xref: /linux/fs/f2fs/node.h (revision 86d563ac5fb0c6f404e82692581bb67a6f35e5de)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/node.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 /* start node id of a node block dedicated to the given node id */
9 #define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10 
11 /* node block offset on the NAT area dedicated to the given start node id */
12 #define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13 
14 /* # of pages to perform synchronous readahead before building free nids */
15 #define FREE_NID_PAGES	8
16 #define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17 
18 /* size of free nid batch when shrinking */
19 #define SHRINK_NID_BATCH_SIZE	8
20 
21 #define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
22 
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE		128
25 
26 /* control the memory footprint threshold (10MB per 1GB ram) */
27 #define DEF_RAM_THRESHOLD	1
28 
29 /* control dirty nats ratio threshold (default: 10% over max nid count) */
30 #define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
31 /* control total # of nats */
32 #define DEF_NAT_CACHE_THRESHOLD			100000
33 
34 /* control total # of node writes used for roll-forward recovery */
35 #define DEF_RF_NODE_BLOCKS			0
36 
37 /* vector size for gang look-up from nat cache that consists of radix tree */
38 #define NAT_VEC_SIZE	32
39 
40 /* return value for read_node_page */
41 #define LOCKED_PAGE	1
42 
43 /* check pinned file's alignment status of physical blocks */
44 #define FILE_NOT_ALIGNED	1
45 
46 /* For flag in struct node_info */
47 enum {
48 	IS_CHECKPOINTED,	/* is it checkpointed before? */
49 	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
50 	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
51 	IS_DIRTY,		/* this nat entry is dirty? */
52 	IS_PREALLOC,		/* nat entry is preallocated */
53 };
54 
55 /* For node type in __get_node_folio() */
56 enum node_type {
57 	NODE_TYPE_REGULAR,
58 	NODE_TYPE_INODE,
59 	NODE_TYPE_XATTR,
60 	NODE_TYPE_NON_INODE,
61 };
62 
63 /*
64  * For node information
65  */
66 struct node_info {
67 	nid_t nid;		/* node id */
68 	nid_t ino;		/* inode number of the node's owner */
69 	block_t	blk_addr;	/* block address of the node */
70 	unsigned char version;	/* version of the node */
71 	unsigned char flag;	/* for node information bits */
72 };
73 
74 struct nat_entry {
75 	struct list_head list;	/* for clean or dirty nat list */
76 	struct node_info ni;	/* in-memory node information */
77 };
78 
79 #define nat_get_nid(nat)		((nat)->ni.nid)
80 #define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
81 #define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
82 #define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
83 #define nat_get_ino(nat)		((nat)->ni.ino)
84 #define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
85 #define nat_get_version(nat)		((nat)->ni.version)
86 #define nat_set_version(nat, v)		((nat)->ni.version = (v))
87 
88 #define inc_node_version(version)	(++(version))
89 
copy_node_info(struct node_info * dst,struct node_info * src)90 static inline void copy_node_info(struct node_info *dst,
91 						struct node_info *src)
92 {
93 	dst->nid = src->nid;
94 	dst->ino = src->ino;
95 	dst->blk_addr = src->blk_addr;
96 	dst->version = src->version;
97 	/* should not copy flag here */
98 }
99 
set_nat_flag(struct nat_entry * ne,unsigned int type,bool set)100 static inline void set_nat_flag(struct nat_entry *ne,
101 				unsigned int type, bool set)
102 {
103 	if (set)
104 		ne->ni.flag |= BIT(type);
105 	else
106 		ne->ni.flag &= ~BIT(type);
107 }
108 
get_nat_flag(struct nat_entry * ne,unsigned int type)109 static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
110 {
111 	return ne->ni.flag & BIT(type);
112 }
113 
nat_reset_flag(struct nat_entry * ne)114 static inline void nat_reset_flag(struct nat_entry *ne)
115 {
116 	/* these states can be set only after checkpoint was done */
