1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/kstack_erase.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 #include <linux/unwind_deferred.h>
109
110 #include <asm/pgalloc.h>
111 #include <linux/uaccess.h>
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115
116 /* For dup_mmap(). */
117 #include "../mm/internal.h"
118
119 #include <trace/events/sched.h>
120
121 #define CREATE_TRACE_POINTS
122 #include <trace/events/task.h>
123
124 #include <kunit/visibility.h>
125
126 /*
127 * Minimum number of threads to boot the kernel
128 */
129 #define MIN_THREADS 20
130
131 /*
132 * Maximum number of threads
133 */
134 #define MAX_THREADS FUTEX_TID_MASK
135
136 /*
137 * Protected counters by write_lock_irq(&tasklist_lock)
138 */
139 unsigned long total_forks; /* Handle normal Linux uptimes. */
140 int nr_threads; /* The idle threads do not count.. */
141
142 static int max_threads; /* tunable limit on nr_threads */
143
144 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
145
146 static const char * const resident_page_types[] = {
147 NAMED_ARRAY_INDEX(MM_FILEPAGES),
148 NAMED_ARRAY_INDEX(MM_ANONPAGES),
149 NAMED_ARRAY_INDEX(MM_SWAPENTS),
150 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
151 };
152
153 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
154
155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
156
157 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)158 int lockdep_tasklist_lock_is_held(void)
159 {
160 return lockdep_is_held(&tasklist_lock);
161 }
162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
163 #endif /* #ifdef CONFIG_PROVE_RCU */
164
nr_processes(void)165 int nr_processes(void)
166 {
167 int cpu;
168 int total = 0;
169
170 for_each_possible_cpu(cpu)
171 total += per_cpu(process_counts, cpu);
172
173 return total;
174 }
175
arch_release_task_struct(struct task_struct * tsk)176 void __weak arch_release_task_struct(struct task_struct *tsk)
177 {
178 }
179
180 static struct kmem_cache *task_struct_cachep;
181
alloc_task_struct_node(int node)182 static inline struct task_struct *alloc_task_struct_node(int node)
183 {
184 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
185 }
186
free_task_struct(struct task_struct * tsk)187 static inline void free_task_struct(struct task_struct *tsk)
188 {
189 kmem_cache_free(task_struct_cachep, tsk);
190 }
191
192 #ifdef CONFIG_VMAP_STACK
193 /*
194 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195 * flush. Try to minimize the number of calls by caching stacks.
196 */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 /*
200 * Allocated stacks are cached and later reused by new threads, so memcg
201 * accounting is performed by the code assigning/releasing stacks to tasks.
202 * We need a zeroed memory without __GFP_ACCOUNT.
203 */
204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO)
205
206 struct vm_stack {
207 struct rcu_head rcu;
208 struct vm_struct *stack_vm_area;
209 };
210
try_release_thread_stack_to_cache(struct vm_struct * vm_area)211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area)
212 {
213 unsigned int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *tmp = NULL;
217
218 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area))
219 return true;
220 }
221 return false;
222 }
223
thread_stack_free_rcu(struct rcu_head * rh)224 static void thread_stack_free_rcu(struct rcu_head *rh)
225 {
226 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
227 struct vm_struct *vm_area = vm_stack->stack_vm_area;
228
229 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
230 return;
231
232 vfree(vm_area->addr);
233 }
234
thread_stack_delayed_free(struct task_struct * tsk)235 static void thread_stack_delayed_free(struct task_struct *tsk)
236 {
237 struct vm_stack *vm_stack = tsk->stack;
238
239 vm_stack->stack_vm_area = tsk->stack_vm_area;
240 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
241 }
242
free_vm_stack_cache(unsigned int cpu)243 static int free_vm_stack_cache(unsigned int cpu)
244 {
245 struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu);
246 int i;
247
248 for (i = 0; i < NR_CACHED_STACKS; i++) {
249 struct vm_struct *vm_area = cached_vm_stack_areas[i];
250
251 if (!vm_area)
252 continue;
253
254 vfree(vm_area->addr);
255 cached_vm_stack_areas[i] = NULL;
256 }
257
258 return 0;
259 }
260
memcg_charge_kernel_stack(struct vm_struct * vm_area)261 static int memcg_charge_kernel_stack(struct vm_struct *vm_area)
262 {
263 int i;
264 int ret;
265 int nr_charged = 0;
266
267 BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE);
268
269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
270 ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0);
271 if (ret)
272 goto err;
273 nr_charged++;
274 }
275 return 0;
276 err:
277 for (i = 0; i < nr_charged; i++)
278 memcg_kmem_uncharge_page(vm_area->pages[i], 0);
279 return ret;
280 }
281
alloc_thread_stack_node(struct task_struct * tsk,int node)282 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
283 {
284 struct vm_struct *vm_area;
285 void *stack;
286 int i;
287
288 for (i = 0; i < NR_CACHED_STACKS; i++) {
289 vm_area = this_cpu_xchg(cached_stacks[i], NULL);
290 if (!vm_area)
291 continue;
292
293 /* Reset stack metadata. */
294 kasan_unpoison_range(vm_area->addr, THREAD_SIZE);
295
296 stack = kasan_reset_tag(vm_area->addr);
297
298 /* Clear stale pointers from reused stack. */
299 memset(stack, 0, THREAD_SIZE);
300
301 if (memcg_charge_kernel_stack(vm_area)) {
302 vfree(vm_area->addr);
303 return -ENOMEM;
304 }
305
306 tsk->stack_vm_area = vm_area;
307 tsk->stack = stack;
308 return 0;
309 }
310
311 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
312 GFP_VMAP_STACK,
313 node, __builtin_return_address(0));
314 if (!stack)
315 return -ENOMEM;
316
317 vm_area = find_vm_area(stack);
318 if (memcg_charge_kernel_stack(vm_area)) {
319 vfree(stack);
320 return -ENOMEM;
321 }
322 /*
323 * We can't call find_vm_area() in interrupt context, and
324 * free_thread_stack() can be called in interrupt context,
325 * so cache the vm_struct.
326 */
327 tsk->stack_vm_area = vm_area;
328 stack = kasan_reset_tag(stack);
329 tsk->stack = stack;
330 return 0;
331 }
332
free_thread_stack(struct task_struct * tsk)333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 thread_stack_delayed_free(tsk);
337
338 tsk->stack = NULL;
339 tsk->stack_vm_area = NULL;
340 }
341
342 #else /* !CONFIG_VMAP_STACK */
343
344 /*
345 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
346 * kmemcache based allocator.
347 */
348 #if THREAD_SIZE >= PAGE_SIZE
349
thread_stack_free_rcu(struct rcu_head * rh)350 static void thread_stack_free_rcu(struct rcu_head *rh)
351 {
352 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
353 }
354
thread_stack_delayed_free(struct task_struct * tsk)355 static void thread_stack_delayed_free(struct task_struct *tsk)
356 {
357 struct rcu_head *rh = tsk->stack;
358
359 call_rcu(rh, thread_stack_free_rcu);
360 }
361
alloc_thread_stack_node(struct task_struct * tsk,int node)362 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
363 {
364 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
365 THREAD_SIZE_ORDER);
366
367 if (likely(page)) {
368 tsk->stack = kasan_reset_tag(page_address(page));
369 return 0;
370 }
371 return -ENOMEM;
372 }
373
free_thread_stack(struct task_struct * tsk)374 static void free_thread_stack(struct task_struct *tsk)
375 {
376 thread_stack_delayed_free(tsk);
377 tsk->stack = NULL;
378 }
379
380 #else /* !(THREAD_SIZE >= PAGE_SIZE) */
381
382 static struct kmem_cache *thread_stack_cache;
383
thread_stack_free_rcu(struct rcu_head * rh)384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 kmem_cache_free(thread_stack_cache, rh);
387 }
388
thread_stack_delayed_free(struct task_struct * tsk)389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 struct rcu_head *rh = tsk->stack;
392
393 call_rcu(rh, thread_stack_free_rcu);
394 }
395
alloc_thread_stack_node(struct task_struct * tsk,int node)396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 unsigned long *stack;
399 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 stack = kasan_reset_tag(stack);
401 tsk->stack = stack;
402 return stack ? 0 : -ENOMEM;
403 }
404
free_thread_stack(struct task_struct * tsk)405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 thread_stack_delayed_free(tsk);
408 tsk->stack = NULL;
409 }
410
thread_stack_cache_init(void)411 void thread_stack_cache_init(void)
412 {
413 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 THREAD_SIZE, THREAD_SIZE, 0, 0,
415 THREAD_SIZE, NULL);
416 BUG_ON(thread_stack_cache == NULL);
417 }
418
419 #endif /* THREAD_SIZE >= PAGE_SIZE */
420 #endif /* CONFIG_VMAP_STACK */
421
422 /* SLAB cache for signal_struct structures (tsk->signal) */
423 static struct kmem_cache *signal_cachep;
424
425 /* SLAB cache for sighand_struct structures (tsk->sighand) */
426 struct kmem_cache *sighand_cachep;
427
428 /* SLAB cache for files_struct structures (tsk->files) */
429 struct kmem_cache *files_cachep;
430
431 /* SLAB cache for fs_struct structures (tsk->fs) */
432 struct kmem_cache *fs_cachep;
433
434 /* SLAB cache for mm_struct structures (tsk->mm) */
435 static struct kmem_cache *mm_cachep;
436
account_kernel_stack(struct task_struct * tsk,int account)437 static void account_kernel_stack(struct task_struct *tsk, int account)
438 {
439 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
440 struct vm_struct *vm_area = task_stack_vm_area(tsk);
441 int i;
442
443 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
444 mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB,
445 account * (PAGE_SIZE / 1024));
446 } else {
447 void *stack = task_stack_page(tsk);
448
449 /* All stack pages are in the same node. */
450 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
451 account * (THREAD_SIZE / 1024));
452 }
453 }
454
exit_task_stack_account(struct task_struct * tsk)455 void exit_task_stack_account(struct task_struct *tsk)
456 {
457 account_kernel_stack(tsk, -1);
458
459 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
460 struct vm_struct *vm_area;
461 int i;
462
463 vm_area = task_stack_vm_area(tsk);
464 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
465 memcg_kmem_uncharge_page(vm_area->pages[i], 0);
466 }
467 }
468
release_task_stack(struct task_struct * tsk)469 static void release_task_stack(struct task_struct *tsk)
470 {
471 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
472 return; /* Better to leak the stack than to free prematurely */
473
474 free_thread_stack(tsk);
475 }
476
477 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)478 void put_task_stack(struct task_struct *tsk)
479 {
480 if (refcount_dec_and_test(&tsk->stack_refcount))
481 release_task_stack(tsk);
482 }
483 #endif
484
free_task(struct task_struct * tsk)485 void free_task(struct task_struct *tsk)
486 {
487 #ifdef CONFIG_SECCOMP
488 WARN_ON_ONCE(tsk->seccomp.filter);
489 #endif
490 release_user_cpus_ptr(tsk);
491 scs_release(tsk);
492
493 #ifndef CONFIG_THREAD_INFO_IN_TASK
494 /*
495 * The task is finally done with both the stack and thread_info,
496 * so free both.
497 */
498 release_task_stack(tsk);
499 #else
500 /*
501 * If the task had a separate stack allocation, it should be gone
502 * by now.
503 */
504 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
505 #endif
506 rt_mutex_debug_task_free(tsk);
507 ftrace_graph_exit_task(tsk);
508 arch_release_task_struct(tsk);
509 if (tsk->flags & PF_KTHREAD)
510 free_kthread_struct(tsk);
511 bpf_task_storage_free(tsk);
512 free_task_struct(tsk);
513 }
514 EXPORT_SYMBOL(free_task);
515
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)516 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
517 {
518 struct file *exe_file;
519
520 exe_file = get_mm_exe_file(oldmm);
521 RCU_INIT_POINTER(mm->exe_file, exe_file);
522 /*
523 * We depend on the oldmm having properly denied write access to the
524 * exe_file already.
