1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Convert sample address to data type using DWARF debug info.
4 *
5 * Written by Namhyung Kim <namhyung@kernel.org>
6 */
7 #include <errno.h>
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <inttypes.h>
11 #include <linux/zalloc.h>
12
13 #include "annotate.h"
14 #include "annotate-data.h"
15 #include "debuginfo.h"
16 #include "debug.h"
17 #include "dso.h"
18 #include "dwarf-regs.h"
19 #include "evsel.h"
20 #include "evlist.h"
21 #include "map.h"
22 #include "map_symbol.h"
23 #include "sort.h"
24 #include "strbuf.h"
25 #include "symbol.h"
26 #include "symbol_conf.h"
27 #include "thread.h"
28
29 /* register number of the stack pointer */
30 #define X86_REG_SP 7
31
32 static void delete_var_types(struct die_var_type *var_types);
33
34 #define pr_debug_dtp(fmt, ...) \
35 do { \
36 if (debug_type_profile) \
37 pr_info(fmt, ##__VA_ARGS__); \
38 else \
39 pr_debug3(fmt, ##__VA_ARGS__); \
40 } while (0)
41
pr_debug_type_name(Dwarf_Die * die,enum type_state_kind kind)42 void pr_debug_type_name(Dwarf_Die *die, enum type_state_kind kind)
43 {
44 struct strbuf sb;
45 char *str;
46 Dwarf_Word size = 0;
47
48 if (!debug_type_profile && verbose < 3)
49 return;
50
51 switch (kind) {
52 case TSR_KIND_INVALID:
53 pr_info("\n");
54 return;
55 case TSR_KIND_PERCPU_BASE:
56 pr_info(" percpu base\n");
57 return;
58 case TSR_KIND_CONST:
59 pr_info(" constant\n");
60 return;
61 case TSR_KIND_PERCPU_POINTER:
62 pr_info(" percpu pointer");
63 /* it also prints the type info */
64 break;
65 case TSR_KIND_POINTER:
66 pr_info(" pointer");
67 /* it also prints the type info */
68 break;
69 case TSR_KIND_CANARY:
70 pr_info(" stack canary\n");
71 return;
72 case TSR_KIND_TYPE:
73 default:
74 break;
75 }
76
77 dwarf_aggregate_size(die, &size);
78
79 strbuf_init(&sb, 32);
80 die_get_typename_from_type(die, &sb);
81 str = strbuf_detach(&sb, NULL);
82 pr_info(" type='%s' size=%#lx (die:%#lx)\n",
83 str, (long)size, (long)dwarf_dieoffset(die));
84 free(str);
85 }
86
pr_debug_location(Dwarf_Die * die,u64 pc,int reg)87 static void pr_debug_location(Dwarf_Die *die, u64 pc, int reg)
88 {
89 ptrdiff_t off = 0;
90 Dwarf_Attribute attr;
91 Dwarf_Addr base, start, end;
92 Dwarf_Op *ops;
93 size_t nops;
94
95 if (!debug_type_profile && verbose < 3)
96 return;
97
98 if (dwarf_attr(die, DW_AT_location, &attr) == NULL)
99 return;
100
101 while ((off = dwarf_getlocations(&attr, off, &base, &start, &end, &ops, &nops)) > 0) {
102 if (reg != DWARF_REG_PC && end <= pc)
103 continue;
104 if (reg != DWARF_REG_PC && start > pc)
105 break;
106
107 pr_info(" variable location: ");
108 switch (ops->atom) {
109 case DW_OP_reg0 ...DW_OP_reg31:
110 pr_info("reg%d\n", ops->atom - DW_OP_reg0);
111 break;
112 case DW_OP_breg0 ...DW_OP_breg31:
113 pr_info("base=reg%d, offset=%#lx\n",
114 ops->atom - DW_OP_breg0, (long)ops->number);
115 break;
116 case DW_OP_regx:
117 pr_info("reg%ld\n", (long)ops->number);
118 break;
119 case DW_OP_bregx:
120 pr_info("base=reg%ld, offset=%#lx\n",
121 (long)ops->number, (long)ops->number2);
122 break;
123 case DW_OP_fbreg:
124 pr_info("use frame base, offset=%#lx\n", (long)ops->number);
125 break;
126 case DW_OP_addr:
127 pr_info("address=%#lx\n", (long)ops->number);
128 break;
129 default:
130 pr_info("unknown: code=%#x, number=%#lx\n",
131 ops->atom, (long)ops->number);
132 break;
133 }
134 break;
135 }
136 }
137
pr_debug_scope(Dwarf_Die * scope_die)138 static void pr_debug_scope(Dwarf_Die *scope_die)
139 {
140 int tag;
141
142 if (!debug_type_profile && verbose < 3)
143 return;
144
145 pr_info("(die:%lx) ", (long)dwarf_dieoffset(scope_die));
146
147 tag = dwarf_tag(scope_die);
148 if (tag == DW_TAG_subprogram)
149 pr_info("[function] %s\n", dwarf_diename(scope_die));
150 else if (tag == DW_TAG_inlined_subroutine)
151 pr_info("[inlined] %s\n", dwarf_diename(scope_die));
152 else if (tag == DW_TAG_lexical_block)
153 pr_info("[block]\n");
154 else
155 pr_info("[unknown] tag=%x\n", tag);
156 }
157
has_reg_type(struct type_state * state,int reg)158 bool has_reg_type(struct type_state *state, int reg)
159 {
160 return (unsigned)reg < ARRAY_SIZE(state->regs);
161 }
162
init_type_state(struct type_state * state,struct arch * arch)163 static void init_type_state(struct type_state *state, struct arch *arch)
164 {
165 memset(state, 0, sizeof(*state));
166 INIT_LIST_HEAD(&state->stack_vars);
167
168 if (arch__is(arch, "x86")) {
169 state->regs[0].caller_saved = true;
170 state->regs[1].caller_saved = true;
171 state->regs[2].caller_saved = true;
172 state->regs[4].caller_saved = true;
173 state->regs[5].caller_saved = true;
174 state->regs[8].caller_saved = true;
175 state->regs[9].caller_saved = true;
176 state->regs[10].caller_saved = true;
177 state->regs[11].caller_saved = true;
178 state->ret_reg = 0;
179 state->stack_reg = X86_REG_SP;
180 }
181 }
182
exit_type_state(struct type_state * state)183 static void exit_type_state(struct type_state *state)
184 {
185 struct type_state_stack *stack, *tmp;
186
187 list_for_each_entry_safe(stack, tmp, &state->stack_vars, list) {
188 list_del(&stack->list);
189 free(stack);
190 }
191 }
192
193 /*
194 * Compare type name and size to maintain them in a tree.
195 * I'm not sure if DWARF would have information of a single type in many
196 * different places (compilation units). If not, it could compare the
197 * offset of the type entry in the .debug_info section.