117 	set_nat_flag(ne, IS_CHECKPOINTED, true);
118 	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
119 	set_nat_flag(ne, HAS_LAST_FSYNC, true);
120 }
121 
node_info_from_raw_nat(struct node_info * ni,struct f2fs_nat_entry * raw_ne)122 static inline void node_info_from_raw_nat(struct node_info *ni,
123 						struct f2fs_nat_entry *raw_ne)
124 {
125 	ni->ino = le32_to_cpu(raw_ne->ino);
126 	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
127 	ni->version = raw_ne->version;
128 }
129 
raw_nat_from_node_info(struct f2fs_nat_entry * raw_ne,struct node_info * ni)130 static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
131 						struct node_info *ni)
132 {
133 	raw_ne->ino = cpu_to_le32(ni->ino);
134 	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
135 	raw_ne->version = ni->version;
136 }
137 
excess_dirty_nats(struct f2fs_sb_info * sbi)138 static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
139 {
140 	return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
141 					NM_I(sbi)->dirty_nats_ratio / 100;
142 }
143 
excess_cached_nats(struct f2fs_sb_info * sbi)144 static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
145 {
146 	return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
147 }
148 
149 enum mem_type {
150 	FREE_NIDS,	/* indicates the free nid list */
151 	NAT_ENTRIES,	/* indicates the cached nat entry */
152 	DIRTY_DENTS,	/* indicates dirty dentry pages */
153 	INO_ENTRIES,	/* indicates inode entries */
154 	READ_EXTENT_CACHE,	/* indicates read extent cache */
155 	AGE_EXTENT_CACHE,	/* indicates age extent cache */
156 	DISCARD_CACHE,	/* indicates memory of cached discard cmds */
157 	COMPRESS_PAGE,	/* indicates memory of cached compressed pages */
158 	BASE_CHECK,	/* check kernel status */
159 };
160 
161 struct nat_entry_set {
162 	struct list_head set_list;	/* link with other nat sets */
163 	struct list_head entry_list;	/* link with dirty nat entries */
164 	nid_t set;			/* set number*/
165 	unsigned int entry_cnt;		/* the # of nat entries in set */
166 };
167 
168 struct free_nid {
169 	struct list_head list;	/* for free node id list */
170 	nid_t nid;		/* node id */
171 	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
172 };
173 
next_free_nid(struct f2fs_sb_info * sbi,nid_t * nid)174 static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
175 {
176 	struct f2fs_nm_info *nm_i = NM_I(sbi);
177 	struct free_nid *fnid;
178 
179 	spin_lock(&nm_i->nid_list_lock);
180 	if (nm_i->nid_cnt[FREE_NID] <= 0) {
181 		spin_unlock(&nm_i->nid_list_lock);
182 		return;
183 	}
184 	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
185 	*nid = fnid->nid;
186 	spin_unlock(&nm_i->nid_list_lock);
187 }
188 
189 /*
190  * inline functions
191  */
get_nat_bitmap(struct f2fs_sb_info * sbi,void * addr)192 static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
193 {
194 	struct f2fs_nm_info *nm_i = NM_I(sbi);
195 
196 #ifdef CONFIG_F2FS_CHECK_FS
197 	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
198 						nm_i->bitmap_size))
199 		f2fs_bug_on(sbi, 1);
200 #endif
201 	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
202 }
203 
current_nat_addr(struct f2fs_sb_info * sbi,nid_t start)204 static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
205 {
206 	struct f2fs_nm_info *nm_i = NM_I(sbi);
207 	pgoff_t block_off;
208 	pgoff_t block_addr;
209 
210 	/*
211 	 * block_off = segment_off * 512 + off_in_segment
212 	 * OLD = (segment_off * 512) * 2 + off_in_segment
213 	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
214 	 */
215 	block_off = NAT_BLOCK_OFFSET(start);
216 
217 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
218 		(block_off << 1) -
219 		(block_off & (BLKS_PER_SEG(sbi) - 1)));
220 
221 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
222 		block_addr += BLKS_PER_SEG(sbi);
223 
224 	return block_addr;
225 }
226 
next_nat_addr(struct f2fs_sb_info * sbi,pgoff_t block_addr)227 static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
