1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/node.h>
27 #include <linux/kmsan.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/mempolicy.h>
31 #include <linux/ctype.h>
32 #include <linux/stackdepot.h>
33 #include <linux/debugobjects.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kfence.h>
36 #include <linux/memory.h>
37 #include <linux/math64.h>
38 #include <linux/fault-inject.h>
39 #include <linux/kmemleak.h>
40 #include <linux/stacktrace.h>
41 #include <linux/prefetch.h>
42 #include <linux/memcontrol.h>
43 #include <linux/random.h>
44 #include <kunit/test.h>
45 #include <kunit/test-bug.h>
46 #include <linux/sort.h>
47
48 #include <linux/debugfs.h>
49 #include <trace/events/kmem.h>
50
51 #include "internal.h"
52
53 /*
54 * Lock order:
55 * 1. slab_mutex (Global Mutex)
56 * 2. node->list_lock (Spinlock)
57 * 3. kmem_cache->cpu_slab->lock (Local lock)
58 * 4. slab_lock(slab) (Only on some arches)
59 * 5. object_map_lock (Only for debugging)
60 *
61 * slab_mutex
62 *
63 * The role of the slab_mutex is to protect the list of all the slabs
64 * and to synchronize major metadata changes to slab cache structures.
65 * Also synchronizes memory hotplug callbacks.
66 *
67 * slab_lock
68 *
69 * The slab_lock is a wrapper around the page lock, thus it is a bit
70 * spinlock.
71 *
72 * The slab_lock is only used on arches that do not have the ability
73 * to do a cmpxchg_double. It only protects:
74 *
75 * A. slab->freelist -> List of free objects in a slab
76 * B. slab->inuse -> Number of objects in use
77 * C. slab->objects -> Number of objects in slab
78 * D. slab->frozen -> frozen state
79 *
80 * Frozen slabs
81 *
82 * If a slab is frozen then it is exempt from list management. It is
83 * the cpu slab which is actively allocated from by the processor that
84 * froze it and it is not on any list. The processor that froze the
85 * slab is the one who can perform list operations on the slab. Other
86 * processors may put objects onto the freelist but the processor that
87 * froze the slab is the only one that can retrieve the objects from the
88 * slab's freelist.
89 *
90 * CPU partial slabs
91 *
92 * The partially empty slabs cached on the CPU partial list are used
93 * for performance reasons, which speeds up the allocation process.
94 * These slabs are not frozen, but are also exempt from list management,
95 * by clearing the SL_partial flag when moving out of the node
96 * partial list. Please see __slab_free() for more details.
97 *
98 * To sum up, the current scheme is:
99 * - node partial slab: SL_partial && !frozen
100 * - cpu partial slab: !SL_partial && !frozen
101 * - cpu slab: !SL_partial && frozen
102 * - full slab: !SL_partial && !frozen
103 *
104 * list_lock
105 *
106 * The list_lock protects the partial and full list on each node and
107 * the partial slab counter. If taken then no new slabs may be added or
108 * removed from the lists nor make the number of partial slabs be modified.
109 * (Note that the total number of slabs is an atomic value that may be
110 * modified without taking the list lock).
111 *
112 * The list_lock is a centralized lock and thus we avoid taking it as
113 * much as possible. As long as SLUB does not have to handle partial
114 * slabs, operations can continue without any centralized lock. F.e.
115 * allocating a long series of objects that fill up slabs does not require
116 * the list lock.
117 *
118 * For debug caches, all allocations are forced to go through a list_lock
119 * protected region to serialize against concurrent validation.
120 *
121 * cpu_slab->lock local lock
122 *
123 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
124 * except the stat counters. This is a percpu structure manipulated only by
125 * the local cpu, so the lock protects against being preempted or interrupted
126 * by an irq. Fast path operations rely on lockless operations instead.
127 *
128 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
129 * which means the lockless fastpath cannot be used as it might interfere with
130 * an in-progress slow path operations. In this case the local lock is always
131 * taken but it still utilizes the freelist for the common operations.
132 *
133 * lockless fastpaths
134 *
135 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
136 * are fully lockless when satisfied from the percpu slab (and when
137 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
138 * They also don't disable preemption or migration or irqs. They rely on
139 * the transaction id (tid) field to detect being preempted or moved to
140 * another cpu.
141 *
142 * irq, preemption, migration considerations
143 *
144 * Interrupts are disabled as part of list_lock or local_lock operations, or
145 * around the slab_lock operation, in order to make the slab allocator safe
146 * to use in the context of an irq.
147 *
148 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
149 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
150 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
151 * doesn't have to be revalidated in each section protected by the local lock.
152 *
153 * SLUB assigns one slab for allocation to each processor.
154 * Allocations only occur from these slabs called cpu slabs.
155 *
156 * Slabs with free elements are kept on a partial list and during regular
157 * operations no list for full slabs is used. If an object in a full slab is
158 * freed then the slab will show up again on the partial lists.
159 * We track full slabs for debugging purposes though because otherwise we
160 * cannot scan all objects.
161 *
162 * Slabs are freed when they become empty. Teardown and setup is
163 * minimal so we rely on the page allocators per cpu caches for
164 * fast frees and allocs.
165 *
166 * slab->frozen The slab is frozen and exempt from list processing.
167 * This means that the slab is dedicated to a purpose
168 * such as satisfying allocations for a specific
169 * processor. Objects may be freed in the slab while
170 * it is frozen but slab_free will then skip the usual
171 * list operations. It is up to the processor holding
172 * the slab to integrate the slab into the slab lists
173 * when the slab is no longer needed.
174 *
175 * One use of this flag is to mark slabs that are
176 * used for allocations. Then such a slab becomes a cpu
177 * slab. The cpu slab may be equipped with an additional
178 * freelist that allows lockless access to
179 * free objects in addition to the regular freelist
180 * that requires the slab lock.
181 *
182 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
183 * options set. This moves slab handling out of
184 * the fast path and disables lockless freelists.
185 */
186
187 /**
188 * enum slab_flags - How the slab flags bits are used.
189 * @SL_locked: Is locked with slab_lock()
190 * @SL_partial: On the per-node partial list
191 * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
192 *
193 * The slab flags share space with the page flags but some bits have
194 * different interpretations. The high bits are used for information
195 * like zone/node/section.
196 */
197 enum slab_flags {
198 SL_locked = PG_locked,
199 SL_partial = PG_workingset, /* Historical reasons for this bit */
200 SL_pfmemalloc = PG_active, /* Historical reasons for this bit */
201 };
202
203 /*
204 * We could simply use migrate_disable()/enable() but as long as it's a
205 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
206 */
207 #ifndef CONFIG_PREEMPT_RT
208 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
209 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
210 #define USE_LOCKLESS_FAST_PATH() (true)
211 #else
212 #define slub_get_cpu_ptr(var) \
213 ({ \
214 migrate_disable(); \
215 this_cpu_ptr(var); \
216 })
217 #define slub_put_cpu_ptr(var) \
218 do { \
219 (void)(var); \
220 migrate_enable(); \
221 } while (0)
222 #define USE_LOCKLESS_FAST_PATH() (false)
223 #endif
224
225 #ifndef CONFIG_SLUB_TINY
226 #define __fastpath_inline __always_inline
227 #else
228 #define __fastpath_inline
229 #endif
230
231 #ifdef CONFIG_SLUB_DEBUG
232 #ifdef CONFIG_SLUB_DEBUG_ON
233 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
234 #else
235 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
236 #endif
237 #endif /* CONFIG_SLUB_DEBUG */
238
239 #ifdef CONFIG_NUMA
240 static DEFINE_STATIC_KEY_FALSE(strict_numa);
241 #endif
242
243 /* Structure holding parameters for get_partial() call chain */
244 struct partial_context {
245 gfp_t flags;
246 unsigned int orig_size;
247 void *object;
248 };
249
kmem_cache_debug(struct kmem_cache * s)250 static inline bool kmem_cache_debug(struct kmem_cache *s)
251 {
252 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
253 }
254
fixup_red_left(struct kmem_cache * s,void * p)255 void *fixup_red_left(struct kmem_cache *s, void *p)
256 {
257 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
258 p += s->red_left_pad;
259
260 return p;
261 }
262
kmem_cache_has_cpu_partial(struct kmem_cache * s)263 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
264 {
265 #ifdef CONFIG_SLUB_CPU_PARTIAL
266 return !kmem_cache_debug(s);
267 #else
268 return false;
269 #endif
270 }
271
272 /*
273 * Issues still to be resolved:
274 *
275 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
276 *
277 * - Variable sizing of the per node arrays
278 */
279
280 /* Enable to log cmpxchg failures */
281 #undef SLUB_DEBUG_CMPXCHG
282
283 #ifndef CONFIG_SLUB_TINY
284 /*
285 * Minimum number of partial slabs. These will be left on the partial
286 * lists even if they are empty. kmem_cache_shrink may reclaim them.
287 */
288 #define MIN_PARTIAL 5
289
290 /*
291 * Maximum number of desirable partial slabs.
292 * The existence of more partial slabs makes kmem_cache_shrink
293 * sort the partial list by the number of objects in use.
294 */
295 #define MAX_PARTIAL 10
296 #else
297 #define MIN_PARTIAL 0
298 #define MAX_PARTIAL 0
299 #endif
300
301 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
302 SLAB_POISON | SLAB_STORE_USER)
303
304 /*
305 * These debug flags cannot use CMPXCHG because there might be consistency
306 * issues when checking or reading debug information
307 */
308 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
309 SLAB_TRACE)
310
311
312 /*
313 * Debugging flags that require metadata to be stored in the slab. These get
314 * disabled when slab_debug=O is used and a cache's min order increases with
315 * metadata.
316 */
317 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
318
319 #define OO_SHIFT 16
320 #define OO_MASK ((1 << OO_SHIFT) - 1)
321 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
322
323 /* Internal SLUB flags */
324 /* Poison object */
325 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
326 /* Use cmpxchg_double */
327
328 #ifdef system_has_freelist_aba
329 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
330 #else
331 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
332 #endif
333
334 /*
335 * Tracking user of a slab.
336 */
337 #define TRACK_ADDRS_COUNT 16
338 struct track {
339 unsigned long addr; /* Called from address */
340 #ifdef CONFIG_STACKDEPOT
341 depot_stack_handle_t handle;
342 #endif
343 int cpu; /* Was running on cpu */
344 int pid; /* Pid context */
345 unsigned long when; /* When did the operation occur */
346 };
347
348 enum track_item { TRACK_ALLOC, TRACK_FREE };
349
350 #ifdef SLAB_SUPPORTS_SYSFS
351 static int sysfs_slab_add(struct kmem_cache *);
352 static int sysfs_slab_alias(struct kmem_cache *, const char *);
353 #else
sysfs_slab_add(struct kmem_cache * s)354 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)355 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
356 { return 0; }
357 #endif
358
359 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
360 static void debugfs_slab_add(struct kmem_cache *);
361 #else
debugfs_slab_add(struct kmem_cache * s)362 static inline void debugfs_slab_add(struct kmem_cache *s) { }
363 #endif
364
365 enum stat_item {
366 ALLOC_FASTPATH, /* Allocation from cpu slab */
367 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
368 FREE_FASTPATH, /* Free to cpu slab */
369 FREE_SLOWPATH, /* Freeing not to cpu slab */
370 FREE_FROZEN, /* Freeing to frozen slab */
371 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
372 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
373 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
374 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
375 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
376 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
377 FREE_SLAB, /* Slab freed to the page allocator */
378 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
379 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
380 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
381 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
382 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
383 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
384 DEACTIVATE_BYPASS, /* Implicit deactivation */
385 ORDER_FALLBACK, /* Number of times fallback was necessary */
386 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
387 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
388 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
389 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
390 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
391 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
392 NR_SLUB_STAT_ITEMS
393 };
394
395 #ifndef CONFIG_SLUB_TINY
396 /*
397 * When changing the layout, make sure freelist and tid are still compatible
398 * with this_cpu_cmpxchg_double() alignment requirements.
399 */
400 struct kmem_cache_cpu {
401 union {
402 struct {
403 void **freelist; /* Pointer to next available object */
404 unsigned long tid; /* Globally unique transaction id */
405 };
406 freelist_aba_t freelist_tid;
407 };
408 struct slab *slab; /* The slab from which we are allocating */
409 #ifdef CONFIG_SLUB_CPU_PARTIAL
410 struct slab *partial; /* Partially allocated slabs */
411 #endif
412 local_lock_t lock; /* Protects the fields above */
413 #ifdef CONFIG_SLUB_STATS
414 unsigned int stat[NR_SLUB_STAT_ITEMS];
415 #endif
416 };
417 #endif /* CONFIG_SLUB_TINY */
418
stat(const struct kmem_cache * s,enum stat_item si)419 static inline void stat(const struct kmem_cache *s, enum stat_item si)
420 {
421 #ifdef CONFIG_SLUB_STATS
422 /*
423 * The rmw is racy on a preemptible kernel but this is acceptable, so
424 * avoid this_cpu_add()'s irq-disable overhead.
425 */
426 raw_cpu_inc(s->cpu_slab->stat[si]);
427 #endif
428 }
429
430 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)431 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
432 {
433 #ifdef CONFIG_SLUB_STATS
434 raw_cpu_add(s->cpu_slab->stat[si], v);
435 #endif
436 }
437
438 /*
439 * The slab lists for all objects.
440 */
441 struct kmem_cache_node {
442 spinlock_t list_lock;
443 unsigned long nr_partial;
444 struct list_head partial;
445 #ifdef CONFIG_SLUB_DEBUG
446 atomic_long_t nr_slabs;
447 atomic_long_t total_objects;
448 struct list_head full;
449 #endif
450 };
451
get_node(struct kmem_cache * s,int node)452 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
453 {
454 return s->node[node];
455 }
456
457 /*
458 * Iterator over all nodes. The body will be executed for each node that has
459 * a kmem_cache_node structure allocated (which is true for all online nodes)
460 */
461 #define for_each_kmem_cache_node(__s, __node, __n) \
462 for (__node = 0; __node < nr_node_ids; __node++) \
463 if ((__n = get_node(__s, __node)))
464
465 /*
466 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
467 * Corresponds to node_state[N_MEMORY], but can temporarily
468 * differ during memory hotplug/hotremove operations.
469 * Protected by slab_mutex.
470 */
471 static nodemask_t slab_nodes;
472
473 #ifndef CONFIG_SLUB_TINY
474 /*
475 * Workqueue used for flush_cpu_slab().
476 */
477 static struct workqueue_struct *flushwq;
478 #endif
479
480 /********************************************************************
481 * Core slab cache functions
482 *******************************************************************/
483
484 /*
485 * Returns freelist pointer (ptr). With hardening, this is obfuscated
486 * with an XOR of the address where the pointer is held and a per-cache
487 * random number.
488 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)489 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
490 void *ptr, unsigned long ptr_addr)
491 {
492 unsigned long encoded;
493
494 #ifdef CONFIG_SLAB_FREELIST_HARDENED
495 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
496 #else
497 encoded = (unsigned long)ptr;
498 #endif
499 return (freeptr_t){.v = encoded};
500 }
501
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)502 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
503 freeptr_t ptr, unsigned long ptr_addr)
504 {
505 void *decoded;
506
507 #ifdef CONFIG_SLAB_FREELIST_HARDENED
508 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
509 #else
510 decoded = (void *)ptr.v;
511 #endif
512 return decoded;
513 }
514
get_freepointer(struct kmem_cache * s,void * object)515 static inline void *get_freepointer(struct kmem_cache *s, void *object)
516 {
517 unsigned long ptr_addr;
518 freeptr_t p;
519
520 object = kasan_reset_tag(object);
521 ptr_addr = (unsigned long)object + s->offset;
522 p = *(freeptr_t *)(ptr_addr);
523 return freelist_ptr_decode(s, p, ptr_addr);
524 }
525
526 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)527 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
528 {
529 prefetchw(object + s->offset);
530 }
531 #endif
532
533 /*
534 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
535 * pointer value in the case the current thread loses the race for the next
536 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
537 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
538 * KMSAN will still check all arguments of cmpxchg because of imperfect
539 * handling of inline assembly.
540 * To work around this problem, we apply __no_kmsan_checks to ensure that
541 * get_freepointer_safe() returns initialized memory.
542 */
543 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)544 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
545 {
546 unsigned long freepointer_addr;
547 freeptr_t p;
548
549 if (!debug_pagealloc_enabled_static())
550 return get_freepointer(s, object);
551
552 object = kasan_reset_tag(object);
553 freepointer_addr = (unsigned long)object + s->offset;
554 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
555 return freelist_ptr_decode(s, p, freepointer_addr);
556 }
557
set_freepointer(struct kmem_cache * s,void * object,void * fp)558 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
559 {
560 unsigned long freeptr_addr = (unsigned long)object + s->offset;
561
562 #ifdef CONFIG_SLAB_FREELIST_HARDENED
563 BUG_ON(object == fp); /* naive detection of double free or corruption */
564 #endif
565
566 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
567 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
568 }
569
570 /*
571 * See comment in calculate_sizes().
572 */
freeptr_outside_object(struct kmem_cache * s)573 static inline bool freeptr_outside_object(struct kmem_cache *s)
574 {
575 return s->offset >= s->inuse;
576 }
577
578 /*
579 * Return offset of the end of info block which is inuse + free pointer if
580 * not overlapping with object.
581 */
get_info_end(struct kmem_cache * s)582 static inline unsigned int get_info_end(struct kmem_cache *s)
583 {
584 if (freeptr_outside_object(s))
585 return s->inuse + sizeof(void *);
586 else
587 return s->inuse;
588 }
589
590 /* Loop over all objects in a slab */
591 #define for_each_object(__p, __s, __addr, __objects) \
592 for (__p = fixup_red_left(__s, __addr); \
593 __p < (__addr) + (__objects) * (__s)->size; \
594 __p += (__s)->size)
595
order_objects(unsigned int order,unsigned int size)596 static inline unsigned int order_objects(unsigned int order, unsigned int size)
597 {
598 return ((unsigned int)PAGE_SIZE << order) / size;
599 }
600
oo_make(unsigned int order,unsigned int size)601 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
602 unsigned int size)
603 {
604 struct kmem_cache_order_objects x = {
605 (order << OO_SHIFT) + order_objects(order, size)
606 };
607
608 return x;
609 }
610
oo_order(struct kmem_cache_order_objects x)611 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
612 {
613 return x.x >> OO_SHIFT;
614 }
615
oo_objects(struct kmem_cache_order_objects x)616 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
617 {
618 return x.x & OO_MASK;
619 }
620
621 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)622 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
623 {
624 unsigned int nr_slabs;
625
626 s->cpu_partial = nr_objects;
627
628 /*
629 * We take the number of objects but actually limit the number of
630 * slabs on the per cpu partial list, in order to limit excessive
631 * growth of the list. For simplicity we assume that the slabs will
632 * be half-full.
633 */
634 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
635 s->cpu_partial_slabs = nr_slabs;
636 }
637
slub_get_cpu_partial(struct kmem_cache * s)638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639 {
640 return s->cpu_partial_slabs;
641 }
642 #else
643 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)644 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
645 {
646 }
647
slub_get_cpu_partial(struct kmem_cache * s)648 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
649 {
650 return 0;
651 }
652 #endif /* CONFIG_SLUB_CPU_PARTIAL */
653
654 /*
655 * If network-based swap is enabled, slub must keep track of whether memory
656 * were allocated from pfmemalloc reserves.
657 */
slab_test_pfmemalloc(const struct slab * slab)658 static inline bool slab_test_pfmemalloc(const struct slab *slab)
659 {
660 return test_bit(SL_pfmemalloc, &slab->flags);
661 }
662
slab_set_pfmemalloc(struct slab * slab)663 static inline void slab_set_pfmemalloc(struct slab *slab)
664 {
665 set_bit(SL_pfmemalloc, &slab->flags);
666 }
667
__slab_clear_pfmemalloc(struct slab * slab)668 static inline void __slab_clear_pfmemalloc(struct slab *slab)
669 {
670 __clear_bit(SL_pfmemalloc, &slab->flags);
671 }
672
673 /*
674 * Per slab locking using the pagelock
675 */
slab_lock(struct slab * slab)676 static __always_inline void slab_lock(struct slab *slab)
677 {
678 bit_spin_lock(SL_locked, &slab->flags);
679 }
680
slab_unlock(struct slab * slab)681 static __always_inline void slab_unlock(struct slab *slab)
682 {
683 bit_spin_unlock(SL_locked, &slab->flags);
684 }
685
686 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)687 __update_freelist_fast(struct slab *slab,
688 void *freelist_old, unsigned long counters_old,
689 void *freelist_new, unsigned long counters_new)
690 {
691 #ifdef system_has_freelist_aba
692 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
693 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
694
695 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
696 #else
697 return false;
698 #endif
699 }
700
701 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)702 __update_freelist_slow(struct slab *slab,
703 void *freelist_old, unsigned long counters_old,
704 void *freelist_new, unsigned long counters_new)
705 {
706 bool ret = false;
707
708 slab_lock(slab);
709 if (slab->freelist == freelist_old &&
710 slab->counters == counters_old) {
711 slab->freelist = freelist_new;
712 slab->counters = counters_new;
713 ret = true;
714 }
715 slab_unlock(slab);
716
717 return ret;
718 }
719
720 /*
721 * Interrupts must be disabled (for the fallback code to work right), typically
722 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
723 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
724 * allocation/ free operation in hardirq context. Therefore nothing can
725 * interrupt the operation.
726 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)727 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
728 void *freelist_old, unsigned long counters_old,
729 void *freelist_new, unsigned long counters_new,
730 const char *n)
731 {
732 bool ret;
733
734 if (USE_LOCKLESS_FAST_PATH())
735 lockdep_assert_irqs_disabled();
736
737 if (s->flags & __CMPXCHG_DOUBLE) {
738 ret = __update_freelist_fast(slab, freelist_old, counters_old,
739 freelist_new, counters_new);
740 } else {
741 ret = __update_freelist_slow(slab, freelist_old, counters_old,
742 freelist_new, counters_new);
743 }
744 if (likely(ret))
745 return true;
746
747 cpu_relax();
748 stat(s, CMPXCHG_DOUBLE_FAIL);
749
750 #ifdef SLUB_DEBUG_CMPXCHG
751 pr_info("%s %s: cmpxchg double redo ", n, s->name);
752 #endif
753
754 return false;
755 }
756
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)757 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
758 void *freelist_old, unsigned long counters_old,
759 void *freelist_new, unsigned long counters_new,
760 const char *n)
761 {
762 bool ret;
763
764 if (s->flags & __CMPXCHG_DOUBLE) {
765 ret = __update_freelist_fast(slab, freelist_old, counters_old,
766 freelist_new, counters_new);
767 } else {
768 unsigned long flags;
769
770 local_irq_save(flags);
771 ret = __update_freelist_slow(slab, freelist_old, counters_old,
772 freelist_new, counters_new);
773 local_irq_restore(flags);
774 }
775 if (likely(ret))
776 return true;
777
778 cpu_relax();
779 stat(s, CMPXCHG_DOUBLE_FAIL);
780
781 #ifdef SLUB_DEBUG_CMPXCHG
782 pr_info("%s %s: cmpxchg double redo ", n, s->name);
783 #endif
784
785 return false;
786 }
787
788 /*
789 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
790 * family will round up the real request size to these fixed ones, so
791 * there could be an extra area than what is requested. Save the original
792 * request size in the meta data area, for better debug and sanity check.
793 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)794 static inline void set_orig_size(struct kmem_cache *s,
795 void *object, unsigned int orig_size)
796 {
797 void *p = kasan_reset_tag(object);
798
799 if (!slub_debug_orig_size(s))
800 return;
801
802 p += get_info_end(s);
803 p += sizeof(struct track) * 2;
804
805 *(unsigned int *)p = orig_size;
806 }
807
get_orig_size(struct kmem_cache * s,void * object)808 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
809 {
810 void *p = kasan_reset_tag(object);
811
812 if (is_kfence_address(object))
813 return kfence_ksize(object);
814
815 if (!slub_debug_orig_size(s))
816 return s->object_size;
817
818 p += get_info_end(s);
819 p += sizeof(struct track) * 2;
820
821 return *(unsigned int *)p;
822 }
823
824 #ifdef CONFIG_SLUB_DEBUG
825 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
826 static DEFINE_SPINLOCK(object_map_lock);
827
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)828 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
829 struct slab *slab)
830 {
831 void *addr = slab_address(slab);
832 void *p;
833
834 bitmap_zero(obj_map, slab->objects);
835
836 for (p = slab->freelist; p; p = get_freepointer(s, p))
837 set_bit(__obj_to_index(s, addr, p), obj_map);
838 }
839
840 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)841 static bool slab_add_kunit_errors(void)
842 {
843 struct kunit_resource *resource;
844
845 if (!kunit_get_current_test())
846 return false;
847
848 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
849 if (!resource)
850 return false;
851
852 (*(int *)resource->data)++;
853 kunit_put_resource(resource);
854 return true;
855 }
856
slab_in_kunit_test(void)857 bool slab_in_kunit_test(void)
858 {
859 struct kunit_resource *resource;
860
861 if (!kunit_get_current_test())
862 return false;
863
864 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
865 if (!resource)
866 return false;
867
868 kunit_put_resource(resource);
869 return true;
870 }
871 #else
slab_add_kunit_errors(void)872 static inline bool slab_add_kunit_errors(void) { return false; }
873 #endif
874
size_from_object(struct kmem_cache * s)875 static inline unsigned int size_from_object(struct kmem_cache *s)
876 {
877 if (s->flags & SLAB_RED_ZONE)
878 return s->size - s->red_left_pad;
879
880 return s->size;
881 }
882
restore_red_left(struct kmem_cache * s,void * p)883 static inline void *restore_red_left(struct kmem_cache *s, void *p)
884 {
885 if (s->flags & SLAB_RED_ZONE)
886 p -= s->red_left_pad;
887
888 return p;
889 }
890
891 /*
892 * Debug settings:
893 */
894 #if defined(CONFIG_SLUB_DEBUG_ON)
895 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
896 #else
897 static slab_flags_t slub_debug;
898 #endif
899
900 static char *slub_debug_string;
901 static int disable_higher_order_debug;
902
903 /*
904 * slub is about to manipulate internal object metadata. This memory lies
905 * outside the range of the allocated object, so accessing it would normally
906 * be reported by kasan as a bounds error. metadata_access_enable() is used
907 * to tell kasan that these accesses are OK.