198 */
data_type_cmp(const void * _key,const struct rb_node * node)199 static int data_type_cmp(const void *_key, const struct rb_node *node)
200 {
201 const struct annotated_data_type *key = _key;
202 struct annotated_data_type *type;
203
204 type = rb_entry(node, struct annotated_data_type, node);
205
206 if (key->self.size != type->self.size)
207 return key->self.size - type->self.size;
208 return strcmp(key->self.type_name, type->self.type_name);
209 }
210
data_type_less(struct rb_node * node_a,const struct rb_node * node_b)211 static bool data_type_less(struct rb_node *node_a, const struct rb_node *node_b)
212 {
213 struct annotated_data_type *a, *b;
214
215 a = rb_entry(node_a, struct annotated_data_type, node);
216 b = rb_entry(node_b, struct annotated_data_type, node);
217
218 if (a->self.size != b->self.size)
219 return a->self.size < b->self.size;
220 return strcmp(a->self.type_name, b->self.type_name) < 0;
221 }
222
223 /* Recursively add new members for struct/union */
__add_member_cb(Dwarf_Die * die,void * arg)224 static int __add_member_cb(Dwarf_Die *die, void *arg)
225 {
226 struct annotated_member *parent = arg;
227 struct annotated_member *member;
228 Dwarf_Die member_type, die_mem;
229 Dwarf_Word size, loc, bit_size = 0;
230 Dwarf_Attribute attr;
231 struct strbuf sb;
232 int tag;
233
234 if (dwarf_tag(die) != DW_TAG_member)
235 return DIE_FIND_CB_SIBLING;
236
237 member = zalloc(sizeof(*member));
238 if (member == NULL)
239 return DIE_FIND_CB_END;
240
241 strbuf_init(&sb, 32);
242 die_get_typename(die, &sb);
243
244 __die_get_real_type(die, &member_type);
245 if (dwarf_tag(&member_type) == DW_TAG_typedef)
246 die_get_real_type(&member_type, &die_mem);
247 else
248 die_mem = member_type;
249
250 if (dwarf_aggregate_size(&die_mem, &size) < 0)
251 size = 0;
252
253 if (dwarf_attr_integrate(die, DW_AT_data_member_location, &attr))
254 dwarf_formudata(&attr, &loc);
255 else {
256 /* bitfield member */
257 if (dwarf_attr_integrate(die, DW_AT_data_bit_offset, &attr) &&
258 dwarf_formudata(&attr, &loc) == 0)
259 loc /= 8;
260 else
261 loc = 0;
262
263 if (dwarf_attr_integrate(die, DW_AT_bit_size, &attr) &&
264 dwarf_formudata(&attr, &bit_size) == 0)
265 size = (bit_size + 7) / 8;
266 }
267
268 member->type_name = strbuf_detach(&sb, NULL);
269 /* member->var_name can be NULL */
270 if (dwarf_diename(die)) {
271 if (bit_size) {
272 if (asprintf(&member->var_name, "%s:%ld",
273 dwarf_diename(die), (long)bit_size) < 0)
274 member->var_name = NULL;
275 } else {
276 member->var_name = strdup(dwarf_diename(die));
277 }
278
279 if (member->var_name == NULL) {
280 free(member);
281 return DIE_FIND_CB_END;
282 }
283 }
284 member->size = size;
285 member->offset = loc + parent->offset;
286 INIT_LIST_HEAD(&member->children);
287 list_add_tail(&member->node, &parent->children);
288
289 tag = dwarf_tag(&die_mem);
290 switch (tag) {
291 case DW_TAG_structure_type:
292 case DW_TAG_union_type:
293 die_find_child(&die_mem, __add_member_cb, member, &die_mem);
294 break;
295 default:
296 break;
297 }
298 return DIE_FIND_CB_SIBLING;
299 }
300
add_member_types(struct annotated_data_type * parent,Dwarf_Die * type)301 static void add_member_types(struct annotated_data_type *parent, Dwarf_Die *type)
302 {
303 Dwarf_Die die_mem;
304
305 die_find_child(type, __add_member_cb, &parent->self, &die_mem);
306 }
307
delete_members(struct annotated_member * member)308 static void delete_members(struct annotated_member *member)
309 {
310 struct annotated_member *child, *tmp;
311
312 list_for_each_entry_safe(child, tmp, &member->children, node) {
313 list_del(&child->node);
314 delete_members(child);
315 zfree(&child->type_name);
316 zfree(&child->var_name);
317 free(child);
318 }
319 }
320
fill_member_name(char * buf,size_t sz,struct annotated_member * m,int offset,bool first)321 static int fill_member_name(char *buf, size_t sz, struct annotated_member *m,
322 int offset, bool first)
323 {
324 struct annotated_member *child;
325
326 if (list_empty(&m->children))
327 return 0;
328
329 list_for_each_entry(child, &m->children, node) {
330 int len;
331
332 if (offset < child->offset || offset >= child->offset + child->size)
333 continue;
334
335 /* It can have anonymous struct/union members */
336 if (child->var_name) {
337 len = scnprintf(buf, sz, "%s%s",
338 first ? "" : ".", child->var_name);
339 first = false;
340 } else {
341 len = 0;
342 }
343
344 return fill_member_name(buf + len, sz - len, child, offset, first) + len;
345 }
346 return 0;
347 }
348
annotated_data_type__get_member_name(struct annotated_data_type * adt,char * buf,size_t sz,int member_offset)349 int annotated_data_type__get_member_name(struct annotated_data_type *adt,
350 char *buf, size_t sz, int member_offset)
351 {
352 return fill_member_name(buf, sz, &adt->self, member_offset, /*first=*/true);
353 }
354
dso__findnew_data_type(struct dso * dso,Dwarf_Die * type_die)355 static struct annotated_data_type *dso__findnew_data_type(struct dso *dso,
356 Dwarf_Die *type_die)
357 {
358 struct annotated_data_type *result = NULL;
359 struct annotated_data_type key;
360 struct rb_node *node;
361 struct strbuf sb;
362 char *type_name;
363 Dwarf_Word size;
364
365 strbuf_init(&sb, 32);
366 if (die_get_typename_from_type(type_die, &sb) < 0)
367 strbuf_add(&sb, "(unknown type)", 14);
368 type_name = strbuf_detach(&sb, NULL);
369
370 if (dwarf_tag(type_die) == DW_TAG_typedef)
371 die_get_real_type(type_die, type_die);
372
373 dwarf_aggregate_size(type_die, &size);
374
375 /* Check existing nodes in dso->data_types tree */
376 key.self.type_name = type_name;
377 key.self.size = size;
378 node = rb_find(&key, dso__data_types(dso), data_type_cmp);
379 if (node) {
380 result = rb_entry(node, struct annotated_data_type, node);
381 free(type_name);
382 return result;
383 }
384
385 /* If not, add a new one */
386 result = zalloc(sizeof(*result));
387 if (result == NULL) {
388 free(type_name);
389 return NULL;
390 }
391
392 result->self.type_name = type_name;
393 result->self.size = size;
394 INIT_LIST_HEAD(&result->self.children);
395
396 if (symbol_conf.annotate_data_member)
397 add_member_types(result, type_die);
398
399 rb_add(&result->node, dso__data_types(dso), data_type_less);
400 return result;
401 }
402
find_cu_die(struct debuginfo * di,u64 pc,Dwarf_Die * cu_die)403 static bool find_cu_die(struct debuginfo *di, u64 pc, Dwarf_Die *cu_die)
404 {
405 Dwarf_Off off, next_off;
406 size_t header_size;
407
408 if (dwarf_addrdie(di->dbg, pc, cu_die) != NULL)
409 return cu_die;
410
411 /*
412 * There are some kernels don't have full aranges and contain only a few
413 * aranges entries. Fallback to iterate all CU entries in .debug_info
414 * in case it's missing.
415 */
416 off = 0;
417 while (dwarf_nextcu(di->dbg, off, &next_off, &header_size,
418 NULL, NULL, NULL) == 0) {
419 if (dwarf_offdie(di->dbg, off + header_size, cu_die) &&
420 dwarf_haspc(cu_die, pc))
421 return true;
422
423 off = next_off;
424 }
425 return false;
426 }
427
428 enum type_match_result {
429 PERF_TMR_UNKNOWN = 0,
430 PERF_TMR_OK,
431 PERF_TMR_NO_TYPE,
432 PERF_TMR_NO_POINTER,
433 PERF_TMR_NO_SIZE,
434 PERF_TMR_BAD_OFFSET,
435 PERF_TMR_BAIL_OUT,
436 };
437
match_result_str(enum type_match_result tmr)438 static const char *match_result_str(enum type_match_result tmr)
439 {
440 switch (tmr) {
441 case PERF_TMR_OK:
442 return "Good!";
443 case PERF_TMR_NO_TYPE:
444 return "no type information";
445 case PERF_TMR_NO_POINTER:
446 return "no/void pointer";
447 case PERF_TMR_NO_SIZE:
448 return "type size is unknown";
449 case PERF_TMR_BAD_OFFSET:
450 return "offset bigger than size";
451 case PERF_TMR_UNKNOWN:
452 case PERF_TMR_BAIL_OUT:
453 default:
454 return "invalid state";
455 }
456 }
457
is_pointer_type(Dwarf_Die * type_die)458 static bool is_pointer_type(Dwarf_Die *type_die)
459 {
460 int tag = dwarf_tag(type_die);
461
462 return tag == DW_TAG_pointer_type || tag == DW_TAG_array_type;
463 }
464
is_compound_type(Dwarf_Die * type_die)465 static bool is_compound_type(Dwarf_Die *type_die)
466 {
467 int tag = dwarf_tag(type_die);
468
469 return tag == DW_TAG_structure_type || tag == DW_TAG_union_type;
470 }
471
472 /* returns if Type B has better information than Type A */
is_better_type(Dwarf_Die * type_a,Dwarf_Die * type_b)473 static bool is_better_type(Dwarf_Die *type_a, Dwarf_Die *type_b)
474 {
475 Dwarf_Word size_a, size_b;
476 Dwarf_Die die_a, die_b;
477
478 /* pointer type is preferred */
479 if (is_pointer_type(type_a) != is_pointer_type(type_b))
480 return is_pointer_type(type_b);
481
482 if (is_pointer_type(type_b)) {
483 /*
484 * We want to compare the target type, but 'void *' can fail to
485 * get the target type.