228 						pgoff_t block_addr)
229 {
230 	struct f2fs_nm_info *nm_i = NM_I(sbi);
231 
232 	block_addr -= nm_i->nat_blkaddr;
233 	block_addr ^= BIT(sbi->log_blocks_per_seg);
234 	return block_addr + nm_i->nat_blkaddr;
235 }
236 
set_to_next_nat(struct f2fs_nm_info * nm_i,nid_t start_nid)237 static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
238 {
239 	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
240 
241 	f2fs_change_bit(block_off, nm_i->nat_bitmap);
242 #ifdef CONFIG_F2FS_CHECK_FS
243 	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
244 #endif
245 }
246 
ino_of_node(const struct folio * node_folio)247 static inline nid_t ino_of_node(const struct folio *node_folio)
248 {
249 	struct f2fs_node *rn = F2FS_NODE(node_folio);
250 	return le32_to_cpu(rn->footer.ino);
251 }
252 
nid_of_node(const struct folio * node_folio)253 static inline nid_t nid_of_node(const struct folio *node_folio)
254 {
255 	struct f2fs_node *rn = F2FS_NODE(node_folio);
256 	return le32_to_cpu(rn->footer.nid);
257 }
258 
ofs_of_node(const struct folio * node_folio)259 static inline unsigned int ofs_of_node(const struct folio *node_folio)
260 {
261 	struct f2fs_node *rn = F2FS_NODE(node_folio);
262 	unsigned flag = le32_to_cpu(rn->footer.flag);
263 	return flag >> OFFSET_BIT_SHIFT;
264 }
265 
cpver_of_node(const struct folio * node_folio)266 static inline __u64 cpver_of_node(const struct folio *node_folio)
267 {
268 	struct f2fs_node *rn = F2FS_NODE(node_folio);
269 	return le64_to_cpu(rn->footer.cp_ver);
270 }
271 
next_blkaddr_of_node(const struct folio * node_folio)272 static inline block_t next_blkaddr_of_node(const struct folio *node_folio)
273 {
274 	struct f2fs_node *rn = F2FS_NODE(node_folio);
275 	return le32_to_cpu(rn->footer.next_blkaddr);
276 }
277 
fill_node_footer(const struct folio * folio,nid_t nid,nid_t ino,unsigned int ofs,bool reset)278 static inline void fill_node_footer(const struct folio *folio, nid_t nid,
279 				nid_t ino, unsigned int ofs, bool reset)
280 {
281 	struct f2fs_node *rn = F2FS_NODE(folio);
282 	unsigned int old_flag = 0;
283 
284 	if (reset)
285 		memset(rn, 0, sizeof(*rn));
286 	else
287 		old_flag = le32_to_cpu(rn->footer.flag);
288 
289 	rn->footer.nid = cpu_to_le32(nid);
290 	rn->footer.ino = cpu_to_le32(ino);
291 
292 	/* should remain old flag bits such as COLD_BIT_SHIFT */
293 	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
294 					(old_flag & OFFSET_BIT_MASK));
295 }
296 
copy_node_footer(const struct folio * dst,const struct folio * src)297 static inline void copy_node_footer(const struct folio *dst,
298 		const struct folio *src)
299 {
300 	struct f2fs_node *src_rn = F2FS_NODE(src);
301 	struct f2fs_node *dst_rn = F2FS_NODE(dst);
302 	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
303 }
304 
fill_node_footer_blkaddr(struct folio * folio,block_t blkaddr)305 static inline void fill_node_footer_blkaddr(struct folio *folio, block_t blkaddr)
306 {
307 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_F_SB(folio));
308 	struct f2fs_node *rn = F2FS_NODE(folio);
309 	__u64 cp_ver = cur_cp_version(ckpt);
310 
311 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
312 		cp_ver |= (cur_cp_crc(ckpt) << 32);
313 
314 	rn->footer.cp_ver = cpu_to_le64(cp_ver);
315 	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
316 }
317 
is_recoverable_dnode(const struct folio * folio)318 static inline bool is_recoverable_dnode(const struct folio *folio)
319 {
320 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_F_SB(folio));
321 	__u64 cp_ver = cur_cp_version(ckpt);
322 
323 	/* Don't care crc part, if fsck.f2fs sets it. */
324 	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
325 		return (cp_ver << 32) == (cpver_of_node(folio) << 32);
326 
327 	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
328 		cp_ver |= (cur_cp_crc(ckpt) << 32);
329 
330 	return cp_ver == cpver_of_node(folio);
331 }
332 
333 /*
334  * f2fs assigns the following node offsets described as (num).