908 */
metadata_access_enable(void)909 static inline void metadata_access_enable(void)
910 {
911 kasan_disable_current();
912 kmsan_disable_current();
913 }
914
metadata_access_disable(void)915 static inline void metadata_access_disable(void)
916 {
917 kmsan_enable_current();
918 kasan_enable_current();
919 }
920
921 /*
922 * Object debugging
923 */
924
925 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)926 static inline int check_valid_pointer(struct kmem_cache *s,
927 struct slab *slab, void *object)
928 {
929 void *base;
930
931 if (!object)
932 return 1;
933
934 base = slab_address(slab);
935 object = kasan_reset_tag(object);
936 object = restore_red_left(s, object);
937 if (object < base || object >= base + slab->objects * s->size ||
938 (object - base) % s->size) {
939 return 0;
940 }
941
942 return 1;
943 }
944
print_section(char * level,char * text,u8 * addr,unsigned int length)945 static void print_section(char *level, char *text, u8 *addr,
946 unsigned int length)
947 {
948 metadata_access_enable();
949 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
950 16, 1, kasan_reset_tag((void *)addr), length, 1);
951 metadata_access_disable();
952 }
953
get_track(struct kmem_cache * s,void * object,enum track_item alloc)954 static struct track *get_track(struct kmem_cache *s, void *object,
955 enum track_item alloc)
956 {
957 struct track *p;
958
959 p = object + get_info_end(s);
960
961 return kasan_reset_tag(p + alloc);
962 }
963
964 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)965 static noinline depot_stack_handle_t set_track_prepare(void)
966 {
967 depot_stack_handle_t handle;
968 unsigned long entries[TRACK_ADDRS_COUNT];
969 unsigned int nr_entries;
970
971 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
972 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
973
974 return handle;
975 }
976 #else
set_track_prepare(void)977 static inline depot_stack_handle_t set_track_prepare(void)
978 {
979 return 0;
980 }
981 #endif
982
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)983 static void set_track_update(struct kmem_cache *s, void *object,
984 enum track_item alloc, unsigned long addr,
985 depot_stack_handle_t handle)
986 {
987 struct track *p = get_track(s, object, alloc);
988
989 #ifdef CONFIG_STACKDEPOT
990 p->handle = handle;
991 #endif
992 p->addr = addr;
993 p->cpu = smp_processor_id();
994 p->pid = current->pid;
995 p->when = jiffies;
996 }
997
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)998 static __always_inline void set_track(struct kmem_cache *s, void *object,
999 enum track_item alloc, unsigned long addr)
1000 {
1001 depot_stack_handle_t handle = set_track_prepare();
1002
1003 set_track_update(s, object, alloc, addr, handle);
1004 }
1005
init_tracking(struct kmem_cache * s,void * object)1006 static void init_tracking(struct kmem_cache *s, void *object)
1007 {
1008 struct track *p;
1009
1010 if (!(s->flags & SLAB_STORE_USER))
1011 return;
1012
1013 p = get_track(s, object, TRACK_ALLOC);
1014 memset(p, 0, 2*sizeof(struct track));
1015 }
1016
print_track(const char * s,struct track * t,unsigned long pr_time)1017 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1018 {
1019 depot_stack_handle_t handle __maybe_unused;
1020
1021 if (!t->addr)
1022 return;
1023
1024 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1025 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1026 #ifdef CONFIG_STACKDEPOT
1027 handle = READ_ONCE(t->handle);
1028 if (handle)
1029 stack_depot_print(handle);
1030 else
1031 pr_err("object allocation/free stack trace missing\n");
1032 #endif
1033 }
1034
print_tracking(struct kmem_cache * s,void * object)1035 void print_tracking(struct kmem_cache *s, void *object)
1036 {
1037 unsigned long pr_time = jiffies;
1038 if (!(s->flags & SLAB_STORE_USER))
1039 return;
1040
1041 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1042 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1043 }
1044
print_slab_info(const struct slab * slab)1045 static void print_slab_info(const struct slab *slab)
1046 {
1047 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1048 slab, slab->objects, slab->inuse, slab->freelist,
1049 &slab->flags);
1050 }
1051
skip_orig_size_check(struct kmem_cache * s,const void * object)1052 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1053 {
1054 set_orig_size(s, (void *)object, s->object_size);
1055 }
1056
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1057 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1058 {
1059 struct va_format vaf;
1060 va_list args;
1061
1062 va_copy(args, argsp);
1063 vaf.fmt = fmt;
1064 vaf.va = &args;
1065 pr_err("=============================================================================\n");
1066 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1067 pr_err("-----------------------------------------------------------------------------\n\n");
1068 va_end(args);
1069 }
1070
slab_bug(struct kmem_cache * s,const char * fmt,...)1071 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1072 {
1073 va_list args;
1074
1075 va_start(args, fmt);
1076 __slab_bug(s, fmt, args);
1077 va_end(args);
1078 }
1079
1080 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1081 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1082 {
1083 struct va_format vaf;
1084 va_list args;
1085
1086 if (slab_add_kunit_errors())
1087 return;
1088
1089 va_start(args, fmt);
1090 vaf.fmt = fmt;
1091 vaf.va = &args;
1092 pr_err("FIX %s: %pV\n", s->name, &vaf);
1093 va_end(args);
1094 }
1095
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1096 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1097 {
1098 unsigned int off; /* Offset of last byte */
1099 u8 *addr = slab_address(slab);
1100
1101 print_tracking(s, p);
1102
1103 print_slab_info(slab);
1104
1105 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1106 p, p - addr, get_freepointer(s, p));
1107
1108 if (s->flags & SLAB_RED_ZONE)
1109 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1110 s->red_left_pad);
1111 else if (p > addr + 16)
1112 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1113
1114 print_section(KERN_ERR, "Object ", p,
1115 min_t(unsigned int, s->object_size, PAGE_SIZE));
1116 if (s->flags & SLAB_RED_ZONE)
1117 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1118 s->inuse - s->object_size);
1119
1120 off = get_info_end(s);
1121
1122 if (s->flags & SLAB_STORE_USER)
1123 off += 2 * sizeof(struct track);
1124
1125 if (slub_debug_orig_size(s))
1126 off += sizeof(unsigned int);
1127
1128 off += kasan_metadata_size(s, false);
1129
1130 if (off != size_from_object(s))
1131 /* Beginning of the filler is the free pointer */
1132 print_section(KERN_ERR, "Padding ", p + off,
1133 size_from_object(s) - off);
1134 }
1135
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1136 static void object_err(struct kmem_cache *s, struct slab *slab,
1137 u8 *object, const char *reason)
1138 {
1139 if (slab_add_kunit_errors())
1140 return;
1141
1142 slab_bug(s, reason);
1143 print_trailer(s, slab, object);
1144 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1145
1146 WARN_ON(1);
1147 }
1148
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1149 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1150 void **freelist, void *nextfree)
1151 {
1152 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1153 !check_valid_pointer(s, slab, nextfree) && freelist) {
1154 object_err(s, slab, *freelist, "Freechain corrupt");
1155 *freelist = NULL;
1156 slab_fix(s, "Isolate corrupted freechain");
1157 return true;
1158 }
1159
1160 return false;
1161 }
1162
__slab_err(struct slab * slab)1163 static void __slab_err(struct slab *slab)
1164 {
1165 if (slab_in_kunit_test())
1166 return;
1167
1168 print_slab_info(slab);
1169 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1170
1171 WARN_ON(1);
1172 }
1173
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1174 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1175 const char *fmt, ...)
1176 {
1177 va_list args;
1178
1179 if (slab_add_kunit_errors())
1180 return;
1181
1182 va_start(args, fmt);
1183 __slab_bug(s, fmt, args);
1184 va_end(args);
1185
1186 __slab_err(slab);
1187 }
1188
init_object(struct kmem_cache * s,void * object,u8 val)1189 static void init_object(struct kmem_cache *s, void *object, u8 val)
1190 {
1191 u8 *p = kasan_reset_tag(object);
1192 unsigned int poison_size = s->object_size;
1193
1194 if (s->flags & SLAB_RED_ZONE) {
1195 /*
1196 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1197 * the shadow makes it possible to distinguish uninit-value
1198 * from use-after-free.
1199 */
1200 memset_no_sanitize_memory(p - s->red_left_pad, val,
1201 s->red_left_pad);
1202
1203 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1204 /*
1205 * Redzone the extra allocated space by kmalloc than
1206 * requested, and the poison size will be limited to
1207 * the original request size accordingly.
1208 */
1209 poison_size = get_orig_size(s, object);
1210 }
1211 }
1212
1213 if (s->flags & __OBJECT_POISON) {
1214 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1215 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1216 }
1217
1218 if (s->flags & SLAB_RED_ZONE)
1219 memset_no_sanitize_memory(p + poison_size, val,
1220 s->inuse - poison_size);
1221 }
1222
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1223 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1224 void *from, void *to)
1225 {
1226 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1227 memset(from, data, to - from);
1228 }
1229
1230 #ifdef CONFIG_KMSAN
1231 #define pad_check_attributes noinline __no_kmsan_checks
1232 #else
1233 #define pad_check_attributes
1234 #endif
1235
1236 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1237 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1238 u8 *object, const char *what, u8 *start, unsigned int value,
1239 unsigned int bytes, bool slab_obj_print)
1240 {
1241 u8 *fault;
1242 u8 *end;
1243 u8 *addr = slab_address(slab);
1244
1245 metadata_access_enable();
1246 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1247 metadata_access_disable();
1248 if (!fault)
1249 return 1;
1250
1251 end = start + bytes;
1252 while (end > fault && end[-1] == value)
1253 end--;
1254
1255 if (slab_add_kunit_errors())
1256 goto skip_bug_print;
1257
1258 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1259 what, fault, end - 1, fault - addr, fault[0], value);
1260
1261 if (slab_obj_print)
1262 object_err(s, slab, object, "Object corrupt");
1263
1264 skip_bug_print:
1265 restore_bytes(s, what, value, fault, end);
1266 return 0;
1267 }
1268
1269 /*
1270 * Object layout:
1271 *
1272 * object address
1273 * Bytes of the object to be managed.
1274 * If the freepointer may overlay the object then the free
1275 * pointer is at the middle of the object.
1276 *
1277 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1278 * 0xa5 (POISON_END)
1279 *
1280 * object + s->object_size
1281 * Padding to reach word boundary. This is also used for Redzoning.
1282 * Padding is extended by another word if Redzoning is enabled and
1283 * object_size == inuse.
1284 *
1285 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1286 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1287 *
1288 * object + s->inuse
1289 * Meta data starts here.
1290 *
1291 * A. Free pointer (if we cannot overwrite object on free)
1292 * B. Tracking data for SLAB_STORE_USER
1293 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1294 * D. Padding to reach required alignment boundary or at minimum
1295 * one word if debugging is on to be able to detect writes
1296 * before the word boundary.
1297 *
1298 * Padding is done using 0x5a (POISON_INUSE)
1299 *
1300 * object + s->size
1301 * Nothing is used beyond s->size.
1302 *
1303 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1304 * ignored. And therefore no slab options that rely on these boundaries
1305 * may be used with merged slabcaches.
1306 */
1307
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1308 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1309 {
1310 unsigned long off = get_info_end(s); /* The end of info */
1311
1312 if (s->flags & SLAB_STORE_USER) {
1313 /* We also have user information there */
1314 off += 2 * sizeof(struct track);
1315
1316 if (s->flags & SLAB_KMALLOC)
1317 off += sizeof(unsigned int);
1318 }
1319
1320 off += kasan_metadata_size(s, false);
1321
1322 if (size_from_object(s) == off)
1323 return 1;
1324
1325 return check_bytes_and_report(s, slab, p, "Object padding",
1326 p + off, POISON_INUSE, size_from_object(s) - off, true);
1327 }
1328
1329 /* Check the pad bytes at the end of a slab page */
1330 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1331 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1332 {
1333 u8 *start;
1334 u8 *fault;
1335 u8 *end;
1336 u8 *pad;
1337 int length;
1338 int remainder;
1339
1340 if (!(s->flags & SLAB_POISON))
1341 return;
1342
1343 start = slab_address(slab);
1344 length = slab_size(slab);
1345 end = start + length;
1346 remainder = length % s->size;
1347 if (!remainder)
1348 return;
1349
1350 pad = end - remainder;
1351 metadata_access_enable();
1352 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1353 metadata_access_disable();
1354 if (!fault)
1355 return;
1356 while (end > fault && end[-1] == POISON_INUSE)
1357 end--;
1358
1359 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1360 fault, end - 1, fault - start);
1361 print_section(KERN_ERR, "Padding ", pad, remainder);
1362 __slab_err(slab);
1363
1364 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1365 }
1366
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1367 static int check_object(struct kmem_cache *s, struct slab *slab,
1368 void *object, u8 val)
1369 {
1370 u8 *p = object;
1371 u8 *endobject = object + s->object_size;
1372 unsigned int orig_size, kasan_meta_size;
1373 int ret = 1;
1374
1375 if (s->flags & SLAB_RED_ZONE) {
1376 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1377 object - s->red_left_pad, val, s->red_left_pad, ret))
1378 ret = 0;
1379
1380 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1381 endobject, val, s->inuse - s->object_size, ret))
1382 ret = 0;
1383
1384 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1385 orig_size = get_orig_size(s, object);
1386
1387 if (s->object_size > orig_size &&
1388 !check_bytes_and_report(s, slab, object,
1389 "kmalloc Redzone", p + orig_size,
1390 val, s->object_size - orig_size, ret)) {
1391 ret = 0;
1392 }
1393 }
1394 } else {
1395 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1396 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1397 endobject, POISON_INUSE,
1398 s->inuse - s->object_size, ret))
1399 ret = 0;
1400 }
1401 }
1402
1403 if (s->flags & SLAB_POISON) {
1404 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1405 /*
1406 * KASAN can save its free meta data inside of the
1407 * object at offset 0. Thus, skip checking the part of
1408 * the redzone that overlaps with the meta data.
1409 */
1410 kasan_meta_size = kasan_metadata_size(s, true);
1411 if (kasan_meta_size < s->object_size - 1 &&
1412 !check_bytes_and_report(s, slab, p, "Poison",
1413 p + kasan_meta_size, POISON_FREE,
1414 s->object_size - kasan_meta_size - 1, ret))
1415 ret = 0;
1416 if (kasan_meta_size < s->object_size &&
1417 !check_bytes_and_report(s, slab, p, "End Poison",
1418 p + s->object_size - 1, POISON_END, 1, ret))
1419 ret = 0;
1420 }
1421 /*
1422 * check_pad_bytes cleans up on its own.
1423 */
1424 if (!check_pad_bytes(s, slab, p))
1425 ret = 0;
1426 }
1427
1428 /*
1429 * Cannot check freepointer while object is allocated if
1430 * object and freepointer overlap.
1431 */
1432 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1433 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1434 object_err(s, slab, p, "Freepointer corrupt");
1435 /*
1436 * No choice but to zap it and thus lose the remainder
1437 * of the free objects in this slab. May cause
1438 * another error because the object count is now wrong.
1439 */
1440 set_freepointer(s, p, NULL);
1441 ret = 0;
1442 }
1443
1444 return ret;
1445 }
1446
check_slab(struct kmem_cache * s,struct slab * slab)1447 static int check_slab(struct kmem_cache *s, struct slab *slab)
1448 {
1449 int maxobj;
1450
1451 if (!folio_test_slab(slab_folio(slab))) {
1452 slab_err(s, slab, "Not a valid slab page");
1453 return 0;
1454 }
1455
1456 maxobj = order_objects(slab_order(slab), s->size);
1457 if (slab->objects > maxobj) {
1458 slab_err(s, slab, "objects %u > max %u",
1459 slab->objects, maxobj);
1460 return 0;
1461 }
1462 if (slab->inuse > slab->objects) {
1463 slab_err(s, slab, "inuse %u > max %u",
1464 slab->inuse, slab->objects);
1465 return 0;
1466 }
1467 if (slab->frozen) {
1468 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1469 return 0;
1470 }
1471
1472 /* Slab_pad_check fixes things up after itself */
1473 slab_pad_check(s, slab);
1474 return 1;
1475 }
1476
1477 /*
1478 * Determine if a certain object in a slab is on the freelist. Must hold the
1479 * slab lock to guarantee that the chains are in a consistent state.
1480 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1481 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1482 {
1483 int nr = 0;
1484 void *fp;
1485 void *object = NULL;
1486 int max_objects;
1487
1488 fp = slab->freelist;
1489 while (fp && nr <= slab->objects) {
1490 if (fp == search)
1491 return true;
1492 if (!check_valid_pointer(s, slab, fp)) {
1493 if (object) {
1494 object_err(s, slab, object,
1495 "Freechain corrupt");
1496 set_freepointer(s, object, NULL);
1497 break;
1498 } else {
1499 slab_err(s, slab, "Freepointer corrupt");
1500 slab->freelist = NULL;
1501 slab->inuse = slab->objects;
1502 slab_fix(s, "Freelist cleared");
1503 return false;
1504 }
1505 }
1506 object = fp;
1507 fp = get_freepointer(s, object);
1508 nr++;
1509 }
1510
1511 if (nr > slab->objects) {
1512 slab_err(s, slab, "Freelist cycle detected");
1513 slab->freelist = NULL;
1514 slab->inuse = slab->objects;
1515 slab_fix(s, "Freelist cleared");
1516 return false;
1517 }
1518
1519 max_objects = order_objects(slab_order(slab), s->size);
1520 if (max_objects > MAX_OBJS_PER_PAGE)
1521 max_objects = MAX_OBJS_PER_PAGE;
1522
1523 if (slab->objects != max_objects) {
1524 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1525 slab->objects, max_objects);
1526 slab->objects = max_objects;
1527 slab_fix(s, "Number of objects adjusted");
1528 }
1529 if (slab->inuse != slab->objects - nr) {
1530 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1531 slab->inuse, slab->objects - nr);
1532 slab->inuse = slab->objects - nr;
1533 slab_fix(s, "Object count adjusted");
1534 }
1535 return search == NULL;
1536 }
1537
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1538 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1539 int alloc)
1540 {
1541 if (s->flags & SLAB_TRACE) {
1542 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1543 s->name,
1544 alloc ? "alloc" : "free",
1545 object, slab->inuse,
1546 slab->freelist);
1547
1548 if (!alloc)
1549 print_section(KERN_INFO, "Object ", (void *)object,
1550 s->object_size);
1551
1552 dump_stack();
1553 }
1554 }
1555
1556 /*
1557 * Tracking of fully allocated slabs for debugging purposes.
1558 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1559 static void add_full(struct kmem_cache *s,
1560 struct kmem_cache_node *n, struct slab *slab)
1561 {
1562 if (!(s->flags & SLAB_STORE_USER))
1563 return;
1564
1565 lockdep_assert_held(&n->list_lock);
1566 list_add(&slab->slab_list, &n->full);
1567 }
1568
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1569 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1570 {
1571 if (!(s->flags & SLAB_STORE_USER))
1572 return;
1573
1574 lockdep_assert_held(&n->list_lock);
1575 list_del(&slab->slab_list);
1576 }
1577
node_nr_slabs(struct kmem_cache_node * n)1578 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1579 {
1580 return atomic_long_read(&n->nr_slabs);
1581 }
1582
inc_slabs_node(struct kmem_cache * s,int node,int objects)1583 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1584 {
1585 struct kmem_cache_node *n = get_node(s, node);
1586
1587 atomic_long_inc(&n->nr_slabs);
1588 atomic_long_add(objects, &n->total_objects);
1589 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1590 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1591 {
1592 struct kmem_cache_node *n = get_node(s, node);
1593
1594 atomic_long_dec(&n->nr_slabs);
1595 atomic_long_sub(objects, &n->total_objects);
1596 }
1597
1598 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1599 static void setup_object_debug(struct kmem_cache *s, void *object)
1600 {
1601 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1602 return;
1603
1604 init_object(s, object, SLUB_RED_INACTIVE);
1605 init_tracking(s, object);
1606 }
1607
1608 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1609 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1610 {
1611 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1612 return;
1613
1614 metadata_access_enable();
1615 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1616 metadata_access_disable();
1617 }
1618
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1619 static inline int alloc_consistency_checks(struct kmem_cache *s,
1620 struct slab *slab, void *object)
1621 {
1622 if (!check_slab(s, slab))
1623 return 0;
1624
1625 if (!check_valid_pointer(s, slab, object)) {
1626 object_err(s, slab, object, "Freelist Pointer check fails");
1627 return 0;
1628 }
1629
1630 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1631 return 0;
1632
1633 return 1;
1634 }
1635
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1636 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1637 struct slab *slab, void *object, int orig_size)
1638 {
1639 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1640 if (!alloc_consistency_checks(s, slab, object))
1641 goto bad;
1642 }
1643
1644 /* Success. Perform special debug activities for allocs */
1645 trace(s, slab, object, 1);
1646 set_orig_size(s, object, orig_size);
1647 init_object(s, object, SLUB_RED_ACTIVE);
1648 return true;
1649
1650 bad:
1651 if (folio_test_slab(slab_folio(slab))) {
1652 /*
1653 * If this is a slab page then lets do the best we can
1654 * to avoid issues in the future. Marking all objects
1655 * as used avoids touching the remaining objects.
1656 */
1657 slab_fix(s, "Marking all objects used");
1658 slab->inuse = slab->objects;
1659 slab->freelist = NULL;
1660 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1661 }
1662 return false;
1663 }
1664
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1665 static inline int free_consistency_checks(struct kmem_cache *s,
1666 struct slab *slab, void *object, unsigned long addr)
1667 {
1668 if (!check_valid_pointer(s, slab, object)) {
1669 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1670 return 0;
1671 }
1672
1673 if (on_freelist(s, slab, object)) {
1674 object_err(s, slab, object, "Object already free");
1675 return 0;
1676 }
1677
1678 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1679 return 0;
1680
1681 if (unlikely(s != slab->slab_cache)) {
1682 if (!folio_test_slab(slab_folio(slab))) {
1683 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1684 object);
1685 } else if (!slab->slab_cache) {
1686 slab_err(NULL, slab, "No slab cache for object 0x%p",
1687 object);
1688 } else {
1689 object_err(s, slab, object,
1690 "page slab pointer corrupt.");
1691 }
1692 return 0;
1693 }
1694 return 1;
1695 }
1696
1697 /*
1698 * Parse a block of slab_debug options. Blocks are delimited by ';'
1699 *
1700 * @str: start of block
1701 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1702 * @slabs: return start of list of slabs, or NULL when there's no list
1703 * @init: assume this is initial parsing and not per-kmem-create parsing
1704 *
1705 * returns the start of next block if there's any, or NULL
1706 */
1707 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1708 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1709 {
1710 bool higher_order_disable = false;
1711
1712 /* Skip any completely empty blocks */
1713 while (*str && *str == ';')
1714 str++;
1715
1716 if (*str == ',') {
1717 /*
1718 * No options but restriction on slabs. This means full
1719 * debugging for slabs matching a pattern.
1720 */
1721 *flags = DEBUG_DEFAULT_FLAGS;
1722 goto check_slabs;
1723 }
1724 *flags = 0;
1725
1726 /* Determine which debug features should be switched on */
1727 for (; *str && *str != ',' && *str != ';'; str++) {
1728 switch (tolower(*str)) {
1729 case '-':
1730 *flags = 0;
1731 break;
1732 case 'f':
1733 *flags |= SLAB_CONSISTENCY_CHECKS;
1734 break;
1735 case 'z':
1736 *flags |= SLAB_RED_ZONE;
1737 break;
1738 case 'p':
1739 *flags |= SLAB_POISON;
1740 break;
1741 case 'u':
1742 *flags |= SLAB_STORE_USER;
1743 break;
1744 case 't':
1745 *flags |= SLAB_TRACE;
1746 break;
1747 case 'a':
1748 *flags |= SLAB_FAILSLAB;
1749 break;
1750 case 'o':
1751 /*
1752 * Avoid enabling debugging on caches if its minimum
1753 * order would increase as a result.
1754 */
1755 higher_order_disable = true;
1756 break;
1757 default:
1758 if (init)
1759 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1760 }
1761 }
1762 check_slabs:
1763 if (*str == ',')
1764 *slabs = ++str;
1765 else
1766 *slabs = NULL;
1767
1768 /* Skip over the slab list */
1769 while (*str && *str != ';')
1770 str++;
1771
1772 /* Skip any completely empty blocks */
1773 while (*str && *str == ';')
1774 str++;
1775
1776 if (init && higher_order_disable)
1777 disable_higher_order_debug = 1;
1778
1779 if (*str)
1780 return str;
1781 else
1782 return NULL;
1783 }
1784
setup_slub_debug(char * str)1785 static int __init setup_slub_debug(char *str)
1786 {
1787 slab_flags_t flags;
1788 slab_flags_t global_flags;
1789 char *saved_str;
1790 char *slab_list;
1791 bool global_slub_debug_changed = false;
1792 bool slab_list_specified = false;
1793
1794 global_flags = DEBUG_DEFAULT_FLAGS;
1795 if (*str++ != '=' || !*str)
1796 /*
1797 * No options specified. Switch on full debugging.
1798 */
1799 goto out;
1800
1801 saved_str = str;
1802 while (str) {
1803 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1804
1805 if (!slab_list) {
1806 global_flags = flags;
1807 global_slub_debug_changed = true;
1808 } else {
1809 slab_list_specified = true;
1810 if (flags & SLAB_STORE_USER)
1811 stack_depot_request_early_init();
1812 }
1813 }
1814
1815 /*
1816 * For backwards compatibility, a single list of flags with list of
1817 * slabs means debugging is only changed for those slabs, so the global
1818 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1819 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1820 * long as there is no option specifying flags without a slab list.
1821 */
1822 if (slab_list_specified) {
1823 if (!global_slub_debug_changed)
1824 global_flags = slub_debug;
1825 slub_debug_string = saved_str;
1826 }
1827 out:
1828 slub_debug = global_flags;
1829 if (slub_debug & SLAB_STORE_USER)
1830 stack_depot_request_early_init();
1831 if (slub_debug != 0 || slub_debug_string)
1832 static_branch_enable(&slub_debug_enabled);
1833 else
1834 static_branch_disable(&slub_debug_enabled);
1835 if ((static_branch_unlikely(&init_on_alloc) ||
1836 static_branch_unlikely(&init_on_free)) &&
1837 (slub_debug & SLAB_POISON))
1838 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1839 return 1;
1840 }
1841
1842 __setup("slab_debug", setup_slub_debug);
1843 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1844
1845 /*
1846 * kmem_cache_flags - apply debugging options to the cache
1847 * @flags: flags to set
1848 * @name: name of the cache
1849 *
1850 * Debug option(s) are applied to @flags. In addition to the debug
1851 * option(s), if a slab name (or multiple) is specified i.e.
1852 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1853 * then only the select slabs will receive the debug option(s).
1854 */
kmem_cache_flags(slab_flags_t flags,const char * name)1855 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1856 {
1857 char *iter;
1858 size_t len;
1859 char *next_block;
1860 slab_flags_t block_flags;
1861 slab_flags_t slub_debug_local = slub_debug;
1862
1863 if (flags & SLAB_NO_USER_FLAGS)
1864 return flags;
1865
1866 /*
1867 * If the slab cache is for debugging (e.g. kmemleak) then
1868 * don't store user (stack trace) information by default,
1869 * but let the user enable it via the command line below.
1870 */
1871 if (flags & SLAB_NOLEAKTRACE)
1872 slub_debug_local &= ~SLAB_STORE_USER;
1873
1874 len = strlen(name);
1875 next_block = slub_debug_string;
1876 /* Go through all blocks of debug options, see if any matches our slab's name */
1877 while (next_block) {
1878 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1879 if (!iter)
1880 continue;
1881 /* Found a block that has a slab list, search it */
1882 while (*iter) {
1883 char *end, *glob;
1884 size_t cmplen;
1885
1886 end = strchrnul(iter, ',');
1887 if (next_block && next_block < end)
1888 end = next_block - 1;
1889
1890 glob = strnchr(iter, end - iter, '*');
1891 if (glob)
1892 cmplen = glob - iter;
1893 else
1894 cmplen = max_t(size_t, len, (end - iter));
1895
1896 if (!strncmp(name, iter, cmplen)) {
1897 flags |= block_flags;
1898 return flags;
1899 }
1900
1901 if (!*end || *end == ';')
1902 break;
1903 iter = end + 1;
1904 }
1905 }
1906
1907 return flags | slub_debug_local;
1908 }
1909 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1910 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1911 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1912 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1913
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1914 static inline bool alloc_debug_processing(struct kmem_cache *s,
1915 struct slab *slab, void *object, int orig_size) { return true; }
1916
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1917 static inline bool free_debug_processing(struct kmem_cache *s,
1918 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1919 unsigned long addr, depot_stack_handle_t handle) { return true; }
1920
slab_pad_check(struct kmem_cache * s,struct slab * slab)1921 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1922 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1923 void *object, u8 val) { return 1; }
set_track_prepare(void)1924 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1925 static inline void set_track(struct kmem_cache *s, void *object,
1926 enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1927 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1928 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1929 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1930 struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)1931 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1932 {
1933 return flags;
1934 }
1935 #define slub_debug 0
1936
1937 #define disable_higher_order_debug 0
1938
node_nr_slabs(struct kmem_cache_node * n)1939 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1940 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1941 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1942 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1943 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1944 int objects) {}
1945 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1946 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1947 void **freelist, void *nextfree)
1948 {
1949 return false;
1950 }
1951 #endif
1952 #endif /* CONFIG_SLUB_DEBUG */
1953
1954 #ifdef CONFIG_SLAB_OBJ_EXT
1955
1956 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1957
mark_objexts_empty(struct slabobj_ext * obj_exts)1958 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1959 {
1960 struct slabobj_ext *slab_exts;
1961 struct slab *obj_exts_slab;
1962
1963 obj_exts_slab = virt_to_slab(obj_exts);
1964 slab_exts = slab_obj_exts(obj_exts_slab);
1965 if (slab_exts) {
1966 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1967 obj_exts_slab, obj_exts);
1968 /* codetag should be NULL */
1969 WARN_ON(slab_exts[offs].ref.ct);
1970 set_codetag_empty(&slab_exts[offs].ref);
1971 }
1972 }
1973
mark_failed_objexts_alloc(struct slab * slab)1974 static inline void mark_failed_objexts_alloc(struct slab *slab)
1975 {
1976 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1977 }
1978
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1979 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1980 struct slabobj_ext *vec, unsigned int objects)
1981 {
1982 /*
1983 * If vector previously failed to allocate then we have live
1984 * objects with no tag reference. Mark all references in this
1985 * vector as empty to avoid warnings later on.
1986 */
1987 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1988 unsigned int i;
1989
1990 for (i = 0; i < objects; i++)
1991 set_codetag_empty(&vec[i].ref);
1992 }
1993 }
1994
1995 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1996
mark_objexts_empty(struct slabobj_ext * obj_exts)1997 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)1998 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1999 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2000 struct slabobj_ext *vec, unsigned int objects) {}
2001
2002 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2003
2004 /*
2005 * The allocated objcg pointers array is not accounted directly.
2006 * Moreover, it should not come from DMA buffer and is not readily
2007 * reclaimable. So those GFP bits should be masked off.
