1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/hw_breakpoint.h>
38 #include <linux/uaccess.h>
39 #include <linux/pkeys.h>
40 #include <linux/seq_buf.h>
41
42 #include <asm/interrupt.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/machdep.h>
47 #include <asm/time.h>
48 #include <asm/runlatch.h>
49 #include <asm/syscalls.h>
50 #include <asm/switch_to.h>
51 #include <asm/tm.h>
52 #include <asm/debug.h>
53 #ifdef CONFIG_PPC64
54 #include <asm/firmware.h>
55 #include <asm/hw_irq.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <asm/exec.h>
59 #include <asm/livepatch.h>
60 #include <asm/cpu_has_feature.h>
61 #include <asm/asm-prototypes.h>
62 #include <asm/stacktrace.h>
63 #include <asm/hw_breakpoint.h>
64
65 #include <linux/kprobes.h>
66 #include <linux/kdebug.h>
67
68 /* Transactional Memory debug */
69 #ifdef TM_DEBUG_SW
70 #define TM_DEBUG(x...) printk(KERN_INFO x)
71 #else
72 #define TM_DEBUG(x...) do { } while(0)
73 #endif
74
75 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
76 /*
77 * Are we running in "Suspend disabled" mode? If so we have to block any
78 * sigreturn that would get us into suspended state, and we also warn in some
79 * other paths that we should never reach with suspend disabled.
80 */
81 bool tm_suspend_disabled __ro_after_init = false;
82
check_if_tm_restore_required(struct task_struct * tsk)83 static void check_if_tm_restore_required(struct task_struct *tsk)
84 {
85 /*
86 * If we are saving the current thread's registers, and the
87 * thread is in a transactional state, set the TIF_RESTORE_TM
88 * bit so that we know to restore the registers before
89 * returning to userspace.
90 */
91 if (tsk == current && tsk->thread.regs &&
92 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
93 !test_thread_flag(TIF_RESTORE_TM)) {
94 regs_set_return_msr(&tsk->thread.ckpt_regs,
95 tsk->thread.regs->msr);
96 set_thread_flag(TIF_RESTORE_TM);
97 }
98 }
99
100 #else
check_if_tm_restore_required(struct task_struct * tsk)101 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
102 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
103
104 bool strict_msr_control;
105 EXPORT_SYMBOL(strict_msr_control);
106
enable_strict_msr_control(char * str)107 static int __init enable_strict_msr_control(char *str)
108 {
109 strict_msr_control = true;
110 pr_info("Enabling strict facility control\n");
111
112 return 0;
113 }
114 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
115
116 /* notrace because it's called by restore_math */
msr_check_and_set(unsigned long bits)117 unsigned long notrace msr_check_and_set(unsigned long bits)
118 {
119 unsigned long oldmsr = mfmsr();
120 unsigned long newmsr;
121
122 newmsr = oldmsr | bits;
123
124 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
125 newmsr |= MSR_VSX;
126
127 if (oldmsr != newmsr)
128 newmsr = mtmsr_isync_irqsafe(newmsr);
129
130 return newmsr;
131 }
132 EXPORT_SYMBOL_GPL(msr_check_and_set);
133
134 /* notrace because it's called by restore_math */
__msr_check_and_clear(unsigned long bits)135 void notrace __msr_check_and_clear(unsigned long bits)
136 {
137 unsigned long oldmsr = mfmsr();
138 unsigned long newmsr;
139
140 newmsr = oldmsr & ~bits;
141
142 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143 newmsr &= ~MSR_VSX;
144
145 if (oldmsr != newmsr)
146 mtmsr_isync_irqsafe(newmsr);
147 }
148 EXPORT_SYMBOL(__msr_check_and_clear);
149
150 #ifdef CONFIG_PPC_FPU
__giveup_fpu(struct task_struct * tsk)151 static void __giveup_fpu(struct task_struct *tsk)
152 {
153 unsigned long msr;
154
155 save_fpu(tsk);
156 msr = tsk->thread.regs->msr;
157 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
158 if (cpu_has_feature(CPU_FTR_VSX))
159 msr &= ~MSR_VSX;
160 regs_set_return_msr(tsk->thread.regs, msr);
161 }
162
giveup_fpu(struct task_struct * tsk)163 void giveup_fpu(struct task_struct *tsk)
164 {
165 check_if_tm_restore_required(tsk);
166
167 msr_check_and_set(MSR_FP);
168 __giveup_fpu(tsk);
169 msr_check_and_clear(MSR_FP);
170 }
171 EXPORT_SYMBOL(giveup_fpu);
172
173 /*
174 * Make sure the floating-point register state in the
175 * the thread_struct is up to date for task tsk.