525 */
526 if (exe_file && exe_file_deny_write_access(exe_file))
527 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
528 }
529
530 #ifdef CONFIG_MMU
mm_alloc_pgd(struct mm_struct * mm)531 static inline int mm_alloc_pgd(struct mm_struct *mm)
532 {
533 mm->pgd = pgd_alloc(mm);
534 if (unlikely(!mm->pgd))
535 return -ENOMEM;
536 return 0;
537 }
538
mm_free_pgd(struct mm_struct * mm)539 static inline void mm_free_pgd(struct mm_struct *mm)
540 {
541 pgd_free(mm, mm->pgd);
542 }
543 #else
544 #define mm_alloc_pgd(mm) (0)
545 #define mm_free_pgd(mm)
546 #endif /* CONFIG_MMU */
547
548 #ifdef CONFIG_MM_ID
549 static DEFINE_IDA(mm_ida);
550
mm_alloc_id(struct mm_struct * mm)551 static inline int mm_alloc_id(struct mm_struct *mm)
552 {
553 int ret;
554
555 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
556 if (ret < 0)
557 return ret;
558 mm->mm_id = ret;
559 return 0;
560 }
561
mm_free_id(struct mm_struct * mm)562 static inline void mm_free_id(struct mm_struct *mm)
563 {
564 const mm_id_t id = mm->mm_id;
565
566 mm->mm_id = MM_ID_DUMMY;
567 if (id == MM_ID_DUMMY)
568 return;
569 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
570 return;
571 ida_free(&mm_ida, id);
572 }
573 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)574 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)575 static inline void mm_free_id(struct mm_struct *mm) {}
576 #endif /* CONFIG_MM_ID */
577
check_mm(struct mm_struct * mm)578 static void check_mm(struct mm_struct *mm)
579 {
580 int i;
581
582 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
583 "Please make sure 'struct resident_page_types[]' is updated as well");
584
585 for (i = 0; i < NR_MM_COUNTERS; i++) {
586 long x = percpu_counter_sum(&mm->rss_stat[i]);
587
588 if (unlikely(x))
589 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
590 mm, resident_page_types[i], x);
591 }
592
593 if (mm_pgtables_bytes(mm))
594 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
595 mm_pgtables_bytes(mm));
596
597 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
598 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
599 #endif
600 }
601
602 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
603 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
604
do_check_lazy_tlb(void * arg)605 static void do_check_lazy_tlb(void *arg)
606 {
607 struct mm_struct *mm = arg;
608
609 WARN_ON_ONCE(current->active_mm == mm);
610 }
611
do_shoot_lazy_tlb(void * arg)612 static void do_shoot_lazy_tlb(void *arg)
613 {
614 struct mm_struct *mm = arg;
615
616 if (current->active_mm == mm) {
617 WARN_ON_ONCE(current->mm);
618 current->active_mm = &init_mm;
619 switch_mm(mm, &init_mm, current);
620 }
621 }
622
cleanup_lazy_tlbs(struct mm_struct * mm)623 static void cleanup_lazy_tlbs(struct mm_struct *mm)
624 {
625 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
626 /*
627 * In this case, lazy tlb mms are refounted and would not reach
628 * __mmdrop until all CPUs have switched away and mmdrop()ed.
629 */
630 return;
631 }
632
633 /*
634 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
635 * requires lazy mm users to switch to another mm when the refcount
636 * drops to zero, before the mm is freed. This requires IPIs here to
637 * switch kernel threads to init_mm.
638 *
639 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
640 * switch with the final userspace teardown TLB flush which leaves the
641 * mm lazy on this CPU but no others, reducing the need for additional
642 * IPIs here. There are cases where a final IPI is still required here,
643 * such as the final mmdrop being performed on a different CPU than the
644 * one exiting, or kernel threads using the mm when userspace exits.
645 *
646 * IPI overheads have not found to be expensive, but they could be
647 * reduced in a number of possible ways, for example (roughly
648 * increasing order of complexity):
649 * - The last lazy reference created by exit_mm() could instead switch
650 * to init_mm, however it's probable this will run on the same CPU
651 * immediately afterwards, so this may not reduce IPIs much.
652 * - A batch of mms requiring IPIs could be gathered and freed at once.
653 * - CPUs store active_mm where it can be remotely checked without a
654 * lock, to filter out false-positives in the cpumask.
655 * - After mm_users or mm_count reaches zero, switching away from the
656 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
657 * with some batching or delaying of the final IPIs.
658 * - A delayed freeing and RCU-like quiescing sequence based on mm
659 * switching to avoid IPIs completely.
660 */
661 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
662 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
663 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
664 }
665
666 /*
667 * Called when the last reference to the mm
668 * is dropped: either by a lazy thread or by
669 * mmput. Free the page directory and the mm.
670 */
__mmdrop(struct mm_struct * mm)671 void __mmdrop(struct mm_struct *mm)
672 {
673 BUG_ON(mm == &init_mm);
674 WARN_ON_ONCE(mm == current->mm);
675
676 /* Ensure no CPUs are using this as their lazy tlb mm */
677 cleanup_lazy_tlbs(mm);
678
679 WARN_ON_ONCE(mm == current->active_mm);
680 mm_free_pgd(mm);
681 mm_free_id(mm);
682 destroy_context(mm);
683 mmu_notifier_subscriptions_destroy(mm);
684 check_mm(mm);
685 put_user_ns(mm->user_ns);
686 mm_pasid_drop(mm);
687 mm_destroy_cid(mm);
688 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
689
690 free_mm(mm);
691 }
692 EXPORT_SYMBOL_GPL(__mmdrop);
693
mmdrop_async_fn(struct work_struct * work)694 static void mmdrop_async_fn(struct work_struct *work)
695 {
696 struct mm_struct *mm;
697
698 mm = container_of(work, struct mm_struct, async_put_work);
699 __mmdrop(mm);
700 }
701
mmdrop_async(struct mm_struct * mm)702 static void mmdrop_async(struct mm_struct *mm)
703 {
704 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
705 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
706 schedule_work(&mm->async_put_work);
707 }
708 }
709
free_signal_struct(struct signal_struct * sig)710 static inline void free_signal_struct(struct signal_struct *sig)
711 {
712 taskstats_tgid_free(sig);
713 sched_autogroup_exit(sig);
714 /*
715 * __mmdrop is not safe to call from softirq context on x86 due to
716 * pgd_dtor so postpone it to the async context
717 */
718 if (sig->oom_mm)
719 mmdrop_async(sig->oom_mm);
720 kmem_cache_free(signal_cachep, sig);
721 }
722
put_signal_struct(struct signal_struct * sig)723 static inline void put_signal_struct(struct signal_struct *sig)
724 {
725 if (refcount_dec_and_test(&sig->sigcnt))
726 free_signal_struct(sig);
727 }
728
__put_task_struct(struct task_struct * tsk)729 void __put_task_struct(struct task_struct *tsk)
730 {
731 WARN_ON(!tsk->exit_state);
732 WARN_ON(refcount_read(&tsk->usage));
733 WARN_ON(tsk == current);
734
735 unwind_task_free(tsk);
736 sched_ext_free(tsk);
737 io_uring_free(tsk);
738 cgroup_free(tsk);
739 task_numa_free(tsk, true);
740 security_task_free(tsk);
741 exit_creds(tsk);
742 delayacct_tsk_free(tsk);
743 put_signal_struct(tsk->signal);
744 sched_core_free(tsk);
745 free_task(tsk);
746 }
747 EXPORT_SYMBOL_GPL(__put_task_struct);
748
__put_task_struct_rcu_cb(struct rcu_head * rhp)749 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
750 {
751 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
752
753 __put_task_struct(task);
754 }
755 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
756
arch_task_cache_init(void)757 void __init __weak arch_task_cache_init(void) { }
758
759 /*
760 * set_max_threads
761 */
set_max_threads(unsigned int max_threads_suggested)762 static void __init set_max_threads(unsigned int max_threads_suggested)
763 {
764 u64 threads;
765 unsigned long nr_pages = memblock_estimated_nr_free_pages();
766
767 /*
768 * The number of threads shall be limited such that the thread
769 * structures may only consume a small part of the available memory.
770 */
771 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
772 threads = MAX_THREADS;
773 else
774 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
775 (u64) THREAD_SIZE * 8UL);
776
777 if (threads > max_threads_suggested)
778 threads = max_threads_suggested;
779
780 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
781 }
782
783 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
784 /* Initialized by the architecture: */
785 int arch_task_struct_size __read_mostly;
786 #endif
787
task_struct_whitelist(unsigned long * offset,unsigned long * size)788 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
789 {
790 /* Fetch thread_struct whitelist for the architecture. */
791 arch_thread_struct_whitelist(offset, size);
792
793 /*
794 * Handle zero-sized whitelist or empty thread_struct, otherwise
795 * adjust offset to position of thread_struct in task_struct.
796 */
797 if (unlikely(*size == 0))
798 *offset = 0;
799 else
800 *offset += offsetof(struct task_struct, thread);
801 }
802
fork_init(void)803 void __init fork_init(void)
804 {
805 int i;
806 #ifndef ARCH_MIN_TASKALIGN
807 #define ARCH_MIN_TASKALIGN 0
808 #endif
809 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
810 unsigned long useroffset, usersize;
811
812 /* create a slab on which task_structs can be allocated */
813 task_struct_whitelist(&useroffset, &usersize);
814 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
815 arch_task_struct_size, align,
816 SLAB_PANIC|SLAB_ACCOUNT,
817 useroffset, usersize, NULL);
818
819 /* do the arch specific task caches init */
820 arch_task_cache_init();
821
822 set_max_threads(MAX_THREADS);
823
824 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
825 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
826 init_task.signal->rlim[RLIMIT_SIGPENDING] =
827 init_task.signal->rlim[RLIMIT_NPROC];
828
829 for (i = 0; i < UCOUNT_COUNTS; i++)
830 init_user_ns.ucount_max[i] = max_threads/2;
831
832 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
833 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
834 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
835 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
836
837 #ifdef CONFIG_VMAP_STACK
838 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
839 NULL, free_vm_stack_cache);
840 #endif
841
842 scs_init();
843
844 lockdep_init_task(&init_task);
845 uprobes_init();
846 }
847
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)848 int __weak arch_dup_task_struct(struct task_struct *dst,
849 struct task_struct *src)
850 {
851 *dst = *src;
852 return 0;
853 }
854
set_task_stack_end_magic(struct task_struct * tsk)855 void set_task_stack_end_magic(struct task_struct *tsk)
856 {
857 unsigned long *stackend;
858
859 stackend = end_of_stack(tsk);
860 *stackend = STACK_END_MAGIC; /* for overflow detection */
861 }
862
dup_task_struct(struct task_struct * orig,int node)863 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
864 {
865 struct task_struct *tsk;
866 int err;
867
868 if (node == NUMA_NO_NODE)
869 node = tsk_fork_get_node(orig);
870 tsk = alloc_task_struct_node(node);
871 if (!tsk)
872 return NULL;
873
874 err = arch_dup_task_struct(tsk, orig);
875 if (err)
876 goto free_tsk;
877
878 err = alloc_thread_stack_node(tsk, node);
879 if (err)
880 goto free_tsk;
881
882 #ifdef CONFIG_THREAD_INFO_IN_TASK
883 refcount_set(&tsk->stack_refcount, 1);
884 #endif
885 account_kernel_stack(tsk, 1);
886
887 err = scs_prepare(tsk, node);
888 if (err)
889 goto free_stack;
890
891 #ifdef CONFIG_SECCOMP
892 /*
893 * We must handle setting up seccomp filters once we're under
894 * the sighand lock in case orig has changed between now and
895 * then. Until then, filter must be NULL to avoid messing up
896 * the usage counts on the error path calling free_task.
897 */
898 tsk->seccomp.filter = NULL;
899 #endif
900
901 setup_thread_stack(tsk, orig);
902 clear_user_return_notifier(tsk);
903 clear_tsk_need_resched(tsk);
904 set_task_stack_end_magic(tsk);
905 clear_syscall_work_syscall_user_dispatch(tsk);
906
907 #ifdef CONFIG_STACKPROTECTOR
908 tsk->stack_canary = get_random_canary();
909 #endif
910 if (orig->cpus_ptr == &orig->cpus_mask)
911 tsk->cpus_ptr = &tsk->cpus_mask;
912 dup_user_cpus_ptr(tsk, orig, node);
913
914 /*
915 * One for the user space visible state that goes away when reaped.
916 * One for the scheduler.