2008 */
2009 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2010 __GFP_ACCOUNT | __GFP_NOFAIL)
2011
init_slab_obj_exts(struct slab * slab)2012 static inline void init_slab_obj_exts(struct slab *slab)
2013 {
2014 slab->obj_exts = 0;
2015 }
2016
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2017 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2018 gfp_t gfp, bool new_slab)
2019 {
2020 unsigned int objects = objs_per_slab(s, slab);
2021 unsigned long new_exts;
2022 unsigned long old_exts;
2023 struct slabobj_ext *vec;
2024
2025 gfp &= ~OBJCGS_CLEAR_MASK;
2026 /* Prevent recursive extension vector allocation */
2027 gfp |= __GFP_NO_OBJ_EXT;
2028 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2029 slab_nid(slab));
2030 if (!vec) {
2031 /* Mark vectors which failed to allocate */
2032 if (new_slab)
2033 mark_failed_objexts_alloc(slab);
2034
2035 return -ENOMEM;
2036 }
2037
2038 new_exts = (unsigned long)vec;
2039 #ifdef CONFIG_MEMCG
2040 new_exts |= MEMCG_DATA_OBJEXTS;
2041 #endif
2042 old_exts = READ_ONCE(slab->obj_exts);
2043 handle_failed_objexts_alloc(old_exts, vec, objects);
2044 if (new_slab) {
2045 /*
2046 * If the slab is brand new and nobody can yet access its
2047 * obj_exts, no synchronization is required and obj_exts can
2048 * be simply assigned.
2049 */
2050 slab->obj_exts = new_exts;
2051 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2052 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2053 /*
2054 * If the slab is already in use, somebody can allocate and
2055 * assign slabobj_exts in parallel. In this case the existing
2056 * objcg vector should be reused.
2057 */
2058 mark_objexts_empty(vec);
2059 kfree(vec);
2060 return 0;
2061 }
2062
2063 kmemleak_not_leak(vec);
2064 return 0;
2065 }
2066
free_slab_obj_exts(struct slab * slab)2067 static inline void free_slab_obj_exts(struct slab *slab)
2068 {
2069 struct slabobj_ext *obj_exts;
2070
2071 obj_exts = slab_obj_exts(slab);
2072 if (!obj_exts)
2073 return;
2074
2075 /*
2076 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2077 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2078 * warning if slab has extensions but the extension of an object is
2079 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2080 * the extension for obj_exts is expected to be NULL.
2081 */
2082 mark_objexts_empty(obj_exts);
2083 kfree(obj_exts);
2084 slab->obj_exts = 0;
2085 }
2086
2087 #else /* CONFIG_SLAB_OBJ_EXT */
2088
init_slab_obj_exts(struct slab * slab)2089 static inline void init_slab_obj_exts(struct slab *slab)
2090 {
2091 }
2092
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2093 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2094 gfp_t gfp, bool new_slab)
2095 {
2096 return 0;
2097 }
2098
free_slab_obj_exts(struct slab * slab)2099 static inline void free_slab_obj_exts(struct slab *slab)
2100 {
2101 }
2102
2103 #endif /* CONFIG_SLAB_OBJ_EXT */
2104
2105 #ifdef CONFIG_MEM_ALLOC_PROFILING
2106
2107 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2108 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2109 {
2110 struct slab *slab;
2111
2112 if (!p)
2113 return NULL;
2114
2115 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2116 return NULL;
2117
2118 if (flags & __GFP_NO_OBJ_EXT)
2119 return NULL;
2120
2121 slab = virt_to_slab(p);
2122 if (!slab_obj_exts(slab) &&
2123 alloc_slab_obj_exts(slab, s, flags, false)) {
2124 pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2125 __func__, s->name);
2126 return NULL;
2127 }
2128
2129 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2130 }
2131
2132 /* Should be called only if mem_alloc_profiling_enabled() */
2133 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2134 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2135 {
2136 struct slabobj_ext *obj_exts;
2137
2138 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2139 /*
2140 * Currently obj_exts is used only for allocation profiling.
2141 * If other users appear then mem_alloc_profiling_enabled()
2142 * check should be added before alloc_tag_add().
2143 */
2144 if (likely(obj_exts))
2145 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2146 }
2147
2148 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2149 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2150 {
2151 if (mem_alloc_profiling_enabled())
2152 __alloc_tagging_slab_alloc_hook(s, object, flags);
2153 }
2154
2155 /* Should be called only if mem_alloc_profiling_enabled() */
2156 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2157 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2158 int objects)
2159 {
2160 struct slabobj_ext *obj_exts;
2161 int i;
2162
2163 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2164 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2165 return;
2166
2167 obj_exts = slab_obj_exts(slab);
2168 if (!obj_exts)
2169 return;
2170
2171 for (i = 0; i < objects; i++) {
2172 unsigned int off = obj_to_index(s, slab, p[i]);
2173
2174 alloc_tag_sub(&obj_exts[off].ref, s->size);
2175 }
2176 }
2177
2178 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2179 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2180 int objects)
2181 {
2182 if (mem_alloc_profiling_enabled())
2183 __alloc_tagging_slab_free_hook(s, slab, p, objects);
2184 }
2185
2186 #else /* CONFIG_MEM_ALLOC_PROFILING */
2187
2188 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2189 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2190 {
2191 }
2192
2193 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2194 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2195 int objects)
2196 {
2197 }
2198
2199 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2200
2201
2202 #ifdef CONFIG_MEMCG
2203
2204 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2205
2206 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2207 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2208 gfp_t flags, size_t size, void **p)
2209 {
2210 if (likely(!memcg_kmem_online()))
2211 return true;
2212
2213 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2214 return true;
2215
2216 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2217 return true;
2218
2219 if (likely(size == 1)) {
2220 memcg_alloc_abort_single(s, *p);
2221 *p = NULL;
2222 } else {
2223 kmem_cache_free_bulk(s, size, p);
2224 }
2225
2226 return false;
2227 }
2228
2229 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2230 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2231 int objects)
2232 {
2233 struct slabobj_ext *obj_exts;
2234
2235 if (!memcg_kmem_online())
2236 return;
2237
2238 obj_exts = slab_obj_exts(slab);
2239 if (likely(!obj_exts))
2240 return;
2241
2242 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2243 }
2244
2245 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2246 bool memcg_slab_post_charge(void *p, gfp_t flags)
2247 {
2248 struct slabobj_ext *slab_exts;
2249 struct kmem_cache *s;
2250 struct folio *folio;
2251 struct slab *slab;
2252 unsigned long off;
2253
2254 folio = virt_to_folio(p);
2255 if (!folio_test_slab(folio)) {
2256 int size;
2257
2258 if (folio_memcg_kmem(folio))
2259 return true;
2260
2261 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2262 folio_order(folio)))
2263 return false;
2264
2265 /*
2266 * This folio has already been accounted in the global stats but
2267 * not in the memcg stats. So, subtract from the global and use
2268 * the interface which adds to both global and memcg stats.
2269 */
2270 size = folio_size(folio);
2271 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2272 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2273 return true;
2274 }
2275
2276 slab = folio_slab(folio);
2277 s = slab->slab_cache;
2278
2279 /*
2280 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2281 * of slab_obj_exts being allocated from the same slab and thus the slab
2282 * becoming effectively unfreeable.
2283 */
2284 if (is_kmalloc_normal(s))
2285 return true;
2286
2287 /* Ignore already charged objects. */
2288 slab_exts = slab_obj_exts(slab);
2289 if (slab_exts) {
2290 off = obj_to_index(s, slab, p);
2291 if (unlikely(slab_exts[off].objcg))
2292 return true;
2293 }
2294
2295 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2296 }
2297
2298 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2299 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2300 struct list_lru *lru,
2301 gfp_t flags, size_t size,
2302 void **p)
2303 {
2304 return true;
2305 }
2306
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2307 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2308 void **p, int objects)
2309 {
2310 }
2311
memcg_slab_post_charge(void * p,gfp_t flags)2312 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2313 {
2314 return true;
2315 }
2316 #endif /* CONFIG_MEMCG */
2317
2318 #ifdef CONFIG_SLUB_RCU_DEBUG
2319 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2320
2321 struct rcu_delayed_free {
2322 struct rcu_head head;
2323 void *object;
2324 };
2325 #endif
2326
2327 /*
2328 * Hooks for other subsystems that check memory allocations. In a typical
2329 * production configuration these hooks all should produce no code at all.
2330 *
2331 * Returns true if freeing of the object can proceed, false if its reuse
2332 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2333 * to KFENCE.
2334 */
2335 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2336 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2337 bool after_rcu_delay)
2338 {
2339 /* Are the object contents still accessible? */
2340 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2341
2342 kmemleak_free_recursive(x, s->flags);
2343 kmsan_slab_free(s, x);
2344
2345 debug_check_no_locks_freed(x, s->object_size);
2346
2347 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2348 debug_check_no_obj_freed(x, s->object_size);
2349
2350 /* Use KCSAN to help debug racy use-after-free. */
2351 if (!still_accessible)
2352 __kcsan_check_access(x, s->object_size,
2353 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2354
2355 if (kfence_free(x))
2356 return false;
2357
2358 /*
2359 * Give KASAN a chance to notice an invalid free operation before we
2360 * modify the object.
2361 */
2362 if (kasan_slab_pre_free(s, x))
2363 return false;
2364
2365 #ifdef CONFIG_SLUB_RCU_DEBUG
2366 if (still_accessible) {
2367 struct rcu_delayed_free *delayed_free;
2368
2369 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2370 if (delayed_free) {
2371 /*
2372 * Let KASAN track our call stack as a "related work
2373 * creation", just like if the object had been freed
2374 * normally via kfree_rcu().
2375 * We have to do this manually because the rcu_head is
2376 * not located inside the object.
2377 */
2378 kasan_record_aux_stack(x);
2379
2380 delayed_free->object = x;
2381 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2382 return false;
2383 }
2384 }
2385 #endif /* CONFIG_SLUB_RCU_DEBUG */
2386
2387 /*
2388 * As memory initialization might be integrated into KASAN,
2389 * kasan_slab_free and initialization memset's must be
2390 * kept together to avoid discrepancies in behavior.
2391 *
2392 * The initialization memset's clear the object and the metadata,
2393 * but don't touch the SLAB redzone.
2394 *
2395 * The object's freepointer is also avoided if stored outside the
2396 * object.
2397 */
2398 if (unlikely(init)) {
2399 int rsize;
2400 unsigned int inuse, orig_size;
2401
2402 inuse = get_info_end(s);
2403 orig_size = get_orig_size(s, x);
2404 if (!kasan_has_integrated_init())
2405 memset(kasan_reset_tag(x), 0, orig_size);
2406 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2407 memset((char *)kasan_reset_tag(x) + inuse, 0,
2408 s->size - inuse - rsize);
2409 /*
2410 * Restore orig_size, otherwize kmalloc redzone overwritten
2411 * would be reported
2412 */
2413 set_orig_size(s, x, orig_size);
2414
2415 }
2416 /* KASAN might put x into memory quarantine, delaying its reuse. */
2417 return !kasan_slab_free(s, x, init, still_accessible);
2418 }
2419
2420 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2421 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2422 int *cnt)
2423 {
2424
2425 void *object;
2426 void *next = *head;
2427 void *old_tail = *tail;
2428 bool init;
2429
2430 if (is_kfence_address(next)) {
2431 slab_free_hook(s, next, false, false);
2432 return false;
2433 }
2434
2435 /* Head and tail of the reconstructed freelist */
2436 *head = NULL;
2437 *tail = NULL;
2438
2439 init = slab_want_init_on_free(s);
2440
2441 do {
2442 object = next;
2443 next = get_freepointer(s, object);
2444
2445 /* If object's reuse doesn't have to be delayed */
2446 if (likely(slab_free_hook(s, object, init, false))) {
2447 /* Move object to the new freelist */
2448 set_freepointer(s, object, *head);
2449 *head = object;
2450 if (!*tail)
2451 *tail = object;
2452 } else {
2453 /*
2454 * Adjust the reconstructed freelist depth
2455 * accordingly if object's reuse is delayed.
2456 */
2457 --(*cnt);
2458 }
2459 } while (object != old_tail);
2460
2461 return *head != NULL;
2462 }
2463
setup_object(struct kmem_cache * s,void * object)2464 static void *setup_object(struct kmem_cache *s, void *object)
2465 {
2466 setup_object_debug(s, object);
2467 object = kasan_init_slab_obj(s, object);
2468 if (unlikely(s->ctor)) {
2469 kasan_unpoison_new_object(s, object);
2470 s->ctor(object);
2471 kasan_poison_new_object(s, object);
2472 }
2473 return object;
2474 }
2475
2476 /*
2477 * Slab allocation and freeing
2478 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)2479 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2480 struct kmem_cache_order_objects oo)
2481 {
2482 struct folio *folio;
2483 struct slab *slab;
2484 unsigned int order = oo_order(oo);
2485
2486 if (node == NUMA_NO_NODE)
2487 folio = (struct folio *)alloc_frozen_pages(flags, order);
2488 else
2489 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2490
2491 if (!folio)
2492 return NULL;
2493
2494 slab = folio_slab(folio);
2495 __folio_set_slab(folio);
2496 if (folio_is_pfmemalloc(folio))
2497 slab_set_pfmemalloc(slab);
2498
2499 return slab;
2500 }
2501
2502 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2503 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)2504 static int init_cache_random_seq(struct kmem_cache *s)
2505 {
2506 unsigned int count = oo_objects(s->oo);
2507 int err;
2508
2509 /* Bailout if already initialised */
2510 if (s->random_seq)
2511 return 0;
2512
2513 err = cache_random_seq_create(s, count, GFP_KERNEL);
2514 if (err) {
2515 pr_err("SLUB: Unable to initialize free list for %s\n",
2516 s->name);
2517 return err;
2518 }
2519
2520 /* Transform to an offset on the set of pages */
2521 if (s->random_seq) {
2522 unsigned int i;
2523
2524 for (i = 0; i < count; i++)
2525 s->random_seq[i] *= s->size;
2526 }
2527 return 0;
2528 }
2529
2530 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)2531 static void __init init_freelist_randomization(void)
2532 {
2533 struct kmem_cache *s;
2534
2535 mutex_lock(&slab_mutex);
2536
2537 list_for_each_entry(s, &slab_caches, list)
2538 init_cache_random_seq(s);
2539
2540 mutex_unlock(&slab_mutex);
2541 }
2542
2543 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)2544 static void *next_freelist_entry(struct kmem_cache *s,
2545 unsigned long *pos, void *start,
2546 unsigned long page_limit,
2547 unsigned long freelist_count)
2548 {
2549 unsigned int idx;
2550
2551 /*
2552 * If the target page allocation failed, the number of objects on the
2553 * page might be smaller than the usual size defined by the cache.
2554 */
2555 do {
2556 idx = s->random_seq[*pos];
2557 *pos += 1;
2558 if (*pos >= freelist_count)
2559 *pos = 0;
2560 } while (unlikely(idx >= page_limit));
2561
2562 return (char *)start + idx;
2563 }
2564
2565 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2566 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2567 {
2568 void *start;
2569 void *cur;
2570 void *next;
2571 unsigned long idx, pos, page_limit, freelist_count;
2572
2573 if (slab->objects < 2 || !s->random_seq)
2574 return false;
2575
2576 freelist_count = oo_objects(s->oo);
2577 pos = get_random_u32_below(freelist_count);
2578
2579 page_limit = slab->objects * s->size;
2580 start = fixup_red_left(s, slab_address(slab));
2581
2582 /* First entry is used as the base of the freelist */
2583 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2584 cur = setup_object(s, cur);
2585 slab->freelist = cur;
2586
2587 for (idx = 1; idx < slab->objects; idx++) {
2588 next = next_freelist_entry(s, &pos, start, page_limit,
2589 freelist_count);
2590 next = setup_object(s, next);
2591 set_freepointer(s, cur, next);
2592 cur = next;
2593 }
2594 set_freepointer(s, cur, NULL);
2595
2596 return true;
2597 }
2598 #else
init_cache_random_seq(struct kmem_cache * s)2599 static inline int init_cache_random_seq(struct kmem_cache *s)
2600 {
2601 return 0;
2602 }
init_freelist_randomization(void)2603 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2604 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2605 {
2606 return false;
2607 }
2608 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2609
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)2610 static __always_inline void account_slab(struct slab *slab, int order,
2611 struct kmem_cache *s, gfp_t gfp)
2612 {
2613 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2614 alloc_slab_obj_exts(slab, s, gfp, true);
2615
2616 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2617 PAGE_SIZE << order);
2618 }
2619
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)2620 static __always_inline void unaccount_slab(struct slab *slab, int order,
2621 struct kmem_cache *s)
2622 {
2623 /*
2624 * The slab object extensions should now be freed regardless of
2625 * whether mem_alloc_profiling_enabled() or not because profiling
2626 * might have been disabled after slab->obj_exts got allocated.
2627 */
2628 free_slab_obj_exts(slab);
2629
2630 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2631 -(PAGE_SIZE << order));
2632 }
2633
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2634 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2635 {
2636 struct slab *slab;
2637 struct kmem_cache_order_objects oo = s->oo;
2638 gfp_t alloc_gfp;
2639 void *start, *p, *next;
2640 int idx;
2641 bool shuffle;
2642
2643 flags &= gfp_allowed_mask;
2644
2645 flags |= s->allocflags;
2646
2647 /*
2648 * Let the initial higher-order allocation fail under memory pressure
2649 * so we fall-back to the minimum order allocation.
2650 */
2651 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2652 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2653 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2654
2655 slab = alloc_slab_page(alloc_gfp, node, oo);
2656 if (unlikely(!slab)) {
2657 oo = s->min;
2658 alloc_gfp = flags;
2659 /*
2660 * Allocation may have failed due to fragmentation.
2661 * Try a lower order alloc if possible
2662 */
2663 slab = alloc_slab_page(alloc_gfp, node, oo);
2664 if (unlikely(!slab))
2665 return NULL;
2666 stat(s, ORDER_FALLBACK);
2667 }
2668
2669 slab->objects = oo_objects(oo);
2670 slab->inuse = 0;
2671 slab->frozen = 0;
2672 init_slab_obj_exts(slab);
2673
2674 account_slab(slab, oo_order(oo), s, flags);
2675
2676 slab->slab_cache = s;
2677
2678 kasan_poison_slab(slab);
2679
2680 start = slab_address(slab);
2681
2682 setup_slab_debug(s, slab, start);
2683
2684 shuffle = shuffle_freelist(s, slab);
2685
2686 if (!shuffle) {
2687 start = fixup_red_left(s, start);
2688 start = setup_object(s, start);
2689 slab->freelist = start;
2690 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2691 next = p + s->size;
2692 next = setup_object(s, next);
2693 set_freepointer(s, p, next);
2694 p = next;
2695 }
2696 set_freepointer(s, p, NULL);
2697 }
2698
2699 return slab;
2700 }
2701
new_slab(struct kmem_cache * s,gfp_t flags,int node)2702 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2703 {
2704 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2705 flags = kmalloc_fix_flags(flags);
2706
2707 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2708
2709 return allocate_slab(s,
2710 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2711 }
2712
__free_slab(struct kmem_cache * s,struct slab * slab)2713 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2714 {
2715 struct folio *folio = slab_folio(slab);
2716 int order = folio_order(folio);
2717 int pages = 1 << order;
2718
2719 __slab_clear_pfmemalloc(slab);
2720 folio->mapping = NULL;
2721 __folio_clear_slab(folio);
2722 mm_account_reclaimed_pages(pages);
2723 unaccount_slab(slab, order, s);
2724 free_frozen_pages(&folio->page, order);
2725 }
2726
rcu_free_slab(struct rcu_head * h)2727 static void rcu_free_slab(struct rcu_head *h)
2728 {
2729 struct slab *slab = container_of(h, struct slab, rcu_head);
2730
2731 __free_slab(slab->slab_cache, slab);
2732 }
2733
free_slab(struct kmem_cache * s,struct slab * slab)2734 static void free_slab(struct kmem_cache *s, struct slab *slab)
2735 {
2736 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2737 void *p;
2738
2739 slab_pad_check(s, slab);
2740 for_each_object(p, s, slab_address(slab), slab->objects)
2741 check_object(s, slab, p, SLUB_RED_INACTIVE);
2742 }
2743
2744 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2745 call_rcu(&slab->rcu_head, rcu_free_slab);
2746 else
2747 __free_slab(s, slab);
2748 }
2749
discard_slab(struct kmem_cache * s,struct slab * slab)2750 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2751 {
2752 dec_slabs_node(s, slab_nid(slab), slab->objects);
2753 free_slab(s, slab);
2754 }
2755
slab_test_node_partial(const struct slab * slab)2756 static inline bool slab_test_node_partial(const struct slab *slab)
2757 {
2758 return test_bit(SL_partial, &slab->flags);
2759 }
2760
slab_set_node_partial(struct slab * slab)2761 static inline void slab_set_node_partial(struct slab *slab)
2762 {
2763 set_bit(SL_partial, &slab->flags);
2764 }
2765
slab_clear_node_partial(struct slab * slab)2766 static inline void slab_clear_node_partial(struct slab *slab)
2767 {
2768 clear_bit(SL_partial, &slab->flags);
2769 }
2770
2771 /*
2772 * Management of partially allocated slabs.
2773 */
2774 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2775 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2776 {
2777 n->nr_partial++;
2778 if (tail == DEACTIVATE_TO_TAIL)
2779 list_add_tail(&slab->slab_list, &n->partial);
2780 else
2781 list_add(&slab->slab_list, &n->partial);
2782 slab_set_node_partial(slab);
2783 }
2784
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2785 static inline void add_partial(struct kmem_cache_node *n,
2786 struct slab *slab, int tail)
2787 {
2788 lockdep_assert_held(&n->list_lock);
2789 __add_partial(n, slab, tail);
2790 }
2791
remove_partial(struct kmem_cache_node * n,struct slab * slab)2792 static inline void remove_partial(struct kmem_cache_node *n,
2793 struct slab *slab)
2794 {
2795 lockdep_assert_held(&n->list_lock);
2796 list_del(&slab->slab_list);
2797 slab_clear_node_partial(slab);
2798 n->nr_partial--;
2799 }
2800
2801 /*
2802 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2803 * slab from the n->partial list. Remove only a single object from the slab, do
2804 * the alloc_debug_processing() checks and leave the slab on the list, or move
2805 * it to full list if it was the last free object.
2806 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2807 static void *alloc_single_from_partial(struct kmem_cache *s,
2808 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2809 {
2810 void *object;
2811
2812 lockdep_assert_held(&n->list_lock);
2813
2814 object = slab->freelist;
2815 slab->freelist = get_freepointer(s, object);
2816 slab->inuse++;
2817
2818 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2819 if (folio_test_slab(slab_folio(slab)))
2820 remove_partial(n, slab);
2821 return NULL;
2822 }
2823
2824 if (slab->inuse == slab->objects) {
2825 remove_partial(n, slab);
2826 add_full(s, n, slab);
2827 }
2828
2829 return object;
2830 }
2831
2832 /*
2833 * Called only for kmem_cache_debug() caches to allocate from a freshly
2834 * allocated slab. Allocate a single object instead of whole freelist
2835 * and put the slab to the partial (or full) list.
2836 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2837 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2838 struct slab *slab, int orig_size)
2839 {
2840 int nid = slab_nid(slab);
2841 struct kmem_cache_node *n = get_node(s, nid);
2842 unsigned long flags;
2843 void *object;
2844
2845
2846 object = slab->freelist;
2847 slab->freelist = get_freepointer(s, object);
2848 slab->inuse = 1;
2849
2850 if (!alloc_debug_processing(s, slab, object, orig_size))
2851 /*
2852 * It's not really expected that this would fail on a
2853 * freshly allocated slab, but a concurrent memory
2854 * corruption in theory could cause that.
2855 */
2856 return NULL;
2857
2858 spin_lock_irqsave(&n->list_lock, flags);
2859
2860 if (slab->inuse == slab->objects)
2861 add_full(s, n, slab);
2862 else
2863 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2864
2865 inc_slabs_node(s, nid, slab->objects);
2866 spin_unlock_irqrestore(&n->list_lock, flags);
2867
2868 return object;
2869 }
2870
2871 #ifdef CONFIG_SLUB_CPU_PARTIAL
2872 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2873 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2874 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2875 int drain) { }
2876 #endif
2877 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2878
2879 /*
2880 * Try to allocate a partial slab from a specific node.
2881 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2882 static struct slab *get_partial_node(struct kmem_cache *s,
2883 struct kmem_cache_node *n,
2884 struct partial_context *pc)
2885 {
2886 struct slab *slab, *slab2, *partial = NULL;
2887 unsigned long flags;
2888 unsigned int partial_slabs = 0;
2889
2890 /*
2891 * Racy check. If we mistakenly see no partial slabs then we
2892 * just allocate an empty slab. If we mistakenly try to get a
2893 * partial slab and there is none available then get_partial()
2894 * will return NULL.
2895 */
2896 if (!n || !n->nr_partial)
2897 return NULL;
2898
2899 spin_lock_irqsave(&n->list_lock, flags);
2900 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2901 if (!pfmemalloc_match(slab, pc->flags))
2902 continue;
2903
2904 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2905 void *object = alloc_single_from_partial(s, n, slab,
2906 pc->orig_size);
2907 if (object) {
2908 partial = slab;
2909 pc->object = object;
2910 break;
2911 }
2912 continue;
2913 }
2914
2915 remove_partial(n, slab);
2916
2917 if (!partial) {
2918 partial = slab;
2919 stat(s, ALLOC_FROM_PARTIAL);
2920
2921 if ((slub_get_cpu_partial(s) == 0)) {
2922 break;
2923 }
2924 } else {
2925 put_cpu_partial(s, slab, 0);
2926 stat(s, CPU_PARTIAL_NODE);
2927
2928 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2929 break;
2930 }
2931 }
2932 }
2933 spin_unlock_irqrestore(&n->list_lock, flags);
2934 return partial;
2935 }
2936
2937 /*
2938 * Get a slab from somewhere. Search in increasing NUMA distances.
2939 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2940 static struct slab *get_any_partial(struct kmem_cache *s,
2941 struct partial_context *pc)
2942 {
2943 #ifdef CONFIG_NUMA
2944 struct zonelist *zonelist;
2945 struct zoneref *z;
2946 struct zone *zone;
2947 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2948 struct slab *slab;
2949 unsigned int cpuset_mems_cookie;
2950
2951 /*
2952 * The defrag ratio allows a configuration of the tradeoffs between
2953 * inter node defragmentation and node local allocations. A lower
2954 * defrag_ratio increases the tendency to do local allocations
2955 * instead of attempting to obtain partial slabs from other nodes.
2956 *
2957 * If the defrag_ratio is set to 0 then kmalloc() always
2958 * returns node local objects. If the ratio is higher then kmalloc()
2959 * may return off node objects because partial slabs are obtained
2960 * from other nodes and filled up.
2961 *
2962 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2963 * (which makes defrag_ratio = 1000) then every (well almost)
2964 * allocation will first attempt to defrag slab caches on other nodes.
2965 * This means scanning over all nodes to look for partial slabs which
2966 * may be expensive if we do it every time we are trying to find a slab
2967 * with available objects.
2968 */
2969 if (!s->remote_node_defrag_ratio ||
2970 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2971 return NULL;
2972
2973 do {
2974 cpuset_mems_cookie = read_mems_allowed_begin();
2975 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2976 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2977 struct kmem_cache_node *n;
2978
2979 n = get_node(s, zone_to_nid(zone));
2980
2981 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2982 n->nr_partial > s->min_partial) {
2983 slab = get_partial_node(s, n, pc);
2984 if (slab) {
2985 /*
2986 * Don't check read_mems_allowed_retry()
2987 * here - if mems_allowed was updated in
2988 * parallel, that was a harmless race
2989 * between allocation and the cpuset
2990 * update
2991 */
2992 return slab;
2993 }
2994 }
2995 }
2996 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2997 #endif /* CONFIG_NUMA */
2998 return NULL;
2999 }
3000
3001 /*
3002 * Get a partial slab, lock it and return it.
3003 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)3004 static struct slab *get_partial(struct kmem_cache *s, int node,
3005 struct partial_context *pc)
3006 {
3007 struct slab *slab;
3008 int searchnode = node;
3009
3010 if (node == NUMA_NO_NODE)
3011 searchnode = numa_mem_id();
3012
3013 slab = get_partial_node(s, get_node(s, searchnode), pc);
3014 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3015 return slab;
3016
3017 return get_any_partial(s, pc);
3018 }
3019
3020 #ifndef CONFIG_SLUB_TINY
3021
3022 #ifdef CONFIG_PREEMPTION
3023 /*
3024 * Calculate the next globally unique transaction for disambiguation
3025 * during cmpxchg. The transactions start with the cpu number and are then
3026 * incremented by CONFIG_NR_CPUS.
