comparing utilization with CPU capacity.
101 *
102 * (default: ~20%)
103 */
104 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
105
106 /*
107 * The margin used when comparing CPU capacities.
108 * is 'cap1' noticeably greater than 'cap2'
109 *
110 * (default: ~5%)
111 */
112 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
113
114 #ifdef CONFIG_CFS_BANDWIDTH
115 /*
116 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
117 * each time a cfs_rq requests quota.
118 *
119 * Note: in the case that the slice exceeds the runtime remaining (either due
120 * to consumption or the quota being specified to be smaller than the slice)
121 * we will always only issue the remaining available time.
122 *
123 * (default: 5 msec, units: microseconds)
124 */
125 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
126 #endif
127
128 #ifdef CONFIG_NUMA_BALANCING
129 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
130 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
131 #endif
132
133 #ifdef CONFIG_SYSCTL
134 static const struct ctl_table sched_fair_sysctls[] = {
135 #ifdef CONFIG_CFS_BANDWIDTH
136 {
137 .procname = "sched_cfs_bandwidth_slice_us",
138 .data = &sysctl_sched_cfs_bandwidth_slice,
139 .maxlen = sizeof(unsigned int),
140 .mode = 0644,
141 .proc_handler = proc_dointvec_minmax,
142 .extra1 = SYSCTL_ONE,
143 },
144 #endif
145 #ifdef CONFIG_NUMA_BALANCING
146 {
147 .procname = "numa_balancing_promote_rate_limit_MBps",
148 .data = &sysctl_numa_balancing_promote_rate_limit,
149 .maxlen = sizeof(unsigned int),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 },
154 #endif /* CONFIG_NUMA_BALANCING */
155 };
156
sched_fair_sysctl_init(void)157 static int __init sched_fair_sysctl_init(void)
158 {
159 register_sysctl_init("kernel", sched_fair_sysctls);
160 return 0;
161 }
162 late_initcall(sched_fair_sysctl_init);
163 #endif /* CONFIG_SYSCTL */
164
update_load_add(struct load_weight * lw,unsigned long inc)165 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
166 {
167 lw->weight += inc;
168 lw->inv_weight = 0;
169 }
170
update_load_sub(struct load_weight * lw,unsigned long dec)171 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
172 {
173 lw->weight -= dec;
174 lw->inv_weight = 0;
175 }
176
update_load_set(struct load_weight * lw,unsigned long w)177 static inline void update_load_set(struct load_weight *lw, unsigned long w)
178 {
179 lw->weight = w;
180 lw->inv_weight = 0;
181 }
182
183 /*
184 * Increase the granularity value when there are more CPUs,
185 * because with more CPUs the 'effective latency' as visible
186 * to users decreases. But the relationship is not linear,
187 * so pick a second-best guess by going with the log2 of the
188 * number of CPUs.
189 *
190 * This idea comes from the SD scheduler of Con Kolivas:
191 */
get_update_sysctl_factor(void)192 static unsigned int get_update_sysctl_factor(void)
193 {
194 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
195 unsigned int factor;
196
197 switch (sysctl_sched_tunable_scaling) {
198 case SCHED_TUNABLESCALING_NONE:
199 factor = 1;
200 break;
201 case SCHED_TUNABLESCALING_LINEAR:
202 factor = cpus;
203 break;
204 case SCHED_TUNABLESCALING_LOG:
205 default:
206 factor = 1 + ilog2(cpus);
207 break;
208 }
209
210 return factor;
211 }
212
update_sysctl(void)213 static void update_sysctl(void)
214 {
215 unsigned int factor = get_update_sysctl_factor();
216
217 #define SET_SYSCTL(name) \
218 (sysctl_##name = (factor) * normalized_sysctl_##name)
219 SET_SYSCTL(sched_base_slice);
220 #undef SET_SYSCTL
221 }
222
sched_init_granularity(void)223 void __init sched_init_granularity(void)
224 {
225 update_sysctl();
226 }
227
228 #define WMULT_CONST (~0U)
229 #define WMULT_SHIFT 32
230
__update_inv_weight(struct load_weight * lw)231 static void __update_inv_weight(struct load_weight *lw)
232 {
233 unsigned long w;
234
235 if (likely(lw->inv_weight))
236 return;
237
238 w = scale_load_down(lw->weight);
239
240 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
241 lw->inv_weight = 1;
242 else if (unlikely(!w))
243 lw->inv_weight = WMULT_CONST;
244 else
245 lw->inv_weight = WMULT_CONST / w;
246 }
247
248 /*
249 * delta_exec * weight / lw.weight
250 * OR
251 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252 *
253 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
254 * we're guaranteed shift stays positive because inv_weight is guaranteed to
255 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256 *
257 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
258 * weight/lw.weight <= 1, and therefore our shift will also be positive.
259 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)260 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
261 {
262 u64 fact = scale_load_down(weight);
263 u32 fact_hi = (u32)(fact >> 32);
264 int shift = WMULT_SHIFT;
265 int fs;
266
267 __update_inv_weight(lw);
268
269 if (unlikely(fact_hi)) {
270 fs = fls(fact_hi);
271 shift -= fs;
272 fact >>= fs;
273 }
274
275 fact = mul_u32_u32(fact, lw->inv_weight);
276
277 fact_hi = (u32)(fact >> 32);
278 if (fact_hi) {
279 fs = fls(fact_hi);
280 shift -= fs;
281 fact >>= fs;
282 }
283
284 return mul_u64_u32_shr(delta_exec, fact, shift);
285 }
286
287 /*
288 * delta /= w
289 */
calc_delta_fair(u64 delta,struct sched_entity * se)290 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
291 {
292 if (unlikely(se->load.weight != NICE_0_LOAD))
293 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
294
295 return delta;
296 }
297
298 const struct sched_class fair_sched_class;
299
300 /**************************************************************
301 * CFS operations on generic schedulable entities:
302 */
303
304 #ifdef CONFIG_FAIR_GROUP_SCHED
305
306 /* Walk up scheduling entities hierarchy */
307 #define for_each_sched_entity(se) \
308 for (; se; se = se->parent)
309
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)310 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 {
312 struct rq *rq = rq_of(cfs_rq);
313 int cpu = cpu_of(rq);
314
315 if (cfs_rq->on_list)
316 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
317
318 cfs_rq->on_list = 1;
319
320 /*
321 * Ensure we either appear before our parent (if already
322 * enqueued) or force our parent to appear after us when it is
323 * enqueued. The fact that we always enqueue bottom-up
324 * reduces this to two cases and a special case for the root
325 * cfs_rq. Furthermore, it also means that we will always reset
326 * tmp_alone_branch either when the branch is connected
327 * to a tree or when we reach the top of the tree
328 */
329 if (cfs_rq->tg->parent &&
330 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
331 /*
332 * If parent is already on the list, we add the child
333 * just before. Thanks to circular linked property of
334 * the list, this means to put the child at the tail
335 * of the list that starts by parent.
336 */
337 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
338 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
339 /*
340 * The branch is now connected to its tree so we can
341 * reset tmp_alone_branch to the beginning of the
342 * list.
343 */
344 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
345 return true;
346 }
347
348 if (!cfs_rq->tg->parent) {
349 /*
350 * cfs rq without parent should be put
351 * at the tail of the list.
352 */
353 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
354 &rq->leaf_cfs_rq_list);
355 /*
356 * We have reach the top of a tree so we can reset
357 * tmp_alone_branch to the beginning of the list.
358 */
359 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
360 return true;
361 }
362
363 /*
364 * The parent has not already been added so we want to
365 * make sure that it will be put after us.
366 * tmp_alone_branch points to the begin of the branch
367 * where we will add parent.
368 */
369 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
370 /*
371 * update tmp_alone_branch to points to the new begin
372 * of the branch
373 */
374 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
375 return false;
376 }
377
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)378 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
379 {
380 if (cfs_rq->on_list) {
381 struct rq *rq = rq_of(cfs_rq);
382
383 /*
384 * With cfs_rq being unthrottled/throttled during an enqueue,
385 * it can happen the tmp_alone_branch points to the leaf that
386 * we finally want to delete. In this case, tmp_alone_branch moves
387 * to the prev element but it will point to rq->leaf_cfs_rq_list
388 * at the end of the enqueue.
389 */
390 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
391 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
392
393 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
394 cfs_rq->on_list = 0;
395 }
396 }
397
assert_list_leaf_cfs_rq(struct rq * rq)398 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
399 {
400 WARN_ON_ONCE(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
401 }
402
403 /* Iterate through all leaf cfs_rq's on a runqueue */
404 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
405 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
406 leaf_cfs_rq_list)
407
408 /* Do the two (enqueued) entities belong to the same group ? */
409 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)410 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 {
412 if (se->cfs_rq == pse->cfs_rq)
413 return se->cfs_rq;
414
415 return NULL;
416 }
417
parent_entity(const struct sched_entity * se)418 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
419 {
420 return se->parent;
421 }
422
423 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)424 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 {
426 int se_depth, pse_depth;
427
428 /*
429 * preemption test can be made between sibling entities who are in the
430 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
431 * both tasks until we find their ancestors who are siblings of common
432 * parent.
433 */
434
435 /* First walk up until both entities are at same depth */
436 se_depth = (*se)->depth;
437 pse_depth = (*pse)->depth;
438
439 while (se_depth > pse_depth) {
440 se_depth--;
441 *se = parent_entity(*se);
442 }
443
444 while (pse_depth > se_depth) {
445 pse_depth--;
446 *pse = parent_entity(*pse);
447 }
448
449 while (!is_same_group(*se, *pse)) {
450 *se = parent_entity(*se);
451 *pse = parent_entity(*pse);
452 }
453 }
454
tg_is_idle(struct task_group * tg)455 static int tg_is_idle(struct task_group *tg)
456 {
457 return tg->idle > 0;
458 }
459
cfs_rq_is_idle(struct cfs_rq * cfs_rq)460 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
461 {
462 return cfs_rq->idle > 0;
463 }
464
se_is_idle(struct sched_entity * se)465 static int se_is_idle(struct sched_entity *se)
466 {
467 if (entity_is_task(se))
468 return task_has_idle_policy(task_of(se));
469 return cfs_rq_is_idle(group_cfs_rq(se));
470 }
471
472 #else /* !CONFIG_FAIR_GROUP_SCHED: */
473
474 #define for_each_sched_entity(se) \
475 for (; se; se = NULL)
476
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)477 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
478 {
479 return true;
480 }
481
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)482 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
483 {
484 }
485
assert_list_leaf_cfs_rq(struct rq * rq)486 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
487 {
488 }
489
490 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
491 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492
parent_entity(struct sched_entity * se)493 static inline struct sched_entity *parent_entity(struct sched_entity *se)
494 {
495 return NULL;
496 }
497
498 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)499 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
500 {
501 }
502
tg_is_idle(struct task_group * tg)503 static inline int tg_is_idle(struct task_group *tg)
504 {
505 return 0;
506 }
507
cfs_rq_is_idle(struct cfs_rq * cfs_rq)508 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
509 {
510 return 0;
511 }
512
se_is_idle(struct sched_entity * se)513 static int se_is_idle(struct sched_entity *se)
514 {
515 return task_has_idle_policy(task_of(se));
516 }
517
518 #endif /* !CONFIG_FAIR_GROUP_SCHED */
519
520 static __always_inline
521 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
522
523 /**************************************************************
524 * Scheduling class tree data structure manipulation methods:
525 */
526
max_vruntime(u64 max_vruntime,u64 vruntime)527 static inline __maybe_unused u64 max_vruntime(u64 max_vruntime, u64 vruntime)
528 {
529 s64 delta = (s64)(vruntime - max_vruntime);
530 if (delta > 0)
531 max_vruntime = vruntime;
532
533 return max_vruntime;
534 }
535
min_vruntime(u64 min_vruntime,u64 vruntime)536 static inline __maybe_unused u64 min_vruntime(u64 min_vruntime, u64 vruntime)
537 {
538 s64 delta = (s64)(vruntime - min_vruntime);
539 if (delta < 0)
540 min_vruntime = vruntime;
541
542 return min_vruntime;
543 }
544
entity_before(const struct sched_entity * a,const struct sched_entity * b)545 static inline bool entity_before(const struct sched_entity *a,
546 const struct sched_entity *b)
547 {
548 /*
549 * Tiebreak on vruntime seems unnecessary since it can
550 * hardly happen.
551 */
552 return (s64)(a->deadline - b->deadline) < 0;
553 }
554
entity_key(struct cfs_rq * cfs_rq,struct sched_entity * se)555 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 {
557 return (s64)(se->vruntime - cfs_rq->min_vruntime);
558 }
559
560 #define __node_2_se(node) \
561 rb_entry((node), struct sched_entity, run_node)
562
563 /*
564 * Compute virtual time from the per-task service numbers:
565 *
566 * Fair schedulers conserve lag:
567 *
568 * \Sum lag_i = 0
569 *
570 * Where lag_i is given by:
571 *
572 * lag_i = S - s_i = w_i * (V - v_i)
573 *
574 * Where S is the ideal service time and V is it's virtual time counterpart.
575 * Therefore:
576 *
577 * \Sum lag_i = 0
578 * \Sum w_i * (V - v_i) = 0
579 * \Sum w_i * V - w_i * v_i = 0
580 *
581 * From which we can solve an expression for V in v_i (which we have in
582 * se->vruntime):
583 *
584 * \Sum v_i * w_i \Sum v_i * w_i
585 * V = -------------- = --------------
586 * \Sum w_i W
587 *
588 * Specifically, this is the weighted average of all entity virtual runtimes.
589 *
590 * [[ NOTE: this is only equal to the ideal scheduler under the condition
591 * that join/leave operations happen at lag_i = 0, otherwise the
592 * virtual time has non-contiguous motion equivalent to:
593 *
594 * V +-= lag_i / W
595 *
596 * Also see the comment in place_entity() that deals with this. ]]
597 *
598 * However, since v_i is u64, and the multiplication could easily overflow
599 * transform it into a relative form that uses smaller quantities:
600 *
601 * Substitute: v_i == (v_i - v0) + v0
602 *
603 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
604 * V = ---------------------------- = --------------------- + v0
605 * W W
606 *
607 * Which we track using:
608 *
609 * v0 := cfs_rq->min_vruntime
610 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
611 * \Sum w_i := cfs_rq->avg_load
612 *
613 * Since min_vruntime is a monotonic increasing variable that closely tracks
614 * the per-task service, these deltas: (v_i - v), will be in the order of the
615 * maximal (virtual) lag induced in the system due to quantisation.
616 *
617 * Also, we use scale_load_down() to reduce the size.
618 *
619 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
620 */
621 static void
avg_vruntime_add(struct cfs_rq * cfs_rq,struct sched_entity * se)622 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 {
624 unsigned long weight = scale_load_down(se->load.weight);
625 s64 key = entity_key(cfs_rq, se);
626
627 cfs_rq->avg_vruntime += key * weight;
628 cfs_rq->avg_load += weight;
629 }
630
631 static void
avg_vruntime_sub(struct cfs_rq * cfs_rq,struct sched_entity * se)632 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 {
634 unsigned long weight = scale_load_down(se->load.weight);
635 s64 key = entity_key(cfs_rq, se);
636
637 cfs_rq->avg_vruntime -= key * weight;
638 cfs_rq->avg_load -= weight;
639 }
640
641 static inline
avg_vruntime_update(struct cfs_rq * cfs_rq,s64 delta)642 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
643 {
644 /*
645 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 */
647 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
648 }
649
650 /*
651 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
652 * For this to be so, the result of this function must have a left bias.
653 */
avg_vruntime(struct cfs_rq * cfs_rq)654 u64 avg_vruntime(struct cfs_rq *cfs_rq)
655 {
656 struct sched_entity *curr = cfs_rq->curr;
657 s64 avg = cfs_rq->avg_vruntime;
658 long load = cfs_rq->avg_load;
659
660 if (curr && curr->on_rq) {
661 unsigned long weight = scale_load_down(curr->load.weight);
662
663 avg += entity_key(cfs_rq, curr) * weight;
664 load += weight;
665 }
666
667 if (load) {
668 /* sign flips effective floor / ceiling */
669 if (avg < 0)
670 avg -= (load - 1);
671 avg = div_s64(avg, load);
672 }
673
674 return cfs_rq->min_vruntime + avg;
675 }
676
677 /*
678 * lag_i = S - s_i = w_i * (V - v_i)
679 *
680 * However, since V is approximated by the weighted average of all entities it
681 * is possible -- by addition/removal/reweight to the tree -- to move V around
682 * and end up with a larger lag than we started with.
683 *
684 * Limit this to either double the slice length with a minimum of TICK_NSEC
685 * since that is the timing granularity.
686 *
687 * EEVDF gives the following limit for a steady state system:
688 *
689 * -r_max < lag < max(r_max, q)
690 *
691 * XXX could add max_slice to the augmented data to track this.
692 */
update_entity_lag(struct cfs_rq * cfs_rq,struct sched_entity * se)693 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
694 {
695 s64 vlag, limit;
696
697 WARN_ON_ONCE(!se->on_rq);
698
699 vlag = avg_vruntime(cfs_rq) - se->vruntime;
700 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
701
702 se->vlag = clamp(vlag, -limit, limit);
703 }
704
705 /*
706 * Entity is eligible once it received less service than it ought to have,
707 * eg. lag >= 0.
708 *
709 * lag_i = S - s_i = w_i*(V - v_i)
710 *
711 * lag_i >= 0 -> V >= v_i
712 *
713 * \Sum (v_i - v)*w_i
714 * V = ------------------ + v
715 * \Sum w_i
716 *
717 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
718 *
719 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
720 * to the loss in precision caused by the division.
721 */
vruntime_eligible(struct cfs_rq * cfs_rq,u64 vruntime)722 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
723 {
724 struct sched_entity *curr = cfs_rq->curr;
725 s64 avg = cfs_rq->avg_vruntime;
726 long load = cfs_rq->avg_load;
727
728 if (curr && curr->on_rq) {
729 unsigned long weight = scale_load_down(curr->load.weight);
730
731 avg += entity_key(cfs_rq, curr) * weight;
732 load += weight;
733 }
734
735 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
736 }
737
entity_eligible(struct cfs_rq * cfs_rq,struct sched_entity * se)738 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
739 {
740 return vruntime_eligible(cfs_rq, se->vruntime);
741 }
742
__update_min_vruntime(struct cfs_rq * cfs_rq,u64 vruntime)743 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
744 {
745 u64 min_vruntime = cfs_rq->min_vruntime;
746 /*
747 * open coded max_vruntime() to allow updating avg_vruntime
748 */
749 s64 delta = (s64)(vruntime - min_vruntime);
750 if (delta > 0) {
751 avg_vruntime_update(cfs_rq, delta);
752 min_vruntime = vruntime;
753 }
754 return min_vruntime;
755 }
756
update_min_vruntime(struct cfs_rq * cfs_rq)757 static void update_min_vruntime(struct cfs_rq *cfs_rq)
758 {
759 struct sched_entity *se = __pick_root_entity(cfs_rq);
760 struct sched_entity *curr = cfs_rq->curr;
761 u64 vruntime = cfs_rq->min_vruntime;
762
763 if (curr) {
764 if (curr->on_rq)
765 vruntime = curr->vruntime;
766 else
767 curr = NULL;
768 }
769
770 if (se) {
771 if (!curr)
772 vruntime = se->min_vruntime;
773 else
774 vruntime = min_vruntime(vruntime, se->min_vruntime);
775 }
776
777 /* ensure we never gain time by being placed backwards. */
778 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
779 }
780
cfs_rq_min_slice(struct cfs_rq * cfs_rq)781 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
782 {
783 struct sched_entity *root = __pick_root_entity(cfs_rq);
784 struct sched_entity *curr = cfs_rq->curr;
785 u64 min_slice = ~0ULL;
786
787 if (curr && curr->on_rq)
788 min_slice = curr->slice;
789
790 if (root)
791 min_slice = min(min_slice, root->min_slice);
792
793 return min_slice;
794 }
795
__entity_less(struct rb_node * a,const struct rb_node * b)796 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
797 {
798 return entity_before(__node_2_se(a), __node_2_se(b));
799 }
800
801 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
802
__min_vruntime_update(struct sched_entity * se,struct rb_node * node)803 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
804 {
805 if (node) {
806 struct sched_entity *rse = __node_2_se(node);
807 if (vruntime_gt(min_vruntime, se, rse))
808 se->min_vruntime = rse->min_vruntime;
809 }
810 }
811
__min_slice_update(struct sched_entity * se,struct rb_node * node)812 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
813 {
814 if (node) {
815 struct sched_entity *rse = __node_2_se(node);
816 if (rse->min_slice < se->min_slice)
817 se->min_slice = rse->min_slice;
818 }
819 }
820
821 /*
822 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
823 */
min_vruntime_update(struct sched_entity * se,bool exit)824 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
825 {
826 u64 old_min_vruntime = se->min_vruntime;
827 u64 old_min_slice = se->min_slice;
828 struct rb_node *node = &se->run_node;
829
830 se->min_vruntime = se->vruntime;
831 __min_vruntime_update(se, node->rb_right);
832 __min_vruntime_update(se, node->rb_left);
833
834 se->min_slice = se->slice;
835 __min_slice_update(se, node->rb_right);
836 __min_slice_update(se, node->rb_left);
837
838 return se->min_vruntime == old_min_vruntime &&
839 se->min_slice == old_min_slice;
840 }
841
842 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
843 run_node, min_vruntime, min_vruntime_update);
844
845 /*
846 * Enqueue an entity into the rb-tree:
847 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)848 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
849 {
850 avg_vruntime_add(cfs_rq, se);
851 se->min_vruntime = se->vruntime;
852 se->min_slice = se->slice;
853 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
854 __entity_less, &min_vruntime_cb);
855 }
856
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)857 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
858 {
859 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
860 &min_vruntime_cb);
861 avg_vruntime_sub(cfs_rq, se);
862 }
863
__pick_root_entity(struct cfs_rq * cfs_rq)864 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
865 {
866 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
867
868 if (!root)
869 return NULL;
870
871 return __node_2_se(root);
872 }
873
__pick_first_entity(struct cfs_rq * cfs_rq)874 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
875 {
876 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
877
878 if (!left)
879 return NULL;
880
881 return __node_2_se(left);
882 }
883
884 /*
885 * Set the vruntime up to which an entity can run before looking
886 * for another entity to pick.
887 * In case of run to parity, we use the shortest slice of the enqueued
888 * entities to set the protected period.
889 * When run to parity is disabled, we give a minimum quantum to the running
890 * entity to ensure progress.
891 */
set_protect_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)892 static inline void set_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
893 {
894 u64 slice = normalized_sysctl_sched_base_slice;
895 u64 vprot = se->deadline;
896
897 if (sched_feat(RUN_TO_PARITY))
898 slice = cfs_rq_min_slice(cfs_rq);
899
900 slice = min(slice, se->slice);
901 if (slice != se->slice)
902 vprot = min_vruntime(vprot, se->vruntime + calc_delta_fair(slice, se));
903
904 se->vprot = vprot;
905 }
906
update_protect_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)907 static inline void update_protect_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
908 {
909 u64 slice = cfs_rq_min_slice(cfs_rq);
910
911 se->vprot = min_vruntime(se->vprot, se->vruntime + calc_delta_fair(slice, se));
912 }
913
protect_slice(struct sched_entity * se)914 static inline bool protect_slice(struct sched_entity *se)
915 {
916 return ((s64)(se->vprot - se->vruntime) > 0);
917 }
918
cancel_protect_slice(struct sched_entity * se)919 static inline void cancel_protect_slice(struct sched_entity *se)
920 {
921 if (protect_slice(se))
922 se->vprot = se->vruntime;
923 }
924
925 /*
926 * Earliest Eligible Virtual Deadline First
927 *
928 * In order to provide latency guarantees for different request sizes
929 * EEVDF selects the best runnable task from two criteria:
930 *
931 * 1) the task must be eligible (must be owed service)
932 *
933 * 2) from those tasks that meet 1), we select the one
934 * with the earliest virtual deadline.
935 *
936 * We can do this in O(log n) time due to an augmented RB-tree. The
937 * tree keeps the entries sorted on deadline, but also functions as a
938 * heap based on the vruntime by keeping:
939 *
940 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
941 *
942 * Which allows tree pruning through eligibility.
943 */
__pick_eevdf(struct cfs_rq * cfs_rq,bool protect)944 static struct sched_entity *__pick_eevdf(struct cfs_rq *cfs_rq, bool protect)
945 {
946 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
947 struct sched_entity *se = __pick_first_entity(cfs_rq);
948 struct sched_entity *curr = cfs_rq->curr;
949 struct sched_entity *best = NULL;
950
951 /*
952 * We can safely skip eligibility check if there is only one entity
953 * in this cfs_rq, saving some cycles.
954 */
955 if (cfs_rq->nr_queued == 1)
956 return curr && curr->on_rq ? curr : se;
957
958 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
959 curr = NULL;
960
961 if (curr && protect && protect_slice(curr))
962 return curr;
963
964 /* Pick the leftmost entity if it's eligible */
965 if (se && entity_eligible(cfs_rq, se)) {
966 best = se;
967 goto found;
968 }
969
970 /* Heap search for the EEVD entity */
971 while (node) {
972 struct rb_node *left = node->rb_left;
973
974 /*
975 * Eligible entities in left subtree are always better
976 * choices, since they have earlier deadlines.
977 */
978 if (left && vruntime_eligible(cfs_rq,
979 __node_2_se(left)->min_vruntime)) {
980 node = left;
981 continue;
982 }
983
984 se = __node_2_se(node);
985
986 /*
987 * The left subtree either is empty or has no eligible
988 * entity, so check the current node since it is the one
989 * with earliest deadline that might be eligible.
990 */
991 if (entity_eligible(cfs_rq, se)) {
992 best = se;
993 break;
994 }
995
996 node = node->rb_right;
997 }
998 found:
999 if (!best || (curr && entity_before(curr, best)))
1000 best = curr;
1001
1002 return best;
1003 }
1004
pick_eevdf(struct cfs_rq * cfs_rq)1005 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
1006 {
1007 return __pick_eevdf(cfs_rq, true);
1008 }
1009
__pick_last_entity(struct cfs_rq * cfs_rq)1010 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
1011 {
1012 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
1013
1014 if (!last)
1015 return NULL;
1016
1017 return __node_2_se(last);
1018 }
1019
1020 /**************************************************************
1021 * Scheduling class statistics methods:
1022 */
sched_update_scaling(void)1023 int sched_update_scaling(void)
1024 {
1025 unsigned int factor = get_update_sysctl_factor();
1026
1027 #define WRT_SYSCTL(name) \
1028 (normalized_sysctl_##name = sysctl_##name / (factor))
1029 WRT_SYSCTL(sched_base_slice);
1030 #undef WRT_SYSCTL
1031
1032 return 0;
1033 }
1034
1035 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1036
1037 /*
1038 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1039 * this is probably good enough.
1040 */
update_deadline(struct cfs_rq * cfs_rq,struct sched_entity * se)1041 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1042 {
1043 if ((s64)(se->vruntime - se->deadline) < 0)
1044 return false;
1045
1046 /*
1047 * For EEVDF the virtual time slope is determined by w_i (iow.
1048 * nice) while the request time r_i is determined by
1049 * sysctl_sched_base_slice.
1050 */
1051 if (!se->custom_slice)
1052 se->slice = sysctl_sched_base_slice;
1053
1054 /*
1055 * EEVDF: vd_i = ve_i + r_i / w_i
1056 */
1057 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1058
1059 /*
1060 * The task has consumed its request, reschedule.
1061 */
1062 return true;
1063 }
1064
1065 #include "pelt.h"
1066
1067 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1068 static unsigned long task_h_load(struct task_struct *p);
1069 static unsigned long capacity_of(int cpu);
1070
1071 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)1072 void init_entity_runnable_average(struct sched_entity *se)
1073 {
1074 struct sched_avg *sa = &se->avg;
1075
1076 memset(sa, 0, sizeof(*sa));
1077
1078 /*
1079 * Tasks are initialized with full load to be seen as heavy tasks until
1080 * they get a chance to stabilize to their real load level.
1081 * Group entities are initialized with zero load to reflect the fact that
1082 * nothing has been attached to the task group yet.
1083 */
1084 if (entity_is_task(se))
1085 sa->load_avg = scale_load_down(se->load.weight);
1086
1087 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1088 }
1089
1090 /*
1091 * With new tasks being created, their initial util_avgs are extrapolated
1092 * based on the cfs_rq's current util_avg:
1093 *
1094 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1095 * * se_weight(se)
1096 *
1097 * However, in many cases, the above util_avg does not give a desired
1098 * value. Moreover, the sum of the util_avgs may be divergent, such
1099 * as when the series is a harmonic series.
1100 *
1101 * To solve this problem, we also cap the util_avg of successive tasks to
1102 * only 1/2 of the left utilization budget:
1103 *
1104 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1105 *
1106 * where n denotes the nth task and cpu_scale the CPU capacity.
1107 *
1108 * For example, for a CPU with 1024 of capacity, a simplest series from
1109 * the beginning would be like:
1110 *
1111 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1112 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1113 *
1114 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1115 * if util_avg > util_avg_cap.
1116 */
post_init_entity_util_avg(struct task_struct * p)1117 void post_init_entity_util_avg(struct task_struct *p)
1118 {
1119 struct sched_entity *se = &p->se;
1120 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1121 struct sched_avg *sa = &se->avg;
1122 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1123 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1124
1125 if (p->sched_class != &fair_sched_class) {
1126 /*
1127 * For !fair tasks do:
1128 *
1129 update_cfs_rq_load_avg(now, cfs_rq);
1130 attach_entity_load_avg(cfs_rq, se);
1131 switched_from_fair(rq, p);
1132 *
1133 * such that the next switched_to_fair() has the
1134 * expected state.
1135 */
1136 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1137 return;
1138 }
1139
1140 if (cap > 0) {
1141 if (cfs_rq->avg.util_avg != 0) {
1142 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1143 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1144
1145 if (sa->util_avg > cap)
1146 sa->util_avg = cap;
1147 } else {
1148 sa->util_avg = cap;
1149 }
1150 }
1151
1152 sa->runnable_avg = sa->util_avg;
1153 }
1154
update_se(struct rq * rq,struct sched_entity * se)1155 static s64 update_se(struct rq *rq, struct sched_entity *se)
1156 {
1157 u64 now = rq_clock_task(rq);
1158 s64 delta_exec;
1159
1160 delta_exec = now - se->exec_start;
1161 if (unlikely(delta_exec <= 0))
1162 return delta_exec;
1163
1164 se->exec_start = now;
1165 if (entity_is_task(se)) {
1166 struct task_struct *donor = task_of(se);
1167 struct task_struct *running = rq->curr;
1168 /*
1169 * If se is a task, we account the time against the running
1170 * task, as w/ proxy-exec they may not be the same.
1171 */
1172 running->se.exec_start = now;
1173 running->se.sum_exec_runtime += delta_exec;
1174
1175 trace_sched_stat_runtime(running, delta_exec);
1176 account_group_exec_runtime(running, delta_exec);
1177
1178 /* cgroup time is always accounted against the donor */
1179 cgroup_account_cputime(donor, delta_exec);
1180 } else {
1181 /* If not task, account the time against donor se */
1182 se->sum_exec_runtime += delta_exec;
1183 }
1184
1185 if (schedstat_enabled()) {
1186 struct sched_statistics *stats;
1187
1188 stats = __schedstats_from_se(se);
1189 __schedstat_set(stats->exec_max,
1190 max(delta_exec, stats->exec_max));
1191 }
1192
1193 return delta_exec;
1194 }
1195
1196 /*
1197 * Used by other classes to account runtime.
1198 */
update_curr_common(struct rq * rq)1199 s64 update_curr_common(struct rq *rq)
1200 {
1201 return update_se(rq, &rq->donor->se);
1202 }
1203
1204 /*
1205 * Update the current task's runtime statistics.
1206 */
update_curr(struct cfs_rq * cfs_rq)1207 static void update_curr(struct cfs_rq *cfs_rq)
1208 {
1209 /*
1210 * Note: cfs_rq->curr corresponds to the task picked to
1211 * run (ie: rq->donor.se) which due to proxy-exec may
1212 * not necessarily be the actual task running
1213 * (rq->curr.se). This is easy to confuse!
1214 */
1215 struct sched_entity *curr = cfs_rq->curr;
1216 struct rq *rq = rq_of(cfs_rq);
1217 s64 delta_exec;
1218 bool resched;
1219
1220 if (unlikely(!curr))
1221 return;
1222
1223 delta_exec = update_se(rq, curr);
1224 if (unlikely(delta_exec <= 0))
1225 return;
1226
1227 curr->vruntime += calc_delta_fair(delta_exec, curr);
1228 resched = update_deadline(cfs_rq, curr);
1229 update_min_vruntime(cfs_rq);
1230
1231 if (entity_is_task(curr)) {
1232 /*
1233 * If the fair_server is active, we need to account for the
1234 * fair_server time whether or not the task is running on
1235 * behalf of fair_server or not:
1236 * - If the task is running on behalf of fair_server, we need
1237 * to limit its time based on the assigned runtime.
1238 * - Fair task that runs outside of fair_server should account
1239 * against fair_server such that it can account for this time
1240 * and possibly avoid running this period.
1241 */
1242 if (dl_server_active(&rq->fair_server))
1243 dl_server_update(&rq->fair_server, delta_exec);
1244 }
1245
1246 account_cfs_rq_runtime(cfs_rq, delta_exec);
1247
1248 if (cfs_rq->nr_queued == 1)
1249 return;
1250
1251 if (resched || !protect_slice(curr)) {
1252 resched_curr_lazy(rq);
1253 clear_buddies(cfs_rq, curr);
1254 }
1255 }
1256
update_curr_fair(struct rq * rq)1257 static void update_curr_fair(struct rq *rq)
1258 {
1259 update_curr(cfs_rq_of(&rq->donor->se));
1260 }
1261
1262 static inline void
update_stats_wait_start_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1263 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1264 {
1265 struct sched_statistics *stats;
1266 struct task_struct *p = NULL;
1267
1268 if (!schedstat_enabled())
1269 return;
1270
1271 stats = __schedstats_from_se(se);
1272
1273 if (entity_is_task(se))
1274 p = task_of(se);
1275
1276 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1277 }
1278
1279 static inline void
update_stats_wait_end_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1280 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1281 {
1282 struct sched_statistics *stats;
1283 struct task_struct *p = NULL;
1284
1285 if (!schedstat_enabled())
1286 return;
1287
1288 stats = __schedstats_from_se(se);
1289
1290 /*
1291 * When the sched_schedstat changes from 0 to 1, some sched se
1292 * maybe already in the runqueue, the se->statistics.wait_start
1293 * will be 0.So it will let the delta wrong. We need to avoid this
1294 * scenario.
1295 */
1296 if (unlikely(!schedstat_val(stats->wait_start)))
1297 return;
1298
1299 if (entity_is_task(se))
1300 p = task_of(se);
1301
1302 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1303 }
1304
1305 static inline void
update_stats_enqueue_sleeper_fair(struct cfs_rq * cfs_rq,struct sched_entity * se)1306 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1307 {
1308 struct sched_statistics *stats;
1309 struct task_struct *tsk = NULL;
1310
1311 if (!schedstat_enabled())
1312 return;
1313
1314 stats = __schedstats_from_se(se);
1315
1316 if (entity_is_task(se))
1317 tsk = task_of(se);
1318
1319 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1320 }
1321
1322 /*
1323 * Task is being enqueued - update stats:
1324 */
1325 static inline void
update_stats_enqueue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1326 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1327 {
1328 if (!schedstat_enabled())
1329 return;
1330
1331 /*
1332 * Are we enqueueing a waiting task? (for current tasks
1333 * a dequeue/enqueue event is a NOP)
1334 */
1335 if (se != cfs_rq->curr)
1336 update_stats_wait_start_fair(cfs_rq, se);
1337
1338 if (flags & ENQUEUE_WAKEUP)
1339 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1340 }
1341
1342 static inline void
update_stats_dequeue_fair(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1343 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1344 {
1345
1346 if (!schedstat_enabled())
1347 return;
1348
1349 /*
1350 * Mark the end of the wait period if dequeueing a
1351 * waiting task:
1352 */
1353 if (se != cfs_rq->curr)
1354 update_stats_wait_end_fair(cfs_rq, se);
1355
1356 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1357 struct task_struct *tsk = task_of(se);
1358 unsigned int state;
1359
1360 /* XXX racy against TTWU */
1361 state = READ_ONCE(tsk->__state);
1362 if (state & TASK_INTERRUPTIBLE)
1363 __schedstat_set(tsk->stats.sleep_start,
1364 rq_clock(rq_of(cfs_rq)));
1365 if (state & TASK_UNINTERRUPTIBLE)
1366 __schedstat_set(tsk->stats.block_start,
1367 rq_clock(rq_of(cfs_rq)));
1368 }
1369 }
1370
1371 /*
1372 * We are picking a new current task - update its stats:
1373 */
1374 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1375 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1376 {
1377 /*
1378 * We are starting a new run period:
1379 */
1380 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1381 }
1382
1383 /**************************************************
1384 * Scheduling class queueing methods:
1385 */
1386
is_core_idle(int cpu)1387 static inline bool is_core_idle(int cpu)
1388 {
1389 #ifdef CONFIG_SCHED_SMT
1390 int sibling;
1391
1392 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1393 if (cpu == sibling)
1394 continue;
1395
1396 if (!idle_cpu(sibling))
1397 return false;
1398 }
1399 #endif
1400
1401 return true;
1402 }
1403
1404 #ifdef CONFIG_NUMA
1405 #define NUMA_IMBALANCE_MIN 2
1406
1407 static inline long
adjust_numa_imbalance(int imbalance,int dst_running,int imb_numa_nr)1408 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1409 {
1410 /*
1411 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1412 * threshold. Above this threshold, individual tasks may be contending
1413 * for both memory bandwidth and any shared HT resources. This is an
1414 * approximation as the number of running tasks may not be related to
1415 * the number of busy CPUs due to sched_setaffinity.
1416 */
1417 if (dst_running > imb_numa_nr)
1418 return imbalance;
1419
1420 /*
1421 * Allow a small imbalance based on a simple pair of communicating
1422 * tasks that remain local when the destination is lightly loaded.
1423 */
1424 if (imbalance <= NUMA_IMBALANCE_MIN)
1425 return 0;
1426
1427 return imbalance;
1428 }
1429 #endif /* CONFIG_NUMA */
1430
1431 #ifdef CONFIG_NUMA_BALANCING
1432 /*
1433 * Approximate time to scan a full NUMA task in ms. The task scan period is
1434 * calculated based on the tasks virtual memory size and
1435 * numa_balancing_scan_size.
1436 */
1437 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1438 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1439
1440 /* Portion of address space to scan in MB */
1441 unsigned int sysctl_numa_balancing_scan_size = 256;
1442
1443 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1444 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1445
1446 /* The page with hint page fault latency < threshold in ms is considered hot */
1447 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1448
1449 struct numa_group {
1450 refcount_t refcount;
1451
1452 spinlock_t lock; /* nr_tasks, tasks */
1453 int nr_tasks;
1454 pid_t gid;
1455 int active_nodes;
1456
1457 struct rcu_head rcu;
1458 unsigned long total_faults;
1459 unsigned long max_faults_cpu;
1460 /*
1461 * faults[] array is split into two regions: faults_mem and faults_cpu.
1462 *
1463 * Faults_cpu is used to decide whether memory should move
1464 * towards the CPU. As a consequence, these stats are weighted
1465 * more by CPU use than by memory faults.
1466 */
1467 unsigned long faults[];
1468 };
1469
1470 /*
1471 * For functions that can be called in multiple contexts that permit reading
1472 * ->numa_group (see struct task_struct for locking rules).
1473 */
deref_task_numa_group(struct task_struct * p)1474 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1475 {
1476 return rcu_dereference_check(p->numa_group, p == current ||
1477 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1478 }
1479
deref_curr_numa_group(struct task_struct * p)1480 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1481 {
1482 return rcu_dereference_protected(p->numa_group, p == current);
1483 }
1484
1485 static inline unsigned long group_faults_priv(struct numa_group *ng);
1486 static inline unsigned long group_faults_shared(struct numa_group *ng);
1487
task_nr_scan_windows(struct task_struct * p)1488 static unsigned int task_nr_scan_windows(struct task_struct *p)
1489 {
1490 unsigned long rss = 0;
1491 unsigned long nr_scan_pages;
1492
1493 /*
1494 * Calculations based on RSS as non-present and empty pages are skipped
1495 * by the PTE scanner and NUMA hinting faults should be trapped based
1496 * on resident pages
1497 */
1498 nr_scan_pages = MB_TO_PAGES(sysctl_numa_balancing_scan_size);
1499 rss = get_mm_rss(p->mm);
1500 if (!rss)
1501 rss = nr_scan_pages;
1502
1503 rss = round_up(rss, nr_scan_pages);
1504 return rss / nr_scan_pages;
1505 }
1506
1507 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1508 #define MAX_SCAN_WINDOW 2560
1509
task_scan_min(struct task_struct * p)1510 static unsigned int task_scan_min(struct task_struct *p)
1511 {
1512 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1513 unsigned int scan, floor;
1514 unsigned int windows = 1;
1515
1516 if (scan_size < MAX_SCAN_WINDOW)
1517 windows = MAX_SCAN_WINDOW / scan_size;
1518 floor = 1000 / windows;
1519
1520 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1521 return max_t(unsigned int, floor, scan);
1522 }
1523
task_scan_start(struct task_struct * p)1524 static unsigned int task_scan_start(struct task_struct *p)
1525 {
1526 unsigned long smin = task_scan_min(p);
1527 unsigned long period = smin;
1528 struct numa_group *ng;
1529
1530 /* Scale the maximum scan period with the amount of shared memory. */
1531 rcu_read_lock();
1532 ng = rcu_dereference(p->numa_group);
1533 if (ng) {
1534 unsigned long shared = group_faults_shared(ng);
1535 unsigned long private = group_faults_priv(ng);
1536
1537 period *= refcount_read(&ng->refcount);
1538 period *= shared + 1;
1539 period /= private + shared + 1;
1540 }
1541 rcu_read_unlock();
1542
1543 return max(smin, period);
1544 }
1545
task_scan_max(struct task_struct * p)1546 static unsigned int task_scan_max(struct task_struct *p)
1547 {
1548 unsigned long smin = task_scan_min(p);
1549 unsigned long smax;
1550 struct numa_group *ng;
1551
1552 /* Watch for min being lower than max due to floor calculations */
1553 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1554
1555 /* Scale the maximum scan period with the amount of shared memory. */
1556 ng = deref_curr_numa_group(p);
1557 if (ng) {
1558 unsigned long shared = group_faults_shared(ng);
1559 unsigned long private = group_faults_priv(ng);
1560 unsigned long period = smax;
1561
1562 period *= refcount_read(&ng->refcount);
1563 period *= shared + 1;
1564 period /= private + shared + 1;
1565
1566 smax = max(smax, period);
1567 }
1568
1569 return max(smin, smax);
1570 }
1571
account_numa_enqueue(struct rq * rq,struct task_struct * p)1572 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1573 {
1574 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1575 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1576 }
1577
account_numa_dequeue(struct rq * rq,struct task_struct * p)1578 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1579 {
1580 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1581 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1582 }
1583
1584 /* Shared or private faults. */
1585 #define NR_NUMA_HINT_FAULT_TYPES 2
1586
1587 /* Memory and CPU locality */
1588 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1589
1590 /* Averaged statistics, and temporary buffers. */
1591 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1592
task_numa_group_id(struct task_struct * p)1593 pid_t task_numa_group_id(struct task_struct *p)
1594 {
1595 struct numa_group *ng;
1596 pid_t gid = 0;
1597
1598 rcu_read_lock();
1599 ng = rcu_dereference(p->numa_group);
1600 if (ng)
1601 gid = ng->gid;
1602 rcu_read_unlock();
1603
1604 return gid;
1605 }
1606
1607 /*
1608 * The averaged statistics, shared & private, memory & CPU,
1609 * occupy the first half of the array. The second half of the
1610 * array is for current counters, which are averaged into the
1611 * first set by task_numa_placement.
1612 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1613 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1614 {
1615 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1616 }
1617
task_faults(struct task_struct * p,int nid)1618 static inline unsigned long task_faults(struct task_struct *p, int nid)
1619 {
1620 if (!p->numa_faults)
1621 return 0;
1622
1623 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1624 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1625 }
1626
group_faults(struct task_struct * p,int nid)1627 static inline unsigned long group_faults(struct task_struct *p, int nid)
1628 {
1629 struct numa_group *ng = deref_task_numa_group(p);
1630
1631 if (!ng)
1632 return 0;
1633
1634 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1635 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1636 }
1637
group_faults_cpu(struct numa_group * group,int nid)1638 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1639 {
1640 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1641 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1642 }
1643
group_faults_priv(struct numa_group * ng)1644 static inline unsigned long group_faults_priv(struct numa_group *ng)
1645 {
1646 unsigned long faults = 0;
1647 int node;
1648
1649 for_each_online_node(node) {
1650 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1651 }
1652
1653 return faults;
1654 }
1655
group_faults_shared(struct numa_group * ng)1656 static inline unsigned long group_faults_shared(struct numa_group *ng)
1657 {
1658 unsigned long faults = 0;
1659 int node;
1660
1661 for_each_online_node(node) {
1662 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1663 }
1664
1665 return faults;
1666 }
1667
1668 /*
1669 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1670 * considered part of a numa group's pseudo-interleaving set. Migrations
1671 * between these nodes are slowed down, to allow things to settle down.
1672 */
1673 #define ACTIVE_NODE_FRACTION 3
1674
numa_is_active_node(int nid,struct numa_group * ng)1675 static bool numa_is_active_node(int nid, struct numa_group *ng)
1676 {
1677 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1678 }
1679
1680 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int lim_dist,bool task)1681 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1682 int lim_dist, bool task)
1683 {
1684 unsigned long score = 0;
1685 int node, max_dist;
1686
1687 /*
1688 * All nodes are directly connected, and the same distance
1689 * from each other. No need for fancy placement algorithms.
1690 */
1691 if (sched_numa_topology_type == NUMA_DIRECT)
1692 return 0;
1693
1694 /* sched_max_numa_distance may be changed in parallel. */
1695 max_dist = READ_ONCE(sched_max_numa_distance);
1696 /*
1697 * This code is called for each node, introducing N^2 complexity,
1698 * which should be OK given the number of nodes rarely exceeds 8.
1699 */
1700 for_each_online_node(node) {
1701 unsigned long faults;
1702 int dist = node_distance(nid, node);
1703
1704 /*
1705 * The furthest away nodes in the system are not interesting
1706 * for placement; nid was already counted.
1707 */
1708 if (dist >= max_dist || node == nid)
1709 continue;
1710
1711 /*
1712 * On systems with a backplane NUMA topology, compare groups
1713 * of nodes, and move tasks towards the group with the most
1714 * memory accesses. When comparing two nodes at distance
1715 * "hoplimit", only nodes closer by than "hoplimit" are part
1716 * of each group. Skip other nodes.
1717 */
1718 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1719 continue;
1720
1721 /* Add up the faults from nearby nodes. */
1722 if (task)
1723 faults = task_faults(p, node);
1724 else
1725 faults = group_faults(p, node);
1726
1727 /*
1728 * On systems with a glueless mesh NUMA topology, there are
1729 * no fixed "groups of nodes". Instead, nodes that are not
1730 * directly connected bounce traffic through intermediate
1731 * nodes; a numa_group can occupy any set of nodes.
1732 * The further away a node is, the less the faults count.
1733 * This seems to result in good task placement.
1734 */
1735 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1736 faults *= (max_dist - dist);
1737 faults /= (max_dist - LOCAL_DISTANCE);
1738 }
1739
1740 score += faults;
1741 }
1742
1743 return score;
1744 }
1745
1746 /*
1747 * These return the fraction of accesses done by a particular task, or
1748 * task group, on a particular numa node. The group weight is given a
1749 * larger multiplier, in order to group tasks together that are almost
1750 * evenly spread out between numa nodes.
1751 */
task_weight(struct task_struct * p,int nid,int dist)1752 static inline unsigned long task_weight(struct task_struct *p, int nid,
1753 int dist)
1754 {
1755 unsigned long faults, total_faults;
1756
1757 if (!p->numa_faults)
1758 return 0;
1759
1760 total_faults = p->total_numa_faults;
1761
1762 if (!total_faults)
1763 return 0;
1764
1765 faults = task_faults(p, nid);
1766 faults += score_nearby_nodes(p, nid, dist, true);
1767
1768 return 1000 * faults / total_faults;
1769 }
1770
group_weight(struct task_struct * p,int nid,int dist)1771 static inline unsigned long group_weight(struct task_struct *p, int nid,
1772 int dist)
1773 {
1774 struct numa_group *ng = deref_task_numa_group(p);
1775 unsigned long faults, total_faults;
1776
1777 if (!ng)
1778 return 0;
1779
1780 total_faults = ng->total_faults;
1781
1782 if (!total_faults)
1783 return 0;
1784
1785 faults = group_faults(p, nid);
1786 faults += score_nearby_nodes(p, nid, dist, false);
1787
1788 return 1000 * faults / total_faults;
1789 }
1790
1791 /*
1792 * If memory tiering mode is enabled, cpupid of slow memory page is
1793 * used to record scan time instead of CPU and PID. When tiering mode
1794 * is disabled at run time, the scan time (in cpupid) will be
1795 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1796 * access out of array bound.
1797 */
cpupid_valid(int cpupid)1798 static inline bool cpupid_valid(int cpupid)
1799 {
1800 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1801 }
1802
1803 /*
1804 * For memory tiering mode, if there are enough free pages (more than
1805 * enough watermark defined here) in fast memory node, to take full
1806 * advantage of fast memory capacity, all recently accessed slow
1807 * memory pages will be migrated to fast memory node without
1808 * considering hot threshold.
1809 */
pgdat_free_space_enough(struct pglist_data * pgdat)1810 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1811 {
1812 int z;
1813 unsigned long enough_wmark;
1814
1815 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1816 pgdat->node_present_pages >> 4);
1817 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1818 struct zone *zone = pgdat->node_zones + z;
1819
1820 if (!populated_zone(zone))
1821 continue;
1822
1823 if (zone_watermark_ok(zone, 0,
1824 promo_wmark_pages(zone) + enough_wmark,
1825 ZONE_MOVABLE, 0))
1826 return true;
1827 }
1828 return false;
1829 }
1830
1831 /*
1832 * For memory tiering mode, when page tables are scanned, the scan
1833 * time will be recorded in struct page in addition to make page
1834 * PROT_NONE for slow memory page. So when the page is accessed, in
1835 * hint page fault handler, the hint page fault latency is calculated
1836 * via,
1837 *
1838 * hint page fault latency = hint page fault time - scan time
1839 *
1840 * The smaller the hint page fault latency, the higher the possibility
1841 * for the page to be hot.
1842 */
numa_hint_fault_latency(struct folio * folio)1843 static int numa_hint_fault_latency(struct folio *folio)
1844 {
1845 int last_time, time;
1846
1847 time = jiffies_to_msecs(jiffies);
1848 last_time = folio_xchg_access_time(folio, time);
1849
1850 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1851 }
1852
1853 /*
1854 * For memory tiering mode, too high promotion/demotion throughput may
1855 * hurt application latency. So we provide a mechanism to rate limit
1856 * the number of pages that are tried to be promoted.