486 */
487 if (die_get_real_type(type_a, &die_a) == NULL)
488 return true;
489 if (die_get_real_type(type_b, &die_b) == NULL)
490 return false;
491
492 type_a = &die_a;
493 type_b = &die_b;
494 }
495
496 /* bigger type is preferred */
497 if (dwarf_aggregate_size(type_a, &size_a) < 0 ||
498 dwarf_aggregate_size(type_b, &size_b) < 0)
499 return false;
500
501 if (size_a != size_b)
502 return size_a < size_b;
503
504 /* struct or union is preferred */
505 if (is_compound_type(type_a) != is_compound_type(type_b))
506 return is_compound_type(type_b);
507
508 /* typedef is preferred */
509 if (dwarf_tag(type_b) == DW_TAG_typedef)
510 return true;
511
512 return false;
513 }
514
515 /* The type info will be saved in @type_die */
check_variable(struct data_loc_info * dloc,Dwarf_Die * var_die,Dwarf_Die * type_die,int reg,int offset,bool is_fbreg)516 static enum type_match_result check_variable(struct data_loc_info *dloc,
517 Dwarf_Die *var_die,
518 Dwarf_Die *type_die, int reg,
519 int offset, bool is_fbreg)
520 {
521 Dwarf_Word size;
522 bool needs_pointer = true;
523 Dwarf_Die sized_type;
524
525 if (reg == DWARF_REG_PC)
526 needs_pointer = false;
527 else if (reg == dloc->fbreg || is_fbreg)
528 needs_pointer = false;
529 else if (arch__is(dloc->arch, "x86") && reg == X86_REG_SP)
530 needs_pointer = false;
531
532 /* Get the type of the variable */
533 if (__die_get_real_type(var_die, type_die) == NULL)
534 return PERF_TMR_NO_TYPE;
535
536 /*
537 * Usually it expects a pointer type for a memory access.
538 * Convert to a real type it points to. But global variables
539 * and local variables are accessed directly without a pointer.
540 */
541 if (needs_pointer) {
542 if (!is_pointer_type(type_die) ||
543 __die_get_real_type(type_die, type_die) == NULL)
544 return PERF_TMR_NO_POINTER;
545 }
546
547 if (dwarf_tag(type_die) == DW_TAG_typedef)
548 die_get_real_type(type_die, &sized_type);
549 else
550 sized_type = *type_die;
551
552 /* Get the size of the actual type */
553 if (dwarf_aggregate_size(&sized_type, &size) < 0)
554 return PERF_TMR_NO_SIZE;
555
556 /* Minimal sanity check */
557 if ((unsigned)offset >= size)
558 return PERF_TMR_BAD_OFFSET;
559
560 return PERF_TMR_OK;
561 }
562
find_stack_state(struct type_state * state,int offset)563 struct type_state_stack *find_stack_state(struct type_state *state,
564 int offset)
565 {
566 struct type_state_stack *stack;
567
568 list_for_each_entry(stack, &state->stack_vars, list) {
569 if (offset == stack->offset)
570 return stack;
571
572 if (stack->compound && stack->offset < offset &&
573 offset < stack->offset + stack->size)
574 return stack;
575 }
576 return NULL;
577 }
578
set_stack_state(struct type_state_stack * stack,int offset,u8 kind,Dwarf_Die * type_die,int ptr_offset)579 void set_stack_state(struct type_state_stack *stack, int offset, u8 kind,
580 Dwarf_Die *type_die, int ptr_offset)
581 {
582 int tag;
583 Dwarf_Word size;
584
585 if (kind == TSR_KIND_POINTER) {
586 /* TODO: arch-dependent pointer size */
587 size = sizeof(void *);
588 }
589 else if (dwarf_aggregate_size(type_die, &size) < 0)
590 size = 0;
591
592 stack->type = *type_die;
593 stack->size = size;
594 stack->offset = offset;
595 stack->ptr_offset = ptr_offset;
596 stack->kind = kind;
597
598 if (kind == TSR_KIND_POINTER) {
599 stack->compound = false;
600 return;
601 }
602
603 tag = dwarf_tag(type_die);
604
605 switch (tag) {
606 case DW_TAG_structure_type:
607 case DW_TAG_union_type:
608 stack->compound = (kind != TSR_KIND_PERCPU_POINTER);
609 break;
610 default:
611 stack->compound = false;
612 break;
613 }
614 }
615
findnew_stack_state(struct type_state * state,int offset,u8 kind,Dwarf_Die * type_die,int ptr_offset)616 struct type_state_stack *findnew_stack_state(struct type_state *state,
617 int offset, u8 kind,
618 Dwarf_Die *type_die,
619 int ptr_offset)
620 {
621 struct type_state_stack *stack = find_stack_state(state, offset);
622
623 if (stack) {
624 set_stack_state(stack, offset, kind, type_die, ptr_offset);
625 return stack;
626 }
627
628 stack = malloc(sizeof(*stack));
629 if (stack) {
630 set_stack_state(stack, offset, kind, type_die, ptr_offset);
631 list_add(&stack->list, &state->stack_vars);
632 }
633 return stack;
634 }
635
636 /* Maintain a cache for quick global variable lookup */
637 struct global_var_entry {
638 struct rb_node node;
639 char *name;
640 u64 start;
641 u64 end;
642 u64 die_offset;
643 };
644
global_var_cmp(const void * _key,const struct rb_node * node)645 static int global_var_cmp(const void *_key, const struct rb_node *node)
646 {
647 const u64 addr = (uintptr_t)_key;
648 struct global_var_entry *gvar;
649
650 gvar = rb_entry(node, struct global_var_entry, node);
651
652 if (gvar->start <= addr && addr < gvar->end)
653 return 0;
654 return gvar->start > addr ? -1 : 1;
655 }
656
global_var_less(struct rb_node * node_a,const struct rb_node * node_b)657 static bool global_var_less(struct rb_node *node_a, const struct rb_node *node_b)
658 {
659 struct global_var_entry *gvar_a, *gvar_b;
660
661 gvar_a = rb_entry(node_a, struct global_var_entry, node);
662 gvar_b = rb_entry(node_b, struct global_var_entry, node);
663
664 return gvar_a->start < gvar_b->start;
665 }
666
global_var__find(struct data_loc_info * dloc,u64 addr)667 static struct global_var_entry *global_var__find(struct data_loc_info *dloc, u64 addr)
668 {
669 struct dso *dso = map__dso(dloc->ms->map);
670 struct rb_node *node;
671
672 node = rb_find((void *)(uintptr_t)addr, dso__global_vars(dso), global_var_cmp);
673 if (node == NULL)
674 return NULL;
675
676 return rb_entry(node, struct global_var_entry, node);
677 }
678
global_var__add(struct data_loc_info * dloc,u64 addr,const char * name,Dwarf_Die * type_die)679 static bool global_var__add(struct data_loc_info *dloc, u64 addr,
680 const char *name, Dwarf_Die *type_die)
681 {
682 struct dso *dso = map__dso(dloc->ms->map);
683 struct global_var_entry *gvar;
684 Dwarf_Word size;
685
686 if (dwarf_aggregate_size(type_die, &size) < 0)
687 return false;
688
689 gvar = malloc(sizeof(*gvar));
690 if (gvar == NULL)
691 return false;
692
693 gvar->name = name ? strdup(name) : NULL;
694 if (name && gvar->name == NULL) {
695 free(gvar);
696 return false;
697 }
698
699 gvar->start = addr;
700 gvar->end = addr + size;
701 gvar->die_offset = dwarf_dieoffset(type_die);
702
703 rb_add(&gvar->node, dso__global_vars(dso), global_var_less);
704 return true;
705 }
706
global_var_type__tree_delete(struct rb_root * root)707 void global_var_type__tree_delete(struct rb_root *root)
708 {
709 struct global_var_entry *gvar;
710
711 while (!RB_EMPTY_ROOT(root)) {
712 struct rb_node *node = rb_first(root);
713
714 rb_erase(node, root);
715 gvar = rb_entry(node, struct global_var_entry, node);
716 zfree(&gvar->name);
717 free(gvar);
718 }
719 }
720
get_global_var_info(struct data_loc_info * dloc,u64 addr,const char ** var_name,int * var_offset)721 bool get_global_var_info(struct data_loc_info *dloc, u64 addr,
722 const char **var_name, int *var_offset)
723 {
724 struct addr_location al;
725 struct symbol *sym;
726 u64 mem_addr;
727
728 /* Kernel symbols might be relocated */
729 mem_addr = addr + map__reloc(dloc->ms->map);
730
731 addr_location__init(&al);
732 sym = thread__find_symbol_fb(dloc->thread, dloc->cpumode,
733 mem_addr, &al);
734 if (sym) {
735 *var_name = sym->name;
736 /* Calculate type offset from the start of variable */
737 *var_offset = mem_addr - map__unmap_ip(al.map, sym->start);
738 } else {
739 *var_name = NULL;
740 }
741 addr_location__exit(&al);
742 if (*var_name == NULL)
743 return false;
744
745 return true;
746 }
747
global_var__collect(struct data_loc_info * dloc)748 static void global_var__collect(struct data_loc_info *dloc)
749 {
750 Dwarf *dwarf = dloc->di->dbg;
751 Dwarf_Off off, next_off;
752 Dwarf_Die cu_die, type_die;
753 size_t header_size;
754
755 /* Iterate all CU and collect global variables that have no location in a register. */