917 */
918 refcount_set(&tsk->rcu_users, 2);
919 /* One for the rcu users */
920 refcount_set(&tsk->usage, 1);
921 #ifdef CONFIG_BLK_DEV_IO_TRACE
922 tsk->btrace_seq = 0;
923 #endif
924 tsk->splice_pipe = NULL;
925 tsk->task_frag.page = NULL;
926 tsk->wake_q.next = NULL;
927 tsk->worker_private = NULL;
928
929 kcov_task_init(tsk);
930 kmsan_task_create(tsk);
931 kmap_local_fork(tsk);
932
933 #ifdef CONFIG_FAULT_INJECTION
934 tsk->fail_nth = 0;
935 #endif
936
937 #ifdef CONFIG_BLK_CGROUP
938 tsk->throttle_disk = NULL;
939 tsk->use_memdelay = 0;
940 #endif
941
942 #ifdef CONFIG_ARCH_HAS_CPU_PASID
943 tsk->pasid_activated = 0;
944 #endif
945
946 #ifdef CONFIG_MEMCG
947 tsk->active_memcg = NULL;
948 #endif
949
950 #ifdef CONFIG_X86_BUS_LOCK_DETECT
951 tsk->reported_split_lock = 0;
952 #endif
953
954 #ifdef CONFIG_SCHED_MM_CID
955 tsk->mm_cid = -1;
956 tsk->last_mm_cid = -1;
957 tsk->mm_cid_active = 0;
958 tsk->migrate_from_cpu = -1;
959 #endif
960 return tsk;
961
962 free_stack:
963 exit_task_stack_account(tsk);
964 free_thread_stack(tsk);
965 free_tsk:
966 free_task_struct(tsk);
967 return NULL;
968 }
969
970 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
971
972 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
973
coredump_filter_setup(char * s)974 static int __init coredump_filter_setup(char *s)
975 {
976 default_dump_filter =
977 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
978 MMF_DUMP_FILTER_MASK;
979 return 1;
980 }
981
982 __setup("coredump_filter=", coredump_filter_setup);
983
984 #include <linux/init_task.h>
985
mm_init_aio(struct mm_struct * mm)986 static void mm_init_aio(struct mm_struct *mm)
987 {
988 #ifdef CONFIG_AIO
989 spin_lock_init(&mm->ioctx_lock);
990 mm->ioctx_table = NULL;
991 #endif
992 }
993
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)994 static __always_inline void mm_clear_owner(struct mm_struct *mm,
995 struct task_struct *p)
996 {
997 #ifdef CONFIG_MEMCG
998 if (mm->owner == p)
999 WRITE_ONCE(mm->owner, NULL);
1000 #endif
1001 }
1002
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1003 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1004 {
1005 #ifdef CONFIG_MEMCG
1006 mm->owner = p;
1007 #endif
1008 }
1009
mm_init_uprobes_state(struct mm_struct * mm)1010 static void mm_init_uprobes_state(struct mm_struct *mm)
1011 {
1012 #ifdef CONFIG_UPROBES
1013 mm->uprobes_state.xol_area = NULL;
1014 #endif
1015 }
1016
mmap_init_lock(struct mm_struct * mm)1017 static void mmap_init_lock(struct mm_struct *mm)
1018 {
1019 init_rwsem(&mm->mmap_lock);
1020 mm_lock_seqcount_init(mm);
1021 #ifdef CONFIG_PER_VMA_LOCK
1022 rcuwait_init(&mm->vma_writer_wait);
1023 #endif
1024 }
1025
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1026 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1027 struct user_namespace *user_ns)
1028 {
1029 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1030 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1031 atomic_set(&mm->mm_users, 1);
1032 atomic_set(&mm->mm_count, 1);
1033 seqcount_init(&mm->write_protect_seq);
1034 mmap_init_lock(mm);
1035 INIT_LIST_HEAD(&mm->mmlist);
1036 mm_pgtables_bytes_init(mm);
1037 mm->map_count = 0;
1038 mm->locked_vm = 0;
1039 atomic64_set(&mm->pinned_vm, 0);
1040 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1041 spin_lock_init(&mm->page_table_lock);
1042 spin_lock_init(&mm->arg_lock);
1043 mm_init_cpumask(mm);
1044 mm_init_aio(mm);
1045 mm_init_owner(mm, p);
1046 mm_pasid_init(mm);
1047 RCU_INIT_POINTER(mm->exe_file, NULL);
1048 mmu_notifier_subscriptions_init(mm);
1049 init_tlb_flush_pending(mm);
1050 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1051 mm->pmd_huge_pte = NULL;
1052 #endif
1053 mm_init_uprobes_state(mm);
1054 hugetlb_count_init(mm);
1055
1056 if (current->mm) {
1057 mm->flags = mmf_init_flags(current->mm->flags);
1058 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1059 } else {
1060 mm->flags = default_dump_filter;
1061 mm->def_flags = 0;
1062 }
1063
1064 if (futex_mm_init(mm))
1065 goto fail_mm_init;
1066
1067 if (mm_alloc_pgd(mm))
1068 goto fail_nopgd;
1069
1070 if (mm_alloc_id(mm))
1071 goto fail_noid;
1072
1073 if (init_new_context(p, mm))
1074 goto fail_nocontext;
1075
1076 if (mm_alloc_cid(mm, p))
1077 goto fail_cid;
1078
1079 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1080 NR_MM_COUNTERS))
1081 goto fail_pcpu;
1082
1083 mm->user_ns = get_user_ns(user_ns);
1084 lru_gen_init_mm(mm);
1085 return mm;
1086
1087 fail_pcpu:
1088 mm_destroy_cid(mm);
1089 fail_cid:
1090 destroy_context(mm);
1091 fail_nocontext:
1092 mm_free_id(mm);
1093 fail_noid:
1094 mm_free_pgd(mm);
1095 fail_nopgd:
1096 futex_hash_free(mm);
1097 fail_mm_init:
1098 free_mm(mm);
1099 return NULL;
1100 }
1101
1102 /*
1103 * Allocate and initialize an mm_struct.
1104 */
mm_alloc(void)1105 struct mm_struct *mm_alloc(void)
1106 {
1107 struct mm_struct *mm;
1108
1109 mm = allocate_mm();
1110 if (!mm)
1111 return NULL;
1112
1113 memset(mm, 0, sizeof(*mm));
1114 return mm_init(mm, current, current_user_ns());
1115 }
1116 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1117
__mmput(struct mm_struct * mm)1118 static inline void __mmput(struct mm_struct *mm)
1119 {
1120 VM_BUG_ON(atomic_read(&mm->mm_users));
1121
1122 uprobe_clear_state(mm);
1123 exit_aio(mm);
1124 ksm_exit(mm);
1125 khugepaged_exit(mm); /* must run before exit_mmap */
1126 exit_mmap(mm);
1127 mm_put_huge_zero_folio(mm);
1128 set_mm_exe_file(mm, NULL);
1129 if (!list_empty(&mm->mmlist)) {
1130 spin_lock(&mmlist_lock);
1131 list_del(&mm->mmlist);
1132 spin_unlock(&mmlist_lock);
1133 }
1134 if (mm->binfmt)
1135 module_put(mm->binfmt->module);
1136 lru_gen_del_mm(mm);
1137 futex_hash_free(mm);
1138 mmdrop(mm);
1139 }
1140
1141 /*
1142 * Decrement the use count and release all resources for an mm.
1143 */
mmput(struct mm_struct * mm)1144 void mmput(struct mm_struct *mm)
1145 {
1146 might_sleep();
1147
1148 if (atomic_dec_and_test(&mm->mm_users))
1149 __mmput(mm);
1150 }
1151 EXPORT_SYMBOL_GPL(mmput);
1152
1153 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH)
mmput_async_fn(struct work_struct * work)1154 static void mmput_async_fn(struct work_struct *work)
1155 {
1156 struct mm_struct *mm = container_of(work, struct mm_struct,
1157 async_put_work);
1158
1159 __mmput(mm);
1160 }
1161
mmput_async(struct mm_struct * mm)1162 void mmput_async(struct mm_struct *mm)
1163 {
1164 if (atomic_dec_and_test(&mm->mm_users)) {
1165 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1166 schedule_work(&mm->async_put_work);
1167 }
1168 }
1169 EXPORT_SYMBOL_GPL(mmput_async);
1170 #endif
1171
1172 /**
1173 * set_mm_exe_file - change a reference to the mm's executable file
1174 * @mm: The mm to change.
1175 * @new_exe_file: The new file to use.
1176 *
1177 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1178 *
1179 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1180 * invocations: in mmput() nobody alive left, in execve it happens before
1181 * the new mm is made visible to anyone.
1182 *
1183 * Can only fail if new_exe_file != NULL.
1184 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1185 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1186 {
1187 struct file *old_exe_file;
1188
1189 /*
1190 * It is safe to dereference the exe_file without RCU as
1191 * this function is only called if nobody else can access
1192 * this mm -- see comment above for justification.
1193 */
1194 old_exe_file = rcu_dereference_raw(mm->exe_file);
1195
1196 if (new_exe_file) {
1197 /*
1198 * We expect the caller (i.e., sys_execve) to already denied
1199 * write access, so this is unlikely to fail.
1200 */
1201 if (unlikely(exe_file_deny_write_access(new_exe_file)))
1202 return -EACCES;
1203 get_file(new_exe_file);
1204 }
1205 rcu_assign_pointer(mm->exe_file, new_exe_file);
1206 if (old_exe_file) {
1207 exe_file_allow_write_access(old_exe_file);
1208 fput(old_exe_file);
1209 }
1210 return 0;
1211 }
1212
1213 /**
1214 * replace_mm_exe_file - replace a reference to the mm's executable file
1215 * @mm: The mm to change.
1216 * @new_exe_file: The new file to use.
1217 *
1218 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1219 *
1220 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1221 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1222 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1223 {
1224 struct vm_area_struct *vma;
1225 struct file *old_exe_file;
1226 int ret = 0;
1227
1228 /* Forbid mm->exe_file change if old file still mapped. */
1229 old_exe_file = get_mm_exe_file(mm);
1230 if (old_exe_file) {
1231 VMA_ITERATOR(vmi, mm, 0);
1232 mmap_read_lock(mm);
1233 for_each_vma(vmi, vma) {
1234 if (!vma->vm_file)
1235 continue;
1236 if (path_equal(&vma->vm_file->f_path,
1237 &old_exe_file->f_path)) {
1238 ret = -EBUSY;
1239 break;
1240 }
1241 }
1242 mmap_read_unlock(mm);
1243 fput(old_exe_file);
1244 if (ret)
1245 return ret;
1246 }
1247
1248 ret = exe_file_deny_write_access(new_exe_file);
1249 if (ret)
1250 return -EACCES;
1251 get_file(new_exe_file);
1252
1253 /* set the new file */
1254 mmap_write_lock(mm);
1255 old_exe_file = rcu_dereference_raw(mm->exe_file);
1256 rcu_assign_pointer(mm->exe_file, new_exe_file);
1257 mmap_write_unlock(mm);
1258
1259 if (old_exe_file) {
1260 exe_file_allow_write_access(old_exe_file);
1261 fput(old_exe_file);
1262 }
1263 return 0;
1264 }
1265
1266 /**
1267 * get_mm_exe_file - acquire a reference to the mm's executable file
1268 * @mm: The mm of interest.
1269 *
1270 * Returns %NULL if mm has no associated executable file.
1271 * User must release file via fput().
1272 */
get_mm_exe_file(struct mm_struct * mm)1273 struct file *get_mm_exe_file(struct mm_struct *mm)
1274 {
1275 struct file *exe_file;
1276
1277 rcu_read_lock();
1278 exe_file = get_file_rcu(&mm->exe_file);
1279 rcu_read_unlock();
1280 return exe_file;
1281 }
1282
1283 /**
1284 * get_task_exe_file - acquire a reference to the task's executable file
1285 * @task: The task.
1286 *
1287 * Returns %NULL if task's mm (if any) has no associated executable file or
1288 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1289 * User must release file via fput().
1290 */
get_task_exe_file(struct task_struct * task)1291 struct file *get_task_exe_file(struct task_struct *task)
1292 {
1293 struct file *exe_file = NULL;
1294 struct mm_struct *mm;
1295
1296 if (task->flags & PF_KTHREAD)
1297 return NULL;
1298
1299 task_lock(task);
1300 mm = task->mm;
1301 if (mm)
1302 exe_file = get_mm_exe_file(mm);
1303 task_unlock(task);
1304 return exe_file;
1305 }
1306
1307 /**
1308 * get_task_mm - acquire a reference to the task's mm
1309 * @task: The task.