1857 */
numa_promotion_rate_limit(struct pglist_data * pgdat,unsigned long rate_limit,int nr)1858 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1859 unsigned long rate_limit, int nr)
1860 {
1861 unsigned long nr_cand;
1862 unsigned int now, start;
1863
1864 now = jiffies_to_msecs(jiffies);
1865 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1866 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1867 start = pgdat->nbp_rl_start;
1868 if (now - start > MSEC_PER_SEC &&
1869 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1870 pgdat->nbp_rl_nr_cand = nr_cand;
1871 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1872 return true;
1873 return false;
1874 }
1875
1876 #define NUMA_MIGRATION_ADJUST_STEPS 16
1877
numa_promotion_adjust_threshold(struct pglist_data * pgdat,unsigned long rate_limit,unsigned int ref_th)1878 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1879 unsigned long rate_limit,
1880 unsigned int ref_th)
1881 {
1882 unsigned int now, start, th_period, unit_th, th;
1883 unsigned long nr_cand, ref_cand, diff_cand;
1884
1885 now = jiffies_to_msecs(jiffies);
1886 th_period = sysctl_numa_balancing_scan_period_max;
1887 start = pgdat->nbp_th_start;
1888 if (now - start > th_period &&
1889 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1890 ref_cand = rate_limit *
1891 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1892 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1893 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1894 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1895 th = pgdat->nbp_threshold ? : ref_th;
1896 if (diff_cand > ref_cand * 11 / 10)
1897 th = max(th - unit_th, unit_th);
1898 else if (diff_cand < ref_cand * 9 / 10)
1899 th = min(th + unit_th, ref_th * 2);
1900 pgdat->nbp_th_nr_cand = nr_cand;
1901 pgdat->nbp_threshold = th;
1902 }
1903 }
1904
should_numa_migrate_memory(struct task_struct * p,struct folio * folio,int src_nid,int dst_cpu)1905 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1906 int src_nid, int dst_cpu)
1907 {
1908 struct numa_group *ng = deref_curr_numa_group(p);
1909 int dst_nid = cpu_to_node(dst_cpu);
1910 int last_cpupid, this_cpupid;
1911
1912 /*
1913 * Cannot migrate to memoryless nodes.
1914 */
1915 if (!node_state(dst_nid, N_MEMORY))
1916 return false;
1917
1918 /*
1919 * The pages in slow memory node should be migrated according
1920 * to hot/cold instead of private/shared.
1921 */
1922 if (folio_use_access_time(folio)) {
1923 struct pglist_data *pgdat;
1924 unsigned long rate_limit;
1925 unsigned int latency, th, def_th;
1926 long nr = folio_nr_pages(folio);
1927
1928 pgdat = NODE_DATA(dst_nid);
1929 if (pgdat_free_space_enough(pgdat)) {
1930 /* workload changed, reset hot threshold */
1931 pgdat->nbp_threshold = 0;
1932 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE_NRL, nr);
1933 return true;
1934 }
1935
1936 def_th = sysctl_numa_balancing_hot_threshold;
1937 rate_limit = MB_TO_PAGES(sysctl_numa_balancing_promote_rate_limit);
1938 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1939
1940 th = pgdat->nbp_threshold ? : def_th;
1941 latency = numa_hint_fault_latency(folio);
1942 if (latency >= th)
1943 return false;
1944
1945 return !numa_promotion_rate_limit(pgdat, rate_limit, nr);
1946 }
1947
1948 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1949 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1950
1951 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1952 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1953 return false;
1954
1955 /*
1956 * Allow first faults or private faults to migrate immediately early in
1957 * the lifetime of a task. The magic number 4 is based on waiting for
1958 * two full passes of the "multi-stage node selection" test that is
1959 * executed below.
1960 */
1961 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1962 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1963 return true;
1964
1965 /*
1966 * Multi-stage node selection is used in conjunction with a periodic
1967 * migration fault to build a temporal task<->page relation. By using
1968 * a two-stage filter we remove short/unlikely relations.
1969 *
1970 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1971 * a task's usage of a particular page (n_p) per total usage of this
1972 * page (n_t) (in a given time-span) to a probability.
1973 *
1974 * Our periodic faults will sample this probability and getting the
1975 * same result twice in a row, given these samples are fully
1976 * independent, is then given by P(n)^2, provided our sample period
1977 * is sufficiently short compared to the usage pattern.
1978 *
1979 * This quadric squishes small probabilities, making it less likely we
1980 * act on an unlikely task<->page relation.
1981 */
1982 if (!cpupid_pid_unset(last_cpupid) &&
1983 cpupid_to_nid(last_cpupid) != dst_nid)
1984 return false;
1985
1986 /* Always allow migrate on private faults */
1987 if (cpupid_match_pid(p, last_cpupid))
1988 return true;
1989
1990 /* A shared fault, but p->numa_group has not been set up yet. */
1991 if (!ng)
1992 return true;
1993
1994 /*
1995 * Destination node is much more heavily used than the source
1996 * node? Allow migration.
1997 */
1998 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1999 ACTIVE_NODE_FRACTION)
2000 return true;
2001
2002 /*
2003 * Distribute memory according to CPU & memory use on each node,
2004 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2005 *
2006 * faults_cpu(dst) 3 faults_cpu(src)
2007 * --------------- * - > ---------------
2008 * faults_mem(dst) 4 faults_mem(src)
2009 */
2010 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2011 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2012 }
2013
2014 /*
2015 * 'numa_type' describes the node at the moment of load balancing.
2016 */
2017 enum numa_type {
2018 /* The node has spare capacity that can be used to run more tasks. */
2019 node_has_spare = 0,
2020 /*
2021 * The node is fully used and the tasks don't compete for more CPU
2022 * cycles. Nevertheless, some tasks might wait before running.
2023 */
2024 node_fully_busy,
2025 /*
2026 * The node is overloaded and can't provide expected CPU cycles to all
2027 * tasks.
2028 */
2029 node_overloaded
2030 };
2031
2032 /* Cached statistics for all CPUs within a node */
2033 struct numa_stats {
2034 unsigned long load;
2035 unsigned long runnable;
2036 unsigned long util;
2037 /* Total compute capacity of CPUs on a node */
2038 unsigned long compute_capacity;
2039 unsigned int nr_running;
2040 unsigned int weight;
2041 enum numa_type node_type;
2042 int idle_cpu;
2043 };
2044
2045 struct task_numa_env {
2046 struct task_struct *p;
2047
2048 int src_cpu, src_nid;
2049 int dst_cpu, dst_nid;
2050 int imb_numa_nr;
2051
2052 struct numa_stats src_stats, dst_stats;
2053
2054 int imbalance_pct;
2055 int dist;
2056
2057 struct task_struct *best_task;
2058 long best_imp;
2059 int best_cpu;
2060 };
2061
2062 static unsigned long cpu_load(struct rq *rq);
2063 static unsigned long cpu_runnable(struct rq *rq);
2064
2065 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)2066 numa_type numa_classify(unsigned int imbalance_pct,
2067 struct numa_stats *ns)
2068 {
2069 if ((ns->nr_running > ns->weight) &&
2070 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2071 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2072 return node_overloaded;
2073
2074 if ((ns->nr_running < ns->weight) ||
2075 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2076 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2077 return node_has_spare;
2078
2079 return node_fully_busy;
2080 }
2081
2082 #ifdef CONFIG_SCHED_SMT
2083 /* Forward declarations of select_idle_sibling helpers */
2084 static inline bool test_idle_cores(int cpu);
numa_idle_core(int idle_core,int cpu)2085 static inline int numa_idle_core(int idle_core, int cpu)
2086 {
2087 if (!static_branch_likely(&sched_smt_present) ||
2088 idle_core >= 0 || !test_idle_cores(cpu))
2089 return idle_core;
2090
2091 /*
2092 * Prefer cores instead of packing HT siblings
2093 * and triggering future load balancing.
2094 */
2095 if (is_core_idle(cpu))
2096 idle_core = cpu;
2097
2098 return idle_core;
2099 }
2100 #else /* !CONFIG_SCHED_SMT: */
numa_idle_core(int idle_core,int cpu)2101 static inline int numa_idle_core(int idle_core, int cpu)
2102 {
2103 return idle_core;
2104 }
2105 #endif /* !CONFIG_SCHED_SMT */
2106
2107 /*
2108 * Gather all necessary information to make NUMA balancing placement
2109 * decisions that are compatible with standard load balancer. This
2110 * borrows code and logic from update_sg_lb_stats but sharing a
2111 * common implementation is impractical.
2112 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)2113 static void update_numa_stats(struct task_numa_env *env,
2114 struct numa_stats *ns, int nid,
2115 bool find_idle)
2116 {
2117 int cpu, idle_core = -1;
2118
2119 memset(ns, 0, sizeof(*ns));
2120 ns->idle_cpu = -1;
2121
2122 rcu_read_lock();
2123 for_each_cpu(cpu, cpumask_of_node(nid)) {
2124 struct rq *rq = cpu_rq(cpu);
2125
2126 ns->load += cpu_load(rq);
2127 ns->runnable += cpu_runnable(rq);
2128 ns->util += cpu_util_cfs(cpu);
2129 ns->nr_running += rq->cfs.h_nr_runnable;
2130 ns->compute_capacity += capacity_of(cpu);
2131
2132 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2133 if (READ_ONCE(rq->numa_migrate_on) ||
2134 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2135 continue;
2136
2137 if (ns->idle_cpu == -1)
2138 ns->idle_cpu = cpu;
2139
2140 idle_core = numa_idle_core(idle_core, cpu);
2141 }
2142 }
2143 rcu_read_unlock();
2144
2145 ns->weight = cpumask_weight(cpumask_of_node(nid));
2146
2147 ns->node_type = numa_classify(env->imbalance_pct, ns);
2148
2149 if (idle_core >= 0)
2150 ns->idle_cpu = idle_core;
2151 }
2152
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)2153 static void task_numa_assign(struct task_numa_env *env,
2154 struct task_struct *p, long imp)
2155 {
2156 struct rq *rq = cpu_rq(env->dst_cpu);
2157
2158 /* Check if run-queue part of active NUMA balance. */
2159 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2160 int cpu;
2161 int start = env->dst_cpu;
2162
2163 /* Find alternative idle CPU. */
2164 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2165 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2166 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2167 continue;
2168 }
2169
2170 env->dst_cpu = cpu;
2171 rq = cpu_rq(env->dst_cpu);
2172 if (!xchg(&rq->numa_migrate_on, 1))
2173 goto assign;
2174 }
2175
2176 /* Failed to find an alternative idle CPU */
2177 return;
2178 }
2179
2180 assign:
2181 /*
2182 * Clear previous best_cpu/rq numa-migrate flag, since task now
2183 * found a better CPU to move/swap.
2184 */
2185 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2186 rq = cpu_rq(env->best_cpu);
2187 WRITE_ONCE(rq->numa_migrate_on, 0);
2188 }
2189
2190 if (env->best_task)
2191 put_task_struct(env->best_task);
2192 if (p)
2193 get_task_struct(p);
2194
2195 env->best_task = p;
2196 env->best_imp = imp;
2197 env->best_cpu = env->dst_cpu;
2198 }
2199
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)2200 static bool load_too_imbalanced(long src_load, long dst_load,
2201 struct task_numa_env *env)
2202 {
2203 long imb, old_imb;
2204 long orig_src_load, orig_dst_load;
2205 long src_capacity, dst_capacity;
2206
2207 /*
2208 * The load is corrected for the CPU capacity available on each node.
2209 *
2210 * src_load dst_load
2211 * ------------ vs ---------
2212 * src_capacity dst_capacity
2213 */
2214 src_capacity = env->src_stats.compute_capacity;
2215 dst_capacity = env->dst_stats.compute_capacity;
2216
2217 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2218
2219 orig_src_load = env->src_stats.load;
2220 orig_dst_load = env->dst_stats.load;
2221
2222 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2223
2224 /* Would this change make things worse? */
2225 return (imb > old_imb);
2226 }
2227
2228 /*
2229 * Maximum NUMA importance can be 1998 (2*999);
2230 * SMALLIMP @ 30 would be close to 1998/64.
2231 * Used to deter task migration.
2232 */
2233 #define SMALLIMP 30
2234
2235 /*
2236 * This checks if the overall compute and NUMA accesses of the system would
2237 * be improved if the source tasks was migrated to the target dst_cpu taking
2238 * into account that it might be best if task running on the dst_cpu should
2239 * be exchanged with the source task
2240 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)2241 static bool task_numa_compare(struct task_numa_env *env,
2242 long taskimp, long groupimp, bool maymove)
2243 {
2244 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2245 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2246 long imp = p_ng ? groupimp : taskimp;
2247 struct task_struct *cur;
2248 long src_load, dst_load;
2249 int dist = env->dist;
2250 long moveimp = imp;
2251 long load;
2252 bool stopsearch = false;
2253
2254 if (READ_ONCE(dst_rq->numa_migrate_on))
2255 return false;
2256
2257 rcu_read_lock();
2258 cur = rcu_dereference(dst_rq->curr);
2259 if (cur && ((cur->flags & (PF_EXITING | PF_KTHREAD)) ||
2260 !cur->mm))
2261 cur = NULL;
2262
2263 /*
2264 * Because we have preemption enabled we can get migrated around and
2265 * end try selecting ourselves (current == env->p) as a swap candidate.
2266 */
2267 if (cur == env->p) {
2268 stopsearch = true;
2269 goto unlock;
2270 }
2271
2272 if (!cur) {
2273 if (maymove && moveimp >= env->best_imp)
2274 goto assign;
2275 else
2276 goto unlock;
2277 }
2278
2279 /* Skip this swap candidate if cannot move to the source cpu. */
2280 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2281 goto unlock;
2282
2283 /*
2284 * Skip this swap candidate if it is not moving to its preferred
2285 * node and the best task is.
2286 */
2287 if (env->best_task &&
2288 env->best_task->numa_preferred_nid == env->src_nid &&
2289 cur->numa_preferred_nid != env->src_nid) {
2290 goto unlock;
2291 }
2292
2293 /*
2294 * "imp" is the fault differential for the source task between the
2295 * source and destination node. Calculate the total differential for
2296 * the source task and potential destination task. The more negative
2297 * the value is, the more remote accesses that would be expected to
2298 * be incurred if the tasks were swapped.
2299 *
2300 * If dst and source tasks are in the same NUMA group, or not
2301 * in any group then look only at task weights.
2302 */
2303 cur_ng = rcu_dereference(cur->numa_group);
2304 if (cur_ng == p_ng) {
2305 /*
2306 * Do not swap within a group or between tasks that have
2307 * no group if there is spare capacity. Swapping does
2308 * not address the load imbalance and helps one task at
2309 * the cost of punishing another.
2310 */
2311 if (env->dst_stats.node_type == node_has_spare)
2312 goto unlock;
2313
2314 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2315 task_weight(cur, env->dst_nid, dist);
2316 /*
2317 * Add some hysteresis to prevent swapping the
2318 * tasks within a group over tiny differences.
2319 */
2320 if (cur_ng)
2321 imp -= imp / 16;
2322 } else {
2323 /*
2324 * Compare the group weights. If a task is all by itself
2325 * (not part of a group), use the task weight instead.
2326 */
2327 if (cur_ng && p_ng)
2328 imp += group_weight(cur, env->src_nid, dist) -
2329 group_weight(cur, env->dst_nid, dist);
2330 else
2331 imp += task_weight(cur, env->src_nid, dist) -
2332 task_weight(cur, env->dst_nid, dist);
2333 }
2334
2335 /* Discourage picking a task already on its preferred node */
2336 if (cur->numa_preferred_nid == env->dst_nid)
2337 imp -= imp / 16;
2338
2339 /*
2340 * Encourage picking a task that moves to its preferred node.
2341 * This potentially makes imp larger than it's maximum of
2342 * 1998 (see SMALLIMP and task_weight for why) but in this
2343 * case, it does not matter.
2344 */
2345 if (cur->numa_preferred_nid == env->src_nid)
2346 imp += imp / 8;
2347
2348 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2349 imp = moveimp;
2350 cur = NULL;
2351 goto assign;
2352 }
2353
2354 /*
2355 * Prefer swapping with a task moving to its preferred node over a
2356 * task that is not.
2357 */
2358 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2359 env->best_task->numa_preferred_nid != env->src_nid) {
2360 goto assign;
2361 }
2362
2363 /*
2364 * If the NUMA importance is less than SMALLIMP,
2365 * task migration might only result in ping pong
2366 * of tasks and also hurt performance due to cache
2367 * misses.
2368 */
2369 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2370 goto unlock;
2371
2372 /*
2373 * In the overloaded case, try and keep the load balanced.
2374 */
2375 load = task_h_load(env->p) - task_h_load(cur);
2376 if (!load)
2377 goto assign;
2378
2379 dst_load = env->dst_stats.load + load;
2380 src_load = env->src_stats.load - load;
2381
2382 if (load_too_imbalanced(src_load, dst_load, env))
2383 goto unlock;
2384
2385 assign:
2386 /* Evaluate an idle CPU for a task numa move. */
2387 if (!cur) {
2388 int cpu = env->dst_stats.idle_cpu;
2389
2390 /* Nothing cached so current CPU went idle since the search. */
2391 if (cpu < 0)
2392 cpu = env->dst_cpu;
2393
2394 /*
2395 * If the CPU is no longer truly idle and the previous best CPU
2396 * is, keep using it.
2397 */
2398 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2399 idle_cpu(env->best_cpu)) {
2400 cpu = env->best_cpu;
2401 }
2402
2403 env->dst_cpu = cpu;
2404 }
2405
2406 task_numa_assign(env, cur, imp);
2407
2408 /*
2409 * If a move to idle is allowed because there is capacity or load
2410 * balance improves then stop the search. While a better swap
2411 * candidate may exist, a search is not free.
2412 */
2413 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2414 stopsearch = true;
2415
2416 /*
2417 * If a swap candidate must be identified and the current best task
2418 * moves its preferred node then stop the search.
2419 */
2420 if (!maymove && env->best_task &&
2421 env->best_task->numa_preferred_nid == env->src_nid) {
2422 stopsearch = true;
2423 }
2424 unlock:
2425 rcu_read_unlock();
2426
2427 return stopsearch;
2428 }
2429
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)2430 static void task_numa_find_cpu(struct task_numa_env *env,
2431 long taskimp, long groupimp)
2432 {
2433 bool maymove = false;
2434 int cpu;
2435
2436 /*
2437 * If dst node has spare capacity, then check if there is an
2438 * imbalance that would be overruled by the load balancer.
2439 */
2440 if (env->dst_stats.node_type == node_has_spare) {
2441 unsigned int imbalance;
2442 int src_running, dst_running;
2443
2444 /*
2445 * Would movement cause an imbalance? Note that if src has
2446 * more running tasks that the imbalance is ignored as the
2447 * move improves the imbalance from the perspective of the
2448 * CPU load balancer.
2449 * */
2450 src_running = env->src_stats.nr_running - 1;
2451 dst_running = env->dst_stats.nr_running + 1;
2452 imbalance = max(0, dst_running - src_running);
2453 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2454 env->imb_numa_nr);
2455
2456 /* Use idle CPU if there is no imbalance */
2457 if (!imbalance) {
2458 maymove = true;
2459 if (env->dst_stats.idle_cpu >= 0) {
2460 env->dst_cpu = env->dst_stats.idle_cpu;
2461 task_numa_assign(env, NULL, 0);
2462 return;
2463 }
2464 }
2465 } else {
2466 long src_load, dst_load, load;
2467 /*
2468 * If the improvement from just moving env->p direction is better
2469 * than swapping tasks around, check if a move is possible.
2470 */
2471 load = task_h_load(env->p);
2472 dst_load = env->dst_stats.load + load;
2473 src_load = env->src_stats.load - load;
2474 maymove = !load_too_imbalanced(src_load, dst_load, env);
2475 }
2476
2477 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2478 /* Skip this CPU if the source task cannot migrate */
2479 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2480 continue;
2481
2482 env->dst_cpu = cpu;
2483 if (task_numa_compare(env, taskimp, groupimp, maymove))
2484 break;
2485 }
2486 }
2487
task_numa_migrate(struct task_struct * p)2488 static int task_numa_migrate(struct task_struct *p)
2489 {
2490 struct task_numa_env env = {
2491 .p = p,
2492
2493 .src_cpu = task_cpu(p),
2494 .src_nid = task_node(p),
2495
2496 .imbalance_pct = 112,
2497
2498 .best_task = NULL,
2499 .best_imp = 0,
2500 .best_cpu = -1,
2501 };
2502 unsigned long taskweight, groupweight;
2503 struct sched_domain *sd;
2504 long taskimp, groupimp;
2505 struct numa_group *ng;
2506 struct rq *best_rq;
2507 int nid, ret, dist;
2508
2509 /*
2510 * Pick the lowest SD_NUMA domain, as that would have the smallest
2511 * imbalance and would be the first to start moving tasks about.
2512 *
2513 * And we want to avoid any moving of tasks about, as that would create
2514 * random movement of tasks -- counter the numa conditions we're trying
2515 * to satisfy here.
2516 */
2517 rcu_read_lock();
2518 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2519 if (sd) {
2520 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2521 env.imb_numa_nr = sd->imb_numa_nr;
2522 }
2523 rcu_read_unlock();
2524
2525 /*
2526 * Cpusets can break the scheduler domain tree into smaller
2527 * balance domains, some of which do not cross NUMA boundaries.
2528 * Tasks that are "trapped" in such domains cannot be migrated
2529 * elsewhere, so there is no point in (re)trying.
2530 */
2531 if (unlikely(!sd)) {
2532 sched_setnuma(p, task_node(p));
2533 return -EINVAL;
2534 }
2535
2536 env.dst_nid = p->numa_preferred_nid;
2537 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2538 taskweight = task_weight(p, env.src_nid, dist);
2539 groupweight = group_weight(p, env.src_nid, dist);
2540 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2541 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2542 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2543 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2544
2545 /* Try to find a spot on the preferred nid. */
2546 task_numa_find_cpu(&env, taskimp, groupimp);
2547
2548 /*
2549 * Look at other nodes in these cases:
2550 * - there is no space available on the preferred_nid
2551 * - the task is part of a numa_group that is interleaved across
2552 * multiple NUMA nodes; in order to better consolidate the group,
2553 * we need to check other locations.
2554 */
2555 ng = deref_curr_numa_group(p);
2556 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2557 for_each_node_state(nid, N_CPU) {
2558 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2559 continue;
2560
2561 dist = node_distance(env.src_nid, env.dst_nid);
2562 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2563 dist != env.dist) {
2564 taskweight = task_weight(p, env.src_nid, dist);
2565 groupweight = group_weight(p, env.src_nid, dist);
2566 }
2567
2568 /* Only consider nodes where both task and groups benefit */
2569 taskimp = task_weight(p, nid, dist) - taskweight;
2570 groupimp = group_weight(p, nid, dist) - groupweight;
2571 if (taskimp < 0 && groupimp < 0)
2572 continue;
2573
2574 env.dist = dist;
2575 env.dst_nid = nid;
2576 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2577 task_numa_find_cpu(&env, taskimp, groupimp);
2578 }
2579 }
2580
2581 /*
2582 * If the task is part of a workload that spans multiple NUMA nodes,
2583 * and is migrating into one of the workload's active nodes, remember
2584 * this node as the task's preferred numa node, so the workload can
2585 * settle down.
2586 * A task that migrated to a second choice node will be better off
2587 * trying for a better one later. Do not set the preferred node here.
2588 */
2589 if (ng) {
2590 if (env.best_cpu == -1)
2591 nid = env.src_nid;
2592 else
2593 nid = cpu_to_node(env.best_cpu);
2594
2595 if (nid != p->numa_preferred_nid)
2596 sched_setnuma(p, nid);
2597 }
2598
2599 /* No better CPU than the current one was found. */
2600 if (env.best_cpu == -1) {
2601 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2602 return -EAGAIN;
2603 }
2604
2605 best_rq = cpu_rq(env.best_cpu);
2606 if (env.best_task == NULL) {
2607 ret = migrate_task_to(p, env.best_cpu);
2608 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2609 if (ret != 0)
2610 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2611 return ret;
2612 }
2613
2614 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2615 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2616
2617 if (ret != 0)
2618 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2619 put_task_struct(env.best_task);
2620 return ret;
2621 }
2622
2623 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2624 static void numa_migrate_preferred(struct task_struct *p)
2625 {
2626 unsigned long interval = HZ;
2627
2628 /* This task has no NUMA fault statistics yet */
2629 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2630 return;
2631
2632 /* Periodically retry migrating the task to the preferred node */
2633 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2634 p->numa_migrate_retry = jiffies + interval;
2635
2636 /* Success if task is already running on preferred CPU */
2637 if (task_node(p) == p->numa_preferred_nid)
2638 return;
2639
2640 /* Otherwise, try migrate to a CPU on the preferred node */
2641 task_numa_migrate(p);
2642 }
2643
2644 /*
2645 * Find out how many nodes the workload is actively running on. Do this by
2646 * tracking the nodes from which NUMA hinting faults are triggered. This can
2647 * be different from the set of nodes where the workload's memory is currently
2648 * located.
2649 */
numa_group_count_active_nodes(struct numa_group * numa_group)2650 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2651 {
2652 unsigned long faults, max_faults = 0;
2653 int nid, active_nodes = 0;
2654
2655 for_each_node_state(nid, N_CPU) {
2656 faults = group_faults_cpu(numa_group, nid);
2657 if (faults > max_faults)
2658 max_faults = faults;
2659 }
2660
2661 for_each_node_state(nid, N_CPU) {
2662 faults = group_faults_cpu(numa_group, nid);
2663 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2664 active_nodes++;
2665 }
2666
2667 numa_group->max_faults_cpu = max_faults;
2668 numa_group->active_nodes = active_nodes;
2669 }
2670
2671 /*
2672 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2673 * increments. The more local the fault statistics are, the higher the scan
2674 * period will be for the next scan window. If local/(local+remote) ratio is
2675 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2676 * the scan period will decrease. Aim for 70% local accesses.
2677 */
2678 #define NUMA_PERIOD_SLOTS 10
2679 #define NUMA_PERIOD_THRESHOLD 7
2680
2681 /*
2682 * Increase the scan period (slow down scanning) if the majority of
2683 * our memory is already on our local node, or if the majority of
2684 * the page accesses are shared with other processes.
2685 * Otherwise, decrease the scan period.
2686 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2687 static void update_task_scan_period(struct task_struct *p,
2688 unsigned long shared, unsigned long private)
2689 {
2690 unsigned int period_slot;
2691 int lr_ratio, ps_ratio;
2692 int diff;
2693
2694 unsigned long remote = p->numa_faults_locality[0];
2695 unsigned long local = p->numa_faults_locality[1];
2696
2697 /*
2698 * If there were no record hinting faults then either the task is
2699 * completely idle or all activity is in areas that are not of interest
2700 * to automatic numa balancing. Related to that, if there were failed
2701 * migration then it implies we are migrating too quickly or the local
2702 * node is overloaded. In either case, scan slower
2703 */
2704 if (local + shared == 0 || p->numa_faults_locality[2]) {
2705 p->numa_scan_period = min(p->numa_scan_period_max,
2706 p->numa_scan_period << 1);
2707
2708 p->mm->numa_next_scan = jiffies +
2709 msecs_to_jiffies(p->numa_scan_period);
2710
2711 return;
2712 }
2713
2714 /*
2715 * Prepare to scale scan period relative to the current period.
2716 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2717 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2718 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2719 */
2720 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2721 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2722 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2723
2724 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2725 /*
2726 * Most memory accesses are local. There is no need to
2727 * do fast NUMA scanning, since memory is already local.
2728 */
2729 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2730 if (!slot)
2731 slot = 1;
2732 diff = slot * period_slot;
2733 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2734 /*
2735 * Most memory accesses are shared with other tasks.
2736 * There is no point in continuing fast NUMA scanning,
2737 * since other tasks may just move the memory elsewhere.
2738 */
2739 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2740 if (!slot)
2741 slot = 1;
2742 diff = slot * period_slot;
2743 } else {
2744 /*
2745 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2746 * yet they are not on the local NUMA node. Speed up
2747 * NUMA scanning to get the memory moved over.
2748 */
2749 int ratio = max(lr_ratio, ps_ratio);
2750 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2751 }
2752
2753 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2754 task_scan_min(p), task_scan_max(p));
2755 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2756 }
2757
2758 /*
2759 * Get the fraction of time the task has been running since the last
2760 * NUMA placement cycle. The scheduler keeps similar statistics, but
2761 * decays those on a 32ms period, which is orders of magnitude off
2762 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2763 * stats only if the task is so new there are no NUMA statistics yet.
2764 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2765 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2766 {
2767 u64 runtime, delta, now;
2768 /* Use the start of this time slice to avoid calculations. */
2769 now = p->se.exec_start;
2770 runtime = p->se.sum_exec_runtime;
2771
2772 if (p->last_task_numa_placement) {
2773 delta = runtime - p->last_sum_exec_runtime;
2774 *period = now - p->last_task_numa_placement;
2775
2776 /* Avoid time going backwards, prevent potential divide error: */
2777 if (unlikely((s64)*period < 0))
2778 *period = 0;
2779 } else {
2780 delta = p->se.avg.load_sum;
2781 *period = LOAD_AVG_MAX;
2782 }
2783
2784 p->last_sum_exec_runtime = runtime;
2785 p->last_task_numa_placement = now;
2786
2787 return delta;
2788 }
2789
2790 /*
2791 * Determine the preferred nid for a task in a numa_group. This needs to
2792 * be done in a way that produces consistent results with group_weight,
2793 * otherwise workloads might not converge.
2794 */
preferred_group_nid(struct task_struct * p,int nid)2795 static int preferred_group_nid(struct task_struct *p, int nid)
2796 {
2797 nodemask_t nodes;
2798 int dist;
2799
2800 /* Direct connections between all NUMA nodes. */
2801 if (sched_numa_topology_type == NUMA_DIRECT)
2802 return nid;
2803
2804 /*
2805 * On a system with glueless mesh NUMA topology, group_weight
2806 * scores nodes according to the number of NUMA hinting faults on
2807 * both the node itself, and on nearby nodes.
2808 */
2809 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2810 unsigned long score, max_score = 0;
2811 int node, max_node = nid;
2812
2813 dist = sched_max_numa_distance;
2814
2815 for_each_node_state(node, N_CPU) {
2816 score = group_weight(p, node, dist);
2817 if (score > max_score) {
2818 max_score = score;
2819 max_node = node;
2820 }
2821 }
2822 return max_node;
2823 }
2824
2825 /*
2826 * Finding the preferred nid in a system with NUMA backplane
2827 * interconnect topology is more involved. The goal is to locate
2828 * tasks from numa_groups near each other in the system, and
2829 * untangle workloads from different sides of the system. This requires
2830 * searching down the hierarchy of node groups, recursively searching
2831 * inside the highest scoring group of nodes. The nodemask tricks
2832 * keep the complexity of the search down.
2833 */
2834 nodes = node_states[N_CPU];
2835 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2836 unsigned long max_faults = 0;
2837 nodemask_t max_group = NODE_MASK_NONE;
2838 int a, b;
2839
2840 /* Are there nodes at this distance from each other? */
2841 if (!find_numa_distance(dist))
2842 continue;
2843
2844 for_each_node_mask(a, nodes) {
2845 unsigned long faults = 0;
2846 nodemask_t this_group;
2847 nodes_clear(this_group);
2848
2849 /* Sum group's NUMA faults; includes a==b case. */
2850 for_each_node_mask(b, nodes) {
2851 if (node_distance(a, b) < dist) {
2852 faults += group_faults(p, b);
2853 node_set(b, this_group);
2854 node_clear(b, nodes);
2855 }
2856 }
2857
2858 /* Remember the top group. */
2859 if (faults > max_faults) {
2860 max_faults = faults;
2861 max_group = this_group;
2862 /*
2863 * subtle: at the smallest distance there is
2864 * just one node left in each "group", the
2865 * winner is the preferred nid.
2866 */
2867 nid = a;
2868 }
2869 }
2870 /* Next round, evaluate the nodes within max_group. */
2871 if (!max_faults)
2872 break;
2873 nodes = max_group;
2874 }
2875 return nid;
2876 }
2877
task_numa_placement(struct task_struct * p)2878 static void task_numa_placement(struct task_struct *p)
2879 {
2880 int seq, nid, max_nid = NUMA_NO_NODE;
2881 unsigned long max_faults = 0;
2882 unsigned long fault_types[2] = { 0, 0 };
2883 unsigned long total_faults;
2884 u64 runtime, period;
2885 spinlock_t *group_lock = NULL;
2886 struct numa_group *ng;
2887
2888 /*
2889 * The p->mm->numa_scan_seq field gets updated without
2890 * exclusive access. Use READ_ONCE() here to ensure
2891 * that the field is read in a single access:
2892 */
2893 seq = READ_ONCE(p->mm->numa_scan_seq);
2894 if (p->numa_scan_seq == seq)
2895 return;
2896 p->numa_scan_seq = seq;
2897 p->numa_scan_period_max = task_scan_max(p);
2898
2899 total_faults = p->numa_faults_locality[0] +
2900 p->numa_faults_locality[1];
2901 runtime = numa_get_avg_runtime(p, &period);
2902
2903 /* If the task is part of a group prevent parallel updates to group stats */
2904 ng = deref_curr_numa_group(p);
2905 if (ng) {
2906 group_lock = &ng->lock;
2907 spin_lock_irq(group_lock);
2908 }
2909
2910 /* Find the node with the highest number of faults */
2911 for_each_online_node(nid) {
2912 /* Keep track of the offsets in numa_faults array */
2913 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2914 unsigned long faults = 0, group_faults = 0;
2915 int priv;
2916
2917 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2918 long diff, f_diff, f_weight;
2919
2920 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2921 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2922 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2923 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2924
2925 /* Decay existing window, copy faults since last scan */
2926 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2927 fault_types[priv] += p->numa_faults[membuf_idx];
2928 p->numa_faults[membuf_idx] = 0;
2929
2930 /*
2931 * Normalize the faults_from, so all tasks in a group
2932 * count according to CPU use, instead of by the raw
2933 * number of faults. Tasks with little runtime have
2934 * little over-all impact on throughput, and thus their
2935 * faults are less important.
2936 */
2937 f_weight = div64_u64(runtime << 16, period + 1);
2938 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2939 (total_faults + 1);
2940 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2941 p->numa_faults[cpubuf_idx] = 0;
2942
2943 p->numa_faults[mem_idx] += diff;
2944 p->numa_faults[cpu_idx] += f_diff;
2945 faults += p->numa_faults[mem_idx];
2946 p->total_numa_faults += diff;
2947 if (ng) {
2948 /*
2949 * safe because we can only change our own group
2950 *
2951 * mem_idx represents the offset for a given
2952 * nid and priv in a specific region because it
2953 * is at the beginning of the numa_faults array.
2954 */
2955 ng->faults[mem_idx] += diff;
2956 ng->faults[cpu_idx] += f_diff;
2957 ng->total_faults += diff;
2958 group_faults += ng->faults[mem_idx];
2959 }
2960 }
2961
2962 if (!ng) {
2963 if (faults > max_faults) {
2964 max_faults = faults;
2965 max_nid = nid;
2966 }
2967 } else if (group_faults > max_faults) {
2968 max_faults = group_faults;
2969 max_nid = nid;
2970 }
2971 }
2972
2973 /* Cannot migrate task to CPU-less node */
2974 max_nid = numa_nearest_node(max_nid, N_CPU);
2975
2976 if (ng) {
2977 numa_group_count_active_nodes(ng);
2978 spin_unlock_irq(group_lock);
2979 max_nid = preferred_group_nid(p, max_nid);
2980 }
2981
2982 if (max_faults) {
2983 /* Set the new preferred node */
2984 if (max_nid != p->numa_preferred_nid)
2985 sched_setnuma(p, max_nid);
2986 }
2987
2988 update_task_scan_period(p, fault_types[0], fault_types[1]);
2989 }
2990
get_numa_group(struct numa_group * grp)2991 static inline int get_numa_group(struct numa_group *grp)
2992 {
2993 return refcount_inc_not_zero(&grp->refcount);
2994 }
2995
put_numa_group(struct numa_group * grp)2996 static inline void put_numa_group(struct numa_group *grp)
2997 {
2998 if (refcount_dec_and_test(&grp->refcount))
2999 kfree_rcu(grp, rcu);
3000 }
3001
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)3002 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3003 int *priv)
3004 {
3005 struct numa_group *grp, *my_grp;
3006 struct task_struct *tsk;
3007 bool join = false;
3008 int cpu = cpupid_to_cpu(cpupid);
3009 int i;
3010
3011 if (unlikely(!deref_curr_numa_group(p))) {
3012 unsigned int size = sizeof(struct numa_group) +
3013 NR_NUMA_HINT_FAULT_STATS *
3014 nr_node_ids * sizeof(unsigned long);
3015
3016 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3017 if (!grp)
3018 return;
3019
3020 refcount_set(&grp->refcount, 1);
3021 grp->active_nodes = 1;
3022 grp->max_faults_cpu = 0;
3023 spin_lock_init(&grp->lock);
3024 grp->gid = p->pid;
3025
3026 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3027 grp->faults[i] = p->numa_faults[i];
3028
3029 grp->total_faults = p->total_numa_faults;
3030
3031 grp->nr_tasks++;
3032 rcu_assign_pointer(p->numa_group, grp);
3033 }
3034
3035 rcu_read_lock();
3036 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3037
3038 if (!cpupid_match_pid(tsk, cpupid))
3039 goto no_join;
3040
3041 grp = rcu_dereference(tsk->numa_group);
3042 if (!grp)
3043 goto no_join;
3044
3045 my_grp = deref_curr_numa_group(p);
3046 if (grp == my_grp)
3047 goto no_join;
3048
3049 /*
3050 * Only join the other group if its bigger; if we're the bigger group,
3051 * the other task will join us.
3052 */
3053 if (my_grp->nr_tasks > grp->nr_tasks)
3054 goto no_join;
3055
3056 /*
3057 * Tie-break on the grp address.
3058 */
3059 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3060 goto no_join;
3061
3062 /* Always join threads in the same process. */
3063 if (tsk->mm == current->mm)
3064 join = true;
3065
3066 /* Simple filter to avoid false positives due to PID collisions */
3067 if (flags & TNF_SHARED)
3068 join = true;
3069
3070 /* Update priv based on whether false sharing was detected */
3071 *priv = !join;
3072
3073 if (join && !get_numa_group(grp))
3074 goto no_join;
3075
3076 rcu_read_unlock();
3077
3078 if (!join)
3079 return;
3080
3081 WARN_ON_ONCE(irqs_disabled());
3082 double_lock_irq(&my_grp->lock, &grp->lock);
3083
3084 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3085 my_grp->faults[i] -= p->numa_faults[i];
3086 grp->faults[i] += p->numa_faults[i];
3087 }
3088 my_grp->total_faults -= p->total_numa_faults;
3089 grp->total_faults += p->total_numa_faults;
3090
3091 my_grp->nr_tasks--;
3092 grp->nr_tasks++;
3093
3094 spin_unlock(&my_grp->lock);
3095 spin_unlock_irq(&grp->lock);
3096
3097 rcu_assign_pointer(p->numa_group, grp);
3098
3099 put_numa_group(my_grp);
3100 return;
3101
3102 no_join:
3103 rcu_read_unlock();
3104 return;
3105 }
3106
3107 /*
3108 * Get rid of NUMA statistics associated with a task (either current or dead).
3109 * If @final is set, the task is dead and has reached refcount zero, so we can
3110 * safely free all relevant data structures. Otherwise, there might be
3111 * concurrent reads from places like load balancing and procfs, and we should
3112 * reset the data back to default state without freeing ->numa_faults.
3113 */
task_numa_free(struct task_struct * p,bool final)3114 void task_numa_free(struct task_struct *p, bool final)
3115 {
3116 /* safe: p either is current or is being freed by current */
3117 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3118 unsigned long *numa_faults = p->numa_faults;
3119 unsigned long flags;
3120 int i;
3121
3122 if (!numa_faults)
3123 return;
3124
3125 if (grp) {
3126 spin_lock_irqsave(&grp->lock, flags);
3127 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3128 grp->faults[i] -= p->numa_faults[i];
3129 grp->total_faults -= p->total_numa_faults;
3130
3131 grp->nr_tasks--;
3132 spin_unlock_irqrestore(&grp->lock, flags);
3133 RCU_INIT_POINTER(p->numa_group, NULL);
3134 put_numa_group(grp);
3135 }
3136
3137 if (final) {
3138 p->numa_faults = NULL;
3139 kfree(numa_faults);
3140 } else {
3141 p->total_numa_faults = 0;
3142 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3143 numa_faults[i] = 0;
3144 }
3145 }
3146
3147 /*
3148 * Got a PROT_NONE fault for a page on @node.
3149 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)3150 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3151 {
3152 struct task_struct *p = current;
3153 bool migrated = flags & TNF_MIGRATED;
3154 int cpu_node = task_node(current);
3155 int local = !!(flags & TNF_FAULT_LOCAL);
3156 struct numa_group *ng;
3157 int priv;
3158
3159 if (!static_branch_likely(&sched_numa_balancing))
3160 return;
3161
3162 /* for example, ksmd faulting in a user's mm */
3163 if (!p->mm)
3164 return;
3165
3166 /*
3167 * NUMA faults statistics are unnecessary for the slow memory
3168 * node for memory tiering mode.
3169 */
3170 if (!node_is_toptier(mem_node) &&
3171 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3172 !cpupid_valid(last_cpupid)))
3173 return;
3174
3175 /* Allocate buffer to track faults on a per-node basis */
3176 if (unlikely(!p->numa_faults)) {
3177 int size = sizeof(*p->numa_faults) *
3178 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3179
3180 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3181 if (!p->numa_faults)
3182 return;
3183
3184 p->total_numa_faults = 0;
3185 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3186 }
3187
3188 /*
3189 * First accesses are treated as private, otherwise consider accesses
3190 * to be private if the accessing pid has not changed
3191 */
3192 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3193 priv = 1;
3194 } else {
3195 priv = cpupid_match_pid(p, last_cpupid);
3196 if (!priv && !(flags & TNF_NO_GROUP))
3197 task_numa_group(p, last_cpupid, flags, &priv);
3198 }
3199
3200 /*
3201 * If a workload spans multiple NUMA nodes, a shared fault that
3202 * occurs wholly within the set of nodes that the workload is
3203 * actively using should be counted as local. This allows the
3204 * scan rate to slow down when a workload has settled down.
3205 */
3206 ng = deref_curr_numa_group(p);
3207 if (!priv && !local && ng && ng->active_nodes > 1 &&
3208 numa_is_active_node(cpu_node, ng) &&
3209 numa_is_active_node(mem_node, ng))
3210 local = 1;
3211
3212 /*
3213 * Retry to migrate task to preferred node periodically, in case it
3214 * previously failed, or the scheduler moved us.
3215 */
3216 if (time_after(jiffies, p->numa_migrate_retry)) {
3217 task_numa_placement(p);
3218 numa_migrate_preferred(p);
3219 }
3220
3221 if (migrated)
3222 p->numa_pages_migrated += pages;
3223 if (flags & TNF_MIGRATE_FAIL)
3224 p->numa_faults_locality[2] += pages;
3225
3226 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3227 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3228 p->numa_faults_locality[local] += pages;
3229 }
3230
reset_ptenuma_scan(struct task_struct * p)3231 static void reset_ptenuma_scan(struct task_struct *p)
3232 {
3233 /*
3234 * We only did a read acquisition of the mmap sem, so
3235 * p->mm->numa_scan_seq is written to without exclusive access
3236 * and the update is not guaranteed to be atomic. That's not
3237 * much of an issue though, since this is just used for
3238 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3239 * expensive, to avoid any form of compiler optimizations:
3240 */
3241 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3242 p->mm->numa_scan_offset = 0;
3243 }
3244
vma_is_accessed(struct mm_struct * mm,struct vm_area_struct * vma)3245 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3246 {
3247 unsigned long pids;
3248 /*
3249 * Allow unconditional access first two times, so that all the (pages)
3250 * of VMAs get prot_none fault introduced irrespective of accesses.
3251 * This is also done to avoid any side effect of task scanning
3252 * amplifying the unfairness of disjoint set of VMAs' access.
3253 */
3254 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3255 return true;
3256
3257 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3258 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3259 return true;
3260
3261 /*
3262 * Complete a scan that has already started regardless of PID access, or
3263 * some VMAs may never be scanned in multi-threaded applications:
3264 */
3265 if (mm->numa_scan_offset > vma->vm_start) {
3266 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3267 return true;
3268 }
3269
3270 /*
3271 * This vma has not been accessed for a while, and if the number
3272 * the threads in the same process is low, which means no other
3273 * threads can help scan this vma, force a vma scan.
3274 */
3275 if (READ_ONCE(mm->numa_scan_seq) >
3276 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3277 return true;
3278
3279 return false;
3280 }
3281
3282 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3283
3284 /*
3285 * The expensive part of numa migration is done from task_work context.
3286 * Triggered from task_tick_numa().
3287 */
task_numa_work(struct callback_head * work)3288 static void task_numa_work(struct callback_head *work)
3289 {
3290 unsigned long migrate, next_scan, now = jiffies;
3291 struct task_struct *p = current;
3292 struct mm_struct *mm = p->mm;
3293 u64 runtime = p->se.sum_exec_runtime;
3294 struct vm_area_struct *vma;
3295 unsigned long start, end;
3296 unsigned long nr_pte_updates = 0;
3297 long pages, virtpages;
3298 struct vma_iterator vmi;
3299 bool vma_pids_skipped;
3300 bool vma_pids_forced = false;
3301
3302 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
3303
3304 work->next = work;
3305 /*
3306 * Who cares about NUMA placement when they're dying.
3307 *
3308 * NOTE: make sure not to dereference p->mm before this check,
3309 * exit_task_work() happens _after_ exit_mm() so we could be called
3310 * without p->mm even though we still had it when we enqueued this
3311 * work.
3312 */
3313 if (p->flags & PF_EXITING)
3314 return;
3315
3316 /*
3317 * Memory is pinned to only one NUMA node via cpuset.mems, naturally
3318 * no page can be migrated.
3319 */
3320 if (cpusets_enabled() && nodes_weight(cpuset_current_mems_allowed) == 1) {
3321 trace_sched_skip_cpuset_numa(current, &cpuset_current_mems_allowed);
3322 return;
3323 }
3324
3325 if (!mm->numa_next_scan) {
3326 mm->numa_next_scan = now +
3327 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3328 }
3329
3330 /*
3331 * Enforce maximal scan/migration frequency..
3332 */
3333 migrate = mm->numa_next_scan;
3334 if (time_before(now, migrate))
3335 return;
3336
3337 if (p->numa_scan_period == 0) {
3338 p->numa_scan_period_max = task_scan_max(p);
3339 p->numa_scan_period = task_scan_start(p);
3340 }
3341
3342 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3343 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3344 return;
3345
3346 /*
3347 * Delay this task enough that another task of this mm will likely win
3348 * the next time around.
3349 */
3350 p->node_stamp += 2 * TICK_NSEC;
3351
3352 pages = sysctl_numa_balancing_scan_size;
3353 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3354 virtpages = pages * 8; /* Scan up to this much virtual space */
3355 if (!pages)
3356 return;
3357
3358
3359 if (!mmap_read_trylock(mm))
3360 return;
3361
3362 /*
3363 * VMAs are skipped if the current PID has not trapped a fault within
3364 * the VMA recently. Allow scanning to be forced if there is no
3365 * suitable VMA remaining.
3366 */
3367 vma_pids_skipped = false;
3368
3369 retry_pids:
3370 start = mm->numa_scan_offset;
3371 vma_iter_init(&vmi, mm, start);
3372 vma = vma_next(&vmi);
3373 if (!vma) {
3374 reset_ptenuma_scan(p);
3375 start = 0;
3376 vma_iter_set(&vmi, start);
3377 vma = vma_next(&vmi);
3378 }
3379
3380 for (; vma; vma = vma_next(&vmi)) {
3381 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3382 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3383 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3384 continue;
3385 }
3386
3387 /*
3388 * Shared library pages mapped by multiple processes are not
3389 * migrated as it is expected they are cache replicated. Avoid
3390 * hinting faults in read-only file-backed mappings or the vDSO
3391 * as migrating the pages will be of marginal benefit.
3392 */
3393 if (!vma->vm_mm ||
3394 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3395 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3396 continue;
3397 }
3398
3399 /*
3400 * Skip inaccessible VMAs to avoid any confusion between
3401 * PROT_NONE and NUMA hinting PTEs
3402 */
3403 if (!vma_is_accessible(vma)) {
3404 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3405 continue;
3406 }
3407
3408 /* Initialise new per-VMA NUMAB state. */
3409 if (!vma->numab_state) {
3410 struct vma_numab_state *ptr;
3411
3412 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3413 if (!ptr)
3414 continue;
3415
3416 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3417 kfree(ptr);
3418 continue;
3419 }
3420
3421 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3422
3423 vma->numab_state->next_scan = now +
3424 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3425
3426 /* Reset happens after 4 times scan delay of scan start */
3427 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3428 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3429
3430 /*
3431 * Ensure prev_scan_seq does not match numa_scan_seq,
3432 * to prevent VMAs being skipped prematurely on the
3433 * first scan:
3434 */
3435 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3436 }
3437
3438 /*
3439 * Scanning the VMAs of short lived tasks add more overhead. So
3440 * delay the scan for new VMAs.
3441 */
3442 if (mm->numa_scan_seq && time_before(jiffies,
3443 vma->numab_state->next_scan)) {
3444 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3445 continue;
3446 }
3447
3448 /* RESET access PIDs regularly for old VMAs. */
3449 if (mm->numa_scan_seq &&
3450 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3451 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3452 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3453 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3454 vma->numab_state->pids_active[1] = 0;
3455 }
3456
3457 /* Do not rescan VMAs twice within the same sequence. */
3458 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3459 mm->numa_scan_offset = vma->vm_end;
3460 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3461 continue;
3462 }
3463
3464 /*
3465 * Do not scan the VMA if task has not accessed it, unless no other
3466 * VMA candidate exists.
3467 */
3468 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3469 vma_pids_skipped = true;
3470 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3471 continue;
3472 }
3473
3474 do {
3475 start = max(start, vma->vm_start);
3476 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3477 end = min(end, vma->vm_end);
3478 nr_pte_updates = change_prot_numa(vma, start, end);
3479
3480 /*
3481 * Try to scan sysctl_numa_balancing_size worth of
3482 * hpages that have at least one present PTE that
3483 * is not already PTE-numa. If the VMA contains
3484 * areas that are unused or already full of prot_numa
3485 * PTEs, scan up to virtpages, to skip through those
3486 * areas faster.
3487 */
3488 if (nr_pte_updates)
3489 pages -= (end - start) >> PAGE_SHIFT;
3490 virtpages -= (end - start) >> PAGE_SHIFT;
3491
3492 start = end;
3493 if (pages <= 0 || virtpages <= 0)
3494 goto out;
3495
3496 cond_resched();
3497 } while (end != vma->vm_end);
3498
3499 /* VMA scan is complete, do not scan until next sequence. */
3500 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3501
3502 /*
3503 * Only force scan within one VMA at a time, to limit the
3504 * cost of scanning a potentially uninteresting VMA.
3505 */
3506 if (vma_pids_forced)
3507 break;
3508 }
3509
3510 /*
3511 * If no VMAs are remaining and VMAs were skipped due to the PID
3512 * not accessing the VMA previously, then force a scan to ensure
3513 * forward progress:
3514 */
3515 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3516 vma_pids_forced = true;
3517 goto retry_pids;
3518 }
3519
3520 out:
3521 /*
3522 * It is possible to reach the end of the VMA list but the last few
3523 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3524 * would find the !migratable VMA on the next scan but not reset the
3525 * scanner to the start so check it now.
3526 */
3527 if (vma)
3528 mm->numa_scan_offset = start;
3529 else
3530 reset_ptenuma_scan(p);
3531 mmap_read_unlock(mm);
3532
3533 /*
3534 * Make sure tasks use at least 32x as much time to run other code
3535 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3536 * Usually update_task_scan_period slows down scanning enough; on an
3537 * overloaded system we need to limit overhead on a per task basis.