176 */
flush_fp_to_thread(struct task_struct * tsk)177 void flush_fp_to_thread(struct task_struct *tsk)
178 {
179 if (tsk->thread.regs) {
180 /*
181 * We need to disable preemption here because if we didn't,
182 * another process could get scheduled after the regs->msr
183 * test but before we have finished saving the FP registers
184 * to the thread_struct. That process could take over the
185 * FPU, and then when we get scheduled again we would store
186 * bogus values for the remaining FP registers.
187 */
188 preempt_disable();
189 if (tsk->thread.regs->msr & MSR_FP) {
190 /*
191 * This should only ever be called for current or
192 * for a stopped child process. Since we save away
193 * the FP register state on context switch,
194 * there is something wrong if a stopped child appears
195 * to still have its FP state in the CPU registers.
196 */
197 BUG_ON(tsk != current);
198 giveup_fpu(tsk);
199 }
200 preempt_enable();
201 }
202 }
203 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
204
enable_kernel_fp(void)205 void enable_kernel_fp(void)
206 {
207 unsigned long cpumsr;
208
209 WARN_ON(preemptible());
210
211 cpumsr = msr_check_and_set(MSR_FP);
212
213 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
214 check_if_tm_restore_required(current);
215 /*
216 * If a thread has already been reclaimed then the
217 * checkpointed registers are on the CPU but have definitely
218 * been saved by the reclaim code. Don't need to and *cannot*
219 * giveup as this would save to the 'live' structure not the
220 * checkpointed structure.
221 */
222 if (!MSR_TM_ACTIVE(cpumsr) &&
223 MSR_TM_ACTIVE(current->thread.regs->msr))
224 return;
225 __giveup_fpu(current);
226 }
227 }
228 EXPORT_SYMBOL(enable_kernel_fp);
229 #else
__giveup_fpu(struct task_struct * tsk)230 static inline void __giveup_fpu(struct task_struct *tsk) { }
231 #endif /* CONFIG_PPC_FPU */
232
233 #ifdef CONFIG_ALTIVEC
__giveup_altivec(struct task_struct * tsk)234 static void __giveup_altivec(struct task_struct *tsk)
235 {
236 unsigned long msr;
237
238 save_altivec(tsk);
239 msr = tsk->thread.regs->msr;
240 msr &= ~MSR_VEC;
241 if (cpu_has_feature(CPU_FTR_VSX))
242 msr &= ~MSR_VSX;
243 regs_set_return_msr(tsk->thread.regs, msr);
244 }
245
giveup_altivec(struct task_struct * tsk)246 void giveup_altivec(struct task_struct *tsk)
247 {
248 check_if_tm_restore_required(tsk);
249
250 msr_check_and_set(MSR_VEC);
251 __giveup_altivec(tsk);
252 msr_check_and_clear(MSR_VEC);
253 }
254 EXPORT_SYMBOL(giveup_altivec);
255
enable_kernel_altivec(void)256 void enable_kernel_altivec(void)
257 {
258 unsigned long cpumsr;
259
260 WARN_ON(preemptible());
261
262 cpumsr = msr_check_and_set(MSR_VEC);
263
264 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
265 check_if_tm_restore_required(current);
266 /*
267 * If a thread has already been reclaimed then the
268 * checkpointed registers are on the CPU but have definitely
269 * been saved by the reclaim code. Don't need to and *cannot*
270 * giveup as this would save to the 'live' structure not the
271 * checkpointed structure.
272 */
273 if (!MSR_TM_ACTIVE(cpumsr) &&
274 MSR_TM_ACTIVE(current->thread.regs->msr))
275 return;
276 __giveup_altivec(current);
277 }
278 }
279 EXPORT_SYMBOL(enable_kernel_altivec);
280
281 /*
282 * Make sure the VMX/Altivec register state in the
283 * the thread_struct is up to date for task tsk.
284 */
flush_altivec_to_thread(struct task_struct * tsk)285 void flush_altivec_to_thread(struct task_struct *tsk)
286 {
287 if (tsk->thread.regs) {
288 preempt_disable();
289 if (tsk->thread.regs->msr & MSR_VEC) {
290 BUG_ON(tsk != current);
291 giveup_altivec(tsk);
292 }
293 preempt_enable();
294 }
295 }
296 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
297 #endif /* CONFIG_ALTIVEC */
298
299 #ifdef CONFIG_VSX
__giveup_vsx(struct task_struct * tsk)300 static void __giveup_vsx(struct task_struct *tsk)
301 {
302 unsigned long msr = tsk->thread.regs->msr;
303
304 /*
305 * We should never be setting MSR_VSX without also setting
306 * MSR_FP and MSR_VEC
307 */
308 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
309
310 /* __giveup_fpu will clear MSR_VSX */
311 if (msr & MSR_FP)
312 __giveup_fpu(tsk);
313 if (msr & MSR_VEC)
314 __giveup_altivec(tsk);
315 }
316
giveup_vsx(struct task_struct * tsk)317 static void giveup_vsx(struct task_struct *tsk)
318 {
319 check_if_tm_restore_required(tsk);
320
321 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
322 __giveup_vsx(tsk);
323 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
324 }
325
enable_kernel_vsx(void)326 void enable_kernel_vsx(void)
327 {
328 unsigned long cpumsr;
329
330 WARN_ON(preemptible());
331
332 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
333
334 if (current->thread.regs &&
335 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
336 check_if_tm_restore_required(current);
337 /*
338 * If a thread has already been reclaimed then the
339 * checkpointed registers are on the CPU but have definitely
340 * been saved by the reclaim code. Don't need to and *cannot*
341 * giveup as this would save to the 'live' structure not the
342 * checkpointed structure.