1310 *
1311 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1312 * this kernel workthread has transiently adopted a user mm with use_mm,
1313 * to do its AIO) is not set and if so returns a reference to it, after
1314 * bumping up the use count. User must release the mm via mmput()
1315 * after use. Typically used by /proc and ptrace.
1316 */
get_task_mm(struct task_struct * task)1317 struct mm_struct *get_task_mm(struct task_struct *task)
1318 {
1319 struct mm_struct *mm;
1320
1321 if (task->flags & PF_KTHREAD)
1322 return NULL;
1323
1324 task_lock(task);
1325 mm = task->mm;
1326 if (mm)
1327 mmget(mm);
1328 task_unlock(task);
1329 return mm;
1330 }
1331 EXPORT_SYMBOL_GPL(get_task_mm);
1332
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1333 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1334 {
1335 if (mm == current->mm)
1336 return true;
1337 if (ptrace_may_access(task, mode))
1338 return true;
1339 if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1340 return true;
1341 return false;
1342 }
1343
mm_access(struct task_struct * task,unsigned int mode)1344 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1345 {
1346 struct mm_struct *mm;
1347 int err;
1348
1349 err = down_read_killable(&task->signal->exec_update_lock);
1350 if (err)
1351 return ERR_PTR(err);
1352
1353 mm = get_task_mm(task);
1354 if (!mm) {
1355 mm = ERR_PTR(-ESRCH);
1356 } else if (!may_access_mm(mm, task, mode)) {
1357 mmput(mm);
1358 mm = ERR_PTR(-EACCES);
1359 }
1360 up_read(&task->signal->exec_update_lock);
1361
1362 return mm;
1363 }
1364
complete_vfork_done(struct task_struct * tsk)1365 static void complete_vfork_done(struct task_struct *tsk)
1366 {
1367 struct completion *vfork;
1368
1369 task_lock(tsk);
1370 vfork = tsk->vfork_done;
1371 if (likely(vfork)) {
1372 tsk->vfork_done = NULL;
1373 complete(vfork);
1374 }
1375 task_unlock(tsk);
1376 }
1377
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1378 static int wait_for_vfork_done(struct task_struct *child,
1379 struct completion *vfork)
1380 {
1381 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1382 int killed;
1383
1384 cgroup_enter_frozen();
1385 killed = wait_for_completion_state(vfork, state);
1386 cgroup_leave_frozen(false);
1387
1388 if (killed) {
1389 task_lock(child);
1390 child->vfork_done = NULL;
1391 task_unlock(child);
1392 }
1393
1394 put_task_struct(child);
1395 return killed;
1396 }
1397
1398 /* Please note the differences between mmput and mm_release.
1399 * mmput is called whenever we stop holding onto a mm_struct,
1400 * error success whatever.
1401 *
1402 * mm_release is called after a mm_struct has been removed
1403 * from the current process.
1404 *
1405 * This difference is important for error handling, when we
1406 * only half set up a mm_struct for a new process and need to restore
1407 * the old one. Because we mmput the new mm_struct before
1408 * restoring the old one. . .
1409 * Eric Biederman 10 January 1998
1410 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1411 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1412 {
1413 uprobe_free_utask(tsk);
1414
1415 /* Get rid of any cached register state */
1416 deactivate_mm(tsk, mm);
1417
1418 /*
1419 * Signal userspace if we're not exiting with a core dump
1420 * because we want to leave the value intact for debugging
1421 * purposes.
1422 */
1423 if (tsk->clear_child_tid) {
1424 if (atomic_read(&mm->mm_users) > 1) {
1425 /*
1426 * We don't check the error code - if userspace has
1427 * not set up a proper pointer then tough luck.
1428 */
1429 put_user(0, tsk->clear_child_tid);
1430 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1431 1, NULL, NULL, 0, 0);
1432 }
1433 tsk->clear_child_tid = NULL;
1434 }
1435
1436 /*
1437 * All done, finally we can wake up parent and return this mm to him.
1438 * Also kthread_stop() uses this completion for synchronization.
1439 */
1440 if (tsk->vfork_done)
1441 complete_vfork_done(tsk);
1442 }
1443
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1444 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1445 {
1446 futex_exit_release(tsk);
1447 mm_release(tsk, mm);
1448 }
1449
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1450 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1451 {
1452 futex_exec_release(tsk);
1453 mm_release(tsk, mm);
1454 }
1455
1456 /**
1457 * dup_mm() - duplicates an existing mm structure
1458 * @tsk: the task_struct with which the new mm will be associated.
1459 * @oldmm: the mm to duplicate.
1460 *
1461 * Allocates a new mm structure and duplicates the provided @oldmm structure
1462 * content into it.
1463 *
1464 * Return: the duplicated mm or NULL on failure.
1465 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1466 static struct mm_struct *dup_mm(struct task_struct *tsk,
1467 struct mm_struct *oldmm)
1468 {
1469 struct mm_struct *mm;
1470 int err;
1471
1472 mm = allocate_mm();
1473 if (!mm)
1474 goto fail_nomem;
1475
1476 memcpy(mm, oldmm, sizeof(*mm));
1477
1478 if (!mm_init(mm, tsk, mm->user_ns))
1479 goto fail_nomem;
1480
1481 uprobe_start_dup_mmap();
1482 err = dup_mmap(mm, oldmm);
1483 if (err)
1484 goto free_pt;
1485 uprobe_end_dup_mmap();
1486
1487 mm->hiwater_rss = get_mm_rss(mm);
1488 mm->hiwater_vm = mm->total_vm;
1489
1490 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1491 goto free_pt;
1492
1493 return mm;
1494
1495 free_pt:
1496 /* don't put binfmt in mmput, we haven't got module yet */
1497 mm->binfmt = NULL;
1498 mm_init_owner(mm, NULL);
1499 mmput(mm);
1500 if (err)
1501 uprobe_end_dup_mmap();
1502
1503 fail_nomem:
1504 return NULL;
1505 }
1506
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1507 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1508 {
1509 struct mm_struct *mm, *oldmm;
1510
1511 tsk->min_flt = tsk->maj_flt = 0;
1512 tsk->nvcsw = tsk->nivcsw = 0;
1513 #ifdef CONFIG_DETECT_HUNG_TASK
1514 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1515 tsk->last_switch_time = 0;
1516 #endif
1517
1518 tsk->mm = NULL;
1519 tsk->active_mm = NULL;
1520
1521 /*
1522 * Are we cloning a kernel thread?
1523 *
1524 * We need to steal a active VM for that..
1525 */
1526 oldmm = current->mm;
1527 if (!oldmm)
1528 return 0;
1529
1530 if (clone_flags & CLONE_VM) {
1531 mmget(oldmm);
1532 mm = oldmm;
1533 } else {
1534 mm = dup_mm(tsk, current->mm);
1535 if (!mm)
1536 return -ENOMEM;
1537 }
1538
1539 tsk->mm = mm;
1540 tsk->active_mm = mm;
1541 sched_mm_cid_fork(tsk);
1542 return 0;
1543 }
1544
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1545 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1546 {
1547 struct fs_struct *fs = current->fs;
1548 if (clone_flags & CLONE_FS) {
1549 /* tsk->fs is already what we want */
1550 read_seqlock_excl(&fs->seq);
1551 /* "users" and "in_exec" locked for check_unsafe_exec() */
1552 if (fs->in_exec) {
1553 read_sequnlock_excl(&fs->seq);
1554 return -EAGAIN;
1555 }
1556 fs->users++;
1557 read_sequnlock_excl(&fs->seq);
1558 return 0;
1559 }
1560 tsk->fs = copy_fs_struct(fs);
1561 if (!tsk->fs)
1562 return -ENOMEM;
1563 return 0;
1564 }
1565
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1566 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1567 int no_files)
1568 {
1569 struct files_struct *oldf, *newf;
1570
1571 /*
1572 * A background process may not have any files ...
1573 */
1574 oldf = current->files;
1575 if (!oldf)
1576 return 0;
1577
1578 if (no_files) {
1579 tsk->files = NULL;
1580 return 0;
1581 }
1582
1583 if (clone_flags & CLONE_FILES) {
1584 atomic_inc(&oldf->count);
1585 return 0;
1586 }
1587
1588 newf = dup_fd(oldf, NULL);
1589 if (IS_ERR(newf))
1590 return PTR_ERR(newf);
1591
1592 tsk->files = newf;
1593 return 0;
1594 }
1595
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1596 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1597 {
1598 struct sighand_struct *sig;
1599
1600 if (clone_flags & CLONE_SIGHAND) {
1601 refcount_inc(¤t->sighand->count);
1602 return 0;
1603 }
1604 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1605 RCU_INIT_POINTER(tsk->sighand, sig);
1606 if (!sig)
1607 return -ENOMEM;
1608
1609 refcount_set(&sig->count, 1);
1610 spin_lock_irq(¤t->sighand->siglock);
1611 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1612 spin_unlock_irq(¤t->sighand->siglock);
1613
1614 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1615 if (clone_flags & CLONE_CLEAR_SIGHAND)
1616 flush_signal_handlers(tsk, 0);
1617
1618 return 0;
1619 }
1620
__cleanup_sighand(struct sighand_struct * sighand)1621 void __cleanup_sighand(struct sighand_struct *sighand)
1622 {
1623 if (refcount_dec_and_test(&sighand->count)) {
1624 signalfd_cleanup(sighand);
1625 /*
1626 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1627 * without an RCU grace period, see __lock_task_sighand().
1628 */
1629 kmem_cache_free(sighand_cachep, sighand);
1630 }
1631 }
1632
1633 /*
1634 * Initialize POSIX timer handling for a thread group.
1635 */
posix_cpu_timers_init_group(struct signal_struct * sig)1636 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1637 {
1638 struct posix_cputimers *pct = &sig->posix_cputimers;
1639 unsigned long cpu_limit;
1640
1641 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1642 posix_cputimers_group_init(pct, cpu_limit);
1643 }
1644
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1645 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1646 {
1647 struct signal_struct *sig;
1648
1649 if (clone_flags & CLONE_THREAD)
1650 return 0;
1651
1652 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1653 tsk->signal = sig;
1654 if (!sig)
1655 return -ENOMEM;
1656
1657 sig->nr_threads = 1;
1658 sig->quick_threads = 1;
1659 atomic_set(&sig->live, 1);
1660 refcount_set(&sig->sigcnt, 1);
1661
1662 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1663 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1664 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1665
1666 init_waitqueue_head(&sig->wait_chldexit);
1667 sig->curr_target = tsk;
1668 init_sigpending(&sig->shared_pending);
1669 INIT_HLIST_HEAD(&sig->multiprocess);
1670 seqlock_init(&sig->stats_lock);
1671 prev_cputime_init(&sig->prev_cputime);
1672
1673 #ifdef CONFIG_POSIX_TIMERS
1674 INIT_HLIST_HEAD(&sig->posix_timers);
1675 INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1676 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1677 #endif
1678
1679 task_lock(current->group_leader);
1680 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1681 task_unlock(current->group_leader);
1682
1683 posix_cpu_timers_init_group(sig);
1684
1685 tty_audit_fork(sig);
1686 sched_autogroup_fork(sig);
1687
1688 sig->oom_score_adj = current->signal->oom_score_adj;
1689 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1690
1691 mutex_init(&sig->cred_guard_mutex);
1692 init_rwsem(&sig->exec_update_lock);
1693
1694 return 0;
1695 }
1696
copy_seccomp(struct task_struct * p)1697 static void copy_seccomp(struct task_struct *p)
1698 {
1699 #ifdef CONFIG_SECCOMP
1700 /*
1701 * Must be called with sighand->lock held, which is common to
1702 * all threads in the group. Holding cred_guard_mutex is not
1703 * needed because this new task is not yet running and cannot
1704 * be racing exec.
1705 */
1706 assert_spin_locked(¤t->sighand->siglock);
1707
1708 /* Ref-count the new filter user, and assign it. */
1709 get_seccomp_filter(current);
1710 p->seccomp = current->seccomp;
1711
1712 /*
1713 * Explicitly enable no_new_privs here in case it got set
1714 * between the task_struct being duplicated and holding the
1715 * sighand lock. The seccomp state and nnp must be in sync.