3538 */
3539 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3540 u64 diff = p->se.sum_exec_runtime - runtime;
3541 p->node_stamp += 32 * diff;
3542 }
3543 }
3544
init_numa_balancing(u64 clone_flags,struct task_struct * p)3545 void init_numa_balancing(u64 clone_flags, struct task_struct *p)
3546 {
3547 int mm_users = 0;
3548 struct mm_struct *mm = p->mm;
3549
3550 if (mm) {
3551 mm_users = atomic_read(&mm->mm_users);
3552 if (mm_users == 1) {
3553 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3554 mm->numa_scan_seq = 0;
3555 }
3556 }
3557 p->node_stamp = 0;
3558 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3559 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3560 p->numa_migrate_retry = 0;
3561 /* Protect against double add, see task_tick_numa and task_numa_work */
3562 p->numa_work.next = &p->numa_work;
3563 p->numa_faults = NULL;
3564 p->numa_pages_migrated = 0;
3565 p->total_numa_faults = 0;
3566 RCU_INIT_POINTER(p->numa_group, NULL);
3567 p->last_task_numa_placement = 0;
3568 p->last_sum_exec_runtime = 0;
3569
3570 init_task_work(&p->numa_work, task_numa_work);
3571
3572 /* New address space, reset the preferred nid */
3573 if (!(clone_flags & CLONE_VM)) {
3574 p->numa_preferred_nid = NUMA_NO_NODE;
3575 return;
3576 }
3577
3578 /*
3579 * New thread, keep existing numa_preferred_nid which should be copied
3580 * already by arch_dup_task_struct but stagger when scans start.
3581 */
3582 if (mm) {
3583 unsigned int delay;
3584
3585 delay = min_t(unsigned int, task_scan_max(current),
3586 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3587 delay += 2 * TICK_NSEC;
3588 p->node_stamp = delay;
3589 }
3590 }
3591
3592 /*
3593 * Drive the periodic memory faults..
3594 */
task_tick_numa(struct rq * rq,struct task_struct * curr)3595 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3596 {
3597 struct callback_head *work = &curr->numa_work;
3598 u64 period, now;
3599
3600 /*
3601 * We don't care about NUMA placement if we don't have memory.
3602 */
3603 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3604 return;
3605
3606 /*
3607 * Using runtime rather than walltime has the dual advantage that
3608 * we (mostly) drive the selection from busy threads and that the
3609 * task needs to have done some actual work before we bother with
3610 * NUMA placement.
3611 */
3612 now = curr->se.sum_exec_runtime;
3613 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3614
3615 if (now > curr->node_stamp + period) {
3616 if (!curr->node_stamp)
3617 curr->numa_scan_period = task_scan_start(curr);
3618 curr->node_stamp += period;
3619
3620 if (!time_before(jiffies, curr->mm->numa_next_scan))
3621 task_work_add(curr, work, TWA_RESUME);
3622 }
3623 }
3624
update_scan_period(struct task_struct * p,int new_cpu)3625 static void update_scan_period(struct task_struct *p, int new_cpu)
3626 {
3627 int src_nid = cpu_to_node(task_cpu(p));
3628 int dst_nid = cpu_to_node(new_cpu);
3629
3630 if (!static_branch_likely(&sched_numa_balancing))
3631 return;
3632
3633 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3634 return;
3635
3636 if (src_nid == dst_nid)
3637 return;
3638
3639 /*
3640 * Allow resets if faults have been trapped before one scan
3641 * has completed. This is most likely due to a new task that
3642 * is pulled cross-node due to wakeups or load balancing.
3643 */
3644 if (p->numa_scan_seq) {
3645 /*
3646 * Avoid scan adjustments if moving to the preferred
3647 * node or if the task was not previously running on
3648 * the preferred node.
3649 */
3650 if (dst_nid == p->numa_preferred_nid ||
3651 (p->numa_preferred_nid != NUMA_NO_NODE &&
3652 src_nid != p->numa_preferred_nid))
3653 return;
3654 }
3655
3656 p->numa_scan_period = task_scan_start(p);
3657 }
3658
3659 #else /* !CONFIG_NUMA_BALANCING: */
3660
task_tick_numa(struct rq * rq,struct task_struct * curr)3661 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3662 {
3663 }
3664
account_numa_enqueue(struct rq * rq,struct task_struct * p)3665 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3666 {
3667 }
3668
account_numa_dequeue(struct rq * rq,struct task_struct * p)3669 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3670 {
3671 }
3672
update_scan_period(struct task_struct * p,int new_cpu)3673 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3674 {
3675 }
3676
3677 #endif /* !CONFIG_NUMA_BALANCING */
3678
3679 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3680 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3681 {
3682 update_load_add(&cfs_rq->load, se->load.weight);
3683 if (entity_is_task(se)) {
3684 struct rq *rq = rq_of(cfs_rq);
3685
3686 account_numa_enqueue(rq, task_of(se));
3687 list_add(&se->group_node, &rq->cfs_tasks);
3688 }
3689 cfs_rq->nr_queued++;
3690 }
3691
3692 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3693 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3694 {
3695 update_load_sub(&cfs_rq->load, se->load.weight);
3696 if (entity_is_task(se)) {
3697 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3698 list_del_init(&se->group_node);
3699 }
3700 cfs_rq->nr_queued--;
3701 }
3702
3703 /*
3704 * Signed add and clamp on underflow.
3705 *
3706 * Explicitly do a load-store to ensure the intermediate value never hits
3707 * memory. This allows lockless observations without ever seeing the negative
3708 * values.
3709 */
3710 #define add_positive(_ptr, _val) do { \
3711 typeof(_ptr) ptr = (_ptr); \
3712 typeof(_val) val = (_val); \
3713 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3714 \
3715 res = var + val; \
3716 \
3717 if (val < 0 && res > var) \
3718 res = 0; \
3719 \
3720 WRITE_ONCE(*ptr, res); \
3721 } while (0)
3722
3723 /*
3724 * Unsigned subtract and clamp on underflow.
3725 *
3726 * Explicitly do a load-store to ensure the intermediate value never hits
3727 * memory. This allows lockless observations without ever seeing the negative
3728 * values.
3729 */
3730 #define sub_positive(_ptr, _val) do { \
3731 typeof(_ptr) ptr = (_ptr); \
3732 typeof(*ptr) val = (_val); \
3733 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3734 res = var - val; \
3735 if (res > var) \
3736 res = 0; \
3737 WRITE_ONCE(*ptr, res); \
3738 } while (0)
3739
3740 /*
3741 * Remove and clamp on negative, from a local variable.
3742 *
3743 * A variant of sub_positive(), which does not use explicit load-store
3744 * and is thus optimized for local variable updates.
3745 */
3746 #define lsub_positive(_ptr, _val) do { \
3747 typeof(_ptr) ptr = (_ptr); \
3748 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3749 } while (0)
3750
3751 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3752 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3753 {
3754 cfs_rq->avg.load_avg += se->avg.load_avg;
3755 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3756 }
3757
3758 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3759 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3760 {
3761 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3762 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3763 /* See update_cfs_rq_load_avg() */
3764 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3765 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3766 }
3767
3768 static void place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags);
3769
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3770 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3771 unsigned long weight)
3772 {
3773 bool curr = cfs_rq->curr == se;
3774
3775 if (se->on_rq) {
3776 /* commit outstanding execution time */
3777 update_curr(cfs_rq);
3778 update_entity_lag(cfs_rq, se);
3779 se->deadline -= se->vruntime;
3780 se->rel_deadline = 1;
3781 cfs_rq->nr_queued--;
3782 if (!curr)
3783 __dequeue_entity(cfs_rq, se);
3784 update_load_sub(&cfs_rq->load, se->load.weight);
3785 }
3786 dequeue_load_avg(cfs_rq, se);
3787
3788 /*
3789 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3790 * we need to scale se->vlag when w_i changes.
3791 */
3792 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3793 if (se->rel_deadline)
3794 se->deadline = div_s64(se->deadline * se->load.weight, weight);
3795
3796 update_load_set(&se->load, weight);
3797
3798 do {
3799 u32 divider = get_pelt_divider(&se->avg);
3800
3801 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3802 } while (0);
3803
3804 enqueue_load_avg(cfs_rq, se);
3805 if (se->on_rq) {
3806 place_entity(cfs_rq, se, 0);
3807 update_load_add(&cfs_rq->load, se->load.weight);
3808 if (!curr)
3809 __enqueue_entity(cfs_rq, se);
3810 cfs_rq->nr_queued++;
3811
3812 /*
3813 * The entity's vruntime has been adjusted, so let's check
3814 * whether the rq-wide min_vruntime needs updated too. Since
3815 * the calculations above require stable min_vruntime rather
3816 * than up-to-date one, we do the update at the end of the
3817 * reweight process.
3818 */
3819 update_min_vruntime(cfs_rq);
3820 }
3821 }
3822
reweight_task_fair(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3823 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3824 const struct load_weight *lw)
3825 {
3826 struct sched_entity *se = &p->se;
3827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3828 struct load_weight *load = &se->load;
3829
3830 reweight_entity(cfs_rq, se, lw->weight);
3831 load->inv_weight = lw->inv_weight;
3832 }
3833
3834 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3835
3836 #ifdef CONFIG_FAIR_GROUP_SCHED
3837 /*
3838 * All this does is approximate the hierarchical proportion which includes that
3839 * global sum we all love to hate.
3840 *
3841 * That is, the weight of a group entity, is the proportional share of the
3842 * group weight based on the group runqueue weights. That is:
3843 *
3844 * tg->weight * grq->load.weight
3845 * ge->load.weight = ----------------------------- (1)
3846 * \Sum grq->load.weight
3847 *
3848 * Now, because computing that sum is prohibitively expensive to compute (been
3849 * there, done that) we approximate it with this average stuff. The average
3850 * moves slower and therefore the approximation is cheaper and more stable.
3851 *
3852 * So instead of the above, we substitute:
3853 *
3854 * grq->load.weight -> grq->avg.load_avg (2)
3855 *
3856 * which yields the following:
3857 *
3858 * tg->weight * grq->avg.load_avg
3859 * ge->load.weight = ------------------------------ (3)
3860 * tg->load_avg
3861 *
3862 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3863 *
3864 * That is shares_avg, and it is right (given the approximation (2)).
3865 *
3866 * The problem with it is that because the average is slow -- it was designed
3867 * to be exactly that of course -- this leads to transients in boundary
3868 * conditions. In specific, the case where the group was idle and we start the
3869 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3870 * yielding bad latency etc..
3871 *
3872 * Now, in that special case (1) reduces to:
3873 *
3874 * tg->weight * grq->load.weight
3875 * ge->load.weight = ----------------------------- = tg->weight (4)
3876 * grp->load.weight
3877 *
3878 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3879 *
3880 * So what we do is modify our approximation (3) to approach (4) in the (near)
3881 * UP case, like:
3882 *
3883 * ge->load.weight =
3884 *
3885 * tg->weight * grq->load.weight
3886 * --------------------------------------------------- (5)
3887 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3888 *
3889 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3890 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3891 *
3892 *
3893 * tg->weight * grq->load.weight
3894 * ge->load.weight = ----------------------------- (6)
3895 * tg_load_avg'
3896 *
3897 * Where:
3898 *
3899 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3900 * max(grq->load.weight, grq->avg.load_avg)
3901 *
3902 * And that is shares_weight and is icky. In the (near) UP case it approaches
3903 * (4) while in the normal case it approaches (3). It consistently
3904 * overestimates the ge->load.weight and therefore:
3905 *
3906 * \Sum ge->load.weight >= tg->weight
3907 *
3908 * hence icky!
3909 */
calc_group_shares(struct cfs_rq * cfs_rq)3910 static long calc_group_shares(struct cfs_rq *cfs_rq)
3911 {
3912 long tg_weight, tg_shares, load, shares;
3913 struct task_group *tg = cfs_rq->tg;
3914
3915 tg_shares = READ_ONCE(tg->shares);
3916
3917 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3918
3919 tg_weight = atomic_long_read(&tg->load_avg);
3920
3921 /* Ensure tg_weight >= load */
3922 tg_weight -= cfs_rq->tg_load_avg_contrib;
3923 tg_weight += load;
3924
3925 shares = (tg_shares * load);
3926 if (tg_weight)
3927 shares /= tg_weight;
3928
3929 /*
3930 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3931 * of a group with small tg->shares value. It is a floor value which is
3932 * assigned as a minimum load.weight to the sched_entity representing
3933 * the group on a CPU.
3934 *
3935 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3936 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3937 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3938 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3939 * instead of 0.
3940 */
3941 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3942 }
3943
3944 /*
3945 * Recomputes the group entity based on the current state of its group
3946 * runqueue.
3947 */
update_cfs_group(struct sched_entity * se)3948 static void update_cfs_group(struct sched_entity *se)
3949 {
3950 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3951 long shares;
3952
3953 /*
3954 * When a group becomes empty, preserve its weight. This matters for
3955 * DELAY_DEQUEUE.
3956 */
3957 if (!gcfs_rq || !gcfs_rq->load.weight)
3958 return;
3959
3960 shares = calc_group_shares(gcfs_rq);
3961 if (unlikely(se->load.weight != shares))
3962 reweight_entity(cfs_rq_of(se), se, shares);
3963 }
3964
3965 #else /* !CONFIG_FAIR_GROUP_SCHED: */
update_cfs_group(struct sched_entity * se)3966 static inline void update_cfs_group(struct sched_entity *se)
3967 {
3968 }
3969 #endif /* !CONFIG_FAIR_GROUP_SCHED */
3970
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3971 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3972 {
3973 struct rq *rq = rq_of(cfs_rq);
3974
3975 if (&rq->cfs == cfs_rq) {
3976 /*
3977 * There are a few boundary cases this might miss but it should
3978 * get called often enough that that should (hopefully) not be
3979 * a real problem.
3980 *
3981 * It will not get called when we go idle, because the idle
3982 * thread is a different class (!fair), nor will the utilization
3983 * number include things like RT tasks.
3984 *
3985 * As is, the util number is not freq-invariant (we'd have to
3986 * implement arch_scale_freq_capacity() for that).
3987 *
3988 * See cpu_util_cfs().
3989 */
3990 cpufreq_update_util(rq, flags);
3991 }
3992 }
3993
load_avg_is_decayed(struct sched_avg * sa)3994 static inline bool load_avg_is_decayed(struct sched_avg *sa)
3995 {
3996 if (sa->load_sum)
3997 return false;
3998
3999 if (sa->util_sum)
4000 return false;
4001
4002 if (sa->runnable_sum)
4003 return false;
4004
4005 /*
4006 * _avg must be null when _sum are null because _avg = _sum / divider
4007 * Make sure that rounding and/or propagation of PELT values never
4008 * break this.
4009 */
4010 WARN_ON_ONCE(sa->load_avg ||
4011 sa->util_avg ||
4012 sa->runnable_avg);
4013
4014 return true;
4015 }
4016
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)4017 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4018 {
4019 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4020 cfs_rq->last_update_time_copy);
4021 }
4022 #ifdef CONFIG_FAIR_GROUP_SCHED
4023 /*
4024 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4025 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4026 * bottom-up, we only have to test whether the cfs_rq before us on the list
4027 * is our child.
4028 * If cfs_rq is not on the list, test whether a child needs its to be added to
4029 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4030 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)4031 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4032 {
4033 struct cfs_rq *prev_cfs_rq;
4034 struct list_head *prev;
4035 struct rq *rq = rq_of(cfs_rq);
4036
4037 if (cfs_rq->on_list) {
4038 prev = cfs_rq->leaf_cfs_rq_list.prev;
4039 } else {
4040 prev = rq->tmp_alone_branch;
4041 }
4042
4043 if (prev == &rq->leaf_cfs_rq_list)
4044 return false;
4045
4046 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4047
4048 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4049 }
4050
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4051 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4052 {
4053 if (cfs_rq->load.weight)
4054 return false;
4055
4056 if (!load_avg_is_decayed(&cfs_rq->avg))
4057 return false;
4058
4059 if (child_cfs_rq_on_list(cfs_rq))
4060 return false;
4061
4062 return true;
4063 }
4064
4065 /**
4066 * update_tg_load_avg - update the tg's load avg
4067 * @cfs_rq: the cfs_rq whose avg changed
4068 *
4069 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4070 * However, because tg->load_avg is a global value there are performance
4071 * considerations.
4072 *
4073 * In order to avoid having to look at the other cfs_rq's, we use a
4074 * differential update where we store the last value we propagated. This in
4075 * turn allows skipping updates if the differential is 'small'.
4076 *
4077 * Updating tg's load_avg is necessary before update_cfs_share().
4078 */
update_tg_load_avg(struct cfs_rq * cfs_rq)4079 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4080 {
4081 long delta;
4082 u64 now;
4083
4084 /*
4085 * No need to update load_avg for root_task_group as it is not used.
4086 */
4087 if (cfs_rq->tg == &root_task_group)
4088 return;
4089
4090 /* rq has been offline and doesn't contribute to the share anymore: */
4091 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4092 return;
4093
4094 /*
4095 * For migration heavy workloads, access to tg->load_avg can be
4096 * unbound. Limit the update rate to at most once per ms.
4097 */
4098 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4099 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4100 return;
4101
4102 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4103 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4104 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4105 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4106 cfs_rq->last_update_tg_load_avg = now;
4107 }
4108 }
4109
clear_tg_load_avg(struct cfs_rq * cfs_rq)4110 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4111 {
4112 long delta;
4113 u64 now;
4114
4115 /*
4116 * No need to update load_avg for root_task_group, as it is not used.
4117 */
4118 if (cfs_rq->tg == &root_task_group)
4119 return;
4120
4121 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4122 delta = 0 - cfs_rq->tg_load_avg_contrib;
4123 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4124 cfs_rq->tg_load_avg_contrib = 0;
4125 cfs_rq->last_update_tg_load_avg = now;
4126 }
4127
4128 /* CPU offline callback: */
clear_tg_offline_cfs_rqs(struct rq * rq)4129 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4130 {
4131 struct task_group *tg;
4132
4133 lockdep_assert_rq_held(rq);
4134
4135 /*
4136 * The rq clock has already been updated in
4137 * set_rq_offline(), so we should skip updating
4138 * the rq clock again in unthrottle_cfs_rq().
4139 */
4140 rq_clock_start_loop_update(rq);
4141
4142 rcu_read_lock();
4143 list_for_each_entry_rcu(tg, &task_groups, list) {
4144 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4145
4146 clear_tg_load_avg(cfs_rq);
4147 }
4148 rcu_read_unlock();
4149
4150 rq_clock_stop_loop_update(rq);
4151 }
4152
4153 /*
4154 * Called within set_task_rq() right before setting a task's CPU. The
4155 * caller only guarantees p->pi_lock is held; no other assumptions,
4156 * including the state of rq->lock, should be made.
4157 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)4158 void set_task_rq_fair(struct sched_entity *se,
4159 struct cfs_rq *prev, struct cfs_rq *next)
4160 {
4161 u64 p_last_update_time;
4162 u64 n_last_update_time;
4163
4164 if (!sched_feat(ATTACH_AGE_LOAD))
4165 return;
4166
4167 /*
4168 * We are supposed to update the task to "current" time, then its up to
4169 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4170 * getting what current time is, so simply throw away the out-of-date
4171 * time. This will result in the wakee task is less decayed, but giving
4172 * the wakee more load sounds not bad.
4173 */
4174 if (!(se->avg.last_update_time && prev))
4175 return;
4176
4177 p_last_update_time = cfs_rq_last_update_time(prev);
4178 n_last_update_time = cfs_rq_last_update_time(next);
4179
4180 __update_load_avg_blocked_se(p_last_update_time, se);
4181 se->avg.last_update_time = n_last_update_time;
4182 }
4183
4184 /*
4185 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4186 * propagate its contribution. The key to this propagation is the invariant
4187 * that for each group:
4188 *
4189 * ge->avg == grq->avg (1)
4190 *
4191 * _IFF_ we look at the pure running and runnable sums. Because they
4192 * represent the very same entity, just at different points in the hierarchy.
4193 *
4194 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4195 * and simply copies the running/runnable sum over (but still wrong, because
4196 * the group entity and group rq do not have their PELT windows aligned).
4197 *
4198 * However, update_tg_cfs_load() is more complex. So we have:
4199 *
4200 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4201 *
4202 * And since, like util, the runnable part should be directly transferable,
4203 * the following would _appear_ to be the straight forward approach:
4204 *
4205 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4206 *
4207 * And per (1) we have:
4208 *
4209 * ge->avg.runnable_avg == grq->avg.runnable_avg
4210 *
4211 * Which gives:
4212 *
4213 * ge->load.weight * grq->avg.load_avg
4214 * ge->avg.load_avg = ----------------------------------- (4)
4215 * grq->load.weight
4216 *
4217 * Except that is wrong!
4218 *
4219 * Because while for entities historical weight is not important and we
4220 * really only care about our future and therefore can consider a pure
4221 * runnable sum, runqueues can NOT do this.
4222 *
4223 * We specifically want runqueues to have a load_avg that includes
4224 * historical weights. Those represent the blocked load, the load we expect
4225 * to (shortly) return to us. This only works by keeping the weights as
4226 * integral part of the sum. We therefore cannot decompose as per (3).
4227 *
4228 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4229 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4230 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4231 * runnable section of these tasks overlap (or not). If they were to perfectly
4232 * align the rq as a whole would be runnable 2/3 of the time. If however we
4233 * always have at least 1 runnable task, the rq as a whole is always runnable.
4234 *
4235 * So we'll have to approximate.. :/
4236 *
4237 * Given the constraint:
4238 *
4239 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4240 *
4241 * We can construct a rule that adds runnable to a rq by assuming minimal
4242 * overlap.
4243 *
4244 * On removal, we'll assume each task is equally runnable; which yields:
4245 *
4246 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4247 *
4248 * XXX: only do this for the part of runnable > running ?
4249 *
4250 */
4251 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4252 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4253 {
4254 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4255 u32 new_sum, divider;
4256
4257 /* Nothing to update */
4258 if (!delta_avg)
4259 return;
4260
4261 /*
4262 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4263 * See ___update_load_avg() for details.
4264 */
4265 divider = get_pelt_divider(&cfs_rq->avg);
4266
4267
4268 /* Set new sched_entity's utilization */
4269 se->avg.util_avg = gcfs_rq->avg.util_avg;
4270 new_sum = se->avg.util_avg * divider;
4271 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4272 se->avg.util_sum = new_sum;
4273
4274 /* Update parent cfs_rq utilization */
4275 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4276 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4277
4278 /* See update_cfs_rq_load_avg() */
4279 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4280 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4281 }
4282
4283 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4284 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4285 {
4286 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4287 u32 new_sum, divider;
4288
4289 /* Nothing to update */
4290 if (!delta_avg)
4291 return;
4292
4293 /*
4294 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4295 * See ___update_load_avg() for details.
4296 */
4297 divider = get_pelt_divider(&cfs_rq->avg);
4298
4299 /* Set new sched_entity's runnable */
4300 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4301 new_sum = se->avg.runnable_avg * divider;
4302 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4303 se->avg.runnable_sum = new_sum;
4304
4305 /* Update parent cfs_rq runnable */
4306 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4307 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4308 /* See update_cfs_rq_load_avg() */
4309 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4310 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4311 }
4312
4313 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)4314 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4315 {
4316 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4317 unsigned long load_avg;
4318 u64 load_sum = 0;
4319 s64 delta_sum;
4320 u32 divider;
4321
4322 if (!runnable_sum)
4323 return;
4324
4325 gcfs_rq->prop_runnable_sum = 0;
4326
4327 /*
4328 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4329 * See ___update_load_avg() for details.
4330 */
4331 divider = get_pelt_divider(&cfs_rq->avg);
4332
4333 if (runnable_sum >= 0) {
4334 /*
4335 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4336 * the CPU is saturated running == runnable.
4337 */
4338 runnable_sum += se->avg.load_sum;
4339 runnable_sum = min_t(long, runnable_sum, divider);
4340 } else {
4341 /*
4342 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4343 * assuming all tasks are equally runnable.
4344 */
4345 if (scale_load_down(gcfs_rq->load.weight)) {
4346 load_sum = div_u64(gcfs_rq->avg.load_sum,
4347 scale_load_down(gcfs_rq->load.weight));
4348 }
4349
4350 /* But make sure to not inflate se's runnable */
4351 runnable_sum = min(se->avg.load_sum, load_sum);
4352 }
4353
4354 /*
4355 * runnable_sum can't be lower than running_sum
4356 * Rescale running sum to be in the same range as runnable sum
4357 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4358 * runnable_sum is in [0 : LOAD_AVG_MAX]
4359 */
4360 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4361 runnable_sum = max(runnable_sum, running_sum);
4362
4363 load_sum = se_weight(se) * runnable_sum;
4364 load_avg = div_u64(load_sum, divider);
4365
4366 delta_avg = load_avg - se->avg.load_avg;
4367 if (!delta_avg)
4368 return;
4369
4370 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4371
4372 se->avg.load_sum = runnable_sum;
4373 se->avg.load_avg = load_avg;
4374 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4375 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4376 /* See update_cfs_rq_load_avg() */
4377 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4378 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4379 }
4380
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4381 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4382 {
4383 cfs_rq->propagate = 1;
4384 cfs_rq->prop_runnable_sum += runnable_sum;
4385 }
4386
4387 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)4388 static inline int propagate_entity_load_avg(struct sched_entity *se)
4389 {
4390 struct cfs_rq *cfs_rq, *gcfs_rq;
4391
4392 if (entity_is_task(se))
4393 return 0;
4394
4395 gcfs_rq = group_cfs_rq(se);
4396 if (!gcfs_rq->propagate)
4397 return 0;
4398
4399 gcfs_rq->propagate = 0;
4400
4401 cfs_rq = cfs_rq_of(se);
4402
4403 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4404
4405 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4406 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4407 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4408
4409 trace_pelt_cfs_tp(cfs_rq);
4410 trace_pelt_se_tp(se);
4411
4412 return 1;
4413 }
4414
4415 /*
4416 * Check if we need to update the load and the utilization of a blocked
4417 * group_entity:
4418 */
skip_blocked_update(struct sched_entity * se)4419 static inline bool skip_blocked_update(struct sched_entity *se)
4420 {
4421 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4422
4423 /*
4424 * If sched_entity still have not zero load or utilization, we have to
4425 * decay it:
4426 */
4427 if (se->avg.load_avg || se->avg.util_avg)
4428 return false;
4429
4430 /*
4431 * If there is a pending propagation, we have to update the load and
4432 * the utilization of the sched_entity:
4433 */
4434 if (gcfs_rq->propagate)
4435 return false;
4436
4437 /*
4438 * Otherwise, the load and the utilization of the sched_entity is
4439 * already zero and there is no pending propagation, so it will be a
4440 * waste of time to try to decay it:
4441 */
4442 return true;
4443 }
4444
4445 #else /* !CONFIG_FAIR_GROUP_SCHED: */
4446
update_tg_load_avg(struct cfs_rq * cfs_rq)4447 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4448
clear_tg_offline_cfs_rqs(struct rq * rq)4449 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4450
propagate_entity_load_avg(struct sched_entity * se)4451 static inline int propagate_entity_load_avg(struct sched_entity *se)
4452 {
4453 return 0;
4454 }
4455
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)4456 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4457
4458 #endif /* !CONFIG_FAIR_GROUP_SCHED */
4459
4460 #ifdef CONFIG_NO_HZ_COMMON
migrate_se_pelt_lag(struct sched_entity * se)4461 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4462 {
4463 u64 throttled = 0, now, lut;
4464 struct cfs_rq *cfs_rq;
4465 struct rq *rq;
4466 bool is_idle;
4467
4468 if (load_avg_is_decayed(&se->avg))
4469 return;
4470
4471 cfs_rq = cfs_rq_of(se);
4472 rq = rq_of(cfs_rq);
4473
4474 rcu_read_lock();
4475 is_idle = is_idle_task(rcu_dereference(rq->curr));
4476 rcu_read_unlock();
4477
4478 /*
4479 * The lag estimation comes with a cost we don't want to pay all the
4480 * time. Hence, limiting to the case where the source CPU is idle and
4481 * we know we are at the greatest risk to have an outdated clock.
4482 */
4483 if (!is_idle)
4484 return;
4485
4486 /*
4487 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4488 *
4489 * last_update_time (the cfs_rq's last_update_time)
4490 * = cfs_rq_clock_pelt()@cfs_rq_idle
4491 * = rq_clock_pelt()@cfs_rq_idle
4492 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4493 *
4494 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4495 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4496 *
4497 * rq_idle_lag (delta between now and rq's update)
4498 * = sched_clock_cpu() - rq_clock()@rq_idle
4499 *
4500 * We can then write:
4501 *
4502 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4503 * sched_clock_cpu() - rq_clock()@rq_idle
4504 * Where:
4505 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4506 * rq_clock()@rq_idle is rq->clock_idle
4507 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4508 * is cfs_rq->throttled_pelt_idle
4509 */
4510
4511 #ifdef CONFIG_CFS_BANDWIDTH
4512 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4513 /* The clock has been stopped for throttling */
4514 if (throttled == U64_MAX)
4515 return;
4516 #endif
4517 now = u64_u32_load(rq->clock_pelt_idle);
4518 /*
4519 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4520 * is observed the old clock_pelt_idle value and the new clock_idle,
4521 * which lead to an underestimation. The opposite would lead to an
4522 * overestimation.
4523 */
4524 smp_rmb();
4525 lut = cfs_rq_last_update_time(cfs_rq);
4526
4527 now -= throttled;
4528 if (now < lut)
4529 /*
4530 * cfs_rq->avg.last_update_time is more recent than our
4531 * estimation, let's use it.
4532 */
4533 now = lut;
4534 else
4535 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4536
4537 __update_load_avg_blocked_se(now, se);
4538 }
4539 #else /* !CONFIG_NO_HZ_COMMON: */
migrate_se_pelt_lag(struct sched_entity * se)4540 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4541 #endif /* !CONFIG_NO_HZ_COMMON */
4542
4543 /**
4544 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4545 * @now: current time, as per cfs_rq_clock_pelt()
4546 * @cfs_rq: cfs_rq to update
4547 *
4548 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4549 * avg. The immediate corollary is that all (fair) tasks must be attached.
4550 *
4551 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4552 *
4553 * Return: true if the load decayed or we removed load.
4554 *
4555 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4556 * call update_tg_load_avg() when this function returns true.
4557 */
4558 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)4559 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4560 {
4561 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4562 struct sched_avg *sa = &cfs_rq->avg;
4563 int decayed = 0;
4564
4565 if (cfs_rq->removed.nr) {
4566 unsigned long r;
4567 u32 divider = get_pelt_divider(&cfs_rq->avg);
4568
4569 raw_spin_lock(&cfs_rq->removed.lock);
4570 swap(cfs_rq->removed.util_avg, removed_util);
4571 swap(cfs_rq->removed.load_avg, removed_load);
4572 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4573 cfs_rq->removed.nr = 0;
4574 raw_spin_unlock(&cfs_rq->removed.lock);
4575
4576 r = removed_load;
4577 sub_positive(&sa->load_avg, r);
4578 sub_positive(&sa->load_sum, r * divider);
4579 /* See sa->util_sum below */
4580 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4581
4582 r = removed_util;
4583 sub_positive(&sa->util_avg, r);
4584 sub_positive(&sa->util_sum, r * divider);
4585 /*
4586 * Because of rounding, se->util_sum might ends up being +1 more than
4587 * cfs->util_sum. Although this is not a problem by itself, detaching
4588 * a lot of tasks with the rounding problem between 2 updates of
4589 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4590 * cfs_util_avg is not.
4591 * Check that util_sum is still above its lower bound for the new
4592 * util_avg. Given that period_contrib might have moved since the last
4593 * sync, we are only sure that util_sum must be above or equal to
4594 * util_avg * minimum possible divider
4595 */
4596 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4597
4598 r = removed_runnable;
4599 sub_positive(&sa->runnable_avg, r);
4600 sub_positive(&sa->runnable_sum, r * divider);
4601 /* See sa->util_sum above */
4602 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4603 sa->runnable_avg * PELT_MIN_DIVIDER);
4604
4605 /*
4606 * removed_runnable is the unweighted version of removed_load so we
4607 * can use it to estimate removed_load_sum.
4608 */
4609 add_tg_cfs_propagate(cfs_rq,
4610 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4611
4612 decayed = 1;
4613 }
4614
4615 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4616 u64_u32_store_copy(sa->last_update_time,
4617 cfs_rq->last_update_time_copy,
4618 sa->last_update_time);
4619 return decayed;
4620 }
4621
4622 /**
4623 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4624 * @cfs_rq: cfs_rq to attach to
4625 * @se: sched_entity to attach
4626 *
4627 * Must call update_cfs_rq_load_avg() before this, since we rely on
4628 * cfs_rq->avg.last_update_time being current.
4629 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4630 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4631 {
4632 /*
4633 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4634 * See ___update_load_avg() for details.
4635 */
4636 u32 divider = get_pelt_divider(&cfs_rq->avg);
4637
4638 /*
4639 * When we attach the @se to the @cfs_rq, we must align the decay
4640 * window because without that, really weird and wonderful things can
4641 * happen.
4642 *
4643 * XXX illustrate
4644 */
4645 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4646 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4647
4648 /*
4649 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4650 * period_contrib. This isn't strictly correct, but since we're
4651 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4652 * _sum a little.
4653 */
4654 se->avg.util_sum = se->avg.util_avg * divider;
4655
4656 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4657
4658 se->avg.load_sum = se->avg.load_avg * divider;
4659 if (se_weight(se) < se->avg.load_sum)
4660 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4661 else
4662 se->avg.load_sum = 1;
4663
4664 enqueue_load_avg(cfs_rq, se);
4665 cfs_rq->avg.util_avg += se->avg.util_avg;
4666 cfs_rq->avg.util_sum += se->avg.util_sum;
4667 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4668 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4669
4670 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4671
4672 cfs_rq_util_change(cfs_rq, 0);
4673
4674 trace_pelt_cfs_tp(cfs_rq);
4675 }
4676
4677 /**
4678 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4679 * @cfs_rq: cfs_rq to detach from
4680 * @se: sched_entity to detach
4681 *
4682 * Must call update_cfs_rq_load_avg() before this, since we rely on
4683 * cfs_rq->avg.last_update_time being current.
4684 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4685 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4686 {
4687 dequeue_load_avg(cfs_rq, se);
4688 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4689 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4690 /* See update_cfs_rq_load_avg() */
4691 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4692 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4693
4694 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4695 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4696 /* See update_cfs_rq_load_avg() */
4697 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4698 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4699
4700 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4701
4702 cfs_rq_util_change(cfs_rq, 0);
4703
4704 trace_pelt_cfs_tp(cfs_rq);
4705 }
4706
4707 /*
4708 * Optional action to be done while updating the load average
4709 */
4710 #define UPDATE_TG 0x1
4711 #define SKIP_AGE_LOAD 0x2
4712 #define DO_ATTACH 0x4
4713 #define DO_DETACH 0x8
4714
4715 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4716 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4717 {
4718 u64 now = cfs_rq_clock_pelt(cfs_rq);
4719 int decayed;
4720
4721 /*
4722 * Track task load average for carrying it to new CPU after migrated, and
4723 * track group sched_entity load average for task_h_load calculation in migration
4724 */
4725 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4726 __update_load_avg_se(now, cfs_rq, se);
4727
4728 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4729 decayed |= propagate_entity_load_avg(se);
4730
4731 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4732
4733 /*
4734 * DO_ATTACH means we're here from enqueue_entity().
4735 * !last_update_time means we've passed through
4736 * migrate_task_rq_fair() indicating we migrated.
4737 *
4738 * IOW we're enqueueing a task on a new CPU.
4739 */
4740 attach_entity_load_avg(cfs_rq, se);
4741 update_tg_load_avg(cfs_rq);
4742
4743 } else if (flags & DO_DETACH) {
4744 /*
4745 * DO_DETACH means we're here from dequeue_entity()
4746 * and we are migrating task out of the CPU.
4747 */
4748 detach_entity_load_avg(cfs_rq, se);
4749 update_tg_load_avg(cfs_rq);
4750 } else if (decayed) {
4751 cfs_rq_util_change(cfs_rq, 0);
4752
4753 if (flags & UPDATE_TG)
4754 update_tg_load_avg(cfs_rq);
4755 }
4756 }
4757
4758 /*
4759 * Synchronize entity load avg of dequeued entity without locking
4760 * the previous rq.
4761 */
sync_entity_load_avg(struct sched_entity * se)4762 static void sync_entity_load_avg(struct sched_entity *se)
4763 {
4764 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4765 u64 last_update_time;
4766
4767 last_update_time = cfs_rq_last_update_time(cfs_rq);
4768 __update_load_avg_blocked_se(last_update_time, se);
4769 }
4770
4771 /*
4772 * Task first catches up with cfs_rq, and then subtract
4773 * itself from the cfs_rq (task must be off the queue now).
4774 */
remove_entity_load_avg(struct sched_entity * se)4775 static void remove_entity_load_avg(struct sched_entity *se)
4776 {
4777 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4778 unsigned long flags;
4779
4780 /*
4781 * tasks cannot exit without having gone through wake_up_new_task() ->
4782 * enqueue_task_fair() which will have added things to the cfs_rq,
4783 * so we can remove unconditionally.
4784 */
4785
4786 sync_entity_load_avg(se);
4787
4788 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4789 ++cfs_rq->removed.nr;
4790 cfs_rq->removed.util_avg += se->avg.util_avg;
4791 cfs_rq->removed.load_avg += se->avg.load_avg;
4792 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4793 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4794 }
4795
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)4796 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4797 {
4798 return cfs_rq->avg.runnable_avg;
4799 }
4800
cfs_rq_load_avg(struct cfs_rq * cfs_rq)4801 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4802 {
4803 return cfs_rq->avg.load_avg;
4804 }
4805
4806 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4807
task_util(struct task_struct * p)4808 static inline unsigned long task_util(struct task_struct *p)
4809 {
4810 return READ_ONCE(p->se.avg.util_avg);
4811 }
4812
task_runnable(struct task_struct * p)4813 static inline unsigned long task_runnable(struct task_struct *p)
4814 {
4815 return READ_ONCE(p->se.avg.runnable_avg);
4816 }
4817
_task_util_est(struct task_struct * p)4818 static inline unsigned long _task_util_est(struct task_struct *p)
4819 {
4820 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4821 }
4822
task_util_est(struct task_struct * p)4823 static inline unsigned long task_util_est(struct task_struct *p)
4824 {
4825 return max(task_util(p), _task_util_est(p));
4826 }
4827
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4828 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4829 struct task_struct *p)
4830 {
4831 unsigned int enqueued;
4832
4833 if (!sched_feat(UTIL_EST))
4834 return;
4835
4836 /* Update root cfs_rq's estimated utilization */
4837 enqueued = cfs_rq->avg.util_est;
4838 enqueued += _task_util_est(p);
4839 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4840
4841 trace_sched_util_est_cfs_tp(cfs_rq);
4842 }
4843
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4844 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4845 struct task_struct *p)
4846 {
4847 unsigned int enqueued;
4848
4849 if (!sched_feat(UTIL_EST))
4850 return;
4851
4852 /* Update root cfs_rq's estimated utilization */
4853 enqueued = cfs_rq->avg.util_est;
4854 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4855 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4856
4857 trace_sched_util_est_cfs_tp(cfs_rq);
4858 }
4859
4860 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4861
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4862 static inline void util_est_update(struct cfs_rq *cfs_rq,
4863 struct task_struct *p,
4864 bool task_sleep)
4865 {
4866 unsigned int ewma, dequeued, last_ewma_diff;
4867
4868 if (!sched_feat(UTIL_EST))
4869 return;
4870
4871 /*
4872 * Skip update of task's estimated utilization when the task has not
4873 * yet completed an activation, e.g. being migrated.
4874 */
4875 if (!task_sleep)
4876 return;
4877
4878 /* Get current estimate of utilization */
4879 ewma = READ_ONCE(p->se.avg.util_est);
4880
4881 /*
4882 * If the PELT values haven't changed since enqueue time,
4883 * skip the util_est update.
4884 */
4885 if (ewma & UTIL_AVG_UNCHANGED)
4886 return;
4887
4888 /* Get utilization at dequeue */
4889 dequeued = task_util(p);
4890
4891 /*
4892 * Reset EWMA on utilization increases, the moving average is used only
4893 * to smooth utilization decreases.
4894 */
4895 if (ewma <= dequeued) {
4896 ewma = dequeued;
4897 goto done;
4898 }
4899
4900 /*
4901 * Skip update of task's estimated utilization when its members are
4902 * already ~1% close to its last activation value.
4903 */
4904 last_ewma_diff = ewma - dequeued;
4905 if (last_ewma_diff < UTIL_EST_MARGIN)
4906 goto done;
4907
4908 /*
4909 * To avoid underestimate of task utilization, skip updates of EWMA if
4910 * we cannot grant that thread got all CPU time it wanted.
4911 */
4912 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
4913 goto done;
4914
4915
4916 /*
4917 * Update Task's estimated utilization
4918 *
4919 * When *p completes an activation we can consolidate another sample
4920 * of the task size. This is done by using this value to update the
4921 * Exponential Weighted Moving Average (EWMA):
4922 *
4923 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4924 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4925 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4926 * = w * ( -last_ewma_diff ) + ewma(t-1)
4927 * = w * (-last_ewma_diff + ewma(t-1) / w)
4928 *
4929 * Where 'w' is the weight of new samples, which is configured to be
4930 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4931 */
4932 ewma <<= UTIL_EST_WEIGHT_SHIFT;
4933 ewma -= last_ewma_diff;
4934 ewma >>= UTIL_EST_WEIGHT_SHIFT;
4935 done:
4936 ewma |= UTIL_AVG_UNCHANGED;
4937 WRITE_ONCE(p->se.avg.util_est, ewma);
4938
4939 trace_sched_util_est_se_tp(&p->se);
4940 }
4941
get_actual_cpu_capacity(int cpu)4942 static inline unsigned long get_actual_cpu_capacity(int cpu)
4943 {
4944 unsigned long capacity = arch_scale_cpu_capacity(cpu);
4945
4946 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
4947
4948 return capacity;
4949 }
4950
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4951 static inline int util_fits_cpu(unsigned long util,
4952 unsigned long uclamp_min,
4953 unsigned long uclamp_max,
4954 int cpu)
4955 {
4956 unsigned long capacity = capacity_of(cpu);
4957 unsigned long capacity_orig;
4958 bool fits, uclamp_max_fits;
4959
4960 /*
4961 * Check if the real util fits without any uclamp boost/cap applied.
4962 */
4963 fits = fits_capacity(util, capacity);
4964
4965 if (!uclamp_is_used())
4966 return fits;
4967
4968 /*
4969 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
4970 * uclamp_max. We only care about capacity pressure (by using
4971 * capacity_of()) for comparing against the real util.
4972 *
4973 * If a task is boosted to 1024 for example, we don't want a tiny
4974 * pressure to skew the check whether it fits a CPU or not.
4975 *
4976 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
4977 * should fit a little cpu even if there's some pressure.
4978 *
4979 * Only exception is for HW or cpufreq pressure since it has a direct impact
4980 * on available OPP of the system.
4981 *
4982 * We honour it for uclamp_min only as a drop in performance level
4983 * could result in not getting the requested minimum performance level.
4984 *
4985 * For uclamp_max, we can tolerate a drop in performance level as the
4986 * goal is to cap the task. So it's okay if it's getting less.
4987 */
4988 capacity_orig = arch_scale_cpu_capacity(cpu);
4989
4990 /*
4991 * We want to force a task to fit a cpu as implied by uclamp_max.
4992 * But we do have some corner cases to cater for..
4993 *
4994 *
4995 * C=z
4996 * | ___
4997 * | C=y | |
4998 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4999 * | C=x | | | |
5000 * | ___ | | | |
5001 * | | | | | | | (util somewhere in this region)
5002 * | | | | | | |
5003 * | | | | | | |
5004 * +----------------------------------------
5005 * CPU0 CPU1 CPU2
5006 *
5007 * In the above example if a task is capped to a specific performance
5008 * point, y, then when:
5009 *
5010 * * util = 80% of x then it does not fit on CPU0 and should migrate
5011 * to CPU1
5012 * * util = 80% of y then it is forced to fit on CPU1 to honour
5013 * uclamp_max request.
5014 *
5015 * which is what we're enforcing here. A task always fits if
5016 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5017 * the normal upmigration rules should withhold still.
5018 *
5019 * Only exception is when we are on max capacity, then we need to be
5020 * careful not to block overutilized state. This is so because:
5021 *
5022 * 1. There's no concept of capping at max_capacity! We can't go
5023 * beyond this performance level anyway.
5024 * 2. The system is being saturated when we're operating near
5025 * max capacity, it doesn't make sense to block overutilized.
5026 */
5027 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5028 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5029 fits = fits || uclamp_max_fits;
5030
5031 /*
5032 *
5033 * C=z
5034 * | ___ (region a, capped, util >= uclamp_max)
5035 * | C=y | |
5036 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5037 * | C=x | | | |
5038 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5039 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5040 * | | | | | | |
5041 * | | | | | | | (region c, boosted, util < uclamp_min)
5042 * +----------------------------------------
5043 * CPU0 CPU1 CPU2
5044 *
5045 * a) If util > uclamp_max, then we're capped, we don't care about
5046 * actual fitness value here. We only care if uclamp_max fits
5047 * capacity without taking margin/pressure into account.
5048 * See comment above.
5049 *
5050 * b) If uclamp_min <= util <= uclamp_max, then the normal
5051 * fits_capacity() rules apply. Except we need to ensure that we
5052 * enforce we remain within uclamp_max, see comment above.
5053 *
5054 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5055 * need to take into account the boosted value fits the CPU without
5056 * taking margin/pressure into account.
5057 *
5058 * Cases (a) and (b) are handled in the 'fits' variable already. We
5059 * just need to consider an extra check for case (c) after ensuring we
5060 * handle the case uclamp_min > uclamp_max.
5061 */
5062 uclamp_min = min(uclamp_min, uclamp_max);
5063 if (fits && (util < uclamp_min) &&
5064 (uclamp_min > get_actual_cpu_capacity(cpu)))
5065 return -1;
5066
5067 return fits;
5068 }
5069
task_fits_cpu(struct task_struct * p,int cpu)5070 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5071 {
5072 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5073 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5074 unsigned long util = task_util_est(p);
5075 /*
5076 * Return true only if the cpu fully fits the task requirements, which
5077 * include the utilization but also the performance hints.
5078 */
5079 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5080 }
5081
update_misfit_status(struct task_struct * p,struct rq * rq)5082 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5083 {
5084 int cpu = cpu_of(rq);
5085
5086 if (!sched_asym_cpucap_active())
5087 return;
5088
5089 /*
5090 * Affinity allows us to go somewhere higher? Or are we on biggest
5091 * available CPU already? Or do we fit into this CPU ?
5092 */
5093 if (!p || (p->nr_cpus_allowed == 1) ||
5094 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5095 task_fits_cpu(p, cpu)) {
5096
5097 rq->misfit_task_load = 0;
5098 return;
5099 }
5100
5101 /*
5102 * Make sure that misfit_task_load will not be null even if
5103 * task_h_load() returns 0.
5104 */
5105 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5106 }
5107
__setparam_fair(struct task_struct * p,const struct sched_attr * attr)5108 void __setparam_fair(struct task_struct *p, const struct sched_attr *attr)
5109 {
5110 struct sched_entity *se = &p->se;
5111
5112 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5113 if (attr->sched_runtime) {
5114 se->custom_slice = 1;
5115 se->slice = clamp_t(u64, attr->sched_runtime,
5116 NSEC_PER_MSEC/10, /* HZ=1000 * 10 */
5117 NSEC_PER_MSEC*100); /* HZ=100 / 10 */
5118 } else {
5119 se->custom_slice = 0;
5120 se->slice = sysctl_sched_base_slice;
5121 }
5122 }
5123
5124 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5125 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5126 {
5127 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5128 s64 lag = 0;
5129
5130 if (!se->custom_slice)
5131 se->slice = sysctl_sched_base_slice;
5132 vslice = calc_delta_fair(se->slice, se);
5133
5134 /*
5135 * Due to how V is constructed as the weighted average of entities,
5136 * adding tasks with positive lag, or removing tasks with negative lag
5137 * will move 'time' backwards, this can screw around with the lag of
5138 * other tasks.
5139 *
5140 * EEVDF: placement strategy #1 / #2
5141 */
5142 if (sched_feat(PLACE_LAG) && cfs_rq->nr_queued && se->vlag) {
5143 struct sched_entity *curr = cfs_rq->curr;
5144 unsigned long load;
5145
5146 lag = se->vlag;
5147
5148 /*
5149 * If we want to place a task and preserve lag, we have to
5150 * consider the effect of the new entity on the weighted
5151 * average and compensate for this, otherwise lag can quickly
5152 * evaporate.
5153 *
5154 * Lag is defined as:
5155 *
5156 * lag_i = S - s_i = w_i * (V - v_i)
5157 *
5158 * To avoid the 'w_i' term all over the place, we only track
5159 * the virtual lag:
5160 *
5161 * vl_i = V - v_i <=> v_i = V - vl_i
5162 *
5163 * And we take V to be the weighted average of all v:
5164 *
5165 * V = (\Sum w_j*v_j) / W
5166 *
5167 * Where W is: \Sum w_j
5168 *
5169 * Then, the weighted average after adding an entity with lag
5170 * vl_i is given by:
5171 *
5172 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5173 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5174 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5175 * = (V*(W + w_i) - w_i*vl_i) / (W + w_i)
5176 * = V - w_i*vl_i / (W + w_i)
5177 *
5178 * And the actual lag after adding an entity with vl_i is:
5179 *
5180 * vl'_i = V' - v_i
5181 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5182 * = vl_i - w_i*vl_i / (W + w_i)
5183 *
5184 * Which is strictly less than vl_i. So in order to preserve lag
5185 * we should inflate the lag before placement such that the
5186 * effective lag after placement comes out right.
5187 *
5188 * As such, invert the above relation for vl'_i to get the vl_i
5189 * we need to use such that the lag after placement is the lag
5190 * we computed before dequeue.
5191 *
5192 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5193 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5194 *
5195 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5196 * = W*vl_i
5197 *
5198 * vl_i = (W + w_i)*vl'_i / W
5199 */
5200 load = cfs_rq->avg_load;
5201 if (curr && curr->on_rq)
5202 load += scale_load_down(curr->load.weight);
5203
5204 lag *= load + scale_load_down(se->load.weight);
5205 if (WARN_ON_ONCE(!load))
5206 load = 1;
5207 lag = div_s64(lag, load);
5208 }
5209
5210 se->vruntime = vruntime - lag;
5211
5212 if (se->rel_deadline) {
5213 se->deadline += se->vruntime;
5214 se->rel_deadline = 0;
5215 return;
5216 }
5217
5218 /*
5219 * When joining the competition; the existing tasks will be,
5220 * on average, halfway through their slice, as such start tasks
5221 * off with half a slice to ease into the competition.
5222 */
5223 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5224 vslice /= 2;
5225
5226 /*
5227 * EEVDF: vd_i = ve_i + r_i/w_i
5228 */
5229 se->deadline = se->vruntime + vslice;
5230 }
5231
5232 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5233 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5234
5235 static void
5236 requeue_delayed_entity(struct sched_entity *se);
5237
5238 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5239 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5240 {
5241 bool curr = cfs_rq->curr == se;
5242
5243 /*
5244 * If we're the current task, we must renormalise before calling
5245 * update_curr().
5246 */
5247 if (curr)
5248 place_entity(cfs_rq, se, flags);
5249
5250 update_curr(cfs_rq);
5251
5252 /*
5253 * When enqueuing a sched_entity, we must:
5254 * - Update loads to have both entity and cfs_rq synced with now.
5255 * - For group_entity, update its runnable_weight to reflect the new
5256 * h_nr_runnable of its group cfs_rq.
5257 * - For group_entity, update its weight to reflect the new share of
5258 * its group cfs_rq
5259 * - Add its new weight to cfs_rq->load.weight
5260 */
5261 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5262 se_update_runnable(se);
5263 /*
5264 * XXX update_load_avg() above will have attached us to the pelt sum;
5265 * but update_cfs_group() here will re-adjust the weight and have to
5266 * undo/redo all that. Seems wasteful.
5267 */
5268 update_cfs_group(se);
5269
5270 /*
5271 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5272 * we can place the entity.