343 */
344 if (!MSR_TM_ACTIVE(cpumsr) &&
345 MSR_TM_ACTIVE(current->thread.regs->msr))
346 return;
347 __giveup_vsx(current);
348 }
349 }
350 EXPORT_SYMBOL(enable_kernel_vsx);
351
flush_vsx_to_thread(struct task_struct * tsk)352 void flush_vsx_to_thread(struct task_struct *tsk)
353 {
354 if (tsk->thread.regs) {
355 preempt_disable();
356 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
357 BUG_ON(tsk != current);
358 giveup_vsx(tsk);
359 }
360 preempt_enable();
361 }
362 }
363 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
364 #endif /* CONFIG_VSX */
365
366 #ifdef CONFIG_SPE
giveup_spe(struct task_struct * tsk)367 void giveup_spe(struct task_struct *tsk)
368 {
369 check_if_tm_restore_required(tsk);
370
371 msr_check_and_set(MSR_SPE);
372 __giveup_spe(tsk);
373 msr_check_and_clear(MSR_SPE);
374 }
375 EXPORT_SYMBOL(giveup_spe);
376
enable_kernel_spe(void)377 void enable_kernel_spe(void)
378 {
379 WARN_ON(preemptible());
380
381 msr_check_and_set(MSR_SPE);
382
383 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
384 check_if_tm_restore_required(current);
385 __giveup_spe(current);
386 }
387 }
388 EXPORT_SYMBOL(enable_kernel_spe);
389
flush_spe_to_thread(struct task_struct * tsk)390 void flush_spe_to_thread(struct task_struct *tsk)
391 {
392 if (tsk->thread.regs) {
393 preempt_disable();
394 if (tsk->thread.regs->msr & MSR_SPE) {
395 BUG_ON(tsk != current);
396 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
397 giveup_spe(tsk);
398 }
399 preempt_enable();
400 }
401 }
402 #endif /* CONFIG_SPE */
403
404 static unsigned long msr_all_available;
405
init_msr_all_available(void)406 static int __init init_msr_all_available(void)
407 {
408 if (IS_ENABLED(CONFIG_PPC_FPU))
409 msr_all_available |= MSR_FP;
410 if (cpu_has_feature(CPU_FTR_ALTIVEC))
411 msr_all_available |= MSR_VEC;
412 if (cpu_has_feature(CPU_FTR_VSX))
413 msr_all_available |= MSR_VSX;
414 if (cpu_has_feature(CPU_FTR_SPE))
415 msr_all_available |= MSR_SPE;
416
417 return 0;
418 }
419 early_initcall(init_msr_all_available);
420
giveup_all(struct task_struct * tsk)421 void giveup_all(struct task_struct *tsk)
422 {
423 unsigned long usermsr;
424
425 if (!tsk->thread.regs)
426 return;
427
428 check_if_tm_restore_required(tsk);
429
430 usermsr = tsk->thread.regs->msr;
431
432 if ((usermsr & msr_all_available) == 0)
433 return;
434
435 msr_check_and_set(msr_all_available);
436
437 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
438
439 if (usermsr & MSR_FP)
440 __giveup_fpu(tsk);
441 if (usermsr & MSR_VEC)
442 __giveup_altivec(tsk);
443 if (usermsr & MSR_SPE)
444 __giveup_spe(tsk);
445
446 msr_check_and_clear(msr_all_available);
447 }
448 EXPORT_SYMBOL(giveup_all);
449
450 #ifdef CONFIG_PPC_BOOK3S_64
451 #ifdef CONFIG_PPC_FPU
should_restore_fp(void)452 static bool should_restore_fp(void)
453 {
454 if (current->thread.load_fp) {
455 current->thread.load_fp++;
456 return true;
457 }
458 return false;
459 }
460
do_restore_fp(void)461 static void do_restore_fp(void)
462 {
463 load_fp_state(¤t->thread.fp_state);
464 }
465 #else
should_restore_fp(void)466 static bool should_restore_fp(void) { return false; }
do_restore_fp(void)467 static void do_restore_fp(void) { }
468 #endif /* CONFIG_PPC_FPU */
469
470 #ifdef CONFIG_ALTIVEC
should_restore_altivec(void)471 static bool should_restore_altivec(void)
472 {
473 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
474 current->thread.load_vec++;
475 return true;
476 }
477 return false;
478 }
479
do_restore_altivec(void)480 static void do_restore_altivec(void)
481 {
482 load_vr_state(¤t->thread.vr_state);
483 current->thread.used_vr = 1;
484 }
485 #else
should_restore_altivec(void)486 static bool should_restore_altivec(void) { return false; }
do_restore_altivec(void)487 static void do_restore_altivec(void) { }
488 #endif /* CONFIG_ALTIVEC */
489
should_restore_vsx(void)490 static bool should_restore_vsx(void)
491 {
492 if (cpu_has_feature(CPU_FTR_VSX))