756 off = 0;
757 while (dwarf_nextcu(dwarf, off, &next_off, &header_size,
758 NULL, NULL, NULL) == 0) {
759 struct die_var_type *var_types = NULL;
760 struct die_var_type *pos;
761
762 if (dwarf_offdie(dwarf, off + header_size, &cu_die) == NULL) {
763 off = next_off;
764 continue;
765 }
766
767 die_collect_global_vars(&cu_die, &var_types);
768
769 for (pos = var_types; pos; pos = pos->next) {
770 const char *var_name = NULL;
771 int var_offset = 0;
772
773 if (pos->reg != -1)
774 continue;
775
776 if (!dwarf_offdie(dwarf, pos->die_off, &type_die))
777 continue;
778
779 if (!get_global_var_info(dloc, pos->addr, &var_name,
780 &var_offset))
781 continue;
782
783 if (var_offset != 0)
784 continue;
785
786 global_var__add(dloc, pos->addr, var_name, &type_die);
787 }
788
789 delete_var_types(var_types);
790
791 off = next_off;
792 }
793 }
794
get_global_var_type(Dwarf_Die * cu_die,struct data_loc_info * dloc,u64 ip,u64 var_addr,int * var_offset,Dwarf_Die * type_die)795 bool get_global_var_type(Dwarf_Die *cu_die, struct data_loc_info *dloc,
796 u64 ip, u64 var_addr, int *var_offset,
797 Dwarf_Die *type_die)
798 {
799 u64 pc;
800 int offset;
801 const char *var_name = NULL;
802 struct global_var_entry *gvar;
803 struct dso *dso = map__dso(dloc->ms->map);
804 Dwarf_Die var_die;
805
806 if (RB_EMPTY_ROOT(dso__global_vars(dso)))
807 global_var__collect(dloc);
808
809 gvar = global_var__find(dloc, var_addr);
810 if (gvar) {
811 if (!dwarf_offdie(dloc->di->dbg, gvar->die_offset, type_die))
812 return false;
813
814 *var_offset = var_addr - gvar->start;
815 return true;
816 }
817
818 /* Try to get the variable by address first */
819 if (die_find_variable_by_addr(cu_die, var_addr, &var_die, &offset) &&
820 check_variable(dloc, &var_die, type_die, DWARF_REG_PC, offset,
821 /*is_fbreg=*/false) == PERF_TMR_OK) {
822 var_name = dwarf_diename(&var_die);
823 *var_offset = offset;
824 goto ok;
825 }
826
827 if (!get_global_var_info(dloc, var_addr, &var_name, var_offset))
828 return false;
829
830 pc = map__rip_2objdump(dloc->ms->map, ip);
831
832 /* Try to get the name of global variable */
833 if (die_find_variable_at(cu_die, var_name, pc, &var_die) &&
834 check_variable(dloc, &var_die, type_die, DWARF_REG_PC, *var_offset,
835 /*is_fbreg=*/false) == PERF_TMR_OK)
836 goto ok;
837
838 return false;
839
840 ok:
841 /* The address should point to the start of the variable */
842 global_var__add(dloc, var_addr - *var_offset, var_name, type_die);
843 return true;
844 }
845
die_is_same(Dwarf_Die * die_a,Dwarf_Die * die_b)846 static bool die_is_same(Dwarf_Die *die_a, Dwarf_Die *die_b)
847 {
848 return (die_a->cu == die_b->cu) && (die_a->addr == die_b->addr);
849 }
850
851 /**
852 * update_var_state - Update type state using given variables
853 * @state: type state table
854 * @dloc: data location info
855 * @addr: instruction address to match with variable
856 * @insn_offset: instruction offset (for debug)
857 * @var_types: list of variables with type info
858 *
859 * This function fills the @state table using @var_types info. Each variable
860 * is used only at the given location and updates an entry in the table.
861 */
update_var_state(struct type_state * state,struct data_loc_info * dloc,u64 addr,u64 insn_offset,struct die_var_type * var_types)862 static void update_var_state(struct type_state *state, struct data_loc_info *dloc,
863 u64 addr, u64 insn_offset, struct die_var_type *var_types)
864 {
865 Dwarf_Die mem_die;
866 struct die_var_type *var;
867 int fbreg = dloc->fbreg;
868 int fb_offset = 0;
869
870 if (dloc->fb_cfa) {
871 if (die_get_cfa(dloc->di->dbg, addr, &fbreg, &fb_offset) < 0)
872 fbreg = -1;
873 }
874
875 for (var = var_types; var != NULL; var = var->next) {
876 if (var->addr != addr)
877 continue;
878 /* Get the type DIE using the offset */
879 if (!dwarf_offdie(dloc->di->dbg, var->die_off, &mem_die))
880 continue;
881
882 if (var->reg == DWARF_REG_FB || var->reg == fbreg || var->reg == state->stack_reg) {
883 int offset = var->offset;
884 struct type_state_stack *stack;
885
886 /* If the reg location holds the pointer value, dereference the type */
887 if (!var->is_reg_var_addr && is_pointer_type(&mem_die) &&
888 __die_get_real_type(&mem_die, &mem_die) == NULL)
889 continue;
890
891 if (var->reg != DWARF_REG_FB)
892 offset -= fb_offset;
893
894 stack = find_stack_state(state, offset);
895 if (stack && stack->kind == TSR_KIND_TYPE &&
896 !is_better_type(&stack->type, &mem_die))
897 continue;
898
899 findnew_stack_state(state, offset, TSR_KIND_TYPE,
900 &mem_die, /*ptr_offset=*/0);
901
902 if (var->reg == state->stack_reg) {
903 pr_debug_dtp("var [%"PRIx64"] %#x(reg%d)",
904 insn_offset, offset, state->stack_reg);
905 } else {
906 pr_debug_dtp("var [%"PRIx64"] -%#x(stack)",
907 insn_offset, -offset);
908 }
909 pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
910 } else if (has_reg_type(state, var->reg)) {
911 struct type_state_reg *reg;
912 Dwarf_Die orig_type;
913
914 reg = &state->regs[var->reg];
915
916 if (reg->ok && reg->kind == TSR_KIND_TYPE &&
917 (!is_better_type(®->type, &mem_die) || var->is_reg_var_addr))
918 continue;
919
920 /* Handle address registers with TSR_KIND_POINTER */
921 if (var->is_reg_var_addr) {
922 if (reg->ok && reg->kind == TSR_KIND_POINTER &&
923 !is_better_type(®->type, &mem_die))
924 continue;
925
926 reg->offset = -var->offset;
927 reg->type = mem_die;
928 reg->kind = TSR_KIND_POINTER;
929 reg->ok = true;
930
931 pr_debug_dtp("var [%"PRIx64"] reg%d addr offset %x",
932 insn_offset, var->reg, var->offset);
933 pr_debug_type_name(&mem_die, TSR_KIND_POINTER);
934 continue;
935 }
936
937 orig_type = reg->type;
938 /*
939 * var->offset + reg value is the beginning of the struct
940 * reg->offset is the offset the reg points
941 */
942 reg->offset = -var->offset;
943 reg->type = mem_die;
944 reg->kind = TSR_KIND_TYPE;
945 reg->ok = true;
946
947 pr_debug_dtp("var [%"PRIx64"] reg%d offset %x",
948 insn_offset, var->reg, var->offset);
949 pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
950
951 /*
952 * If this register is directly copied from another and it gets a
953 * better type, also update the type of the source register. This
954 * is usually the case of container_of() macro with offset of 0.
955 */
956 if (has_reg_type(state, reg->copied_from)) {
957 struct type_state_reg *copy_reg;
958
959 copy_reg = &state->regs[reg->copied_from];
960
961 /* TODO: check if type is compatible or embedded */
962 if (!copy_reg->ok || (copy_reg->kind != TSR_KIND_TYPE) ||
963 !die_is_same(©_reg->type, &orig_type) ||
964 !is_better_type(©_reg->type, &mem_die))
965 continue;
966
967 copy_reg->type = mem_die;
968
969 pr_debug_dtp("var [%"PRIx64"] copyback reg%d",
970 insn_offset, reg->copied_from);
971 pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
972 }
973 }
974 }
975 }
976
977 /**
978 * update_insn_state - Update type state for an instruction
979 * @state: type state table
980 * @dloc: data location info
981 * @cu_die: compile unit debug entry
982 * @dl: disasm line for the instruction
983 *
984 * This function updates the @state table for the target operand of the
985 * instruction at @dl if it transfers the type like MOV on x86. Since it
986 * tracks the type, it won't care about the values like in arithmetic
987 * instructions like ADD/SUB/MUL/DIV and INC/DEC.
988 *
989 * Note that ops->reg2 is only available when both mem_ref and multi_regs
990 * are true.
991 */
update_insn_state(struct type_state * state,struct data_loc_info * dloc,Dwarf_Die * cu_die,struct disasm_line * dl)992 static void update_insn_state(struct type_state *state, struct data_loc_info *dloc,
993 Dwarf_Die *cu_die, struct disasm_line *dl)
994 {
995 if (dloc->arch->update_insn_state)
996 dloc->arch->update_insn_state(state, dloc, cu_die, dl);
997 }
998
999 /*
1000 * Prepend this_blocks (from the outer scope) to full_blocks, removing
1001 * duplicate disasm line.