5273 */
5274 if (!curr)
5275 place_entity(cfs_rq, se, flags);
5276
5277 account_entity_enqueue(cfs_rq, se);
5278
5279 /* Entity has migrated, no longer consider this task hot */
5280 if (flags & ENQUEUE_MIGRATED)
5281 se->exec_start = 0;
5282
5283 check_schedstat_required();
5284 update_stats_enqueue_fair(cfs_rq, se, flags);
5285 if (!curr)
5286 __enqueue_entity(cfs_rq, se);
5287 se->on_rq = 1;
5288
5289 if (cfs_rq->nr_queued == 1) {
5290 check_enqueue_throttle(cfs_rq);
5291 list_add_leaf_cfs_rq(cfs_rq);
5292 #ifdef CONFIG_CFS_BANDWIDTH
5293 if (cfs_rq->pelt_clock_throttled) {
5294 struct rq *rq = rq_of(cfs_rq);
5295
5296 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5297 cfs_rq->throttled_clock_pelt;
5298 cfs_rq->pelt_clock_throttled = 0;
5299 }
5300 #endif
5301 }
5302 }
5303
__clear_buddies_next(struct sched_entity * se)5304 static void __clear_buddies_next(struct sched_entity *se)
5305 {
5306 for_each_sched_entity(se) {
5307 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5308 if (cfs_rq->next != se)
5309 break;
5310
5311 cfs_rq->next = NULL;
5312 }
5313 }
5314
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)5315 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5316 {
5317 if (cfs_rq->next == se)
5318 __clear_buddies_next(se);
5319 }
5320
5321 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5322
set_delayed(struct sched_entity * se)5323 static void set_delayed(struct sched_entity *se)
5324 {
5325 se->sched_delayed = 1;
5326
5327 /*
5328 * Delayed se of cfs_rq have no tasks queued on them.
5329 * Do not adjust h_nr_runnable since dequeue_entities()
5330 * will account it for blocked tasks.
5331 */
5332 if (!entity_is_task(se))
5333 return;
5334
5335 for_each_sched_entity(se) {
5336 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5337
5338 cfs_rq->h_nr_runnable--;
5339 }
5340 }
5341
clear_delayed(struct sched_entity * se)5342 static void clear_delayed(struct sched_entity *se)
5343 {
5344 se->sched_delayed = 0;
5345
5346 /*
5347 * Delayed se of cfs_rq have no tasks queued on them.
5348 * Do not adjust h_nr_runnable since a dequeue has
5349 * already accounted for it or an enqueue of a task
5350 * below it will account for it in enqueue_task_fair().
5351 */
5352 if (!entity_is_task(se))
5353 return;
5354
5355 for_each_sched_entity(se) {
5356 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5357
5358 cfs_rq->h_nr_runnable++;
5359 }
5360 }
5361
finish_delayed_dequeue_entity(struct sched_entity * se)5362 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5363 {
5364 clear_delayed(se);
5365 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5366 se->vlag = 0;
5367 }
5368
5369 static bool
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)5370 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5371 {
5372 bool sleep = flags & DEQUEUE_SLEEP;
5373 int action = UPDATE_TG;
5374
5375 update_curr(cfs_rq);
5376 clear_buddies(cfs_rq, se);
5377
5378 if (flags & DEQUEUE_DELAYED) {
5379 WARN_ON_ONCE(!se->sched_delayed);
5380 } else {
5381 bool delay = sleep;
5382 /*
5383 * DELAY_DEQUEUE relies on spurious wakeups, special task
5384 * states must not suffer spurious wakeups, excempt them.
5385 */
5386 if (flags & (DEQUEUE_SPECIAL | DEQUEUE_THROTTLE))
5387 delay = false;
5388
5389 WARN_ON_ONCE(delay && se->sched_delayed);
5390
5391 if (sched_feat(DELAY_DEQUEUE) && delay &&
5392 !entity_eligible(cfs_rq, se)) {
5393 update_load_avg(cfs_rq, se, 0);
5394 set_delayed(se);
5395 return false;
5396 }
5397 }
5398
5399 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5400 action |= DO_DETACH;
5401
5402 /*
5403 * When dequeuing a sched_entity, we must:
5404 * - Update loads to have both entity and cfs_rq synced with now.
5405 * - For group_entity, update its runnable_weight to reflect the new
5406 * h_nr_runnable of its group cfs_rq.
5407 * - Subtract its previous weight from cfs_rq->load.weight.
5408 * - For group entity, update its weight to reflect the new share
5409 * of its group cfs_rq.
5410 */
5411 update_load_avg(cfs_rq, se, action);
5412 se_update_runnable(se);
5413
5414 update_stats_dequeue_fair(cfs_rq, se, flags);
5415
5416 update_entity_lag(cfs_rq, se);
5417 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5418 se->deadline -= se->vruntime;
5419 se->rel_deadline = 1;
5420 }
5421
5422 if (se != cfs_rq->curr)
5423 __dequeue_entity(cfs_rq, se);
5424 se->on_rq = 0;
5425 account_entity_dequeue(cfs_rq, se);
5426
5427 /* return excess runtime on last dequeue */
5428 return_cfs_rq_runtime(cfs_rq);
5429
5430 update_cfs_group(se);
5431
5432 /*
5433 * Now advance min_vruntime if @se was the entity holding it back,
5434 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5435 * put back on, and if we advance min_vruntime, we'll be placed back
5436 * further than we started -- i.e. we'll be penalized.
5437 */
5438 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5439 update_min_vruntime(cfs_rq);
5440
5441 if (flags & DEQUEUE_DELAYED)
5442 finish_delayed_dequeue_entity(se);
5443
5444 if (cfs_rq->nr_queued == 0) {
5445 update_idle_cfs_rq_clock_pelt(cfs_rq);
5446 #ifdef CONFIG_CFS_BANDWIDTH
5447 if (throttled_hierarchy(cfs_rq)) {
5448 struct rq *rq = rq_of(cfs_rq);
5449
5450 list_del_leaf_cfs_rq(cfs_rq);
5451 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5452 cfs_rq->pelt_clock_throttled = 1;
5453 }
5454 #endif
5455 }
5456
5457 return true;
5458 }
5459
5460 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)5461 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5462 {
5463 clear_buddies(cfs_rq, se);
5464
5465 /* 'current' is not kept within the tree. */
5466 if (se->on_rq) {
5467 /*
5468 * Any task has to be enqueued before it get to execute on
5469 * a CPU. So account for the time it spent waiting on the
5470 * runqueue.
5471 */
5472 update_stats_wait_end_fair(cfs_rq, se);
5473 __dequeue_entity(cfs_rq, se);
5474 update_load_avg(cfs_rq, se, UPDATE_TG);
5475
5476 set_protect_slice(cfs_rq, se);
5477 }
5478
5479 update_stats_curr_start(cfs_rq, se);
5480 WARN_ON_ONCE(cfs_rq->curr);
5481 cfs_rq->curr = se;
5482
5483 /*
5484 * Track our maximum slice length, if the CPU's load is at
5485 * least twice that of our own weight (i.e. don't track it
5486 * when there are only lesser-weight tasks around):
5487 */
5488 if (schedstat_enabled() &&
5489 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5490 struct sched_statistics *stats;
5491
5492 stats = __schedstats_from_se(se);
5493 __schedstat_set(stats->slice_max,
5494 max((u64)stats->slice_max,
5495 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5496 }
5497
5498 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5499 }
5500
5501 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5502
5503 /*
5504 * Pick the next process, keeping these things in mind, in this order:
5505 * 1) keep things fair between processes/task groups
5506 * 2) pick the "next" process, since someone really wants that to run
5507 * 3) pick the "last" process, for cache locality
5508 * 4) do not run the "skip" process, if something else is available
5509 */
5510 static struct sched_entity *
pick_next_entity(struct rq * rq,struct cfs_rq * cfs_rq)5511 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5512 {
5513 struct sched_entity *se;
5514
5515 /*
5516 * Picking the ->next buddy will affect latency but not fairness.
5517 */
5518 if (sched_feat(PICK_BUDDY) &&
5519 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5520 /* ->next will never be delayed */
5521 WARN_ON_ONCE(cfs_rq->next->sched_delayed);
5522 return cfs_rq->next;
5523 }
5524
5525 se = pick_eevdf(cfs_rq);
5526 if (se->sched_delayed) {
5527 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5528 /*
5529 * Must not reference @se again, see __block_task().
5530 */
5531 return NULL;
5532 }
5533 return se;
5534 }
5535
5536 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5537
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)5538 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5539 {
5540 /*
5541 * If still on the runqueue then deactivate_task()
5542 * was not called and update_curr() has to be done:
5543 */
5544 if (prev->on_rq)
5545 update_curr(cfs_rq);
5546
5547 /* throttle cfs_rqs exceeding runtime */
5548 check_cfs_rq_runtime(cfs_rq);
5549
5550 if (prev->on_rq) {
5551 update_stats_wait_start_fair(cfs_rq, prev);
5552 /* Put 'current' back into the tree. */
5553 __enqueue_entity(cfs_rq, prev);
5554 /* in !on_rq case, update occurred at dequeue */
5555 update_load_avg(cfs_rq, prev, 0);
5556 }
5557 WARN_ON_ONCE(cfs_rq->curr != prev);
5558 cfs_rq->curr = NULL;
5559 }
5560
5561 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)5562 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5563 {
5564 /*
5565 * Update run-time statistics of the 'current'.
5566 */
5567 update_curr(cfs_rq);
5568
5569 /*
5570 * Ensure that runnable average is periodically updated.
5571 */
5572 update_load_avg(cfs_rq, curr, UPDATE_TG);
5573 update_cfs_group(curr);
5574
5575 #ifdef CONFIG_SCHED_HRTICK
5576 /*
5577 * queued ticks are scheduled to match the slice, so don't bother
5578 * validating it and just reschedule.
5579 */
5580 if (queued) {
5581 resched_curr_lazy(rq_of(cfs_rq));
5582 return;
5583 }
5584 #endif
5585 }
5586
5587
5588 /**************************************************
5589 * CFS bandwidth control machinery
5590 */
5591
5592 #ifdef CONFIG_CFS_BANDWIDTH
5593
5594 #ifdef CONFIG_JUMP_LABEL
5595 static struct static_key __cfs_bandwidth_used;
5596
cfs_bandwidth_used(void)5597 static inline bool cfs_bandwidth_used(void)
5598 {
5599 return static_key_false(&__cfs_bandwidth_used);
5600 }
5601
cfs_bandwidth_usage_inc(void)5602 void cfs_bandwidth_usage_inc(void)
5603 {
5604 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5605 }
5606
cfs_bandwidth_usage_dec(void)5607 void cfs_bandwidth_usage_dec(void)
5608 {
5609 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5610 }
5611 #else /* !CONFIG_JUMP_LABEL: */
cfs_bandwidth_used(void)5612 static bool cfs_bandwidth_used(void)
5613 {
5614 return true;
5615 }
5616
cfs_bandwidth_usage_inc(void)5617 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)5618 void cfs_bandwidth_usage_dec(void) {}
5619 #endif /* !CONFIG_JUMP_LABEL */
5620
sched_cfs_bandwidth_slice(void)5621 static inline u64 sched_cfs_bandwidth_slice(void)
5622 {
5623 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5624 }
5625
5626 /*
5627 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5628 * directly instead of rq->clock to avoid adding additional synchronization
5629 * around rq->lock.
5630 *
5631 * requires cfs_b->lock
5632 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)5633 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5634 {
5635 s64 runtime;
5636
5637 if (unlikely(cfs_b->quota == RUNTIME_INF))
5638 return;
5639
5640 cfs_b->runtime += cfs_b->quota;
5641 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5642 if (runtime > 0) {
5643 cfs_b->burst_time += runtime;
5644 cfs_b->nr_burst++;
5645 }
5646
5647 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5648 cfs_b->runtime_snap = cfs_b->runtime;
5649 }
5650
tg_cfs_bandwidth(struct task_group * tg)5651 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5652 {
5653 return &tg->cfs_bandwidth;
5654 }
5655
5656 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)5657 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5658 struct cfs_rq *cfs_rq, u64 target_runtime)
5659 {
5660 u64 min_amount, amount = 0;
5661
5662 lockdep_assert_held(&cfs_b->lock);
5663
5664 /* note: this is a positive sum as runtime_remaining <= 0 */
5665 min_amount = target_runtime - cfs_rq->runtime_remaining;
5666
5667 if (cfs_b->quota == RUNTIME_INF)
5668 amount = min_amount;
5669 else {
5670 start_cfs_bandwidth(cfs_b);
5671
5672 if (cfs_b->runtime > 0) {
5673 amount = min(cfs_b->runtime, min_amount);
5674 cfs_b->runtime -= amount;
5675 cfs_b->idle = 0;
5676 }
5677 }
5678
5679 cfs_rq->runtime_remaining += amount;
5680
5681 return cfs_rq->runtime_remaining > 0;
5682 }
5683
5684 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)5685 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5686 {
5687 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5688 int ret;
5689
5690 raw_spin_lock(&cfs_b->lock);
5691 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5692 raw_spin_unlock(&cfs_b->lock);
5693
5694 return ret;
5695 }
5696
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5697 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5698 {
5699 /* dock delta_exec before expiring quota (as it could span periods) */
5700 cfs_rq->runtime_remaining -= delta_exec;
5701
5702 if (likely(cfs_rq->runtime_remaining > 0))
5703 return;
5704
5705 if (cfs_rq->throttled)
5706 return;
5707 /*
5708 * if we're unable to extend our runtime we resched so that the active
5709 * hierarchy can be throttled
5710 */
5711 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5712 resched_curr(rq_of(cfs_rq));
5713 }
5714
5715 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5716 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5717 {
5718 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5719 return;
5720
5721 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5722 }
5723
cfs_rq_throttled(struct cfs_rq * cfs_rq)5724 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5725 {
5726 return cfs_bandwidth_used() && cfs_rq->throttled;
5727 }
5728
cfs_rq_pelt_clock_throttled(struct cfs_rq * cfs_rq)5729 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
5730 {
5731 return cfs_bandwidth_used() && cfs_rq->pelt_clock_throttled;
5732 }
5733
5734 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)5735 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5736 {
5737 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5738 }
5739
lb_throttled_hierarchy(struct task_struct * p,int dst_cpu)5740 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
5741 {
5742 return throttled_hierarchy(task_group(p)->cfs_rq[dst_cpu]);
5743 }
5744
task_is_throttled(struct task_struct * p)5745 static inline bool task_is_throttled(struct task_struct *p)
5746 {
5747 return cfs_bandwidth_used() && p->throttled;
5748 }
5749
5750 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags);
throttle_cfs_rq_work(struct callback_head * work)5751 static void throttle_cfs_rq_work(struct callback_head *work)
5752 {
5753 struct task_struct *p = container_of(work, struct task_struct, sched_throttle_work);
5754 struct sched_entity *se;
5755 struct cfs_rq *cfs_rq;
5756 struct rq *rq;
5757
5758 WARN_ON_ONCE(p != current);
5759 p->sched_throttle_work.next = &p->sched_throttle_work;
5760
5761 /*
5762 * If task is exiting, then there won't be a return to userspace, so we
5763 * don't have to bother with any of this.
5764 */
5765 if ((p->flags & PF_EXITING))
5766 return;
5767
5768 scoped_guard(task_rq_lock, p) {
5769 se = &p->se;
5770 cfs_rq = cfs_rq_of(se);
5771
5772 /* Raced, forget */
5773 if (p->sched_class != &fair_sched_class)
5774 return;
5775
5776 /*
5777 * If not in limbo, then either replenish has happened or this
5778 * task got migrated out of the throttled cfs_rq, move along.
5779 */
5780 if (!cfs_rq->throttle_count)
5781 return;
5782 rq = scope.rq;
5783 update_rq_clock(rq);
5784 WARN_ON_ONCE(p->throttled || !list_empty(&p->throttle_node));
5785 dequeue_task_fair(rq, p, DEQUEUE_SLEEP | DEQUEUE_THROTTLE);
5786 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
5787 /*
5788 * Must not set throttled before dequeue or dequeue will
5789 * mistakenly regard this task as an already throttled one.
5790 */
5791 p->throttled = true;
5792 resched_curr(rq);
5793 }
5794 }
5795
init_cfs_throttle_work(struct task_struct * p)5796 void init_cfs_throttle_work(struct task_struct *p)
5797 {
5798 init_task_work(&p->sched_throttle_work, throttle_cfs_rq_work);
5799 /* Protect against double add, see throttle_cfs_rq() and throttle_cfs_rq_work() */
5800 p->sched_throttle_work.next = &p->sched_throttle_work;
5801 INIT_LIST_HEAD(&p->throttle_node);
5802 }
5803
5804 /*
5805 * Task is throttled and someone wants to dequeue it again:
5806 * it could be sched/core when core needs to do things like
5807 * task affinity change, task group change, task sched class
5808 * change etc. and in these cases, DEQUEUE_SLEEP is not set;
5809 * or the task is blocked after throttled due to freezer etc.
5810 * and in these cases, DEQUEUE_SLEEP is set.
5811 */
5812 static void detach_task_cfs_rq(struct task_struct *p);
dequeue_throttled_task(struct task_struct * p,int flags)5813 static void dequeue_throttled_task(struct task_struct *p, int flags)
5814 {
5815 WARN_ON_ONCE(p->se.on_rq);
5816 list_del_init(&p->throttle_node);
5817
5818 /* task blocked after throttled */
5819 if (flags & DEQUEUE_SLEEP) {
5820 p->throttled = false;
5821 return;
5822 }
5823
5824 /*
5825 * task is migrating off its old cfs_rq, detach
5826 * the task's load from its old cfs_rq.
5827 */
5828 if (task_on_rq_migrating(p))
5829 detach_task_cfs_rq(p);
5830 }
5831
enqueue_throttled_task(struct task_struct * p)5832 static bool enqueue_throttled_task(struct task_struct *p)
5833 {
5834 struct cfs_rq *cfs_rq = cfs_rq_of(&p->se);
5835
5836 /* @p should have gone through dequeue_throttled_task() first */
5837 WARN_ON_ONCE(!list_empty(&p->throttle_node));
5838
5839 /*
5840 * If the throttled task @p is enqueued to a throttled cfs_rq,
5841 * take the fast path by directly putting the task on the
5842 * target cfs_rq's limbo list.
5843 *
5844 * Do not do that when @p is current because the following race can
5845 * cause @p's group_node to be incorectly re-insterted in its rq's
5846 * cfs_tasks list, despite being throttled:
5847 *
5848 * cpuX cpuY
5849 * p ret2user
5850 * throttle_cfs_rq_work() sched_move_task(p)
5851 * LOCK task_rq_lock
5852 * dequeue_task_fair(p)
5853 * UNLOCK task_rq_lock
5854 * LOCK task_rq_lock
5855 * task_current_donor(p) == true
5856 * task_on_rq_queued(p) == true
5857 * dequeue_task(p)
5858 * put_prev_task(p)
5859 * sched_change_group()
5860 * enqueue_task(p) -> p's new cfs_rq
5861 * is throttled, go
5862 * fast path and skip
5863 * actual enqueue
5864 * set_next_task(p)
5865 * list_move(&se->group_node, &rq->cfs_tasks); // bug
5866 * schedule()
5867 *
5868 * In the above race case, @p current cfs_rq is in the same rq as
5869 * its previous cfs_rq because sched_move_task() only moves a task
5870 * to a different group from the same rq, so we can use its current
5871 * cfs_rq to derive rq and test if the task is current.
5872 */
5873 if (throttled_hierarchy(cfs_rq) &&
5874 !task_current_donor(rq_of(cfs_rq), p)) {
5875 list_add(&p->throttle_node, &cfs_rq->throttled_limbo_list);
5876 return true;
5877 }
5878
5879 /* we can't take the fast path, do an actual enqueue*/
5880 p->throttled = false;
5881 return false;
5882 }
5883
5884 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags);
tg_unthrottle_up(struct task_group * tg,void * data)5885 static int tg_unthrottle_up(struct task_group *tg, void *data)
5886 {
5887 struct rq *rq = data;
5888 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5889 struct task_struct *p, *tmp;
5890
5891 if (--cfs_rq->throttle_count)
5892 return 0;
5893
5894 if (cfs_rq->pelt_clock_throttled) {
5895 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5896 cfs_rq->throttled_clock_pelt;
5897 cfs_rq->pelt_clock_throttled = 0;
5898 }
5899
5900 if (cfs_rq->throttled_clock_self) {
5901 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5902
5903 cfs_rq->throttled_clock_self = 0;
5904
5905 if (WARN_ON_ONCE((s64)delta < 0))
5906 delta = 0;
5907
5908 cfs_rq->throttled_clock_self_time += delta;
5909 }
5910
5911 /* Re-enqueue the tasks that have been throttled at this level. */
5912 list_for_each_entry_safe(p, tmp, &cfs_rq->throttled_limbo_list, throttle_node) {
5913 list_del_init(&p->throttle_node);
5914 p->throttled = false;
5915 enqueue_task_fair(rq_of(cfs_rq), p, ENQUEUE_WAKEUP);
5916 }
5917
5918 /* Add cfs_rq with load or one or more already running entities to the list */
5919 if (!cfs_rq_is_decayed(cfs_rq))
5920 list_add_leaf_cfs_rq(cfs_rq);
5921
5922 return 0;
5923 }
5924
task_has_throttle_work(struct task_struct * p)5925 static inline bool task_has_throttle_work(struct task_struct *p)
5926 {
5927 return p->sched_throttle_work.next != &p->sched_throttle_work;
5928 }
5929
task_throttle_setup_work(struct task_struct * p)5930 static inline void task_throttle_setup_work(struct task_struct *p)
5931 {
5932 if (task_has_throttle_work(p))
5933 return;
5934
5935 /*
5936 * Kthreads and exiting tasks don't return to userspace, so adding the
5937 * work is pointless
5938 */
5939 if ((p->flags & (PF_EXITING | PF_KTHREAD)))
5940 return;
5941
5942 task_work_add(p, &p->sched_throttle_work, TWA_RESUME);
5943 }
5944
record_throttle_clock(struct cfs_rq * cfs_rq)5945 static void record_throttle_clock(struct cfs_rq *cfs_rq)
5946 {
5947 struct rq *rq = rq_of(cfs_rq);
5948
5949 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5950 cfs_rq->throttled_clock = rq_clock(rq);
5951
5952 if (!cfs_rq->throttled_clock_self)
5953 cfs_rq->throttled_clock_self = rq_clock(rq);
5954 }
5955
tg_throttle_down(struct task_group * tg,void * data)5956 static int tg_throttle_down(struct task_group *tg, void *data)
5957 {
5958 struct rq *rq = data;
5959 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5960
5961 if (cfs_rq->throttle_count++)
5962 return 0;
5963
5964 /*
5965 * For cfs_rqs that still have entities enqueued, PELT clock
5966 * stop happens at dequeue time when all entities are dequeued.
5967 */
5968 if (!cfs_rq->nr_queued) {
5969 list_del_leaf_cfs_rq(cfs_rq);
5970 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5971 cfs_rq->pelt_clock_throttled = 1;
5972 }
5973
5974 WARN_ON_ONCE(cfs_rq->throttled_clock_self);
5975 WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_limbo_list));
5976 return 0;
5977 }
5978
throttle_cfs_rq(struct cfs_rq * cfs_rq)5979 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5980 {
5981 struct rq *rq = rq_of(cfs_rq);
5982 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5983 int dequeue = 1;
5984
5985 raw_spin_lock(&cfs_b->lock);
5986 /* This will start the period timer if necessary */
5987 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5988 /*
5989 * We have raced with bandwidth becoming available, and if we
5990 * actually throttled the timer might not unthrottle us for an
5991 * entire period. We additionally needed to make sure that any
5992 * subsequent check_cfs_rq_runtime calls agree not to throttle
5993 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5994 * for 1ns of runtime rather than just check cfs_b.
5995 */
5996 dequeue = 0;
5997 } else {
5998 list_add_tail_rcu(&cfs_rq->throttled_list,
5999 &cfs_b->throttled_cfs_rq);
6000 }
6001 raw_spin_unlock(&cfs_b->lock);
6002
6003 if (!dequeue)
6004 return false; /* Throttle no longer required. */
6005
6006 /* freeze hierarchy runnable averages while throttled */
6007 rcu_read_lock();
6008 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
6009 rcu_read_unlock();
6010
6011 /*
6012 * Note: distribution will already see us throttled via the
6013 * throttled-list. rq->lock protects completion.
6014 */
6015 cfs_rq->throttled = 1;
6016 WARN_ON_ONCE(cfs_rq->throttled_clock);
6017 return true;
6018 }
6019
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)6020 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6021 {
6022 struct rq *rq = rq_of(cfs_rq);
6023 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6024 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
6025
6026 /*
6027 * It's possible we are called with !runtime_remaining due to things
6028 * like user changed quota setting(see tg_set_cfs_bandwidth()) or async
6029 * unthrottled us with a positive runtime_remaining but other still
6030 * running entities consumed those runtime before we reached here.
6031 *
6032 * Anyway, we can't unthrottle this cfs_rq without any runtime remaining
6033 * because any enqueue in tg_unthrottle_up() will immediately trigger a
6034 * throttle, which is not supposed to happen on unthrottle path.
6035 */
6036 if (cfs_rq->runtime_enabled && cfs_rq->runtime_remaining <= 0)
6037 return;
6038
6039 se = cfs_rq->tg->se[cpu_of(rq)];
6040
6041 cfs_rq->throttled = 0;
6042
6043 update_rq_clock(rq);
6044
6045 raw_spin_lock(&cfs_b->lock);
6046 if (cfs_rq->throttled_clock) {
6047 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6048 cfs_rq->throttled_clock = 0;
6049 }
6050 list_del_rcu(&cfs_rq->throttled_list);
6051 raw_spin_unlock(&cfs_b->lock);
6052
6053 /* update hierarchical throttle state */
6054 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6055
6056 if (!cfs_rq->load.weight) {
6057 if (!cfs_rq->on_list)
6058 return;
6059 /*
6060 * Nothing to run but something to decay (on_list)?
6061 * Complete the branch.
6062 */
6063 for_each_sched_entity(se) {
6064 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6065 break;
6066 }
6067 }
6068
6069 assert_list_leaf_cfs_rq(rq);
6070
6071 /* Determine whether we need to wake up potentially idle CPU: */
6072 if (rq->curr == rq->idle && rq->cfs.nr_queued)
6073 resched_curr(rq);
6074 }
6075
__cfsb_csd_unthrottle(void * arg)6076 static void __cfsb_csd_unthrottle(void *arg)
6077 {
6078 struct cfs_rq *cursor, *tmp;
6079 struct rq *rq = arg;
6080 struct rq_flags rf;
6081
6082 rq_lock(rq, &rf);
6083
6084 /*
6085 * Iterating over the list can trigger several call to
6086 * update_rq_clock() in unthrottle_cfs_rq().
6087 * Do it once and skip the potential next ones.
6088 */
6089 update_rq_clock(rq);
6090 rq_clock_start_loop_update(rq);
6091
6092 /*
6093 * Since we hold rq lock we're safe from concurrent manipulation of
6094 * the CSD list. However, this RCU critical section annotates the
6095 * fact that we pair with sched_free_group_rcu(), so that we cannot
6096 * race with group being freed in the window between removing it
6097 * from the list and advancing to the next entry in the list.
6098 */
6099 rcu_read_lock();
6100
6101 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6102 throttled_csd_list) {
6103 list_del_init(&cursor->throttled_csd_list);
6104
6105 if (cfs_rq_throttled(cursor))
6106 unthrottle_cfs_rq(cursor);
6107 }
6108
6109 rcu_read_unlock();
6110
6111 rq_clock_stop_loop_update(rq);
6112 rq_unlock(rq, &rf);
6113 }
6114
__unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6115 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6116 {
6117 struct rq *rq = rq_of(cfs_rq);
6118 bool first;
6119
6120 if (rq == this_rq()) {
6121 unthrottle_cfs_rq(cfs_rq);
6122 return;
6123 }
6124
6125 /* Already enqueued */
6126 if (WARN_ON_ONCE(!list_empty(&cfs_rq->throttled_csd_list)))
6127 return;
6128
6129 first = list_empty(&rq->cfsb_csd_list);
6130 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6131 if (first)
6132 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6133 }
6134
unthrottle_cfs_rq_async(struct cfs_rq * cfs_rq)6135 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6136 {
6137 lockdep_assert_rq_held(rq_of(cfs_rq));
6138
6139 if (WARN_ON_ONCE(!cfs_rq_throttled(cfs_rq) ||
6140 cfs_rq->runtime_remaining <= 0))
6141 return;
6142
6143 __unthrottle_cfs_rq_async(cfs_rq);
6144 }
6145
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)6146 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6147 {
6148 int this_cpu = smp_processor_id();
6149 u64 runtime, remaining = 1;
6150 bool throttled = false;
6151 struct cfs_rq *cfs_rq, *tmp;
6152 struct rq_flags rf;
6153 struct rq *rq;
6154 LIST_HEAD(local_unthrottle);
6155
6156 rcu_read_lock();
6157 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6158 throttled_list) {
6159 rq = rq_of(cfs_rq);
6160
6161 if (!remaining) {
6162 throttled = true;
6163 break;
6164 }
6165
6166 rq_lock_irqsave(rq, &rf);
6167 if (!cfs_rq_throttled(cfs_rq))
6168 goto next;
6169
6170 /* Already queued for async unthrottle */
6171 if (!list_empty(&cfs_rq->throttled_csd_list))
6172 goto next;
6173
6174 /* By the above checks, this should never be true */
6175 WARN_ON_ONCE(cfs_rq->runtime_remaining > 0);
6176
6177 raw_spin_lock(&cfs_b->lock);
6178 runtime = -cfs_rq->runtime_remaining + 1;
6179 if (runtime > cfs_b->runtime)
6180 runtime = cfs_b->runtime;
6181 cfs_b->runtime -= runtime;
6182 remaining = cfs_b->runtime;
6183 raw_spin_unlock(&cfs_b->lock);
6184
6185 cfs_rq->runtime_remaining += runtime;
6186
6187 /* we check whether we're throttled above */
6188 if (cfs_rq->runtime_remaining > 0) {
6189 if (cpu_of(rq) != this_cpu) {
6190 unthrottle_cfs_rq_async(cfs_rq);
6191 } else {
6192 /*
6193 * We currently only expect to be unthrottling
6194 * a single cfs_rq locally.
6195 */
6196 WARN_ON_ONCE(!list_empty(&local_unthrottle));
6197 list_add_tail(&cfs_rq->throttled_csd_list,
6198 &local_unthrottle);
6199 }
6200 } else {
6201 throttled = true;
6202 }
6203
6204 next:
6205 rq_unlock_irqrestore(rq, &rf);
6206 }
6207
6208 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6209 throttled_csd_list) {
6210 struct rq *rq = rq_of(cfs_rq);
6211
6212 rq_lock_irqsave(rq, &rf);
6213
6214 list_del_init(&cfs_rq->throttled_csd_list);
6215
6216 if (cfs_rq_throttled(cfs_rq))
6217 unthrottle_cfs_rq(cfs_rq);
6218
6219 rq_unlock_irqrestore(rq, &rf);
6220 }
6221 WARN_ON_ONCE(!list_empty(&local_unthrottle));
6222
6223 rcu_read_unlock();
6224
6225 return throttled;
6226 }
6227
6228 /*
6229 * Responsible for refilling a task_group's bandwidth and unthrottling its
6230 * cfs_rqs as appropriate. If there has been no activity within the last
6231 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6232 * used to track this state.
6233 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)6234 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6235 {
6236 int throttled;
6237
6238 /* no need to continue the timer with no bandwidth constraint */
6239 if (cfs_b->quota == RUNTIME_INF)
6240 goto out_deactivate;
6241
6242 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6243 cfs_b->nr_periods += overrun;
6244
6245 /* Refill extra burst quota even if cfs_b->idle */
6246 __refill_cfs_bandwidth_runtime(cfs_b);
6247
6248 /*
6249 * idle depends on !throttled (for the case of a large deficit), and if
6250 * we're going inactive then everything else can be deferred
6251 */
6252 if (cfs_b->idle && !throttled)
6253 goto out_deactivate;
6254
6255 if (!throttled) {
6256 /* mark as potentially idle for the upcoming period */
6257 cfs_b->idle = 1;
6258 return 0;
6259 }
6260
6261 /* account preceding periods in which throttling occurred */
6262 cfs_b->nr_throttled += overrun;
6263
6264 /*
6265 * This check is repeated as we release cfs_b->lock while we unthrottle.
6266 */
6267 while (throttled && cfs_b->runtime > 0) {
6268 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6269 /* we can't nest cfs_b->lock while distributing bandwidth */
6270 throttled = distribute_cfs_runtime(cfs_b);
6271 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6272 }
6273
6274 /*
6275 * While we are ensured activity in the period following an
6276 * unthrottle, this also covers the case in which the new bandwidth is
6277 * insufficient to cover the existing bandwidth deficit. (Forcing the
6278 * timer to remain active while there are any throttled entities.)
6279 */
6280 cfs_b->idle = 0;
6281
6282 return 0;
6283
6284 out_deactivate:
6285 return 1;
6286 }
6287
6288 /* a cfs_rq won't donate quota below this amount */
6289 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6290 /* minimum remaining period time to redistribute slack quota */
6291 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6292 /* how long we wait to gather additional slack before distributing */
6293 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6294
6295 /*
6296 * Are we near the end of the current quota period?
6297 *
6298 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6299 * hrtimer base being cleared by hrtimer_start. In the case of
6300 * migrate_hrtimers, base is never cleared, so we are fine.
6301 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)6302 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6303 {
6304 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6305 s64 remaining;
6306
6307 /* if the call-back is running a quota refresh is already occurring */
6308 if (hrtimer_callback_running(refresh_timer))
6309 return 1;
6310
6311 /* is a quota refresh about to occur? */
6312 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6313 if (remaining < (s64)min_expire)
6314 return 1;
6315
6316 return 0;
6317 }
6318
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)6319 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6320 {
6321 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6322
6323 /* if there's a quota refresh soon don't bother with slack */
6324 if (runtime_refresh_within(cfs_b, min_left))
6325 return;
6326
6327 /* don't push forwards an existing deferred unthrottle */
6328 if (cfs_b->slack_started)
6329 return;
6330 cfs_b->slack_started = true;
6331
6332 hrtimer_start(&cfs_b->slack_timer,
6333 ns_to_ktime(cfs_bandwidth_slack_period),
6334 HRTIMER_MODE_REL);
6335 }
6336
6337 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6338 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6339 {
6340 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6341 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6342
6343 if (slack_runtime <= 0)
6344 return;
6345
6346 raw_spin_lock(&cfs_b->lock);
6347 if (cfs_b->quota != RUNTIME_INF) {
6348 cfs_b->runtime += slack_runtime;
6349
6350 /* we are under rq->lock, defer unthrottling using a timer */
6351 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6352 !list_empty(&cfs_b->throttled_cfs_rq))
6353 start_cfs_slack_bandwidth(cfs_b);
6354 }
6355 raw_spin_unlock(&cfs_b->lock);
6356
6357 /* even if it's not valid for return we don't want to try again */
6358 cfs_rq->runtime_remaining -= slack_runtime;
6359 }
6360
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6361 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6362 {
6363 if (!cfs_bandwidth_used())
6364 return;
6365
6366 if (!cfs_rq->runtime_enabled || cfs_rq->nr_queued)
6367 return;
6368
6369 __return_cfs_rq_runtime(cfs_rq);
6370 }
6371
6372 /*
6373 * This is done with a timer (instead of inline with bandwidth return) since
6374 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6375 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)6376 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6377 {
6378 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6379 unsigned long flags;
6380
6381 /* confirm we're still not at a refresh boundary */
6382 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6383 cfs_b->slack_started = false;
6384
6385 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6386 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6387 return;
6388 }
6389
6390 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6391 runtime = cfs_b->runtime;
6392
6393 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6394
6395 if (!runtime)
6396 return;
6397
6398 distribute_cfs_runtime(cfs_b);
6399 }
6400
6401 /*
6402 * When a group wakes up we want to make sure that its quota is not already
6403 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6404 * runtime as update_curr() throttling can not trigger until it's on-rq.
6405 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)6406 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6407 {
6408 if (!cfs_bandwidth_used())
6409 return;
6410
6411 /* an active group must be handled by the update_curr()->put() path */
6412 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6413 return;
6414
6415 /* ensure the group is not already throttled */
6416 if (cfs_rq_throttled(cfs_rq))
6417 return;
6418
6419 /* update runtime allocation */
6420 account_cfs_rq_runtime(cfs_rq, 0);
6421 if (cfs_rq->runtime_remaining <= 0)
6422 throttle_cfs_rq(cfs_rq);
6423 }
6424
sync_throttle(struct task_group * tg,int cpu)6425 static void sync_throttle(struct task_group *tg, int cpu)
6426 {
6427 struct cfs_rq *pcfs_rq, *cfs_rq;
6428
6429 if (!cfs_bandwidth_used())
6430 return;
6431
6432 if (!tg->parent)
6433 return;
6434
6435 cfs_rq = tg->cfs_rq[cpu];
6436 pcfs_rq = tg->parent->cfs_rq[cpu];
6437
6438 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6439 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6440 }
6441
6442 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6443 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6444 {
6445 if (!cfs_bandwidth_used())
6446 return false;
6447
6448 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6449 return false;
6450
6451 /*
6452 * it's possible for a throttled entity to be forced into a running
6453 * state (e.g. set_curr_task), in this case we're finished.
6454 */
6455 if (cfs_rq_throttled(cfs_rq))
6456 return true;
6457
6458 return throttle_cfs_rq(cfs_rq);
6459 }
6460
sched_cfs_slack_timer(struct hrtimer * timer)6461 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6462 {
6463 struct cfs_bandwidth *cfs_b =
6464 container_of(timer, struct cfs_bandwidth, slack_timer);
6465
6466 do_sched_cfs_slack_timer(cfs_b);
6467
6468 return HRTIMER_NORESTART;
6469 }
6470
sched_cfs_period_timer(struct hrtimer * timer)6471 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6472 {
6473 struct cfs_bandwidth *cfs_b =
6474 container_of(timer, struct cfs_bandwidth, period_timer);
6475 unsigned long flags;
6476 int overrun;
6477 int idle = 0;
6478 int count = 0;
6479
6480 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6481 for (;;) {
6482 overrun = hrtimer_forward_now(timer, cfs_b->period);
6483 if (!overrun)
6484 break;
6485
6486 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6487
6488 if (++count > 3) {
6489 u64 new, old = ktime_to_ns(cfs_b->period);
6490
6491 /*
6492 * Grow period by a factor of 2 to avoid losing precision.
6493 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6494 * to fail.
6495 */
6496 new = old * 2;
6497 if (new < max_bw_quota_period_us * NSEC_PER_USEC) {
6498 cfs_b->period = ns_to_ktime(new);
6499 cfs_b->quota *= 2;
6500 cfs_b->burst *= 2;
6501
6502 pr_warn_ratelimited(
6503 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6504 smp_processor_id(),
6505 div_u64(new, NSEC_PER_USEC),
6506 div_u64(cfs_b->quota, NSEC_PER_USEC));
6507 } else {
6508 pr_warn_ratelimited(
6509 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6510 smp_processor_id(),
6511 div_u64(old, NSEC_PER_USEC),
6512 div_u64(cfs_b->quota, NSEC_PER_USEC));
6513 }
6514
6515 /* reset count so we don't come right back in here */
6516 count = 0;
6517 }
6518 }
6519 if (idle)
6520 cfs_b->period_active = 0;
6521 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6522
6523 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6524 }
6525
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6526 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6527 {
6528 raw_spin_lock_init(&cfs_b->lock);
6529 cfs_b->runtime = 0;
6530 cfs_b->quota = RUNTIME_INF;
6531 cfs_b->period = us_to_ktime(default_bw_period_us());
6532 cfs_b->burst = 0;
6533 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6534
6535 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6536 hrtimer_setup(&cfs_b->period_timer, sched_cfs_period_timer, CLOCK_MONOTONIC,
6537 HRTIMER_MODE_ABS_PINNED);
6538
6539 /* Add a random offset so that timers interleave */
6540 hrtimer_set_expires(&cfs_b->period_timer,
6541 get_random_u32_below(cfs_b->period));
6542 hrtimer_setup(&cfs_b->slack_timer, sched_cfs_slack_timer, CLOCK_MONOTONIC,
6543 HRTIMER_MODE_REL);
6544 cfs_b->slack_started = false;
6545 }
6546
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6547 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6548 {
6549 cfs_rq->runtime_enabled = 0;
6550 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6551 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6552 INIT_LIST_HEAD(&cfs_rq->throttled_limbo_list);
6553 }
6554
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6555 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6556 {
6557 lockdep_assert_held(&cfs_b->lock);
6558
6559 if (cfs_b->period_active)
6560 return;
6561
6562 cfs_b->period_active = 1;
6563 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6564 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6565 }
6566
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6567 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6568 {
6569 int __maybe_unused i;
6570
6571 /* init_cfs_bandwidth() was not called */
6572 if (!cfs_b->throttled_cfs_rq.next)
6573 return;
6574
6575 hrtimer_cancel(&cfs_b->period_timer);
6576 hrtimer_cancel(&cfs_b->slack_timer);
6577
6578 /*
6579 * It is possible that we still have some cfs_rq's pending on a CSD
6580 * list, though this race is very rare. In order for this to occur, we
6581 * must have raced with the last task leaving the group while there
6582 * exist throttled cfs_rq(s), and the period_timer must have queued the
6583 * CSD item but the remote cpu has not yet processed it. To handle this,
6584 * we can simply flush all pending CSD work inline here. We're
6585 * guaranteed at this point that no additional cfs_rq of this group can
6586 * join a CSD list.
6587 */
6588 for_each_possible_cpu(i) {
6589 struct rq *rq = cpu_rq(i);
6590 unsigned long flags;
6591
6592 if (list_empty(&rq->cfsb_csd_list))
6593 continue;
6594
6595 local_irq_save(flags);
6596 __cfsb_csd_unthrottle(rq);
6597 local_irq_restore(flags);
6598 }
6599 }
6600
6601 /*
6602 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6603 *
6604 * The race is harmless, since modifying bandwidth settings of unhooked group
6605 * bits doesn't do much.
6606 */
6607
6608 /* cpu online callback */
update_runtime_enabled(struct rq * rq)6609 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6610 {
6611 struct task_group *tg;
6612
6613 lockdep_assert_rq_held(rq);
6614
6615 rcu_read_lock();
6616 list_for_each_entry_rcu(tg, &task_groups, list) {
6617 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6618 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6619
6620 raw_spin_lock(&cfs_b->lock);
6621 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6622 raw_spin_unlock(&cfs_b->lock);
6623 }
6624 rcu_read_unlock();
6625 }
6626
6627 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)6628 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6629 {
6630 struct task_group *tg;
6631
6632 lockdep_assert_rq_held(rq);
6633
6634 // Do not unthrottle for an active CPU
6635 if (cpumask_test_cpu(cpu_of(rq), cpu_active_mask))
6636 return;
6637
6638 /*
6639 * The rq clock has already been updated in the
6640 * set_rq_offline(), so we should skip updating
6641 * the rq clock again in unthrottle_cfs_rq().
6642 */
6643 rq_clock_start_loop_update(rq);
6644
6645 rcu_read_lock();
6646 list_for_each_entry_rcu(tg, &task_groups, list) {
6647 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6648
6649 if (!cfs_rq->runtime_enabled)
6650 continue;
6651
6652 /*
6653 * Offline rq is schedulable till CPU is completely disabled
6654 * in take_cpu_down(), so we prevent new cfs throttling here.
6655 */
6656 cfs_rq->runtime_enabled = 0;
6657
6658 if (!cfs_rq_throttled(cfs_rq))
6659 continue;
6660
6661 /*
6662 * clock_task is not advancing so we just need to make sure
6663 * there's some valid quota amount
6664 */
6665 cfs_rq->runtime_remaining = 1;
6666 unthrottle_cfs_rq(cfs_rq);
6667 }
6668 rcu_read_unlock();
6669
6670 rq_clock_stop_loop_update(rq);
6671 }
6672
cfs_task_bw_constrained(struct task_struct * p)6673 bool cfs_task_bw_constrained(struct task_struct *p)
6674 {
6675 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6676
6677 if (!cfs_bandwidth_used())
6678 return false;
6679
6680 if (cfs_rq->runtime_enabled ||
6681 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6682 return true;
6683
6684 return false;
6685 }
6686
6687 #ifdef CONFIG_NO_HZ_FULL
6688 /* called from pick_next_task_fair() */
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6689 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6690 {
6691 int cpu = cpu_of(rq);
6692
6693 if (!cfs_bandwidth_used())
6694 return;
6695
6696 if (!tick_nohz_full_cpu(cpu))
6697 return;
6698
6699 if (rq->nr_running != 1)
6700 return;
6701
6702 /*
6703 * We know there is only one task runnable and we've just picked it. The
6704 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6705 * be otherwise able to stop the tick. Just need to check if we are using
6706 * bandwidth control.
6707 */
6708 if (cfs_task_bw_constrained(p))
6709 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6710 }
6711 #endif /* CONFIG_NO_HZ_FULL */
6712
6713 #else /* !CONFIG_CFS_BANDWIDTH: */
6714
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)6715 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)6716 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)6717 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)6718 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)6719 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
task_throttle_setup_work(struct task_struct * p)6720 static void task_throttle_setup_work(struct task_struct *p) {}
task_is_throttled(struct task_struct * p)6721 static bool task_is_throttled(struct task_struct *p) { return false; }
dequeue_throttled_task(struct task_struct * p,int flags)6722 static void dequeue_throttled_task(struct task_struct *p, int flags) {}
enqueue_throttled_task(struct task_struct * p)6723 static bool enqueue_throttled_task(struct task_struct *p) { return false; }
record_throttle_clock(struct cfs_rq * cfs_rq)6724 static void record_throttle_clock(struct cfs_rq *cfs_rq) {}
6725
cfs_rq_throttled(struct cfs_rq * cfs_rq)6726 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6727 {
6728 return 0;
6729 }
6730
cfs_rq_pelt_clock_throttled(struct cfs_rq * cfs_rq)6731 static inline bool cfs_rq_pelt_clock_throttled(struct cfs_rq *cfs_rq)
6732 {
6733 return false;
6734 }
6735
throttled_hierarchy(struct cfs_rq * cfs_rq)6736 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6737 {
6738 return 0;
6739 }
6740
lb_throttled_hierarchy(struct task_struct * p,int dst_cpu)6741 static inline int lb_throttled_hierarchy(struct task_struct *p, int dst_cpu)
6742 {
6743 return 0;
6744 }
6745
6746 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b,struct cfs_bandwidth * parent)6747 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)6748 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6749 #endif
6750
tg_cfs_bandwidth(struct task_group * tg)6751 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6752 {
6753 return NULL;
6754 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)6755 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)6756 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)6757 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6758 #ifdef CONFIG_CGROUP_SCHED
cfs_task_bw_constrained(struct task_struct * p)6759 bool cfs_task_bw_constrained(struct task_struct *p)
6760 {
6761 return false;
6762 }
6763 #endif
6764 #endif /* !CONFIG_CFS_BANDWIDTH */
6765
6766 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
sched_fair_update_stop_tick(struct rq * rq,struct task_struct * p)6767 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6768 #endif
6769
6770 /**************************************************
6771 * CFS operations on tasks:
6772 */
6773
6774 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)6775 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6776 {
6777 struct sched_entity *se = &p->se;
6778
6779 WARN_ON_ONCE(task_rq(p) != rq);
6780
6781 if (rq->cfs.h_nr_queued > 1) {
6782 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6783 u64 slice = se->slice;
6784 s64 delta = slice - ran;
6785
6786 if (delta < 0) {
6787 if (task_current_donor(rq, p))
6788 resched_curr(rq);
6789 return;
6790 }
6791 hrtick_start(rq, delta);
6792 }
6793 }
6794
6795 /*
6796 * called from enqueue/dequeue and updates the hrtick when the
6797 * current task is from our class and nr_running is low enough
6798 * to matter.
6799 */
hrtick_update(struct rq * rq)6800 static void hrtick_update(struct rq *rq)
6801 {
6802 struct task_struct *donor = rq->donor;
6803
6804 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6805 return;
6806
6807 hrtick_start_fair(rq, donor);
6808 }
6809 #else /* !CONFIG_SCHED_HRTICK: */
6810 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)6811 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6812 {
6813 }
6814
hrtick_update(struct rq * rq)6815 static inline void hrtick_update(struct rq *rq)
6816 {
6817 }
6818 #endif /* !CONFIG_SCHED_HRTICK */
6819
cpu_overutilized(int cpu)6820 static inline bool cpu_overutilized(int cpu)
6821 {
6822 unsigned long rq_util_min, rq_util_max;
6823
6824 if (!sched_energy_enabled())
6825 return false;
6826
6827 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6828 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6829
6830 /* Return true only if the utilization doesn't fit CPU's capacity */
6831 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6832 }
6833
6834 /*
6835 * overutilized value make sense only if EAS is enabled
6836 */
is_rd_overutilized(struct root_domain * rd)6837 static inline bool is_rd_overutilized(struct root_domain *rd)
6838 {
6839 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6840 }
6841
set_rd_overutilized(struct root_domain * rd,bool flag)6842 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6843 {
6844 if (!sched_energy_enabled())
6845 return;
6846
6847 WRITE_ONCE(rd->overutilized, flag);
6848 trace_sched_overutilized_tp(rd, flag);
6849 }
6850
check_update_overutilized_status(struct rq * rq)6851 static inline void check_update_overutilized_status(struct rq *rq)
6852 {
6853 /*
6854 * overutilized field is used for load balancing decisions only
6855 * if energy aware scheduler is being used
6856 */
6857
6858 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6859 set_rd_overutilized(rq->rd, 1);
6860 }
6861
6862 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)6863 static int sched_idle_rq(struct rq *rq)
6864 {
6865 return unlikely(rq->nr_running == rq->cfs.h_nr_idle &&
6866 rq->nr_running);
6867 }
6868
sched_idle_cpu(int cpu)6869 static int sched_idle_cpu(int cpu)
6870 {
6871 return sched_idle_rq(cpu_rq(cpu));
6872 }
6873
6874 static void
requeue_delayed_entity(struct sched_entity * se)6875 requeue_delayed_entity(struct sched_entity *se)
6876 {
6877 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6878
6879 /*
6880 * se->sched_delayed should imply: se->on_rq == 1.
6881 * Because a delayed entity is one that is still on
6882 * the runqueue competing until elegibility.
6883 */
6884 WARN_ON_ONCE(!se->sched_delayed);
6885 WARN_ON_ONCE(!se->on_rq);
6886
6887 if (sched_feat(DELAY_ZERO)) {
6888 update_entity_lag(cfs_rq, se);
6889 if (se->vlag > 0) {
6890 cfs_rq->nr_queued--;
6891 if (se != cfs_rq->curr)
6892 __dequeue_entity(cfs_rq, se);
6893 se->vlag = 0;
6894 place_entity(cfs_rq, se, 0);
6895 if (se != cfs_rq->curr)
6896 __enqueue_entity(cfs_rq, se);
6897 cfs_rq->nr_queued++;
6898 }
6899 }
6900
6901 update_load_avg(cfs_rq, se, 0);
6902 clear_delayed(se);
6903 }
6904
6905 /*
6906 * The enqueue_task method is called before nr_running is
6907 * increased. Here we update the fair scheduling stats and
6908 * then put the task into the rbtree:
6909 */
6910 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)6911 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6912 {
6913 struct cfs_rq *cfs_rq;
6914 struct sched_entity *se = &p->se;
6915 int h_nr_idle = task_has_idle_policy(p);
6916 int h_nr_runnable = 1;
6917 int task_new = !(flags & ENQUEUE_WAKEUP);
6918 int rq_h_nr_queued = rq->cfs.h_nr_queued;
6919 u64 slice = 0;
6920
6921 if (task_is_throttled(p) && enqueue_throttled_task(p))
6922 return;
6923
6924 /*
6925 * The code below (indirectly) updates schedutil which looks at
6926 * the cfs_rq utilization to select a frequency.
6927 * Let's add the task's estimated utilization to the cfs_rq's
6928 * estimated utilization, before we update schedutil.