493 return true;
494 return false;
495 }
496 #ifdef CONFIG_VSX
do_restore_vsx(void)497 static void do_restore_vsx(void)
498 {
499 current->thread.used_vsr = 1;
500 }
501 #else
do_restore_vsx(void)502 static void do_restore_vsx(void) { }
503 #endif /* CONFIG_VSX */
504
505 /*
506 * The exception exit path calls restore_math() with interrupts hard disabled
507 * but the soft irq state not "reconciled". ftrace code that calls
508 * local_irq_save/restore causes warnings.
509 *
510 * Rather than complicate the exit path, just don't trace restore_math. This
511 * could be done by having ftrace entry code check for this un-reconciled
512 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
513 * temporarily fix it up for the duration of the ftrace call.
514 */
restore_math(struct pt_regs * regs)515 void notrace restore_math(struct pt_regs *regs)
516 {
517 unsigned long msr;
518 unsigned long new_msr = 0;
519
520 msr = regs->msr;
521
522 /*
523 * new_msr tracks the facilities that are to be restored. Only reload
524 * if the bit is not set in the user MSR (if it is set, the registers
525 * are live for the user thread).
526 */
527 if ((!(msr & MSR_FP)) && should_restore_fp())
528 new_msr |= MSR_FP;
529
530 if ((!(msr & MSR_VEC)) && should_restore_altivec())
531 new_msr |= MSR_VEC;
532
533 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
534 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
535 new_msr |= MSR_VSX;
536 }
537
538 if (new_msr) {
539 unsigned long fpexc_mode = 0;
540
541 msr_check_and_set(new_msr);
542
543 if (new_msr & MSR_FP) {
544 do_restore_fp();
545
546 // This also covers VSX, because VSX implies FP
547 fpexc_mode = current->thread.fpexc_mode;
548 }
549
550 if (new_msr & MSR_VEC)
551 do_restore_altivec();
552
553 if (new_msr & MSR_VSX)
554 do_restore_vsx();
555
556 msr_check_and_clear(new_msr);
557
558 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
559 }
560 }
561 #endif /* CONFIG_PPC_BOOK3S_64 */
562
save_all(struct task_struct * tsk)563 static void save_all(struct task_struct *tsk)
564 {
565 unsigned long usermsr;
566
567 if (!tsk->thread.regs)
568 return;
569
570 usermsr = tsk->thread.regs->msr;
571
572 if ((usermsr & msr_all_available) == 0)
573 return;
574
575 msr_check_and_set(msr_all_available);
576
577 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
578
579 if (usermsr & MSR_FP)
580 save_fpu(tsk);
581
582 if (usermsr & MSR_VEC)
583 save_altivec(tsk);
584
585 if (usermsr & MSR_SPE)
586 __giveup_spe(tsk);
587
588 msr_check_and_clear(msr_all_available);
589 }
590
flush_all_to_thread(struct task_struct * tsk)591 void flush_all_to_thread(struct task_struct *tsk)
592 {
593 if (tsk->thread.regs) {
594 preempt_disable();
595 BUG_ON(tsk != current);
596 #ifdef CONFIG_SPE
597 if (tsk->thread.regs->msr & MSR_SPE)
598 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599 #endif
600 save_all(tsk);
601
602 preempt_enable();
603 }
604 }
605 EXPORT_SYMBOL(flush_all_to_thread);
606
607 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int breakpt)608 void do_send_trap(struct pt_regs *regs, unsigned long address,
609 unsigned long error_code, int breakpt)
610 {
611 current->thread.trap_nr = TRAP_HWBKPT;
612 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
613 11, SIGSEGV) == NOTIFY_STOP)
614 return;
615
616 /* Deliver the signal to userspace */
617 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
618 (void __user *)address);
619 }
620 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
621
do_break_handler(struct pt_regs * regs)622 static void do_break_handler(struct pt_regs *regs)
623 {
624 struct arch_hw_breakpoint null_brk = {0};
625 struct arch_hw_breakpoint *info;
626 ppc_inst_t instr = ppc_inst(0);
627 int type = 0;
628 int size = 0;
629 unsigned long ea;
630 int i;
631
632 /*
633 * If underneath hw supports only one watchpoint, we know it
634 * caused exception. 8xx also falls into this category.