1716 */
1717 if (task_no_new_privs(current))
1718 task_set_no_new_privs(p);
1719
1720 /*
1721 * If the parent gained a seccomp mode after copying thread
1722 * flags and between before we held the sighand lock, we have
1723 * to manually enable the seccomp thread flag here.
1724 */
1725 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1726 set_task_syscall_work(p, SECCOMP);
1727 #endif
1728 }
1729
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1730 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1731 {
1732 current->clear_child_tid = tidptr;
1733
1734 return task_pid_vnr(current);
1735 }
1736
rt_mutex_init_task(struct task_struct * p)1737 static void rt_mutex_init_task(struct task_struct *p)
1738 {
1739 raw_spin_lock_init(&p->pi_lock);
1740 #ifdef CONFIG_RT_MUTEXES
1741 p->pi_waiters = RB_ROOT_CACHED;
1742 p->pi_top_task = NULL;
1743 p->pi_blocked_on = NULL;
1744 #endif
1745 }
1746
init_task_pid_links(struct task_struct * task)1747 static inline void init_task_pid_links(struct task_struct *task)
1748 {
1749 enum pid_type type;
1750
1751 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1752 INIT_HLIST_NODE(&task->pid_links[type]);
1753 }
1754
1755 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1756 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1757 {
1758 if (type == PIDTYPE_PID)
1759 task->thread_pid = pid;
1760 else
1761 task->signal->pids[type] = pid;
1762 }
1763
rcu_copy_process(struct task_struct * p)1764 static inline void rcu_copy_process(struct task_struct *p)
1765 {
1766 #ifdef CONFIG_PREEMPT_RCU
1767 p->rcu_read_lock_nesting = 0;
1768 p->rcu_read_unlock_special.s = 0;
1769 p->rcu_blocked_node = NULL;
1770 INIT_LIST_HEAD(&p->rcu_node_entry);
1771 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1772 #ifdef CONFIG_TASKS_RCU
1773 p->rcu_tasks_holdout = false;
1774 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1775 p->rcu_tasks_idle_cpu = -1;
1776 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1777 #endif /* #ifdef CONFIG_TASKS_RCU */
1778 #ifdef CONFIG_TASKS_TRACE_RCU
1779 p->trc_reader_nesting = 0;
1780 p->trc_reader_special.s = 0;
1781 INIT_LIST_HEAD(&p->trc_holdout_list);
1782 INIT_LIST_HEAD(&p->trc_blkd_node);
1783 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1784 }
1785
1786 /**
1787 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1788 * @pid: the struct pid for which to create a pidfd
1789 * @flags: flags of the new @pidfd
1790 * @ret_file: return the new pidfs file
1791 *
1792 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1793 * caller's file descriptor table. The pidfd is reserved but not installed yet.
1794 *
1795 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
1796 * task identified by @pid must be a thread-group leader.
1797 *
1798 * If this function returns successfully the caller is responsible to either
1799 * call fd_install() passing the returned pidfd and pidfd file as arguments in
1800 * order to install the pidfd into its file descriptor table or they must use
1801 * put_unused_fd() and fput() on the returned pidfd and pidfd file
1802 * respectively.
1803 *
1804 * This function is useful when a pidfd must already be reserved but there
1805 * might still be points of failure afterwards and the caller wants to ensure
1806 * that no pidfd is leaked into its file descriptor table.
1807 *
1808 * Return: On success, a reserved pidfd is returned from the function and a new
1809 * pidfd file is returned in the last argument to the function. On
1810 * error, a negative error code is returned from the function and the
1811 * last argument remains unchanged.
1812 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret_file)1813 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
1814 {
1815 struct file *pidfs_file;
1816
1817 /*
1818 * PIDFD_STALE is only allowed to be passed if the caller knows
1819 * that @pid is already registered in pidfs and thus
1820 * PIDFD_INFO_EXIT information is guaranteed to be available.
1821 */
1822 if (!(flags & PIDFD_STALE)) {
1823 /*
1824 * While holding the pidfd waitqueue lock removing the
1825 * task linkage for the thread-group leader pid
1826 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
1827 * task linkage for PIDTYPE_PID not having thread-group
1828 * leader linkage for the pid means it wasn't a
1829 * thread-group leader in the first place.
1830 */
1831 guard(spinlock_irq)(&pid->wait_pidfd.lock);
1832
1833 /* Task has already been reaped. */
1834 if (!pid_has_task(pid, PIDTYPE_PID))
1835 return -ESRCH;
1836 /*
1837 * If this struct pid isn't used as a thread-group
1838 * leader but the caller requested to create a
1839 * thread-group leader pidfd then report ENOENT.
1840 */
1841 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
1842 return -ENOENT;
1843 }
1844
1845 CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
1846 if (pidfd < 0)
1847 return pidfd;
1848
1849 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
1850 if (IS_ERR(pidfs_file))
1851 return PTR_ERR(pidfs_file);
1852
1853 *ret_file = pidfs_file;
1854 return take_fd(pidfd);
1855 }
1856
__delayed_free_task(struct rcu_head * rhp)1857 static void __delayed_free_task(struct rcu_head *rhp)
1858 {
1859 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1860
1861 free_task(tsk);
1862 }
1863
delayed_free_task(struct task_struct * tsk)1864 static __always_inline void delayed_free_task(struct task_struct *tsk)
1865 {
1866 if (IS_ENABLED(CONFIG_MEMCG))
1867 call_rcu(&tsk->rcu, __delayed_free_task);
1868 else
1869 free_task(tsk);
1870 }
1871
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1872 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1873 {
1874 /* Skip if kernel thread */
1875 if (!tsk->mm)
1876 return;
1877
1878 /* Skip if spawning a thread or using vfork */
1879 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1880 return;
1881
1882 /* We need to synchronize with __set_oom_adj */
1883 mutex_lock(&oom_adj_mutex);
1884 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1885 /* Update the values in case they were changed after copy_signal */
1886 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1887 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1888 mutex_unlock(&oom_adj_mutex);
1889 }
1890
1891 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)1892 static void rv_task_fork(struct task_struct *p)
1893 {
1894 memset(&p->rv, 0, sizeof(p->rv));
1895 }
1896 #else
1897 #define rv_task_fork(p) do {} while (0)
1898 #endif
1899
need_futex_hash_allocate_default(u64 clone_flags)1900 static bool need_futex_hash_allocate_default(u64 clone_flags)
1901 {
1902 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
1903 return false;
1904 return true;
1905 }
1906
1907 /*
1908 * This creates a new process as a copy of the old one,
1909 * but does not actually start it yet.
1910 *
1911 * It copies the registers, and all the appropriate
1912 * parts of the process environment (as per the clone
1913 * flags). The actual kick-off is left to the caller.
1914 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1915 __latent_entropy struct task_struct *copy_process(
1916 struct pid *pid,
1917 int trace,
1918 int node,
1919 struct kernel_clone_args *args)
1920 {
1921 int pidfd = -1, retval;
1922 struct task_struct *p;
1923 struct multiprocess_signals delayed;
1924 struct file *pidfile = NULL;
1925 const u64 clone_flags = args->flags;
1926 struct nsproxy *nsp = current->nsproxy;
1927
1928 /*
1929 * Don't allow sharing the root directory with processes in a different
1930 * namespace
1931 */
1932 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1933 return ERR_PTR(-EINVAL);
1934
1935 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1936 return ERR_PTR(-EINVAL);
1937
1938 /*
1939 * Thread groups must share signals as well, and detached threads
1940 * can only be started up within the thread group.
1941 */
1942 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1943 return ERR_PTR(-EINVAL);
1944
1945 /*
1946 * Shared signal handlers imply shared VM. By way of the above,
1947 * thread groups also imply shared VM. Blocking this case allows
1948 * for various simplifications in other code.
1949 */
1950 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1951 return ERR_PTR(-EINVAL);
1952
1953 /*
1954 * Siblings of global init remain as zombies on exit since they are
1955 * not reaped by their parent (swapper). To solve this and to avoid
1956 * multi-rooted process trees, prevent global and container-inits
1957 * from creating siblings.
1958 */
1959 if ((clone_flags & CLONE_PARENT) &&
1960 current->signal->flags & SIGNAL_UNKILLABLE)
1961 return ERR_PTR(-EINVAL);
1962
1963 /*
1964 * If the new process will be in a different pid or user namespace
1965 * do not allow it to share a thread group with the forking task.
1966 */
1967 if (clone_flags & CLONE_THREAD) {
1968 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1969 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1970 return ERR_PTR(-EINVAL);
1971 }
1972
1973 if (clone_flags & CLONE_PIDFD) {
1974 /*
1975 * - CLONE_DETACHED is blocked so that we can potentially
1976 * reuse it later for CLONE_PIDFD.
1977 */
1978 if (clone_flags & CLONE_DETACHED)
1979 return ERR_PTR(-EINVAL);
1980 }
1981
1982 /*
1983 * Force any signals received before this point to be delivered
1984 * before the fork happens. Collect up signals sent to multiple
1985 * processes that happen during the fork and delay them so that
1986 * they appear to happen after the fork.
1987 */
1988 sigemptyset(&delayed.signal);
1989 INIT_HLIST_NODE(&delayed.node);
1990
1991 spin_lock_irq(¤t->sighand->siglock);
1992 if (!(clone_flags & CLONE_THREAD))
1993 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1994 recalc_sigpending();
1995 spin_unlock_irq(¤t->sighand->siglock);
1996 retval = -ERESTARTNOINTR;
1997 if (task_sigpending(current))
1998 goto fork_out;
1999
2000 retval = -ENOMEM;
2001 p = dup_task_struct(current, node);
2002 if (!p)
2003 goto fork_out;
2004 p->flags &= ~PF_KTHREAD;
2005 if (args->kthread)
2006 p->flags |= PF_KTHREAD;
2007 if (args->user_worker) {
2008 /*
2009 * Mark us a user worker, and block any signal that isn't
2010 * fatal or STOP
2011 */
2012 p->flags |= PF_USER_WORKER;
2013 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2014 }
2015 if (args->io_thread)
2016 p->flags |= PF_IO_WORKER;
2017
2018 if (args->name)
2019 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2020
2021 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2022 /*
2023 * Clear TID on mm_release()?
2024 */
2025 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2026
2027 ftrace_graph_init_task(p);
2028
2029 rt_mutex_init_task(p);
2030
2031 lockdep_assert_irqs_enabled();
2032 #ifdef CONFIG_PROVE_LOCKING
2033 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2034 #endif
2035 retval = copy_creds(p, clone_flags);
2036 if (retval < 0)
2037 goto bad_fork_free;
2038
2039 retval = -EAGAIN;
2040 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2041 if (p->real_cred->user != INIT_USER &&
2042 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2043 goto bad_fork_cleanup_count;
2044 }
2045 current->flags &= ~PF_NPROC_EXCEEDED;
2046
2047 /*
2048 * If multiple threads are within copy_process(), then this check
2049 * triggers too late. This doesn't hurt, the check is only there
2050 * to stop root fork bombs.