6929 */
6930 if (!p->se.sched_delayed || (flags & ENQUEUE_DELAYED))
6931 util_est_enqueue(&rq->cfs, p);
6932
6933 if (flags & ENQUEUE_DELAYED) {
6934 requeue_delayed_entity(se);
6935 return;
6936 }
6937
6938 /*
6939 * If in_iowait is set, the code below may not trigger any cpufreq
6940 * utilization updates, so do it here explicitly with the IOWAIT flag
6941 * passed.
6942 */
6943 if (p->in_iowait)
6944 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6945
6946 if (task_new && se->sched_delayed)
6947 h_nr_runnable = 0;
6948
6949 for_each_sched_entity(se) {
6950 if (se->on_rq) {
6951 if (se->sched_delayed)
6952 requeue_delayed_entity(se);
6953 break;
6954 }
6955 cfs_rq = cfs_rq_of(se);
6956
6957 /*
6958 * Basically set the slice of group entries to the min_slice of
6959 * their respective cfs_rq. This ensures the group can service
6960 * its entities in the desired time-frame.
6961 */
6962 if (slice) {
6963 se->slice = slice;
6964 se->custom_slice = 1;
6965 }
6966 enqueue_entity(cfs_rq, se, flags);
6967 slice = cfs_rq_min_slice(cfs_rq);
6968
6969 cfs_rq->h_nr_runnable += h_nr_runnable;
6970 cfs_rq->h_nr_queued++;
6971 cfs_rq->h_nr_idle += h_nr_idle;
6972
6973 if (cfs_rq_is_idle(cfs_rq))
6974 h_nr_idle = 1;
6975
6976 flags = ENQUEUE_WAKEUP;
6977 }
6978
6979 for_each_sched_entity(se) {
6980 cfs_rq = cfs_rq_of(se);
6981
6982 update_load_avg(cfs_rq, se, UPDATE_TG);
6983 se_update_runnable(se);
6984 update_cfs_group(se);
6985
6986 se->slice = slice;
6987 if (se != cfs_rq->curr)
6988 min_vruntime_cb_propagate(&se->run_node, NULL);
6989 slice = cfs_rq_min_slice(cfs_rq);
6990
6991 cfs_rq->h_nr_runnable += h_nr_runnable;
6992 cfs_rq->h_nr_queued++;
6993 cfs_rq->h_nr_idle += h_nr_idle;
6994
6995 if (cfs_rq_is_idle(cfs_rq))
6996 h_nr_idle = 1;
6997 }
6998
6999 if (!rq_h_nr_queued && rq->cfs.h_nr_queued) {
7000 /* Account for idle runtime */
7001 if (!rq->nr_running)
7002 dl_server_update_idle_time(rq, rq->curr);
7003 dl_server_start(&rq->fair_server);
7004 }
7005
7006 /* At this point se is NULL and we are at root level*/
7007 add_nr_running(rq, 1);
7008
7009 /*
7010 * Since new tasks are assigned an initial util_avg equal to
7011 * half of the spare capacity of their CPU, tiny tasks have the
7012 * ability to cross the overutilized threshold, which will
7013 * result in the load balancer ruining all the task placement
7014 * done by EAS. As a way to mitigate that effect, do not account
7015 * for the first enqueue operation of new tasks during the
7016 * overutilized flag detection.
7017 *
7018 * A better way of solving this problem would be to wait for
7019 * the PELT signals of tasks to converge before taking them
7020 * into account, but that is not straightforward to implement,
7021 * and the following generally works well enough in practice.
7022 */
7023 if (!task_new)
7024 check_update_overutilized_status(rq);
7025
7026 assert_list_leaf_cfs_rq(rq);
7027
7028 hrtick_update(rq);
7029 }
7030
7031 static void set_next_buddy(struct sched_entity *se);
7032
7033 /*
7034 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7035 * failing half-way through and resume the dequeue later.
7036 *
7037 * Returns:
7038 * -1 - dequeue delayed
7039 * 0 - dequeue throttled
7040 * 1 - dequeue complete
7041 */
dequeue_entities(struct rq * rq,struct sched_entity * se,int flags)7042 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7043 {
7044 bool was_sched_idle = sched_idle_rq(rq);
7045 bool task_sleep = flags & DEQUEUE_SLEEP;
7046 bool task_delayed = flags & DEQUEUE_DELAYED;
7047 bool task_throttled = flags & DEQUEUE_THROTTLE;
7048 struct task_struct *p = NULL;
7049 int h_nr_idle = 0;
7050 int h_nr_queued = 0;
7051 int h_nr_runnable = 0;
7052 struct cfs_rq *cfs_rq;
7053 u64 slice = 0;
7054
7055 if (entity_is_task(se)) {
7056 p = task_of(se);
7057 h_nr_queued = 1;
7058 h_nr_idle = task_has_idle_policy(p);
7059 if (task_sleep || task_delayed || !se->sched_delayed)
7060 h_nr_runnable = 1;
7061 }
7062
7063 for_each_sched_entity(se) {
7064 cfs_rq = cfs_rq_of(se);
7065
7066 if (!dequeue_entity(cfs_rq, se, flags)) {
7067 if (p && &p->se == se)
7068 return -1;
7069
7070 slice = cfs_rq_min_slice(cfs_rq);
7071 break;
7072 }
7073
7074 cfs_rq->h_nr_runnable -= h_nr_runnable;
7075 cfs_rq->h_nr_queued -= h_nr_queued;
7076 cfs_rq->h_nr_idle -= h_nr_idle;
7077
7078 if (cfs_rq_is_idle(cfs_rq))
7079 h_nr_idle = h_nr_queued;
7080
7081 if (throttled_hierarchy(cfs_rq) && task_throttled)
7082 record_throttle_clock(cfs_rq);
7083
7084 /* Don't dequeue parent if it has other entities besides us */
7085 if (cfs_rq->load.weight) {
7086 slice = cfs_rq_min_slice(cfs_rq);
7087
7088 /* Avoid re-evaluating load for this entity: */
7089 se = parent_entity(se);
7090 /*
7091 * Bias pick_next to pick a task from this cfs_rq, as
7092 * p is sleeping when it is within its sched_slice.
7093 */
7094 if (task_sleep && se)
7095 set_next_buddy(se);
7096 break;
7097 }
7098 flags |= DEQUEUE_SLEEP;
7099 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7100 }
7101
7102 for_each_sched_entity(se) {
7103 cfs_rq = cfs_rq_of(se);
7104
7105 update_load_avg(cfs_rq, se, UPDATE_TG);
7106 se_update_runnable(se);
7107 update_cfs_group(se);
7108
7109 se->slice = slice;
7110 if (se != cfs_rq->curr)
7111 min_vruntime_cb_propagate(&se->run_node, NULL);
7112 slice = cfs_rq_min_slice(cfs_rq);
7113
7114 cfs_rq->h_nr_runnable -= h_nr_runnable;
7115 cfs_rq->h_nr_queued -= h_nr_queued;
7116 cfs_rq->h_nr_idle -= h_nr_idle;
7117
7118 if (cfs_rq_is_idle(cfs_rq))
7119 h_nr_idle = h_nr_queued;
7120
7121 if (throttled_hierarchy(cfs_rq) && task_throttled)
7122 record_throttle_clock(cfs_rq);
7123 }
7124
7125 sub_nr_running(rq, h_nr_queued);
7126
7127 /* balance early to pull high priority tasks */
7128 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7129 rq->next_balance = jiffies;
7130
7131 if (p && task_delayed) {
7132 WARN_ON_ONCE(!task_sleep);
7133 WARN_ON_ONCE(p->on_rq != 1);
7134
7135 /* Fix-up what dequeue_task_fair() skipped */
7136 hrtick_update(rq);
7137
7138 /*
7139 * Fix-up what block_task() skipped.
7140 *
7141 * Must be last, @p might not be valid after this.
7142 */
7143 __block_task(rq, p);
7144 }
7145
7146 return 1;
7147 }
7148
7149 /*
7150 * The dequeue_task method is called before nr_running is
7151 * decreased. We remove the task from the rbtree and
7152 * update the fair scheduling stats:
7153 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)7154 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7155 {
7156 if (task_is_throttled(p)) {
7157 dequeue_throttled_task(p, flags);
7158 return true;
7159 }
7160
7161 if (!p->se.sched_delayed)
7162 util_est_dequeue(&rq->cfs, p);
7163
7164 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7165 if (dequeue_entities(rq, &p->se, flags) < 0)
7166 return false;
7167
7168 /*
7169 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7170 */
7171
7172 hrtick_update(rq);
7173 return true;
7174 }
7175
cfs_h_nr_delayed(struct rq * rq)7176 static inline unsigned int cfs_h_nr_delayed(struct rq *rq)
7177 {
7178 return (rq->cfs.h_nr_queued - rq->cfs.h_nr_runnable);
7179 }
7180
7181 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7182 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7183 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7184 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7185
7186 #ifdef CONFIG_NO_HZ_COMMON
7187
7188 static struct {
7189 cpumask_var_t idle_cpus_mask;
7190 atomic_t nr_cpus;
7191 int has_blocked; /* Idle CPUS has blocked load */
7192 int needs_update; /* Newly idle CPUs need their next_balance collated */
7193 unsigned long next_balance; /* in jiffy units */
7194 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7195 } nohz ____cacheline_aligned;
7196
7197 #endif /* CONFIG_NO_HZ_COMMON */
7198
cpu_load(struct rq * rq)7199 static unsigned long cpu_load(struct rq *rq)
7200 {
7201 return cfs_rq_load_avg(&rq->cfs);
7202 }
7203
7204 /*
7205 * cpu_load_without - compute CPU load without any contributions from *p
7206 * @cpu: the CPU which load is requested
7207 * @p: the task which load should be discounted
7208 *
7209 * The load of a CPU is defined by the load of tasks currently enqueued on that
7210 * CPU as well as tasks which are currently sleeping after an execution on that
7211 * CPU.
7212 *
7213 * This method returns the load of the specified CPU by discounting the load of
7214 * the specified task, whenever the task is currently contributing to the CPU
7215 * load.
7216 */
cpu_load_without(struct rq * rq,struct task_struct * p)7217 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7218 {
7219 struct cfs_rq *cfs_rq;
7220 unsigned int load;
7221
7222 /* Task has no contribution or is new */
7223 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7224 return cpu_load(rq);
7225
7226 cfs_rq = &rq->cfs;
7227 load = READ_ONCE(cfs_rq->avg.load_avg);
7228
7229 /* Discount task's util from CPU's util */
7230 lsub_positive(&load, task_h_load(p));
7231
7232 return load;
7233 }
7234
cpu_runnable(struct rq * rq)7235 static unsigned long cpu_runnable(struct rq *rq)
7236 {
7237 return cfs_rq_runnable_avg(&rq->cfs);
7238 }
7239
cpu_runnable_without(struct rq * rq,struct task_struct * p)7240 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7241 {
7242 struct cfs_rq *cfs_rq;
7243 unsigned int runnable;
7244
7245 /* Task has no contribution or is new */
7246 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7247 return cpu_runnable(rq);
7248
7249 cfs_rq = &rq->cfs;
7250 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7251
7252 /* Discount task's runnable from CPU's runnable */
7253 lsub_positive(&runnable, p->se.avg.runnable_avg);
7254
7255 return runnable;
7256 }
7257
capacity_of(int cpu)7258 static unsigned long capacity_of(int cpu)
7259 {
7260 return cpu_rq(cpu)->cpu_capacity;
7261 }
7262
record_wakee(struct task_struct * p)7263 static void record_wakee(struct task_struct *p)
7264 {
7265 /*
7266 * Only decay a single time; tasks that have less then 1 wakeup per
7267 * jiffy will not have built up many flips.
7268 */
7269 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7270 current->wakee_flips >>= 1;
7271 current->wakee_flip_decay_ts = jiffies;
7272 }
7273
7274 if (current->last_wakee != p) {
7275 current->last_wakee = p;
7276 current->wakee_flips++;
7277 }
7278 }
7279
7280 /*
7281 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7282 *
7283 * A waker of many should wake a different task than the one last awakened
7284 * at a frequency roughly N times higher than one of its wakees.
7285 *
7286 * In order to determine whether we should let the load spread vs consolidating
7287 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7288 * partner, and a factor of lls_size higher frequency in the other.
7289 *
7290 * With both conditions met, we can be relatively sure that the relationship is
7291 * non-monogamous, with partner count exceeding socket size.
7292 *
7293 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7294 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7295 * socket size.
7296 */
wake_wide(struct task_struct * p)7297 static int wake_wide(struct task_struct *p)
7298 {
7299 unsigned int master = current->wakee_flips;
7300 unsigned int slave = p->wakee_flips;
7301 int factor = __this_cpu_read(sd_llc_size);
7302
7303 if (master < slave)
7304 swap(master, slave);
7305 if (slave < factor || master < slave * factor)
7306 return 0;
7307 return 1;
7308 }
7309
7310 /*
7311 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7312 * soonest. For the purpose of speed we only consider the waking and previous
7313 * CPU.
7314 *
7315 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7316 * cache-affine and is (or will be) idle.
7317 *
7318 * wake_affine_weight() - considers the weight to reflect the average
7319 * scheduling latency of the CPUs. This seems to work
7320 * for the overloaded case.
7321 */
7322 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)7323 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7324 {
7325 /*
7326 * If this_cpu is idle, it implies the wakeup is from interrupt
7327 * context. Only allow the move if cache is shared. Otherwise an
7328 * interrupt intensive workload could force all tasks onto one
7329 * node depending on the IO topology or IRQ affinity settings.
7330 *
7331 * If the prev_cpu is idle and cache affine then avoid a migration.
7332 * There is no guarantee that the cache hot data from an interrupt
7333 * is more important than cache hot data on the prev_cpu and from
7334 * a cpufreq perspective, it's better to have higher utilisation
7335 * on one CPU.
7336 */
7337 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7338 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7339
7340 if (sync) {
7341 struct rq *rq = cpu_rq(this_cpu);
7342
7343 if ((rq->nr_running - cfs_h_nr_delayed(rq)) == 1)
7344 return this_cpu;
7345 }
7346
7347 if (available_idle_cpu(prev_cpu))
7348 return prev_cpu;
7349
7350 return nr_cpumask_bits;
7351 }
7352
7353 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7354 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7355 int this_cpu, int prev_cpu, int sync)
7356 {
7357 s64 this_eff_load, prev_eff_load;
7358 unsigned long task_load;
7359
7360 this_eff_load = cpu_load(cpu_rq(this_cpu));
7361
7362 if (sync) {
7363 unsigned long current_load = task_h_load(current);
7364
7365 if (current_load > this_eff_load)
7366 return this_cpu;
7367
7368 this_eff_load -= current_load;
7369 }
7370
7371 task_load = task_h_load(p);
7372
7373 this_eff_load += task_load;
7374 if (sched_feat(WA_BIAS))
7375 this_eff_load *= 100;
7376 this_eff_load *= capacity_of(prev_cpu);
7377
7378 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7379 prev_eff_load -= task_load;
7380 if (sched_feat(WA_BIAS))
7381 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7382 prev_eff_load *= capacity_of(this_cpu);
7383
7384 /*
7385 * If sync, adjust the weight of prev_eff_load such that if
7386 * prev_eff == this_eff that select_idle_sibling() will consider
7387 * stacking the wakee on top of the waker if no other CPU is
7388 * idle.
7389 */
7390 if (sync)
7391 prev_eff_load += 1;
7392
7393 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7394 }
7395
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)7396 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7397 int this_cpu, int prev_cpu, int sync)
7398 {
7399 int target = nr_cpumask_bits;
7400
7401 if (sched_feat(WA_IDLE))
7402 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7403
7404 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7405 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7406
7407 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7408 if (target != this_cpu)
7409 return prev_cpu;
7410
7411 schedstat_inc(sd->ttwu_move_affine);
7412 schedstat_inc(p->stats.nr_wakeups_affine);
7413 return target;
7414 }
7415
7416 static struct sched_group *
7417 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7418
7419 /*
7420 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7421 */
7422 static int
sched_balance_find_dst_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)7423 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7424 {
7425 unsigned long load, min_load = ULONG_MAX;
7426 unsigned int min_exit_latency = UINT_MAX;
7427 u64 latest_idle_timestamp = 0;
7428 int least_loaded_cpu = this_cpu;
7429 int shallowest_idle_cpu = -1;
7430 int i;
7431
7432 /* Check if we have any choice: */
7433 if (group->group_weight == 1)
7434 return cpumask_first(sched_group_span(group));
7435
7436 /* Traverse only the allowed CPUs */
7437 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7438 struct rq *rq = cpu_rq(i);
7439
7440 if (!sched_core_cookie_match(rq, p))
7441 continue;
7442
7443 if (sched_idle_cpu(i))
7444 return i;
7445
7446 if (available_idle_cpu(i)) {
7447 struct cpuidle_state *idle = idle_get_state(rq);
7448 if (idle && idle->exit_latency < min_exit_latency) {
7449 /*
7450 * We give priority to a CPU whose idle state
7451 * has the smallest exit latency irrespective
7452 * of any idle timestamp.
7453 */
7454 min_exit_latency = idle->exit_latency;
7455 latest_idle_timestamp = rq->idle_stamp;
7456 shallowest_idle_cpu = i;
7457 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7458 rq->idle_stamp > latest_idle_timestamp) {
7459 /*
7460 * If equal or no active idle state, then
7461 * the most recently idled CPU might have
7462 * a warmer cache.
7463 */
7464 latest_idle_timestamp = rq->idle_stamp;
7465 shallowest_idle_cpu = i;
7466 }
7467 } else if (shallowest_idle_cpu == -1) {
7468 load = cpu_load(cpu_rq(i));
7469 if (load < min_load) {
7470 min_load = load;
7471 least_loaded_cpu = i;
7472 }
7473 }
7474 }
7475
7476 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7477 }
7478
sched_balance_find_dst_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)7479 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7480 int cpu, int prev_cpu, int sd_flag)
7481 {
7482 int new_cpu = cpu;
7483
7484 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7485 return prev_cpu;
7486
7487 /*
7488 * We need task's util for cpu_util_without, sync it up to
7489 * prev_cpu's last_update_time.
7490 */
7491 if (!(sd_flag & SD_BALANCE_FORK))
7492 sync_entity_load_avg(&p->se);
7493
7494 while (sd) {
7495 struct sched_group *group;
7496 struct sched_domain *tmp;
7497 int weight;
7498
7499 if (!(sd->flags & sd_flag)) {
7500 sd = sd->child;
7501 continue;
7502 }
7503
7504 group = sched_balance_find_dst_group(sd, p, cpu);
7505 if (!group) {
7506 sd = sd->child;
7507 continue;
7508 }
7509
7510 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7511 if (new_cpu == cpu) {
7512 /* Now try balancing at a lower domain level of 'cpu': */
7513 sd = sd->child;
7514 continue;
7515 }
7516
7517 /* Now try balancing at a lower domain level of 'new_cpu': */
7518 cpu = new_cpu;
7519 weight = sd->span_weight;
7520 sd = NULL;
7521 for_each_domain(cpu, tmp) {
7522 if (weight <= tmp->span_weight)
7523 break;
7524 if (tmp->flags & sd_flag)
7525 sd = tmp;
7526 }
7527 }
7528
7529 return new_cpu;
7530 }
7531
__select_idle_cpu(int cpu,struct task_struct * p)7532 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7533 {
7534 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7535 sched_cpu_cookie_match(cpu_rq(cpu), p))
7536 return cpu;
7537
7538 return -1;
7539 }
7540
7541 #ifdef CONFIG_SCHED_SMT
7542 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7543 EXPORT_SYMBOL_GPL(sched_smt_present);
7544
set_idle_cores(int cpu,int val)7545 static inline void set_idle_cores(int cpu, int val)
7546 {
7547 struct sched_domain_shared *sds;
7548
7549 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7550 if (sds)
7551 WRITE_ONCE(sds->has_idle_cores, val);
7552 }
7553
test_idle_cores(int cpu)7554 static inline bool test_idle_cores(int cpu)
7555 {
7556 struct sched_domain_shared *sds;
7557
7558 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7559 if (sds)
7560 return READ_ONCE(sds->has_idle_cores);
7561
7562 return false;
7563 }
7564
7565 /*
7566 * Scans the local SMT mask to see if the entire core is idle, and records this
7567 * information in sd_llc_shared->has_idle_cores.
7568 *
7569 * Since SMT siblings share all cache levels, inspecting this limited remote
7570 * state should be fairly cheap.
7571 */
__update_idle_core(struct rq * rq)7572 void __update_idle_core(struct rq *rq)
7573 {
7574 int core = cpu_of(rq);
7575 int cpu;
7576
7577 rcu_read_lock();
7578 if (test_idle_cores(core))
7579 goto unlock;
7580
7581 for_each_cpu(cpu, cpu_smt_mask(core)) {
7582 if (cpu == core)
7583 continue;
7584
7585 if (!available_idle_cpu(cpu))
7586 goto unlock;
7587 }
7588
7589 set_idle_cores(core, 1);
7590 unlock:
7591 rcu_read_unlock();
7592 }
7593
7594 /*
7595 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7596 * there are no idle cores left in the system; tracked through
7597 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7598 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7599 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7600 {
7601 bool idle = true;
7602 int cpu;
7603
7604 for_each_cpu(cpu, cpu_smt_mask(core)) {
7605 if (!available_idle_cpu(cpu)) {
7606 idle = false;
7607 if (*idle_cpu == -1) {
7608 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7609 *idle_cpu = cpu;
7610 break;
7611 }
7612 continue;
7613 }
7614 break;
7615 }
7616 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7617 *idle_cpu = cpu;
7618 }
7619
7620 if (idle)
7621 return core;
7622
7623 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7624 return -1;
7625 }
7626
7627 /*
7628 * Scan the local SMT mask for idle CPUs.
7629 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7630 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7631 {
7632 int cpu;
7633
7634 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7635 if (cpu == target)
7636 continue;
7637 /*
7638 * Check if the CPU is in the LLC scheduling domain of @target.
7639 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7640 */
7641 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7642 continue;
7643 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7644 return cpu;
7645 }
7646
7647 return -1;
7648 }
7649
7650 #else /* !CONFIG_SCHED_SMT: */
7651
set_idle_cores(int cpu,int val)7652 static inline void set_idle_cores(int cpu, int val)
7653 {
7654 }
7655
test_idle_cores(int cpu)7656 static inline bool test_idle_cores(int cpu)
7657 {
7658 return false;
7659 }
7660
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)7661 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7662 {
7663 return __select_idle_cpu(core, p);
7664 }
7665
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)7666 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7667 {
7668 return -1;
7669 }
7670
7671 #endif /* !CONFIG_SCHED_SMT */
7672
7673 /*
7674 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7675 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7676 * average idle time for this rq (as found in rq->avg_idle).
7677 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)7678 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7679 {
7680 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7681 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7682 struct sched_domain_shared *sd_share;
7683
7684 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7685
7686 if (sched_feat(SIS_UTIL)) {
7687 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7688 if (sd_share) {
7689 /* because !--nr is the condition to stop scan */
7690 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7691 /* overloaded LLC is unlikely to have idle cpu/core */
7692 if (nr == 1)
7693 return -1;
7694 }
7695 }
7696
7697 if (static_branch_unlikely(&sched_cluster_active)) {
7698 struct sched_group *sg = sd->groups;
7699
7700 if (sg->flags & SD_CLUSTER) {
7701 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7702 if (!cpumask_test_cpu(cpu, cpus))
7703 continue;
7704
7705 if (has_idle_core) {
7706 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7707 if ((unsigned int)i < nr_cpumask_bits)
7708 return i;
7709 } else {
7710 if (--nr <= 0)
7711 return -1;
7712 idle_cpu = __select_idle_cpu(cpu, p);
7713 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7714 return idle_cpu;
7715 }
7716 }
7717 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7718 }
7719 }
7720
7721 for_each_cpu_wrap(cpu, cpus, target + 1) {
7722 if (has_idle_core) {
7723 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7724 if ((unsigned int)i < nr_cpumask_bits)
7725 return i;
7726
7727 } else {
7728 if (--nr <= 0)
7729 return -1;
7730 idle_cpu = __select_idle_cpu(cpu, p);
7731 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7732 break;
7733 }
7734 }
7735
7736 if (has_idle_core)
7737 set_idle_cores(target, false);
7738
7739 return idle_cpu;
7740 }
7741
7742 /*
7743 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7744 * the task fits. If no CPU is big enough, but there are idle ones, try to
7745 * maximize capacity.
7746 */
7747 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)7748 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7749 {
7750 unsigned long task_util, util_min, util_max, best_cap = 0;
7751 int fits, best_fits = 0;
7752 int cpu, best_cpu = -1;
7753 struct cpumask *cpus;
7754
7755 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7756 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7757
7758 task_util = task_util_est(p);
7759 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7760 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7761
7762 for_each_cpu_wrap(cpu, cpus, target) {
7763 unsigned long cpu_cap = capacity_of(cpu);
7764
7765 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7766 continue;
7767
7768 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7769
7770 /* This CPU fits with all requirements */
7771 if (fits > 0)
7772 return cpu;
7773 /*
7774 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7775 * Look for the CPU with best capacity.
7776 */
7777 else if (fits < 0)
7778 cpu_cap = get_actual_cpu_capacity(cpu);
7779
7780 /*
7781 * First, select CPU which fits better (-1 being better than 0).
7782 * Then, select the one with best capacity at same level.
7783 */
7784 if ((fits < best_fits) ||
7785 ((fits == best_fits) && (cpu_cap > best_cap))) {
7786 best_cap = cpu_cap;
7787 best_cpu = cpu;
7788 best_fits = fits;
7789 }
7790 }
7791
7792 return best_cpu;
7793 }
7794
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)7795 static inline bool asym_fits_cpu(unsigned long util,
7796 unsigned long util_min,
7797 unsigned long util_max,
7798 int cpu)
7799 {
7800 if (sched_asym_cpucap_active())
7801 /*
7802 * Return true only if the cpu fully fits the task requirements
7803 * which include the utilization and the performance hints.
7804 */
7805 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7806
7807 return true;
7808 }
7809
7810 /*
7811 * Try and locate an idle core/thread in the LLC cache domain.
7812 */
select_idle_sibling(struct task_struct * p,int prev,int target)7813 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7814 {
7815 bool has_idle_core = false;
7816 struct sched_domain *sd;
7817 unsigned long task_util, util_min, util_max;
7818 int i, recent_used_cpu, prev_aff = -1;
7819
7820 /*
7821 * On asymmetric system, update task utilization because we will check
7822 * that the task fits with CPU's capacity.
7823 */
7824 if (sched_asym_cpucap_active()) {
7825 sync_entity_load_avg(&p->se);
7826 task_util = task_util_est(p);
7827 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7828 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7829 }
7830
7831 /*
7832 * per-cpu select_rq_mask usage
7833 */
7834 lockdep_assert_irqs_disabled();
7835
7836 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7837 asym_fits_cpu(task_util, util_min, util_max, target))
7838 return target;
7839
7840 /*
7841 * If the previous CPU is cache affine and idle, don't be stupid:
7842 */
7843 if (prev != target && cpus_share_cache(prev, target) &&
7844 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7845 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7846
7847 if (!static_branch_unlikely(&sched_cluster_active) ||
7848 cpus_share_resources(prev, target))
7849 return prev;
7850
7851 prev_aff = prev;
7852 }
7853
7854 /*
7855 * Allow a per-cpu kthread to stack with the wakee if the
7856 * kworker thread and the tasks previous CPUs are the same.
7857 * The assumption is that the wakee queued work for the
7858 * per-cpu kthread that is now complete and the wakeup is
7859 * essentially a sync wakeup. An obvious example of this
7860 * pattern is IO completions.
7861 */
7862 if (is_per_cpu_kthread(current) &&
7863 in_task() &&
7864 prev == smp_processor_id() &&
7865 this_rq()->nr_running <= 1 &&
7866 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7867 return prev;
7868 }
7869
7870 /* Check a recently used CPU as a potential idle candidate: */
7871 recent_used_cpu = p->recent_used_cpu;
7872 p->recent_used_cpu = prev;
7873 if (recent_used_cpu != prev &&
7874 recent_used_cpu != target &&
7875 cpus_share_cache(recent_used_cpu, target) &&
7876 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7877 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7878 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7879
7880 if (!static_branch_unlikely(&sched_cluster_active) ||
7881 cpus_share_resources(recent_used_cpu, target))
7882 return recent_used_cpu;
7883
7884 } else {
7885 recent_used_cpu = -1;
7886 }
7887
7888 /*
7889 * For asymmetric CPU capacity systems, our domain of interest is
7890 * sd_asym_cpucapacity rather than sd_llc.
7891 */
7892 if (sched_asym_cpucap_active()) {
7893 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7894 /*
7895 * On an asymmetric CPU capacity system where an exclusive
7896 * cpuset defines a symmetric island (i.e. one unique
7897 * capacity_orig value through the cpuset), the key will be set
7898 * but the CPUs within that cpuset will not have a domain with
7899 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7900 * capacity path.
7901 */
7902 if (sd) {
7903 i = select_idle_capacity(p, sd, target);
7904 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7905 }
7906 }
7907
7908 sd = rcu_dereference(per_cpu(sd_llc, target));
7909 if (!sd)
7910 return target;
7911
7912 if (sched_smt_active()) {
7913 has_idle_core = test_idle_cores(target);
7914
7915 if (!has_idle_core && cpus_share_cache(prev, target)) {
7916 i = select_idle_smt(p, sd, prev);
7917 if ((unsigned int)i < nr_cpumask_bits)
7918 return i;
7919 }
7920 }
7921
7922 i = select_idle_cpu(p, sd, has_idle_core, target);
7923 if ((unsigned)i < nr_cpumask_bits)
7924 return i;
7925
7926 /*
7927 * For cluster machines which have lower sharing cache like L2 or
7928 * LLC Tag, we tend to find an idle CPU in the target's cluster
7929 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7930 * use them if possible when no idle CPU found in select_idle_cpu().
7931 */
7932 if ((unsigned int)prev_aff < nr_cpumask_bits)
7933 return prev_aff;
7934 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7935 return recent_used_cpu;
7936
7937 return target;
7938 }
7939
7940 /**
7941 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7942 * @cpu: the CPU to get the utilization for
7943 * @p: task for which the CPU utilization should be predicted or NULL
7944 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7945 * @boost: 1 to enable boosting, otherwise 0
7946 *
7947 * The unit of the return value must be the same as the one of CPU capacity
7948 * so that CPU utilization can be compared with CPU capacity.
7949 *
7950 * CPU utilization is the sum of running time of runnable tasks plus the
7951 * recent utilization of currently non-runnable tasks on that CPU.
7952 * It represents the amount of CPU capacity currently used by CFS tasks in
7953 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7954 * capacity at f_max.
7955 *
7956 * The estimated CPU utilization is defined as the maximum between CPU
7957 * utilization and sum of the estimated utilization of the currently
7958 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7959 * previously-executed tasks, which helps better deduce how busy a CPU will
7960 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7961 * of such a task would be significantly decayed at this point of time.
7962 *
7963 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7964 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7965 * utilization. Boosting is implemented in cpu_util() so that internal
7966 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7967 * latter via cpu_util_cfs_boost().
7968 *
7969 * CPU utilization can be higher than the current CPU capacity
7970 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
7971 * of rounding errors as well as task migrations or wakeups of new tasks.
7972 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
7973 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
7974 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
7975 * capacity. CPU utilization is allowed to overshoot current CPU capacity
7976 * though since this is useful for predicting the CPU capacity required
7977 * after task migrations (scheduler-driven DVFS).
7978 *
7979 * Return: (Boosted) (estimated) utilization for the specified CPU.
7980 */
7981 static unsigned long
cpu_util(int cpu,struct task_struct * p,int dst_cpu,int boost)7982 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
7983 {
7984 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
7985 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
7986 unsigned long runnable;
7987
7988 if (boost) {
7989 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7990 util = max(util, runnable);
7991 }
7992
7993 /*
7994 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
7995 * contribution. If @p migrates from another CPU to @cpu add its
7996 * contribution. In all the other cases @cpu is not impacted by the
7997 * migration so its util_avg is already correct.
7998 */
7999 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8000 lsub_positive(&util, task_util(p));
8001 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8002 util += task_util(p);
8003
8004 if (sched_feat(UTIL_EST)) {
8005 unsigned long util_est;
8006
8007 util_est = READ_ONCE(cfs_rq->avg.util_est);
8008
8009 /*
8010 * During wake-up @p isn't enqueued yet and doesn't contribute
8011 * to any cpu_rq(cpu)->cfs.avg.util_est.
8012 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8013 * has been enqueued.
8014 *
8015 * During exec (@dst_cpu = -1) @p is enqueued and does
8016 * contribute to cpu_rq(cpu)->cfs.util_est.
8017 * Remove it to "simulate" cpu_util without @p's contribution.
8018 *
8019 * Despite the task_on_rq_queued(@p) check there is still a
8020 * small window for a possible race when an exec
8021 * select_task_rq_fair() races with LB's detach_task().
8022 *
8023 * detach_task()
8024 * deactivate_task()
8025 * p->on_rq = TASK_ON_RQ_MIGRATING;
8026 * -------------------------------- A
8027 * dequeue_task() \
8028 * dequeue_task_fair() + Race Time
8029 * util_est_dequeue() /
8030 * -------------------------------- B
8031 *
8032 * The additional check "current == p" is required to further
8033 * reduce the race window.
8034 */
8035 if (dst_cpu == cpu)
8036 util_est += _task_util_est(p);
8037 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8038 lsub_positive(&util_est, _task_util_est(p));
8039
8040 util = max(util, util_est);
8041 }
8042
8043 return min(util, arch_scale_cpu_capacity(cpu));
8044 }
8045
cpu_util_cfs(int cpu)8046 unsigned long cpu_util_cfs(int cpu)
8047 {
8048 return cpu_util(cpu, NULL, -1, 0);
8049 }
8050
cpu_util_cfs_boost(int cpu)8051 unsigned long cpu_util_cfs_boost(int cpu)
8052 {
8053 return cpu_util(cpu, NULL, -1, 1);
8054 }
8055
8056 /*
8057 * cpu_util_without: compute cpu utilization without any contributions from *p
8058 * @cpu: the CPU which utilization is requested
8059 * @p: the task which utilization should be discounted
8060 *
8061 * The utilization of a CPU is defined by the utilization of tasks currently
8062 * enqueued on that CPU as well as tasks which are currently sleeping after an
8063 * execution on that CPU.
8064 *
8065 * This method returns the utilization of the specified CPU by discounting the
8066 * utilization of the specified task, whenever the task is currently
8067 * contributing to the CPU utilization.
8068 */
cpu_util_without(int cpu,struct task_struct * p)8069 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8070 {
8071 /* Task has no contribution or is new */
8072 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8073 p = NULL;
8074
8075 return cpu_util(cpu, p, -1, 0);
8076 }
8077
8078 /*
8079 * This function computes an effective utilization for the given CPU, to be
8080 * used for frequency selection given the linear relation: f = u * f_max.
8081 *
8082 * The scheduler tracks the following metrics:
8083 *
8084 * cpu_util_{cfs,rt,dl,irq}()
8085 * cpu_bw_dl()
8086 *
8087 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8088 * synchronized windows and are thus directly comparable.
8089 *
8090 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8091 * which excludes things like IRQ and steal-time. These latter are then accrued
8092 * in the IRQ utilization.
8093 *
8094 * The DL bandwidth number OTOH is not a measured metric but a value computed
8095 * based on the task model parameters and gives the minimal utilization
8096 * required to meet deadlines.
8097 */
effective_cpu_util(int cpu,unsigned long util_cfs,unsigned long * min,unsigned long * max)8098 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8099 unsigned long *min,
8100 unsigned long *max)
8101 {
8102 unsigned long util, irq, scale;
8103 struct rq *rq = cpu_rq(cpu);
8104
8105 scale = arch_scale_cpu_capacity(cpu);
8106
8107 /*
8108 * Early check to see if IRQ/steal time saturates the CPU, can be
8109 * because of inaccuracies in how we track these -- see
8110 * update_irq_load_avg().
8111 */
8112 irq = cpu_util_irq(rq);
8113 if (unlikely(irq >= scale)) {
8114 if (min)
8115 *min = scale;
8116 if (max)
8117 *max = scale;
8118 return scale;
8119 }
8120
8121 if (min) {
8122 /*
8123 * The minimum utilization returns the highest level between:
8124 * - the computed DL bandwidth needed with the IRQ pressure which
8125 * steals time to the deadline task.
8126 * - The minimum performance requirement for CFS and/or RT.
8127 */
8128 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8129
8130 /*
8131 * When an RT task is runnable and uclamp is not used, we must
8132 * ensure that the task will run at maximum compute capacity.
8133 */
8134 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8135 *min = max(*min, scale);
8136 }
8137
8138 /*
8139 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8140 * CFS tasks and we use the same metric to track the effective
8141 * utilization (PELT windows are synchronized) we can directly add them
8142 * to obtain the CPU's actual utilization.
8143 */
8144 util = util_cfs + cpu_util_rt(rq);
8145 util += cpu_util_dl(rq);
8146
8147 /*
8148 * The maximum hint is a soft bandwidth requirement, which can be lower
8149 * than the actual utilization because of uclamp_max requirements.
8150 */
8151 if (max)
8152 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8153
8154 if (util >= scale)
8155 return scale;
8156
8157 /*
8158 * There is still idle time; further improve the number by using the
8159 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8160 * need to scale the task numbers:
8161 *
8162 * max - irq
8163 * U' = irq + --------- * U
8164 * max
8165 */
8166 util = scale_irq_capacity(util, irq, scale);
8167 util += irq;
8168
8169 return min(scale, util);
8170 }
8171
sched_cpu_util(int cpu)8172 unsigned long sched_cpu_util(int cpu)
8173 {
8174 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8175 }
8176
8177 /*
8178 * energy_env - Utilization landscape for energy estimation.
8179 * @task_busy_time: Utilization contribution by the task for which we test the
8180 * placement. Given by eenv_task_busy_time().
8181 * @pd_busy_time: Utilization of the whole perf domain without the task
8182 * contribution. Given by eenv_pd_busy_time().
8183 * @cpu_cap: Maximum CPU capacity for the perf domain.
8184 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8185 */
8186 struct energy_env {
8187 unsigned long task_busy_time;
8188 unsigned long pd_busy_time;
8189 unsigned long cpu_cap;
8190 unsigned long pd_cap;
8191 };
8192
8193 /*
8194 * Compute the task busy time for compute_energy(). This time cannot be
8195 * injected directly into effective_cpu_util() because of the IRQ scaling.
8196 * The latter only makes sense with the most recent CPUs where the task has
8197 * run.
8198 */
eenv_task_busy_time(struct energy_env * eenv,struct task_struct * p,int prev_cpu)8199 static inline void eenv_task_busy_time(struct energy_env *eenv,
8200 struct task_struct *p, int prev_cpu)
8201 {
8202 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8203 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8204
8205 if (unlikely(irq >= max_cap))
8206 busy_time = max_cap;
8207 else
8208 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8209
8210 eenv->task_busy_time = busy_time;
8211 }
8212
8213 /*
8214 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8215 * utilization for each @pd_cpus, it however doesn't take into account
8216 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8217 * scale the EM reported power consumption at the (eventually clamped)
8218 * cpu_capacity.
8219 *
8220 * The contribution of the task @p for which we want to estimate the
8221 * energy cost is removed (by cpu_util()) and must be calculated
8222 * separately (see eenv_task_busy_time). This ensures:
8223 *
8224 * - A stable PD utilization, no matter which CPU of that PD we want to place
8225 * the task on.
8226 *
8227 * - A fair comparison between CPUs as the task contribution (task_util())
8228 * will always be the same no matter which CPU utilization we rely on
8229 * (util_avg or util_est).
8230 *
8231 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8232 * exceed @eenv->pd_cap.
8233 */
eenv_pd_busy_time(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p)8234 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8235 struct cpumask *pd_cpus,
8236 struct task_struct *p)
8237 {
8238 unsigned long busy_time = 0;
8239 int cpu;
8240
8241 for_each_cpu(cpu, pd_cpus) {
8242 unsigned long util = cpu_util(cpu, p, -1, 0);
8243
8244 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8245 }
8246
8247 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8248 }
8249
8250 /*
8251 * Compute the maximum utilization for compute_energy() when the task @p
8252 * is placed on the cpu @dst_cpu.
8253 *
8254 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8255 * exceed @eenv->cpu_cap.
8256 */
8257 static inline unsigned long
eenv_pd_max_util(struct energy_env * eenv,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8258 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8259 struct task_struct *p, int dst_cpu)
8260 {
8261 unsigned long max_util = 0;
8262 int cpu;
8263
8264 for_each_cpu(cpu, pd_cpus) {
8265 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8266 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8267 unsigned long eff_util, min, max;
8268
8269 /*
8270 * Performance domain frequency: utilization clamping
8271 * must be considered since it affects the selection
8272 * of the performance domain frequency.
8273 * NOTE: in case RT tasks are running, by default the min
8274 * utilization can be max OPP.
8275 */
8276 eff_util = effective_cpu_util(cpu, util, &min, &max);
8277
8278 /* Task's uclamp can modify min and max value */
8279 if (tsk && uclamp_is_used()) {
8280 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8281
8282 /*
8283 * If there is no active max uclamp constraint,
8284 * directly use task's one, otherwise keep max.
8285 */
8286 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8287 max = uclamp_eff_value(p, UCLAMP_MAX);
8288 else
8289 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8290 }
8291
8292 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8293 max_util = max(max_util, eff_util);
8294 }
8295
8296 return min(max_util, eenv->cpu_cap);
8297 }
8298
8299 /*
8300 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8301 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8302 * contribution is ignored.
8303 */
8304 static inline unsigned long
compute_energy(struct energy_env * eenv,struct perf_domain * pd,struct cpumask * pd_cpus,struct task_struct * p,int dst_cpu)8305 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8306 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8307 {
8308 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8309 unsigned long busy_time = eenv->pd_busy_time;
8310 unsigned long energy;
8311
8312 if (dst_cpu >= 0)
8313 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8314
8315 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8316
8317 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8318
8319 return energy;
8320 }
8321
8322 /*
8323 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8324 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8325 * spare capacity in each performance domain and uses it as a potential
8326 * candidate to execute the task. Then, it uses the Energy Model to figure
8327 * out which of the CPU candidates is the most energy-efficient.
8328 *
8329 * The rationale for this heuristic is as follows. In a performance domain,
8330 * all the most energy efficient CPU candidates (according to the Energy
8331 * Model) are those for which we'll request a low frequency. When there are
8332 * several CPUs for which the frequency request will be the same, we don't
8333 * have enough data to break the tie between them, because the Energy Model
8334 * only includes active power costs. With this model, if we assume that
8335 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8336 * the maximum spare capacity in a performance domain is guaranteed to be among
8337 * the best candidates of the performance domain.
8338 *
8339 * In practice, it could be preferable from an energy standpoint to pack
8340 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8341 * but that could also hurt our chances to go cluster idle, and we have no
8342 * ways to tell with the current Energy Model if this is actually a good
8343 * idea or not. So, find_energy_efficient_cpu() basically favors
8344 * cluster-packing, and spreading inside a cluster. That should at least be
8345 * a good thing for latency, and this is consistent with the idea that most
8346 * of the energy savings of EAS come from the asymmetry of the system, and
8347 * not so much from breaking the tie between identical CPUs. That's also the
8348 * reason why EAS is enabled in the topology code only for systems where
8349 * SD_ASYM_CPUCAPACITY is set.
8350 *
8351 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8352 * they don't have any useful utilization data yet and it's not possible to
8353 * forecast their impact on energy consumption. Consequently, they will be
8354 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8355 * to be energy-inefficient in some use-cases. The alternative would be to
8356 * bias new tasks towards specific types of CPUs first, or to try to infer
8357 * their util_avg from the parent task, but those heuristics could hurt
8358 * other use-cases too. So, until someone finds a better way to solve this,
8359 * let's keep things simple by re-using the existing slow path.
8360 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)8361 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8362 {
8363 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8364 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8365 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8366 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8367 struct root_domain *rd = this_rq()->rd;
8368 int cpu, best_energy_cpu, target = -1;
8369 int prev_fits = -1, best_fits = -1;
8370 unsigned long best_actual_cap = 0;
8371 unsigned long prev_actual_cap = 0;
8372 struct sched_domain *sd;
8373 struct perf_domain *pd;
8374 struct energy_env eenv;
8375
8376 rcu_read_lock();
8377 pd = rcu_dereference(rd->pd);
8378 if (!pd)
8379 goto unlock;
8380
8381 /*
8382 * Energy-aware wake-up happens on the lowest sched_domain starting
8383 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8384 */
8385 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8386 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8387 sd = sd->parent;
8388 if (!sd)
8389 goto unlock;
8390
8391 target = prev_cpu;
8392
8393 sync_entity_load_avg(&p->se);
8394 if (!task_util_est(p) && p_util_min == 0)
8395 goto unlock;
8396
8397 eenv_task_busy_time(&eenv, p, prev_cpu);
8398
8399 for (; pd; pd = pd->next) {
8400 unsigned long util_min = p_util_min, util_max = p_util_max;
8401 unsigned long cpu_cap, cpu_actual_cap, util;
8402 long prev_spare_cap = -1, max_spare_cap = -1;
8403 unsigned long rq_util_min, rq_util_max;
8404 unsigned long cur_delta, base_energy;
8405 int max_spare_cap_cpu = -1;
8406 int fits, max_fits = -1;
8407
8408 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8409
8410 if (cpumask_empty(cpus))
8411 continue;
8412
8413 /* Account external pressure for the energy estimation */
8414 cpu = cpumask_first(cpus);
8415 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8416
8417 eenv.cpu_cap = cpu_actual_cap;
8418 eenv.pd_cap = 0;
8419
8420 for_each_cpu(cpu, cpus) {
8421 struct rq *rq = cpu_rq(cpu);
8422
8423 eenv.pd_cap += cpu_actual_cap;
8424
8425 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8426 continue;
8427
8428 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8429 continue;
8430
8431 util = cpu_util(cpu, p, cpu, 0);
8432 cpu_cap = capacity_of(cpu);
8433
8434 /*
8435 * Skip CPUs that cannot satisfy the capacity request.
8436 * IOW, placing the task there would make the CPU
8437 * overutilized. Take uclamp into account to see how
8438 * much capacity we can get out of the CPU; this is
8439 * aligned with sched_cpu_util().
8440 */
8441 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8442 /*
8443 * Open code uclamp_rq_util_with() except for
8444 * the clamp() part. I.e.: apply max aggregation
8445 * only. util_fits_cpu() logic requires to
8446 * operate on non clamped util but must use the
8447 * max-aggregated uclamp_{min, max}.
8448 */
8449 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8450 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8451
8452 util_min = max(rq_util_min, p_util_min);
8453 util_max = max(rq_util_max, p_util_max);
8454 }
8455
8456 fits = util_fits_cpu(util, util_min, util_max, cpu);
8457 if (!fits)
8458 continue;
8459
8460 lsub_positive(&cpu_cap, util);
8461
8462 if (cpu == prev_cpu) {
8463 /* Always use prev_cpu as a candidate. */
8464 prev_spare_cap = cpu_cap;
8465 prev_fits = fits;
8466 } else if ((fits > max_fits) ||
8467 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8468 /*
8469 * Find the CPU with the maximum spare capacity
8470 * among the remaining CPUs in the performance
8471 * domain.
8472 */
8473 max_spare_cap = cpu_cap;
8474 max_spare_cap_cpu = cpu;
8475 max_fits = fits;
8476 }
8477 }
8478
8479 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8480 continue;
8481
8482 eenv_pd_busy_time(&eenv, cpus, p);
8483 /* Compute the 'base' energy of the pd, without @p */
8484 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8485
8486 /* Evaluate the energy impact of using prev_cpu. */
8487 if (prev_spare_cap > -1) {
8488 prev_delta = compute_energy(&eenv, pd, cpus, p,
8489 prev_cpu);
8490 /* CPU utilization has changed */
8491 if (prev_delta < base_energy)
8492 goto unlock;
8493 prev_delta -= base_energy;
8494 prev_actual_cap = cpu_actual_cap;
8495 best_delta = min(best_delta, prev_delta);
8496 }
8497
8498 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8499 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8500 /* Current best energy cpu fits better */
8501 if (max_fits < best_fits)
8502 continue;
8503
8504 /*
8505 * Both don't fit performance hint (i.e. uclamp_min)
8506 * but best energy cpu has better capacity.
8507 */
8508 if ((max_fits < 0) &&
8509 (cpu_actual_cap <= best_actual_cap))
8510 continue;
8511
8512 cur_delta = compute_energy(&eenv, pd, cpus, p,
8513 max_spare_cap_cpu);
8514 /* CPU utilization has changed */
8515 if (cur_delta < base_energy)
8516 goto unlock;
8517 cur_delta -= base_energy;
8518
8519 /*
8520 * Both fit for the task but best energy cpu has lower
8521 * energy impact.
8522 */
8523 if ((max_fits > 0) && (best_fits > 0) &&
8524 (cur_delta >= best_delta))
8525 continue;
8526
8527 best_delta = cur_delta;
8528 best_energy_cpu = max_spare_cap_cpu;
8529 best_fits = max_fits;
8530 best_actual_cap = cpu_actual_cap;
8531 }
8532 }
8533 rcu_read_unlock();
8534
8535 if ((best_fits > prev_fits) ||
8536 ((best_fits > 0) && (best_delta < prev_delta)) ||
8537 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8538 target = best_energy_cpu;
8539
8540 return target;
8541
8542 unlock:
8543 rcu_read_unlock();
8544
8545 return target;
8546 }
8547
8548 /*
8549 * select_task_rq_fair: Select target runqueue for the waking task in domains
8550 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8551 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8552 *
8553 * Balances load by selecting the idlest CPU in the idlest group, or under
8554 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8555 *
8556 * Returns the target CPU number.
8557 */
8558 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)8559 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8560 {
8561 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8562 struct sched_domain *tmp, *sd = NULL;
8563 int cpu = smp_processor_id();
8564 int new_cpu = prev_cpu;
8565 int want_affine = 0;
8566 /* SD_flags and WF_flags share the first nibble */
8567 int sd_flag = wake_flags & 0xF;
8568
8569 /*
8570 * required for stable ->cpus_allowed
8571 */
8572 lockdep_assert_held(&p->pi_lock);
8573 if (wake_flags & WF_TTWU) {
8574 record_wakee(p);
8575
8576 if ((wake_flags & WF_CURRENT_CPU) &&
8577 cpumask_test_cpu(cpu, p->cpus_ptr))
8578 return cpu;
8579
8580 if (!is_rd_overutilized(this_rq()->rd)) {
8581 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8582 if (new_cpu >= 0)
8583 return new_cpu;
8584 new_cpu = prev_cpu;
8585 }
8586
8587 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8588 }
8589
8590 rcu_read_lock();
8591 for_each_domain(cpu, tmp) {
8592 /*
8593 * If both 'cpu' and 'prev_cpu' are part of this domain,
8594 * cpu is a valid SD_WAKE_AFFINE target.
8595 */
8596 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8597 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8598 if (cpu != prev_cpu)
8599 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8600
8601 sd = NULL; /* Prefer wake_affine over balance flags */
8602 break;
8603 }
8604
8605 /*
8606 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8607 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8608 * will usually go to the fast path.
8609 */
8610 if (tmp->flags & sd_flag)
8611 sd = tmp;
8612 else if (!want_affine)
8613 break;
8614 }
8615
8616 if (unlikely(sd)) {
8617 /* Slow path */
8618 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8619 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8620 /* Fast path */
8621 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8622 }
8623 rcu_read_unlock();
8624
8625 return new_cpu;
8626 }
8627
8628 /*
8629 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8630 * cfs_rq_of(p) references at time of call are still valid and identify the
8631 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8632 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)8633 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8634 {
8635 struct sched_entity *se = &p->se;
8636
8637 if (!task_on_rq_migrating(p)) {
8638 remove_entity_load_avg(se);
8639
8640 /*
8641 * Here, the task's PELT values have been updated according to
8642 * the current rq's clock. But if that clock hasn't been
8643 * updated in a while, a substantial idle time will be missed,
8644 * leading to an inflation after wake-up on the new rq.