3027 */
3028 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
3029 #else
3030 /*
3031 * No preemption supported therefore also no need to check for
3032 * different cpus.
3033 */
3034 #define TID_STEP 1
3035 #endif /* CONFIG_PREEMPTION */
3036
next_tid(unsigned long tid)3037 static inline unsigned long next_tid(unsigned long tid)
3038 {
3039 return tid + TID_STEP;
3040 }
3041
3042 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3043 static inline unsigned int tid_to_cpu(unsigned long tid)
3044 {
3045 return tid % TID_STEP;
3046 }
3047
tid_to_event(unsigned long tid)3048 static inline unsigned long tid_to_event(unsigned long tid)
3049 {
3050 return tid / TID_STEP;
3051 }
3052 #endif
3053
init_tid(int cpu)3054 static inline unsigned int init_tid(int cpu)
3055 {
3056 return cpu;
3057 }
3058
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3059 static inline void note_cmpxchg_failure(const char *n,
3060 const struct kmem_cache *s, unsigned long tid)
3061 {
3062 #ifdef SLUB_DEBUG_CMPXCHG
3063 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3064
3065 pr_info("%s %s: cmpxchg redo ", n, s->name);
3066
3067 #ifdef CONFIG_PREEMPTION
3068 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3069 pr_warn("due to cpu change %d -> %d\n",
3070 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3071 else
3072 #endif
3073 if (tid_to_event(tid) != tid_to_event(actual_tid))
3074 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3075 tid_to_event(tid), tid_to_event(actual_tid));
3076 else
3077 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3078 actual_tid, tid, next_tid(tid));
3079 #endif
3080 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3081 }
3082
init_kmem_cache_cpus(struct kmem_cache * s)3083 static void init_kmem_cache_cpus(struct kmem_cache *s)
3084 {
3085 int cpu;
3086 struct kmem_cache_cpu *c;
3087
3088 for_each_possible_cpu(cpu) {
3089 c = per_cpu_ptr(s->cpu_slab, cpu);
3090 local_lock_init(&c->lock);
3091 c->tid = init_tid(cpu);
3092 }
3093 }
3094
3095 /*
3096 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3097 * unfreezes the slabs and puts it on the proper list.
3098 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3099 * by the caller.
3100 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3101 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3102 void *freelist)
3103 {
3104 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3105 int free_delta = 0;
3106 void *nextfree, *freelist_iter, *freelist_tail;
3107 int tail = DEACTIVATE_TO_HEAD;
3108 unsigned long flags = 0;
3109 struct slab new;
3110 struct slab old;
3111
3112 if (READ_ONCE(slab->freelist)) {
3113 stat(s, DEACTIVATE_REMOTE_FREES);
3114 tail = DEACTIVATE_TO_TAIL;
3115 }
3116
3117 /*
3118 * Stage one: Count the objects on cpu's freelist as free_delta and
3119 * remember the last object in freelist_tail for later splicing.
3120 */
3121 freelist_tail = NULL;
3122 freelist_iter = freelist;
3123 while (freelist_iter) {
3124 nextfree = get_freepointer(s, freelist_iter);
3125
3126 /*
3127 * If 'nextfree' is invalid, it is possible that the object at
3128 * 'freelist_iter' is already corrupted. So isolate all objects
3129 * starting at 'freelist_iter' by skipping them.
3130 */
3131 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3132 break;
3133
3134 freelist_tail = freelist_iter;
3135 free_delta++;
3136
3137 freelist_iter = nextfree;
3138 }
3139
3140 /*
3141 * Stage two: Unfreeze the slab while splicing the per-cpu
3142 * freelist to the head of slab's freelist.
3143 */
3144 do {
3145 old.freelist = READ_ONCE(slab->freelist);
3146 old.counters = READ_ONCE(slab->counters);
3147 VM_BUG_ON(!old.frozen);
3148
3149 /* Determine target state of the slab */
3150 new.counters = old.counters;
3151 new.frozen = 0;
3152 if (freelist_tail) {
3153 new.inuse -= free_delta;
3154 set_freepointer(s, freelist_tail, old.freelist);
3155 new.freelist = freelist;
3156 } else {
3157 new.freelist = old.freelist;
3158 }
3159 } while (!slab_update_freelist(s, slab,
3160 old.freelist, old.counters,
3161 new.freelist, new.counters,
3162 "unfreezing slab"));
3163
3164 /*
3165 * Stage three: Manipulate the slab list based on the updated state.
3166 */
3167 if (!new.inuse && n->nr_partial >= s->min_partial) {
3168 stat(s, DEACTIVATE_EMPTY);
3169 discard_slab(s, slab);
3170 stat(s, FREE_SLAB);
3171 } else if (new.freelist) {
3172 spin_lock_irqsave(&n->list_lock, flags);
3173 add_partial(n, slab, tail);
3174 spin_unlock_irqrestore(&n->list_lock, flags);
3175 stat(s, tail);
3176 } else {
3177 stat(s, DEACTIVATE_FULL);
3178 }
3179 }
3180
3181 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3182 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3183 {
3184 struct kmem_cache_node *n = NULL, *n2 = NULL;
3185 struct slab *slab, *slab_to_discard = NULL;
3186 unsigned long flags = 0;
3187
3188 while (partial_slab) {
3189 slab = partial_slab;
3190 partial_slab = slab->next;
3191
3192 n2 = get_node(s, slab_nid(slab));
3193 if (n != n2) {
3194 if (n)
3195 spin_unlock_irqrestore(&n->list_lock, flags);
3196
3197 n = n2;
3198 spin_lock_irqsave(&n->list_lock, flags);
3199 }
3200
3201 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3202 slab->next = slab_to_discard;
3203 slab_to_discard = slab;
3204 } else {
3205 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3206 stat(s, FREE_ADD_PARTIAL);
3207 }
3208 }
3209
3210 if (n)
3211 spin_unlock_irqrestore(&n->list_lock, flags);
3212
3213 while (slab_to_discard) {
3214 slab = slab_to_discard;
3215 slab_to_discard = slab_to_discard->next;
3216
3217 stat(s, DEACTIVATE_EMPTY);
3218 discard_slab(s, slab);
3219 stat(s, FREE_SLAB);
3220 }
3221 }
3222
3223 /*
3224 * Put all the cpu partial slabs to the node partial list.
3225 */
put_partials(struct kmem_cache * s)3226 static void put_partials(struct kmem_cache *s)
3227 {
3228 struct slab *partial_slab;
3229 unsigned long flags;
3230
3231 local_lock_irqsave(&s->cpu_slab->lock, flags);
3232 partial_slab = this_cpu_read(s->cpu_slab->partial);
3233 this_cpu_write(s->cpu_slab->partial, NULL);
3234 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3235
3236 if (partial_slab)
3237 __put_partials(s, partial_slab);
3238 }
3239
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3240 static void put_partials_cpu(struct kmem_cache *s,
3241 struct kmem_cache_cpu *c)
3242 {
3243 struct slab *partial_slab;
3244
3245 partial_slab = slub_percpu_partial(c);
3246 c->partial = NULL;
3247
3248 if (partial_slab)
3249 __put_partials(s, partial_slab);
3250 }
3251
3252 /*
3253 * Put a slab into a partial slab slot if available.
3254 *
3255 * If we did not find a slot then simply move all the partials to the
3256 * per node partial list.
3257 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3258 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3259 {
3260 struct slab *oldslab;
3261 struct slab *slab_to_put = NULL;
3262 unsigned long flags;
3263 int slabs = 0;
3264
3265 local_lock_irqsave(&s->cpu_slab->lock, flags);
3266
3267 oldslab = this_cpu_read(s->cpu_slab->partial);
3268
3269 if (oldslab) {
3270 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3271 /*
3272 * Partial array is full. Move the existing set to the
3273 * per node partial list. Postpone the actual unfreezing
3274 * outside of the critical section.
3275 */
3276 slab_to_put = oldslab;
3277 oldslab = NULL;
3278 } else {
3279 slabs = oldslab->slabs;
3280 }
3281 }
3282
3283 slabs++;
3284
3285 slab->slabs = slabs;
3286 slab->next = oldslab;
3287
3288 this_cpu_write(s->cpu_slab->partial, slab);
3289
3290 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3291
3292 if (slab_to_put) {
3293 __put_partials(s, slab_to_put);
3294 stat(s, CPU_PARTIAL_DRAIN);
3295 }
3296 }
3297
3298 #else /* CONFIG_SLUB_CPU_PARTIAL */
3299
put_partials(struct kmem_cache * s)3300 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3301 static inline void put_partials_cpu(struct kmem_cache *s,
3302 struct kmem_cache_cpu *c) { }
3303
3304 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3305
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3306 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3307 {
3308 unsigned long flags;
3309 struct slab *slab;
3310 void *freelist;
3311
3312 local_lock_irqsave(&s->cpu_slab->lock, flags);
3313
3314 slab = c->slab;
3315 freelist = c->freelist;
3316
3317 c->slab = NULL;
3318 c->freelist = NULL;
3319 c->tid = next_tid(c->tid);
3320
3321 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3322
3323 if (slab) {
3324 deactivate_slab(s, slab, freelist);
3325 stat(s, CPUSLAB_FLUSH);
3326 }
3327 }
3328
__flush_cpu_slab(struct kmem_cache * s,int cpu)3329 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3330 {
3331 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3332 void *freelist = c->freelist;
3333 struct slab *slab = c->slab;
3334
3335 c->slab = NULL;
3336 c->freelist = NULL;
3337 c->tid = next_tid(c->tid);
3338
3339 if (slab) {
3340 deactivate_slab(s, slab, freelist);
3341 stat(s, CPUSLAB_FLUSH);
3342 }
3343
3344 put_partials_cpu(s, c);
3345 }
3346
3347 struct slub_flush_work {
3348 struct work_struct work;
3349 struct kmem_cache *s;
3350 bool skip;
3351 };
3352
3353 /*
3354 * Flush cpu slab.
3355 *
3356 * Called from CPU work handler with migration disabled.
3357 */
flush_cpu_slab(struct work_struct * w)3358 static void flush_cpu_slab(struct work_struct *w)
3359 {
3360 struct kmem_cache *s;
3361 struct kmem_cache_cpu *c;
3362 struct slub_flush_work *sfw;
3363
3364 sfw = container_of(w, struct slub_flush_work, work);
3365
3366 s = sfw->s;
3367 c = this_cpu_ptr(s->cpu_slab);
3368
3369 if (c->slab)
3370 flush_slab(s, c);
3371
3372 put_partials(s);
3373 }
3374
has_cpu_slab(int cpu,struct kmem_cache * s)3375 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3376 {
3377 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3378
3379 return c->slab || slub_percpu_partial(c);
3380 }
3381
3382 static DEFINE_MUTEX(flush_lock);
3383 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3384
flush_all_cpus_locked(struct kmem_cache * s)3385 static void flush_all_cpus_locked(struct kmem_cache *s)
3386 {
3387 struct slub_flush_work *sfw;
3388 unsigned int cpu;
3389
3390 lockdep_assert_cpus_held();
3391 mutex_lock(&flush_lock);
3392
3393 for_each_online_cpu(cpu) {
3394 sfw = &per_cpu(slub_flush, cpu);
3395 if (!has_cpu_slab(cpu, s)) {
3396 sfw->skip = true;
3397 continue;
3398 }
3399 INIT_WORK(&sfw->work, flush_cpu_slab);
3400 sfw->skip = false;
3401 sfw->s = s;
3402 queue_work_on(cpu, flushwq, &sfw->work);
3403 }
3404
3405 for_each_online_cpu(cpu) {
3406 sfw = &per_cpu(slub_flush, cpu);
3407 if (sfw->skip)
3408 continue;
3409 flush_work(&sfw->work);
3410 }
3411
3412 mutex_unlock(&flush_lock);
3413 }
3414
flush_all(struct kmem_cache * s)3415 static void flush_all(struct kmem_cache *s)
3416 {
3417 cpus_read_lock();
3418 flush_all_cpus_locked(s);
3419 cpus_read_unlock();
3420 }
3421
3422 /*
3423 * Use the cpu notifier to insure that the cpu slabs are flushed when
3424 * necessary.
3425 */
slub_cpu_dead(unsigned int cpu)3426 static int slub_cpu_dead(unsigned int cpu)
3427 {
3428 struct kmem_cache *s;
3429
3430 mutex_lock(&slab_mutex);
3431 list_for_each_entry(s, &slab_caches, list)
3432 __flush_cpu_slab(s, cpu);
3433 mutex_unlock(&slab_mutex);
3434 return 0;
3435 }
3436
3437 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)3438 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)3439 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)3440 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)3441 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3442 #endif /* CONFIG_SLUB_TINY */
3443
3444 /*
3445 * Check if the objects in a per cpu structure fit numa
3446 * locality expectations.
3447 */
node_match(struct slab * slab,int node)3448 static inline int node_match(struct slab *slab, int node)
3449 {
3450 #ifdef CONFIG_NUMA
3451 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3452 return 0;
3453 #endif
3454 return 1;
3455 }
3456
3457 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)3458 static int count_free(struct slab *slab)
3459 {
3460 return slab->objects - slab->inuse;
3461 }
3462
node_nr_objs(struct kmem_cache_node * n)3463 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3464 {
3465 return atomic_long_read(&n->total_objects);
3466 }
3467
3468 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)3469 static inline bool free_debug_processing(struct kmem_cache *s,
3470 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3471 unsigned long addr, depot_stack_handle_t handle)
3472 {
3473 bool checks_ok = false;
3474 void *object = head;
3475 int cnt = 0;
3476
3477 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3478 if (!check_slab(s, slab))
3479 goto out;
3480 }
3481
3482 if (slab->inuse < *bulk_cnt) {
3483 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3484 slab->inuse, *bulk_cnt);
3485 goto out;
3486 }
3487
3488 next_object:
3489
3490 if (++cnt > *bulk_cnt)
3491 goto out_cnt;
3492
3493 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3494 if (!free_consistency_checks(s, slab, object, addr))
3495 goto out;
3496 }
3497
3498 if (s->flags & SLAB_STORE_USER)
3499 set_track_update(s, object, TRACK_FREE, addr, handle);
3500 trace(s, slab, object, 0);
3501 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3502 init_object(s, object, SLUB_RED_INACTIVE);
3503
3504 /* Reached end of constructed freelist yet? */
3505 if (object != tail) {
3506 object = get_freepointer(s, object);
3507 goto next_object;
3508 }
3509 checks_ok = true;
3510
3511 out_cnt:
3512 if (cnt != *bulk_cnt) {
3513 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3514 *bulk_cnt, cnt);
3515 *bulk_cnt = cnt;
3516 }
3517
3518 out:
3519
3520 if (!checks_ok)
3521 slab_fix(s, "Object at 0x%p not freed", object);
3522
3523 return checks_ok;
3524 }
3525 #endif /* CONFIG_SLUB_DEBUG */
3526
3527 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))3528 static unsigned long count_partial(struct kmem_cache_node *n,
3529 int (*get_count)(struct slab *))
3530 {
3531 unsigned long flags;
3532 unsigned long x = 0;
3533 struct slab *slab;
3534
3535 spin_lock_irqsave(&n->list_lock, flags);
3536 list_for_each_entry(slab, &n->partial, slab_list)
3537 x += get_count(slab);
3538 spin_unlock_irqrestore(&n->list_lock, flags);
3539 return x;
3540 }
3541 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3542
3543 #ifdef CONFIG_SLUB_DEBUG
3544 #define MAX_PARTIAL_TO_SCAN 10000
3545
count_partial_free_approx(struct kmem_cache_node * n)3546 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3547 {
3548 unsigned long flags;
3549 unsigned long x = 0;
3550 struct slab *slab;
3551
3552 spin_lock_irqsave(&n->list_lock, flags);
3553 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3554 list_for_each_entry(slab, &n->partial, slab_list)
3555 x += slab->objects - slab->inuse;
3556 } else {
3557 /*
3558 * For a long list, approximate the total count of objects in
3559 * it to meet the limit on the number of slabs to scan.
3560 * Scan from both the list's head and tail for better accuracy.
3561 */
3562 unsigned long scanned = 0;
3563
3564 list_for_each_entry(slab, &n->partial, slab_list) {
3565 x += slab->objects - slab->inuse;
3566 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3567 break;
3568 }
3569 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3570 x += slab->objects - slab->inuse;
3571 if (++scanned == MAX_PARTIAL_TO_SCAN)
3572 break;
3573 }
3574 x = mult_frac(x, n->nr_partial, scanned);
3575 x = min(x, node_nr_objs(n));
3576 }
3577 spin_unlock_irqrestore(&n->list_lock, flags);
3578 return x;
3579 }
3580
3581 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3582 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3583 {
3584 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3585 DEFAULT_RATELIMIT_BURST);
3586 int cpu = raw_smp_processor_id();
3587 int node;
3588 struct kmem_cache_node *n;
3589
3590 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3591 return;
3592
3593 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3594 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3595 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3596 s->name, s->object_size, s->size, oo_order(s->oo),
3597 oo_order(s->min));
3598
3599 if (oo_order(s->min) > get_order(s->object_size))
3600 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3601 s->name);
3602
3603 for_each_kmem_cache_node(s, node, n) {
3604 unsigned long nr_slabs;
3605 unsigned long nr_objs;
3606 unsigned long nr_free;
3607
3608 nr_free = count_partial_free_approx(n);
3609 nr_slabs = node_nr_slabs(n);
3610 nr_objs = node_nr_objs(n);
3611
3612 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3613 node, nr_slabs, nr_objs, nr_free);
3614 }
3615 }
3616 #else /* CONFIG_SLUB_DEBUG */
3617 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3618 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3619 #endif
3620
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3621 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3622 {
3623 if (unlikely(slab_test_pfmemalloc(slab)))
3624 return gfp_pfmemalloc_allowed(gfpflags);
3625
3626 return true;
3627 }
3628
3629 #ifndef CONFIG_SLUB_TINY
3630 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3631 __update_cpu_freelist_fast(struct kmem_cache *s,
3632 void *freelist_old, void *freelist_new,
3633 unsigned long tid)
3634 {
3635 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3636 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3637
3638 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3639 &old.full, new.full);
3640 }
3641
3642 /*
3643 * Check the slab->freelist and either transfer the freelist to the
3644 * per cpu freelist or deactivate the slab.
3645 *
3646 * The slab is still frozen if the return value is not NULL.
3647 *
3648 * If this function returns NULL then the slab has been unfrozen.
3649 */
get_freelist(struct kmem_cache * s,struct slab * slab)3650 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3651 {
3652 struct slab new;
3653 unsigned long counters;
3654 void *freelist;
3655
3656 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3657
3658 do {
3659 freelist = slab->freelist;
3660 counters = slab->counters;
3661
3662 new.counters = counters;
3663
3664 new.inuse = slab->objects;
3665 new.frozen = freelist != NULL;
3666
3667 } while (!__slab_update_freelist(s, slab,
3668 freelist, counters,
3669 NULL, new.counters,
3670 "get_freelist"));
3671
3672 return freelist;
3673 }
3674
3675 /*
3676 * Freeze the partial slab and return the pointer to the freelist.
3677 */
freeze_slab(struct kmem_cache * s,struct slab * slab)3678 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3679 {
3680 struct slab new;
3681 unsigned long counters;
3682 void *freelist;
3683
3684 do {
3685 freelist = slab->freelist;
3686 counters = slab->counters;
3687
3688 new.counters = counters;
3689 VM_BUG_ON(new.frozen);
3690
3691 new.inuse = slab->objects;
3692 new.frozen = 1;
3693
3694 } while (!slab_update_freelist(s, slab,
3695 freelist, counters,
3696 NULL, new.counters,
3697 "freeze_slab"));
3698
3699 return freelist;
3700 }
3701
3702 /*
3703 * Slow path. The lockless freelist is empty or we need to perform
3704 * debugging duties.
3705 *
3706 * Processing is still very fast if new objects have been freed to the
3707 * regular freelist. In that case we simply take over the regular freelist
3708 * as the lockless freelist and zap the regular freelist.
3709 *
3710 * If that is not working then we fall back to the partial lists. We take the
3711 * first element of the freelist as the object to allocate now and move the
3712 * rest of the freelist to the lockless freelist.
3713 *
3714 * And if we were unable to get a new slab from the partial slab lists then
3715 * we need to allocate a new slab. This is the slowest path since it involves
3716 * a call to the page allocator and the setup of a new slab.
3717 *
3718 * Version of __slab_alloc to use when we know that preemption is
3719 * already disabled (which is the case for bulk allocation).
3720 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3721 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3722 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3723 {
3724 void *freelist;
3725 struct slab *slab;
3726 unsigned long flags;
3727 struct partial_context pc;
3728 bool try_thisnode = true;
3729
3730 stat(s, ALLOC_SLOWPATH);
3731
3732 reread_slab:
3733
3734 slab = READ_ONCE(c->slab);
3735 if (!slab) {
3736 /*
3737 * if the node is not online or has no normal memory, just
3738 * ignore the node constraint
3739 */
3740 if (unlikely(node != NUMA_NO_NODE &&
3741 !node_isset(node, slab_nodes)))
3742 node = NUMA_NO_NODE;
3743 goto new_slab;
3744 }
3745
3746 if (unlikely(!node_match(slab, node))) {
3747 /*
3748 * same as above but node_match() being false already
3749 * implies node != NUMA_NO_NODE
3750 */
3751 if (!node_isset(node, slab_nodes)) {
3752 node = NUMA_NO_NODE;
3753 } else {
3754 stat(s, ALLOC_NODE_MISMATCH);
3755 goto deactivate_slab;
3756 }
3757 }
3758
3759 /*
3760 * By rights, we should be searching for a slab page that was
3761 * PFMEMALLOC but right now, we are losing the pfmemalloc
3762 * information when the page leaves the per-cpu allocator
3763 */
3764 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3765 goto deactivate_slab;
3766
3767 /* must check again c->slab in case we got preempted and it changed */
3768 local_lock_irqsave(&s->cpu_slab->lock, flags);
3769 if (unlikely(slab != c->slab)) {
3770 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3771 goto reread_slab;
3772 }
3773 freelist = c->freelist;
3774 if (freelist)
3775 goto load_freelist;
3776
3777 freelist = get_freelist(s, slab);
3778
3779 if (!freelist) {
3780 c->slab = NULL;
3781 c->tid = next_tid(c->tid);
3782 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3783 stat(s, DEACTIVATE_BYPASS);
3784 goto new_slab;
3785 }
3786
3787 stat(s, ALLOC_REFILL);
3788
3789 load_freelist:
3790
3791 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3792
3793 /*
3794 * freelist is pointing to the list of objects to be used.
3795 * slab is pointing to the slab from which the objects are obtained.
3796 * That slab must be frozen for per cpu allocations to work.
3797 */
3798 VM_BUG_ON(!c->slab->frozen);
3799 c->freelist = get_freepointer(s, freelist);
3800 c->tid = next_tid(c->tid);
3801 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3802 return freelist;
3803
3804 deactivate_slab:
3805
3806 local_lock_irqsave(&s->cpu_slab->lock, flags);
3807 if (slab != c->slab) {
3808 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3809 goto reread_slab;
3810 }
3811 freelist = c->freelist;
3812 c->slab = NULL;
3813 c->freelist = NULL;
3814 c->tid = next_tid(c->tid);
3815 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3816 deactivate_slab(s, slab, freelist);
3817
3818 new_slab:
3819
3820 #ifdef CONFIG_SLUB_CPU_PARTIAL
3821 while (slub_percpu_partial(c)) {
3822 local_lock_irqsave(&s->cpu_slab->lock, flags);
3823 if (unlikely(c->slab)) {
3824 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3825 goto reread_slab;
3826 }
3827 if (unlikely(!slub_percpu_partial(c))) {
3828 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3829 /* we were preempted and partial list got empty */
3830 goto new_objects;
3831 }
3832
3833 slab = slub_percpu_partial(c);
3834 slub_set_percpu_partial(c, slab);
3835
3836 if (likely(node_match(slab, node) &&
3837 pfmemalloc_match(slab, gfpflags))) {
3838 c->slab = slab;
3839 freelist = get_freelist(s, slab);
3840 VM_BUG_ON(!freelist);
3841 stat(s, CPU_PARTIAL_ALLOC);
3842 goto load_freelist;
3843 }
3844
3845 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3846
3847 slab->next = NULL;
3848 __put_partials(s, slab);
3849 }
3850 #endif
3851
3852 new_objects:
3853
3854 pc.flags = gfpflags;
3855 /*
3856 * When a preferred node is indicated but no __GFP_THISNODE
3857 *
3858 * 1) try to get a partial slab from target node only by having
3859 * __GFP_THISNODE in pc.flags for get_partial()
3860 * 2) if 1) failed, try to allocate a new slab from target node with
3861 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3862 * 3) if 2) failed, retry with original gfpflags which will allow
3863 * get_partial() try partial lists of other nodes before potentially
3864 * allocating new page from other nodes
3865 */
3866 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3867 && try_thisnode))
3868 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3869
3870 pc.orig_size = orig_size;
3871 slab = get_partial(s, node, &pc);
3872 if (slab) {
3873 if (kmem_cache_debug(s)) {
3874 freelist = pc.object;
3875 /*
3876 * For debug caches here we had to go through
3877 * alloc_single_from_partial() so just store the
3878 * tracking info and return the object.
3879 */
3880 if (s->flags & SLAB_STORE_USER)
3881 set_track(s, freelist, TRACK_ALLOC, addr);
3882
3883 return freelist;
3884 }
3885
3886 freelist = freeze_slab(s, slab);
3887 goto retry_load_slab;
3888 }
3889
3890 slub_put_cpu_ptr(s->cpu_slab);
3891 slab = new_slab(s, pc.flags, node);
3892 c = slub_get_cpu_ptr(s->cpu_slab);
3893
3894 if (unlikely(!slab)) {
3895 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3896 && try_thisnode) {
3897 try_thisnode = false;
3898 goto new_objects;
3899 }
3900 slab_out_of_memory(s, gfpflags, node);
3901 return NULL;
3902 }
3903
3904 stat(s, ALLOC_SLAB);
3905
3906 if (kmem_cache_debug(s)) {
3907 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3908
3909 if (unlikely(!freelist))
3910 goto new_objects;
3911
3912 if (s->flags & SLAB_STORE_USER)
3913 set_track(s, freelist, TRACK_ALLOC, addr);
3914
3915 return freelist;
3916 }
3917
3918 /*
3919 * No other reference to the slab yet so we can
3920 * muck around with it freely without cmpxchg
3921 */
3922 freelist = slab->freelist;
3923 slab->freelist = NULL;
3924 slab->inuse = slab->objects;
3925 slab->frozen = 1;
3926
3927 inc_slabs_node(s, slab_nid(slab), slab->objects);
3928
3929 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3930 /*
3931 * For !pfmemalloc_match() case we don't load freelist so that
3932 * we don't make further mismatched allocations easier.
3933 */
3934 deactivate_slab(s, slab, get_freepointer(s, freelist));
3935 return freelist;
3936 }
3937
3938 retry_load_slab:
3939
3940 local_lock_irqsave(&s->cpu_slab->lock, flags);
3941 if (unlikely(c->slab)) {
3942 void *flush_freelist = c->freelist;
3943 struct slab *flush_slab = c->slab;
3944
3945 c->slab = NULL;
3946 c->freelist = NULL;
3947 c->tid = next_tid(c->tid);
3948
3949 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3950
3951 deactivate_slab(s, flush_slab, flush_freelist);
3952
3953 stat(s, CPUSLAB_FLUSH);
3954
3955 goto retry_load_slab;
3956 }
3957 c->slab = slab;
3958
3959 goto load_freelist;
3960 }
3961
3962 /*
3963 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3964 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3965 * pointer.
3966 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3967 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3968 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3969 {
3970 void *p;
3971
3972 #ifdef CONFIG_PREEMPT_COUNT
3973 /*
3974 * We may have been preempted and rescheduled on a different
3975 * cpu before disabling preemption. Need to reload cpu area
3976 * pointer.
3977 */
3978 c = slub_get_cpu_ptr(s->cpu_slab);
3979 #endif
3980
3981 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3982 #ifdef CONFIG_PREEMPT_COUNT
3983 slub_put_cpu_ptr(s->cpu_slab);
3984 #endif
3985 return p;
3986 }
3987
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3988 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3989 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3990 {
3991 struct kmem_cache_cpu *c;
3992 struct slab *slab;
3993 unsigned long tid;
3994 void *object;
3995
3996 redo:
3997 /*
3998 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3999 * enabled. We may switch back and forth between cpus while
4000 * reading from one cpu area. That does not matter as long
4001 * as we end up on the original cpu again when doing the cmpxchg.
4002 *
4003 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4004 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4005 * the tid. If we are preempted and switched to another cpu between the
4006 * two reads, it's OK as the two are still associated with the same cpu
4007 * and cmpxchg later will validate the cpu.