2051 */
2052 retval = -EAGAIN;
2053 if (data_race(nr_threads >= max_threads))
2054 goto bad_fork_cleanup_count;
2055
2056 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2057 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2058 p->flags |= PF_FORKNOEXEC;
2059 INIT_LIST_HEAD(&p->children);
2060 INIT_LIST_HEAD(&p->sibling);
2061 rcu_copy_process(p);
2062 p->vfork_done = NULL;
2063 spin_lock_init(&p->alloc_lock);
2064
2065 init_sigpending(&p->pending);
2066
2067 p->utime = p->stime = p->gtime = 0;
2068 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2069 p->utimescaled = p->stimescaled = 0;
2070 #endif
2071 prev_cputime_init(&p->prev_cputime);
2072
2073 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2074 seqcount_init(&p->vtime.seqcount);
2075 p->vtime.starttime = 0;
2076 p->vtime.state = VTIME_INACTIVE;
2077 #endif
2078
2079 #ifdef CONFIG_IO_URING
2080 p->io_uring = NULL;
2081 #endif
2082
2083 p->default_timer_slack_ns = current->timer_slack_ns;
2084
2085 #ifdef CONFIG_PSI
2086 p->psi_flags = 0;
2087 #endif
2088
2089 task_io_accounting_init(&p->ioac);
2090 acct_clear_integrals(p);
2091
2092 posix_cputimers_init(&p->posix_cputimers);
2093 tick_dep_init_task(p);
2094
2095 p->io_context = NULL;
2096 audit_set_context(p, NULL);
2097 cgroup_fork(p);
2098 if (args->kthread) {
2099 if (!set_kthread_struct(p))
2100 goto bad_fork_cleanup_delayacct;
2101 }
2102 #ifdef CONFIG_NUMA
2103 p->mempolicy = mpol_dup(p->mempolicy);
2104 if (IS_ERR(p->mempolicy)) {
2105 retval = PTR_ERR(p->mempolicy);
2106 p->mempolicy = NULL;
2107 goto bad_fork_cleanup_delayacct;
2108 }
2109 #endif
2110 #ifdef CONFIG_CPUSETS
2111 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2112 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2113 #endif
2114 #ifdef CONFIG_TRACE_IRQFLAGS
2115 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2116 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2117 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2118 p->softirqs_enabled = 1;
2119 p->softirq_context = 0;
2120 #endif
2121
2122 p->pagefault_disabled = 0;
2123
2124 #ifdef CONFIG_LOCKDEP
2125 lockdep_init_task(p);
2126 #endif
2127
2128 p->blocked_on = NULL; /* not blocked yet */
2129
2130 #ifdef CONFIG_BCACHE
2131 p->sequential_io = 0;
2132 p->sequential_io_avg = 0;
2133 #endif
2134 #ifdef CONFIG_BPF_SYSCALL
2135 RCU_INIT_POINTER(p->bpf_storage, NULL);
2136 p->bpf_ctx = NULL;
2137 #endif
2138
2139 unwind_task_init(p);
2140
2141 /* Perform scheduler related setup. Assign this task to a CPU. */
2142 retval = sched_fork(clone_flags, p);
2143 if (retval)
2144 goto bad_fork_cleanup_policy;
2145
2146 retval = perf_event_init_task(p, clone_flags);
2147 if (retval)
2148 goto bad_fork_sched_cancel_fork;
2149 retval = audit_alloc(p);
2150 if (retval)
2151 goto bad_fork_cleanup_perf;
2152 /* copy all the process information */
2153 shm_init_task(p);
2154 retval = security_task_alloc(p, clone_flags);
2155 if (retval)
2156 goto bad_fork_cleanup_audit;
2157 retval = copy_semundo(clone_flags, p);
2158 if (retval)
2159 goto bad_fork_cleanup_security;
2160 retval = copy_files(clone_flags, p, args->no_files);
2161 if (retval)
2162 goto bad_fork_cleanup_semundo;
2163 retval = copy_fs(clone_flags, p);
2164 if (retval)
2165 goto bad_fork_cleanup_files;
2166 retval = copy_sighand(clone_flags, p);
2167 if (retval)
2168 goto bad_fork_cleanup_fs;
2169 retval = copy_signal(clone_flags, p);
2170 if (retval)
2171 goto bad_fork_cleanup_sighand;
2172 retval = copy_mm(clone_flags, p);
2173 if (retval)
2174 goto bad_fork_cleanup_signal;
2175 retval = copy_namespaces(clone_flags, p);
2176 if (retval)
2177 goto bad_fork_cleanup_mm;
2178 retval = copy_io(clone_flags, p);
2179 if (retval)
2180 goto bad_fork_cleanup_namespaces;
2181 retval = copy_thread(p, args);
2182 if (retval)
2183 goto bad_fork_cleanup_io;
2184
2185 stackleak_task_init(p);
2186
2187 if (pid != &init_struct_pid) {
2188 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2189 args->set_tid_size);
2190 if (IS_ERR(pid)) {
2191 retval = PTR_ERR(pid);
2192 goto bad_fork_cleanup_thread;
2193 }
2194 }
2195
2196 /*
2197 * This has to happen after we've potentially unshared the file
2198 * descriptor table (so that the pidfd doesn't leak into the child
2199 * if the fd table isn't shared).
2200 */
2201 if (clone_flags & CLONE_PIDFD) {
2202 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2203
2204 /*
2205 * Note that no task has been attached to @pid yet indicate
2206 * that via CLONE_PIDFD.
2207 */
2208 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
2209 if (retval < 0)
2210 goto bad_fork_free_pid;
2211 pidfd = retval;
2212
2213 retval = put_user(pidfd, args->pidfd);
2214 if (retval)
2215 goto bad_fork_put_pidfd;
2216 }
2217
2218 #ifdef CONFIG_BLOCK
2219 p->plug = NULL;
2220 #endif
2221 futex_init_task(p);
2222
2223 /*
2224 * sigaltstack should be cleared when sharing the same VM
2225 */
2226 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2227 sas_ss_reset(p);
2228
2229 /*
2230 * Syscall tracing and stepping should be turned off in the
2231 * child regardless of CLONE_PTRACE.
2232 */
2233 user_disable_single_step(p);
2234 clear_task_syscall_work(p, SYSCALL_TRACE);
2235 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2236 clear_task_syscall_work(p, SYSCALL_EMU);
2237 #endif
2238 clear_tsk_latency_tracing(p);
2239
2240 /* ok, now we should be set up.. */
2241 p->pid = pid_nr(pid);
2242 if (clone_flags & CLONE_THREAD) {
2243 p->group_leader = current->group_leader;
2244 p->tgid = current->tgid;
2245 } else {
2246 p->group_leader = p;
2247 p->tgid = p->pid;
2248 }
2249
2250 p->nr_dirtied = 0;
2251 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2252 p->dirty_paused_when = 0;
2253
2254 p->pdeath_signal = 0;
2255 p->task_works = NULL;
2256 clear_posix_cputimers_work(p);
2257
2258 #ifdef CONFIG_KRETPROBES
2259 p->kretprobe_instances.first = NULL;
2260 #endif
2261 #ifdef CONFIG_RETHOOK
2262 p->rethooks.first = NULL;
2263 #endif
2264
2265 /*
2266 * Ensure that the cgroup subsystem policies allow the new process to be
2267 * forked. It should be noted that the new process's css_set can be changed
2268 * between here and cgroup_post_fork() if an organisation operation is in
2269 * progress.
2270 */
2271 retval = cgroup_can_fork(p, args);
2272 if (retval)
2273 goto bad_fork_put_pidfd;
2274
2275 /*
2276 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2277 * the new task on the correct runqueue. All this *before* the task
2278 * becomes visible.
2279 *
2280 * This isn't part of ->can_fork() because while the re-cloning is
2281 * cgroup specific, it unconditionally needs to place the task on a
2282 * runqueue.
2283 */
2284 retval = sched_cgroup_fork(p, args);
2285 if (retval)
2286 goto bad_fork_cancel_cgroup;
2287
2288 /*
2289 * Allocate a default futex hash for the user process once the first
2290 * thread spawns.
2291 */
2292 if (need_futex_hash_allocate_default(clone_flags)) {
2293 retval = futex_hash_allocate_default();
2294 if (retval)
2295 goto bad_fork_core_free;
2296 /*
2297 * If we fail beyond this point we don't free the allocated
2298 * futex hash map. We assume that another thread will be created
2299 * and makes use of it. The hash map will be freed once the main
2300 * thread terminates.
2301 */
2302 }
2303 /*
2304 * From this point on we must avoid any synchronous user-space
2305 * communication until we take the tasklist-lock. In particular, we do
2306 * not want user-space to be able to predict the process start-time by
2307 * stalling fork(2) after we recorded the start_time but before it is
2308 * visible to the system.
2309 */
2310
2311 p->start_time = ktime_get_ns();
2312 p->start_boottime = ktime_get_boottime_ns();
2313
2314 /*
2315 * Make it visible to the rest of the system, but dont wake it up yet.
2316 * Need tasklist lock for parent etc handling!
2317 */
2318 write_lock_irq(&tasklist_lock);
2319
2320 /* CLONE_PARENT re-uses the old parent */
2321 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2322 p->real_parent = current->real_parent;
2323 p->parent_exec_id = current->parent_exec_id;
2324 if (clone_flags & CLONE_THREAD)
2325 p->exit_signal = -1;
2326 else
2327 p->exit_signal = current->group_leader->exit_signal;
2328 } else {
2329 p->real_parent = current;
2330 p->parent_exec_id = current->self_exec_id;
2331 p->exit_signal = args->exit_signal;
2332 }
2333
2334 klp_copy_process(p);
2335
2336 sched_core_fork(p);
2337
2338 spin_lock(¤t->sighand->siglock);
2339
2340 rv_task_fork(p);
2341
2342 rseq_fork(p, clone_flags);
2343
2344 /* Don't start children in a dying pid namespace */
2345 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2346 retval = -ENOMEM;
2347 goto bad_fork_core_free;
2348 }
2349
2350 /* Let kill terminate clone/fork in the middle */
2351 if (fatal_signal_pending(current)) {
2352 retval = -EINTR;
2353 goto bad_fork_core_free;
2354 }
2355
2356 /* No more failure paths after this point. */
2357
2358 /*
2359 * Copy seccomp details explicitly here, in case they were changed
2360 * before holding sighand lock.
2361 */
2362 copy_seccomp(p);
2363
2364 init_task_pid_links(p);
2365 if (likely(p->pid)) {
2366 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2367
2368 init_task_pid(p, PIDTYPE_PID, pid);
2369 if (thread_group_leader(p)) {
2370 init_task_pid(p, PIDTYPE_TGID, pid);
2371 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2372 init_task_pid(p, PIDTYPE_SID, task_session(current));
2373
2374 if (is_child_reaper(pid)) {
2375 ns_of_pid(pid)->child_reaper = p;
2376 p->signal->flags |= SIGNAL_UNKILLABLE;
2377 }
2378 p->signal->shared_pending.signal = delayed.signal;
2379 p->signal->tty = tty_kref_get(current->signal->tty);
2380 /*
2381 * Inherit has_child_subreaper flag under the same
2382 * tasklist_lock with adding child to the process tree
2383 * for propagate_has_child_subreaper optimization.