8645 *
8646 * Estimate the missing time from the cfs_rq last_update_time
8647 * and update sched_avg to improve the PELT continuity after
8648 * migration.
8649 */
8650 migrate_se_pelt_lag(se);
8651 }
8652
8653 /* Tell new CPU we are migrated */
8654 se->avg.last_update_time = 0;
8655
8656 update_scan_period(p, new_cpu);
8657 }
8658
task_dead_fair(struct task_struct * p)8659 static void task_dead_fair(struct task_struct *p)
8660 {
8661 struct sched_entity *se = &p->se;
8662
8663 if (se->sched_delayed) {
8664 struct rq_flags rf;
8665 struct rq *rq;
8666
8667 rq = task_rq_lock(p, &rf);
8668 if (se->sched_delayed) {
8669 update_rq_clock(rq);
8670 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8671 }
8672 task_rq_unlock(rq, p, &rf);
8673 }
8674
8675 remove_entity_load_avg(se);
8676 }
8677
8678 /*
8679 * Set the max capacity the task is allowed to run at for misfit detection.
8680 */
set_task_max_allowed_capacity(struct task_struct * p)8681 static void set_task_max_allowed_capacity(struct task_struct *p)
8682 {
8683 struct asym_cap_data *entry;
8684
8685 if (!sched_asym_cpucap_active())
8686 return;
8687
8688 rcu_read_lock();
8689 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8690 cpumask_t *cpumask;
8691
8692 cpumask = cpu_capacity_span(entry);
8693 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8694 continue;
8695
8696 p->max_allowed_capacity = entry->capacity;
8697 break;
8698 }
8699 rcu_read_unlock();
8700 }
8701
set_cpus_allowed_fair(struct task_struct * p,struct affinity_context * ctx)8702 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8703 {
8704 set_cpus_allowed_common(p, ctx);
8705 set_task_max_allowed_capacity(p);
8706 }
8707
8708 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8709 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8710 {
8711 if (sched_fair_runnable(rq))
8712 return 1;
8713
8714 return sched_balance_newidle(rq, rf) != 0;
8715 }
8716
set_next_buddy(struct sched_entity * se)8717 static void set_next_buddy(struct sched_entity *se)
8718 {
8719 for_each_sched_entity(se) {
8720 if (WARN_ON_ONCE(!se->on_rq))
8721 return;
8722 if (se_is_idle(se))
8723 return;
8724 cfs_rq_of(se)->next = se;
8725 }
8726 }
8727
8728 /*
8729 * Preempt the current task with a newly woken task if needed:
8730 */
check_preempt_wakeup_fair(struct rq * rq,struct task_struct * p,int wake_flags)8731 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8732 {
8733 struct task_struct *donor = rq->donor;
8734 struct sched_entity *se = &donor->se, *pse = &p->se;
8735 struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8736 int cse_is_idle, pse_is_idle;
8737 bool do_preempt_short = false;
8738
8739 if (unlikely(se == pse))
8740 return;
8741
8742 /*
8743 * This is possible from callers such as attach_tasks(), in which we
8744 * unconditionally wakeup_preempt() after an enqueue (which may have
8745 * lead to a throttle). This both saves work and prevents false
8746 * next-buddy nomination below.
8747 */
8748 if (task_is_throttled(p))
8749 return;
8750
8751 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK) && !pse->sched_delayed) {
8752 set_next_buddy(pse);
8753 }
8754
8755 /*
8756 * We can come here with TIF_NEED_RESCHED already set from new task
8757 * wake up path.
8758 *
8759 * Note: this also catches the edge-case of curr being in a throttled
8760 * group (e.g. via set_curr_task), since update_curr() (in the
8761 * enqueue of curr) will have resulted in resched being set. This
8762 * prevents us from potentially nominating it as a false LAST_BUDDY
8763 * below.
8764 */
8765 if (test_tsk_need_resched(rq->curr))
8766 return;
8767
8768 if (!sched_feat(WAKEUP_PREEMPTION))
8769 return;
8770
8771 find_matching_se(&se, &pse);
8772 WARN_ON_ONCE(!pse);
8773
8774 cse_is_idle = se_is_idle(se);
8775 pse_is_idle = se_is_idle(pse);
8776
8777 /*
8778 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8779 * in the inverse case).
8780 */
8781 if (cse_is_idle && !pse_is_idle) {
8782 /*
8783 * When non-idle entity preempt an idle entity,
8784 * don't give idle entity slice protection.
8785 */
8786 do_preempt_short = true;
8787 goto preempt;
8788 }
8789
8790 if (cse_is_idle != pse_is_idle)
8791 return;
8792
8793 /*
8794 * BATCH and IDLE tasks do not preempt others.
8795 */
8796 if (unlikely(!normal_policy(p->policy)))
8797 return;
8798
8799 cfs_rq = cfs_rq_of(se);
8800 update_curr(cfs_rq);
8801 /*
8802 * If @p has a shorter slice than current and @p is eligible, override
8803 * current's slice protection in order to allow preemption.
8804 */
8805 do_preempt_short = sched_feat(PREEMPT_SHORT) && (pse->slice < se->slice);
8806
8807 /*
8808 * If @p has become the most eligible task, force preemption.
8809 */
8810 if (__pick_eevdf(cfs_rq, !do_preempt_short) == pse)
8811 goto preempt;
8812
8813 if (sched_feat(RUN_TO_PARITY) && do_preempt_short)
8814 update_protect_slice(cfs_rq, se);
8815
8816 return;
8817
8818 preempt:
8819 if (do_preempt_short)
8820 cancel_protect_slice(se);
8821
8822 resched_curr_lazy(rq);
8823 }
8824
pick_task_fair(struct rq * rq)8825 static struct task_struct *pick_task_fair(struct rq *rq)
8826 {
8827 struct sched_entity *se;
8828 struct cfs_rq *cfs_rq;
8829 struct task_struct *p;
8830 bool throttled;
8831
8832 again:
8833 cfs_rq = &rq->cfs;
8834 if (!cfs_rq->nr_queued)
8835 return NULL;
8836
8837 throttled = false;
8838
8839 do {
8840 /* Might not have done put_prev_entity() */
8841 if (cfs_rq->curr && cfs_rq->curr->on_rq)
8842 update_curr(cfs_rq);
8843
8844 throttled |= check_cfs_rq_runtime(cfs_rq);
8845
8846 se = pick_next_entity(rq, cfs_rq);
8847 if (!se)
8848 goto again;
8849 cfs_rq = group_cfs_rq(se);
8850 } while (cfs_rq);
8851
8852 p = task_of(se);
8853 if (unlikely(throttled))
8854 task_throttle_setup_work(p);
8855 return p;
8856 }
8857
8858 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8859 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8860
8861 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)8862 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8863 {
8864 struct sched_entity *se;
8865 struct task_struct *p;
8866 int new_tasks;
8867
8868 again:
8869 p = pick_task_fair(rq);
8870 if (!p)
8871 goto idle;
8872 se = &p->se;
8873
8874 #ifdef CONFIG_FAIR_GROUP_SCHED
8875 if (prev->sched_class != &fair_sched_class)
8876 goto simple;
8877
8878 __put_prev_set_next_dl_server(rq, prev, p);
8879
8880 /*
8881 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8882 * likely that a next task is from the same cgroup as the current.
8883 *
8884 * Therefore attempt to avoid putting and setting the entire cgroup
8885 * hierarchy, only change the part that actually changes.
8886 *
8887 * Since we haven't yet done put_prev_entity and if the selected task
8888 * is a different task than we started out with, try and touch the
8889 * least amount of cfs_rqs.
8890 */
8891 if (prev != p) {
8892 struct sched_entity *pse = &prev->se;
8893 struct cfs_rq *cfs_rq;
8894
8895 while (!(cfs_rq = is_same_group(se, pse))) {
8896 int se_depth = se->depth;
8897 int pse_depth = pse->depth;
8898
8899 if (se_depth <= pse_depth) {
8900 put_prev_entity(cfs_rq_of(pse), pse);
8901 pse = parent_entity(pse);
8902 }
8903 if (se_depth >= pse_depth) {
8904 set_next_entity(cfs_rq_of(se), se);
8905 se = parent_entity(se);
8906 }
8907 }
8908
8909 put_prev_entity(cfs_rq, pse);
8910 set_next_entity(cfs_rq, se);
8911
8912 __set_next_task_fair(rq, p, true);
8913 }
8914
8915 return p;
8916
8917 simple:
8918 #endif /* CONFIG_FAIR_GROUP_SCHED */
8919 put_prev_set_next_task(rq, prev, p);
8920 return p;
8921
8922 idle:
8923 if (!rf)
8924 return NULL;
8925
8926 new_tasks = sched_balance_newidle(rq, rf);
8927
8928 /*
8929 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8930 * possible for any higher priority task to appear. In that case we
8931 * must re-start the pick_next_entity() loop.
8932 */
8933 if (new_tasks < 0)
8934 return RETRY_TASK;
8935
8936 if (new_tasks > 0)
8937 goto again;
8938
8939 /*
8940 * rq is about to be idle, check if we need to update the
8941 * lost_idle_time of clock_pelt
8942 */
8943 update_idle_rq_clock_pelt(rq);
8944
8945 return NULL;
8946 }
8947
__pick_next_task_fair(struct rq * rq,struct task_struct * prev)8948 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8949 {
8950 return pick_next_task_fair(rq, prev, NULL);
8951 }
8952
fair_server_pick_task(struct sched_dl_entity * dl_se)8953 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8954 {
8955 return pick_task_fair(dl_se->rq);
8956 }
8957
fair_server_init(struct rq * rq)8958 void fair_server_init(struct rq *rq)
8959 {
8960 struct sched_dl_entity *dl_se = &rq->fair_server;
8961
8962 init_dl_entity(dl_se);
8963
8964 dl_server_init(dl_se, rq, fair_server_pick_task);
8965 }
8966
8967 /*
8968 * Account for a descheduled task:
8969 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev,struct task_struct * next)8970 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8971 {
8972 struct sched_entity *se = &prev->se;
8973 struct cfs_rq *cfs_rq;
8974
8975 for_each_sched_entity(se) {
8976 cfs_rq = cfs_rq_of(se);
8977 put_prev_entity(cfs_rq, se);
8978 }
8979 }
8980
8981 /*
8982 * sched_yield() is very simple
8983 */
yield_task_fair(struct rq * rq)8984 static void yield_task_fair(struct rq *rq)
8985 {
8986 struct task_struct *curr = rq->curr;
8987 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
8988 struct sched_entity *se = &curr->se;
8989
8990 /*
8991 * Are we the only task in the tree?
8992 */
8993 if (unlikely(rq->nr_running == 1))
8994 return;
8995
8996 clear_buddies(cfs_rq, se);
8997
8998 update_rq_clock(rq);
8999 /*
9000 * Update run-time statistics of the 'current'.
9001 */
9002 update_curr(cfs_rq);
9003 /*
9004 * Tell update_rq_clock() that we've just updated,
9005 * so we don't do microscopic update in schedule()
9006 * and double the fastpath cost.
9007 */
9008 rq_clock_skip_update(rq);
9009
9010 se->deadline += calc_delta_fair(se->slice, se);
9011 }
9012
yield_to_task_fair(struct rq * rq,struct task_struct * p)9013 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9014 {
9015 struct sched_entity *se = &p->se;
9016
9017 /* !se->on_rq also covers throttled task */
9018 if (!se->on_rq)
9019 return false;
9020
9021 /* Tell the scheduler that we'd really like se to run next. */
9022 set_next_buddy(se);
9023
9024 yield_task_fair(rq);
9025
9026 return true;
9027 }
9028
9029 /**************************************************
9030 * Fair scheduling class load-balancing methods.
9031 *
9032 * BASICS
9033 *
9034 * The purpose of load-balancing is to achieve the same basic fairness the
9035 * per-CPU scheduler provides, namely provide a proportional amount of compute
9036 * time to each task. This is expressed in the following equation:
9037 *
9038 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9039 *
9040 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9041 * W_i,0 is defined as:
9042 *
9043 * W_i,0 = \Sum_j w_i,j (2)
9044 *
9045 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9046 * is derived from the nice value as per sched_prio_to_weight[].
9047 *
9048 * The weight average is an exponential decay average of the instantaneous
9049 * weight:
9050 *
9051 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9052 *
9053 * C_i is the compute capacity of CPU i, typically it is the
9054 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9055 * can also include other factors [XXX].
9056 *
9057 * To achieve this balance we define a measure of imbalance which follows
9058 * directly from (1):
9059 *
9060 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9061 *
9062 * We them move tasks around to minimize the imbalance. In the continuous
9063 * function space it is obvious this converges, in the discrete case we get
9064 * a few fun cases generally called infeasible weight scenarios.
9065 *
9066 * [XXX expand on:
9067 * - infeasible weights;
9068 * - local vs global optima in the discrete case. ]
9069 *
9070 *
9071 * SCHED DOMAINS
9072 *
9073 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9074 * for all i,j solution, we create a tree of CPUs that follows the hardware
9075 * topology where each level pairs two lower groups (or better). This results
9076 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9077 * tree to only the first of the previous level and we decrease the frequency
9078 * of load-balance at each level inversely proportional to the number of CPUs in
9079 * the groups.
9080 *
9081 * This yields:
9082 *
9083 * log_2 n 1 n
9084 * \Sum { --- * --- * 2^i } = O(n) (5)
9085 * i = 0 2^i 2^i
9086 * `- size of each group
9087 * | | `- number of CPUs doing load-balance
9088 * | `- freq
9089 * `- sum over all levels
9090 *
9091 * Coupled with a limit on how many tasks we can migrate every balance pass,
9092 * this makes (5) the runtime complexity of the balancer.
9093 *
9094 * An important property here is that each CPU is still (indirectly) connected
9095 * to every other CPU in at most O(log n) steps:
9096 *
9097 * The adjacency matrix of the resulting graph is given by:
9098 *
9099 * log_2 n
9100 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9101 * k = 0
9102 *
9103 * And you'll find that:
9104 *
9105 * A^(log_2 n)_i,j != 0 for all i,j (7)
9106 *
9107 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9108 * The task movement gives a factor of O(m), giving a convergence complexity
9109 * of:
9110 *
9111 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9112 *
9113 *
9114 * WORK CONSERVING
9115 *
9116 * In order to avoid CPUs going idle while there's still work to do, new idle
9117 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9118 * tree itself instead of relying on other CPUs to bring it work.
9119 *
9120 * This adds some complexity to both (5) and (8) but it reduces the total idle
9121 * time.
9122 *
9123 * [XXX more?]
9124 *
9125 *
9126 * CGROUPS
9127 *
9128 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9129 *
9130 * s_k,i
9131 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9132 * S_k
9133 *
9134 * Where
9135 *
9136 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9137 *
9138 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9139 *
9140 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9141 * property.
9142 *
9143 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9144 * rewrite all of this once again.]
9145 */
9146
9147 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9148
9149 enum fbq_type { regular, remote, all };
9150
9151 /*
9152 * 'group_type' describes the group of CPUs at the moment of load balancing.
9153 *
9154 * The enum is ordered by pulling priority, with the group with lowest priority
9155 * first so the group_type can simply be compared when selecting the busiest
9156 * group. See update_sd_pick_busiest().
9157 */
9158 enum group_type {
9159 /* The group has spare capacity that can be used to run more tasks. */
9160 group_has_spare = 0,
9161 /*
9162 * The group is fully used and the tasks don't compete for more CPU
9163 * cycles. Nevertheless, some tasks might wait before running.
9164 */
9165 group_fully_busy,
9166 /*
9167 * One task doesn't fit with CPU's capacity and must be migrated to a
9168 * more powerful CPU.
9169 */
9170 group_misfit_task,
9171 /*
9172 * Balance SMT group that's fully busy. Can benefit from migration
9173 * a task on SMT with busy sibling to another CPU on idle core.
9174 */
9175 group_smt_balance,
9176 /*
9177 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9178 * and the task should be migrated to it instead of running on the
9179 * current CPU.
9180 */
9181 group_asym_packing,
9182 /*
9183 * The tasks' affinity constraints previously prevented the scheduler
9184 * from balancing the load across the system.
9185 */
9186 group_imbalanced,
9187 /*
9188 * The CPU is overloaded and can't provide expected CPU cycles to all
9189 * tasks.
9190 */
9191 group_overloaded
9192 };
9193
9194 enum migration_type {
9195 migrate_load = 0,
9196 migrate_util,
9197 migrate_task,
9198 migrate_misfit
9199 };
9200
9201 #define LBF_ALL_PINNED 0x01
9202 #define LBF_NEED_BREAK 0x02
9203 #define LBF_DST_PINNED 0x04
9204 #define LBF_SOME_PINNED 0x08
9205 #define LBF_ACTIVE_LB 0x10
9206
9207 struct lb_env {
9208 struct sched_domain *sd;
9209
9210 struct rq *src_rq;
9211 int src_cpu;
9212
9213 int dst_cpu;
9214 struct rq *dst_rq;
9215
9216 struct cpumask *dst_grpmask;
9217 int new_dst_cpu;
9218 enum cpu_idle_type idle;
9219 long imbalance;
9220 /* The set of CPUs under consideration for load-balancing */
9221 struct cpumask *cpus;
9222
9223 unsigned int flags;
9224
9225 unsigned int loop;
9226 unsigned int loop_break;
9227 unsigned int loop_max;
9228
9229 enum fbq_type fbq_type;
9230 enum migration_type migration_type;
9231 struct list_head tasks;
9232 };
9233
9234 /*
9235 * Is this task likely cache-hot:
9236 */
task_hot(struct task_struct * p,struct lb_env * env)9237 static int task_hot(struct task_struct *p, struct lb_env *env)
9238 {
9239 s64 delta;
9240
9241 lockdep_assert_rq_held(env->src_rq);
9242
9243 if (p->sched_class != &fair_sched_class)
9244 return 0;
9245
9246 if (unlikely(task_has_idle_policy(p)))
9247 return 0;
9248
9249 /* SMT siblings share cache */
9250 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9251 return 0;
9252
9253 /*
9254 * Buddy candidates are cache hot:
9255 */
9256 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9257 (&p->se == cfs_rq_of(&p->se)->next))
9258 return 1;
9259
9260 if (sysctl_sched_migration_cost == -1)
9261 return 1;
9262
9263 /*
9264 * Don't migrate task if the task's cookie does not match
9265 * with the destination CPU's core cookie.
9266 */
9267 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9268 return 1;
9269
9270 if (sysctl_sched_migration_cost == 0)
9271 return 0;
9272
9273 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9274
9275 return delta < (s64)sysctl_sched_migration_cost;
9276 }
9277
9278 #ifdef CONFIG_NUMA_BALANCING
9279 /*
9280 * Returns a positive value, if task migration degrades locality.
9281 * Returns 0, if task migration is not affected by locality.
9282 * Returns a negative value, if task migration improves locality i.e migration preferred.
9283 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9284 static long migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9285 {
9286 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9287 unsigned long src_weight, dst_weight;
9288 int src_nid, dst_nid, dist;
9289
9290 if (!static_branch_likely(&sched_numa_balancing))
9291 return 0;
9292
9293 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9294 return 0;
9295
9296 src_nid = cpu_to_node(env->src_cpu);
9297 dst_nid = cpu_to_node(env->dst_cpu);
9298
9299 if (src_nid == dst_nid)
9300 return 0;
9301
9302 /* Migrating away from the preferred node is always bad. */
9303 if (src_nid == p->numa_preferred_nid) {
9304 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9305 return 1;
9306 else
9307 return 0;
9308 }
9309
9310 /* Encourage migration to the preferred node. */
9311 if (dst_nid == p->numa_preferred_nid)
9312 return -1;
9313
9314 /* Leaving a core idle is often worse than degrading locality. */
9315 if (env->idle == CPU_IDLE)
9316 return 0;
9317
9318 dist = node_distance(src_nid, dst_nid);
9319 if (numa_group) {
9320 src_weight = group_weight(p, src_nid, dist);
9321 dst_weight = group_weight(p, dst_nid, dist);
9322 } else {
9323 src_weight = task_weight(p, src_nid, dist);
9324 dst_weight = task_weight(p, dst_nid, dist);
9325 }
9326
9327 return src_weight - dst_weight;
9328 }
9329
9330 #else /* !CONFIG_NUMA_BALANCING: */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)9331 static inline long migrate_degrades_locality(struct task_struct *p,
9332 struct lb_env *env)
9333 {
9334 return 0;
9335 }
9336 #endif /* !CONFIG_NUMA_BALANCING */
9337
9338 /*
9339 * Check whether the task is ineligible on the destination cpu
9340 *
9341 * When the PLACE_LAG scheduling feature is enabled and
9342 * dst_cfs_rq->nr_queued is greater than 1, if the task
9343 * is ineligible, it will also be ineligible when
9344 * it is migrated to the destination cpu.
9345 */
task_is_ineligible_on_dst_cpu(struct task_struct * p,int dest_cpu)9346 static inline int task_is_ineligible_on_dst_cpu(struct task_struct *p, int dest_cpu)
9347 {
9348 struct cfs_rq *dst_cfs_rq;
9349
9350 #ifdef CONFIG_FAIR_GROUP_SCHED
9351 dst_cfs_rq = task_group(p)->cfs_rq[dest_cpu];
9352 #else
9353 dst_cfs_rq = &cpu_rq(dest_cpu)->cfs;
9354 #endif
9355 if (sched_feat(PLACE_LAG) && dst_cfs_rq->nr_queued &&
9356 !entity_eligible(task_cfs_rq(p), &p->se))
9357 return 1;
9358
9359 return 0;
9360 }
9361
9362 /*
9363 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9364 */
9365 static
can_migrate_task(struct task_struct * p,struct lb_env * env)9366 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9367 {
9368 long degrades, hot;
9369
9370 lockdep_assert_rq_held(env->src_rq);
9371 if (p->sched_task_hot)
9372 p->sched_task_hot = 0;
9373
9374 /*
9375 * We do not migrate tasks that are:
9376 * 1) delayed dequeued unless we migrate load, or
9377 * 2) target cfs_rq is in throttled hierarchy, or
9378 * 3) cannot be migrated to this CPU due to cpus_ptr, or
9379 * 4) running (obviously), or
9380 * 5) are cache-hot on their current CPU, or
9381 * 6) are blocked on mutexes (if SCHED_PROXY_EXEC is enabled)
9382 */
9383 if ((p->se.sched_delayed) && (env->migration_type != migrate_load))
9384 return 0;
9385
9386 if (lb_throttled_hierarchy(p, env->dst_cpu))
9387 return 0;
9388
9389 /*
9390 * We want to prioritize the migration of eligible tasks.
9391 * For ineligible tasks we soft-limit them and only allow
9392 * them to migrate when nr_balance_failed is non-zero to
9393 * avoid load-balancing trying very hard to balance the load.
9394 */
9395 if (!env->sd->nr_balance_failed &&
9396 task_is_ineligible_on_dst_cpu(p, env->dst_cpu))
9397 return 0;
9398
9399 /* Disregard percpu kthreads; they are where they need to be. */
9400 if (kthread_is_per_cpu(p))
9401 return 0;
9402
9403 if (task_is_blocked(p))
9404 return 0;
9405
9406 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9407 int cpu;
9408
9409 schedstat_inc(p->stats.nr_failed_migrations_affine);
9410
9411 env->flags |= LBF_SOME_PINNED;
9412
9413 /*
9414 * Remember if this task can be migrated to any other CPU in
9415 * our sched_group. We may want to revisit it if we couldn't
9416 * meet load balance goals by pulling other tasks on src_cpu.
9417 *
9418 * Avoid computing new_dst_cpu
9419 * - for NEWLY_IDLE
9420 * - if we have already computed one in current iteration
9421 * - if it's an active balance
9422 */
9423 if (env->idle == CPU_NEWLY_IDLE ||
9424 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9425 return 0;
9426
9427 /* Prevent to re-select dst_cpu via env's CPUs: */
9428 cpu = cpumask_first_and_and(env->dst_grpmask, env->cpus, p->cpus_ptr);
9429
9430 if (cpu < nr_cpu_ids) {
9431 env->flags |= LBF_DST_PINNED;
9432 env->new_dst_cpu = cpu;
9433 }
9434
9435 return 0;
9436 }
9437
9438 /* Record that we found at least one task that could run on dst_cpu */
9439 env->flags &= ~LBF_ALL_PINNED;
9440
9441 if (task_on_cpu(env->src_rq, p) ||
9442 task_current_donor(env->src_rq, p)) {
9443 schedstat_inc(p->stats.nr_failed_migrations_running);
9444 return 0;
9445 }
9446
9447 /*
9448 * Aggressive migration if:
9449 * 1) active balance
9450 * 2) destination numa is preferred
9451 * 3) task is cache cold, or
9452 * 4) too many balance attempts have failed.
9453 */
9454 if (env->flags & LBF_ACTIVE_LB)
9455 return 1;
9456
9457 degrades = migrate_degrades_locality(p, env);
9458 if (!degrades)
9459 hot = task_hot(p, env);
9460 else
9461 hot = degrades > 0;
9462
9463 if (!hot || env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9464 if (hot)
9465 p->sched_task_hot = 1;
9466 return 1;
9467 }
9468
9469 schedstat_inc(p->stats.nr_failed_migrations_hot);
9470 return 0;
9471 }
9472
9473 /*
9474 * detach_task() -- detach the task for the migration specified in env
9475 */
detach_task(struct task_struct * p,struct lb_env * env)9476 static void detach_task(struct task_struct *p, struct lb_env *env)
9477 {
9478 lockdep_assert_rq_held(env->src_rq);
9479
9480 if (p->sched_task_hot) {
9481 p->sched_task_hot = 0;
9482 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9483 schedstat_inc(p->stats.nr_forced_migrations);
9484 }
9485
9486 WARN_ON(task_current(env->src_rq, p));
9487 WARN_ON(task_current_donor(env->src_rq, p));
9488
9489 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9490 set_task_cpu(p, env->dst_cpu);
9491 }
9492
9493 /*
9494 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9495 * part of active balancing operations within "domain".
9496 *
9497 * Returns a task if successful and NULL otherwise.
9498 */
detach_one_task(struct lb_env * env)9499 static struct task_struct *detach_one_task(struct lb_env *env)
9500 {
9501 struct task_struct *p;
9502
9503 lockdep_assert_rq_held(env->src_rq);
9504
9505 list_for_each_entry_reverse(p,
9506 &env->src_rq->cfs_tasks, se.group_node) {
9507 if (!can_migrate_task(p, env))
9508 continue;
9509
9510 detach_task(p, env);
9511
9512 /*
9513 * Right now, this is only the second place where
9514 * lb_gained[env->idle] is updated (other is detach_tasks)
9515 * so we can safely collect stats here rather than
9516 * inside detach_tasks().
9517 */
9518 schedstat_inc(env->sd->lb_gained[env->idle]);
9519 return p;
9520 }
9521 return NULL;
9522 }
9523
9524 /*
9525 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9526 * busiest_rq, as part of a balancing operation within domain "sd".
9527 *
9528 * Returns number of detached tasks if successful and 0 otherwise.
9529 */
detach_tasks(struct lb_env * env)9530 static int detach_tasks(struct lb_env *env)
9531 {
9532 struct list_head *tasks = &env->src_rq->cfs_tasks;
9533 unsigned long util, load;
9534 struct task_struct *p;
9535 int detached = 0;
9536
9537 lockdep_assert_rq_held(env->src_rq);
9538
9539 /*
9540 * Source run queue has been emptied by another CPU, clear
9541 * LBF_ALL_PINNED flag as we will not test any task.
9542 */
9543 if (env->src_rq->nr_running <= 1) {
9544 env->flags &= ~LBF_ALL_PINNED;
9545 return 0;
9546 }
9547
9548 if (env->imbalance <= 0)
9549 return 0;
9550
9551 while (!list_empty(tasks)) {
9552 /*
9553 * We don't want to steal all, otherwise we may be treated likewise,
9554 * which could at worst lead to a livelock crash.
9555 */
9556 if (env->idle && env->src_rq->nr_running <= 1)
9557 break;
9558
9559 env->loop++;
9560 /* We've more or less seen every task there is, call it quits */
9561 if (env->loop > env->loop_max)
9562 break;
9563
9564 /* take a breather every nr_migrate tasks */
9565 if (env->loop > env->loop_break) {
9566 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9567 env->flags |= LBF_NEED_BREAK;
9568 break;
9569 }
9570
9571 p = list_last_entry(tasks, struct task_struct, se.group_node);
9572
9573 if (!can_migrate_task(p, env))
9574 goto next;
9575
9576 switch (env->migration_type) {
9577 case migrate_load:
9578 /*
9579 * Depending of the number of CPUs and tasks and the
9580 * cgroup hierarchy, task_h_load() can return a null
9581 * value. Make sure that env->imbalance decreases
9582 * otherwise detach_tasks() will stop only after
9583 * detaching up to loop_max tasks.
9584 */
9585 load = max_t(unsigned long, task_h_load(p), 1);
9586
9587 if (sched_feat(LB_MIN) &&
9588 load < 16 && !env->sd->nr_balance_failed)
9589 goto next;
9590
9591 /*
9592 * Make sure that we don't migrate too much load.
9593 * Nevertheless, let relax the constraint if
9594 * scheduler fails to find a good waiting task to
9595 * migrate.
9596 */
9597 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9598 goto next;
9599
9600 env->imbalance -= load;
9601 break;
9602
9603 case migrate_util:
9604 util = task_util_est(p);
9605
9606 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9607 goto next;
9608
9609 env->imbalance -= util;
9610 break;
9611
9612 case migrate_task:
9613 env->imbalance--;
9614 break;
9615
9616 case migrate_misfit:
9617 /* This is not a misfit task */
9618 if (task_fits_cpu(p, env->src_cpu))
9619 goto next;
9620
9621 env->imbalance = 0;
9622 break;
9623 }
9624
9625 detach_task(p, env);
9626 list_add(&p->se.group_node, &env->tasks);
9627
9628 detached++;
9629
9630 #ifdef CONFIG_PREEMPTION
9631 /*
9632 * NEWIDLE balancing is a source of latency, so preemptible
9633 * kernels will stop after the first task is detached to minimize
9634 * the critical section.
9635 */
9636 if (env->idle == CPU_NEWLY_IDLE)
9637 break;
9638 #endif
9639
9640 /*
9641 * We only want to steal up to the prescribed amount of
9642 * load/util/tasks.
9643 */
9644 if (env->imbalance <= 0)
9645 break;
9646
9647 continue;
9648 next:
9649 if (p->sched_task_hot)
9650 schedstat_inc(p->stats.nr_failed_migrations_hot);
9651
9652 list_move(&p->se.group_node, tasks);
9653 }
9654
9655 /*
9656 * Right now, this is one of only two places we collect this stat
9657 * so we can safely collect detach_one_task() stats here rather
9658 * than inside detach_one_task().
9659 */
9660 schedstat_add(env->sd->lb_gained[env->idle], detached);
9661
9662 return detached;
9663 }
9664
9665 /*
9666 * attach_task() -- attach the task detached by detach_task() to its new rq.
9667 */
attach_task(struct rq * rq,struct task_struct * p)9668 static void attach_task(struct rq *rq, struct task_struct *p)
9669 {
9670 lockdep_assert_rq_held(rq);
9671
9672 WARN_ON_ONCE(task_rq(p) != rq);
9673 activate_task(rq, p, ENQUEUE_NOCLOCK);
9674 wakeup_preempt(rq, p, 0);
9675 }
9676
9677 /*
9678 * attach_one_task() -- attaches the task returned from detach_one_task() to
9679 * its new rq.
9680 */
attach_one_task(struct rq * rq,struct task_struct * p)9681 static void attach_one_task(struct rq *rq, struct task_struct *p)
9682 {
9683 struct rq_flags rf;
9684
9685 rq_lock(rq, &rf);
9686 update_rq_clock(rq);
9687 attach_task(rq, p);
9688 rq_unlock(rq, &rf);
9689 }
9690
9691 /*
9692 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9693 * new rq.
9694 */
attach_tasks(struct lb_env * env)9695 static void attach_tasks(struct lb_env *env)
9696 {
9697 struct list_head *tasks = &env->tasks;
9698 struct task_struct *p;
9699 struct rq_flags rf;
9700
9701 rq_lock(env->dst_rq, &rf);
9702 update_rq_clock(env->dst_rq);
9703
9704 while (!list_empty(tasks)) {
9705 p = list_first_entry(tasks, struct task_struct, se.group_node);
9706 list_del_init(&p->se.group_node);
9707
9708 attach_task(env->dst_rq, p);
9709 }
9710
9711 rq_unlock(env->dst_rq, &rf);
9712 }
9713
9714 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9715 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9716 {
9717 if (cfs_rq->avg.load_avg)
9718 return true;
9719
9720 if (cfs_rq->avg.util_avg)
9721 return true;
9722
9723 return false;
9724 }
9725
others_have_blocked(struct rq * rq)9726 static inline bool others_have_blocked(struct rq *rq)
9727 {
9728 if (cpu_util_rt(rq))
9729 return true;
9730
9731 if (cpu_util_dl(rq))
9732 return true;
9733
9734 if (hw_load_avg(rq))
9735 return true;
9736
9737 if (cpu_util_irq(rq))
9738 return true;
9739
9740 return false;
9741 }
9742
update_blocked_load_tick(struct rq * rq)9743 static inline void update_blocked_load_tick(struct rq *rq)
9744 {
9745 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9746 }
9747
update_blocked_load_status(struct rq * rq,bool has_blocked)9748 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9749 {
9750 if (!has_blocked)
9751 rq->has_blocked_load = 0;
9752 }
9753 #else /* !CONFIG_NO_HZ_COMMON: */
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)9754 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)9755 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)9756 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)9757 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9758 #endif /* !CONFIG_NO_HZ_COMMON */
9759
__update_blocked_others(struct rq * rq,bool * done)9760 static bool __update_blocked_others(struct rq *rq, bool *done)
9761 {
9762 bool updated;
9763
9764 /*
9765 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9766 * DL and IRQ signals have been updated before updating CFS.
9767 */
9768 updated = update_other_load_avgs(rq);
9769
9770 if (others_have_blocked(rq))
9771 *done = false;
9772
9773 return updated;
9774 }
9775
9776 #ifdef CONFIG_FAIR_GROUP_SCHED
9777
__update_blocked_fair(struct rq * rq,bool * done)9778 static bool __update_blocked_fair(struct rq *rq, bool *done)
9779 {
9780 struct cfs_rq *cfs_rq, *pos;
9781 bool decayed = false;
9782 int cpu = cpu_of(rq);
9783
9784 /*
9785 * Iterates the task_group tree in a bottom up fashion, see
9786 * list_add_leaf_cfs_rq() for details.
9787 */
9788 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9789 struct sched_entity *se;
9790
9791 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9792 update_tg_load_avg(cfs_rq);
9793
9794 if (cfs_rq->nr_queued == 0)
9795 update_idle_cfs_rq_clock_pelt(cfs_rq);
9796
9797 if (cfs_rq == &rq->cfs)
9798 decayed = true;
9799 }
9800
9801 /* Propagate pending load changes to the parent, if any: */
9802 se = cfs_rq->tg->se[cpu];
9803 if (se && !skip_blocked_update(se))
9804 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9805
9806 /*
9807 * There can be a lot of idle CPU cgroups. Don't let fully
9808 * decayed cfs_rqs linger on the list.
9809 */
9810 if (cfs_rq_is_decayed(cfs_rq))
9811 list_del_leaf_cfs_rq(cfs_rq);
9812
9813 /* Don't need periodic decay once load/util_avg are null */
9814 if (cfs_rq_has_blocked(cfs_rq))
9815 *done = false;
9816 }
9817
9818 return decayed;
9819 }
9820
9821 /*
9822 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9823 * This needs to be done in a top-down fashion because the load of a child
9824 * group is a fraction of its parents load.
9825 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)9826 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9827 {
9828 struct rq *rq = rq_of(cfs_rq);
9829 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9830 unsigned long now = jiffies;
9831 unsigned long load;
9832
9833 if (cfs_rq->last_h_load_update == now)
9834 return;
9835
9836 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9837 for_each_sched_entity(se) {
9838 cfs_rq = cfs_rq_of(se);
9839 WRITE_ONCE(cfs_rq->h_load_next, se);
9840 if (cfs_rq->last_h_load_update == now)
9841 break;
9842 }
9843
9844 if (!se) {
9845 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9846 cfs_rq->last_h_load_update = now;
9847 }
9848
9849 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9850 load = cfs_rq->h_load;
9851 load = div64_ul(load * se->avg.load_avg,
9852 cfs_rq_load_avg(cfs_rq) + 1);
9853 cfs_rq = group_cfs_rq(se);
9854 cfs_rq->h_load = load;
9855 cfs_rq->last_h_load_update = now;
9856 }
9857 }
9858
task_h_load(struct task_struct * p)9859 static unsigned long task_h_load(struct task_struct *p)
9860 {
9861 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9862
9863 update_cfs_rq_h_load(cfs_rq);
9864 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9865 cfs_rq_load_avg(cfs_rq) + 1);
9866 }
9867 #else /* !CONFIG_FAIR_GROUP_SCHED: */
__update_blocked_fair(struct rq * rq,bool * done)9868 static bool __update_blocked_fair(struct rq *rq, bool *done)
9869 {
9870 struct cfs_rq *cfs_rq = &rq->cfs;
9871 bool decayed;
9872
9873 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9874 if (cfs_rq_has_blocked(cfs_rq))
9875 *done = false;
9876
9877 return decayed;
9878 }
9879
task_h_load(struct task_struct * p)9880 static unsigned long task_h_load(struct task_struct *p)
9881 {
9882 return p->se.avg.load_avg;
9883 }
9884 #endif /* !CONFIG_FAIR_GROUP_SCHED */
9885
sched_balance_update_blocked_averages(int cpu)9886 static void sched_balance_update_blocked_averages(int cpu)
9887 {
9888 bool decayed = false, done = true;
9889 struct rq *rq = cpu_rq(cpu);
9890 struct rq_flags rf;
9891
9892 rq_lock_irqsave(rq, &rf);
9893 update_blocked_load_tick(rq);
9894 update_rq_clock(rq);
9895
9896 decayed |= __update_blocked_others(rq, &done);
9897 decayed |= __update_blocked_fair(rq, &done);
9898
9899 update_blocked_load_status(rq, !done);
9900 if (decayed)
9901 cpufreq_update_util(rq, 0);
9902 rq_unlock_irqrestore(rq, &rf);
9903 }
9904
9905 /********** Helpers for sched_balance_find_src_group ************************/
9906
9907 /*
9908 * sg_lb_stats - stats of a sched_group required for load-balancing:
9909 */
9910 struct sg_lb_stats {
9911 unsigned long avg_load; /* Avg load over the CPUs of the group */
9912 unsigned long group_load; /* Total load over the CPUs of the group */
9913 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9914 unsigned long group_util; /* Total utilization over the CPUs of the group */
9915 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9916 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
9917 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9918 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
9919 unsigned int group_weight;
9920 enum group_type group_type;
9921 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9922 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9923 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9924 #ifdef CONFIG_NUMA_BALANCING
9925 unsigned int nr_numa_running;
9926 unsigned int nr_preferred_running;
9927 #endif
9928 };
9929
9930 /*
9931 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9932 */
9933 struct sd_lb_stats {
9934 struct sched_group *busiest; /* Busiest group in this sd */
9935 struct sched_group *local; /* Local group in this sd */
9936 unsigned long total_load; /* Total load of all groups in sd */
9937 unsigned long total_capacity; /* Total capacity of all groups in sd */
9938 unsigned long avg_load; /* Average load across all groups in sd */
9939 unsigned int prefer_sibling; /* Tasks should go to sibling first */
9940
9941 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9942 struct sg_lb_stats local_stat; /* Statistics of the local group */
9943 };
9944
init_sd_lb_stats(struct sd_lb_stats * sds)9945 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9946 {
9947 /*
9948 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9949 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9950 * We must however set busiest_stat::group_type and
9951 * busiest_stat::idle_cpus to the worst busiest group because
9952 * update_sd_pick_busiest() reads these before assignment.
9953 */
9954 *sds = (struct sd_lb_stats){
9955 .busiest = NULL,
9956 .local = NULL,
9957 .total_load = 0UL,
9958 .total_capacity = 0UL,
9959 .busiest_stat = {
9960 .idle_cpus = UINT_MAX,
9961 .group_type = group_has_spare,
9962 },
9963 };
9964 }
9965
scale_rt_capacity(int cpu)9966 static unsigned long scale_rt_capacity(int cpu)
9967 {
9968 unsigned long max = get_actual_cpu_capacity(cpu);
9969 struct rq *rq = cpu_rq(cpu);
9970 unsigned long used, free;
9971 unsigned long irq;
9972
9973 irq = cpu_util_irq(rq);
9974
9975 if (unlikely(irq >= max))
9976 return 1;
9977
9978 /*
9979 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9980 * (running and not running) with weights 0 and 1024 respectively.
9981 */
9982 used = cpu_util_rt(rq);
9983 used += cpu_util_dl(rq);
9984
9985 if (unlikely(used >= max))
9986 return 1;
9987
9988 free = max - used;
9989
9990 return scale_irq_capacity(free, irq, max);
9991 }
9992
update_cpu_capacity(struct sched_domain * sd,int cpu)9993 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9994 {
9995 unsigned long capacity = scale_rt_capacity(cpu);
9996 struct sched_group *sdg = sd->groups;
9997
9998 if (!capacity)
9999 capacity = 1;
10000
10001 cpu_rq(cpu)->cpu_capacity = capacity;
10002 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
10003
10004 sdg->sgc->capacity = capacity;
10005 sdg->sgc->min_capacity = capacity;
10006 sdg->sgc->max_capacity = capacity;
10007 }
10008
update_group_capacity(struct sched_domain * sd,int cpu)10009 void update_group_capacity(struct sched_domain *sd, int cpu)
10010 {
10011 struct sched_domain *child = sd->child;
10012 struct sched_group *group, *sdg = sd->groups;
10013 unsigned long capacity, min_capacity, max_capacity;
10014 unsigned long interval;
10015
10016 interval = msecs_to_jiffies(sd->balance_interval);
10017 interval = clamp(interval, 1UL, max_load_balance_interval);
10018 sdg->sgc->next_update = jiffies + interval;
10019
10020 if (!child) {
10021 update_cpu_capacity(sd, cpu);
10022 return;
10023 }
10024
10025 capacity = 0;
10026 min_capacity = ULONG_MAX;
10027 max_capacity = 0;
10028
10029 if (child->flags & SD_NUMA) {
10030 /*
10031 * SD_NUMA domains cannot assume that child groups
10032 * span the current group.
10033 */
10034
10035 for_each_cpu(cpu, sched_group_span(sdg)) {
10036 unsigned long cpu_cap = capacity_of(cpu);
10037
10038 capacity += cpu_cap;
10039 min_capacity = min(cpu_cap, min_capacity);
10040 max_capacity = max(cpu_cap, max_capacity);
10041 }
10042 } else {
10043 /*
10044 * !SD_NUMA domains can assume that child groups
10045 * span the current group.
10046 */
10047
10048 group = child->groups;
10049 do {
10050 struct sched_group_capacity *sgc = group->sgc;
10051
10052 capacity += sgc->capacity;
10053 min_capacity = min(sgc->min_capacity, min_capacity);
10054 max_capacity = max(sgc->max_capacity, max_capacity);
10055 group = group->next;
10056 } while (group != child->groups);
10057 }
10058
10059 sdg->sgc->capacity = capacity;
10060 sdg->sgc->min_capacity = min_capacity;
10061 sdg->sgc->max_capacity = max_capacity;
10062 }
10063
10064 /*
10065 * Check whether the capacity of the rq has been noticeably reduced by side
10066 * activity. The imbalance_pct is used for the threshold.
10067 * Return true is the capacity is reduced
10068 */
10069 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)10070 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10071 {
10072 return ((rq->cpu_capacity * sd->imbalance_pct) <
10073 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10074 }
10075
10076 /* Check if the rq has a misfit task */
check_misfit_status(struct rq * rq)10077 static inline bool check_misfit_status(struct rq *rq)
10078 {
10079 return rq->misfit_task_load;
10080 }
10081
10082 /*
10083 * Group imbalance indicates (and tries to solve) the problem where balancing
10084 * groups is inadequate due to ->cpus_ptr constraints.
10085 *
10086 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10087 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10088 * Something like:
10089 *
10090 * { 0 1 2 3 } { 4 5 6 7 }
10091 * * * * *
10092 *
10093 * If we were to balance group-wise we'd place two tasks in the first group and
10094 * two tasks in the second group. Clearly this is undesired as it will overload
10095 * cpu 3 and leave one of the CPUs in the second group unused.
10096 *
10097 * The current solution to this issue is detecting the skew in the first group
10098 * by noticing the lower domain failed to reach balance and had difficulty
10099 * moving tasks due to affinity constraints.
10100 *
10101 * When this is so detected; this group becomes a candidate for busiest; see
10102 * update_sd_pick_busiest(). And calculate_imbalance() and
10103 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10104 * to create an effective group imbalance.
10105 *
10106 * This is a somewhat tricky proposition since the next run might not find the
10107 * group imbalance and decide the groups need to be balanced again. A most
10108 * subtle and fragile situation.
10109 */
10110
sg_imbalanced(struct sched_group * group)10111 static inline int sg_imbalanced(struct sched_group *group)
10112 {
10113 return group->sgc->imbalance;
10114 }
10115
10116 /*
10117 * group_has_capacity returns true if the group has spare capacity that could
10118 * be used by some tasks.
10119 * We consider that a group has spare capacity if the number of task is
10120 * smaller than the number of CPUs or if the utilization is lower than the
10121 * available capacity for CFS tasks.
10122 * For the latter, we use a threshold to stabilize the state, to take into
10123 * account the variance of the tasks' load and to return true if the available
10124 * capacity in meaningful for the load balancer.
10125 * As an example, an available capacity of 1% can appear but it doesn't make
10126 * any benefit for the load balance.
10127 */
10128 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10129 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10130 {
10131 if (sgs->sum_nr_running < sgs->group_weight)
10132 return true;
10133
10134 if ((sgs->group_capacity * imbalance_pct) <
10135 (sgs->group_runnable * 100))
10136 return false;
10137
10138 if ((sgs->group_capacity * 100) >
10139 (sgs->group_util * imbalance_pct))
10140 return true;
10141
10142 return false;
10143 }
10144
10145 /*
10146 * group_is_overloaded returns true if the group has more tasks than it can
10147 * handle.
10148 * group_is_overloaded is not equals to !group_has_capacity because a group
10149 * with the exact right number of tasks, has no more spare capacity but is not
10150 * overloaded so both group_has_capacity and group_is_overloaded return
10151 * false.
10152 */
10153 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)10154 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10155 {
10156 if (sgs->sum_nr_running <= sgs->group_weight)
10157 return false;
10158
10159 if ((sgs->group_capacity * 100) <
10160 (sgs->group_util * imbalance_pct))
10161 return true;
10162
10163 if ((sgs->group_capacity * imbalance_pct) <
10164 (sgs->group_runnable * 100))
10165 return true;
10166
10167 return false;
10168 }
10169
10170 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)10171 group_type group_classify(unsigned int imbalance_pct,
10172 struct sched_group *group,
10173 struct sg_lb_stats *sgs)
10174 {
10175 if (group_is_overloaded(imbalance_pct, sgs))
10176 return group_overloaded;
10177
10178 if (sg_imbalanced(group))
10179 return group_imbalanced;
10180
10181 if (sgs->group_asym_packing)
10182 return group_asym_packing;
10183
10184 if (sgs->group_smt_balance)
10185 return group_smt_balance;
10186
10187 if (sgs->group_misfit_task_load)
10188 return group_misfit_task;
10189
10190 if (!group_has_capacity(imbalance_pct, sgs))
10191 return group_fully_busy;
10192
10193 return group_has_spare;
10194 }
10195
10196 /**
10197 * sched_use_asym_prio - Check whether asym_packing priority must be used
10198 * @sd: The scheduling domain of the load balancing
10199 * @cpu: A CPU
10200 *
10201 * Always use CPU priority when balancing load between SMT siblings. When
10202 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10203 * use CPU priority if the whole core is idle.
10204 *
10205 * Returns: True if the priority of @cpu must be followed. False otherwise.
10206 */
sched_use_asym_prio(struct sched_domain * sd,int cpu)10207 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10208 {
10209 if (!(sd->flags & SD_ASYM_PACKING))
10210 return false;
10211
10212 if (!sched_smt_active())
10213 return true;
10214
10215 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10216 }
10217
sched_asym(struct sched_domain * sd,int dst_cpu,int src_cpu)10218 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10219 {
10220 /*
10221 * First check if @dst_cpu can do asym_packing load balance. Only do it
10222 * if it has higher priority than @src_cpu.
10223 */
10224 return sched_use_asym_prio(sd, dst_cpu) &&
10225 sched_asym_prefer(dst_cpu, src_cpu);
10226 }
10227
10228 /**
10229 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10230 * @env: The load balancing environment
10231 * @sgs: Load-balancing statistics of the candidate busiest group
10232 * @group: The candidate busiest group
10233 *
10234 * @env::dst_cpu can do asym_packing if it has higher priority than the
10235 * preferred CPU of @group.
10236 *
10237 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10238 * otherwise.
10239 */
10240 static inline bool
sched_group_asym(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10241 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10242 {
10243 /*
10244 * CPU priorities do not make sense for SMT cores with more than one
10245 * busy sibling.
10246 */
10247 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10248 (sgs->group_weight - sgs->idle_cpus != 1))
10249 return false;
10250
10251 return sched_asym(env->sd, env->dst_cpu, READ_ONCE(group->asym_prefer_cpu));
10252 }
10253
10254 /* One group has more than one SMT CPU while the other group does not */
smt_vs_nonsmt_groups(struct sched_group * sg1,struct sched_group * sg2)10255 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10256 struct sched_group *sg2)
10257 {
10258 if (!sg1 || !sg2)
10259 return false;
10260
10261 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10262 (sg2->flags & SD_SHARE_CPUCAPACITY);
10263 }
10264
smt_balance(struct lb_env * env,struct sg_lb_stats * sgs,struct sched_group * group)10265 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10266 struct sched_group *group)
10267 {
10268 if (!env->idle)
10269 return false;
10270
10271 /*
10272 * For SMT source group, it is better to move a task
10273 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10274 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10275 * will not be on.
10276 */
10277 if (group->flags & SD_SHARE_CPUCAPACITY &&
10278 sgs->sum_h_nr_running > 1)
10279 return true;
10280
10281 return false;
10282 }
10283
sibling_imbalance(struct lb_env * env,struct sd_lb_stats * sds,struct sg_lb_stats * busiest,struct sg_lb_stats * local)10284 static inline long sibling_imbalance(struct lb_env *env,
10285 struct sd_lb_stats *sds,
10286 struct sg_lb_stats *busiest,
10287 struct sg_lb_stats *local)
10288 {
10289 int ncores_busiest, ncores_local;
10290 long imbalance;
10291
10292 if (!env->idle || !busiest->sum_nr_running)
10293 return 0;
10294
10295 ncores_busiest = sds->busiest->cores;
10296 ncores_local = sds->local->cores;
10297
10298 if (ncores_busiest == ncores_local) {
10299 imbalance = busiest->sum_nr_running;
10300 lsub_positive(&imbalance, local->sum_nr_running);
10301 return imbalance;
10302 }
10303
10304 /* Balance such that nr_running/ncores ratio are same on both groups */
10305 imbalance = ncores_local * busiest->sum_nr_running;
10306 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10307 /* Normalize imbalance and do rounding on normalization */
10308 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10309 imbalance /= ncores_local + ncores_busiest;
10310
10311 /* Take advantage of resource in an empty sched group */
10312 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10313 busiest->sum_nr_running > 1)
10314 imbalance = 2;
10315
10316 return imbalance;
10317 }
10318
10319 static inline bool
sched_reduced_capacity(struct rq * rq,struct sched_domain * sd)10320 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10321 {
10322 /*
10323 * When there is more than 1 task, the group_overloaded case already
10324 * takes care of cpu with reduced capacity
10325 */
10326 if (rq->cfs.h_nr_runnable != 1)
10327 return false;
10328
10329 return check_cpu_capacity(rq, sd);
10330 }
10331
10332 /**
10333 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10334 * @env: The load balancing environment.