4008 */
4009 c = raw_cpu_ptr(s->cpu_slab);
4010 tid = READ_ONCE(c->tid);
4011
4012 /*
4013 * Irqless object alloc/free algorithm used here depends on sequence
4014 * of fetching cpu_slab's data. tid should be fetched before anything
4015 * on c to guarantee that object and slab associated with previous tid
4016 * won't be used with current tid. If we fetch tid first, object and
4017 * slab could be one associated with next tid and our alloc/free
4018 * request will be failed. In this case, we will retry. So, no problem.
4019 */
4020 barrier();
4021
4022 /*
4023 * The transaction ids are globally unique per cpu and per operation on
4024 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4025 * occurs on the right processor and that there was no operation on the
4026 * linked list in between.
4027 */
4028
4029 object = c->freelist;
4030 slab = c->slab;
4031
4032 #ifdef CONFIG_NUMA
4033 if (static_branch_unlikely(&strict_numa) &&
4034 node == NUMA_NO_NODE) {
4035
4036 struct mempolicy *mpol = current->mempolicy;
4037
4038 if (mpol) {
4039 /*
4040 * Special BIND rule support. If existing slab
4041 * is in permitted set then do not redirect
4042 * to a particular node.
4043 * Otherwise we apply the memory policy to get
4044 * the node we need to allocate on.
4045 */
4046 if (mpol->mode != MPOL_BIND || !slab ||
4047 !node_isset(slab_nid(slab), mpol->nodes))
4048
4049 node = mempolicy_slab_node();
4050 }
4051 }
4052 #endif
4053
4054 if (!USE_LOCKLESS_FAST_PATH() ||
4055 unlikely(!object || !slab || !node_match(slab, node))) {
4056 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4057 } else {
4058 void *next_object = get_freepointer_safe(s, object);
4059
4060 /*
4061 * The cmpxchg will only match if there was no additional
4062 * operation and if we are on the right processor.
4063 *
4064 * The cmpxchg does the following atomically (without lock
4065 * semantics!)
4066 * 1. Relocate first pointer to the current per cpu area.
4067 * 2. Verify that tid and freelist have not been changed
4068 * 3. If they were not changed replace tid and freelist
4069 *
4070 * Since this is without lock semantics the protection is only
4071 * against code executing on this cpu *not* from access by
4072 * other cpus.
4073 */
4074 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4075 note_cmpxchg_failure("slab_alloc", s, tid);
4076 goto redo;
4077 }
4078 prefetch_freepointer(s, next_object);
4079 stat(s, ALLOC_FASTPATH);
4080 }
4081
4082 return object;
4083 }
4084 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4085 static void *__slab_alloc_node(struct kmem_cache *s,
4086 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4087 {
4088 struct partial_context pc;
4089 struct slab *slab;
4090 void *object;
4091
4092 pc.flags = gfpflags;
4093 pc.orig_size = orig_size;
4094 slab = get_partial(s, node, &pc);
4095
4096 if (slab)
4097 return pc.object;
4098
4099 slab = new_slab(s, gfpflags, node);
4100 if (unlikely(!slab)) {
4101 slab_out_of_memory(s, gfpflags, node);
4102 return NULL;
4103 }
4104
4105 object = alloc_single_from_new_slab(s, slab, orig_size);
4106
4107 return object;
4108 }
4109 #endif /* CONFIG_SLUB_TINY */
4110
4111 /*
4112 * If the object has been wiped upon free, make sure it's fully initialized by
4113 * zeroing out freelist pointer.
4114 *
4115 * Note that we also wipe custom freelist pointers.
4116 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4117 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4118 void *obj)
4119 {
4120 if (unlikely(slab_want_init_on_free(s)) && obj &&
4121 !freeptr_outside_object(s))
4122 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4123 0, sizeof(void *));
4124 }
4125
4126 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4127 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4128 {
4129 flags &= gfp_allowed_mask;
4130
4131 might_alloc(flags);
4132
4133 if (unlikely(should_failslab(s, flags)))
4134 return NULL;
4135
4136 return s;
4137 }
4138
4139 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4140 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4141 gfp_t flags, size_t size, void **p, bool init,
4142 unsigned int orig_size)
4143 {
4144 unsigned int zero_size = s->object_size;
4145 bool kasan_init = init;
4146 size_t i;
4147 gfp_t init_flags = flags & gfp_allowed_mask;
4148
4149 /*
4150 * For kmalloc object, the allocated memory size(object_size) is likely
4151 * larger than the requested size(orig_size). If redzone check is
4152 * enabled for the extra space, don't zero it, as it will be redzoned
4153 * soon. The redzone operation for this extra space could be seen as a
4154 * replacement of current poisoning under certain debug option, and
4155 * won't break other sanity checks.
4156 */
4157 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4158 (s->flags & SLAB_KMALLOC))
4159 zero_size = orig_size;
4160
4161 /*
4162 * When slab_debug is enabled, avoid memory initialization integrated
4163 * into KASAN and instead zero out the memory via the memset below with
4164 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4165 * cause false-positive reports. This does not lead to a performance
4166 * penalty on production builds, as slab_debug is not intended to be
4167 * enabled there.
4168 */
4169 if (__slub_debug_enabled())
4170 kasan_init = false;
4171
4172 /*
4173 * As memory initialization might be integrated into KASAN,
4174 * kasan_slab_alloc and initialization memset must be
4175 * kept together to avoid discrepancies in behavior.
4176 *
4177 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4178 */
4179 for (i = 0; i < size; i++) {
4180 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4181 if (p[i] && init && (!kasan_init ||
4182 !kasan_has_integrated_init()))
4183 memset(p[i], 0, zero_size);
4184 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4185 s->flags, init_flags);
4186 kmsan_slab_alloc(s, p[i], init_flags);
4187 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4188 }
4189
4190 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4191 }
4192
4193 /*
4194 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4195 * have the fastpath folded into their functions. So no function call
4196 * overhead for requests that can be satisfied on the fastpath.
4197 *
4198 * The fastpath works by first checking if the lockless freelist can be used.
4199 * If not then __slab_alloc is called for slow processing.
4200 *
4201 * Otherwise we can simply pick the next object from the lockless free list.
4202 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4203 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4204 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4205 {
4206 void *object;
4207 bool init = false;
4208
4209 s = slab_pre_alloc_hook(s, gfpflags);
4210 if (unlikely(!s))
4211 return NULL;
4212
4213 object = kfence_alloc(s, orig_size, gfpflags);
4214 if (unlikely(object))
4215 goto out;
4216
4217 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4218
4219 maybe_wipe_obj_freeptr(s, object);
4220 init = slab_want_init_on_alloc(gfpflags, s);
4221
4222 out:
4223 /*
4224 * When init equals 'true', like for kzalloc() family, only
4225 * @orig_size bytes might be zeroed instead of s->object_size
4226 * In case this fails due to memcg_slab_post_alloc_hook(),
4227 * object is set to NULL
4228 */
4229 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4230
4231 return object;
4232 }
4233
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)4234 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4235 {
4236 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4237 s->object_size);
4238
4239 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4240
4241 return ret;
4242 }
4243 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4244
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)4245 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4246 gfp_t gfpflags)
4247 {
4248 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4249 s->object_size);
4250
4251 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4252
4253 return ret;
4254 }
4255 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4256
kmem_cache_charge(void * objp,gfp_t gfpflags)4257 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4258 {
4259 if (!memcg_kmem_online())
4260 return true;
4261
4262 return memcg_slab_post_charge(objp, gfpflags);
4263 }
4264 EXPORT_SYMBOL(kmem_cache_charge);
4265
4266 /**
4267 * kmem_cache_alloc_node - Allocate an object on the specified node
4268 * @s: The cache to allocate from.
4269 * @gfpflags: See kmalloc().
4270 * @node: node number of the target node.
4271 *
4272 * Identical to kmem_cache_alloc but it will allocate memory on the given
4273 * node, which can improve the performance for cpu bound structures.
4274 *
4275 * Fallback to other node is possible if __GFP_THISNODE is not set.
4276 *
4277 * Return: pointer to the new object or %NULL in case of error
4278 */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)4279 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4280 {
4281 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4282
4283 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4284
4285 return ret;
4286 }
4287 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4288
4289 /*
4290 * To avoid unnecessary overhead, we pass through large allocation requests
4291 * directly to the page allocator. We use __GFP_COMP, because we will need to
4292 * know the allocation order to free the pages properly in kfree.
4293 */
___kmalloc_large_node(size_t size,gfp_t flags,int node)4294 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4295 {
4296 struct folio *folio;
4297 void *ptr = NULL;
4298 unsigned int order = get_order(size);
4299
4300 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4301 flags = kmalloc_fix_flags(flags);
4302
4303 flags |= __GFP_COMP;
4304
4305 if (node == NUMA_NO_NODE)
4306 folio = (struct folio *)alloc_frozen_pages_noprof(flags, order);
4307 else
4308 folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL);
4309
4310 if (folio) {
4311 ptr = folio_address(folio);
4312 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4313 PAGE_SIZE << order);
4314 __folio_set_large_kmalloc(folio);
4315 }
4316
4317 ptr = kasan_kmalloc_large(ptr, size, flags);
4318 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4319 kmemleak_alloc(ptr, size, 1, flags);
4320 kmsan_kmalloc_large(ptr, size, flags);
4321
4322 return ptr;
4323 }
4324
__kmalloc_large_noprof(size_t size,gfp_t flags)4325 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4326 {
4327 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4328
4329 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4330 flags, NUMA_NO_NODE);
4331 return ret;
4332 }
4333 EXPORT_SYMBOL(__kmalloc_large_noprof);
4334
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)4335 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4336 {
4337 void *ret = ___kmalloc_large_node(size, flags, node);
4338
4339 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4340 flags, node);
4341 return ret;
4342 }
4343 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4344
4345 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)4346 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4347 unsigned long caller)
4348 {
4349 struct kmem_cache *s;
4350 void *ret;
4351
4352 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4353 ret = __kmalloc_large_node_noprof(size, flags, node);
4354 trace_kmalloc(caller, ret, size,
4355 PAGE_SIZE << get_order(size), flags, node);
4356 return ret;
4357 }
4358
4359 if (unlikely(!size))
4360 return ZERO_SIZE_PTR;
4361
4362 s = kmalloc_slab(size, b, flags, caller);
4363
4364 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4365 ret = kasan_kmalloc(s, ret, size, flags);
4366 trace_kmalloc(caller, ret, size, s->size, flags, node);
4367 return ret;
4368 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)4369 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4370 {
4371 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4372 }
4373 EXPORT_SYMBOL(__kmalloc_node_noprof);
4374
__kmalloc_noprof(size_t size,gfp_t flags)4375 void *__kmalloc_noprof(size_t size, gfp_t flags)
4376 {
4377 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4378 }
4379 EXPORT_SYMBOL(__kmalloc_noprof);
4380
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)4381 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4382 int node, unsigned long caller)
4383 {
4384 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4385
4386 }
4387 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4388
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)4389 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4390 {
4391 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4392 _RET_IP_, size);
4393
4394 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4395
4396 ret = kasan_kmalloc(s, ret, size, gfpflags);
4397 return ret;
4398 }
4399 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4400
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)4401 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4402 int node, size_t size)
4403 {
4404 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4405
4406 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4407
4408 ret = kasan_kmalloc(s, ret, size, gfpflags);
4409 return ret;
4410 }
4411 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4412
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)4413 static noinline void free_to_partial_list(
4414 struct kmem_cache *s, struct slab *slab,
4415 void *head, void *tail, int bulk_cnt,
4416 unsigned long addr)
4417 {
4418 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4419 struct slab *slab_free = NULL;
4420 int cnt = bulk_cnt;
4421 unsigned long flags;
4422 depot_stack_handle_t handle = 0;
4423
4424 if (s->flags & SLAB_STORE_USER)
4425 handle = set_track_prepare();
4426
4427 spin_lock_irqsave(&n->list_lock, flags);
4428
4429 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4430 void *prior = slab->freelist;
4431
4432 /* Perform the actual freeing while we still hold the locks */
4433 slab->inuse -= cnt;
4434 set_freepointer(s, tail, prior);
4435 slab->freelist = head;
4436
4437 /*
4438 * If the slab is empty, and node's partial list is full,
4439 * it should be discarded anyway no matter it's on full or
4440 * partial list.
4441 */
4442 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4443 slab_free = slab;
4444
4445 if (!prior) {
4446 /* was on full list */
4447 remove_full(s, n, slab);
4448 if (!slab_free) {
4449 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4450 stat(s, FREE_ADD_PARTIAL);
4451 }
4452 } else if (slab_free) {
4453 remove_partial(n, slab);
4454 stat(s, FREE_REMOVE_PARTIAL);
4455 }
4456 }
4457
4458 if (slab_free) {
4459 /*
4460 * Update the counters while still holding n->list_lock to
4461 * prevent spurious validation warnings
4462 */
4463 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4464 }
4465
4466 spin_unlock_irqrestore(&n->list_lock, flags);
4467
4468 if (slab_free) {
4469 stat(s, FREE_SLAB);
4470 free_slab(s, slab_free);
4471 }
4472 }
4473
4474 /*
4475 * Slow path handling. This may still be called frequently since objects
4476 * have a longer lifetime than the cpu slabs in most processing loads.
4477 *
4478 * So we still attempt to reduce cache line usage. Just take the slab
4479 * lock and free the item. If there is no additional partial slab
4480 * handling required then we can return immediately.
4481 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4482 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4483 void *head, void *tail, int cnt,
4484 unsigned long addr)
4485
4486 {
4487 void *prior;
4488 int was_frozen;
4489 struct slab new;
4490 unsigned long counters;
4491 struct kmem_cache_node *n = NULL;
4492 unsigned long flags;
4493 bool on_node_partial;
4494
4495 stat(s, FREE_SLOWPATH);
4496
4497 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4498 free_to_partial_list(s, slab, head, tail, cnt, addr);
4499 return;
4500 }
4501
4502 do {
4503 if (unlikely(n)) {
4504 spin_unlock_irqrestore(&n->list_lock, flags);
4505 n = NULL;
4506 }
4507 prior = slab->freelist;
4508 counters = slab->counters;
4509 set_freepointer(s, tail, prior);
4510 new.counters = counters;
4511 was_frozen = new.frozen;
4512 new.inuse -= cnt;
4513 if ((!new.inuse || !prior) && !was_frozen) {
4514 /* Needs to be taken off a list */
4515 if (!kmem_cache_has_cpu_partial(s) || prior) {
4516
4517 n = get_node(s, slab_nid(slab));
4518 /*
4519 * Speculatively acquire the list_lock.
4520 * If the cmpxchg does not succeed then we may
4521 * drop the list_lock without any processing.
4522 *
4523 * Otherwise the list_lock will synchronize with
4524 * other processors updating the list of slabs.
4525 */
4526 spin_lock_irqsave(&n->list_lock, flags);
4527
4528 on_node_partial = slab_test_node_partial(slab);
4529 }
4530 }
4531
4532 } while (!slab_update_freelist(s, slab,
4533 prior, counters,
4534 head, new.counters,
4535 "__slab_free"));
4536
4537 if (likely(!n)) {
4538
4539 if (likely(was_frozen)) {
4540 /*
4541 * The list lock was not taken therefore no list
4542 * activity can be necessary.
4543 */
4544 stat(s, FREE_FROZEN);
4545 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4546 /*
4547 * If we started with a full slab then put it onto the
4548 * per cpu partial list.
4549 */
4550 put_cpu_partial(s, slab, 1);
4551 stat(s, CPU_PARTIAL_FREE);
4552 }
4553
4554 return;
4555 }
4556
4557 /*
4558 * This slab was partially empty but not on the per-node partial list,
4559 * in which case we shouldn't manipulate its list, just return.
4560 */
4561 if (prior && !on_node_partial) {
4562 spin_unlock_irqrestore(&n->list_lock, flags);
4563 return;
4564 }
4565
4566 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4567 goto slab_empty;
4568
4569 /*
4570 * Objects left in the slab. If it was not on the partial list before
4571 * then add it.
4572 */
4573 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4574 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4575 stat(s, FREE_ADD_PARTIAL);
4576 }
4577 spin_unlock_irqrestore(&n->list_lock, flags);
4578 return;
4579
4580 slab_empty:
4581 if (prior) {
4582 /*
4583 * Slab on the partial list.
4584 */
4585 remove_partial(n, slab);
4586 stat(s, FREE_REMOVE_PARTIAL);
4587 }
4588
4589 spin_unlock_irqrestore(&n->list_lock, flags);
4590 stat(s, FREE_SLAB);
4591 discard_slab(s, slab);
4592 }
4593
4594 #ifndef CONFIG_SLUB_TINY
4595 /*
4596 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4597 * can perform fastpath freeing without additional function calls.
4598 *
4599 * The fastpath is only possible if we are freeing to the current cpu slab
4600 * of this processor. This typically the case if we have just allocated
4601 * the item before.
4602 *
4603 * If fastpath is not possible then fall back to __slab_free where we deal
4604 * with all sorts of special processing.
4605 *
4606 * Bulk free of a freelist with several objects (all pointing to the
4607 * same slab) possible by specifying head and tail ptr, plus objects
4608 * count (cnt). Bulk free indicated by tail pointer being set.
4609 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4610 static __always_inline void do_slab_free(struct kmem_cache *s,
4611 struct slab *slab, void *head, void *tail,
4612 int cnt, unsigned long addr)
4613 {
4614 struct kmem_cache_cpu *c;
4615 unsigned long tid;
4616 void **freelist;
4617
4618 redo:
4619 /*
4620 * Determine the currently cpus per cpu slab.
4621 * The cpu may change afterward. However that does not matter since
4622 * data is retrieved via this pointer. If we are on the same cpu
4623 * during the cmpxchg then the free will succeed.
4624 */
4625 c = raw_cpu_ptr(s->cpu_slab);
4626 tid = READ_ONCE(c->tid);
4627
4628 /* Same with comment on barrier() in __slab_alloc_node() */
4629 barrier();
4630
4631 if (unlikely(slab != c->slab)) {
4632 __slab_free(s, slab, head, tail, cnt, addr);
4633 return;
4634 }
4635
4636 if (USE_LOCKLESS_FAST_PATH()) {
4637 freelist = READ_ONCE(c->freelist);
4638
4639 set_freepointer(s, tail, freelist);
4640
4641 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4642 note_cmpxchg_failure("slab_free", s, tid);
4643 goto redo;
4644 }
4645 } else {
4646 /* Update the free list under the local lock */
4647 local_lock(&s->cpu_slab->lock);
4648 c = this_cpu_ptr(s->cpu_slab);
4649 if (unlikely(slab != c->slab)) {
4650 local_unlock(&s->cpu_slab->lock);
4651 goto redo;
4652 }
4653 tid = c->tid;
4654 freelist = c->freelist;
4655
4656 set_freepointer(s, tail, freelist);
4657 c->freelist = head;
4658 c->tid = next_tid(tid);
4659
4660 local_unlock(&s->cpu_slab->lock);
4661 }
4662 stat_add(s, FREE_FASTPATH, cnt);
4663 }
4664 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4665 static void do_slab_free(struct kmem_cache *s,
4666 struct slab *slab, void *head, void *tail,
4667 int cnt, unsigned long addr)
4668 {
4669 __slab_free(s, slab, head, tail, cnt, addr);
4670 }
4671 #endif /* CONFIG_SLUB_TINY */
4672
4673 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)4674 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4675 unsigned long addr)
4676 {
4677 memcg_slab_free_hook(s, slab, &object, 1);
4678 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4679
4680 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4681 do_slab_free(s, slab, object, object, 1, addr);
4682 }
4683
4684 #ifdef CONFIG_MEMCG
4685 /* Do not inline the rare memcg charging failed path into the allocation path */
4686 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)4687 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4688 {
4689 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4690 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4691 }
4692 #endif
4693
4694 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)4695 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4696 void *tail, void **p, int cnt, unsigned long addr)
4697 {
4698 memcg_slab_free_hook(s, slab, p, cnt);
4699 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4700 /*
4701 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4702 * to remove objects, whose reuse must be delayed.
4703 */
4704 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4705 do_slab_free(s, slab, head, tail, cnt, addr);
4706 }
4707
4708 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)4709 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4710 {
4711 struct rcu_delayed_free *delayed_free =
4712 container_of(rcu_head, struct rcu_delayed_free, head);
4713 void *object = delayed_free->object;
4714 struct slab *slab = virt_to_slab(object);
4715 struct kmem_cache *s;
4716
4717 kfree(delayed_free);
4718
4719 if (WARN_ON(is_kfence_address(object)))
4720 return;
4721
4722 /* find the object and the cache again */
4723 if (WARN_ON(!slab))
4724 return;
4725 s = slab->slab_cache;
4726 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4727 return;
4728
4729 /* resume freeing */
4730 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4731 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4732 }
4733 #endif /* CONFIG_SLUB_RCU_DEBUG */
4734
4735 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)4736 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4737 {
4738 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4739 }
4740 #endif
4741
virt_to_cache(const void * obj)4742 static inline struct kmem_cache *virt_to_cache(const void *obj)
4743 {
4744 struct slab *slab;
4745
4746 slab = virt_to_slab(obj);
4747 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4748 return NULL;
4749 return slab->slab_cache;
4750 }
4751
cache_from_obj(struct kmem_cache * s,void * x)4752 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4753 {
4754 struct kmem_cache *cachep;
4755
4756 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4757 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4758 return s;
4759
4760 cachep = virt_to_cache(x);
4761 if (WARN(cachep && cachep != s,
4762 "%s: Wrong slab cache. %s but object is from %s\n",
4763 __func__, s->name, cachep->name))
4764 print_tracking(cachep, x);
4765 return cachep;
4766 }
4767
4768 /**
4769 * kmem_cache_free - Deallocate an object
4770 * @s: The cache the allocation was from.
4771 * @x: The previously allocated object.
4772 *
4773 * Free an object which was previously allocated from this
4774 * cache.
4775 */
kmem_cache_free(struct kmem_cache * s,void * x)4776 void kmem_cache_free(struct kmem_cache *s, void *x)
4777 {
4778 s = cache_from_obj(s, x);
4779 if (!s)
4780 return;
4781 trace_kmem_cache_free(_RET_IP_, x, s);
4782 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4783 }
4784 EXPORT_SYMBOL(kmem_cache_free);
4785
free_large_kmalloc(struct folio * folio,void * object)4786 static void free_large_kmalloc(struct folio *folio, void *object)
4787 {
4788 unsigned int order = folio_order(folio);
4789
4790 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
4791 dump_page(&folio->page, "Not a kmalloc allocation");
4792 return;
4793 }
4794
4795 if (WARN_ON_ONCE(order == 0))
4796 pr_warn_once("object pointer: 0x%p\n", object);
4797
4798 kmemleak_free(object);
4799 kasan_kfree_large(object);
4800 kmsan_kfree_large(object);
4801
4802 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4803 -(PAGE_SIZE << order));
4804 __folio_clear_large_kmalloc(folio);
4805 free_frozen_pages(&folio->page, order);
4806 }
4807
4808 /*
4809 * Given an rcu_head embedded within an object obtained from kvmalloc at an
4810 * offset < 4k, free the object in question.
4811 */
kvfree_rcu_cb(struct rcu_head * head)4812 void kvfree_rcu_cb(struct rcu_head *head)
4813 {
4814 void *obj = head;
4815 struct folio *folio;
4816 struct slab *slab;
4817 struct kmem_cache *s;
4818 void *slab_addr;
4819
4820 if (is_vmalloc_addr(obj)) {
4821 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4822 vfree(obj);
4823 return;
4824 }
4825
4826 folio = virt_to_folio(obj);
4827 if (!folio_test_slab(folio)) {
4828 /*
4829 * rcu_head offset can be only less than page size so no need to
4830 * consider folio order
4831 */
4832 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4833 free_large_kmalloc(folio, obj);
4834 return;
4835 }
4836
4837 slab = folio_slab(folio);
4838 s = slab->slab_cache;
4839 slab_addr = folio_address(folio);
4840
4841 if (is_kfence_address(obj)) {
4842 obj = kfence_object_start(obj);
4843 } else {
4844 unsigned int idx = __obj_to_index(s, slab_addr, obj);
4845
4846 obj = slab_addr + s->size * idx;
4847 obj = fixup_red_left(s, obj);
4848 }
4849
4850 slab_free(s, slab, obj, _RET_IP_);
4851 }
4852
4853 /**
4854 * kfree - free previously allocated memory
4855 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4856 *
4857 * If @object is NULL, no operation is performed.
4858 */
kfree(const void * object)4859 void kfree(const void *object)
4860 {
4861 struct folio *folio;
4862 struct slab *slab;
4863 struct kmem_cache *s;
4864 void *x = (void *)object;
4865
4866 trace_kfree(_RET_IP_, object);
4867
4868 if (unlikely(ZERO_OR_NULL_PTR(object)))
4869 return;
4870
4871 folio = virt_to_folio(object);
4872 if (unlikely(!folio_test_slab(folio))) {
4873 free_large_kmalloc(folio, (void *)object);
4874 return;
4875 }
4876
4877 slab = folio_slab(folio);
4878 s = slab->slab_cache;
4879 slab_free(s, slab, x, _RET_IP_);
4880 }
4881 EXPORT_SYMBOL(kfree);
4882
4883 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)4884 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4885 {
4886 void *ret;
4887 size_t ks = 0;
4888 int orig_size = 0;
4889 struct kmem_cache *s = NULL;
4890
4891 if (unlikely(ZERO_OR_NULL_PTR(p)))
4892 goto alloc_new;
4893
4894 /* Check for double-free. */
4895 if (!kasan_check_byte(p))
4896 return NULL;
4897
4898 if (is_kfence_address(p)) {
4899 ks = orig_size = kfence_ksize(p);
4900 } else {
4901 struct folio *folio;
4902
4903 folio = virt_to_folio(p);
4904 if (unlikely(!folio_test_slab(folio))) {
4905 /* Big kmalloc object */
4906 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4907 WARN_ON(p != folio_address(folio));
4908 ks = folio_size(folio);
4909 } else {
4910 s = folio_slab(folio)->slab_cache;
4911 orig_size = get_orig_size(s, (void *)p);
4912 ks = s->object_size;
4913 }
4914 }
4915
4916 /* If the old object doesn't fit, allocate a bigger one */
4917 if (new_size > ks)
4918 goto alloc_new;
4919
4920 /* Zero out spare memory. */
4921 if (want_init_on_alloc(flags)) {
4922 kasan_disable_current();
4923 if (orig_size && orig_size < new_size)
4924 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4925 else
4926 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4927 kasan_enable_current();
4928 }
4929
4930 /* Setup kmalloc redzone when needed */
4931 if (s && slub_debug_orig_size(s)) {
4932 set_orig_size(s, (void *)p, new_size);
4933 if (s->flags & SLAB_RED_ZONE && new_size < ks)
4934 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4935 SLUB_RED_ACTIVE, ks - new_size);
4936 }
4937
4938 p = kasan_krealloc(p, new_size, flags);
4939 return (void *)p;
4940
4941 alloc_new:
4942 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4943 if (ret && p) {
4944 /* Disable KASAN checks as the object's redzone is accessed. */
4945 kasan_disable_current();
4946 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4947 kasan_enable_current();
4948 }
4949
4950 return ret;
4951 }
4952
4953 /**
4954 * krealloc - reallocate memory. The contents will remain unchanged.
4955 * @p: object to reallocate memory for.
4956 * @new_size: how many bytes of memory are required.
4957 * @flags: the type of memory to allocate.
4958 *
4959 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
4960 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4961 *
4962 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4963 * initial memory allocation, every subsequent call to this API for the same
4964 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4965 * __GFP_ZERO is not fully honored by this API.
4966 *
4967 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4968 * size of an allocation (but not the exact size it was allocated with) and
4969 * hence implements the following semantics for shrinking and growing buffers
4970 * with __GFP_ZERO::
4971 *
4972 * new bucket
4973 * 0 size size
4974 * |--------|----------------|
4975 * | keep | zero |
4976 *
4977 * Otherwise, the original allocation size 'orig_size' could be used to
4978 * precisely clear the requested size, and the new size will also be stored
4979 * as the new 'orig_size'.
4980 *
4981 * In any case, the contents of the object pointed to are preserved up to the
4982 * lesser of the new and old sizes.
4983 *
4984 * Return: pointer to the allocated memory or %NULL in case of error
4985 */
krealloc_noprof(const void * p,size_t new_size,gfp_t flags)4986 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4987 {
4988 void *ret;
4989
4990 if (unlikely(!new_size)) {
4991 kfree(p);
4992 return ZERO_SIZE_PTR;
4993 }
4994
4995 ret = __do_krealloc(p, new_size, flags);
4996 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4997 kfree(p);
4998
4999 return ret;
5000 }
5001 EXPORT_SYMBOL(krealloc_noprof);
5002
kmalloc_gfp_adjust(gfp_t flags,size_t size)5003 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
5004 {
5005 /*
5006 * We want to attempt a large physically contiguous block first because
5007 * it is less likely to fragment multiple larger blocks and therefore
5008 * contribute to a long term fragmentation less than vmalloc fallback.