635 */
636 if (nr_wp_slots() == 1) {
637 __set_breakpoint(0, &null_brk);
638 current->thread.hw_brk[0] = null_brk;
639 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
640 return;
641 }
642
643 /* Otherwise find out which DAWR caused exception and disable it. */
644 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
645
646 for (i = 0; i < nr_wp_slots(); i++) {
647 info = ¤t->thread.hw_brk[i];
648 if (!info->address)
649 continue;
650
651 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
652 __set_breakpoint(i, &null_brk);
653 current->thread.hw_brk[i] = null_brk;
654 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
655 }
656 }
657 }
658
DEFINE_INTERRUPT_HANDLER(do_break)659 DEFINE_INTERRUPT_HANDLER(do_break)
660 {
661 current->thread.trap_nr = TRAP_HWBKPT;
662 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
663 11, SIGSEGV) == NOTIFY_STOP)
664 return;
665
666 if (debugger_break_match(regs))
667 return;
668
669 /*
670 * We reach here only when watchpoint exception is generated by ptrace
671 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
672 * watchpoint is already handled by hw_breakpoint_handler() so we don't
673 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
674 * we need to manually handle the watchpoint here.
675 */
676 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
677 do_break_handler(regs);
678
679 /* Deliver the signal to userspace */
680 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
681 }
682 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
683
684 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
685
686 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
687 /*
688 * Set the debug registers back to their default "safe" values.
689 */
set_debug_reg_defaults(struct thread_struct * thread)690 static void set_debug_reg_defaults(struct thread_struct *thread)
691 {
692 thread->debug.iac1 = thread->debug.iac2 = 0;
693 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
694 thread->debug.iac3 = thread->debug.iac4 = 0;
695 #endif
696 thread->debug.dac1 = thread->debug.dac2 = 0;
697 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
698 thread->debug.dvc1 = thread->debug.dvc2 = 0;
699 #endif
700 thread->debug.dbcr0 = 0;
701 #ifdef CONFIG_BOOKE
702 /*
703 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
704 */
705 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
706 DBCR1_IAC3US | DBCR1_IAC4US;
707 /*
708 * Force Data Address Compare User/Supervisor bits to be User-only
709 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
710 */
711 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
712 #else
713 thread->debug.dbcr1 = 0;
714 #endif
715 }
716
prime_debug_regs(struct debug_reg * debug)717 static void prime_debug_regs(struct debug_reg *debug)
718 {
719 /*
720 * We could have inherited MSR_DE from userspace, since
721 * it doesn't get cleared on exception entry. Make sure
722 * MSR_DE is clear before we enable any debug events.
723 */
724 mtmsr(mfmsr() & ~MSR_DE);
725
726 mtspr(SPRN_IAC1, debug->iac1);
727 mtspr(SPRN_IAC2, debug->iac2);
728 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
729 mtspr(SPRN_IAC3, debug->iac3);
730 mtspr(SPRN_IAC4, debug->iac4);
731 #endif
732 mtspr(SPRN_DAC1, debug->dac1);
733 mtspr(SPRN_DAC2, debug->dac2);
734 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
735 mtspr(SPRN_DVC1, debug->dvc1);
736 mtspr(SPRN_DVC2, debug->dvc2);
737 #endif
738 mtspr(SPRN_DBCR0, debug->dbcr0);
739 mtspr(SPRN_DBCR1, debug->dbcr1);
740 #ifdef CONFIG_BOOKE
741 mtspr(SPRN_DBCR2, debug->dbcr2);
742 #endif
743 }
744 /*
745 * Unless neither the old or new thread are making use of the
746 * debug registers, set the debug registers from the values
747 * stored in the new thread.