2384 */
2385 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2386 p->real_parent->signal->is_child_subreaper;
2387 list_add_tail(&p->sibling, &p->real_parent->children);
2388 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2389 attach_pid(p, PIDTYPE_TGID);
2390 attach_pid(p, PIDTYPE_PGID);
2391 attach_pid(p, PIDTYPE_SID);
2392 __this_cpu_inc(process_counts);
2393 } else {
2394 current->signal->nr_threads++;
2395 current->signal->quick_threads++;
2396 atomic_inc(¤t->signal->live);
2397 refcount_inc(¤t->signal->sigcnt);
2398 task_join_group_stop(p);
2399 list_add_tail_rcu(&p->thread_node,
2400 &p->signal->thread_head);
2401 }
2402 attach_pid(p, PIDTYPE_PID);
2403 nr_threads++;
2404 }
2405 total_forks++;
2406 hlist_del_init(&delayed.node);
2407 spin_unlock(¤t->sighand->siglock);
2408 syscall_tracepoint_update(p);
2409 write_unlock_irq(&tasklist_lock);
2410
2411 if (pidfile)
2412 fd_install(pidfd, pidfile);
2413
2414 proc_fork_connector(p);
2415 sched_post_fork(p);
2416 cgroup_post_fork(p, args);
2417 perf_event_fork(p);
2418
2419 trace_task_newtask(p, clone_flags);
2420 uprobe_copy_process(p, clone_flags);
2421 user_events_fork(p, clone_flags);
2422
2423 copy_oom_score_adj(clone_flags, p);
2424
2425 return p;
2426
2427 bad_fork_core_free:
2428 sched_core_free(p);
2429 spin_unlock(¤t->sighand->siglock);
2430 write_unlock_irq(&tasklist_lock);
2431 bad_fork_cancel_cgroup:
2432 cgroup_cancel_fork(p, args);
2433 bad_fork_put_pidfd:
2434 if (clone_flags & CLONE_PIDFD) {
2435 fput(pidfile);
2436 put_unused_fd(pidfd);
2437 }
2438 bad_fork_free_pid:
2439 if (pid != &init_struct_pid)
2440 free_pid(pid);
2441 bad_fork_cleanup_thread:
2442 exit_thread(p);
2443 bad_fork_cleanup_io:
2444 if (p->io_context)
2445 exit_io_context(p);
2446 bad_fork_cleanup_namespaces:
2447 exit_task_namespaces(p);
2448 bad_fork_cleanup_mm:
2449 if (p->mm) {
2450 mm_clear_owner(p->mm, p);
2451 mmput(p->mm);
2452 }
2453 bad_fork_cleanup_signal:
2454 if (!(clone_flags & CLONE_THREAD))
2455 free_signal_struct(p->signal);
2456 bad_fork_cleanup_sighand:
2457 __cleanup_sighand(p->sighand);
2458 bad_fork_cleanup_fs:
2459 exit_fs(p); /* blocking */
2460 bad_fork_cleanup_files:
2461 exit_files(p); /* blocking */
2462 bad_fork_cleanup_semundo:
2463 exit_sem(p);
2464 bad_fork_cleanup_security:
2465 security_task_free(p);
2466 bad_fork_cleanup_audit:
2467 audit_free(p);
2468 bad_fork_cleanup_perf:
2469 perf_event_free_task(p);
2470 bad_fork_sched_cancel_fork:
2471 sched_cancel_fork(p);
2472 bad_fork_cleanup_policy:
2473 lockdep_free_task(p);
2474 #ifdef CONFIG_NUMA
2475 mpol_put(p->mempolicy);
2476 #endif
2477 bad_fork_cleanup_delayacct:
2478 delayacct_tsk_free(p);
2479 bad_fork_cleanup_count:
2480 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2481 exit_creds(p);
2482 bad_fork_free:
2483 WRITE_ONCE(p->__state, TASK_DEAD);
2484 exit_task_stack_account(p);
2485 put_task_stack(p);
2486 delayed_free_task(p);
2487 fork_out:
2488 spin_lock_irq(¤t->sighand->siglock);
2489 hlist_del_init(&delayed.node);
2490 spin_unlock_irq(¤t->sighand->siglock);
2491 return ERR_PTR(retval);
2492 }
2493
init_idle_pids(struct task_struct * idle)2494 static inline void init_idle_pids(struct task_struct *idle)
2495 {
2496 enum pid_type type;
2497
2498 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2499 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2500 init_task_pid(idle, type, &init_struct_pid);
2501 }
2502 }
2503
idle_dummy(void * dummy)2504 static int idle_dummy(void *dummy)
2505 {
2506 /* This function is never called */
2507 return 0;
2508 }
2509
fork_idle(int cpu)2510 struct task_struct * __init fork_idle(int cpu)
2511 {
2512 struct task_struct *task;
2513 struct kernel_clone_args args = {
2514 .flags = CLONE_VM,
2515 .fn = &idle_dummy,
2516 .fn_arg = NULL,
2517 .kthread = 1,
2518 .idle = 1,
2519 };
2520
2521 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2522 if (!IS_ERR(task)) {
2523 init_idle_pids(task);
2524 init_idle(task, cpu);
2525 }
2526
2527 return task;
2528 }
2529
2530 /*
2531 * This is like kernel_clone(), but shaved down and tailored to just
2532 * creating io_uring workers. It returns a created task, or an error pointer.
2533 * The returned task is inactive, and the caller must fire it up through
2534 * wake_up_new_task(p). All signals are blocked in the created task.
2535 */
create_io_thread(int (* fn)(void *),void * arg,int node)2536 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2537 {
2538 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2539 CLONE_IO;
2540 struct kernel_clone_args args = {
2541 .flags = ((lower_32_bits(flags) | CLONE_VM |
2542 CLONE_UNTRACED) & ~CSIGNAL),
2543 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2544 .fn = fn,
2545 .fn_arg = arg,
2546 .io_thread = 1,
2547 .user_worker = 1,
2548 };
2549
2550 return copy_process(NULL, 0, node, &args);
2551 }
2552
2553 /*
2554 * Ok, this is the main fork-routine.
2555 *
2556 * It copies the process, and if successful kick-starts
2557 * it and waits for it to finish using the VM if required.
2558 *
2559 * args->exit_signal is expected to be checked for sanity by the caller.
2560 */
kernel_clone(struct kernel_clone_args * args)2561 pid_t kernel_clone(struct kernel_clone_args *args)
2562 {
2563 u64 clone_flags = args->flags;
2564 struct completion vfork;
2565 struct pid *pid;
2566 struct task_struct *p;
2567 int trace = 0;
2568 pid_t nr;
2569
2570 /*
2571 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2572 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2573 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2574 * field in struct clone_args and it still doesn't make sense to have
2575 * them both point at the same memory location. Performing this check
2576 * here has the advantage that we don't need to have a separate helper
2577 * to check for legacy clone().
2578 */
2579 if ((clone_flags & CLONE_PIDFD) &&
2580 (clone_flags & CLONE_PARENT_SETTID) &&
2581 (args->pidfd == args->parent_tid))
2582 return -EINVAL;
2583
2584 /*
2585 * Determine whether and which event to report to ptracer. When
2586 * called from kernel_thread or CLONE_UNTRACED is explicitly
2587 * requested, no event is reported; otherwise, report if the event
2588 * for the type of forking is enabled.
2589 */
2590 if (!(clone_flags & CLONE_UNTRACED)) {
2591 if (clone_flags & CLONE_VFORK)
2592 trace = PTRACE_EVENT_VFORK;
2593 else if (args->exit_signal != SIGCHLD)
2594 trace = PTRACE_EVENT_CLONE;
2595 else
2596 trace = PTRACE_EVENT_FORK;
2597
2598 if (likely(!ptrace_event_enabled(current, trace)))
2599 trace = 0;
2600 }
2601
2602 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2603 add_latent_entropy();
2604
2605 if (IS_ERR(p))
2606 return PTR_ERR(p);
2607
2608 /*
2609 * Do this prior waking up the new thread - the thread pointer
2610 * might get invalid after that point, if the thread exits quickly.
2611 */
2612 trace_sched_process_fork(current, p);
2613
2614 pid = get_task_pid(p, PIDTYPE_PID);
2615 nr = pid_vnr(pid);
2616
2617 if (clone_flags & CLONE_PARENT_SETTID)
2618 put_user(nr, args->parent_tid);
2619
2620 if (clone_flags & CLONE_VFORK) {
2621 p->vfork_done = &vfork;
2622 init_completion(&vfork);
2623 get_task_struct(p);
2624 }
2625
2626 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2627 /* lock the task to synchronize with memcg migration */
2628 task_lock(p);
2629 lru_gen_add_mm(p->mm);
2630 task_unlock(p);
2631 }
2632
2633 wake_up_new_task(p);
2634
2635 /* forking complete and child started to run, tell ptracer */
2636 if (unlikely(trace))
2637 ptrace_event_pid(trace, pid);
2638
2639 if (clone_flags & CLONE_VFORK) {
2640 if (!wait_for_vfork_done(p, &vfork))
2641 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2642 }
2643
2644 put_pid(pid);
2645 return nr;
2646 }
2647
2648 /*
2649 * Create a kernel thread.
2650 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2651 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2652 unsigned long flags)
2653 {
2654 struct kernel_clone_args args = {
2655 .flags = ((lower_32_bits(flags) | CLONE_VM |
2656 CLONE_UNTRACED) & ~CSIGNAL),
2657 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2658 .fn = fn,
2659 .fn_arg = arg,
2660 .name = name,
2661 .kthread = 1,
2662 };
2663
2664 return kernel_clone(&args);
2665 }
2666
2667 /*
2668 * Create a user mode thread.
2669 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2670 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2671 {
2672 struct kernel_clone_args args = {
2673 .flags = ((lower_32_bits(flags) | CLONE_VM |
2674 CLONE_UNTRACED) & ~CSIGNAL),
2675 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2676 .fn = fn,
2677 .fn_arg = arg,
2678 };
2679
2680 return kernel_clone(&args);
2681 }
2682
2683 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2684 SYSCALL_DEFINE0(fork)
2685 {
2686 #ifdef CONFIG_MMU
2687 struct kernel_clone_args args = {
2688 .exit_signal = SIGCHLD,
2689 };
2690
2691 return kernel_clone(&args);
2692 #else
2693 /* can not support in nommu mode */
2694 return -EINVAL;
2695 #endif
2696 }
2697 #endif
2698
2699 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2700 SYSCALL_DEFINE0(vfork)
2701 {
2702 struct kernel_clone_args args = {
2703 .flags = CLONE_VFORK | CLONE_VM,
2704 .exit_signal = SIGCHLD,
2705 };
2706
2707 return kernel_clone(&args);
2708 }
2709 #endif
2710
2711 #ifdef __ARCH_WANT_SYS_CLONE
2712 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2713 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2714 int __user *, parent_tidptr,
2715 unsigned long, tls,
2716 int __user *, child_tidptr)
2717 #elif defined(CONFIG_CLONE_BACKWARDS2)
2718 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2719 int __user *, parent_tidptr,
2720 int __user *, child_tidptr,
2721 unsigned long, tls)
2722 #elif defined(CONFIG_CLONE_BACKWARDS3)
2723 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2724 int, stack_size,
2725 int __user *, parent_tidptr,
2726 int __user *, child_tidptr,
2727 unsigned long, tls)
2728 #else
2729 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2730 int __user *, parent_tidptr,
2731 int __user *, child_tidptr,
2732 unsigned long, tls)
2733 #endif
2734 {
2735 struct kernel_clone_args args = {
2736 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2737 .pidfd = parent_tidptr,
2738 .child_tid = child_tidptr,
2739 .parent_tid = parent_tidptr,
2740 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2741 .stack = newsp,
2742 .tls = tls,
2743 };
2744
2745 return kernel_clone(&args);
2746 }
2747 #endif
2748
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2749 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2750 struct clone_args __user *uargs,
2751 size_t usize)
2752 {
2753 int err;
2754 struct clone_args args;
2755 pid_t *kset_tid = kargs->set_tid;
2756
2757 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2758 CLONE_ARGS_SIZE_VER0);
2759 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2760 CLONE_ARGS_SIZE_VER1);
2761 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2762 CLONE_ARGS_SIZE_VER2);
2763 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2764
2765 if (unlikely(usize > PAGE_SIZE))
2766 return -E2BIG;
2767 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2768 return -EINVAL;
2769
2770 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2771 if (err)
2772 return err;
2773
2774 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2775 return -EINVAL;
2776
2777 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2778 return -EINVAL;
2779
2780 if (unlikely(args.set_tid && args.set_tid_size == 0))
2781 return -EINVAL;
2782
2783 /*
2784 * Verify that higher 32bits of exit_signal are unset and that
2785 * it is a valid signal
2786 */
2787 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2788 !valid_signal(args.exit_signal)))
2789 return -EINVAL;
2790
2791 if ((args.flags & CLONE_INTO_CGROUP) &&
2792 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2793 return -EINVAL;
2794
2795 *kargs = (struct kernel_clone_args){
2796 .flags = args.flags,
2797 .pidfd = u64_to_user_ptr(args.pidfd),
2798 .child_tid = u64_to_user_ptr(args.child_tid),
2799 .parent_tid = u64_to_user_ptr(args.parent_tid),
2800 .exit_signal = args.exit_signal,
2801 .stack = args.stack,
2802 .stack_size = args.stack_size,
2803 .tls = args.tls,
2804 .set_tid_size = args.set_tid_size,
2805 .cgroup = args.cgroup,
2806 };
2807
2808 if (args.set_tid &&
2809 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2810 (kargs->set_tid_size * sizeof(pid_t))))
2811 return -EFAULT;
2812
2813 kargs->set_tid = kset_tid;
2814
2815 return 0;
2816 }
2817
2818 /**
2819 * clone3_stack_valid - check and prepare stack
2820 * @kargs: kernel clone args
2821 *
2822 * Verify that the stack arguments userspace gave us are sane.
2823 * In addition, set the stack direction for userspace since it's easy for us to
2824 * determine.