5009 * However make sure that larger requests are not too disruptive - i.e.
5010 * do not direct reclaim unless physically continuous memory is preferred
5011 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
5012 * start working in the background
5013 */
5014 if (size > PAGE_SIZE) {
5015 flags |= __GFP_NOWARN;
5016
5017 if (!(flags & __GFP_RETRY_MAYFAIL))
5018 flags &= ~__GFP_DIRECT_RECLAIM;
5019
5020 /* nofail semantic is implemented by the vmalloc fallback */
5021 flags &= ~__GFP_NOFAIL;
5022 }
5023
5024 return flags;
5025 }
5026
5027 /**
5028 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
5029 * failure, fall back to non-contiguous (vmalloc) allocation.
5030 * @size: size of the request.
5031 * @b: which set of kmalloc buckets to allocate from.
5032 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
5033 * @node: numa node to allocate from
5034 *
5035 * Uses kmalloc to get the memory but if the allocation fails then falls back
5036 * to the vmalloc allocator. Use kvfree for freeing the memory.
5037 *
5038 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
5039 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
5040 * preferable to the vmalloc fallback, due to visible performance drawbacks.
5041 *
5042 * Return: pointer to the allocated memory of %NULL in case of failure
5043 */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5044 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5045 {
5046 void *ret;
5047
5048 /*
5049 * It doesn't really make sense to fallback to vmalloc for sub page
5050 * requests
5051 */
5052 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
5053 kmalloc_gfp_adjust(flags, size),
5054 node, _RET_IP_);
5055 if (ret || size <= PAGE_SIZE)
5056 return ret;
5057
5058 /* non-sleeping allocations are not supported by vmalloc */
5059 if (!gfpflags_allow_blocking(flags))
5060 return NULL;
5061
5062 /* Don't even allow crazy sizes */
5063 if (unlikely(size > INT_MAX)) {
5064 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
5065 return NULL;
5066 }
5067
5068 /*
5069 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
5070 * since the callers already cannot assume anything
5071 * about the resulting pointer, and cannot play
5072 * protection games.
5073 */
5074 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
5075 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
5076 node, __builtin_return_address(0));
5077 }
5078 EXPORT_SYMBOL(__kvmalloc_node_noprof);
5079
5080 /**
5081 * kvfree() - Free memory.
5082 * @addr: Pointer to allocated memory.
5083 *
5084 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
5085 * It is slightly more efficient to use kfree() or vfree() if you are certain
5086 * that you know which one to use.
5087 *
5088 * Context: Either preemptible task context or not-NMI interrupt.
5089 */
kvfree(const void * addr)5090 void kvfree(const void *addr)
5091 {
5092 if (is_vmalloc_addr(addr))
5093 vfree(addr);
5094 else
5095 kfree(addr);
5096 }
5097 EXPORT_SYMBOL(kvfree);
5098
5099 /**
5100 * kvfree_sensitive - Free a data object containing sensitive information.
5101 * @addr: address of the data object to be freed.
5102 * @len: length of the data object.
5103 *
5104 * Use the special memzero_explicit() function to clear the content of a
5105 * kvmalloc'ed object containing sensitive data to make sure that the
5106 * compiler won't optimize out the data clearing.
5107 */
kvfree_sensitive(const void * addr,size_t len)5108 void kvfree_sensitive(const void *addr, size_t len)
5109 {
5110 if (likely(!ZERO_OR_NULL_PTR(addr))) {
5111 memzero_explicit((void *)addr, len);
5112 kvfree(addr);
5113 }
5114 }
5115 EXPORT_SYMBOL(kvfree_sensitive);
5116
5117 /**
5118 * kvrealloc - reallocate memory; contents remain unchanged
5119 * @p: object to reallocate memory for
5120 * @size: the size to reallocate
5121 * @flags: the flags for the page level allocator
5122 *
5123 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
5124 * and @p is not a %NULL pointer, the object pointed to is freed.
5125 *
5126 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
5127 * initial memory allocation, every subsequent call to this API for the same
5128 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
5129 * __GFP_ZERO is not fully honored by this API.
5130 *
5131 * In any case, the contents of the object pointed to are preserved up to the
5132 * lesser of the new and old sizes.
5133 *
5134 * This function must not be called concurrently with itself or kvfree() for the
5135 * same memory allocation.
5136 *
5137 * Return: pointer to the allocated memory or %NULL in case of error
5138 */
kvrealloc_noprof(const void * p,size_t size,gfp_t flags)5139 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
5140 {
5141 void *n;
5142
5143 if (is_vmalloc_addr(p))
5144 return vrealloc_noprof(p, size, flags);
5145
5146 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
5147 if (!n) {
5148 /* We failed to krealloc(), fall back to kvmalloc(). */
5149 n = kvmalloc_noprof(size, flags);
5150 if (!n)
5151 return NULL;
5152
5153 if (p) {
5154 /* We already know that `p` is not a vmalloc address. */
5155 kasan_disable_current();
5156 memcpy(n, kasan_reset_tag(p), ksize(p));
5157 kasan_enable_current();
5158
5159 kfree(p);
5160 }
5161 }
5162
5163 return n;
5164 }
5165 EXPORT_SYMBOL(kvrealloc_noprof);
5166
5167 struct detached_freelist {
5168 struct slab *slab;
5169 void *tail;
5170 void *freelist;
5171 int cnt;
5172 struct kmem_cache *s;
5173 };
5174
5175 /*
5176 * This function progressively scans the array with free objects (with
5177 * a limited look ahead) and extract objects belonging to the same
5178 * slab. It builds a detached freelist directly within the given
5179 * slab/objects. This can happen without any need for
5180 * synchronization, because the objects are owned by running process.
5181 * The freelist is build up as a single linked list in the objects.
5182 * The idea is, that this detached freelist can then be bulk
5183 * transferred to the real freelist(s), but only requiring a single
5184 * synchronization primitive. Look ahead in the array is limited due
5185 * to performance reasons.
5186 */
5187 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)5188 int build_detached_freelist(struct kmem_cache *s, size_t size,
5189 void **p, struct detached_freelist *df)
5190 {
5191 int lookahead = 3;
5192 void *object;
5193 struct folio *folio;
5194 size_t same;
5195
5196 object = p[--size];
5197 folio = virt_to_folio(object);
5198 if (!s) {
5199 /* Handle kalloc'ed objects */
5200 if (unlikely(!folio_test_slab(folio))) {
5201 free_large_kmalloc(folio, object);
5202 df->slab = NULL;
5203 return size;
5204 }
5205 /* Derive kmem_cache from object */
5206 df->slab = folio_slab(folio);
5207 df->s = df->slab->slab_cache;
5208 } else {
5209 df->slab = folio_slab(folio);
5210 df->s = cache_from_obj(s, object); /* Support for memcg */
5211 }
5212
5213 /* Start new detached freelist */
5214 df->tail = object;
5215 df->freelist = object;
5216 df->cnt = 1;
5217
5218 if (is_kfence_address(object))
5219 return size;
5220
5221 set_freepointer(df->s, object, NULL);
5222
5223 same = size;
5224 while (size) {
5225 object = p[--size];
5226 /* df->slab is always set at this point */
5227 if (df->slab == virt_to_slab(object)) {
5228 /* Opportunity build freelist */
5229 set_freepointer(df->s, object, df->freelist);
5230 df->freelist = object;
5231 df->cnt++;
5232 same--;
5233 if (size != same)
5234 swap(p[size], p[same]);
5235 continue;
5236 }
5237
5238 /* Limit look ahead search */
5239 if (!--lookahead)
5240 break;
5241 }
5242
5243 return same;
5244 }
5245
5246 /*
5247 * Internal bulk free of objects that were not initialised by the post alloc
5248 * hooks and thus should not be processed by the free hooks
5249 */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5250 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5251 {
5252 if (!size)
5253 return;
5254
5255 do {
5256 struct detached_freelist df;
5257
5258 size = build_detached_freelist(s, size, p, &df);
5259 if (!df.slab)
5260 continue;
5261
5262 if (kfence_free(df.freelist))
5263 continue;
5264
5265 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
5266 _RET_IP_);
5267 } while (likely(size));
5268 }
5269
5270 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5271 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5272 {
5273 if (!size)
5274 return;
5275
5276 do {
5277 struct detached_freelist df;
5278
5279 size = build_detached_freelist(s, size, p, &df);
5280 if (!df.slab)
5281 continue;
5282
5283 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5284 df.cnt, _RET_IP_);
5285 } while (likely(size));
5286 }
5287 EXPORT_SYMBOL(kmem_cache_free_bulk);
5288
5289 #ifndef CONFIG_SLUB_TINY
5290 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5291 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5292 void **p)
5293 {
5294 struct kmem_cache_cpu *c;
5295 unsigned long irqflags;
5296 int i;
5297
5298 /*
5299 * Drain objects in the per cpu slab, while disabling local
5300 * IRQs, which protects against PREEMPT and interrupts
5301 * handlers invoking normal fastpath.
5302 */
5303 c = slub_get_cpu_ptr(s->cpu_slab);
5304 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5305
5306 for (i = 0; i < size; i++) {
5307 void *object = kfence_alloc(s, s->object_size, flags);
5308
5309 if (unlikely(object)) {
5310 p[i] = object;
5311 continue;
5312 }
5313
5314 object = c->freelist;
5315 if (unlikely(!object)) {
5316 /*
5317 * We may have removed an object from c->freelist using
5318 * the fastpath in the previous iteration; in that case,
5319 * c->tid has not been bumped yet.
5320 * Since ___slab_alloc() may reenable interrupts while
5321 * allocating memory, we should bump c->tid now.
5322 */
5323 c->tid = next_tid(c->tid);
5324
5325 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5326
5327 /*
5328 * Invoking slow path likely have side-effect
5329 * of re-populating per CPU c->freelist
5330 */
5331 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5332 _RET_IP_, c, s->object_size);
5333 if (unlikely(!p[i]))
5334 goto error;
5335
5336 c = this_cpu_ptr(s->cpu_slab);
5337 maybe_wipe_obj_freeptr(s, p[i]);
5338
5339 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5340
5341 continue; /* goto for-loop */
5342 }
5343 c->freelist = get_freepointer(s, object);
5344 p[i] = object;
5345 maybe_wipe_obj_freeptr(s, p[i]);
5346 stat(s, ALLOC_FASTPATH);
5347 }
5348 c->tid = next_tid(c->tid);
5349 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5350 slub_put_cpu_ptr(s->cpu_slab);
5351
5352 return i;
5353
5354 error:
5355 slub_put_cpu_ptr(s->cpu_slab);
5356 __kmem_cache_free_bulk(s, i, p);
5357 return 0;
5358
5359 }
5360 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5361 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5362 size_t size, void **p)
5363 {
5364 int i;
5365
5366 for (i = 0; i < size; i++) {
5367 void *object = kfence_alloc(s, s->object_size, flags);
5368
5369 if (unlikely(object)) {
5370 p[i] = object;
5371 continue;
5372 }
5373
5374 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5375 _RET_IP_, s->object_size);
5376 if (unlikely(!p[i]))
5377 goto error;
5378
5379 maybe_wipe_obj_freeptr(s, p[i]);
5380 }
5381
5382 return i;
5383
5384 error:
5385 __kmem_cache_free_bulk(s, i, p);
5386 return 0;
5387 }
5388 #endif /* CONFIG_SLUB_TINY */
5389
5390 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5391 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5392 void **p)
5393 {
5394 int i;
5395
5396 if (!size)
5397 return 0;
5398
5399 s = slab_pre_alloc_hook(s, flags);
5400 if (unlikely(!s))
5401 return 0;
5402
5403 i = __kmem_cache_alloc_bulk(s, flags, size, p);
5404 if (unlikely(i == 0))
5405 return 0;
5406
5407 /*
5408 * memcg and kmem_cache debug support and memory initialization.
5409 * Done outside of the IRQ disabled fastpath loop.
5410 */
5411 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5412 slab_want_init_on_alloc(flags, s), s->object_size))) {
5413 return 0;
5414 }
5415 return i;
5416 }
5417 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5418
5419
5420 /*
5421 * Object placement in a slab is made very easy because we always start at
5422 * offset 0. If we tune the size of the object to the alignment then we can
5423 * get the required alignment by putting one properly sized object after
5424 * another.
5425 *
5426 * Notice that the allocation order determines the sizes of the per cpu
5427 * caches. Each processor has always one slab available for allocations.
5428 * Increasing the allocation order reduces the number of times that slabs
5429 * must be moved on and off the partial lists and is therefore a factor in
5430 * locking overhead.
5431 */
5432
5433 /*
5434 * Minimum / Maximum order of slab pages. This influences locking overhead
5435 * and slab fragmentation. A higher order reduces the number of partial slabs
5436 * and increases the number of allocations possible without having to
5437 * take the list_lock.
5438 */
5439 static unsigned int slub_min_order;
5440 static unsigned int slub_max_order =
5441 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5442 static unsigned int slub_min_objects;
5443
5444 /*
5445 * Calculate the order of allocation given an slab object size.
5446 *
5447 * The order of allocation has significant impact on performance and other
5448 * system components. Generally order 0 allocations should be preferred since
5449 * order 0 does not cause fragmentation in the page allocator. Larger objects
5450 * be problematic to put into order 0 slabs because there may be too much
5451 * unused space left. We go to a higher order if more than 1/16th of the slab
5452 * would be wasted.
5453 *
5454 * In order to reach satisfactory performance we must ensure that a minimum
5455 * number of objects is in one slab. Otherwise we may generate too much
5456 * activity on the partial lists which requires taking the list_lock. This is
5457 * less a concern for large slabs though which are rarely used.
5458 *
5459 * slab_max_order specifies the order where we begin to stop considering the
5460 * number of objects in a slab as critical. If we reach slab_max_order then
5461 * we try to keep the page order as low as possible. So we accept more waste
5462 * of space in favor of a small page order.
5463 *
5464 * Higher order allocations also allow the placement of more objects in a
5465 * slab and thereby reduce object handling overhead. If the user has
5466 * requested a higher minimum order then we start with that one instead of
5467 * the smallest order which will fit the object.
5468 */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)5469 static inline unsigned int calc_slab_order(unsigned int size,
5470 unsigned int min_order, unsigned int max_order,
5471 unsigned int fract_leftover)
5472 {
5473 unsigned int order;
5474
5475 for (order = min_order; order <= max_order; order++) {
5476
5477 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5478 unsigned int rem;
5479
5480 rem = slab_size % size;
5481
5482 if (rem <= slab_size / fract_leftover)
5483 break;
5484 }
5485
5486 return order;
5487 }
5488
calculate_order(unsigned int size)5489 static inline int calculate_order(unsigned int size)
5490 {
5491 unsigned int order;
5492 unsigned int min_objects;
5493 unsigned int max_objects;
5494 unsigned int min_order;
5495
5496 min_objects = slub_min_objects;
5497 if (!min_objects) {
5498 /*
5499 * Some architectures will only update present cpus when
5500 * onlining them, so don't trust the number if it's just 1. But
5501 * we also don't want to use nr_cpu_ids always, as on some other
5502 * architectures, there can be many possible cpus, but never
5503 * onlined. Here we compromise between trying to avoid too high
5504 * order on systems that appear larger than they are, and too
5505 * low order on systems that appear smaller than they are.
5506 */
5507 unsigned int nr_cpus = num_present_cpus();
5508 if (nr_cpus <= 1)
5509 nr_cpus = nr_cpu_ids;
5510 min_objects = 4 * (fls(nr_cpus) + 1);
5511 }
5512 /* min_objects can't be 0 because get_order(0) is undefined */
5513 max_objects = max(order_objects(slub_max_order, size), 1U);
5514 min_objects = min(min_objects, max_objects);
5515
5516 min_order = max_t(unsigned int, slub_min_order,
5517 get_order(min_objects * size));
5518 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5519 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5520
5521 /*
5522 * Attempt to find best configuration for a slab. This works by first
5523 * attempting to generate a layout with the best possible configuration
5524 * and backing off gradually.
5525 *
5526 * We start with accepting at most 1/16 waste and try to find the
5527 * smallest order from min_objects-derived/slab_min_order up to
5528 * slab_max_order that will satisfy the constraint. Note that increasing
5529 * the order can only result in same or less fractional waste, not more.
5530 *
5531 * If that fails, we increase the acceptable fraction of waste and try
5532 * again. The last iteration with fraction of 1/2 would effectively
5533 * accept any waste and give us the order determined by min_objects, as
5534 * long as at least single object fits within slab_max_order.
5535 */
5536 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5537 order = calc_slab_order(size, min_order, slub_max_order,
5538 fraction);
5539 if (order <= slub_max_order)
5540 return order;
5541 }
5542
5543 /*
5544 * Doh this slab cannot be placed using slab_max_order.
5545 */
5546 order = get_order(size);
5547 if (order <= MAX_PAGE_ORDER)
5548 return order;
5549 return -ENOSYS;
5550 }
5551
5552 static void
init_kmem_cache_node(struct kmem_cache_node * n)5553 init_kmem_cache_node(struct kmem_cache_node *n)
5554 {
5555 n->nr_partial = 0;
5556 spin_lock_init(&n->list_lock);
5557 INIT_LIST_HEAD(&n->partial);
5558 #ifdef CONFIG_SLUB_DEBUG
5559 atomic_long_set(&n->nr_slabs, 0);
5560 atomic_long_set(&n->total_objects, 0);
5561 INIT_LIST_HEAD(&n->full);
5562 #endif
5563 }
5564
5565 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)5566 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5567 {
5568 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5569 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5570 sizeof(struct kmem_cache_cpu));
5571
5572 /*
5573 * Must align to double word boundary for the double cmpxchg
5574 * instructions to work; see __pcpu_double_call_return_bool().
5575 */
5576 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5577 2 * sizeof(void *));
5578
5579 if (!s->cpu_slab)
5580 return 0;
5581
5582 init_kmem_cache_cpus(s);
5583
5584 return 1;
5585 }
5586 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)5587 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5588 {
5589 return 1;
5590 }
5591 #endif /* CONFIG_SLUB_TINY */
5592
5593 static struct kmem_cache *kmem_cache_node;
5594
5595 /*
5596 * No kmalloc_node yet so do it by hand. We know that this is the first
5597 * slab on the node for this slabcache. There are no concurrent accesses
5598 * possible.
5599 *
5600 * Note that this function only works on the kmem_cache_node
5601 * when allocating for the kmem_cache_node. This is used for bootstrapping
5602 * memory on a fresh node that has no slab structures yet.
5603 */
early_kmem_cache_node_alloc(int node)5604 static void early_kmem_cache_node_alloc(int node)
5605 {
5606 struct slab *slab;
5607 struct kmem_cache_node *n;
5608
5609 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5610
5611 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5612
5613 BUG_ON(!slab);
5614 if (slab_nid(slab) != node) {
5615 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5616 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5617 }
5618
5619 n = slab->freelist;
5620 BUG_ON(!n);
5621 #ifdef CONFIG_SLUB_DEBUG
5622 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5623 #endif
5624 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5625 slab->freelist = get_freepointer(kmem_cache_node, n);
5626 slab->inuse = 1;
5627 kmem_cache_node->node[node] = n;
5628 init_kmem_cache_node(n);
5629 inc_slabs_node(kmem_cache_node, node, slab->objects);
5630
5631 /*
5632 * No locks need to be taken here as it has just been
5633 * initialized and there is no concurrent access.
5634 */
5635 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5636 }
5637
free_kmem_cache_nodes(struct kmem_cache * s)5638 static void free_kmem_cache_nodes(struct kmem_cache *s)
5639 {
5640 int node;
5641 struct kmem_cache_node *n;
5642
5643 for_each_kmem_cache_node(s, node, n) {
5644 s->node[node] = NULL;
5645 kmem_cache_free(kmem_cache_node, n);
5646 }
5647 }
5648
__kmem_cache_release(struct kmem_cache * s)5649 void __kmem_cache_release(struct kmem_cache *s)
5650 {
5651 cache_random_seq_destroy(s);
5652 #ifndef CONFIG_SLUB_TINY
5653 free_percpu(s->cpu_slab);
5654 #endif
5655 free_kmem_cache_nodes(s);
5656 }
5657
init_kmem_cache_nodes(struct kmem_cache * s)5658 static int init_kmem_cache_nodes(struct kmem_cache *s)
5659 {
5660 int node;
5661
5662 for_each_node_mask(node, slab_nodes) {
5663 struct kmem_cache_node *n;
5664
5665 if (slab_state == DOWN) {
5666 early_kmem_cache_node_alloc(node);
5667 continue;
5668 }
5669 n = kmem_cache_alloc_node(kmem_cache_node,
5670 GFP_KERNEL, node);
5671
5672 if (!n) {
5673 free_kmem_cache_nodes(s);
5674 return 0;
5675 }
5676
5677 init_kmem_cache_node(n);
5678 s->node[node] = n;
5679 }
5680 return 1;
5681 }
5682
set_cpu_partial(struct kmem_cache * s)5683 static void set_cpu_partial(struct kmem_cache *s)
5684 {
5685 #ifdef CONFIG_SLUB_CPU_PARTIAL
5686 unsigned int nr_objects;
5687
5688 /*
5689 * cpu_partial determined the maximum number of objects kept in the
5690 * per cpu partial lists of a processor.
5691 *
5692 * Per cpu partial lists mainly contain slabs that just have one
5693 * object freed. If they are used for allocation then they can be
5694 * filled up again with minimal effort. The slab will never hit the
5695 * per node partial lists and therefore no locking will be required.
5696 *
5697 * For backwards compatibility reasons, this is determined as number
5698 * of objects, even though we now limit maximum number of pages, see
5699 * slub_set_cpu_partial()
5700 */
5701 if (!kmem_cache_has_cpu_partial(s))
5702 nr_objects = 0;
5703 else if (s->size >= PAGE_SIZE)
5704 nr_objects = 6;
5705 else if (s->size >= 1024)
5706 nr_objects = 24;
5707 else if (s->size >= 256)
5708 nr_objects = 52;
5709 else
5710 nr_objects = 120;
5711
5712 slub_set_cpu_partial(s, nr_objects);
5713 #endif
5714 }
5715
5716 /*
5717 * calculate_sizes() determines the order and the distribution of data within
5718 * a slab object.
5719 */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)5720 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5721 {
5722 slab_flags_t flags = s->flags;
5723 unsigned int size = s->object_size;
5724 unsigned int order;
5725
5726 /*
5727 * Round up object size to the next word boundary. We can only
5728 * place the free pointer at word boundaries and this determines
5729 * the possible location of the free pointer.
5730 */
5731 size = ALIGN(size, sizeof(void *));
5732
5733 #ifdef CONFIG_SLUB_DEBUG
5734 /*
5735 * Determine if we can poison the object itself. If the user of
5736 * the slab may touch the object after free or before allocation
5737 * then we should never poison the object itself.
5738 */
5739 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5740 !s->ctor)
5741 s->flags |= __OBJECT_POISON;
5742 else
5743 s->flags &= ~__OBJECT_POISON;
5744
5745
5746 /*
5747 * If we are Redzoning then check if there is some space between the
5748 * end of the object and the free pointer. If not then add an
5749 * additional word to have some bytes to store Redzone information.
5750 */
5751 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5752 size += sizeof(void *);
5753 #endif
5754
5755 /*
5756 * With that we have determined the number of bytes in actual use
5757 * by the object and redzoning.
5758 */
5759 s->inuse = size;
5760
5761 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5762 (flags & SLAB_POISON) || s->ctor ||
5763 ((flags & SLAB_RED_ZONE) &&
5764 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5765 /*
5766 * Relocate free pointer after the object if it is not
5767 * permitted to overwrite the first word of the object on
5768 * kmem_cache_free.
5769 *
5770 * This is the case if we do RCU, have a constructor or
5771 * destructor, are poisoning the objects, or are
5772 * redzoning an object smaller than sizeof(void *) or are
5773 * redzoning an object with slub_debug_orig_size() enabled,
5774 * in which case the right redzone may be extended.
5775 *
5776 * The assumption that s->offset >= s->inuse means free
5777 * pointer is outside of the object is used in the
5778 * freeptr_outside_object() function. If that is no
5779 * longer true, the function needs to be modified.
5780 */
5781 s->offset = size;
5782 size += sizeof(void *);
5783 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5784 s->offset = args->freeptr_offset;
5785 } else {
5786 /*
5787 * Store freelist pointer near middle of object to keep
5788 * it away from the edges of the object to avoid small
5789 * sized over/underflows from neighboring allocations.
5790 */
5791 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5792 }
5793
5794 #ifdef CONFIG_SLUB_DEBUG
5795 if (flags & SLAB_STORE_USER) {
5796 /*
5797 * Need to store information about allocs and frees after
5798 * the object.
5799 */
5800 size += 2 * sizeof(struct track);
5801
5802 /* Save the original kmalloc request size */
5803 if (flags & SLAB_KMALLOC)
5804 size += sizeof(unsigned int);
5805 }
5806 #endif
5807
5808 kasan_cache_create(s, &size, &s->flags);
5809 #ifdef CONFIG_SLUB_DEBUG
5810 if (flags & SLAB_RED_ZONE) {
5811 /*
5812 * Add some empty padding so that we can catch
5813 * overwrites from earlier objects rather than let
5814 * tracking information or the free pointer be
5815 * corrupted if a user writes before the start
5816 * of the object.
5817 */
5818 size += sizeof(void *);
5819
5820 s->red_left_pad = sizeof(void *);
5821 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5822 size += s->red_left_pad;
5823 }
5824 #endif
5825
5826 /*
5827 * SLUB stores one object immediately after another beginning from
5828 * offset 0. In order to align the objects we have to simply size
5829 * each object to conform to the alignment.
5830 */
5831 size = ALIGN(size, s->align);
5832 s->size = size;
5833 s->reciprocal_size = reciprocal_value(size);
5834 order = calculate_order(size);
5835
5836 if ((int)order < 0)
5837 return 0;
5838
5839 s->allocflags = __GFP_COMP;
5840
5841 if (s->flags & SLAB_CACHE_DMA)
5842 s->allocflags |= GFP_DMA;
5843
5844 if (s->flags & SLAB_CACHE_DMA32)
5845 s->allocflags |= GFP_DMA32;
5846
5847 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5848 s->allocflags |= __GFP_RECLAIMABLE;
5849
5850 /*
5851 * Determine the number of objects per slab
5852 */
5853 s->oo = oo_make(order, size);
5854 s->min = oo_make(get_order(size), size);
5855
5856 return !!oo_objects(s->oo);
5857 }
5858
list_slab_objects(struct kmem_cache * s,struct slab * slab)5859 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
5860 {
5861 #ifdef CONFIG_SLUB_DEBUG
5862 void *addr = slab_address(slab);
5863 void *p;
5864
5865 if (!slab_add_kunit_errors())
5866 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
5867
5868 spin_lock(&object_map_lock);
5869 __fill_map(object_map, s, slab);
5870
5871 for_each_object(p, s, addr, slab->objects) {
5872
5873 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5874 if (slab_add_kunit_errors())
5875 continue;
5876 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5877 print_tracking(s, p);
5878 }
5879 }
5880 spin_unlock(&object_map_lock);
5881
5882 __slab_err(slab);
5883 #endif
5884 }
5885
5886 /*
5887 * Attempt to free all partial slabs on a node.
5888 * This is called from __kmem_cache_shutdown(). We must take list_lock
5889 * because sysfs file might still access partial list after the shutdowning.
5890 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)5891 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5892 {
5893 LIST_HEAD(discard);
5894 struct slab *slab, *h;
5895
5896 BUG_ON(irqs_disabled());
5897 spin_lock_irq(&n->list_lock);
5898 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5899 if (!slab->inuse) {
5900 remove_partial(n, slab);
5901 list_add(&slab->slab_list, &discard);
5902 } else {
5903 list_slab_objects(s, slab);
5904 }
5905 }
5906 spin_unlock_irq(&n->list_lock);
5907
5908 list_for_each_entry_safe(slab, h, &discard, slab_list)
5909 discard_slab(s, slab);
5910 }
5911
__kmem_cache_empty(struct kmem_cache * s)5912 bool __kmem_cache_empty(struct kmem_cache *s)
5913 {
5914 int node;
5915 struct kmem_cache_node *n;
5916
5917 for_each_kmem_cache_node(s, node, n)
5918 if (n->nr_partial || node_nr_slabs(n))
5919 return false;
5920 return true;
5921 }
5922
5923 /*
5924 * Release all resources used by a slab cache.