1002 */
prepend_basic_blocks(struct list_head * this_blocks,struct list_head * full_blocks)1003 static void prepend_basic_blocks(struct list_head *this_blocks,
1004 struct list_head *full_blocks)
1005 {
1006 struct annotated_basic_block *first_bb, *last_bb;
1007
1008 last_bb = list_last_entry(this_blocks, typeof(*last_bb), list);
1009 first_bb = list_first_entry(full_blocks, typeof(*first_bb), list);
1010
1011 if (list_empty(full_blocks))
1012 goto out;
1013
1014 /* Last insn in this_blocks should be same as first insn in full_blocks */
1015 if (last_bb->end != first_bb->begin) {
1016 pr_debug("prepend basic blocks: mismatched disasm line %"PRIx64" -> %"PRIx64"\n",
1017 last_bb->end->al.offset, first_bb->begin->al.offset);
1018 goto out;
1019 }
1020
1021 /* Is the basic block have only one disasm_line? */
1022 if (last_bb->begin == last_bb->end) {
1023 list_del(&last_bb->list);
1024 free(last_bb);
1025 goto out;
1026 }
1027
1028 /* Point to the insn before the last when adding this block to full_blocks */
1029 last_bb->end = list_prev_entry(last_bb->end, al.node);
1030
1031 out:
1032 list_splice(this_blocks, full_blocks);
1033 }
1034
delete_basic_blocks(struct list_head * basic_blocks)1035 static void delete_basic_blocks(struct list_head *basic_blocks)
1036 {
1037 struct annotated_basic_block *bb, *tmp;
1038
1039 list_for_each_entry_safe(bb, tmp, basic_blocks, list) {
1040 list_del(&bb->list);
1041 free(bb);
1042 }
1043 }
1044
1045 /* Make sure all variables have a valid start address */
fixup_var_address(struct die_var_type * var_types,u64 addr)1046 static void fixup_var_address(struct die_var_type *var_types, u64 addr)
1047 {
1048 while (var_types) {
1049 /*
1050 * Some variables have no address range meaning it's always
1051 * available in the whole scope. Let's adjust the start
1052 * address to the start of the scope.
1053 */
1054 if (var_types->addr == 0)
1055 var_types->addr = addr;
1056
1057 var_types = var_types->next;
1058 }
1059 }
1060
delete_var_types(struct die_var_type * var_types)1061 static void delete_var_types(struct die_var_type *var_types)
1062 {
1063 while (var_types) {
1064 struct die_var_type *next = var_types->next;
1065
1066 free(var_types);
1067 var_types = next;
1068 }
1069 }
1070
1071 /* should match to is_stack_canary() in util/annotate.c */
setup_stack_canary(struct data_loc_info * dloc)1072 static void setup_stack_canary(struct data_loc_info *dloc)
1073 {
1074 if (arch__is(dloc->arch, "x86")) {
1075 dloc->op->segment = INSN_SEG_X86_GS;
1076 dloc->op->imm = true;
1077 dloc->op->offset = 40;
1078 }
1079 }
1080
1081 /*
1082 * It's at the target address, check if it has a matching type.
1083 * It returns PERF_TMR_BAIL_OUT when it looks up per-cpu variables which
1084 * are similar to global variables and no additional info is needed.
1085 */
check_matching_type(struct type_state * state,struct data_loc_info * dloc,Dwarf_Die * cu_die,struct disasm_line * dl,Dwarf_Die * type_die)1086 static enum type_match_result check_matching_type(struct type_state *state,
1087 struct data_loc_info *dloc,
1088 Dwarf_Die *cu_die,
1089 struct disasm_line *dl,
1090 Dwarf_Die *type_die)
1091 {
1092 Dwarf_Word size;
1093 u32 insn_offset = dl->al.offset;
1094 int reg = dloc->op->reg1;
1095 int offset = dloc->op->offset;
1096 const char *offset_sign = "";
1097 bool retry = true;
1098
1099 if (offset < 0) {
1100 offset = -offset;
1101 offset_sign = "-";
1102 }
1103
1104 again:
1105 pr_debug_dtp("chk [%x] reg%d offset=%s%#x ok=%d kind=%d ",
1106 insn_offset, reg, offset_sign, offset,
1107 state->regs[reg].ok, state->regs[reg].kind);
1108
1109 if (!state->regs[reg].ok)
1110 goto check_non_register;
1111
1112 if (state->regs[reg].kind == TSR_KIND_TYPE) {
1113 Dwarf_Die sized_type;
1114 struct strbuf sb;
1115
1116 strbuf_init(&sb, 32);
1117 die_get_typename_from_type(&state->regs[reg].type, &sb);
1118 pr_debug_dtp("(%s)", sb.buf);
1119 strbuf_release(&sb);
1120
1121 /*
1122 * Normal registers should hold a pointer (or array) to
1123 * dereference a memory location.
1124 */
1125 if (!is_pointer_type(&state->regs[reg].type)) {
1126 if (dloc->op->offset < 0 && reg != state->stack_reg)
1127 goto check_kernel;
1128
1129 return PERF_TMR_NO_POINTER;
1130 }
1131
1132 /* Remove the pointer and get the target type */
1133 if (__die_get_real_type(&state->regs[reg].type, type_die) == NULL)
1134 return PERF_TMR_NO_POINTER;
1135
1136 dloc->type_offset = dloc->op->offset + state->regs[reg].offset;
1137
1138 if (dwarf_tag(type_die) == DW_TAG_typedef)
1139 die_get_real_type(type_die, &sized_type);
1140 else
1141 sized_type = *type_die;
1142
1143 /* Get the size of the actual type */
1144 if (dwarf_aggregate_size(&sized_type, &size) < 0 ||
1145 (unsigned)dloc->type_offset >= size)
1146 return PERF_TMR_BAD_OFFSET;
1147
1148 return PERF_TMR_OK;
1149 }
1150
1151 if (state->regs[reg].kind == TSR_KIND_POINTER) {
1152 struct strbuf sb;
1153
1154 strbuf_init(&sb, 32);
1155 die_get_typename_from_type(&state->regs[reg].type, &sb);
1156 pr_debug_dtp("(ptr->%s)", sb.buf);
1157 strbuf_release(&sb);
1158
1159 /*
1160 * Register holds a pointer (address) to the target variable.
1161 * The type is the type of the variable it points to.
1162 */
1163 *type_die = state->regs[reg].type;
1164
1165 dloc->type_offset = dloc->op->offset + state->regs[reg].offset;
1166
1167 /* Get the size of the actual type */
1168 if (dwarf_aggregate_size(type_die, &size) < 0 ||
1169 (unsigned)dloc->type_offset >= size)
1170 return PERF_TMR_BAD_OFFSET;
1171
1172 return PERF_TMR_OK;
1173 }
1174
1175 if (state->regs[reg].kind == TSR_KIND_PERCPU_POINTER) {
1176 pr_debug_dtp("percpu ptr");
1177
1178 /*
1179 * It's actaully pointer but the address was calculated using
1180 * some arithmetic. So it points to the actual type already.
1181 */
1182 *type_die = state->regs[reg].type;
1183
1184 dloc->type_offset = dloc->op->offset;
1185
1186 /* Get the size of the actual type */
1187 if (dwarf_aggregate_size(type_die, &size) < 0 ||
1188 (unsigned)dloc->type_offset >= size)
1189 return PERF_TMR_BAIL_OUT;
1190
1191 return PERF_TMR_OK;
1192 }
1193
1194 if (state->regs[reg].kind == TSR_KIND_CANARY) {
1195 pr_debug_dtp("stack canary");
1196
1197 /*
1198 * This is a saved value of the stack canary which will be handled
1199 * in the outer logic when it returns failure here. Pretend it's
1200 * from the stack canary directly.