10335 * @sds: Load-balancing data with statistics of the local group.
10336 * @group: sched_group whose statistics are to be updated.
10337 * @sgs: variable to hold the statistics for this group.
10338 * @sg_overloaded: sched_group is overloaded
10339 * @sg_overutilized: sched_group is overutilized
10340 */
update_sg_lb_stats(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * group,struct sg_lb_stats * sgs,bool * sg_overloaded,bool * sg_overutilized)10341 static inline void update_sg_lb_stats(struct lb_env *env,
10342 struct sd_lb_stats *sds,
10343 struct sched_group *group,
10344 struct sg_lb_stats *sgs,
10345 bool *sg_overloaded,
10346 bool *sg_overutilized)
10347 {
10348 int i, nr_running, local_group, sd_flags = env->sd->flags;
10349 bool balancing_at_rd = !env->sd->parent;
10350
10351 memset(sgs, 0, sizeof(*sgs));
10352
10353 local_group = group == sds->local;
10354
10355 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10356 struct rq *rq = cpu_rq(i);
10357 unsigned long load = cpu_load(rq);
10358
10359 sgs->group_load += load;
10360 sgs->group_util += cpu_util_cfs(i);
10361 sgs->group_runnable += cpu_runnable(rq);
10362 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable;
10363
10364 nr_running = rq->nr_running;
10365 sgs->sum_nr_running += nr_running;
10366
10367 if (cpu_overutilized(i))
10368 *sg_overutilized = 1;
10369
10370 /*
10371 * No need to call idle_cpu() if nr_running is not 0
10372 */
10373 if (!nr_running && idle_cpu(i)) {
10374 sgs->idle_cpus++;
10375 /* Idle cpu can't have misfit task */
10376 continue;
10377 }
10378
10379 /* Overload indicator is only updated at root domain */
10380 if (balancing_at_rd && nr_running > 1)
10381 *sg_overloaded = 1;
10382
10383 #ifdef CONFIG_NUMA_BALANCING
10384 /* Only fbq_classify_group() uses this to classify NUMA groups */
10385 if (sd_flags & SD_NUMA) {
10386 sgs->nr_numa_running += rq->nr_numa_running;
10387 sgs->nr_preferred_running += rq->nr_preferred_running;
10388 }
10389 #endif
10390 if (local_group)
10391 continue;
10392
10393 if (sd_flags & SD_ASYM_CPUCAPACITY) {
10394 /* Check for a misfit task on the cpu */
10395 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10396 sgs->group_misfit_task_load = rq->misfit_task_load;
10397 *sg_overloaded = 1;
10398 }
10399 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10400 /* Check for a task running on a CPU with reduced capacity */
10401 if (sgs->group_misfit_task_load < load)
10402 sgs->group_misfit_task_load = load;
10403 }
10404 }
10405
10406 sgs->group_capacity = group->sgc->capacity;
10407
10408 sgs->group_weight = group->group_weight;
10409
10410 /* Check if dst CPU is idle and preferred to this group */
10411 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10412 sched_group_asym(env, sgs, group))
10413 sgs->group_asym_packing = 1;
10414
10415 /* Check for loaded SMT group to be balanced to dst CPU */
10416 if (!local_group && smt_balance(env, sgs, group))
10417 sgs->group_smt_balance = 1;
10418
10419 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10420
10421 /* Computing avg_load makes sense only when group is overloaded */
10422 if (sgs->group_type == group_overloaded)
10423 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10424 sgs->group_capacity;
10425 }
10426
10427 /**
10428 * update_sd_pick_busiest - return 1 on busiest group
10429 * @env: The load balancing environment.
10430 * @sds: sched_domain statistics
10431 * @sg: sched_group candidate to be checked for being the busiest
10432 * @sgs: sched_group statistics
10433 *
10434 * Determine if @sg is a busier group than the previously selected
10435 * busiest group.
10436 *
10437 * Return: %true if @sg is a busier group than the previously selected
10438 * busiest group. %false otherwise.
10439 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)10440 static bool update_sd_pick_busiest(struct lb_env *env,
10441 struct sd_lb_stats *sds,
10442 struct sched_group *sg,
10443 struct sg_lb_stats *sgs)
10444 {
10445 struct sg_lb_stats *busiest = &sds->busiest_stat;
10446
10447 /* Make sure that there is at least one task to pull */
10448 if (!sgs->sum_h_nr_running)
10449 return false;
10450
10451 /*
10452 * Don't try to pull misfit tasks we can't help.
10453 * We can use max_capacity here as reduction in capacity on some
10454 * CPUs in the group should either be possible to resolve
10455 * internally or be covered by avg_load imbalance (eventually).
10456 */
10457 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10458 (sgs->group_type == group_misfit_task) &&
10459 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10460 sds->local_stat.group_type != group_has_spare))
10461 return false;
10462
10463 if (sgs->group_type > busiest->group_type)
10464 return true;
10465
10466 if (sgs->group_type < busiest->group_type)
10467 return false;
10468
10469 /*
10470 * The candidate and the current busiest group are the same type of
10471 * group. Let check which one is the busiest according to the type.
10472 */
10473
10474 switch (sgs->group_type) {
10475 case group_overloaded:
10476 /* Select the overloaded group with highest avg_load. */
10477 return sgs->avg_load > busiest->avg_load;
10478
10479 case group_imbalanced:
10480 /*
10481 * Select the 1st imbalanced group as we don't have any way to
10482 * choose one more than another.
10483 */
10484 return false;
10485
10486 case group_asym_packing:
10487 /* Prefer to move from lowest priority CPU's work */
10488 return sched_asym_prefer(READ_ONCE(sds->busiest->asym_prefer_cpu),
10489 READ_ONCE(sg->asym_prefer_cpu));
10490
10491 case group_misfit_task:
10492 /*
10493 * If we have more than one misfit sg go with the biggest
10494 * misfit.
10495 */
10496 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10497
10498 case group_smt_balance:
10499 /*
10500 * Check if we have spare CPUs on either SMT group to
10501 * choose has spare or fully busy handling.
10502 */
10503 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10504 goto has_spare;
10505
10506 fallthrough;
10507
10508 case group_fully_busy:
10509 /*
10510 * Select the fully busy group with highest avg_load. In
10511 * theory, there is no need to pull task from such kind of
10512 * group because tasks have all compute capacity that they need
10513 * but we can still improve the overall throughput by reducing
10514 * contention when accessing shared HW resources.
10515 *
10516 * XXX for now avg_load is not computed and always 0 so we
10517 * select the 1st one, except if @sg is composed of SMT
10518 * siblings.
10519 */
10520
10521 if (sgs->avg_load < busiest->avg_load)
10522 return false;
10523
10524 if (sgs->avg_load == busiest->avg_load) {
10525 /*
10526 * SMT sched groups need more help than non-SMT groups.
10527 * If @sg happens to also be SMT, either choice is good.
10528 */
10529 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10530 return false;
10531 }
10532
10533 break;
10534
10535 case group_has_spare:
10536 /*
10537 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10538 * as we do not want to pull task off SMT core with one task
10539 * and make the core idle.
10540 */
10541 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10542 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10543 return false;
10544 else
10545 return true;
10546 }
10547 has_spare:
10548
10549 /*
10550 * Select not overloaded group with lowest number of idle CPUs
10551 * and highest number of running tasks. We could also compare
10552 * the spare capacity which is more stable but it can end up
10553 * that the group has less spare capacity but finally more idle
10554 * CPUs which means less opportunity to pull tasks.
10555 */
10556 if (sgs->idle_cpus > busiest->idle_cpus)
10557 return false;
10558 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10559 (sgs->sum_nr_running <= busiest->sum_nr_running))
10560 return false;
10561
10562 break;
10563 }
10564
10565 /*
10566 * Candidate sg has no more than one task per CPU and has higher
10567 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10568 * throughput. Maximize throughput, power/energy consequences are not
10569 * considered.
10570 */
10571 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10572 (sgs->group_type <= group_fully_busy) &&
10573 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10574 return false;
10575
10576 return true;
10577 }
10578
10579 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)10580 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10581 {
10582 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10583 return regular;
10584 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10585 return remote;
10586 return all;
10587 }
10588
fbq_classify_rq(struct rq * rq)10589 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10590 {
10591 if (rq->nr_running > rq->nr_numa_running)
10592 return regular;
10593 if (rq->nr_running > rq->nr_preferred_running)
10594 return remote;
10595 return all;
10596 }
10597 #else /* !CONFIG_NUMA_BALANCING: */
fbq_classify_group(struct sg_lb_stats * sgs)10598 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10599 {
10600 return all;
10601 }
10602
fbq_classify_rq(struct rq * rq)10603 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10604 {
10605 return regular;
10606 }
10607 #endif /* !CONFIG_NUMA_BALANCING */
10608
10609
10610 struct sg_lb_stats;
10611
10612 /*
10613 * task_running_on_cpu - return 1 if @p is running on @cpu.
10614 */
10615
task_running_on_cpu(int cpu,struct task_struct * p)10616 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10617 {
10618 /* Task has no contribution or is new */
10619 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10620 return 0;
10621
10622 if (task_on_rq_queued(p))
10623 return 1;
10624
10625 return 0;
10626 }
10627
10628 /**
10629 * idle_cpu_without - would a given CPU be idle without p ?
10630 * @cpu: the processor on which idleness is tested.
10631 * @p: task which should be ignored.
10632 *
10633 * Return: 1 if the CPU would be idle. 0 otherwise.
10634 */
idle_cpu_without(int cpu,struct task_struct * p)10635 static int idle_cpu_without(int cpu, struct task_struct *p)
10636 {
10637 struct rq *rq = cpu_rq(cpu);
10638
10639 if (rq->curr != rq->idle && rq->curr != p)
10640 return 0;
10641
10642 /*
10643 * rq->nr_running can't be used but an updated version without the
10644 * impact of p on cpu must be used instead. The updated nr_running
10645 * be computed and tested before calling idle_cpu_without().
10646 */
10647
10648 if (rq->ttwu_pending)
10649 return 0;
10650
10651 return 1;
10652 }
10653
10654 /*
10655 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10656 * @sd: The sched_domain level to look for idlest group.
10657 * @group: sched_group whose statistics are to be updated.
10658 * @sgs: variable to hold the statistics for this group.
10659 * @p: The task for which we look for the idlest group/CPU.
10660 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)10661 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10662 struct sched_group *group,
10663 struct sg_lb_stats *sgs,
10664 struct task_struct *p)
10665 {
10666 int i, nr_running;
10667
10668 memset(sgs, 0, sizeof(*sgs));
10669
10670 /* Assume that task can't fit any CPU of the group */
10671 if (sd->flags & SD_ASYM_CPUCAPACITY)
10672 sgs->group_misfit_task_load = 1;
10673
10674 for_each_cpu(i, sched_group_span(group)) {
10675 struct rq *rq = cpu_rq(i);
10676 unsigned int local;
10677
10678 sgs->group_load += cpu_load_without(rq, p);
10679 sgs->group_util += cpu_util_without(i, p);
10680 sgs->group_runnable += cpu_runnable_without(rq, p);
10681 local = task_running_on_cpu(i, p);
10682 sgs->sum_h_nr_running += rq->cfs.h_nr_runnable - local;
10683
10684 nr_running = rq->nr_running - local;
10685 sgs->sum_nr_running += nr_running;
10686
10687 /*
10688 * No need to call idle_cpu_without() if nr_running is not 0
10689 */
10690 if (!nr_running && idle_cpu_without(i, p))
10691 sgs->idle_cpus++;
10692
10693 /* Check if task fits in the CPU */
10694 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10695 sgs->group_misfit_task_load &&
10696 task_fits_cpu(p, i))
10697 sgs->group_misfit_task_load = 0;
10698
10699 }
10700
10701 sgs->group_capacity = group->sgc->capacity;
10702
10703 sgs->group_weight = group->group_weight;
10704
10705 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10706
10707 /*
10708 * Computing avg_load makes sense only when group is fully busy or
10709 * overloaded
10710 */
10711 if (sgs->group_type == group_fully_busy ||
10712 sgs->group_type == group_overloaded)
10713 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10714 sgs->group_capacity;
10715 }
10716
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)10717 static bool update_pick_idlest(struct sched_group *idlest,
10718 struct sg_lb_stats *idlest_sgs,
10719 struct sched_group *group,
10720 struct sg_lb_stats *sgs)
10721 {
10722 if (sgs->group_type < idlest_sgs->group_type)
10723 return true;
10724
10725 if (sgs->group_type > idlest_sgs->group_type)
10726 return false;
10727
10728 /*
10729 * The candidate and the current idlest group are the same type of
10730 * group. Let check which one is the idlest according to the type.
10731 */
10732
10733 switch (sgs->group_type) {
10734 case group_overloaded:
10735 case group_fully_busy:
10736 /* Select the group with lowest avg_load. */
10737 if (idlest_sgs->avg_load <= sgs->avg_load)
10738 return false;
10739 break;
10740
10741 case group_imbalanced:
10742 case group_asym_packing:
10743 case group_smt_balance:
10744 /* Those types are not used in the slow wakeup path */
10745 return false;
10746
10747 case group_misfit_task:
10748 /* Select group with the highest max capacity */
10749 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10750 return false;
10751 break;
10752
10753 case group_has_spare:
10754 /* Select group with most idle CPUs */
10755 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10756 return false;
10757
10758 /* Select group with lowest group_util */
10759 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10760 idlest_sgs->group_util <= sgs->group_util)
10761 return false;
10762
10763 break;
10764 }
10765
10766 return true;
10767 }
10768
10769 /*
10770 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10771 * domain.
10772 *
10773 * Assumes p is allowed on at least one CPU in sd.
10774 */
10775 static struct sched_group *
sched_balance_find_dst_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)10776 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10777 {
10778 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10779 struct sg_lb_stats local_sgs, tmp_sgs;
10780 struct sg_lb_stats *sgs;
10781 unsigned long imbalance;
10782 struct sg_lb_stats idlest_sgs = {
10783 .avg_load = UINT_MAX,
10784 .group_type = group_overloaded,
10785 };
10786
10787 do {
10788 int local_group;
10789
10790 /* Skip over this group if it has no CPUs allowed */
10791 if (!cpumask_intersects(sched_group_span(group),
10792 p->cpus_ptr))
10793 continue;
10794
10795 /* Skip over this group if no cookie matched */
10796 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10797 continue;
10798
10799 local_group = cpumask_test_cpu(this_cpu,
10800 sched_group_span(group));
10801
10802 if (local_group) {
10803 sgs = &local_sgs;
10804 local = group;
10805 } else {
10806 sgs = &tmp_sgs;
10807 }
10808
10809 update_sg_wakeup_stats(sd, group, sgs, p);
10810
10811 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10812 idlest = group;
10813 idlest_sgs = *sgs;
10814 }
10815
10816 } while (group = group->next, group != sd->groups);
10817
10818
10819 /* There is no idlest group to push tasks to */
10820 if (!idlest)
10821 return NULL;
10822
10823 /* The local group has been skipped because of CPU affinity */
10824 if (!local)
10825 return idlest;
10826
10827 /*
10828 * If the local group is idler than the selected idlest group
10829 * don't try and push the task.
10830 */
10831 if (local_sgs.group_type < idlest_sgs.group_type)
10832 return NULL;
10833
10834 /*
10835 * If the local group is busier than the selected idlest group
10836 * try and push the task.
10837 */
10838 if (local_sgs.group_type > idlest_sgs.group_type)
10839 return idlest;
10840
10841 switch (local_sgs.group_type) {
10842 case group_overloaded:
10843 case group_fully_busy:
10844
10845 /* Calculate allowed imbalance based on load */
10846 imbalance = scale_load_down(NICE_0_LOAD) *
10847 (sd->imbalance_pct-100) / 100;
10848
10849 /*
10850 * When comparing groups across NUMA domains, it's possible for
10851 * the local domain to be very lightly loaded relative to the
10852 * remote domains but "imbalance" skews the comparison making
10853 * remote CPUs look much more favourable. When considering
10854 * cross-domain, add imbalance to the load on the remote node
10855 * and consider staying local.
10856 */
10857
10858 if ((sd->flags & SD_NUMA) &&
10859 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10860 return NULL;
10861
10862 /*
10863 * If the local group is less loaded than the selected
10864 * idlest group don't try and push any tasks.
10865 */
10866 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10867 return NULL;
10868
10869 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10870 return NULL;
10871 break;
10872
10873 case group_imbalanced:
10874 case group_asym_packing:
10875 case group_smt_balance:
10876 /* Those type are not used in the slow wakeup path */
10877 return NULL;
10878
10879 case group_misfit_task:
10880 /* Select group with the highest max capacity */
10881 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10882 return NULL;
10883 break;
10884
10885 case group_has_spare:
10886 #ifdef CONFIG_NUMA
10887 if (sd->flags & SD_NUMA) {
10888 int imb_numa_nr = sd->imb_numa_nr;
10889 #ifdef CONFIG_NUMA_BALANCING
10890 int idlest_cpu;
10891 /*
10892 * If there is spare capacity at NUMA, try to select
10893 * the preferred node
10894 */
10895 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10896 return NULL;
10897
10898 idlest_cpu = cpumask_first(sched_group_span(idlest));
10899 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10900 return idlest;
10901 #endif /* CONFIG_NUMA_BALANCING */
10902 /*
10903 * Otherwise, keep the task close to the wakeup source
10904 * and improve locality if the number of running tasks
10905 * would remain below threshold where an imbalance is
10906 * allowed while accounting for the possibility the
10907 * task is pinned to a subset of CPUs. If there is a
10908 * real need of migration, periodic load balance will
10909 * take care of it.
10910 */
10911 if (p->nr_cpus_allowed != NR_CPUS) {
10912 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10913
10914 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10915 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10916 }
10917
10918 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10919 if (!adjust_numa_imbalance(imbalance,
10920 local_sgs.sum_nr_running + 1,
10921 imb_numa_nr)) {
10922 return NULL;
10923 }
10924 }
10925 #endif /* CONFIG_NUMA */
10926
10927 /*
10928 * Select group with highest number of idle CPUs. We could also
10929 * compare the utilization which is more stable but it can end
10930 * up that the group has less spare capacity but finally more
10931 * idle CPUs which means more opportunity to run task.
10932 */
10933 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10934 return NULL;
10935 break;
10936 }
10937
10938 return idlest;
10939 }
10940
update_idle_cpu_scan(struct lb_env * env,unsigned long sum_util)10941 static void update_idle_cpu_scan(struct lb_env *env,
10942 unsigned long sum_util)
10943 {
10944 struct sched_domain_shared *sd_share;
10945 int llc_weight, pct;
10946 u64 x, y, tmp;
10947 /*
10948 * Update the number of CPUs to scan in LLC domain, which could
10949 * be used as a hint in select_idle_cpu(). The update of sd_share
10950 * could be expensive because it is within a shared cache line.
10951 * So the write of this hint only occurs during periodic load
10952 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10953 * can fire way more frequently than the former.
10954 */
10955 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10956 return;
10957
10958 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10959 if (env->sd->span_weight != llc_weight)
10960 return;
10961
10962 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10963 if (!sd_share)
10964 return;
10965
10966 /*
10967 * The number of CPUs to search drops as sum_util increases, when
10968 * sum_util hits 85% or above, the scan stops.
10969 * The reason to choose 85% as the threshold is because this is the
10970 * imbalance_pct(117) when a LLC sched group is overloaded.
10971 *
10972 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10973 * and y'= y / SCHED_CAPACITY_SCALE
10974 *
10975 * x is the ratio of sum_util compared to the CPU capacity:
10976 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10977 * y' is the ratio of CPUs to be scanned in the LLC domain,
10978 * and the number of CPUs to scan is calculated by:
10979 *
10980 * nr_scan = llc_weight * y' [2]
10981 *
10982 * When x hits the threshold of overloaded, AKA, when
10983 * x = 100 / pct, y drops to 0. According to [1],
10984 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10985 *
10986 * Scale x by SCHED_CAPACITY_SCALE:
10987 * x' = sum_util / llc_weight; [3]
10988 *
10989 * and finally [1] becomes:
10990 * y = SCHED_CAPACITY_SCALE -
10991 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10992 *
10993 */
10994 /* equation [3] */
10995 x = sum_util;
10996 do_div(x, llc_weight);
10997
10998 /* equation [4] */
10999 pct = env->sd->imbalance_pct;
11000 tmp = x * x * pct * pct;
11001 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
11002 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
11003 y = SCHED_CAPACITY_SCALE - tmp;
11004
11005 /* equation [2] */
11006 y *= llc_weight;
11007 do_div(y, SCHED_CAPACITY_SCALE);
11008 if ((int)y != sd_share->nr_idle_scan)
11009 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
11010 }
11011
11012 /**
11013 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
11014 * @env: The load balancing environment.
11015 * @sds: variable to hold the statistics for this sched_domain.
11016 */
11017
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)11018 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
11019 {
11020 struct sched_group *sg = env->sd->groups;
11021 struct sg_lb_stats *local = &sds->local_stat;
11022 struct sg_lb_stats tmp_sgs;
11023 unsigned long sum_util = 0;
11024 bool sg_overloaded = 0, sg_overutilized = 0;
11025
11026 do {
11027 struct sg_lb_stats *sgs = &tmp_sgs;
11028 int local_group;
11029
11030 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
11031 if (local_group) {
11032 sds->local = sg;
11033 sgs = local;
11034
11035 if (env->idle != CPU_NEWLY_IDLE ||
11036 time_after_eq(jiffies, sg->sgc->next_update))
11037 update_group_capacity(env->sd, env->dst_cpu);
11038 }
11039
11040 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11041
11042 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11043 sds->busiest = sg;
11044 sds->busiest_stat = *sgs;
11045 }
11046
11047 /* Now, start updating sd_lb_stats */
11048 sds->total_load += sgs->group_load;
11049 sds->total_capacity += sgs->group_capacity;
11050
11051 sum_util += sgs->group_util;
11052 sg = sg->next;
11053 } while (sg != env->sd->groups);
11054
11055 /*
11056 * Indicate that the child domain of the busiest group prefers tasks
11057 * go to a child's sibling domains first. NB the flags of a sched group
11058 * are those of the child domain.
11059 */
11060 if (sds->busiest)
11061 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11062
11063
11064 if (env->sd->flags & SD_NUMA)
11065 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11066
11067 if (!env->sd->parent) {
11068 /* update overload indicator if we are at root domain */
11069 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11070
11071 /* Update over-utilization (tipping point, U >= 0) indicator */
11072 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11073 } else if (sg_overutilized) {
11074 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11075 }
11076
11077 update_idle_cpu_scan(env, sum_util);
11078 }
11079
11080 /**
11081 * calculate_imbalance - Calculate the amount of imbalance present within the
11082 * groups of a given sched_domain during load balance.
11083 * @env: load balance environment
11084 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11085 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)11086 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11087 {
11088 struct sg_lb_stats *local, *busiest;
11089
11090 local = &sds->local_stat;
11091 busiest = &sds->busiest_stat;
11092
11093 if (busiest->group_type == group_misfit_task) {
11094 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11095 /* Set imbalance to allow misfit tasks to be balanced. */
11096 env->migration_type = migrate_misfit;
11097 env->imbalance = 1;
11098 } else {
11099 /*
11100 * Set load imbalance to allow moving task from cpu
11101 * with reduced capacity.
11102 */
11103 env->migration_type = migrate_load;
11104 env->imbalance = busiest->group_misfit_task_load;
11105 }
11106 return;
11107 }
11108
11109 if (busiest->group_type == group_asym_packing) {
11110 /*
11111 * In case of asym capacity, we will try to migrate all load to
11112 * the preferred CPU.
11113 */
11114 env->migration_type = migrate_task;
11115 env->imbalance = busiest->sum_h_nr_running;
11116 return;
11117 }
11118
11119 if (busiest->group_type == group_smt_balance) {
11120 /* Reduce number of tasks sharing CPU capacity */
11121 env->migration_type = migrate_task;
11122 env->imbalance = 1;
11123 return;
11124 }
11125
11126 if (busiest->group_type == group_imbalanced) {
11127 /*
11128 * In the group_imb case we cannot rely on group-wide averages
11129 * to ensure CPU-load equilibrium, try to move any task to fix
11130 * the imbalance. The next load balance will take care of
11131 * balancing back the system.
11132 */
11133 env->migration_type = migrate_task;
11134 env->imbalance = 1;
11135 return;
11136 }
11137
11138 /*
11139 * Try to use spare capacity of local group without overloading it or
11140 * emptying busiest.
11141 */
11142 if (local->group_type == group_has_spare) {
11143 if ((busiest->group_type > group_fully_busy) &&
11144 !(env->sd->flags & SD_SHARE_LLC)) {
11145 /*
11146 * If busiest is overloaded, try to fill spare
11147 * capacity. This might end up creating spare capacity
11148 * in busiest or busiest still being overloaded but
11149 * there is no simple way to directly compute the
11150 * amount of load to migrate in order to balance the
11151 * system.
11152 */
11153 env->migration_type = migrate_util;
11154 env->imbalance = max(local->group_capacity, local->group_util) -
11155 local->group_util;
11156
11157 /*
11158 * In some cases, the group's utilization is max or even
11159 * higher than capacity because of migrations but the
11160 * local CPU is (newly) idle. There is at least one
11161 * waiting task in this overloaded busiest group. Let's
11162 * try to pull it.
11163 */
11164 if (env->idle && env->imbalance == 0) {
11165 env->migration_type = migrate_task;
11166 env->imbalance = 1;
11167 }
11168
11169 return;
11170 }
11171
11172 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11173 /*
11174 * When prefer sibling, evenly spread running tasks on
11175 * groups.
11176 */
11177 env->migration_type = migrate_task;
11178 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11179 } else {
11180
11181 /*
11182 * If there is no overload, we just want to even the number of
11183 * idle CPUs.
11184 */
11185 env->migration_type = migrate_task;
11186 env->imbalance = max_t(long, 0,
11187 (local->idle_cpus - busiest->idle_cpus));
11188 }
11189
11190 #ifdef CONFIG_NUMA
11191 /* Consider allowing a small imbalance between NUMA groups */
11192 if (env->sd->flags & SD_NUMA) {
11193 env->imbalance = adjust_numa_imbalance(env->imbalance,
11194 local->sum_nr_running + 1,
11195 env->sd->imb_numa_nr);
11196 }
11197 #endif
11198
11199 /* Number of tasks to move to restore balance */
11200 env->imbalance >>= 1;
11201
11202 return;
11203 }
11204
11205 /*
11206 * Local is fully busy but has to take more load to relieve the
11207 * busiest group
11208 */
11209 if (local->group_type < group_overloaded) {
11210 /*
11211 * Local will become overloaded so the avg_load metrics are
11212 * finally needed.
11213 */
11214
11215 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11216 local->group_capacity;
11217
11218 /*
11219 * If the local group is more loaded than the selected
11220 * busiest group don't try to pull any tasks.
11221 */
11222 if (local->avg_load >= busiest->avg_load) {
11223 env->imbalance = 0;
11224 return;
11225 }
11226
11227 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11228 sds->total_capacity;
11229
11230 /*
11231 * If the local group is more loaded than the average system
11232 * load, don't try to pull any tasks.
11233 */
11234 if (local->avg_load >= sds->avg_load) {
11235 env->imbalance = 0;
11236 return;
11237 }
11238
11239 }
11240
11241 /*
11242 * Both group are or will become overloaded and we're trying to get all
11243 * the CPUs to the average_load, so we don't want to push ourselves
11244 * above the average load, nor do we wish to reduce the max loaded CPU
11245 * below the average load. At the same time, we also don't want to
11246 * reduce the group load below the group capacity. Thus we look for
11247 * the minimum possible imbalance.
11248 */
11249 env->migration_type = migrate_load;
11250 env->imbalance = min(
11251 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11252 (sds->avg_load - local->avg_load) * local->group_capacity
11253 ) / SCHED_CAPACITY_SCALE;
11254 }
11255
11256 /******* sched_balance_find_src_group() helpers end here *********************/
11257
11258 /*
11259 * Decision matrix according to the local and busiest group type:
11260 *
11261 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11262 * has_spare nr_idle balanced N/A N/A balanced balanced
11263 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11264 * misfit_task force N/A N/A N/A N/A N/A
11265 * asym_packing force force N/A N/A force force
11266 * imbalanced force force N/A N/A force force
11267 * overloaded force force N/A N/A force avg_load
11268 *
11269 * N/A : Not Applicable because already filtered while updating
11270 * statistics.
11271 * balanced : The system is balanced for these 2 groups.
11272 * force : Calculate the imbalance as load migration is probably needed.
11273 * avg_load : Only if imbalance is significant enough.
11274 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11275 * different in groups.
11276 */
11277
11278 /**
11279 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11280 * if there is an imbalance.
11281 * @env: The load balancing environment.
11282 *
11283 * Also calculates the amount of runnable load which should be moved
11284 * to restore balance.
11285 *
11286 * Return: - The busiest group if imbalance exists.
11287 */
sched_balance_find_src_group(struct lb_env * env)11288 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11289 {
11290 struct sg_lb_stats *local, *busiest;
11291 struct sd_lb_stats sds;
11292
11293 init_sd_lb_stats(&sds);
11294
11295 /*
11296 * Compute the various statistics relevant for load balancing at
11297 * this level.
11298 */
11299 update_sd_lb_stats(env, &sds);
11300
11301 /* There is no busy sibling group to pull tasks from */
11302 if (!sds.busiest)
11303 goto out_balanced;
11304
11305 busiest = &sds.busiest_stat;
11306
11307 /* Misfit tasks should be dealt with regardless of the avg load */
11308 if (busiest->group_type == group_misfit_task)
11309 goto force_balance;
11310
11311 if (!is_rd_overutilized(env->dst_rq->rd) &&
11312 rcu_dereference(env->dst_rq->rd->pd))
11313 goto out_balanced;
11314
11315 /* ASYM feature bypasses nice load balance check */
11316 if (busiest->group_type == group_asym_packing)
11317 goto force_balance;
11318
11319 /*
11320 * If the busiest group is imbalanced the below checks don't
11321 * work because they assume all things are equal, which typically
11322 * isn't true due to cpus_ptr constraints and the like.
11323 */
11324 if (busiest->group_type == group_imbalanced)
11325 goto force_balance;
11326
11327 local = &sds.local_stat;
11328 /*
11329 * If the local group is busier than the selected busiest group
11330 * don't try and pull any tasks.
11331 */
11332 if (local->group_type > busiest->group_type)
11333 goto out_balanced;
11334
11335 /*
11336 * When groups are overloaded, use the avg_load to ensure fairness
11337 * between tasks.
11338 */
11339 if (local->group_type == group_overloaded) {
11340 /*
11341 * If the local group is more loaded than the selected
11342 * busiest group don't try to pull any tasks.
11343 */
11344 if (local->avg_load >= busiest->avg_load)
11345 goto out_balanced;
11346
11347 /* XXX broken for overlapping NUMA groups */
11348 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11349 sds.total_capacity;
11350
11351 /*
11352 * Don't pull any tasks if this group is already above the
11353 * domain average load.
11354 */
11355 if (local->avg_load >= sds.avg_load)
11356 goto out_balanced;
11357
11358 /*
11359 * If the busiest group is more loaded, use imbalance_pct to be
11360 * conservative.
11361 */
11362 if (100 * busiest->avg_load <=
11363 env->sd->imbalance_pct * local->avg_load)
11364 goto out_balanced;
11365 }
11366
11367 /*
11368 * Try to move all excess tasks to a sibling domain of the busiest
11369 * group's child domain.
11370 */
11371 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11372 sibling_imbalance(env, &sds, busiest, local) > 1)
11373 goto force_balance;
11374
11375 if (busiest->group_type != group_overloaded) {
11376 if (!env->idle) {
11377 /*
11378 * If the busiest group is not overloaded (and as a
11379 * result the local one too) but this CPU is already
11380 * busy, let another idle CPU try to pull task.
11381 */
11382 goto out_balanced;
11383 }
11384
11385 if (busiest->group_type == group_smt_balance &&
11386 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11387 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11388 goto force_balance;
11389 }
11390
11391 if (busiest->group_weight > 1 &&
11392 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11393 /*
11394 * If the busiest group is not overloaded
11395 * and there is no imbalance between this and busiest
11396 * group wrt idle CPUs, it is balanced. The imbalance
11397 * becomes significant if the diff is greater than 1
11398 * otherwise we might end up to just move the imbalance
11399 * on another group. Of course this applies only if
11400 * there is more than 1 CPU per group.
11401 */
11402 goto out_balanced;
11403 }
11404
11405 if (busiest->sum_h_nr_running == 1) {
11406 /*
11407 * busiest doesn't have any tasks waiting to run
11408 */
11409 goto out_balanced;
11410 }
11411 }
11412
11413 force_balance:
11414 /* Looks like there is an imbalance. Compute it */
11415 calculate_imbalance(env, &sds);
11416 return env->imbalance ? sds.busiest : NULL;
11417
11418 out_balanced:
11419 env->imbalance = 0;
11420 return NULL;
11421 }
11422
11423 /*
11424 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11425 */
sched_balance_find_src_rq(struct lb_env * env,struct sched_group * group)11426 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11427 struct sched_group *group)
11428 {
11429 struct rq *busiest = NULL, *rq;
11430 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11431 unsigned int busiest_nr = 0;
11432 int i;
11433
11434 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11435 unsigned long capacity, load, util;
11436 unsigned int nr_running;
11437 enum fbq_type rt;
11438
11439 rq = cpu_rq(i);
11440 rt = fbq_classify_rq(rq);
11441
11442 /*
11443 * We classify groups/runqueues into three groups:
11444 * - regular: there are !numa tasks
11445 * - remote: there are numa tasks that run on the 'wrong' node
11446 * - all: there is no distinction
11447 *
11448 * In order to avoid migrating ideally placed numa tasks,
11449 * ignore those when there's better options.
11450 *
11451 * If we ignore the actual busiest queue to migrate another
11452 * task, the next balance pass can still reduce the busiest
11453 * queue by moving tasks around inside the node.
11454 *
11455 * If we cannot move enough load due to this classification
11456 * the next pass will adjust the group classification and
11457 * allow migration of more tasks.
11458 *
11459 * Both cases only affect the total convergence complexity.
11460 */
11461 if (rt > env->fbq_type)
11462 continue;
11463
11464 nr_running = rq->cfs.h_nr_runnable;
11465 if (!nr_running)
11466 continue;
11467
11468 capacity = capacity_of(i);
11469
11470 /*
11471 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11472 * eventually lead to active_balancing high->low capacity.
11473 * Higher per-CPU capacity is considered better than balancing
11474 * average load.
11475 */
11476 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11477 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11478 nr_running == 1)
11479 continue;
11480
11481 /*
11482 * Make sure we only pull tasks from a CPU of lower priority
11483 * when balancing between SMT siblings.
11484 *
11485 * If balancing between cores, let lower priority CPUs help
11486 * SMT cores with more than one busy sibling.
11487 */
11488 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11489 continue;
11490
11491 switch (env->migration_type) {
11492 case migrate_load:
11493 /*
11494 * When comparing with load imbalance, use cpu_load()
11495 * which is not scaled with the CPU capacity.
11496 */
11497 load = cpu_load(rq);
11498
11499 if (nr_running == 1 && load > env->imbalance &&
11500 !check_cpu_capacity(rq, env->sd))
11501 break;
11502
11503 /*
11504 * For the load comparisons with the other CPUs,
11505 * consider the cpu_load() scaled with the CPU
11506 * capacity, so that the load can be moved away
11507 * from the CPU that is potentially running at a
11508 * lower capacity.
11509 *
11510 * Thus we're looking for max(load_i / capacity_i),
11511 * crosswise multiplication to rid ourselves of the
11512 * division works out to:
11513 * load_i * capacity_j > load_j * capacity_i;
11514 * where j is our previous maximum.
11515 */
11516 if (load * busiest_capacity > busiest_load * capacity) {
11517 busiest_load = load;
11518 busiest_capacity = capacity;
11519 busiest = rq;
11520 }
11521 break;
11522
11523 case migrate_util:
11524 util = cpu_util_cfs_boost(i);
11525
11526 /*
11527 * Don't try to pull utilization from a CPU with one
11528 * running task. Whatever its utilization, we will fail
11529 * detach the task.
11530 */
11531 if (nr_running <= 1)
11532 continue;
11533
11534 if (busiest_util < util) {
11535 busiest_util = util;
11536 busiest = rq;
11537 }
11538 break;
11539
11540 case migrate_task:
11541 if (busiest_nr < nr_running) {
11542 busiest_nr = nr_running;
11543 busiest = rq;
11544 }
11545 break;
11546
11547 case migrate_misfit:
11548 /*
11549 * For ASYM_CPUCAPACITY domains with misfit tasks we
11550 * simply seek the "biggest" misfit task.
11551 */
11552 if (rq->misfit_task_load > busiest_load) {
11553 busiest_load = rq->misfit_task_load;
11554 busiest = rq;
11555 }
11556
11557 break;
11558
11559 }
11560 }
11561
11562 return busiest;
11563 }
11564
11565 /*
11566 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11567 * so long as it is large enough.
11568 */
11569 #define MAX_PINNED_INTERVAL 512
11570
11571 static inline bool
asym_active_balance(struct lb_env * env)11572 asym_active_balance(struct lb_env *env)
11573 {
11574 /*
11575 * ASYM_PACKING needs to force migrate tasks from busy but lower
11576 * priority CPUs in order to pack all tasks in the highest priority
11577 * CPUs. When done between cores, do it only if the whole core if the
11578 * whole core is idle.
11579 *
11580 * If @env::src_cpu is an SMT core with busy siblings, let
11581 * the lower priority @env::dst_cpu help it. Do not follow
11582 * CPU priority.
11583 */
11584 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11585 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11586 !sched_use_asym_prio(env->sd, env->src_cpu));
11587 }
11588
11589 static inline bool
imbalanced_active_balance(struct lb_env * env)11590 imbalanced_active_balance(struct lb_env *env)
11591 {
11592 struct sched_domain *sd = env->sd;
11593
11594 /*
11595 * The imbalanced case includes the case of pinned tasks preventing a fair
11596 * distribution of the load on the system but also the even distribution of the
11597 * threads on a system with spare capacity
11598 */
11599 if ((env->migration_type == migrate_task) &&
11600 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11601 return 1;
11602
11603 return 0;
11604 }
11605
need_active_balance(struct lb_env * env)11606 static int need_active_balance(struct lb_env *env)
11607 {
11608 struct sched_domain *sd = env->sd;
11609
11610 if (asym_active_balance(env))
11611 return 1;
11612
11613 if (imbalanced_active_balance(env))
11614 return 1;
11615
11616 /*
11617 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11618 * It's worth migrating the task if the src_cpu's capacity is reduced
11619 * because of other sched_class or IRQs if more capacity stays
11620 * available on dst_cpu.
11621 */
11622 if (env->idle &&
11623 (env->src_rq->cfs.h_nr_runnable == 1)) {
11624 if ((check_cpu_capacity(env->src_rq, sd)) &&
11625 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11626 return 1;
11627 }
11628
11629 if (env->migration_type == migrate_misfit)
11630 return 1;
11631
11632 return 0;
11633 }
11634
11635 static int active_load_balance_cpu_stop(void *data);
11636
should_we_balance(struct lb_env * env)11637 static int should_we_balance(struct lb_env *env)
11638 {
11639 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11640 struct sched_group *sg = env->sd->groups;
11641 int cpu, idle_smt = -1;
11642
11643 /*
11644 * Ensure the balancing environment is consistent; can happen
11645 * when the softirq triggers 'during' hotplug.
11646 */
11647 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11648 return 0;
11649
11650 /*
11651 * In the newly idle case, we will allow all the CPUs
11652 * to do the newly idle load balance.
11653 *
11654 * However, we bail out if we already have tasks or a wakeup pending,
11655 * to optimize wakeup latency.
11656 */
11657 if (env->idle == CPU_NEWLY_IDLE) {
11658 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11659 return 0;
11660 return 1;
11661 }
11662
11663 cpumask_copy(swb_cpus, group_balance_mask(sg));
11664 /* Try to find first idle CPU */
11665 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11666 if (!idle_cpu(cpu))
11667 continue;
11668
11669 /*
11670 * Don't balance to idle SMT in busy core right away when
11671 * balancing cores, but remember the first idle SMT CPU for
11672 * later consideration. Find CPU on an idle core first.
11673 */
11674 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11675 if (idle_smt == -1)
11676 idle_smt = cpu;
11677 /*
11678 * If the core is not idle, and first SMT sibling which is
11679 * idle has been found, then its not needed to check other
11680 * SMT siblings for idleness:
11681 */
11682 #ifdef CONFIG_SCHED_SMT
11683 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11684 #endif
11685 continue;
11686 }
11687
11688 /*
11689 * Are we the first idle core in a non-SMT domain or higher,
11690 * or the first idle CPU in a SMT domain?
11691 */
11692 return cpu == env->dst_cpu;
11693 }
11694
11695 /* Are we the first idle CPU with busy siblings? */
11696 if (idle_smt != -1)
11697 return idle_smt == env->dst_cpu;
11698
11699 /* Are we the first CPU of this group ? */
11700 return group_balance_cpu(sg) == env->dst_cpu;
11701 }
11702
update_lb_imbalance_stat(struct lb_env * env,struct sched_domain * sd,enum cpu_idle_type idle)11703 static void update_lb_imbalance_stat(struct lb_env *env, struct sched_domain *sd,
11704 enum cpu_idle_type idle)
11705 {
11706 if (!schedstat_enabled())
11707 return;
11708
11709 switch (env->migration_type) {
11710 case migrate_load:
11711 __schedstat_add(sd->lb_imbalance_load[idle], env->imbalance);
11712 break;
11713 case migrate_util:
11714 __schedstat_add(sd->lb_imbalance_util[idle], env->imbalance);
11715 break;
11716 case migrate_task:
11717 __schedstat_add(sd->lb_imbalance_task[idle], env->imbalance);
11718 break;
11719 case migrate_misfit:
11720 __schedstat_add(sd->lb_imbalance_misfit[idle], env->imbalance);
11721 break;
11722 }
11723 }
11724
11725 /*
11726 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11727 * tasks if there is an imbalance.
11728 */
sched_balance_rq(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)11729 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11730 struct sched_domain *sd, enum cpu_idle_type idle,
11731 int *continue_balancing)
11732 {
11733 int ld_moved, cur_ld_moved, active_balance = 0;
11734 struct sched_domain *sd_parent = sd->parent;
11735 struct sched_group *group;
11736 struct rq *busiest;
11737 struct rq_flags rf;
11738 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11739 struct lb_env env = {
11740 .sd = sd,
11741 .dst_cpu = this_cpu,
11742 .dst_rq = this_rq,
11743 .dst_grpmask = group_balance_mask(sd->groups),
11744 .idle = idle,
11745 .loop_break = SCHED_NR_MIGRATE_BREAK,
11746 .cpus = cpus,
11747 .fbq_type = all,
11748 .tasks = LIST_HEAD_INIT(env.tasks),
11749 };
11750
11751 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11752
11753 schedstat_inc(sd->lb_count[idle]);
11754
11755 redo:
11756 if (!should_we_balance(&env)) {
11757 *continue_balancing = 0;
11758 goto out_balanced;
11759 }
11760
11761 group = sched_balance_find_src_group(&env);
11762 if (!group) {
11763 schedstat_inc(sd->lb_nobusyg[idle]);
11764 goto out_balanced;
11765 }
11766
11767 busiest = sched_balance_find_src_rq(&env, group);
11768 if (!busiest) {
11769 schedstat_inc(sd->lb_nobusyq[idle]);
11770 goto out_balanced;
11771 }
11772
11773 WARN_ON_ONCE(busiest == env.dst_rq);
11774
11775 update_lb_imbalance_stat(&env, sd, idle);
11776
11777 env.src_cpu = busiest->cpu;
11778 env.src_rq = busiest;
11779
11780 ld_moved = 0;
11781 /* Clear this flag as soon as we find a pullable task */
11782 env.flags |= LBF_ALL_PINNED;
11783 if (busiest->nr_running > 1) {
11784 /*
11785 * Attempt to move tasks. If sched_balance_find_src_group has found
11786 * an imbalance but busiest->nr_running <= 1, the group is
11787 * still unbalanced. ld_moved simply stays zero, so it is
11788 * correctly treated as an imbalance.
11789 */
11790 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11791
11792 more_balance:
11793 rq_lock_irqsave(busiest, &rf);
11794 update_rq_clock(busiest);
11795
11796 /*
11797 * cur_ld_moved - load moved in current iteration
11798 * ld_moved - cumulative load moved across iterations
11799 */
11800 cur_ld_moved = detach_tasks(&env);
11801
11802 /*
11803 * We've detached some tasks from busiest_rq. Every
11804 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11805 * unlock busiest->lock, and we are able to be sure
11806 * that nobody can manipulate the tasks in parallel.
11807 * See task_rq_lock() family for the details.
11808 */
11809
11810 rq_unlock(busiest, &rf);
11811
11812 if (cur_ld_moved) {
11813 attach_tasks(&env);
11814 ld_moved += cur_ld_moved;
11815 }
11816
11817 local_irq_restore(rf.flags);
11818
11819 if (env.flags & LBF_NEED_BREAK) {
11820 env.flags &= ~LBF_NEED_BREAK;
11821 goto more_balance;
11822 }
11823
11824 /*
11825 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11826 * us and move them to an alternate dst_cpu in our sched_group
11827 * where they can run. The upper limit on how many times we
11828 * iterate on same src_cpu is dependent on number of CPUs in our
11829 * sched_group.
11830 *
11831 * This changes load balance semantics a bit on who can move
11832 * load to a given_cpu. In addition to the given_cpu itself
11833 * (or a ilb_cpu acting on its behalf where given_cpu is
11834 * nohz-idle), we now have balance_cpu in a position to move
11835 * load to given_cpu. In rare situations, this may cause
11836 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11837 * _independently_ and at _same_ time to move some load to
11838 * given_cpu) causing excess load to be moved to given_cpu.
11839 * This however should not happen so much in practice and
11840 * moreover subsequent load balance cycles should correct the
11841 * excess load moved.
11842 */
11843 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11844
11845 /* Prevent to re-select dst_cpu via env's CPUs */
11846 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11847
11848 env.dst_rq = cpu_rq(env.new_dst_cpu);
11849 env.dst_cpu = env.new_dst_cpu;
11850 env.flags &= ~LBF_DST_PINNED;
11851 env.loop = 0;
11852 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11853
11854 /*
11855 * Go back to "more_balance" rather than "redo" since we
11856 * need to continue with same src_cpu.
11857 */
11858 goto more_balance;
11859 }
11860
11861 /*
11862 * We failed to reach balance because of affinity.
11863 */
11864 if (sd_parent) {
11865 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11866
11867 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11868 *group_imbalance = 1;
11869 }
11870
11871 /* All tasks on this runqueue were pinned by CPU affinity */
11872 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11873 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11874 /*
11875 * Attempting to continue load balancing at the current
11876 * sched_domain level only makes sense if there are
11877 * active CPUs remaining as possible busiest CPUs to
11878 * pull load from which are not contained within the
11879 * destination group that is receiving any migrated
11880 * load.
11881 */
11882 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11883 env.loop = 0;
11884 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11885 goto redo;
11886 }
11887 goto out_all_pinned;
11888 }
11889 }
11890
11891 if (!ld_moved) {
11892 schedstat_inc(sd->lb_failed[idle]);
11893 /*
11894 * Increment the failure counter only on periodic balance.
11895 * We do not want newidle balance, which can be very
11896 * frequent, pollute the failure counter causing
11897 * excessive cache_hot migrations and active balances.
11898 *
11899 * Similarly for migration_misfit which is not related to
11900 * load/util migration, don't pollute nr_balance_failed.
11901 */
11902 if (idle != CPU_NEWLY_IDLE &&
11903 env.migration_type != migrate_misfit)
11904 sd->nr_balance_failed++;
11905
11906 if (need_active_balance(&env)) {
11907 unsigned long flags;
11908
11909 raw_spin_rq_lock_irqsave(busiest, flags);
11910
11911 /*
11912 * Don't kick the active_load_balance_cpu_stop,
11913 * if the curr task on busiest CPU can't be
11914 * moved to this_cpu:
11915 */
11916 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11917 raw_spin_rq_unlock_irqrestore(busiest, flags);
11918 goto out_one_pinned;
11919 }
11920
11921 /* Record that we found at least one task that could run on this_cpu */
11922 env.flags &= ~LBF_ALL_PINNED;
11923
11924 /*
11925 * ->active_balance synchronizes accesses to
11926 * ->active_balance_work. Once set, it's cleared
11927 * only after active load balance is finished.
11928 */
11929 if (!busiest->active_balance) {
11930 busiest->active_balance = 1;
11931 busiest->push_cpu = this_cpu;
11932 active_balance = 1;
11933 }
11934
11935 preempt_disable();
11936 raw_spin_rq_unlock_irqrestore(busiest, flags);
11937 if (active_balance) {
11938 stop_one_cpu_nowait(cpu_of(busiest),
11939 active_load_balance_cpu_stop, busiest,
11940 &busiest->active_balance_work);
11941 }
11942 preempt_enable();
11943 }
11944 } else {
11945 sd->nr_balance_failed = 0;
11946 }
11947
11948 if (likely(!active_balance) || need_active_balance(&env)) {
11949 /* We were unbalanced, so reset the balancing interval */
11950 sd->balance_interval = sd->min_interval;
11951 }
11952
11953 goto out;
11954
11955 out_balanced:
11956 /*
11957 * We reach balance although we may have faced some affinity
11958 * constraints. Clear the imbalance flag only if other tasks got
11959 * a chance to move and fix the imbalance.
11960 */
11961 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11962 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11963
11964 if (*group_imbalance)
11965 *group_imbalance = 0;
11966 }
11967
11968 out_all_pinned:
11969 /*
11970 * We reach balance because all tasks are pinned at this level so
11971 * we can't migrate them. Let the imbalance flag set so parent level
11972 * can try to migrate them.
11973 */
11974 schedstat_inc(sd->lb_balanced[idle]);
11975
11976 sd->nr_balance_failed = 0;
11977
11978 out_one_pinned:
11979 ld_moved = 0;
11980
11981 /*
11982 * sched_balance_newidle() disregards balance intervals, so we could
11983 * repeatedly reach this code, which would lead to balance_interval
11984 * skyrocketing in a short amount of time. Skip the balance_interval
11985 * increase logic to avoid that.
11986 *
11987 * Similarly misfit migration which is not necessarily an indication of
11988 * the system being busy and requires lb to backoff to let it settle
11989 * down.
11990 */
11991 if (env.idle == CPU_NEWLY_IDLE ||
11992 env.migration_type == migrate_misfit)
11993 goto out;
11994
11995 /* tune up the balancing interval */
11996 if ((env.flags & LBF_ALL_PINNED &&
11997 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11998 sd->balance_interval < sd->max_interval)
11999 sd->balance_interval *= 2;
12000 out:
12001 return ld_moved;
12002 }
12003
12004 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)12005 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
12006 {
12007 unsigned long interval = sd->balance_interval;
12008
12009 if (cpu_busy)
12010 interval *= sd->busy_factor;
12011
12012 /* scale ms to jiffies */
12013 interval = msecs_to_jiffies(interval);
12014
12015 /*
12016 * Reduce likelihood of busy balancing at higher domains racing with
12017 * balancing at lower domains by preventing their balancing periods
12018 * from being multiples of each other.