5925 */
__kmem_cache_shutdown(struct kmem_cache * s)5926 int __kmem_cache_shutdown(struct kmem_cache *s)
5927 {
5928 int node;
5929 struct kmem_cache_node *n;
5930
5931 flush_all_cpus_locked(s);
5932 /* Attempt to free all objects */
5933 for_each_kmem_cache_node(s, node, n) {
5934 free_partial(s, n);
5935 if (n->nr_partial || node_nr_slabs(n))
5936 return 1;
5937 }
5938 return 0;
5939 }
5940
5941 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)5942 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5943 {
5944 void *base;
5945 int __maybe_unused i;
5946 unsigned int objnr;
5947 void *objp;
5948 void *objp0;
5949 struct kmem_cache *s = slab->slab_cache;
5950 struct track __maybe_unused *trackp;
5951
5952 kpp->kp_ptr = object;
5953 kpp->kp_slab = slab;
5954 kpp->kp_slab_cache = s;
5955 base = slab_address(slab);
5956 objp0 = kasan_reset_tag(object);
5957 #ifdef CONFIG_SLUB_DEBUG
5958 objp = restore_red_left(s, objp0);
5959 #else
5960 objp = objp0;
5961 #endif
5962 objnr = obj_to_index(s, slab, objp);
5963 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5964 objp = base + s->size * objnr;
5965 kpp->kp_objp = objp;
5966 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5967 || (objp - base) % s->size) ||
5968 !(s->flags & SLAB_STORE_USER))
5969 return;
5970 #ifdef CONFIG_SLUB_DEBUG
5971 objp = fixup_red_left(s, objp);
5972 trackp = get_track(s, objp, TRACK_ALLOC);
5973 kpp->kp_ret = (void *)trackp->addr;
5974 #ifdef CONFIG_STACKDEPOT
5975 {
5976 depot_stack_handle_t handle;
5977 unsigned long *entries;
5978 unsigned int nr_entries;
5979
5980 handle = READ_ONCE(trackp->handle);
5981 if (handle) {
5982 nr_entries = stack_depot_fetch(handle, &entries);
5983 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5984 kpp->kp_stack[i] = (void *)entries[i];
5985 }
5986
5987 trackp = get_track(s, objp, TRACK_FREE);
5988 handle = READ_ONCE(trackp->handle);
5989 if (handle) {
5990 nr_entries = stack_depot_fetch(handle, &entries);
5991 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5992 kpp->kp_free_stack[i] = (void *)entries[i];
5993 }
5994 }
5995 #endif
5996 #endif
5997 }
5998 #endif
5999
6000 /********************************************************************
6001 * Kmalloc subsystem
6002 *******************************************************************/
6003
setup_slub_min_order(char * str)6004 static int __init setup_slub_min_order(char *str)
6005 {
6006 get_option(&str, (int *)&slub_min_order);
6007
6008 if (slub_min_order > slub_max_order)
6009 slub_max_order = slub_min_order;
6010
6011 return 1;
6012 }
6013
6014 __setup("slab_min_order=", setup_slub_min_order);
6015 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
6016
6017
setup_slub_max_order(char * str)6018 static int __init setup_slub_max_order(char *str)
6019 {
6020 get_option(&str, (int *)&slub_max_order);
6021 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
6022
6023 if (slub_min_order > slub_max_order)
6024 slub_min_order = slub_max_order;
6025
6026 return 1;
6027 }
6028
6029 __setup("slab_max_order=", setup_slub_max_order);
6030 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
6031
setup_slub_min_objects(char * str)6032 static int __init setup_slub_min_objects(char *str)
6033 {
6034 get_option(&str, (int *)&slub_min_objects);
6035
6036 return 1;
6037 }
6038
6039 __setup("slab_min_objects=", setup_slub_min_objects);
6040 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
6041
6042 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)6043 static int __init setup_slab_strict_numa(char *str)
6044 {
6045 if (nr_node_ids > 1) {
6046 static_branch_enable(&strict_numa);
6047 pr_info("SLUB: Strict NUMA enabled.\n");
6048 } else {
6049 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
6050 }
6051
6052 return 1;
6053 }
6054
6055 __setup("slab_strict_numa", setup_slab_strict_numa);
6056 #endif
6057
6058
6059 #ifdef CONFIG_HARDENED_USERCOPY
6060 /*
6061 * Rejects incorrectly sized objects and objects that are to be copied
6062 * to/from userspace but do not fall entirely within the containing slab
6063 * cache's usercopy region.
6064 *
6065 * Returns NULL if check passes, otherwise const char * to name of cache
6066 * to indicate an error.
6067 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)6068 void __check_heap_object(const void *ptr, unsigned long n,
6069 const struct slab *slab, bool to_user)
6070 {
6071 struct kmem_cache *s;
6072 unsigned int offset;
6073 bool is_kfence = is_kfence_address(ptr);
6074
6075 ptr = kasan_reset_tag(ptr);
6076
6077 /* Find object and usable object size. */
6078 s = slab->slab_cache;
6079
6080 /* Reject impossible pointers. */
6081 if (ptr < slab_address(slab))
6082 usercopy_abort("SLUB object not in SLUB page?!", NULL,
6083 to_user, 0, n);
6084
6085 /* Find offset within object. */
6086 if (is_kfence)
6087 offset = ptr - kfence_object_start(ptr);
6088 else
6089 offset = (ptr - slab_address(slab)) % s->size;
6090
6091 /* Adjust for redzone and reject if within the redzone. */
6092 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
6093 if (offset < s->red_left_pad)
6094 usercopy_abort("SLUB object in left red zone",
6095 s->name, to_user, offset, n);
6096 offset -= s->red_left_pad;
6097 }
6098
6099 /* Allow address range falling entirely within usercopy region. */
6100 if (offset >= s->useroffset &&
6101 offset - s->useroffset <= s->usersize &&
6102 n <= s->useroffset - offset + s->usersize)
6103 return;
6104
6105 usercopy_abort("SLUB object", s->name, to_user, offset, n);
6106 }
6107 #endif /* CONFIG_HARDENED_USERCOPY */
6108
6109 #define SHRINK_PROMOTE_MAX 32
6110
6111 /*
6112 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
6113 * up most to the head of the partial lists. New allocations will then
6114 * fill those up and thus they can be removed from the partial lists.
6115 *
6116 * The slabs with the least items are placed last. This results in them
6117 * being allocated from last increasing the chance that the last objects
6118 * are freed in them.
6119 */
__kmem_cache_do_shrink(struct kmem_cache * s)6120 static int __kmem_cache_do_shrink(struct kmem_cache *s)
6121 {
6122 int node;
6123 int i;
6124 struct kmem_cache_node *n;
6125 struct slab *slab;
6126 struct slab *t;
6127 struct list_head discard;
6128 struct list_head promote[SHRINK_PROMOTE_MAX];
6129 unsigned long flags;
6130 int ret = 0;
6131
6132 for_each_kmem_cache_node(s, node, n) {
6133 INIT_LIST_HEAD(&discard);
6134 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
6135 INIT_LIST_HEAD(promote + i);
6136
6137 spin_lock_irqsave(&n->list_lock, flags);
6138
6139 /*
6140 * Build lists of slabs to discard or promote.
6141 *
6142 * Note that concurrent frees may occur while we hold the
6143 * list_lock. slab->inuse here is the upper limit.
6144 */
6145 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
6146 int free = slab->objects - slab->inuse;
6147
6148 /* Do not reread slab->inuse */
6149 barrier();
6150
6151 /* We do not keep full slabs on the list */
6152 BUG_ON(free <= 0);
6153
6154 if (free == slab->objects) {
6155 list_move(&slab->slab_list, &discard);
6156 slab_clear_node_partial(slab);
6157 n->nr_partial--;
6158 dec_slabs_node(s, node, slab->objects);
6159 } else if (free <= SHRINK_PROMOTE_MAX)
6160 list_move(&slab->slab_list, promote + free - 1);
6161 }
6162
6163 /*
6164 * Promote the slabs filled up most to the head of the
6165 * partial list.
6166 */
6167 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
6168 list_splice(promote + i, &n->partial);
6169
6170 spin_unlock_irqrestore(&n->list_lock, flags);
6171
6172 /* Release empty slabs */
6173 list_for_each_entry_safe(slab, t, &discard, slab_list)
6174 free_slab(s, slab);
6175
6176 if (node_nr_slabs(n))
6177 ret = 1;
6178 }
6179
6180 return ret;
6181 }
6182
__kmem_cache_shrink(struct kmem_cache * s)6183 int __kmem_cache_shrink(struct kmem_cache *s)
6184 {
6185 flush_all(s);
6186 return __kmem_cache_do_shrink(s);
6187 }
6188
slab_mem_going_offline_callback(void)6189 static int slab_mem_going_offline_callback(void)
6190 {
6191 struct kmem_cache *s;
6192
6193 mutex_lock(&slab_mutex);
6194 list_for_each_entry(s, &slab_caches, list) {
6195 flush_all_cpus_locked(s);
6196 __kmem_cache_do_shrink(s);
6197 }
6198 mutex_unlock(&slab_mutex);
6199
6200 return 0;
6201 }
6202
slab_mem_going_online_callback(int nid)6203 static int slab_mem_going_online_callback(int nid)
6204 {
6205 struct kmem_cache_node *n;
6206 struct kmem_cache *s;
6207 int ret = 0;
6208
6209 /*
6210 * We are bringing a node online. No memory is available yet. We must
6211 * allocate a kmem_cache_node structure in order to bring the node
6212 * online.
6213 */
6214 mutex_lock(&slab_mutex);
6215 list_for_each_entry(s, &slab_caches, list) {
6216 /*
6217 * The structure may already exist if the node was previously
6218 * onlined and offlined.
6219 */
6220 if (get_node(s, nid))
6221 continue;
6222 /*
6223 * XXX: kmem_cache_alloc_node will fallback to other nodes
6224 * since memory is not yet available from the node that
6225 * is brought up.
6226 */
6227 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
6228 if (!n) {
6229 ret = -ENOMEM;
6230 goto out;
6231 }
6232 init_kmem_cache_node(n);
6233 s->node[nid] = n;
6234 }
6235 /*
6236 * Any cache created after this point will also have kmem_cache_node
6237 * initialized for the new node.
6238 */
6239 node_set(nid, slab_nodes);
6240 out:
6241 mutex_unlock(&slab_mutex);
6242 return ret;
6243 }
6244
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)6245 static int slab_memory_callback(struct notifier_block *self,
6246 unsigned long action, void *arg)
6247 {
6248 struct node_notify *nn = arg;
6249 int nid = nn->nid;
6250 int ret = 0;
6251
6252 switch (action) {
6253 case NODE_ADDING_FIRST_MEMORY:
6254 ret = slab_mem_going_online_callback(nid);
6255 break;
6256 case NODE_REMOVING_LAST_MEMORY:
6257 ret = slab_mem_going_offline_callback();
6258 break;
6259 }
6260 if (ret)
6261 ret = notifier_from_errno(ret);
6262 else
6263 ret = NOTIFY_OK;
6264 return ret;
6265 }
6266
6267 /********************************************************************
6268 * Basic setup of slabs
6269 *******************************************************************/
6270
6271 /*
6272 * Used for early kmem_cache structures that were allocated using
6273 * the page allocator. Allocate them properly then fix up the pointers
6274 * that may be pointing to the wrong kmem_cache structure.
6275 */
6276
bootstrap(struct kmem_cache * static_cache)6277 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6278 {
6279 int node;
6280 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6281 struct kmem_cache_node *n;
6282
6283 memcpy(s, static_cache, kmem_cache->object_size);
6284
6285 /*
6286 * This runs very early, and only the boot processor is supposed to be
6287 * up. Even if it weren't true, IRQs are not up so we couldn't fire
6288 * IPIs around.
6289 */
6290 __flush_cpu_slab(s, smp_processor_id());
6291 for_each_kmem_cache_node(s, node, n) {
6292 struct slab *p;
6293
6294 list_for_each_entry(p, &n->partial, slab_list)
6295 p->slab_cache = s;
6296
6297 #ifdef CONFIG_SLUB_DEBUG
6298 list_for_each_entry(p, &n->full, slab_list)
6299 p->slab_cache = s;
6300 #endif
6301 }
6302 list_add(&s->list, &slab_caches);
6303 return s;
6304 }
6305
kmem_cache_init(void)6306 void __init kmem_cache_init(void)
6307 {
6308 static __initdata struct kmem_cache boot_kmem_cache,
6309 boot_kmem_cache_node;
6310 int node;
6311
6312 if (debug_guardpage_minorder())
6313 slub_max_order = 0;
6314
6315 /* Print slub debugging pointers without hashing */
6316 if (__slub_debug_enabled())
6317 no_hash_pointers_enable(NULL);
6318
6319 kmem_cache_node = &boot_kmem_cache_node;
6320 kmem_cache = &boot_kmem_cache;
6321
6322 /*
6323 * Initialize the nodemask for which we will allocate per node
6324 * structures. Here we don't need taking slab_mutex yet.
6325 */
6326 for_each_node_state(node, N_MEMORY)
6327 node_set(node, slab_nodes);
6328
6329 create_boot_cache(kmem_cache_node, "kmem_cache_node",
6330 sizeof(struct kmem_cache_node),
6331 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6332
6333 hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6334
6335 /* Able to allocate the per node structures */
6336 slab_state = PARTIAL;
6337
6338 create_boot_cache(kmem_cache, "kmem_cache",
6339 offsetof(struct kmem_cache, node) +
6340 nr_node_ids * sizeof(struct kmem_cache_node *),
6341 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6342
6343 kmem_cache = bootstrap(&boot_kmem_cache);
6344 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6345
6346 /* Now we can use the kmem_cache to allocate kmalloc slabs */
6347 setup_kmalloc_cache_index_table();
6348 create_kmalloc_caches();
6349
6350 /* Setup random freelists for each cache */
6351 init_freelist_randomization();
6352
6353 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6354 slub_cpu_dead);
6355
6356 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6357 cache_line_size(),
6358 slub_min_order, slub_max_order, slub_min_objects,
6359 nr_cpu_ids, nr_node_ids);
6360 }
6361
kmem_cache_init_late(void)6362 void __init kmem_cache_init_late(void)
6363 {
6364 #ifndef CONFIG_SLUB_TINY
6365 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6366 WARN_ON(!flushwq);
6367 #endif
6368 }
6369
6370 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))6371 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6372 slab_flags_t flags, void (*ctor)(void *))
6373 {
6374 struct kmem_cache *s;
6375
6376 s = find_mergeable(size, align, flags, name, ctor);
6377 if (s) {
6378 if (sysfs_slab_alias(s, name))
6379 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6380 name);
6381
6382 s->refcount++;
6383
6384 /*
6385 * Adjust the object sizes so that we clear
6386 * the complete object on kzalloc.
6387 */
6388 s->object_size = max(s->object_size, size);
6389 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6390 }
6391
6392 return s;
6393 }
6394
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)6395 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6396 unsigned int size, struct kmem_cache_args *args,
6397 slab_flags_t flags)
6398 {
6399 int err = -EINVAL;
6400
6401 s->name = name;
6402 s->size = s->object_size = size;
6403
6404 s->flags = kmem_cache_flags(flags, s->name);
6405 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6406 s->random = get_random_long();
6407 #endif
6408 s->align = args->align;
6409 s->ctor = args->ctor;
6410 #ifdef CONFIG_HARDENED_USERCOPY
6411 s->useroffset = args->useroffset;
6412 s->usersize = args->usersize;
6413 #endif
6414
6415 if (!calculate_sizes(args, s))
6416 goto out;
6417 if (disable_higher_order_debug) {
6418 /*
6419 * Disable debugging flags that store metadata if the min slab
6420 * order increased.
6421 */
6422 if (get_order(s->size) > get_order(s->object_size)) {
6423 s->flags &= ~DEBUG_METADATA_FLAGS;
6424 s->offset = 0;
6425 if (!calculate_sizes(args, s))
6426 goto out;
6427 }
6428 }
6429
6430 #ifdef system_has_freelist_aba
6431 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6432 /* Enable fast mode */
6433 s->flags |= __CMPXCHG_DOUBLE;
6434 }
6435 #endif
6436
6437 /*
6438 * The larger the object size is, the more slabs we want on the partial
6439 * list to avoid pounding the page allocator excessively.
6440 */
6441 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6442 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6443
6444 set_cpu_partial(s);
6445
6446 #ifdef CONFIG_NUMA
6447 s->remote_node_defrag_ratio = 1000;
6448 #endif
6449
6450 /* Initialize the pre-computed randomized freelist if slab is up */
6451 if (slab_state >= UP) {
6452 if (init_cache_random_seq(s))
6453 goto out;
6454 }
6455
6456 if (!init_kmem_cache_nodes(s))
6457 goto out;
6458
6459 if (!alloc_kmem_cache_cpus(s))
6460 goto out;
6461
6462 err = 0;
6463
6464 /* Mutex is not taken during early boot */
6465 if (slab_state <= UP)
6466 goto out;
6467
6468 /*
6469 * Failing to create sysfs files is not critical to SLUB functionality.
6470 * If it fails, proceed with cache creation without these files.
6471 */
6472 if (sysfs_slab_add(s))
6473 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6474
6475 if (s->flags & SLAB_STORE_USER)
6476 debugfs_slab_add(s);
6477
6478 out:
6479 if (err)
6480 __kmem_cache_release(s);
6481 return err;
6482 }
6483
6484 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)6485 static int count_inuse(struct slab *slab)
6486 {
6487 return slab->inuse;
6488 }
6489
count_total(struct slab * slab)6490 static int count_total(struct slab *slab)
6491 {
6492 return slab->objects;
6493 }
6494 #endif
6495
6496 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)6497 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6498 unsigned long *obj_map)
6499 {
6500 void *p;
6501 void *addr = slab_address(slab);
6502
6503 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6504 return;
6505
6506 /* Now we know that a valid freelist exists */
6507 __fill_map(obj_map, s, slab);
6508 for_each_object(p, s, addr, slab->objects) {
6509 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6510 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6511
6512 if (!check_object(s, slab, p, val))
6513 break;
6514 }
6515 }
6516
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)6517 static int validate_slab_node(struct kmem_cache *s,
6518 struct kmem_cache_node *n, unsigned long *obj_map)
6519 {
6520 unsigned long count = 0;
6521 struct slab *slab;
6522 unsigned long flags;
6523
6524 spin_lock_irqsave(&n->list_lock, flags);
6525
6526 list_for_each_entry(slab, &n->partial, slab_list) {
6527 validate_slab(s, slab, obj_map);
6528 count++;
6529 }
6530 if (count != n->nr_partial) {
6531 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6532 s->name, count, n->nr_partial);
6533 slab_add_kunit_errors();
6534 }
6535
6536 if (!(s->flags & SLAB_STORE_USER))
6537 goto out;
6538
6539 list_for_each_entry(slab, &n->full, slab_list) {
6540 validate_slab(s, slab, obj_map);
6541 count++;
6542 }
6543 if (count != node_nr_slabs(n)) {
6544 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6545 s->name, count, node_nr_slabs(n));
6546 slab_add_kunit_errors();
6547 }
6548
6549 out:
6550 spin_unlock_irqrestore(&n->list_lock, flags);
6551 return count;
6552 }
6553
validate_slab_cache(struct kmem_cache * s)6554 long validate_slab_cache(struct kmem_cache *s)
6555 {
6556 int node;
6557 unsigned long count = 0;
6558 struct kmem_cache_node *n;
6559 unsigned long *obj_map;
6560
6561 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6562 if (!obj_map)
6563 return -ENOMEM;
6564
6565 flush_all(s);
6566 for_each_kmem_cache_node(s, node, n)
6567 count += validate_slab_node(s, n, obj_map);
6568
6569 bitmap_free(obj_map);
6570
6571 return count;
6572 }
6573 EXPORT_SYMBOL(validate_slab_cache);
6574
6575 #ifdef CONFIG_DEBUG_FS
6576 /*
6577 * Generate lists of code addresses where slabcache objects are allocated
6578 * and freed.
6579 */
6580
6581 struct location {
6582 depot_stack_handle_t handle;
6583 unsigned long count;
6584 unsigned long addr;
6585 unsigned long waste;
6586 long long sum_time;
6587 long min_time;
6588 long max_time;
6589 long min_pid;
6590 long max_pid;
6591 DECLARE_BITMAP(cpus, NR_CPUS);
6592 nodemask_t nodes;
6593 };
6594
6595 struct loc_track {
6596 unsigned long max;
6597 unsigned long count;
6598 struct location *loc;
6599 loff_t idx;
6600 };
6601
6602 static struct dentry *slab_debugfs_root;
6603
free_loc_track(struct loc_track * t)6604 static void free_loc_track(struct loc_track *t)
6605 {
6606 if (t->max)
6607 free_pages((unsigned long)t->loc,
6608 get_order(sizeof(struct location) * t->max));
6609 }
6610
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)6611 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6612 {
6613 struct location *l;
6614 int order;
6615
6616 order = get_order(sizeof(struct location) * max);
6617
6618 l = (void *)__get_free_pages(flags, order);
6619 if (!l)
6620 return 0;
6621
6622 if (t->count) {
6623 memcpy(l, t->loc, sizeof(struct location) * t->count);
6624 free_loc_track(t);
6625 }
6626 t->max = max;
6627 t->loc = l;
6628 return 1;
6629 }
6630
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)6631 static int add_location(struct loc_track *t, struct kmem_cache *s,
6632 const struct track *track,
6633 unsigned int orig_size)
6634 {
6635 long start, end, pos;
6636 struct location *l;
6637 unsigned long caddr, chandle, cwaste;
6638 unsigned long age = jiffies - track->when;
6639 depot_stack_handle_t handle = 0;
6640 unsigned int waste = s->object_size - orig_size;
6641
6642 #ifdef CONFIG_STACKDEPOT
6643 handle = READ_ONCE(track->handle);
6644 #endif
6645 start = -1;
6646 end = t->count;
6647
6648 for ( ; ; ) {
6649 pos = start + (end - start + 1) / 2;
6650
6651 /*
6652 * There is nothing at "end". If we end up there
6653 * we need to add something to before end.
6654 */
6655 if (pos == end)
6656 break;
6657
6658 l = &t->loc[pos];
6659 caddr = l->addr;
6660 chandle = l->handle;
6661 cwaste = l->waste;
6662 if ((track->addr == caddr) && (handle == chandle) &&
6663 (waste == cwaste)) {
6664
6665 l->count++;
6666 if (track->when) {
6667 l->sum_time += age;
6668 if (age < l->min_time)
6669 l->min_time = age;
6670 if (age > l->max_time)
6671 l->max_time = age;
6672
6673 if (track->pid < l->min_pid)
6674 l->min_pid = track->pid;
6675 if (track->pid > l->max_pid)
6676 l->max_pid = track->pid;
6677
6678 cpumask_set_cpu(track->cpu,
6679 to_cpumask(l->cpus));
6680 }
6681 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6682 return 1;
6683 }
6684
6685 if (track->addr < caddr)
6686 end = pos;
6687 else if (track->addr == caddr && handle < chandle)
6688 end = pos;
6689 else if (track->addr == caddr && handle == chandle &&
6690 waste < cwaste)
6691 end = pos;
6692 else
6693 start = pos;
6694 }
6695
6696 /*
6697 * Not found. Insert new tracking element.
6698 */
6699 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6700 return 0;
6701
6702 l = t->loc + pos;
6703 if (pos < t->count)
6704 memmove(l + 1, l,
6705 (t->count - pos) * sizeof(struct location));
6706 t->count++;
6707 l->count = 1;
6708 l->addr = track->addr;
6709 l->sum_time = age;
6710 l->min_time = age;
6711 l->max_time = age;
6712 l->min_pid = track->pid;
6713 l->max_pid = track->pid;
6714 l->handle = handle;
6715 l->waste = waste;
6716 cpumask_clear(to_cpumask(l->cpus));
6717 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6718 nodes_clear(l->nodes);
6719 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6720 return 1;
6721 }
6722
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)6723 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6724 struct slab *slab, enum track_item alloc,
6725 unsigned long *obj_map)
6726 {
6727 void *addr = slab_address(slab);
6728 bool is_alloc = (alloc == TRACK_ALLOC);
6729 void *p;
6730
6731 __fill_map(obj_map, s, slab);
6732
6733 for_each_object(p, s, addr, slab->objects)
6734 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6735 add_location(t, s, get_track(s, p, alloc),
6736 is_alloc ? get_orig_size(s, p) :
6737 s->object_size);
6738 }
6739 #endif /* CONFIG_DEBUG_FS */
6740 #endif /* CONFIG_SLUB_DEBUG */
6741
6742 #ifdef SLAB_SUPPORTS_SYSFS
6743 enum slab_stat_type {
6744 SL_ALL, /* All slabs */
6745 SL_PARTIAL, /* Only partially allocated slabs */
6746 SL_CPU, /* Only slabs used for cpu caches */
6747 SL_OBJECTS, /* Determine allocated objects not slabs */
6748 SL_TOTAL /* Determine object capacity not slabs */
6749 };
6750
6751 #define SO_ALL (1 << SL_ALL)
6752 #define SO_PARTIAL (1 << SL_PARTIAL)
6753 #define SO_CPU (1 << SL_CPU)
6754 #define SO_OBJECTS (1 << SL_OBJECTS)
6755 #define SO_TOTAL (1 << SL_TOTAL)
6756
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)6757 static ssize_t show_slab_objects(struct kmem_cache *s,
6758 char *buf, unsigned long flags)
6759 {
6760 unsigned long total = 0;
6761 int node;
6762 int x;
6763 unsigned long *nodes;
6764 int len = 0;
6765
6766 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6767 if (!nodes)
6768 return -ENOMEM;
6769
6770 if (flags & SO_CPU) {
6771 int cpu;
6772
6773 for_each_possible_cpu(cpu) {
6774 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6775 cpu);
6776 int node;
6777 struct slab *slab;
6778
6779 slab = READ_ONCE(c->slab);
6780 if (!slab)
6781 continue;
6782
6783 node = slab_nid(slab);
6784 if (flags & SO_TOTAL)
6785 x = slab->objects;
6786 else if (flags & SO_OBJECTS)
6787 x = slab->inuse;
6788 else
6789 x = 1;
6790
6791 total += x;
6792 nodes[node] += x;
6793
6794 #ifdef CONFIG_SLUB_CPU_PARTIAL
6795 slab = slub_percpu_partial_read_once(c);
6796 if (slab) {
6797 node = slab_nid(slab);
6798 if (flags & SO_TOTAL)
6799 WARN_ON_ONCE(1);
6800 else if (flags & SO_OBJECTS)
6801 WARN_ON_ONCE(1);
6802 else
6803 x = data_race(slab->slabs);
6804 total += x;
6805 nodes[node] += x;
6806 }
6807 #endif
6808 }
6809 }
6810
6811 /*
6812 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6813 * already held which will conflict with an existing lock order:
6814 *
6815 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6816 *
6817 * We don't really need mem_hotplug_lock (to hold off
6818 * slab_mem_going_offline_callback) here because slab's memory hot
6819 * unplug code doesn't destroy the kmem_cache->node[] data.