748 */
switch_booke_debug_regs(struct debug_reg * new_debug)749 void switch_booke_debug_regs(struct debug_reg *new_debug)
750 {
751 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
752 || (new_debug->dbcr0 & DBCR0_IDM))
753 prime_debug_regs(new_debug);
754 }
755 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
756 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
757 #ifndef CONFIG_HAVE_HW_BREAKPOINT
set_breakpoint(int i,struct arch_hw_breakpoint * brk)758 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
759 {
760 preempt_disable();
761 __set_breakpoint(i, brk);
762 preempt_enable();
763 }
764
set_debug_reg_defaults(struct thread_struct * thread)765 static void set_debug_reg_defaults(struct thread_struct *thread)
766 {
767 int i;
768 struct arch_hw_breakpoint null_brk = {0};
769
770 for (i = 0; i < nr_wp_slots(); i++) {
771 thread->hw_brk[i] = null_brk;
772 if (ppc_breakpoint_available())
773 set_breakpoint(i, &thread->hw_brk[i]);
774 }
775 }
776
hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)777 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
778 struct arch_hw_breakpoint *b)
779 {
780 if (a->address != b->address)
781 return false;
782 if (a->type != b->type)
783 return false;
784 if (a->len != b->len)
785 return false;
786 /* no need to check hw_len. it's calculated from address and len */
787 return true;
788 }
789
switch_hw_breakpoint(struct task_struct * new)790 static void switch_hw_breakpoint(struct task_struct *new)
791 {
792 int i;
793
794 for (i = 0; i < nr_wp_slots(); i++) {
795 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
796 &new->thread.hw_brk[i])))
797 continue;
798
799 __set_breakpoint(i, &new->thread.hw_brk[i]);
800 }
801 }
802 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
803 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
804
set_dabr(struct arch_hw_breakpoint * brk)805 static inline int set_dabr(struct arch_hw_breakpoint *brk)
806 {
807 unsigned long dabr, dabrx;
808
809 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
810 dabrx = ((brk->type >> 3) & 0x7);
811
812 if (ppc_md.set_dabr)
813 return ppc_md.set_dabr(dabr, dabrx);
814
815 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
816 mtspr(SPRN_DAC1, dabr);
817 if (IS_ENABLED(CONFIG_PPC_47x))
818 isync();
819 return 0;
820 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
821 mtspr(SPRN_DABR, dabr);
822 if (cpu_has_feature(CPU_FTR_DABRX))
823 mtspr(SPRN_DABRX, dabrx);
824 return 0;
825 } else {
826 return -EINVAL;
827 }
828 }
829
set_breakpoint_8xx(struct arch_hw_breakpoint * brk)830 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
831 {
832 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
833 LCTRL1_CRWF_RW;
834 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
835 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
836 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
837
838 if (start_addr == 0)
839 lctrl2 |= LCTRL2_LW0LA_F;
840 else if (end_addr == 0)
841 lctrl2 |= LCTRL2_LW0LA_E;
842 else
843 lctrl2 |= LCTRL2_LW0LA_EandF;
844
845 mtspr(SPRN_LCTRL2, 0);
846
847 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
848 return 0;
849
850 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
851 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
852 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
853 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
854
855 mtspr(SPRN_CMPE, start_addr - 1);
856 mtspr(SPRN_CMPF, end_addr);
857 mtspr(SPRN_LCTRL1, lctrl1);
858 mtspr(SPRN_LCTRL2, lctrl2);
859
860 return 0;
861 }
862
set_hw_breakpoint(int nr,struct arch_hw_breakpoint * brk)863 static void set_hw_breakpoint(int nr, struct arch_hw_breakpoint *brk)
864 {
865 if (dawr_enabled())
866 // Power8 or later
867 set_dawr(nr, brk);
868 else if (IS_ENABLED(CONFIG_PPC_8xx))
869 set_breakpoint_8xx(brk);
870 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
871 // Power7 or earlier
872 set_dabr(brk);
873 else
874 // Shouldn't happen due to higher level checks
875 WARN_ON_ONCE(1);
876 }
877
__set_breakpoint(int nr,struct arch_hw_breakpoint * brk)878 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
879 {
880 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
881 set_hw_breakpoint(nr, brk);
882 }
883
884 /* Check if we have DAWR or DABR hardware */
ppc_breakpoint_available(void)885 bool ppc_breakpoint_available(void)
886 {
887 if (dawr_enabled())
888 return true; /* POWER8 DAWR or POWER9 forced DAWR */
889 if (cpu_has_feature(CPU_FTR_ARCH_207S))
890 return false; /* POWER9 with DAWR disabled */
891 /* DABR: Everything but POWER8 and POWER9 */
892 return true;
893 }
894 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
895
896 /* Disable the breakpoint in hardware without touching current_brk[] */
suspend_breakpoints(void)897 void suspend_breakpoints(void)
898 {
899 struct arch_hw_breakpoint brk = {0};
900 int i;
901
902 if (!ppc_breakpoint_available())
903 return;
904
905 for (i = 0; i < nr_wp_slots(); i++)
906 set_hw_breakpoint(i, &brk);
907 }
908
909 /*
910 * Re-enable breakpoints suspended by suspend_breakpoints() in hardware
911 * from current_brk[]
912 */
restore_breakpoints(void)913 void restore_breakpoints(void)
914 {
915 int i;
916
917 if (!ppc_breakpoint_available())
918 return;
919
920 for (i = 0; i < nr_wp_slots(); i++)
921 set_hw_breakpoint(i, this_cpu_ptr(¤t_brk[i]));
922 }
923
924 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
925
tm_enabled(struct task_struct * tsk)926 static inline bool tm_enabled(struct task_struct *tsk)
927 {
928 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
929 }
930
tm_reclaim_thread(struct thread_struct * thr,uint8_t cause)931 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
932 {
933 /*
934 * Use the current MSR TM suspended bit to track if we have
935 * checkpointed state outstanding.