2825 */
clone3_stack_valid(struct kernel_clone_args * kargs)2826 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2827 {
2828 if (kargs->stack == 0) {
2829 if (kargs->stack_size > 0)
2830 return false;
2831 } else {
2832 if (kargs->stack_size == 0)
2833 return false;
2834
2835 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2836 return false;
2837
2838 #if !defined(CONFIG_STACK_GROWSUP)
2839 kargs->stack += kargs->stack_size;
2840 #endif
2841 }
2842
2843 return true;
2844 }
2845
clone3_args_valid(struct kernel_clone_args * kargs)2846 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2847 {
2848 /* Verify that no unknown flags are passed along. */
2849 if (kargs->flags &
2850 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2851 return false;
2852
2853 /*
2854 * - make the CLONE_DETACHED bit reusable for clone3
2855 * - make the CSIGNAL bits reusable for clone3
2856 */
2857 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2858 return false;
2859
2860 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2861 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2862 return false;
2863
2864 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2865 kargs->exit_signal)
2866 return false;
2867
2868 if (!clone3_stack_valid(kargs))
2869 return false;
2870
2871 return true;
2872 }
2873
2874 /**
2875 * sys_clone3 - create a new process with specific properties
2876 * @uargs: argument structure
2877 * @size: size of @uargs
2878 *
2879 * clone3() is the extensible successor to clone()/clone2().
2880 * It takes a struct as argument that is versioned by its size.
2881 *
2882 * Return: On success, a positive PID for the child process.
2883 * On error, a negative errno number.
2884 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2885 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2886 {
2887 int err;
2888
2889 struct kernel_clone_args kargs;
2890 pid_t set_tid[MAX_PID_NS_LEVEL];
2891
2892 #ifdef __ARCH_BROKEN_SYS_CLONE3
2893 #warning clone3() entry point is missing, please fix
2894 return -ENOSYS;
2895 #endif
2896
2897 kargs.set_tid = set_tid;
2898
2899 err = copy_clone_args_from_user(&kargs, uargs, size);
2900 if (err)
2901 return err;
2902
2903 if (!clone3_args_valid(&kargs))
2904 return -EINVAL;
2905
2906 return kernel_clone(&kargs);
2907 }
2908
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2909 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2910 {
2911 struct task_struct *leader, *parent, *child;
2912 int res;
2913
2914 read_lock(&tasklist_lock);
2915 leader = top = top->group_leader;
2916 down:
2917 for_each_thread(leader, parent) {
2918 list_for_each_entry(child, &parent->children, sibling) {
2919 res = visitor(child, data);
2920 if (res) {
2921 if (res < 0)
2922 goto out;
2923 leader = child;
2924 goto down;
2925 }
2926 up:
2927 ;
2928 }
2929 }
2930
2931 if (leader != top) {
2932 child = leader;
2933 parent = child->real_parent;
2934 leader = parent->group_leader;
2935 goto up;
2936 }
2937 out:
2938 read_unlock(&tasklist_lock);
2939 }
2940
2941 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2942 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2943 #endif
2944
sighand_ctor(void * data)2945 static void sighand_ctor(void *data)
2946 {
2947 struct sighand_struct *sighand = data;
2948
2949 spin_lock_init(&sighand->siglock);
2950 init_waitqueue_head(&sighand->signalfd_wqh);
2951 }
2952
mm_cache_init(void)2953 void __init mm_cache_init(void)
2954 {
2955 unsigned int mm_size;
2956
2957 /*
2958 * The mm_cpumask is located at the end of mm_struct, and is
2959 * dynamically sized based on the maximum CPU number this system
2960 * can have, taking hotplug into account (nr_cpu_ids).
2961 */
2962 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
2963
2964 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2965 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2966 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2967 offsetof(struct mm_struct, saved_auxv),
2968 sizeof_field(struct mm_struct, saved_auxv),
2969 NULL);
2970 }
2971
proc_caches_init(void)2972 void __init proc_caches_init(void)
2973 {
2974 sighand_cachep = kmem_cache_create("sighand_cache",
2975 sizeof(struct sighand_struct), 0,
2976 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2977 SLAB_ACCOUNT, sighand_ctor);
2978 signal_cachep = kmem_cache_create("signal_cache",
2979 sizeof(struct signal_struct), 0,
2980 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2981 NULL);
2982 files_cachep = kmem_cache_create("files_cache",
2983 sizeof(struct files_struct), 0,
2984 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2985 NULL);
2986 fs_cachep = kmem_cache_create("fs_cache",
2987 sizeof(struct fs_struct), 0,
2988 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2989 NULL);
2990 mmap_init();
2991 nsproxy_cache_init();
2992 }
2993
2994 /*
2995 * Check constraints on flags passed to the unshare system call.
2996 */
check_unshare_flags(unsigned long unshare_flags)2997 static int check_unshare_flags(unsigned long unshare_flags)
2998 {
2999 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3000 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3001 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3002 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3003 CLONE_NEWTIME))
3004 return -EINVAL;
3005 /*
3006 * Not implemented, but pretend it works if there is nothing
3007 * to unshare. Note that unsharing the address space or the
3008 * signal handlers also need to unshare the signal queues (aka
3009 * CLONE_THREAD).
3010 */
3011 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3012 if (!thread_group_empty(current))
3013 return -EINVAL;
3014 }
3015 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3016 if (refcount_read(¤t->sighand->count) > 1)
3017 return -EINVAL;
3018 }
3019 if (unshare_flags & CLONE_VM) {
3020 if (!current_is_single_threaded())
3021 return -EINVAL;
3022 }
3023
3024 return 0;
3025 }
3026
3027 /*
3028 * Unshare the filesystem structure if it is being shared
3029 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3030 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3031 {
3032 struct fs_struct *fs = current->fs;
3033
3034 if (!(unshare_flags & CLONE_FS) || !fs)
3035 return 0;
3036
3037 /* don't need lock here; in the worst case we'll do useless copy */
3038 if (fs->users == 1)
3039 return 0;
3040
3041 *new_fsp = copy_fs_struct(fs);
3042 if (!*new_fsp)
3043 return -ENOMEM;
3044
3045 return 0;
3046 }
3047
3048 /*
3049 * Unshare file descriptor table if it is being shared
3050 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3051 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3052 {
3053 struct files_struct *fd = current->files;
3054
3055 if ((unshare_flags & CLONE_FILES) &&
3056 (fd && atomic_read(&fd->count) > 1)) {
3057 fd = dup_fd(fd, NULL);
3058 if (IS_ERR(fd))
3059 return PTR_ERR(fd);
3060 *new_fdp = fd;
3061 }
3062
3063 return 0;
3064 }
3065
3066 /*
3067 * unshare allows a process to 'unshare' part of the process
3068 * context which was originally shared using clone. copy_*
3069 * functions used by kernel_clone() cannot be used here directly
3070 * because they modify an inactive task_struct that is being
3071 * constructed. Here we are modifying the current, active,
3072 * task_struct.
3073 */
ksys_unshare(unsigned long unshare_flags)3074 int ksys_unshare(unsigned long unshare_flags)
3075 {
3076 struct fs_struct *fs, *new_fs = NULL;
3077 struct files_struct *new_fd = NULL;
3078 struct cred *new_cred = NULL;
3079 struct nsproxy *new_nsproxy = NULL;
3080 int do_sysvsem = 0;
3081 int err;
3082
3083 /*
3084 * If unsharing a user namespace must also unshare the thread group
3085 * and unshare the filesystem root and working directories.
3086 */
3087 if (unshare_flags & CLONE_NEWUSER)
3088 unshare_flags |= CLONE_THREAD | CLONE_FS;
3089 /*
3090 * If unsharing vm, must also unshare signal handlers.
3091 */
3092 if (unshare_flags & CLONE_VM)
3093 unshare_flags |= CLONE_SIGHAND;
3094 /*
3095 * If unsharing a signal handlers, must also unshare the signal queues.
3096 */
3097 if (unshare_flags & CLONE_SIGHAND)
3098 unshare_flags |= CLONE_THREAD;
3099 /*
3100 * If unsharing namespace, must also unshare filesystem information.
3101 */
3102 if (unshare_flags & CLONE_NEWNS)
3103 unshare_flags |= CLONE_FS;
3104
3105 err = check_unshare_flags(unshare_flags);
3106 if (err)
3107 goto bad_unshare_out;
3108 /*
3109 * CLONE_NEWIPC must also detach from the undolist: after switching
3110 * to a new ipc namespace, the semaphore arrays from the old
3111 * namespace are unreachable.
3112 */
3113 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3114 do_sysvsem = 1;
3115 err = unshare_fs(unshare_flags, &new_fs);
3116 if (err)
3117 goto bad_unshare_out;
3118 err = unshare_fd(unshare_flags, &new_fd);
3119 if (err)
3120 goto bad_unshare_cleanup_fs;
3121 err = unshare_userns(unshare_flags, &new_cred);
3122 if (err)
3123 goto bad_unshare_cleanup_fd;
3124 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3125 new_cred, new_fs);
3126 if (err)
3127 goto bad_unshare_cleanup_cred;
3128
3129 if (new_cred) {
3130 err = set_cred_ucounts(new_cred);
3131 if (err)
3132 goto bad_unshare_cleanup_cred;
3133 }
3134
3135 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3136 if (do_sysvsem) {
3137 /*
3138 * CLONE_SYSVSEM is equivalent to sys_exit().
3139 */
3140 exit_sem(current);
3141 }
3142 if (unshare_flags & CLONE_NEWIPC) {
3143 /* Orphan segments in old ns (see sem above). */
3144 exit_shm(current);
3145 shm_init_task(current);
3146 }
3147
3148 if (new_nsproxy)
3149 switch_task_namespaces(current, new_nsproxy);
3150
3151 task_lock(current);
3152
3153 if (new_fs) {
3154 fs = current->fs;
3155 read_seqlock_excl(&fs->seq);
3156 current->fs = new_fs;
3157 if (--fs->users)
3158 new_fs = NULL;
3159 else
3160 new_fs = fs;
3161 read_sequnlock_excl(&fs->seq);
3162 }
3163
3164 if (new_fd)
3165 swap(current->files, new_fd);
3166
3167 task_unlock(current);
3168
3169 if (new_cred) {
3170 /* Install the new user namespace */
3171 commit_creds(new_cred);
3172 new_cred = NULL;
3173 }
3174 }
3175
3176 perf_event_namespaces(current);
3177
3178 bad_unshare_cleanup_cred:
3179 if (new_cred)
3180 put_cred(new_cred);
3181 bad_unshare_cleanup_fd:
3182 if (new_fd)
3183 put_files_struct(new_fd);
3184
3185 bad_unshare_cleanup_fs:
3186 if (new_fs)
3187 free_fs_struct(new_fs);
3188
3189 bad_unshare_out:
3190 return err;
3191 }
3192
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3193 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3194 {
3195 return ksys_unshare(unshare_flags);
3196 }
3197
3198 /*
3199 * Helper to unshare the files of the current task.
3200 * We don't want to expose copy_files internals to
3201 * the exec layer of the kernel.
3202 */
3203
unshare_files(void)3204 int unshare_files(void)
3205 {
3206 struct task_struct *task = current;
3207 struct files_struct *old, *copy = NULL;
3208 int error;
3209
3210 error = unshare_fd(CLONE_FILES, ©);
3211 if (error || !copy)
3212 return error;
3213
3214 old = task->files;
3215 task_lock(task);
3216 task->files = copy;
3217 task_unlock(task);
3218 put_files_struct(old);
3219 return 0;
3220 }
3221
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3222 static int sysctl_max_threads(const struct ctl_table *table, int write,
3223 void *buffer, size_t *lenp, loff_t *ppos)
3224 {
3225 struct ctl_table t;
3226 int ret;
3227 int threads = max_threads;
3228 int min = 1;
3229 int max = MAX_THREADS;
3230
3231 t = *table;
3232 t.data = &threads;
3233 t.extra1 = &min;
3234 t.extra2 = &max;
3235
3236 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3237 if (ret || !write)
3238 return ret;
3239
3240 max_threads = threads;
3241
3242 return 0;
3243 }
3244
3245 static const struct ctl_table fork_sysctl_table[] = {
3246 {
3247 .procname = "threads-max",
3248 .data = NULL,
3249 .maxlen = sizeof(int),
3250 .mode = 0644,
3251 .proc_handler = sysctl_max_threads,
3252 },
3253 };
3254
init_fork_sysctl(void)3255 static int __init init_fork_sysctl(void)
3256 {
3257 register_sysctl_init("kernel", fork_sysctl_table);
3258 return 0;
3259 }
3260
3261 subsys_initcall(init_fork_sysctl);
3262