6820 */
6821
6822 #ifdef CONFIG_SLUB_DEBUG
6823 if (flags & SO_ALL) {
6824 struct kmem_cache_node *n;
6825
6826 for_each_kmem_cache_node(s, node, n) {
6827
6828 if (flags & SO_TOTAL)
6829 x = node_nr_objs(n);
6830 else if (flags & SO_OBJECTS)
6831 x = node_nr_objs(n) - count_partial(n, count_free);
6832 else
6833 x = node_nr_slabs(n);
6834 total += x;
6835 nodes[node] += x;
6836 }
6837
6838 } else
6839 #endif
6840 if (flags & SO_PARTIAL) {
6841 struct kmem_cache_node *n;
6842
6843 for_each_kmem_cache_node(s, node, n) {
6844 if (flags & SO_TOTAL)
6845 x = count_partial(n, count_total);
6846 else if (flags & SO_OBJECTS)
6847 x = count_partial(n, count_inuse);
6848 else
6849 x = n->nr_partial;
6850 total += x;
6851 nodes[node] += x;
6852 }
6853 }
6854
6855 len += sysfs_emit_at(buf, len, "%lu", total);
6856 #ifdef CONFIG_NUMA
6857 for (node = 0; node < nr_node_ids; node++) {
6858 if (nodes[node])
6859 len += sysfs_emit_at(buf, len, " N%d=%lu",
6860 node, nodes[node]);
6861 }
6862 #endif
6863 len += sysfs_emit_at(buf, len, "\n");
6864 kfree(nodes);
6865
6866 return len;
6867 }
6868
6869 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6870 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6871
6872 struct slab_attribute {
6873 struct attribute attr;
6874 ssize_t (*show)(struct kmem_cache *s, char *buf);
6875 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6876 };
6877
6878 #define SLAB_ATTR_RO(_name) \
6879 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6880
6881 #define SLAB_ATTR(_name) \
6882 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6883
slab_size_show(struct kmem_cache * s,char * buf)6884 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6885 {
6886 return sysfs_emit(buf, "%u\n", s->size);
6887 }
6888 SLAB_ATTR_RO(slab_size);
6889
align_show(struct kmem_cache * s,char * buf)6890 static ssize_t align_show(struct kmem_cache *s, char *buf)
6891 {
6892 return sysfs_emit(buf, "%u\n", s->align);
6893 }
6894 SLAB_ATTR_RO(align);
6895
object_size_show(struct kmem_cache * s,char * buf)6896 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6897 {
6898 return sysfs_emit(buf, "%u\n", s->object_size);
6899 }
6900 SLAB_ATTR_RO(object_size);
6901
objs_per_slab_show(struct kmem_cache * s,char * buf)6902 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6903 {
6904 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6905 }
6906 SLAB_ATTR_RO(objs_per_slab);
6907
order_show(struct kmem_cache * s,char * buf)6908 static ssize_t order_show(struct kmem_cache *s, char *buf)
6909 {
6910 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6911 }
6912 SLAB_ATTR_RO(order);
6913
min_partial_show(struct kmem_cache * s,char * buf)6914 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6915 {
6916 return sysfs_emit(buf, "%lu\n", s->min_partial);
6917 }
6918
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)6919 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6920 size_t length)
6921 {
6922 unsigned long min;
6923 int err;
6924
6925 err = kstrtoul(buf, 10, &min);
6926 if (err)
6927 return err;
6928
6929 s->min_partial = min;
6930 return length;
6931 }
6932 SLAB_ATTR(min_partial);
6933
cpu_partial_show(struct kmem_cache * s,char * buf)6934 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6935 {
6936 unsigned int nr_partial = 0;
6937 #ifdef CONFIG_SLUB_CPU_PARTIAL
6938 nr_partial = s->cpu_partial;
6939 #endif
6940
6941 return sysfs_emit(buf, "%u\n", nr_partial);
6942 }
6943
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)6944 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6945 size_t length)
6946 {
6947 unsigned int objects;
6948 int err;
6949
6950 err = kstrtouint(buf, 10, &objects);
6951 if (err)
6952 return err;
6953 if (objects && !kmem_cache_has_cpu_partial(s))
6954 return -EINVAL;
6955
6956 slub_set_cpu_partial(s, objects);
6957 flush_all(s);
6958 return length;
6959 }
6960 SLAB_ATTR(cpu_partial);
6961
ctor_show(struct kmem_cache * s,char * buf)6962 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6963 {
6964 if (!s->ctor)
6965 return 0;
6966 return sysfs_emit(buf, "%pS\n", s->ctor);
6967 }
6968 SLAB_ATTR_RO(ctor);
6969
aliases_show(struct kmem_cache * s,char * buf)6970 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6971 {
6972 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6973 }
6974 SLAB_ATTR_RO(aliases);
6975
partial_show(struct kmem_cache * s,char * buf)6976 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6977 {
6978 return show_slab_objects(s, buf, SO_PARTIAL);
6979 }
6980 SLAB_ATTR_RO(partial);
6981
cpu_slabs_show(struct kmem_cache * s,char * buf)6982 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6983 {
6984 return show_slab_objects(s, buf, SO_CPU);
6985 }
6986 SLAB_ATTR_RO(cpu_slabs);
6987
objects_partial_show(struct kmem_cache * s,char * buf)6988 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6989 {
6990 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6991 }
6992 SLAB_ATTR_RO(objects_partial);
6993
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)6994 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6995 {
6996 int objects = 0;
6997 int slabs = 0;
6998 int cpu __maybe_unused;
6999 int len = 0;
7000
7001 #ifdef CONFIG_SLUB_CPU_PARTIAL
7002 for_each_online_cpu(cpu) {
7003 struct slab *slab;
7004
7005 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7006
7007 if (slab)
7008 slabs += data_race(slab->slabs);
7009 }
7010 #endif
7011
7012 /* Approximate half-full slabs, see slub_set_cpu_partial() */
7013 objects = (slabs * oo_objects(s->oo)) / 2;
7014 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
7015
7016 #ifdef CONFIG_SLUB_CPU_PARTIAL
7017 for_each_online_cpu(cpu) {
7018 struct slab *slab;
7019
7020 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7021 if (slab) {
7022 slabs = data_race(slab->slabs);
7023 objects = (slabs * oo_objects(s->oo)) / 2;
7024 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
7025 cpu, objects, slabs);
7026 }
7027 }
7028 #endif
7029 len += sysfs_emit_at(buf, len, "\n");
7030
7031 return len;
7032 }
7033 SLAB_ATTR_RO(slabs_cpu_partial);
7034
reclaim_account_show(struct kmem_cache * s,char * buf)7035 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
7036 {
7037 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
7038 }
7039 SLAB_ATTR_RO(reclaim_account);
7040
hwcache_align_show(struct kmem_cache * s,char * buf)7041 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
7042 {
7043 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
7044 }
7045 SLAB_ATTR_RO(hwcache_align);
7046
7047 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)7048 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
7049 {
7050 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
7051 }
7052 SLAB_ATTR_RO(cache_dma);
7053 #endif
7054
7055 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)7056 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
7057 {
7058 return sysfs_emit(buf, "%u\n", s->usersize);
7059 }
7060 SLAB_ATTR_RO(usersize);
7061 #endif
7062
destroy_by_rcu_show(struct kmem_cache * s,char * buf)7063 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
7064 {
7065 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
7066 }
7067 SLAB_ATTR_RO(destroy_by_rcu);
7068
7069 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)7070 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
7071 {
7072 return show_slab_objects(s, buf, SO_ALL);
7073 }
7074 SLAB_ATTR_RO(slabs);
7075
total_objects_show(struct kmem_cache * s,char * buf)7076 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
7077 {
7078 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
7079 }
7080 SLAB_ATTR_RO(total_objects);
7081
objects_show(struct kmem_cache * s,char * buf)7082 static ssize_t objects_show(struct kmem_cache *s, char *buf)
7083 {
7084 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
7085 }
7086 SLAB_ATTR_RO(objects);
7087
sanity_checks_show(struct kmem_cache * s,char * buf)7088 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
7089 {
7090 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
7091 }
7092 SLAB_ATTR_RO(sanity_checks);
7093
trace_show(struct kmem_cache * s,char * buf)7094 static ssize_t trace_show(struct kmem_cache *s, char *buf)
7095 {
7096 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
7097 }
7098 SLAB_ATTR_RO(trace);
7099
red_zone_show(struct kmem_cache * s,char * buf)7100 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
7101 {
7102 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
7103 }
7104
7105 SLAB_ATTR_RO(red_zone);
7106
poison_show(struct kmem_cache * s,char * buf)7107 static ssize_t poison_show(struct kmem_cache *s, char *buf)
7108 {
7109 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
7110 }
7111
7112 SLAB_ATTR_RO(poison);
7113
store_user_show(struct kmem_cache * s,char * buf)7114 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
7115 {
7116 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
7117 }
7118
7119 SLAB_ATTR_RO(store_user);
7120
validate_show(struct kmem_cache * s,char * buf)7121 static ssize_t validate_show(struct kmem_cache *s, char *buf)
7122 {
7123 return 0;
7124 }
7125
validate_store(struct kmem_cache * s,const char * buf,size_t length)7126 static ssize_t validate_store(struct kmem_cache *s,
7127 const char *buf, size_t length)
7128 {
7129 int ret = -EINVAL;
7130
7131 if (buf[0] == '1' && kmem_cache_debug(s)) {
7132 ret = validate_slab_cache(s);
7133 if (ret >= 0)
7134 ret = length;
7135 }
7136 return ret;
7137 }
7138 SLAB_ATTR(validate);
7139
7140 #endif /* CONFIG_SLUB_DEBUG */
7141
7142 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)7143 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
7144 {
7145 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
7146 }
7147
failslab_store(struct kmem_cache * s,const char * buf,size_t length)7148 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
7149 size_t length)
7150 {
7151 if (s->refcount > 1)
7152 return -EINVAL;
7153
7154 if (buf[0] == '1')
7155 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
7156 else
7157 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
7158
7159 return length;
7160 }
7161 SLAB_ATTR(failslab);
7162 #endif
7163
shrink_show(struct kmem_cache * s,char * buf)7164 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
7165 {
7166 return 0;
7167 }
7168
shrink_store(struct kmem_cache * s,const char * buf,size_t length)7169 static ssize_t shrink_store(struct kmem_cache *s,
7170 const char *buf, size_t length)
7171 {
7172 if (buf[0] == '1')
7173 kmem_cache_shrink(s);
7174 else
7175 return -EINVAL;
7176 return length;
7177 }
7178 SLAB_ATTR(shrink);
7179
7180 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)7181 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
7182 {
7183 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
7184 }
7185
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)7186 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
7187 const char *buf, size_t length)
7188 {
7189 unsigned int ratio;
7190 int err;
7191
7192 err = kstrtouint(buf, 10, &ratio);
7193 if (err)
7194 return err;
7195 if (ratio > 100)
7196 return -ERANGE;
7197
7198 s->remote_node_defrag_ratio = ratio * 10;
7199
7200 return length;
7201 }
7202 SLAB_ATTR(remote_node_defrag_ratio);
7203 #endif
7204
7205 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)7206 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
7207 {
7208 unsigned long sum = 0;
7209 int cpu;
7210 int len = 0;
7211 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
7212
7213 if (!data)
7214 return -ENOMEM;
7215
7216 for_each_online_cpu(cpu) {
7217 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
7218
7219 data[cpu] = x;
7220 sum += x;
7221 }
7222
7223 len += sysfs_emit_at(buf, len, "%lu", sum);
7224
7225 #ifdef CONFIG_SMP
7226 for_each_online_cpu(cpu) {
7227 if (data[cpu])
7228 len += sysfs_emit_at(buf, len, " C%d=%u",
7229 cpu, data[cpu]);
7230 }
7231 #endif
7232 kfree(data);
7233 len += sysfs_emit_at(buf, len, "\n");
7234
7235 return len;
7236 }
7237
clear_stat(struct kmem_cache * s,enum stat_item si)7238 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7239 {
7240 int cpu;
7241
7242 for_each_online_cpu(cpu)
7243 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7244 }
7245
7246 #define STAT_ATTR(si, text) \
7247 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
7248 { \
7249 return show_stat(s, buf, si); \
7250 } \
7251 static ssize_t text##_store(struct kmem_cache *s, \
7252 const char *buf, size_t length) \
7253 { \
7254 if (buf[0] != '0') \
7255 return -EINVAL; \
7256 clear_stat(s, si); \
7257 return length; \
7258 } \
7259 SLAB_ATTR(text); \
7260
7261 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7262 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7263 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7264 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7265 STAT_ATTR(FREE_FROZEN, free_frozen);
7266 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7267 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7268 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7269 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7270 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7271 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7272 STAT_ATTR(FREE_SLAB, free_slab);
7273 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7274 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7275 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7276 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7277 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7278 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7279 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7280 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7281 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7282 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7283 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7284 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7285 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7286 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7287 #endif /* CONFIG_SLUB_STATS */
7288
7289 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)7290 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7291 {
7292 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7293 }
7294
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)7295 static ssize_t skip_kfence_store(struct kmem_cache *s,
7296 const char *buf, size_t length)
7297 {
7298 int ret = length;
7299
7300 if (buf[0] == '0')
7301 s->flags &= ~SLAB_SKIP_KFENCE;
7302 else if (buf[0] == '1')
7303 s->flags |= SLAB_SKIP_KFENCE;
7304 else
7305 ret = -EINVAL;
7306
7307 return ret;
7308 }
7309 SLAB_ATTR(skip_kfence);
7310 #endif
7311
7312 static struct attribute *slab_attrs[] = {
7313 &slab_size_attr.attr,
7314 &object_size_attr.attr,
7315 &objs_per_slab_attr.attr,
7316 &order_attr.attr,
7317 &min_partial_attr.attr,
7318 &cpu_partial_attr.attr,
7319 &objects_partial_attr.attr,
7320 &partial_attr.attr,
7321 &cpu_slabs_attr.attr,
7322 &ctor_attr.attr,
7323 &aliases_attr.attr,
7324 &align_attr.attr,
7325 &hwcache_align_attr.attr,
7326 &reclaim_account_attr.attr,
7327 &destroy_by_rcu_attr.attr,
7328 &shrink_attr.attr,
7329 &slabs_cpu_partial_attr.attr,
7330 #ifdef CONFIG_SLUB_DEBUG
7331 &total_objects_attr.attr,
7332 &objects_attr.attr,
7333 &slabs_attr.attr,
7334 &sanity_checks_attr.attr,
7335 &trace_attr.attr,
7336 &red_zone_attr.attr,
7337 &poison_attr.attr,
7338 &store_user_attr.attr,
7339 &validate_attr.attr,
7340 #endif
7341 #ifdef CONFIG_ZONE_DMA
7342 &cache_dma_attr.attr,
7343 #endif
7344 #ifdef CONFIG_NUMA
7345 &remote_node_defrag_ratio_attr.attr,
7346 #endif
7347 #ifdef CONFIG_SLUB_STATS
7348 &alloc_fastpath_attr.attr,
7349 &alloc_slowpath_attr.attr,
7350 &free_fastpath_attr.attr,
7351 &free_slowpath_attr.attr,
7352 &free_frozen_attr.attr,
7353 &free_add_partial_attr.attr,
7354 &free_remove_partial_attr.attr,
7355 &alloc_from_partial_attr.attr,
7356 &alloc_slab_attr.attr,
7357 &alloc_refill_attr.attr,
7358 &alloc_node_mismatch_attr.attr,
7359 &free_slab_attr.attr,
7360 &cpuslab_flush_attr.attr,
7361 &deactivate_full_attr.attr,
7362 &deactivate_empty_attr.attr,
7363 &deactivate_to_head_attr.attr,
7364 &deactivate_to_tail_attr.attr,
7365 &deactivate_remote_frees_attr.attr,
7366 &deactivate_bypass_attr.attr,
7367 &order_fallback_attr.attr,
7368 &cmpxchg_double_fail_attr.attr,
7369 &cmpxchg_double_cpu_fail_attr.attr,
7370 &cpu_partial_alloc_attr.attr,
7371 &cpu_partial_free_attr.attr,
7372 &cpu_partial_node_attr.attr,
7373 &cpu_partial_drain_attr.attr,
7374 #endif
7375 #ifdef CONFIG_FAILSLAB
7376 &failslab_attr.attr,
7377 #endif
7378 #ifdef CONFIG_HARDENED_USERCOPY
7379 &usersize_attr.attr,
7380 #endif
7381 #ifdef CONFIG_KFENCE
7382 &skip_kfence_attr.attr,
7383 #endif
7384
7385 NULL
7386 };
7387
7388 static const struct attribute_group slab_attr_group = {
7389 .attrs = slab_attrs,
7390 };
7391
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)7392 static ssize_t slab_attr_show(struct kobject *kobj,
7393 struct attribute *attr,
7394 char *buf)
7395 {
7396 struct slab_attribute *attribute;
7397 struct kmem_cache *s;
7398
7399 attribute = to_slab_attr(attr);
7400 s = to_slab(kobj);
7401
7402 if (!attribute->show)
7403 return -EIO;
7404
7405 return attribute->show(s, buf);
7406 }
7407
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)7408 static ssize_t slab_attr_store(struct kobject *kobj,
7409 struct attribute *attr,
7410 const char *buf, size_t len)
7411 {
7412 struct slab_attribute *attribute;
7413 struct kmem_cache *s;
7414
7415 attribute = to_slab_attr(attr);
7416 s = to_slab(kobj);
7417
7418 if (!attribute->store)
7419 return -EIO;
7420
7421 return attribute->store(s, buf, len);
7422 }
7423
kmem_cache_release(struct kobject * k)7424 static void kmem_cache_release(struct kobject *k)
7425 {
7426 slab_kmem_cache_release(to_slab(k));
7427 }
7428
7429 static const struct sysfs_ops slab_sysfs_ops = {
7430 .show = slab_attr_show,
7431 .store = slab_attr_store,
7432 };
7433
7434 static const struct kobj_type slab_ktype = {
7435 .sysfs_ops = &slab_sysfs_ops,
7436 .release = kmem_cache_release,
7437 };
7438
7439 static struct kset *slab_kset;
7440
cache_kset(struct kmem_cache * s)7441 static inline struct kset *cache_kset(struct kmem_cache *s)
7442 {
7443 return slab_kset;
7444 }
7445
7446 #define ID_STR_LENGTH 32
7447
7448 /* Create a unique string id for a slab cache:
7449 *
7450 * Format :[flags-]size
7451 */
create_unique_id(struct kmem_cache * s)7452 static char *create_unique_id(struct kmem_cache *s)
7453 {
7454 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7455 char *p = name;
7456
7457 if (!name)
7458 return ERR_PTR(-ENOMEM);
7459
7460 *p++ = ':';
7461 /*
7462 * First flags affecting slabcache operations. We will only
7463 * get here for aliasable slabs so we do not need to support
7464 * too many flags. The flags here must cover all flags that
7465 * are matched during merging to guarantee that the id is
7466 * unique.
7467 */
7468 if (s->flags & SLAB_CACHE_DMA)
7469 *p++ = 'd';
7470 if (s->flags & SLAB_CACHE_DMA32)
7471 *p++ = 'D';
7472 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7473 *p++ = 'a';
7474 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7475 *p++ = 'F';
7476 if (s->flags & SLAB_ACCOUNT)
7477 *p++ = 'A';
7478 if (p != name + 1)
7479 *p++ = '-';
7480 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7481
7482 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7483 kfree(name);
7484 return ERR_PTR(-EINVAL);
7485 }
7486 kmsan_unpoison_memory(name, p - name);
7487 return name;
7488 }
7489
sysfs_slab_add(struct kmem_cache * s)7490 static int sysfs_slab_add(struct kmem_cache *s)
7491 {
7492 int err;
7493 const char *name;
7494 struct kset *kset = cache_kset(s);
7495 int unmergeable = slab_unmergeable(s);
7496
7497 if (!unmergeable && disable_higher_order_debug &&
7498 (slub_debug & DEBUG_METADATA_FLAGS))
7499 unmergeable = 1;
7500
7501 if (unmergeable) {
7502 /*
7503 * Slabcache can never be merged so we can use the name proper.
7504 * This is typically the case for debug situations. In that
7505 * case we can catch duplicate names easily.
7506 */
7507 sysfs_remove_link(&slab_kset->kobj, s->name);
7508 name = s->name;
7509 } else {
7510 /*
7511 * Create a unique name for the slab as a target
7512 * for the symlinks.
7513 */
7514 name = create_unique_id(s);
7515 if (IS_ERR(name))
7516 return PTR_ERR(name);
7517 }
7518
7519 s->kobj.kset = kset;
7520 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7521 if (err)
7522 goto out;
7523
7524 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7525 if (err)
7526 goto out_del_kobj;
7527
7528 if (!unmergeable) {
7529 /* Setup first alias */
7530 sysfs_slab_alias(s, s->name);
7531 }
7532 out:
7533 if (!unmergeable)
7534 kfree(name);
7535 return err;
7536 out_del_kobj:
7537 kobject_del(&s->kobj);
7538 goto out;
7539 }
7540
sysfs_slab_unlink(struct kmem_cache * s)7541 void sysfs_slab_unlink(struct kmem_cache *s)
7542 {
7543 if (s->kobj.state_in_sysfs)
7544 kobject_del(&s->kobj);
7545 }
7546
sysfs_slab_release(struct kmem_cache * s)7547 void sysfs_slab_release(struct kmem_cache *s)
7548 {
7549 kobject_put(&s->kobj);
7550 }
7551
7552 /*
7553 * Need to buffer aliases during bootup until sysfs becomes
7554 * available lest we lose that information.
7555 */
7556 struct saved_alias {
7557 struct kmem_cache *s;
7558 const char *name;
7559 struct saved_alias *next;
7560 };
7561
7562 static struct saved_alias *alias_list;
7563
sysfs_slab_alias(struct kmem_cache * s,const char * name)7564 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7565 {
7566 struct saved_alias *al;
7567
7568 if (slab_state == FULL) {
7569 /*
7570 * If we have a leftover link then remove it.
7571 */
7572 sysfs_remove_link(&slab_kset->kobj, name);
7573 /*
7574 * The original cache may have failed to generate sysfs file.
7575 * In that case, sysfs_create_link() returns -ENOENT and
7576 * symbolic link creation is skipped.
7577 */
7578 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7579 }
7580
7581 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7582 if (!al)
7583 return -ENOMEM;
7584
7585 al->s = s;
7586 al->name = name;
7587 al->next = alias_list;
7588 alias_list = al;
7589 kmsan_unpoison_memory(al, sizeof(*al));
7590 return 0;
7591 }
7592
slab_sysfs_init(void)7593 static int __init slab_sysfs_init(void)
7594 {
7595 struct kmem_cache *s;
7596 int err;
7597
7598 mutex_lock(&slab_mutex);
7599
7600 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7601 if (!slab_kset) {
7602 mutex_unlock(&slab_mutex);
7603 pr_err("Cannot register slab subsystem.\n");
7604 return -ENOMEM;
7605 }
7606
7607 slab_state = FULL;
7608
7609 list_for_each_entry(s, &slab_caches, list) {
7610 err = sysfs_slab_add(s);
7611 if (err)
7612 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7613 s->name);
7614 }
7615
7616 while (alias_list) {
7617 struct saved_alias *al = alias_list;
7618
7619 alias_list = alias_list->next;
7620 err = sysfs_slab_alias(al->s, al->name);
7621 if (err)
7622 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7623 al->name);
7624 kfree(al);
7625 }
7626
7627 mutex_unlock(&slab_mutex);
7628 return 0;
7629 }
7630 late_initcall(slab_sysfs_init);
7631 #endif /* SLAB_SUPPORTS_SYSFS */
7632
7633 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)7634 static int slab_debugfs_show(struct seq_file *seq, void *v)
7635 {
7636 struct loc_track *t = seq->private;
7637 struct location *l;
7638 unsigned long idx;
7639
7640 idx = (unsigned long) t->idx;
7641 if (idx < t->count) {
7642 l = &t->loc[idx];
7643
7644 seq_printf(seq, "%7ld ", l->count);
7645
7646 if (l->addr)
7647 seq_printf(seq, "%pS", (void *)l->addr);
7648 else
7649 seq_puts(seq, "<not-available>");
7650
7651 if (l->waste)
7652 seq_printf(seq, " waste=%lu/%lu",
7653 l->count * l->waste, l->waste);
7654
7655 if (l->sum_time != l->min_time) {
7656 seq_printf(seq, " age=%ld/%llu/%ld",
7657 l->min_time, div_u64(l->sum_time, l->count),
7658 l->max_time);
7659 } else
7660 seq_printf(seq, " age=%ld", l->min_time);
7661
7662 if (l->min_pid != l->max_pid)
7663 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7664 else
7665 seq_printf(seq, " pid=%ld",
7666 l->min_pid);
7667
7668 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7669 seq_printf(seq, " cpus=%*pbl",
7670 cpumask_pr_args(to_cpumask(l->cpus)));
7671
7672 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7673 seq_printf(seq, " nodes=%*pbl",
7674 nodemask_pr_args(&l->nodes));
7675
7676 #ifdef CONFIG_STACKDEPOT
7677 {
7678 depot_stack_handle_t handle;
7679 unsigned long *entries;
7680 unsigned int nr_entries, j;
7681
7682 handle = READ_ONCE(l->handle);
7683 if (handle) {
7684 nr_entries = stack_depot_fetch(handle, &entries);
7685 seq_puts(seq, "\n");
7686 for (j = 0; j < nr_entries; j++)
7687 seq_printf(seq, " %pS\n", (void *)entries[j]);
7688 }
7689 }
7690 #endif
7691 seq_puts(seq, "\n");
7692 }
7693
7694 if (!idx && !t->count)
7695 seq_puts(seq, "No data\n");
7696
7697 return 0;
7698 }
7699
slab_debugfs_stop(struct seq_file * seq,void * v)7700 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7701 {
7702 }
7703
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)7704 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7705 {
7706 struct loc_track *t = seq->private;
7707
7708 t->idx = ++(*ppos);
7709 if (*ppos <= t->count)
7710 return ppos;
7711
7712 return NULL;
7713 }
7714
cmp_loc_by_count(const void * a,const void * b,const void * data)7715 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7716 {
7717 struct location *loc1 = (struct location *)a;
7718 struct location *loc2 = (struct location *)b;
7719
7720 if (loc1->count > loc2->count)
7721 return -1;
7722 else
7723 return 1;
7724 }
7725
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)7726 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7727 {
7728 struct loc_track *t = seq->private;
7729
7730 t->idx = *ppos;
7731 return ppos;
7732 }
7733
7734 static const struct seq_operations slab_debugfs_sops = {
7735 .start = slab_debugfs_start,
7736 .next = slab_debugfs_next,
7737 .stop = slab_debugfs_stop,
7738 .show = slab_debugfs_show,
7739 };
7740
slab_debug_trace_open(struct inode * inode,struct file * filep)7741 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7742 {
7743
7744 struct kmem_cache_node *n;
7745 enum track_item alloc;
7746 int node;
7747 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7748 sizeof(struct loc_track));
7749 struct kmem_cache *s = file_inode(filep)->i_private;
7750 unsigned long *obj_map;
7751
7752 if (!t)
7753 return -ENOMEM;
7754
7755 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7756 if (!obj_map) {
7757 seq_release_private(inode, filep);
7758 return -ENOMEM;
7759 }
7760
7761 alloc = debugfs_get_aux_num(filep);
7762
7763 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7764 bitmap_free(obj_map);
7765 seq_release_private(inode, filep);
7766 return -ENOMEM;
7767 }
7768
7769 for_each_kmem_cache_node(s, node, n) {
7770 unsigned long flags;
7771 struct slab *slab;
7772
7773 if (!node_nr_slabs(n))
7774 continue;
7775
7776 spin_lock_irqsave(&n->list_lock, flags);
7777 list_for_each_entry(slab, &n->partial, slab_list)
7778 process_slab(t, s, slab, alloc, obj_map);
7779 list_for_each_entry(slab, &n->full, slab_list)
7780 process_slab(t, s, slab, alloc, obj_map);
7781 spin_unlock_irqrestore(&n->list_lock, flags);
7782 }
7783
7784 /* Sort locations by count */
7785 sort_r(t->loc, t->count, sizeof(struct location),
7786 cmp_loc_by_count, NULL, NULL);
7787
7788 bitmap_free(obj_map);
7789 return 0;
7790 }
7791
slab_debug_trace_release(struct inode * inode,struct file * file)7792 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7793 {
7794 struct seq_file *seq = file->private_data;
7795 struct loc_track *t = seq->private;
7796
7797 free_loc_track(t);
7798 return seq_release_private(inode, file);
7799 }
7800
7801 static const struct file_operations slab_debugfs_fops = {
7802 .open = slab_debug_trace_open,
7803 .read = seq_read,
7804 .llseek = seq_lseek,
7805 .release = slab_debug_trace_release,
7806 };
7807
debugfs_slab_add(struct kmem_cache * s)7808 static void debugfs_slab_add(struct kmem_cache *s)
7809 {
7810 struct dentry *slab_cache_dir;
7811
7812 if (unlikely(!slab_debugfs_root))
7813 return;
7814
7815 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7816
7817 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7818 TRACK_ALLOC, &slab_debugfs_fops);
7819
7820 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7821 TRACK_FREE, &slab_debugfs_fops);
7822 }
7823
debugfs_slab_release(struct kmem_cache * s)7824 void debugfs_slab_release(struct kmem_cache *s)
7825 {
7826 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7827 }
7828
slab_debugfs_init(void)7829 static int __init slab_debugfs_init(void)
7830 {
7831 struct kmem_cache *s;
7832
7833 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7834
7835 list_for_each_entry(s, &slab_caches, list)
7836 if (s->flags & SLAB_STORE_USER)
7837 debugfs_slab_add(s);
7838
7839 return 0;
7840
7841 }
7842 __initcall(slab_debugfs_init);
7843 #endif
7844 /*
7845 * The /proc/slabinfo ABI
7846 */
7847 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)7848 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7849 {
7850 unsigned long nr_slabs = 0;
7851 unsigned long nr_objs = 0;
7852 unsigned long nr_free = 0;
7853 int node;
7854 struct kmem_cache_node *n;
7855
7856 for_each_kmem_cache_node(s, node, n) {
7857 nr_slabs += node_nr_slabs(n);
7858 nr_objs += node_nr_objs(n);
7859 nr_free += count_partial_free_approx(n);
7860 }
7861
7862 sinfo->active_objs = nr_objs - nr_free;
7863 sinfo->num_objs = nr_objs;
7864 sinfo->active_slabs = nr_slabs;
7865 sinfo->num_slabs = nr_slabs;
7866 sinfo->objects_per_slab = oo_objects(s->oo);
7867 sinfo->cache_order = oo_order(s->oo);
7868 }
7869 #endif /* CONFIG_SLUB_DEBUG */
7870