1201 */
1202 setup_stack_canary(dloc);
1203
1204 return PERF_TMR_BAIL_OUT;
1205 }
1206
1207 if (state->regs[reg].kind == TSR_KIND_PERCPU_BASE) {
1208 u64 var_addr = dloc->op->offset;
1209 int var_offset;
1210
1211 pr_debug_dtp("percpu var");
1212
1213 if (dloc->op->multi_regs) {
1214 int reg2 = dloc->op->reg2;
1215
1216 if (dloc->op->reg2 == reg)
1217 reg2 = dloc->op->reg1;
1218
1219 if (has_reg_type(state, reg2) && state->regs[reg2].ok &&
1220 state->regs[reg2].kind == TSR_KIND_CONST)
1221 var_addr += state->regs[reg2].imm_value;
1222 }
1223
1224 if (get_global_var_type(cu_die, dloc, dloc->ip, var_addr,
1225 &var_offset, type_die)) {
1226 dloc->type_offset = var_offset;
1227 return PERF_TMR_OK;
1228 }
1229 /* No need to retry per-cpu (global) variables */
1230 return PERF_TMR_BAIL_OUT;
1231 }
1232
1233 check_non_register:
1234 if (reg == dloc->fbreg || reg == state->stack_reg) {
1235 struct type_state_stack *stack;
1236
1237 pr_debug_dtp("%s", reg == dloc->fbreg ? "fbreg" : "stack");
1238
1239 stack = find_stack_state(state, dloc->type_offset);
1240 if (stack == NULL) {
1241 if (retry) {
1242 pr_debug_dtp(" : retry\n");
1243 retry = false;
1244
1245 /* update type info it's the first store to the stack */
1246 update_insn_state(state, dloc, cu_die, dl);
1247 goto again;
1248 }
1249 return PERF_TMR_NO_TYPE;
1250 }
1251
1252 if (stack->kind == TSR_KIND_CANARY) {
1253 setup_stack_canary(dloc);
1254 return PERF_TMR_BAIL_OUT;
1255 }
1256
1257 if (stack->kind != TSR_KIND_TYPE)
1258 return PERF_TMR_NO_TYPE;
1259
1260 *type_die = stack->type;
1261 /* Update the type offset from the start of slot */
1262 dloc->type_offset -= stack->offset;
1263
1264 return PERF_TMR_OK;
1265 }
1266
1267 if (dloc->fb_cfa) {
1268 struct type_state_stack *stack;
1269 u64 pc = map__rip_2objdump(dloc->ms->map, dloc->ip);
1270 int fbreg, fboff;
1271
1272 pr_debug_dtp("cfa");
1273
1274 if (die_get_cfa(dloc->di->dbg, pc, &fbreg, &fboff) < 0)
1275 fbreg = -1;
1276
1277 if (reg != fbreg)
1278 return PERF_TMR_NO_TYPE;
1279
1280 stack = find_stack_state(state, dloc->type_offset - fboff);
1281 if (stack == NULL) {
1282 if (retry) {
1283 pr_debug_dtp(" : retry\n");
1284 retry = false;
1285
1286 /* update type info it's the first store to the stack */
1287 update_insn_state(state, dloc, cu_die, dl);
1288 goto again;
1289 }
1290 return PERF_TMR_NO_TYPE;
1291 }
1292
1293 if (stack->kind == TSR_KIND_CANARY) {
1294 setup_stack_canary(dloc);
1295 return PERF_TMR_BAIL_OUT;
1296 }
1297
1298 if (stack->kind != TSR_KIND_TYPE)
1299 return PERF_TMR_NO_TYPE;
1300
1301 *type_die = stack->type;
1302 /* Update the type offset from the start of slot */
1303 dloc->type_offset -= fboff + stack->offset;
1304
1305 return PERF_TMR_OK;
1306 }
1307
1308 check_kernel:
1309 if (dso__kernel(map__dso(dloc->ms->map))) {
1310 u64 addr;
1311
1312 /* Direct this-cpu access like "%gs:0x34740" */
1313 if (dloc->op->segment == INSN_SEG_X86_GS && dloc->op->imm &&
1314 arch__is(dloc->arch, "x86")) {
1315 pr_debug_dtp("this-cpu var");
1316
1317 addr = dloc->op->offset;
1318
1319 if (get_global_var_type(cu_die, dloc, dloc->ip, addr,
1320 &offset, type_die)) {
1321 dloc->type_offset = offset;
1322 return PERF_TMR_OK;
1323 }
1324 return PERF_TMR_BAIL_OUT;
1325 }
1326
1327 /* Access to global variable like "-0x7dcf0500(,%rdx,8)" */
1328 if (dloc->op->offset < 0 && reg != state->stack_reg) {
1329 addr = (s64) dloc->op->offset;
1330
1331 if (get_global_var_type(cu_die, dloc, dloc->ip, addr,
1332 &offset, type_die)) {
1333 pr_debug_dtp("global var");
1334
1335 dloc->type_offset = offset;
1336 return PERF_TMR_OK;
1337 }
1338 return PERF_TMR_BAIL_OUT;
1339 }
1340 }
1341
1342 return PERF_TMR_UNKNOWN;
1343 }
1344
1345 /* Iterate instructions in basic blocks and update type table */
find_data_type_insn(struct data_loc_info * dloc,struct list_head * basic_blocks,struct die_var_type * var_types,Dwarf_Die * cu_die,Dwarf_Die * type_die)1346 static enum type_match_result find_data_type_insn(struct data_loc_info *dloc,
1347 struct list_head *basic_blocks,
1348 struct die_var_type *var_types,
1349 Dwarf_Die *cu_die,
1350 Dwarf_Die *type_die)
1351 {
1352 struct type_state state;
1353 struct symbol *sym = dloc->ms->sym;
1354 struct annotation *notes = symbol__annotation(sym);
1355 struct annotated_basic_block *bb;
1356 enum type_match_result ret = PERF_TMR_UNKNOWN;
1357
1358 init_type_state(&state, dloc->arch);
1359
1360 list_for_each_entry(bb, basic_blocks, list) {
1361 struct disasm_line *dl = bb->begin;
1362
1363 BUG_ON(bb->begin->al.offset == -1 || bb->end->al.offset == -1);
1364
1365 pr_debug_dtp("bb: [%"PRIx64" - %"PRIx64"]\n",
1366 bb->begin->al.offset, bb->end->al.offset);
1367
1368 list_for_each_entry_from(dl, ¬es->src->source, al.node) {
1369 u64 this_ip = sym->start + dl->al.offset;
1370 u64 addr = map__rip_2objdump(dloc->ms->map, this_ip);
1371
1372 /* Skip comment or debug info lines */
1373 if (dl->al.offset == -1)
1374 continue;
1375
1376 /* Update variable type at this address */
1377 update_var_state(&state, dloc, addr, dl->al.offset, var_types);
1378
1379 if (this_ip == dloc->ip) {
1380 ret = check_matching_type(&state, dloc,
1381 cu_die, dl, type_die);
1382 pr_debug_dtp(" : %s\n", match_result_str(ret));
1383 goto out;
1384 }
1385
1386 /* Update type table after processing the instruction */
1387 update_insn_state(&state, dloc, cu_die, dl);
1388 if (dl == bb->end)
1389 break;
1390 }
1391 }
1392
1393 out:
1394 exit_type_state(&state);
1395 return ret;
1396 }
1397
arch_supports_insn_tracking(struct data_loc_info * dloc)1398 static int arch_supports_insn_tracking(struct data_loc_info *dloc)
1399 {
1400 if ((arch__is(dloc->arch, "x86")) || (arch__is(dloc->arch, "powerpc")))
1401 return 1;
1402 return 0;
1403 }
1404
1405 /*
1406 * Construct a list of basic blocks for each scope with variables and try to find
1407 * the data type by updating a type state table through instructions.
1408 */
find_data_type_block(struct data_loc_info * dloc,Dwarf_Die * cu_die,Dwarf_Die * scopes,int nr_scopes,Dwarf_Die * type_die)1409 static enum type_match_result find_data_type_block(struct data_loc_info *dloc,
1410 Dwarf_Die *cu_die,
1411 Dwarf_Die *scopes,
1412 int nr_scopes,
1413 Dwarf_Die *type_die)
1414 {
1415 LIST_HEAD(basic_blocks);
1416 struct die_var_type *var_types = NULL;
1417 u64 src_ip, dst_ip, prev_dst_ip;
1418 enum type_match_result ret = PERF_TMR_UNKNOWN;
1419
1420 /* TODO: other architecture support */
1421 if (!arch_supports_insn_tracking(dloc))
1422 return PERF_TMR_BAIL_OUT;
1423
1424 prev_dst_ip = dst_ip = dloc->ip;
1425 for (int i = nr_scopes - 1; i >= 0; i--) {
1426 Dwarf_Addr base, start, end;
1427 LIST_HEAD(this_blocks);
1428
1429 if (dwarf_ranges(&scopes[i], 0, &base, &start, &end) < 0)
1430 break;
1431
1432 pr_debug_dtp("scope: [%d/%d] ", i + 1, nr_scopes);
1433 pr_debug_scope(&scopes[i]);
1434
1435 src_ip = map__objdump_2rip(dloc->ms->map, start);
1436
1437 again:
1438 /* Get basic blocks for this scope */
1439 if (annotate_get_basic_blocks(dloc->ms->sym, src_ip, dst_ip,
1440 &this_blocks) < 0) {
1441 /* Try previous block if they are not connected */
1442 if (prev_dst_ip != dst_ip) {
1443 dst_ip = prev_dst_ip;
1444 goto again;
1445 }
1446
1447 pr_debug_dtp("cannot find a basic block from %"PRIx64" to %"PRIx64"\n",
1448 src_ip - dloc->ms->sym->start,
1449 dst_ip - dloc->ms->sym->start);
1450 continue;
1451 }
1452 prepend_basic_blocks(&this_blocks, &basic_blocks);
1453
1454 /* Get variable info for this scope and add to var_types list */
1455 die_collect_vars(&scopes[i], &var_types);
1456 fixup_var_address(var_types, start);
1457
1458 /* Find from start of this scope to the target instruction */
1459 ret = find_data_type_insn(dloc, &basic_blocks, var_types,
1460 cu_die, type_die);
1461 if (ret == PERF_TMR_OK) {
1462 char buf[64];
1463 int offset = dloc->op->offset;
1464 const char *offset_sign = "";
1465
1466 if (offset < 0) {
1467 offset = -offset;
1468 offset_sign = "-";
1469 }
1470
1471 if (dloc->op->multi_regs)
1472 snprintf(buf, sizeof(buf), "reg%d, reg%d",
1473 dloc->op->reg1, dloc->op->reg2);
1474 else
1475 snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1);
1476
1477 pr_debug_dtp("found by insn track: %s%#x(%s) type-offset=%#x\n",
1478 offset_sign, offset, buf, dloc->type_offset);
1479 break;
1480 }
1481
1482 if (ret == PERF_TMR_BAIL_OUT)
1483 break;
1484
1485 /* Go up to the next scope and find blocks to the start */
1486 prev_dst_ip = dst_ip;
1487 dst_ip = src_ip;
1488 }
1489
1490 delete_basic_blocks(&basic_blocks);
1491 delete_var_types(var_types);
1492 return ret;
1493 }
1494
1495 /* The result will be saved in @type_die */
find_data_type_die(struct data_loc_info * dloc,Dwarf_Die * type_die)1496 static int find_data_type_die(struct data_loc_info *dloc, Dwarf_Die *type_die)
1497 {
1498 struct annotated_op_loc *loc = dloc->op;
1499 Dwarf_Die cu_die, var_die;
1500 Dwarf_Die *scopes = NULL;
1501 int reg, offset = loc->offset;
1502 int ret = -1;
1503 int i, nr_scopes;
1504 int fbreg = -1;
1505 int fb_offset = 0;
1506 bool is_fbreg = false;
1507 bool found = false;
1508 u64 pc;
1509 char buf[64];
1510 enum type_match_result result = PERF_TMR_UNKNOWN;
1511 const char *offset_sign = "";
1512
1513 if (dloc->op->multi_regs)
1514 snprintf(buf, sizeof(buf), "reg%d, reg%d", dloc->op->reg1, dloc->op->reg2);
1515 else if (dloc->op->reg1 == DWARF_REG_PC)
1516 snprintf(buf, sizeof(buf), "PC");
1517 else
1518 snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1);
1519
1520 if (offset < 0) {
1521 offset = -offset;
1522 offset_sign = "-";
1523 }
1524
1525 pr_debug_dtp("-----------------------------------------------------------\n");
1526 pr_debug_dtp("find data type for %s%#x(%s) at %s+%#"PRIx64"\n",
1527 offset_sign, offset, buf,
1528 dloc->ms->sym->name, dloc->ip - dloc->ms->sym->start);
1529
1530 /*
1531 * IP is a relative instruction address from the start of the map, as
1532 * it can be randomized/relocated, it needs to translate to PC which is
1533 * a file address for DWARF processing.