936 * On signal delivery, we'd normally reclaim the checkpointed
937 * state to obtain stack pointer (see:get_tm_stackpointer()).
938 * This will then directly return to userspace without going
939 * through __switch_to(). However, if the stack frame is bad,
940 * we need to exit this thread which calls __switch_to() which
941 * will again attempt to reclaim the already saved tm state.
942 * Hence we need to check that we've not already reclaimed
943 * this state.
944 * We do this using the current MSR, rather tracking it in
945 * some specific thread_struct bit, as it has the additional
946 * benefit of checking for a potential TM bad thing exception.
947 */
948 if (!MSR_TM_SUSPENDED(mfmsr()))
949 return;
950
951 giveup_all(container_of(thr, struct task_struct, thread));
952
953 tm_reclaim(thr, cause);
954
955 /*
956 * If we are in a transaction and FP is off then we can't have
957 * used FP inside that transaction. Hence the checkpointed
958 * state is the same as the live state. We need to copy the
959 * live state to the checkpointed state so that when the
960 * transaction is restored, the checkpointed state is correct
961 * and the aborted transaction sees the correct state. We use
962 * ckpt_regs.msr here as that's what tm_reclaim will use to
963 * determine if it's going to write the checkpointed state or
964 * not. So either this will write the checkpointed registers,
965 * or reclaim will. Similarly for VMX.
966 */
967 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
968 memcpy(&thr->ckfp_state, &thr->fp_state,
969 sizeof(struct thread_fp_state));
970 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
971 memcpy(&thr->ckvr_state, &thr->vr_state,
972 sizeof(struct thread_vr_state));
973 }
974
tm_reclaim_current(uint8_t cause)975 void tm_reclaim_current(uint8_t cause)
976 {
977 tm_enable();
978 tm_reclaim_thread(¤t->thread, cause);
979 }
980
tm_reclaim_task(struct task_struct * tsk)981 static inline void tm_reclaim_task(struct task_struct *tsk)
982 {
983 /* We have to work out if we're switching from/to a task that's in the
984 * middle of a transaction.
985 *
986 * In switching we need to maintain a 2nd register state as
987 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
988 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
989 * ckvr_state
990 *
991 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
992 */
993 struct thread_struct *thr = &tsk->thread;
994
995 if (!thr->regs)
996 return;
997
998 if (!MSR_TM_ACTIVE(thr->regs->msr))
999 goto out_and_saveregs;
1000
1001 WARN_ON(tm_suspend_disabled);
1002
1003 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
1004 "ccr=%lx, msr=%lx, trap=%lx)\n",
1005 tsk->pid, thr->regs->nip,
1006 thr->regs->ccr, thr->regs->msr,
1007 thr->regs->trap);
1008
1009 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
1010
1011 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
1012 tsk->pid);
1013
1014 out_and_saveregs:
1015 /* Always save the regs here, even if a transaction's not active.
1016 * This context-switches a thread's TM info SPRs. We do it here to
1017 * be consistent with the restore path (in recheckpoint) which
1018 * cannot happen later in _switch().
1019 */
1020 tm_save_sprs(thr);
1021 }
1022
1023 extern void __tm_recheckpoint(struct thread_struct *thread);
1024
tm_recheckpoint(struct thread_struct * thread)1025 void tm_recheckpoint(struct thread_struct *thread)
1026 {
1027 unsigned long flags;
1028
1029 if (!(thread->regs->msr & MSR_TM))
1030 return;
1031
1032 /* We really can't be interrupted here as the TEXASR registers can't
1033 * change and later in the trecheckpoint code, we have a userspace R1.
1034 * So let's hard disable over this region.
1035 */
1036 local_irq_save(flags);
1037 hard_irq_disable();
1038
1039 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1040 * before the trecheckpoint and no explosion occurs.
1041 */
1042 tm_restore_sprs(thread);
1043
1044 __tm_recheckpoint(thread);
1045
1046 local_irq_restore(flags);
1047 }
1048
tm_recheckpoint_new_task(struct task_struct * new)1049 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1050 {
1051 if (!cpu_has_feature(CPU_FTR_TM))
1052 return;
1053
1054 /* Recheckpoint the registers of the thread we're about to switch to.
1055 *
1056 * If the task was using FP, we non-lazily reload both the original and
1057 * the speculative FP register states. This is because the kernel
1058 * doesn't see if/when a TM rollback occurs, so if we take an FP
1059 * unavailable later, we are unable to determine which set of FP regs
1060 * need to be restored.