335  * N = NIDS_PER_BLOCK
336  *
337  *  Inode block (0)
338  *    |- direct node (1)
339  *    |- direct node (2)
340  *    |- indirect node (3)
341  *    |            `- direct node (4 => 4 + N - 1)
342  *    |- indirect node (4 + N)
343  *    |            `- direct node (5 + N => 5 + 2N - 1)
344  *    `- double indirect node (5 + 2N)
345  *                 `- indirect node (6 + 2N)
346  *                       `- direct node
347  *                 ......
348  *                 `- indirect node ((6 + 2N) + x(N + 1))
349  *                       `- direct node
350  *                 ......
351  *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
352  *                       `- direct node
353  */
IS_DNODE(const struct folio * node_folio)354 static inline bool IS_DNODE(const struct folio *node_folio)
355 {
356 	unsigned int ofs = ofs_of_node(node_folio);
357 
358 	if (f2fs_has_xattr_block(ofs))
359 		return true;
360 
361 	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
362 			ofs == 5 + 2 * NIDS_PER_BLOCK)
363 		return false;
364 	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
365 		ofs -= 6 + 2 * NIDS_PER_BLOCK;
366 		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
367 			return false;
368 	}
369 	return true;
370 }
371 
set_nid(struct folio * folio,int off,nid_t nid,bool i)372 static inline int set_nid(struct folio *folio, int off, nid_t nid, bool i)
373 {
374 	struct f2fs_node *rn = F2FS_NODE(folio);
375 
376 	f2fs_folio_wait_writeback(folio, NODE, true, true);
377 
378 	if (i)
379 		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
380 	else
381 		rn->in.nid[off] = cpu_to_le32(nid);
382 	return folio_mark_dirty(folio);
383 }
384 
get_nid(const struct folio * folio,int off,bool i)385 static inline nid_t get_nid(const struct folio *folio, int off, bool i)
386 {
387 	struct f2fs_node *rn = F2FS_NODE(folio);
388 
389 	if (i)
390 		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
391 	return le32_to_cpu(rn->in.nid[off]);
392 }
393 
394 /*
395  * Coldness identification:
396  *  - Mark cold files in f2fs_inode_info
397  *  - Mark cold node blocks in their node footer
398  *  - Mark cold data pages in page cache
399  */
400 
is_node(const struct folio * folio,int type)401 static inline int is_node(const struct folio *folio, int type)
402 {
403 	struct f2fs_node *rn = F2FS_NODE(folio);
404 	return le32_to_cpu(rn->footer.flag) & BIT(type);
405 }
406 
407 #define is_cold_node(folio)	is_node(folio, COLD_BIT_SHIFT)
408 #define is_fsync_dnode(folio)	is_node(folio, FSYNC_BIT_SHIFT)
409 #define is_dent_dnode(folio)	is_node(folio, DENT_BIT_SHIFT)
410 
set_cold_node(const struct folio * folio,bool is_dir)411 static inline void set_cold_node(const struct folio *folio, bool is_dir)
412 {
413 	struct f2fs_node *rn = F2FS_NODE(folio);
414 	unsigned int flag = le32_to_cpu(rn->footer.flag);
415 
416 	if (is_dir)
417 		flag &= ~BIT(COLD_BIT_SHIFT);
418 	else
419 		flag |= BIT(COLD_BIT_SHIFT);
420 	rn->footer.flag = cpu_to_le32(flag);
421 }
422 
set_mark(struct folio * folio,int mark,int type)423 static inline void set_mark(struct folio *folio, int mark, int type)
424 {
425 	struct f2fs_node *rn = F2FS_NODE(folio);
426 	unsigned int flag = le32_to_cpu(rn->footer.flag);
427 	if (mark)
428 		flag |= BIT(type);
429 	else
430 		flag &= ~BIT(type);
431 	rn->footer.flag = cpu_to_le32(flag);
432 
433 #ifdef CONFIG_F2FS_CHECK_FS
434 	f2fs_inode_chksum_set(F2FS_F_SB(folio), folio);
435 #endif
436 }
437 #define set_dentry_mark(folio, mark)	set_mark(folio, mark, DENT_BIT_SHIFT)
438 #define set_fsync_mark(folio, mark)	set_mark(folio, mark, FSYNC_BIT_SHIFT)
439