1534 */
1535 pc = map__rip_2objdump(dloc->ms->map, dloc->ip);
1536
1537 /* Get a compile_unit for this address */
1538 if (!find_cu_die(dloc->di, pc, &cu_die)) {
1539 pr_debug_dtp("cannot find CU for address %"PRIx64"\n", pc);
1540 ann_data_stat.no_cuinfo++;
1541 return -1;
1542 }
1543
1544 reg = loc->reg1;
1545 offset = loc->offset;
1546
1547 pr_debug_dtp("CU for %s (die:%#lx)\n",
1548 dwarf_diename(&cu_die), (long)dwarf_dieoffset(&cu_die));
1549
1550 if (reg == DWARF_REG_PC) {
1551 if (get_global_var_type(&cu_die, dloc, dloc->ip, dloc->var_addr,
1552 &offset, type_die)) {
1553 dloc->type_offset = offset;
1554
1555 pr_debug_dtp("found by addr=%#"PRIx64" type_offset=%#x\n",
1556 dloc->var_addr, offset);
1557 pr_debug_type_name(type_die, TSR_KIND_TYPE);
1558 found = true;
1559 goto out;
1560 }
1561 }
1562
1563 /* Get a list of nested scopes - i.e. (inlined) functions and blocks. */
1564 nr_scopes = die_get_scopes(&cu_die, pc, &scopes);
1565
1566 if (reg != DWARF_REG_PC && dwarf_hasattr(&scopes[0], DW_AT_frame_base)) {
1567 Dwarf_Attribute attr;
1568 Dwarf_Block block;
1569
1570 /* Check if the 'reg' is assigned as frame base register */
1571 if (dwarf_attr(&scopes[0], DW_AT_frame_base, &attr) != NULL &&
1572 dwarf_formblock(&attr, &block) == 0 && block.length == 1) {
1573 switch (*block.data) {
1574 case DW_OP_reg0 ... DW_OP_reg31:
1575 fbreg = dloc->fbreg = *block.data - DW_OP_reg0;
1576 break;
1577 case DW_OP_call_frame_cfa:
1578 dloc->fb_cfa = true;
1579 if (die_get_cfa(dloc->di->dbg, pc, &fbreg,
1580 &fb_offset) < 0)
1581 fbreg = -1;
1582 break;
1583 default:
1584 break;
1585 }
1586
1587 pr_debug_dtp("frame base: cfa=%d fbreg=%d\n",
1588 dloc->fb_cfa, fbreg);
1589 }
1590 }
1591
1592 retry:
1593 is_fbreg = (reg == fbreg);
1594 if (is_fbreg)
1595 offset = loc->offset - fb_offset;
1596
1597 /* Search from the inner-most scope to the outer */
1598 for (i = nr_scopes - 1; i >= 0; i--) {
1599 Dwarf_Die mem_die;
1600 int type_offset = offset;
1601
1602 if (reg == DWARF_REG_PC) {
1603 if (!die_find_variable_by_addr(&scopes[i], dloc->var_addr,
1604 &var_die, &type_offset))
1605 continue;
1606 } else {
1607 /* Look up variables/parameters in this scope */
1608 if (!die_find_variable_by_reg(&scopes[i], pc, reg,
1609 &type_offset, is_fbreg, &var_die))
1610 continue;
1611 }
1612
1613 pr_debug_dtp("found \"%s\" (die: %#lx) in scope=%d/%d (die: %#lx) ",
1614 dwarf_diename(&var_die), (long)dwarf_dieoffset(&var_die),
1615 i+1, nr_scopes, (long)dwarf_dieoffset(&scopes[i]));
1616
1617 /* Found a variable, see if it's correct */
1618 result = check_variable(dloc, &var_die, &mem_die, reg, type_offset, is_fbreg);
1619 if (result == PERF_TMR_OK) {
1620 if (reg == DWARF_REG_PC) {
1621 pr_debug_dtp("addr=%#"PRIx64" type_offset=%#x\n",
1622 dloc->var_addr, type_offset);
1623 } else if (reg == DWARF_REG_FB || is_fbreg) {
1624 pr_debug_dtp("stack_offset=%#x type_offset=%#x\n",
1625 fb_offset, type_offset);
1626 } else {
1627 pr_debug_dtp("type_offset=%#x\n", type_offset);
1628 }
1629
1630 if (!found || is_better_type(type_die, &mem_die)) {
1631 *type_die = mem_die;
1632 dloc->type_offset = type_offset;
1633 found = true;
1634 }
1635 } else {
1636 pr_debug_dtp("failed: %s\n", match_result_str(result));
1637 }
1638
1639 pr_debug_location(&var_die, pc, reg);
1640 pr_debug_type_name(&mem_die, TSR_KIND_TYPE);
1641 }
1642
1643 if (!found && loc->multi_regs && reg == loc->reg1 && loc->reg1 != loc->reg2) {
1644 reg = loc->reg2;
1645 goto retry;
1646 }
1647
1648 if (!found && reg != DWARF_REG_PC) {
1649 result = find_data_type_block(dloc, &cu_die, scopes,
1650 nr_scopes, type_die);
1651 if (result == PERF_TMR_OK) {
1652 ann_data_stat.insn_track++;
1653 found = true;
1654 }
1655 }
1656
1657 out:
1658 pr_debug_dtp("final result: ");
1659 if (found) {
1660 pr_debug_type_name(type_die, TSR_KIND_TYPE);
1661 ret = 0;
1662 } else {
1663 switch (result) {
1664 case PERF_TMR_NO_TYPE:
1665 case PERF_TMR_NO_POINTER:
1666 pr_debug_dtp("%s\n", match_result_str(result));
1667 ann_data_stat.no_typeinfo++;
1668 break;
1669 case PERF_TMR_NO_SIZE:
1670 pr_debug_dtp("%s\n", match_result_str(result));
1671 ann_data_stat.invalid_size++;
1672 break;
1673 case PERF_TMR_BAD_OFFSET:
1674 pr_debug_dtp("%s\n", match_result_str(result));
1675 ann_data_stat.bad_offset++;
1676 break;
1677 case PERF_TMR_UNKNOWN:
1678 case PERF_TMR_BAIL_OUT:
1679 case PERF_TMR_OK: /* should not reach here */
1680 default:
1681 pr_debug_dtp("no variable found\n");
1682 ann_data_stat.no_var++;
1683 break;
1684 }
1685 ret = -1;
1686 }
1687
1688 free(scopes);
1689 return ret;
1690 }
1691
1692 /**
1693 * find_data_type - Return a data type at the location
1694 * @dloc: data location
1695 *
1696 * This functions searches the debug information of the binary to get the data
1697 * type it accesses. The exact location is expressed by (ip, reg, offset)
1698 * for pointer variables or (ip, addr) for global variables. Note that global
1699 * variables might update the @dloc->type_offset after finding the start of the
1700 * variable. If it cannot find a global variable by address, it tried to find
1701 * a declaration of the variable using var_name. In that case, @dloc->offset
1702 * won't be updated.