12019 */
12020 if (cpu_busy)
12021 interval -= 1;
12022
12023 interval = clamp(interval, 1UL, max_load_balance_interval);
12024
12025 return interval;
12026 }
12027
12028 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)12029 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
12030 {
12031 unsigned long interval, next;
12032
12033 /* used by idle balance, so cpu_busy = 0 */
12034 interval = get_sd_balance_interval(sd, 0);
12035 next = sd->last_balance + interval;
12036
12037 if (time_after(*next_balance, next))
12038 *next_balance = next;
12039 }
12040
12041 /*
12042 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
12043 * running tasks off the busiest CPU onto idle CPUs. It requires at
12044 * least 1 task to be running on each physical CPU where possible, and
12045 * avoids physical / logical imbalances.
12046 */
active_load_balance_cpu_stop(void * data)12047 static int active_load_balance_cpu_stop(void *data)
12048 {
12049 struct rq *busiest_rq = data;
12050 int busiest_cpu = cpu_of(busiest_rq);
12051 int target_cpu = busiest_rq->push_cpu;
12052 struct rq *target_rq = cpu_rq(target_cpu);
12053 struct sched_domain *sd;
12054 struct task_struct *p = NULL;
12055 struct rq_flags rf;
12056
12057 rq_lock_irq(busiest_rq, &rf);
12058 /*
12059 * Between queueing the stop-work and running it is a hole in which
12060 * CPUs can become inactive. We should not move tasks from or to
12061 * inactive CPUs.
12062 */
12063 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12064 goto out_unlock;
12065
12066 /* Make sure the requested CPU hasn't gone down in the meantime: */
12067 if (unlikely(busiest_cpu != smp_processor_id() ||
12068 !busiest_rq->active_balance))
12069 goto out_unlock;
12070
12071 /* Is there any task to move? */
12072 if (busiest_rq->nr_running <= 1)
12073 goto out_unlock;
12074
12075 /*
12076 * This condition is "impossible", if it occurs
12077 * we need to fix it. Originally reported by
12078 * Bjorn Helgaas on a 128-CPU setup.
12079 */
12080 WARN_ON_ONCE(busiest_rq == target_rq);
12081
12082 /* Search for an sd spanning us and the target CPU. */
12083 rcu_read_lock();
12084 for_each_domain(target_cpu, sd) {
12085 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12086 break;
12087 }
12088
12089 if (likely(sd)) {
12090 struct lb_env env = {
12091 .sd = sd,
12092 .dst_cpu = target_cpu,
12093 .dst_rq = target_rq,
12094 .src_cpu = busiest_rq->cpu,
12095 .src_rq = busiest_rq,
12096 .idle = CPU_IDLE,
12097 .flags = LBF_ACTIVE_LB,
12098 };
12099
12100 schedstat_inc(sd->alb_count);
12101 update_rq_clock(busiest_rq);
12102
12103 p = detach_one_task(&env);
12104 if (p) {
12105 schedstat_inc(sd->alb_pushed);
12106 /* Active balancing done, reset the failure counter. */
12107 sd->nr_balance_failed = 0;
12108 } else {
12109 schedstat_inc(sd->alb_failed);
12110 }
12111 }
12112 rcu_read_unlock();
12113 out_unlock:
12114 busiest_rq->active_balance = 0;
12115 rq_unlock(busiest_rq, &rf);
12116
12117 if (p)
12118 attach_one_task(target_rq, p);
12119
12120 local_irq_enable();
12121
12122 return 0;
12123 }
12124
12125 /*
12126 * This flag serializes load-balancing passes over large domains
12127 * (above the NODE topology level) - only one load-balancing instance
12128 * may run at a time, to reduce overhead on very large systems with
12129 * lots of CPUs and large NUMA distances.
12130 *
12131 * - Note that load-balancing passes triggered while another one
12132 * is executing are skipped and not re-tried.
12133 *
12134 * - Also note that this does not serialize rebalance_domains()
12135 * execution, as non-SD_SERIALIZE domains will still be
12136 * load-balanced in parallel.
12137 */
12138 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12139
12140 /*
12141 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12142 * This trades load-balance latency on larger machines for less cross talk.
12143 */
update_max_interval(void)12144 void update_max_interval(void)
12145 {
12146 max_load_balance_interval = HZ*num_online_cpus()/10;
12147 }
12148
update_newidle_cost(struct sched_domain * sd,u64 cost)12149 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12150 {
12151 if (cost > sd->max_newidle_lb_cost) {
12152 /*
12153 * Track max cost of a domain to make sure to not delay the
12154 * next wakeup on the CPU.
12155 *
12156 * sched_balance_newidle() bumps the cost whenever newidle
12157 * balance fails, and we don't want things to grow out of
12158 * control. Use the sysctl_sched_migration_cost as the upper
12159 * limit, plus a litle extra to avoid off by ones.
12160 */
12161 sd->max_newidle_lb_cost =
12162 min(cost, sysctl_sched_migration_cost + 200);
12163 sd->last_decay_max_lb_cost = jiffies;
12164 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12165 /*
12166 * Decay the newidle max times by ~1% per second to ensure that
12167 * it is not outdated and the current max cost is actually
12168 * shorter.
12169 */
12170 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12171 sd->last_decay_max_lb_cost = jiffies;
12172
12173 return true;
12174 }
12175
12176 return false;
12177 }
12178
12179 /*
12180 * It checks each scheduling domain to see if it is due to be balanced,
12181 * and initiates a balancing operation if so.
12182 *
12183 * Balancing parameters are set up in init_sched_domains.
12184 */
sched_balance_domains(struct rq * rq,enum cpu_idle_type idle)12185 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12186 {
12187 int continue_balancing = 1;
12188 int cpu = rq->cpu;
12189 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12190 unsigned long interval;
12191 struct sched_domain *sd;
12192 /* Earliest time when we have to do rebalance again */
12193 unsigned long next_balance = jiffies + 60*HZ;
12194 int update_next_balance = 0;
12195 int need_serialize, need_decay = 0;
12196 u64 max_cost = 0;
12197
12198 rcu_read_lock();
12199 for_each_domain(cpu, sd) {
12200 /*
12201 * Decay the newidle max times here because this is a regular
12202 * visit to all the domains.
12203 */
12204 need_decay = update_newidle_cost(sd, 0);
12205 max_cost += sd->max_newidle_lb_cost;
12206
12207 /*
12208 * Stop the load balance at this level. There is another
12209 * CPU in our sched group which is doing load balancing more
12210 * actively.
12211 */
12212 if (!continue_balancing) {
12213 if (need_decay)
12214 continue;
12215 break;
12216 }
12217
12218 interval = get_sd_balance_interval(sd, busy);
12219
12220 need_serialize = sd->flags & SD_SERIALIZE;
12221 if (need_serialize) {
12222 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12223 goto out;
12224 }
12225
12226 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12227 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12228 /*
12229 * The LBF_DST_PINNED logic could have changed
12230 * env->dst_cpu, so we can't know our idle
12231 * state even if we migrated tasks. Update it.
12232 */
12233 idle = idle_cpu(cpu);
12234 busy = !idle && !sched_idle_cpu(cpu);
12235 }
12236 sd->last_balance = jiffies;
12237 interval = get_sd_balance_interval(sd, busy);
12238 }
12239 if (need_serialize)
12240 atomic_set_release(&sched_balance_running, 0);
12241 out:
12242 if (time_after(next_balance, sd->last_balance + interval)) {
12243 next_balance = sd->last_balance + interval;
12244 update_next_balance = 1;
12245 }
12246 }
12247 if (need_decay) {
12248 /*
12249 * Ensure the rq-wide value also decays but keep it at a
12250 * reasonable floor to avoid funnies with rq->avg_idle.
12251 */
12252 rq->max_idle_balance_cost =
12253 max((u64)sysctl_sched_migration_cost, max_cost);
12254 }
12255 rcu_read_unlock();
12256
12257 /*
12258 * next_balance will be updated only when there is a need.
12259 * When the cpu is attached to null domain for ex, it will not be
12260 * updated.
12261 */
12262 if (likely(update_next_balance))
12263 rq->next_balance = next_balance;
12264
12265 }
12266
on_null_domain(struct rq * rq)12267 static inline int on_null_domain(struct rq *rq)
12268 {
12269 return unlikely(!rcu_dereference_sched(rq->sd));
12270 }
12271
12272 #ifdef CONFIG_NO_HZ_COMMON
12273 /*
12274 * NOHZ idle load balancing (ILB) details:
12275 *
12276 * - When one of the busy CPUs notices that there may be an idle rebalancing
12277 * needed, they will kick the idle load balancer, which then does idle
12278 * load balancing for all the idle CPUs.
12279 */
find_new_ilb(void)12280 static inline int find_new_ilb(void)
12281 {
12282 const struct cpumask *hk_mask;
12283 int ilb_cpu;
12284
12285 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE);
12286
12287 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12288
12289 if (ilb_cpu == smp_processor_id())
12290 continue;
12291
12292 if (idle_cpu(ilb_cpu))
12293 return ilb_cpu;
12294 }
12295
12296 return -1;
12297 }
12298
12299 /*
12300 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12301 * SMP function call (IPI).
12302 *
12303 * We pick the first idle CPU in the HK_TYPE_KERNEL_NOISE housekeeping set
12304 * (if there is one).
12305 */
kick_ilb(unsigned int flags)12306 static void kick_ilb(unsigned int flags)
12307 {
12308 int ilb_cpu;
12309
12310 /*
12311 * Increase nohz.next_balance only when if full ilb is triggered but
12312 * not if we only update stats.
12313 */
12314 if (flags & NOHZ_BALANCE_KICK)
12315 nohz.next_balance = jiffies+1;
12316
12317 ilb_cpu = find_new_ilb();
12318 if (ilb_cpu < 0)
12319 return;
12320
12321 /*
12322 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12323 * i.e. all bits in flags are already set in ilb_cpu.
12324 */
12325 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12326 return;
12327
12328 /*
12329 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12330 * the first flag owns it; cleared by nohz_csd_func().
12331 */
12332 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12333 if (flags & NOHZ_KICK_MASK)
12334 return;
12335
12336 /*
12337 * This way we generate an IPI on the target CPU which
12338 * is idle, and the softirq performing NOHZ idle load balancing
12339 * will be run before returning from the IPI.
12340 */
12341 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12342 }
12343
12344 /*
12345 * Current decision point for kicking the idle load balancer in the presence
12346 * of idle CPUs in the system.
12347 */
nohz_balancer_kick(struct rq * rq)12348 static void nohz_balancer_kick(struct rq *rq)
12349 {
12350 unsigned long now = jiffies;
12351 struct sched_domain_shared *sds;
12352 struct sched_domain *sd;
12353 int nr_busy, i, cpu = rq->cpu;
12354 unsigned int flags = 0;
12355
12356 if (unlikely(rq->idle_balance))
12357 return;
12358
12359 /*
12360 * We may be recently in ticked or tickless idle mode. At the first
12361 * busy tick after returning from idle, we will update the busy stats.
12362 */
12363 nohz_balance_exit_idle(rq);
12364
12365 /*
12366 * None are in tickless mode and hence no need for NOHZ idle load
12367 * balancing:
12368 */
12369 if (likely(!atomic_read(&nohz.nr_cpus)))
12370 return;
12371
12372 if (READ_ONCE(nohz.has_blocked) &&
12373 time_after(now, READ_ONCE(nohz.next_blocked)))
12374 flags = NOHZ_STATS_KICK;
12375
12376 if (time_before(now, nohz.next_balance))
12377 goto out;
12378
12379 if (rq->nr_running >= 2) {
12380 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12381 goto out;
12382 }
12383
12384 rcu_read_lock();
12385
12386 sd = rcu_dereference(rq->sd);
12387 if (sd) {
12388 /*
12389 * If there's a runnable CFS task and the current CPU has reduced
12390 * capacity, kick the ILB to see if there's a better CPU to run on:
12391 */
12392 if (rq->cfs.h_nr_runnable >= 1 && check_cpu_capacity(rq, sd)) {
12393 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12394 goto unlock;
12395 }
12396 }
12397
12398 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12399 if (sd) {
12400 /*
12401 * When ASYM_PACKING; see if there's a more preferred CPU
12402 * currently idle; in which case, kick the ILB to move tasks
12403 * around.
12404 *
12405 * When balancing between cores, all the SMT siblings of the
12406 * preferred CPU must be idle.
12407 */
12408 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12409 if (sched_asym(sd, i, cpu)) {
12410 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12411 goto unlock;
12412 }
12413 }
12414 }
12415
12416 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12417 if (sd) {
12418 /*
12419 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12420 * to run the misfit task on.
12421 */
12422 if (check_misfit_status(rq)) {
12423 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12424 goto unlock;
12425 }
12426
12427 /*
12428 * For asymmetric systems, we do not want to nicely balance
12429 * cache use, instead we want to embrace asymmetry and only
12430 * ensure tasks have enough CPU capacity.
12431 *
12432 * Skip the LLC logic because it's not relevant in that case.
12433 */
12434 goto unlock;
12435 }
12436
12437 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12438 if (sds) {
12439 /*
12440 * If there is an imbalance between LLC domains (IOW we could
12441 * increase the overall cache utilization), we need a less-loaded LLC
12442 * domain to pull some load from. Likewise, we may need to spread
12443 * load within the current LLC domain (e.g. packed SMT cores but
12444 * other CPUs are idle). We can't really know from here how busy
12445 * the others are - so just get a NOHZ balance going if it looks
12446 * like this LLC domain has tasks we could move.
12447 */
12448 nr_busy = atomic_read(&sds->nr_busy_cpus);
12449 if (nr_busy > 1) {
12450 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12451 goto unlock;
12452 }
12453 }
12454 unlock:
12455 rcu_read_unlock();
12456 out:
12457 if (READ_ONCE(nohz.needs_update))
12458 flags |= NOHZ_NEXT_KICK;
12459
12460 if (flags)
12461 kick_ilb(flags);
12462 }
12463
set_cpu_sd_state_busy(int cpu)12464 static void set_cpu_sd_state_busy(int cpu)
12465 {
12466 struct sched_domain *sd;
12467
12468 rcu_read_lock();
12469 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12470
12471 if (!sd || !sd->nohz_idle)
12472 goto unlock;
12473 sd->nohz_idle = 0;
12474
12475 atomic_inc(&sd->shared->nr_busy_cpus);
12476 unlock:
12477 rcu_read_unlock();
12478 }
12479
nohz_balance_exit_idle(struct rq * rq)12480 void nohz_balance_exit_idle(struct rq *rq)
12481 {
12482 WARN_ON_ONCE(rq != this_rq());
12483
12484 if (likely(!rq->nohz_tick_stopped))
12485 return;
12486
12487 rq->nohz_tick_stopped = 0;
12488 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12489 atomic_dec(&nohz.nr_cpus);
12490
12491 set_cpu_sd_state_busy(rq->cpu);
12492 }
12493
set_cpu_sd_state_idle(int cpu)12494 static void set_cpu_sd_state_idle(int cpu)
12495 {
12496 struct sched_domain *sd;
12497
12498 rcu_read_lock();
12499 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12500
12501 if (!sd || sd->nohz_idle)
12502 goto unlock;
12503 sd->nohz_idle = 1;
12504
12505 atomic_dec(&sd->shared->nr_busy_cpus);
12506 unlock:
12507 rcu_read_unlock();
12508 }
12509
12510 /*
12511 * This routine will record that the CPU is going idle with tick stopped.
12512 * This info will be used in performing idle load balancing in the future.
12513 */
nohz_balance_enter_idle(int cpu)12514 void nohz_balance_enter_idle(int cpu)
12515 {
12516 struct rq *rq = cpu_rq(cpu);
12517
12518 WARN_ON_ONCE(cpu != smp_processor_id());
12519
12520 /* If this CPU is going down, then nothing needs to be done: */
12521 if (!cpu_active(cpu))
12522 return;
12523
12524 /*
12525 * Can be set safely without rq->lock held
12526 * If a clear happens, it will have evaluated last additions because
12527 * rq->lock is held during the check and the clear
12528 */
12529 rq->has_blocked_load = 1;
12530
12531 /*
12532 * The tick is still stopped but load could have been added in the
12533 * meantime. We set the nohz.has_blocked flag to trig a check of the
12534 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12535 * of nohz.has_blocked can only happen after checking the new load
12536 */
12537 if (rq->nohz_tick_stopped)
12538 goto out;
12539
12540 /* If we're a completely isolated CPU, we don't play: */
12541 if (on_null_domain(rq))
12542 return;
12543
12544 rq->nohz_tick_stopped = 1;
12545
12546 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12547 atomic_inc(&nohz.nr_cpus);
12548
12549 /*
12550 * Ensures that if nohz_idle_balance() fails to observe our
12551 * @idle_cpus_mask store, it must observe the @has_blocked
12552 * and @needs_update stores.
12553 */
12554 smp_mb__after_atomic();
12555
12556 set_cpu_sd_state_idle(cpu);
12557
12558 WRITE_ONCE(nohz.needs_update, 1);
12559 out:
12560 /*
12561 * Each time a cpu enter idle, we assume that it has blocked load and
12562 * enable the periodic update of the load of idle CPUs
12563 */
12564 WRITE_ONCE(nohz.has_blocked, 1);
12565 }
12566
update_nohz_stats(struct rq * rq)12567 static bool update_nohz_stats(struct rq *rq)
12568 {
12569 unsigned int cpu = rq->cpu;
12570
12571 if (!rq->has_blocked_load)
12572 return false;
12573
12574 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12575 return false;
12576
12577 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12578 return true;
12579
12580 sched_balance_update_blocked_averages(cpu);
12581
12582 return rq->has_blocked_load;
12583 }
12584
12585 /*
12586 * Internal function that runs load balance for all idle CPUs. The load balance
12587 * can be a simple update of blocked load or a complete load balance with
12588 * tasks movement depending of flags.
12589 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags)12590 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12591 {
12592 /* Earliest time when we have to do rebalance again */
12593 unsigned long now = jiffies;
12594 unsigned long next_balance = now + 60*HZ;
12595 bool has_blocked_load = false;
12596 int update_next_balance = 0;
12597 int this_cpu = this_rq->cpu;
12598 int balance_cpu;
12599 struct rq *rq;
12600
12601 WARN_ON_ONCE((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12602
12603 /*
12604 * We assume there will be no idle load after this update and clear
12605 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12606 * set the has_blocked flag and trigger another update of idle load.
12607 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12608 * setting the flag, we are sure to not clear the state and not
12609 * check the load of an idle cpu.
12610 *
12611 * Same applies to idle_cpus_mask vs needs_update.
12612 */
12613 if (flags & NOHZ_STATS_KICK)
12614 WRITE_ONCE(nohz.has_blocked, 0);
12615 if (flags & NOHZ_NEXT_KICK)
12616 WRITE_ONCE(nohz.needs_update, 0);
12617
12618 /*
12619 * Ensures that if we miss the CPU, we must see the has_blocked
12620 * store from nohz_balance_enter_idle().
12621 */
12622 smp_mb();
12623
12624 /*
12625 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12626 * chance for other idle cpu to pull load.
12627 */
12628 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12629 if (!idle_cpu(balance_cpu))
12630 continue;
12631
12632 /*
12633 * If this CPU gets work to do, stop the load balancing
12634 * work being done for other CPUs. Next load
12635 * balancing owner will pick it up.
12636 */
12637 if (!idle_cpu(this_cpu) && need_resched()) {
12638 if (flags & NOHZ_STATS_KICK)
12639 has_blocked_load = true;
12640 if (flags & NOHZ_NEXT_KICK)
12641 WRITE_ONCE(nohz.needs_update, 1);
12642 goto abort;
12643 }
12644
12645 rq = cpu_rq(balance_cpu);
12646
12647 if (flags & NOHZ_STATS_KICK)
12648 has_blocked_load |= update_nohz_stats(rq);
12649
12650 /*
12651 * If time for next balance is due,
12652 * do the balance.
12653 */
12654 if (time_after_eq(jiffies, rq->next_balance)) {
12655 struct rq_flags rf;
12656
12657 rq_lock_irqsave(rq, &rf);
12658 update_rq_clock(rq);
12659 rq_unlock_irqrestore(rq, &rf);
12660
12661 if (flags & NOHZ_BALANCE_KICK)
12662 sched_balance_domains(rq, CPU_IDLE);
12663 }
12664
12665 if (time_after(next_balance, rq->next_balance)) {
12666 next_balance = rq->next_balance;
12667 update_next_balance = 1;
12668 }
12669 }
12670
12671 /*
12672 * next_balance will be updated only when there is a need.
12673 * When the CPU is attached to null domain for ex, it will not be
12674 * updated.
12675 */
12676 if (likely(update_next_balance))
12677 nohz.next_balance = next_balance;
12678
12679 if (flags & NOHZ_STATS_KICK)
12680 WRITE_ONCE(nohz.next_blocked,
12681 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12682
12683 abort:
12684 /* There is still blocked load, enable periodic update */
12685 if (has_blocked_load)
12686 WRITE_ONCE(nohz.has_blocked, 1);
12687 }
12688
12689 /*
12690 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12691 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12692 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12693 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12694 {
12695 unsigned int flags = this_rq->nohz_idle_balance;
12696
12697 if (!flags)
12698 return false;
12699
12700 this_rq->nohz_idle_balance = 0;
12701
12702 if (idle != CPU_IDLE)
12703 return false;
12704
12705 _nohz_idle_balance(this_rq, flags);
12706
12707 return true;
12708 }
12709
12710 /*
12711 * Check if we need to directly run the ILB for updating blocked load before
12712 * entering idle state. Here we run ILB directly without issuing IPIs.
12713 *
12714 * Note that when this function is called, the tick may not yet be stopped on
12715 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12716 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12717 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12718 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12719 * called from this function on (this) CPU that's not yet in the mask. That's
12720 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12721 * updating the blocked load of already idle CPUs without waking up one of
12722 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12723 * cpu about to enter idle, because it can take a long time.
12724 */
nohz_run_idle_balance(int cpu)12725 void nohz_run_idle_balance(int cpu)
12726 {
12727 unsigned int flags;
12728
12729 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12730
12731 /*
12732 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12733 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12734 */
12735 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12736 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12737 }
12738
nohz_newidle_balance(struct rq * this_rq)12739 static void nohz_newidle_balance(struct rq *this_rq)
12740 {
12741 int this_cpu = this_rq->cpu;
12742
12743 /* Will wake up very soon. No time for doing anything else*/
12744 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12745 return;
12746
12747 /* Don't need to update blocked load of idle CPUs*/
12748 if (!READ_ONCE(nohz.has_blocked) ||
12749 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12750 return;
12751
12752 /*
12753 * Set the need to trigger ILB in order to update blocked load
12754 * before entering idle state.
12755 */
12756 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12757 }
12758
12759 #else /* !CONFIG_NO_HZ_COMMON: */
nohz_balancer_kick(struct rq * rq)12760 static inline void nohz_balancer_kick(struct rq *rq) { }
12761
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)12762 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12763 {
12764 return false;
12765 }
12766
nohz_newidle_balance(struct rq * this_rq)12767 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12768 #endif /* !CONFIG_NO_HZ_COMMON */
12769
12770 /*
12771 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12772 * idle. Attempts to pull tasks from other CPUs.
12773 *
12774 * Returns:
12775 * < 0 - we released the lock and there are !fair tasks present
12776 * 0 - failed, no new tasks
12777 * > 0 - success, new (fair) tasks present
12778 */
sched_balance_newidle(struct rq * this_rq,struct rq_flags * rf)12779 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12780 {
12781 unsigned long next_balance = jiffies + HZ;
12782 int this_cpu = this_rq->cpu;
12783 int continue_balancing = 1;
12784 u64 t0, t1, curr_cost = 0;
12785 struct sched_domain *sd;
12786 int pulled_task = 0;
12787
12788 update_misfit_status(NULL, this_rq);
12789
12790 /*
12791 * There is a task waiting to run. No need to search for one.
12792 * Return 0; the task will be enqueued when switching to idle.
12793 */
12794 if (this_rq->ttwu_pending)
12795 return 0;
12796
12797 /*
12798 * We must set idle_stamp _before_ calling sched_balance_rq()
12799 * for CPU_NEWLY_IDLE, such that we measure the this duration
12800 * as idle time.
12801 */
12802 this_rq->idle_stamp = rq_clock(this_rq);
12803
12804 /*
12805 * Do not pull tasks towards !active CPUs...
12806 */
12807 if (!cpu_active(this_cpu))
12808 return 0;
12809
12810 /*
12811 * This is OK, because current is on_cpu, which avoids it being picked
12812 * for load-balance and preemption/IRQs are still disabled avoiding
12813 * further scheduler activity on it and we're being very careful to
12814 * re-start the picking loop.
12815 */
12816 rq_unpin_lock(this_rq, rf);
12817
12818 rcu_read_lock();
12819 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12820
12821 if (!get_rd_overloaded(this_rq->rd) ||
12822 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12823
12824 if (sd)
12825 update_next_balance(sd, &next_balance);
12826 rcu_read_unlock();
12827
12828 goto out;
12829 }
12830 rcu_read_unlock();
12831
12832 raw_spin_rq_unlock(this_rq);
12833
12834 t0 = sched_clock_cpu(this_cpu);
12835 sched_balance_update_blocked_averages(this_cpu);
12836
12837 rcu_read_lock();
12838 for_each_domain(this_cpu, sd) {
12839 u64 domain_cost;
12840
12841 update_next_balance(sd, &next_balance);
12842
12843 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12844 break;
12845
12846 if (sd->flags & SD_BALANCE_NEWIDLE) {
12847
12848 pulled_task = sched_balance_rq(this_cpu, this_rq,
12849 sd, CPU_NEWLY_IDLE,
12850 &continue_balancing);
12851
12852 t1 = sched_clock_cpu(this_cpu);
12853 domain_cost = t1 - t0;
12854 curr_cost += domain_cost;
12855 t0 = t1;
12856
12857 /*
12858 * Failing newidle means it is not effective;
12859 * bump the cost so we end up doing less of it.
12860 */
12861 if (!pulled_task)
12862 domain_cost = (3 * sd->max_newidle_lb_cost) / 2;
12863
12864 update_newidle_cost(sd, domain_cost);
12865 }
12866
12867 /*
12868 * Stop searching for tasks to pull if there are
12869 * now runnable tasks on this rq.
12870 */
12871 if (pulled_task || !continue_balancing)
12872 break;
12873 }
12874 rcu_read_unlock();
12875
12876 raw_spin_rq_lock(this_rq);
12877
12878 if (curr_cost > this_rq->max_idle_balance_cost)
12879 this_rq->max_idle_balance_cost = curr_cost;
12880
12881 /*
12882 * While browsing the domains, we released the rq lock, a task could
12883 * have been enqueued in the meantime. Since we're not going idle,
12884 * pretend we pulled a task.
12885 */
12886 if (this_rq->cfs.h_nr_queued && !pulled_task)
12887 pulled_task = 1;
12888
12889 /* Is there a task of a high priority class? */
12890 if (this_rq->nr_running != this_rq->cfs.h_nr_queued)
12891 pulled_task = -1;
12892
12893 out:
12894 /* Move the next balance forward */
12895 if (time_after(this_rq->next_balance, next_balance))
12896 this_rq->next_balance = next_balance;
12897
12898 if (pulled_task)
12899 this_rq->idle_stamp = 0;
12900 else
12901 nohz_newidle_balance(this_rq);
12902
12903 rq_repin_lock(this_rq, rf);
12904
12905 return pulled_task;
12906 }
12907
12908 /*
12909 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12910 *
12911 * - directly from the local sched_tick() for periodic load balancing
12912 *
12913 * - indirectly from a remote sched_tick() for NOHZ idle balancing
12914 * through the SMP cross-call nohz_csd_func()
12915 */
sched_balance_softirq(void)12916 static __latent_entropy void sched_balance_softirq(void)
12917 {
12918 struct rq *this_rq = this_rq();
12919 enum cpu_idle_type idle = this_rq->idle_balance;
12920 /*
12921 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12922 * balancing on behalf of the other idle CPUs whose ticks are
12923 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12924 * give the idle CPUs a chance to load balance. Else we may
12925 * load balance only within the local sched_domain hierarchy
12926 * and abort nohz_idle_balance altogether if we pull some load.
12927 */
12928 if (nohz_idle_balance(this_rq, idle))
12929 return;
12930
12931 /* normal load balance */
12932 sched_balance_update_blocked_averages(this_rq->cpu);
12933 sched_balance_domains(this_rq, idle);
12934 }
12935
12936 /*
12937 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12938 */
sched_balance_trigger(struct rq * rq)12939 void sched_balance_trigger(struct rq *rq)
12940 {
12941 /*
12942 * Don't need to rebalance while attached to NULL domain or
12943 * runqueue CPU is not active
12944 */
12945 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12946 return;
12947
12948 if (time_after_eq(jiffies, rq->next_balance))
12949 raise_softirq(SCHED_SOFTIRQ);
12950
12951 nohz_balancer_kick(rq);
12952 }
12953
rq_online_fair(struct rq * rq)12954 static void rq_online_fair(struct rq *rq)
12955 {
12956 update_sysctl();
12957
12958 update_runtime_enabled(rq);
12959 }
12960
rq_offline_fair(struct rq * rq)12961 static void rq_offline_fair(struct rq *rq)
12962 {
12963 update_sysctl();
12964
12965 /* Ensure any throttled groups are reachable by pick_next_task */
12966 unthrottle_offline_cfs_rqs(rq);
12967
12968 /* Ensure that we remove rq contribution to group share: */
12969 clear_tg_offline_cfs_rqs(rq);
12970 }
12971
12972 #ifdef CONFIG_SCHED_CORE
12973 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)12974 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12975 {
12976 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12977 u64 slice = se->slice;
12978
12979 return (rtime * min_nr_tasks > slice);
12980 }
12981
12982 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)12983 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12984 {
12985 if (!sched_core_enabled(rq))
12986 return;
12987
12988 /*
12989 * If runqueue has only one task which used up its slice and
12990 * if the sibling is forced idle, then trigger schedule to
12991 * give forced idle task a chance.
12992 *
12993 * sched_slice() considers only this active rq and it gets the
12994 * whole slice. But during force idle, we have siblings acting
12995 * like a single runqueue and hence we need to consider runnable
12996 * tasks on this CPU and the forced idle CPU. Ideally, we should
12997 * go through the forced idle rq, but that would be a perf hit.
12998 * We can assume that the forced idle CPU has at least
12999 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
13000 * if we need to give up the CPU.
13001 */
13002 if (rq->core->core_forceidle_count && rq->cfs.nr_queued == 1 &&
13003 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
13004 resched_curr(rq);
13005 }
13006
13007 /*
13008 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
13009 */
se_fi_update(const struct sched_entity * se,unsigned int fi_seq,bool forceidle)13010 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
13011 bool forceidle)
13012 {
13013 for_each_sched_entity(se) {
13014 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13015
13016 if (forceidle) {
13017 if (cfs_rq->forceidle_seq == fi_seq)
13018 break;
13019 cfs_rq->forceidle_seq = fi_seq;
13020 }
13021
13022 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
13023 }
13024 }
13025
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)13026 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
13027 {
13028 struct sched_entity *se = &p->se;
13029
13030 if (p->sched_class != &fair_sched_class)
13031 return;
13032
13033 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
13034 }
13035
cfs_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)13036 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
13037 bool in_fi)
13038 {
13039 struct rq *rq = task_rq(a);
13040 const struct sched_entity *sea = &a->se;
13041 const struct sched_entity *seb = &b->se;
13042 struct cfs_rq *cfs_rqa;
13043 struct cfs_rq *cfs_rqb;
13044 s64 delta;
13045
13046 WARN_ON_ONCE(task_rq(b)->core != rq->core);
13047
13048 #ifdef CONFIG_FAIR_GROUP_SCHED
13049 /*
13050 * Find an se in the hierarchy for tasks a and b, such that the se's
13051 * are immediate siblings.
13052 */
13053 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
13054 int sea_depth = sea->depth;
13055 int seb_depth = seb->depth;
13056
13057 if (sea_depth >= seb_depth)
13058 sea = parent_entity(sea);
13059 if (sea_depth <= seb_depth)
13060 seb = parent_entity(seb);
13061 }
13062
13063 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13064 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13065
13066 cfs_rqa = sea->cfs_rq;
13067 cfs_rqb = seb->cfs_rq;
13068 #else /* !CONFIG_FAIR_GROUP_SCHED: */
13069 cfs_rqa = &task_rq(a)->cfs;
13070 cfs_rqb = &task_rq(b)->cfs;
13071 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13072
13073 /*
13074 * Find delta after normalizing se's vruntime with its cfs_rq's
13075 * min_vruntime_fi, which would have been updated in prior calls
13076 * to se_fi_update().
13077 */
13078 delta = (s64)(sea->vruntime - seb->vruntime) +
13079 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13080
13081 return delta > 0;
13082 }
13083
task_is_throttled_fair(struct task_struct * p,int cpu)13084 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13085 {
13086 struct cfs_rq *cfs_rq;
13087
13088 #ifdef CONFIG_FAIR_GROUP_SCHED
13089 cfs_rq = task_group(p)->cfs_rq[cpu];
13090 #else
13091 cfs_rq = &cpu_rq(cpu)->cfs;
13092 #endif
13093 return throttled_hierarchy(cfs_rq);
13094 }
13095 #else /* !CONFIG_SCHED_CORE: */
task_tick_core(struct rq * rq,struct task_struct * curr)13096 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13097 #endif /* !CONFIG_SCHED_CORE */
13098
13099 /*
13100 * scheduler tick hitting a task of our scheduling class.
13101 *
13102 * NOTE: This function can be called remotely by the tick offload that
13103 * goes along full dynticks. Therefore no local assumption can be made
13104 * and everything must be accessed through the @rq and @curr passed in
13105 * parameters.
13106 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)13107 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13108 {
13109 struct cfs_rq *cfs_rq;
13110 struct sched_entity *se = &curr->se;
13111
13112 for_each_sched_entity(se) {
13113 cfs_rq = cfs_rq_of(se);
13114 entity_tick(cfs_rq, se, queued);
13115 }
13116
13117 if (static_branch_unlikely(&sched_numa_balancing))
13118 task_tick_numa(rq, curr);
13119
13120 update_misfit_status(curr, rq);
13121 check_update_overutilized_status(task_rq(curr));
13122
13123 task_tick_core(rq, curr);
13124 }
13125
13126 /*
13127 * called on fork with the child task as argument from the parent's context
13128 * - child not yet on the tasklist
13129 * - preemption disabled
13130 */
task_fork_fair(struct task_struct * p)13131 static void task_fork_fair(struct task_struct *p)
13132 {
13133 set_task_max_allowed_capacity(p);
13134 }
13135
13136 /*
13137 * Priority of the task has changed. Check to see if we preempt
13138 * the current task.
13139 */
13140 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)13141 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13142 {
13143 if (!task_on_rq_queued(p))
13144 return;
13145
13146 if (rq->cfs.nr_queued == 1)
13147 return;
13148
13149 /*
13150 * Reschedule if we are currently running on this runqueue and
13151 * our priority decreased, or if we are not currently running on
13152 * this runqueue and our priority is higher than the current's
13153 */
13154 if (task_current_donor(rq, p)) {
13155 if (p->prio > oldprio)
13156 resched_curr(rq);
13157 } else
13158 wakeup_preempt(rq, p, 0);
13159 }
13160
13161 #ifdef CONFIG_FAIR_GROUP_SCHED
13162 /*
13163 * Propagate the changes of the sched_entity across the tg tree to make it
13164 * visible to the root
13165 */
propagate_entity_cfs_rq(struct sched_entity * se)13166 static void propagate_entity_cfs_rq(struct sched_entity *se)
13167 {
13168 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13169
13170 /*
13171 * If a task gets attached to this cfs_rq and before being queued,
13172 * it gets migrated to another CPU due to reasons like affinity
13173 * change, make sure this cfs_rq stays on leaf cfs_rq list to have
13174 * that removed load decayed or it can cause faireness problem.
13175 */
13176 if (!cfs_rq_pelt_clock_throttled(cfs_rq))
13177 list_add_leaf_cfs_rq(cfs_rq);
13178
13179 /* Start to propagate at parent */
13180 se = se->parent;
13181
13182 for_each_sched_entity(se) {
13183 cfs_rq = cfs_rq_of(se);
13184
13185 update_load_avg(cfs_rq, se, UPDATE_TG);
13186
13187 if (!cfs_rq_pelt_clock_throttled(cfs_rq))
13188 list_add_leaf_cfs_rq(cfs_rq);
13189 }
13190 }
13191 #else /* !CONFIG_FAIR_GROUP_SCHED: */
propagate_entity_cfs_rq(struct sched_entity * se)13192 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13193 #endif /* !CONFIG_FAIR_GROUP_SCHED */
13194
detach_entity_cfs_rq(struct sched_entity * se)13195 static void detach_entity_cfs_rq(struct sched_entity *se)
13196 {
13197 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13198
13199 /*
13200 * In case the task sched_avg hasn't been attached:
13201 * - A forked task which hasn't been woken up by wake_up_new_task().
13202 * - A task which has been woken up by try_to_wake_up() but is
13203 * waiting for actually being woken up by sched_ttwu_pending().
13204 */
13205 if (!se->avg.last_update_time)
13206 return;
13207
13208 /* Catch up with the cfs_rq and remove our load when we leave */
13209 update_load_avg(cfs_rq, se, 0);
13210 detach_entity_load_avg(cfs_rq, se);
13211 update_tg_load_avg(cfs_rq);
13212 propagate_entity_cfs_rq(se);
13213 }
13214
attach_entity_cfs_rq(struct sched_entity * se)13215 static void attach_entity_cfs_rq(struct sched_entity *se)
13216 {
13217 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13218
13219 /* Synchronize entity with its cfs_rq */
13220 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13221 attach_entity_load_avg(cfs_rq, se);
13222 update_tg_load_avg(cfs_rq);
13223 propagate_entity_cfs_rq(se);
13224 }
13225
detach_task_cfs_rq(struct task_struct * p)13226 static void detach_task_cfs_rq(struct task_struct *p)
13227 {
13228 struct sched_entity *se = &p->se;
13229
13230 detach_entity_cfs_rq(se);
13231 }
13232
attach_task_cfs_rq(struct task_struct * p)13233 static void attach_task_cfs_rq(struct task_struct *p)
13234 {
13235 struct sched_entity *se = &p->se;
13236
13237 attach_entity_cfs_rq(se);
13238 }
13239
switched_from_fair(struct rq * rq,struct task_struct * p)13240 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13241 {
13242 detach_task_cfs_rq(p);
13243 }
13244
switched_to_fair(struct rq * rq,struct task_struct * p)13245 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13246 {
13247 WARN_ON_ONCE(p->se.sched_delayed);
13248
13249 attach_task_cfs_rq(p);
13250
13251 set_task_max_allowed_capacity(p);
13252
13253 if (task_on_rq_queued(p)) {
13254 /*
13255 * We were most likely switched from sched_rt, so
13256 * kick off the schedule if running, otherwise just see
13257 * if we can still preempt the current task.
13258 */
13259 if (task_current_donor(rq, p))
13260 resched_curr(rq);
13261 else
13262 wakeup_preempt(rq, p, 0);
13263 }
13264 }
13265
__set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13266 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13267 {
13268 struct sched_entity *se = &p->se;
13269
13270 if (task_on_rq_queued(p)) {
13271 /*
13272 * Move the next running task to the front of the list, so our
13273 * cfs_tasks list becomes MRU one.
13274 */
13275 list_move(&se->group_node, &rq->cfs_tasks);
13276 }
13277 if (!first)
13278 return;
13279
13280 WARN_ON_ONCE(se->sched_delayed);
13281
13282 if (hrtick_enabled_fair(rq))
13283 hrtick_start_fair(rq, p);
13284
13285 update_misfit_status(p, rq);
13286 sched_fair_update_stop_tick(rq, p);
13287 }
13288
13289 /*
13290 * Account for a task changing its policy or group.
13291 *
13292 * This routine is mostly called to set cfs_rq->curr field when a task
13293 * migrates between groups/classes.
13294 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)13295 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13296 {
13297 struct sched_entity *se = &p->se;
13298
13299 for_each_sched_entity(se) {
13300 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13301
13302 set_next_entity(cfs_rq, se);
13303 /* ensure bandwidth has been allocated on our new cfs_rq */
13304 account_cfs_rq_runtime(cfs_rq, 0);
13305 }
13306
13307 __set_next_task_fair(rq, p, first);
13308 }
13309
init_cfs_rq(struct cfs_rq * cfs_rq)13310 void init_cfs_rq(struct cfs_rq *cfs_rq)
13311 {
13312 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13313 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13314 raw_spin_lock_init(&cfs_rq->removed.lock);
13315 }
13316
13317 #ifdef CONFIG_FAIR_GROUP_SCHED
task_change_group_fair(struct task_struct * p)13318 static void task_change_group_fair(struct task_struct *p)
13319 {
13320 /*
13321 * We couldn't detach or attach a forked task which
13322 * hasn't been woken up by wake_up_new_task().
13323 */
13324 if (READ_ONCE(p->__state) == TASK_NEW)
13325 return;
13326
13327 detach_task_cfs_rq(p);
13328
13329 /* Tell se's cfs_rq has been changed -- migrated */
13330 p->se.avg.last_update_time = 0;
13331 set_task_rq(p, task_cpu(p));
13332 attach_task_cfs_rq(p);
13333 }
13334
free_fair_sched_group(struct task_group * tg)13335 void free_fair_sched_group(struct task_group *tg)
13336 {
13337 int i;
13338
13339 for_each_possible_cpu(i) {
13340 if (tg->cfs_rq)
13341 kfree(tg->cfs_rq[i]);
13342 if (tg->se)
13343 kfree(tg->se[i]);
13344 }
13345
13346 kfree(tg->cfs_rq);
13347 kfree(tg->se);
13348 }
13349
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)13350 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13351 {
13352 struct sched_entity *se;
13353 struct cfs_rq *cfs_rq;
13354 int i;
13355
13356 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13357 if (!tg->cfs_rq)
13358 goto err;
13359 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13360 if (!tg->se)
13361 goto err;
13362
13363 tg->shares = NICE_0_LOAD;
13364
13365 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13366
13367 for_each_possible_cpu(i) {
13368 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13369 GFP_KERNEL, cpu_to_node(i));
13370 if (!cfs_rq)
13371 goto err;
13372
13373 se = kzalloc_node(sizeof(struct sched_entity_stats),
13374 GFP_KERNEL, cpu_to_node(i));
13375 if (!se)
13376 goto err_free_rq;
13377
13378 init_cfs_rq(cfs_rq);
13379 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13380 init_entity_runnable_average(se);
13381 }
13382
13383 return 1;
13384
13385 err_free_rq:
13386 kfree(cfs_rq);
13387 err:
13388 return 0;
13389 }
13390
online_fair_sched_group(struct task_group * tg)13391 void online_fair_sched_group(struct task_group *tg)
13392 {
13393 struct sched_entity *se;
13394 struct rq_flags rf;
13395 struct rq *rq;
13396 int i;
13397
13398 for_each_possible_cpu(i) {
13399 rq = cpu_rq(i);
13400 se = tg->se[i];
13401 rq_lock_irq(rq, &rf);
13402 update_rq_clock(rq);
13403 attach_entity_cfs_rq(se);
13404 sync_throttle(tg, i);
13405 rq_unlock_irq(rq, &rf);
13406 }
13407 }
13408
unregister_fair_sched_group(struct task_group * tg)13409 void unregister_fair_sched_group(struct task_group *tg)
13410 {
13411 int cpu;
13412
13413 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13414
13415 for_each_possible_cpu(cpu) {
13416 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13417 struct sched_entity *se = tg->se[cpu];
13418 struct rq *rq = cpu_rq(cpu);
13419
13420 if (se) {
13421 if (se->sched_delayed) {
13422 guard(rq_lock_irqsave)(rq);
13423 if (se->sched_delayed) {
13424 update_rq_clock(rq);
13425 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13426 }
13427 list_del_leaf_cfs_rq(cfs_rq);
13428 }
13429 remove_entity_load_avg(se);
13430 }
13431
13432 /*
13433 * Only empty task groups can be destroyed; so we can speculatively
13434 * check on_list without danger of it being re-added.
13435 */
13436 if (cfs_rq->on_list) {
13437 guard(rq_lock_irqsave)(rq);
13438 list_del_leaf_cfs_rq(cfs_rq);
13439 }
13440 }
13441 }
13442
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)13443 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13444 struct sched_entity *se, int cpu,
13445 struct sched_entity *parent)
13446 {
13447 struct rq *rq = cpu_rq(cpu);
13448
13449 cfs_rq->tg = tg;
13450 cfs_rq->rq = rq;
13451 init_cfs_rq_runtime(cfs_rq);
13452
13453 tg->cfs_rq[cpu] = cfs_rq;
13454 tg->se[cpu] = se;
13455
13456 /* se could be NULL for root_task_group */
13457 if (!se)
13458 return;
13459
13460 if (!parent) {
13461 se->cfs_rq = &rq->cfs;
13462 se->depth = 0;
13463 } else {
13464 se->cfs_rq = parent->my_q;
13465 se->depth = parent->depth + 1;
13466 }
13467
13468 se->my_q = cfs_rq;
13469 /* guarantee group entities always have weight */
13470 update_load_set(&se->load, NICE_0_LOAD);
13471 se->parent = parent;
13472 }
13473
13474 static DEFINE_MUTEX(shares_mutex);
13475
__sched_group_set_shares(struct task_group * tg,unsigned long shares)13476 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13477 {
13478 int i;
13479
13480 lockdep_assert_held(&shares_mutex);
13481
13482 /*
13483 * We can't change the weight of the root cgroup.
13484 */
13485 if (!tg->se[0])
13486 return -EINVAL;
13487
13488 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13489
13490 if (tg->shares == shares)
13491 return 0;
13492
13493 tg->shares = shares;
13494 for_each_possible_cpu(i) {
13495 struct rq *rq = cpu_rq(i);
13496 struct sched_entity *se = tg->se[i];
13497 struct rq_flags rf;
13498
13499 /* Propagate contribution to hierarchy */
13500 rq_lock_irqsave(rq, &rf);
13501 update_rq_clock(rq);
13502 for_each_sched_entity(se) {
13503 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13504 update_cfs_group(se);
13505 }
13506 rq_unlock_irqrestore(rq, &rf);
13507 }
13508
13509 return 0;
13510 }
13511
sched_group_set_shares(struct task_group * tg,unsigned long shares)13512 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13513 {
13514 int ret;
13515
13516 mutex_lock(&shares_mutex);
13517 if (tg_is_idle(tg))
13518 ret = -EINVAL;
13519 else
13520 ret = __sched_group_set_shares(tg, shares);
13521 mutex_unlock(&shares_mutex);
13522
13523 return ret;
13524 }
13525
sched_group_set_idle(struct task_group * tg,long idle)13526 int sched_group_set_idle(struct task_group *tg, long idle)
13527 {
13528 int i;
13529
13530 if (tg == &root_task_group)
13531 return -EINVAL;
13532
13533 if (idle < 0 || idle > 1)
13534 return -EINVAL;
13535
13536 mutex_lock(&shares_mutex);
13537
13538 if (tg->idle == idle) {
13539 mutex_unlock(&shares_mutex);
13540 return 0;
13541 }
13542
13543 tg->idle = idle;
13544
13545 for_each_possible_cpu(i) {
13546 struct rq *rq = cpu_rq(i);
13547 struct sched_entity *se = tg->se[i];
13548 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
13549 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13550 long idle_task_delta;
13551 struct rq_flags rf;
13552
13553 rq_lock_irqsave(rq, &rf);
13554
13555 grp_cfs_rq->idle = idle;
13556 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13557 goto next_cpu;
13558
13559 idle_task_delta = grp_cfs_rq->h_nr_queued -
13560 grp_cfs_rq->h_nr_idle;
13561 if (!cfs_rq_is_idle(grp_cfs_rq))
13562 idle_task_delta *= -1;
13563
13564 for_each_sched_entity(se) {
13565 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13566
13567 if (!se->on_rq)
13568 break;
13569
13570 cfs_rq->h_nr_idle += idle_task_delta;
13571
13572 /* Already accounted at parent level and above. */
13573 if (cfs_rq_is_idle(cfs_rq))
13574 break;
13575 }
13576
13577 next_cpu:
13578 rq_unlock_irqrestore(rq, &rf);
13579 }
13580
13581 /* Idle groups have minimum weight. */
13582 if (tg_is_idle(tg))
13583 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13584 else
13585 __sched_group_set_shares(tg, NICE_0_LOAD);
13586
13587 mutex_unlock(&shares_mutex);
13588 return 0;
13589 }
13590
13591 #endif /* CONFIG_FAIR_GROUP_SCHED */
13592
13593
get_rr_interval_fair(struct rq * rq,struct task_struct * task)13594 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13595 {
13596 struct sched_entity *se = &task->se;
13597 unsigned int rr_interval = 0;
13598
13599 /*
13600 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13601 * idle runqueue:
13602 */
13603 if (rq->cfs.load.weight)
13604 rr_interval = NS_TO_JIFFIES(se->slice);
13605
13606 return rr_interval;
13607 }
13608
13609 /*
13610 * All the scheduling class methods:
13611 */
13612 DEFINE_SCHED_CLASS(fair) = {
13613
13614 .enqueue_task = enqueue_task_fair,
13615 .dequeue_task = dequeue_task_fair,
13616 .yield_task = yield_task_fair,
13617 .yield_to_task = yield_to_task_fair,
13618
13619 .wakeup_preempt = check_preempt_wakeup_fair,
13620
13621 .pick_task = pick_task_fair,
13622 .pick_next_task = __pick_next_task_fair,
13623 .put_prev_task = put_prev_task_fair,
13624 .set_next_task = set_next_task_fair,
13625
13626 .balance = balance_fair,
13627 .select_task_rq = select_task_rq_fair,
13628 .migrate_task_rq = migrate_task_rq_fair,
13629
13630 .rq_online = rq_online_fair,
13631 .rq_offline = rq_offline_fair,
13632
13633 .task_dead = task_dead_fair,
13634 .set_cpus_allowed = set_cpus_allowed_fair,
13635
13636 .task_tick = task_tick_fair,
13637 .task_fork = task_fork_fair,
13638
13639 .reweight_task = reweight_task_fair,
13640 .prio_changed = prio_changed_fair,
13641 .switched_from = switched_from_fair,
13642 .switched_to = switched_to_fair,
13643
13644 .get_rr_interval = get_rr_interval_fair,
13645
13646 .update_curr = update_curr_fair,
13647
13648 #ifdef CONFIG_FAIR_GROUP_SCHED
13649 .task_change_group = task_change_group_fair,
13650 #endif
13651
13652 #ifdef CONFIG_SCHED_CORE
13653 .task_is_throttled = task_is_throttled_fair,
13654 #endif
13655
13656 #ifdef CONFIG_UCLAMP_TASK
13657 .uclamp_enabled = 1,
13658 #endif
13659 };
13660
print_cfs_stats(struct seq_file * m,int cpu)13661 void print_cfs_stats(struct seq_file *m, int cpu)
13662 {
13663 struct cfs_rq *cfs_rq, *pos;
13664
13665 rcu_read_lock();
13666 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13667 print_cfs_rq(m, cpu, cfs_rq);
13668 rcu_read_unlock();
13669 }
13670
13671 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)13672 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13673 {
13674 int node;
13675 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13676 struct numa_group *ng;
13677
13678 rcu_read_lock();
13679 ng = rcu_dereference(p->numa_group);
13680 for_each_online_node(node) {
13681 if (p->numa_faults) {
13682 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13683 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13684 }
13685 if (ng) {
13686 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13687 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13688 }
13689 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13690 }
13691 rcu_read_unlock();
13692 }
13693 #endif /* CONFIG_NUMA_BALANCING */
13694
init_sched_fair_class(void)13695 __init void init_sched_fair_class(void)
13696 {
13697 int i;
13698
13699 for_each_possible_cpu(i) {
13700 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13701 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13702 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13703 GFP_KERNEL, cpu_to_node(i));
13704
13705 #ifdef CONFIG_CFS_BANDWIDTH
13706 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13707 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13708 #endif
13709 }
13710
13711 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13712
13713 #ifdef CONFIG_NO_HZ_COMMON
13714 nohz.next_balance = jiffies;
13715 nohz.next_blocked = jiffies;
13716 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13717 #endif
13718 }
13719