1703 *
1704 * It return %NULL if not found.
1705 */
find_data_type(struct data_loc_info * dloc)1706 struct annotated_data_type *find_data_type(struct data_loc_info *dloc)
1707 {
1708 struct dso *dso = map__dso(dloc->ms->map);
1709 Dwarf_Die type_die;
1710
1711 /*
1712 * The type offset is the same as instruction offset by default.
1713 * But when finding a global variable, the offset won't be valid.
1714 */
1715 dloc->type_offset = dloc->op->offset;
1716
1717 dloc->fbreg = -1;
1718
1719 if (find_data_type_die(dloc, &type_die) < 0)
1720 return NULL;
1721
1722 return dso__findnew_data_type(dso, &type_die);
1723 }
1724
alloc_data_type_histograms(struct annotated_data_type * adt,int nr_entries)1725 static int alloc_data_type_histograms(struct annotated_data_type *adt, int nr_entries)
1726 {
1727 int i;
1728 size_t sz = sizeof(struct type_hist);
1729
1730 sz += sizeof(struct type_hist_entry) * adt->self.size;
1731
1732 /* Allocate a table of pointers for each event */
1733 adt->histograms = calloc(nr_entries, sizeof(*adt->histograms));
1734 if (adt->histograms == NULL)
1735 return -ENOMEM;
1736
1737 /*
1738 * Each histogram is allocated for the whole size of the type.
1739 * TODO: Probably we can move the histogram to members.
1740 */
1741 for (i = 0; i < nr_entries; i++) {
1742 adt->histograms[i] = zalloc(sz);
1743 if (adt->histograms[i] == NULL)
1744 goto err;
1745 }
1746
1747 adt->nr_histograms = nr_entries;
1748 return 0;
1749
1750 err:
1751 while (--i >= 0)
1752 zfree(&(adt->histograms[i]));
1753 zfree(&adt->histograms);
1754 return -ENOMEM;
1755 }
1756
delete_data_type_histograms(struct annotated_data_type * adt)1757 static void delete_data_type_histograms(struct annotated_data_type *adt)
1758 {
1759 for (int i = 0; i < adt->nr_histograms; i++)
1760 zfree(&(adt->histograms[i]));
1761
1762 zfree(&adt->histograms);
1763 adt->nr_histograms = 0;
1764 }
1765
annotated_data_type__tree_delete(struct rb_root * root)1766 void annotated_data_type__tree_delete(struct rb_root *root)
1767 {
1768 struct annotated_data_type *pos;
1769
1770 while (!RB_EMPTY_ROOT(root)) {
1771 struct rb_node *node = rb_first(root);
1772
1773 rb_erase(node, root);
1774 pos = rb_entry(node, struct annotated_data_type, node);
1775 delete_members(&pos->self);
1776 delete_data_type_histograms(pos);
1777 zfree(&pos->self.type_name);
1778 free(pos);
1779 }
1780 }
1781
1782 /**
1783 * annotated_data_type__update_samples - Update histogram
1784 * @adt: Data type to update
1785 * @evsel: Event to update
1786 * @offset: Offset in the type
1787 * @nr_samples: Number of samples at this offset
1788 * @period: Event count at this offset
1789 *
1790 * This function updates type histogram at @ofs for @evsel. Samples are
1791 * aggregated before calling this function so it can be called with more
1792 * than one samples at a certain offset.
1793 */
annotated_data_type__update_samples(struct annotated_data_type * adt,struct evsel * evsel,int offset,int nr_samples,u64 period)1794 int annotated_data_type__update_samples(struct annotated_data_type *adt,
1795 struct evsel *evsel, int offset,
1796 int nr_samples, u64 period)
1797 {
1798 struct type_hist *h;
1799
1800 if (adt == NULL)
1801 return 0;
1802
1803 if (adt->histograms == NULL) {
1804 int nr = evsel->evlist->core.nr_entries;
1805
1806 if (alloc_data_type_histograms(adt, nr) < 0)
1807 return -1;
1808 }
1809
1810 if (offset < 0 || offset >= adt->self.size)
1811 return -1;
1812
1813 h = adt->histograms[evsel->core.idx];
1814
1815 h->nr_samples += nr_samples;
1816 h->addr[offset].nr_samples += nr_samples;
1817 h->period += period;
1818 h->addr[offset].period += period;
1819 return 0;
1820 }
1821
print_annotated_data_header(struct hist_entry * he,struct evsel * evsel)1822 static void print_annotated_data_header(struct hist_entry *he, struct evsel *evsel)
1823 {
1824 struct dso *dso = map__dso(he->ms.map);
1825 int nr_members = 1;
1826 int nr_samples = he->stat.nr_events;
1827 int width = 7;
1828 const char *val_hdr = "Percent";
1829
1830 if (evsel__is_group_event(evsel)) {
1831 struct hist_entry *pair;
1832
1833 list_for_each_entry(pair, &he->pairs.head, pairs.node)
1834 nr_samples += pair->stat.nr_events;
1835 }
1836
1837 printf("Annotate type: '%s' in %s (%d samples):\n",
1838 he->mem_type->self.type_name, dso__name(dso), nr_samples);
1839
1840 if (evsel__is_group_event(evsel)) {
1841 struct evsel *pos;
1842 int i = 0;
1843
1844 nr_members = 0;
1845 for_each_group_evsel(pos, evsel) {
1846 if (symbol_conf.skip_empty &&
1847 evsel__hists(pos)->stats.nr_samples == 0)
1848 continue;
1849
1850 printf(" event[%d] = %s\n", i++, pos->name);
1851 nr_members++;
1852 }
1853 }
1854
1855 if (symbol_conf.show_total_period) {
1856 width = 11;
1857 val_hdr = "Period";
1858 } else if (symbol_conf.show_nr_samples) {
1859 width = 7;
1860 val_hdr = "Samples";
1861 }
1862
1863 printf("============================================================================\n");
1864 printf("%*s %10s %10s %s\n", (width + 1) * nr_members, val_hdr,
1865 "offset", "size", "field");
1866 }
1867
print_annotated_data_value(struct type_hist * h,u64 period,int nr_samples)1868 static void print_annotated_data_value(struct type_hist *h, u64 period, int nr_samples)
1869 {
1870 double percent = h->period ? (100.0 * period / h->period) : 0;
1871 const char *color = get_percent_color(percent);
1872
1873 if (symbol_conf.show_total_period)
1874 color_fprintf(stdout, color, " %11" PRIu64, period);
1875 else if (symbol_conf.show_nr_samples)
1876 color_fprintf(stdout, color, " %7d", nr_samples);
1877 else
1878 color_fprintf(stdout, color, " %7.2f", percent);
1879 }
1880
print_annotated_data_type(struct annotated_data_type * mem_type,struct annotated_member * member,struct evsel * evsel,int indent)1881 static void print_annotated_data_type(struct annotated_data_type *mem_type,
1882 struct annotated_member *member,
1883 struct evsel *evsel, int indent)
1884 {
1885 struct annotated_member *child;
1886 struct type_hist *h = mem_type->histograms[evsel->core.idx];
1887 int i, nr_events = 0, samples = 0;
1888 u64 period = 0;
1889 int width = symbol_conf.show_total_period ? 11 : 7;
1890 struct evsel *pos;
1891
1892 for_each_group_evsel(pos, evsel) {
1893 h = mem_type->histograms[pos->core.idx];
1894
1895 if (symbol_conf.skip_empty &&
1896 evsel__hists(pos)->stats.nr_samples == 0)
1897 continue;
1898
1899 samples = 0;
1900 period = 0;
1901 for (i = 0; i < member->size; i++) {
1902 samples += h->addr[member->offset + i].nr_samples;
1903 period += h->addr[member->offset + i].period;
1904 }
1905 print_annotated_data_value(h, period, samples);
1906 nr_events++;
1907 }
1908
1909 printf(" %#10x %#10x %*s%s\t%s",
1910 member->offset, member->size, indent, "", member->type_name,
1911 member->var_name ?: "");
1912
1913 if (!list_empty(&member->children))
1914 printf(" {\n");
1915
1916 list_for_each_entry(child, &member->children, node)
1917 print_annotated_data_type(mem_type, child, evsel, indent + 4);
1918
1919 if (!list_empty(&member->children))
1920 printf("%*s}", (width + 1) * nr_events + 24 + indent, "");
1921 printf(";\n");
1922 }
1923
hist_entry__annotate_data_tty(struct hist_entry * he,struct evsel * evsel)1924 int hist_entry__annotate_data_tty(struct hist_entry *he, struct evsel *evsel)
1925 {
1926 print_annotated_data_header(he, evsel);
1927 print_annotated_data_type(he->mem_type, &he->mem_type->self, evsel, 0);
1928 printf("\n");
1929
1930 /* move to the next entry */
1931 return '>';
1932 }
1933