1061 */
1062 if (!tm_enabled(new))
1063 return;
1064
1065 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1066 tm_restore_sprs(&new->thread);
1067 return;
1068 }
1069 /* Recheckpoint to restore original checkpointed register state. */
1070 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1071 new->pid, new->thread.regs->msr);
1072
1073 tm_recheckpoint(&new->thread);
1074
1075 /*
1076 * The checkpointed state has been restored but the live state has
1077 * not, ensure all the math functionality is turned off to trigger
1078 * restore_math() to reload.
1079 */
1080 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1081
1082 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1083 "(kernel msr 0x%lx)\n",
1084 new->pid, mfmsr());
1085 }
1086
__switch_to_tm(struct task_struct * prev,struct task_struct * new)1087 static inline void __switch_to_tm(struct task_struct *prev,
1088 struct task_struct *new)
1089 {
1090 if (cpu_has_feature(CPU_FTR_TM)) {
1091 if (tm_enabled(prev) || tm_enabled(new))
1092 tm_enable();
1093
1094 if (tm_enabled(prev)) {
1095 prev->thread.load_tm++;
1096 tm_reclaim_task(prev);
1097 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1098 prev->thread.regs->msr &= ~MSR_TM;
1099 }
1100
1101 tm_recheckpoint_new_task(new);
1102 }
1103 }
1104
1105 /*
1106 * This is called if we are on the way out to userspace and the
1107 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1108 * FP and/or vector state and does so if necessary.
1109 * If userspace is inside a transaction (whether active or
1110 * suspended) and FP/VMX/VSX instructions have ever been enabled
1111 * inside that transaction, then we have to keep them enabled
1112 * and keep the FP/VMX/VSX state loaded while ever the transaction
1113 * continues. The reason is that if we didn't, and subsequently
1114 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1115 * we don't know whether it's the same transaction, and thus we
1116 * don't know which of the checkpointed state and the transactional
1117 * state to use.
1118 */
restore_tm_state(struct pt_regs * regs)1119 void restore_tm_state(struct pt_regs *regs)
1120 {
1121 unsigned long msr_diff;
1122
1123 /*
1124 * This is the only moment we should clear TIF_RESTORE_TM as
1125 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1126 * again, anything else could lead to an incorrect ckpt_msr being
1127 * saved and therefore incorrect signal contexts.
1128 */
1129 clear_thread_flag(TIF_RESTORE_TM);
1130 if (!MSR_TM_ACTIVE(regs->msr))
1131 return;
1132
1133 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1134 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1135
1136 /* Ensure that restore_math() will restore */
1137 if (msr_diff & MSR_FP)
1138 current->thread.load_fp = 1;
1139 #ifdef CONFIG_ALTIVEC
1140 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1141 current->thread.load_vec = 1;
1142 #endif
1143 restore_math(regs);
1144
1145 regs_set_return_msr(regs, regs->msr | msr_diff);
1146 }
1147
1148 #else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1149 #define tm_recheckpoint_new_task(new)
1150 #define __switch_to_tm(prev, new)
tm_reclaim_current(uint8_t cause)1151 void tm_reclaim_current(uint8_t cause) {}
1152 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1153
save_sprs(struct thread_struct * t)1154 static inline void save_sprs(struct thread_struct *t)
1155 {
1156 #ifdef CONFIG_ALTIVEC
1157 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1158 t->vrsave = mfspr(SPRN_VRSAVE);
1159 #endif
1160 #ifdef CONFIG_SPE
1161 if (cpu_has_feature(CPU_FTR_SPE))
1162 t->spefscr = mfspr(SPRN_SPEFSCR);
1163 #endif
1164 #ifdef CONFIG_PPC_BOOK3S_64
1165 if (cpu_has_feature(CPU_FTR_DSCR))
1166 t->dscr = mfspr(SPRN_DSCR);
1167
1168 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1169 t->bescr = mfspr(SPRN_BESCR);
1170 t->ebbhr = mfspr(SPRN_EBBHR);
1171 t->ebbrr = mfspr(SPRN_EBBRR);
1172
1173 t->fscr = mfspr(SPRN_FSCR);
1174
1175 /*
1176 * Note that the TAR is not available for use in the kernel.
1177 * (To provide this, the TAR should be backed up/restored on
1178 * exception entry/exit instead, and be in pt_regs. FIXME,
1179 * this should be in pt_regs anyway (for debug).)
1180 */
1181 t->tar = mfspr(SPRN_TAR);
1182 }
1183
1184 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1185 t->hashkeyr = mfspr(SPRN_HASHKEYR);
1186
1187 if (cpu_has_feature(CPU_FTR_ARCH_31))
1188 t->dexcr = mfspr(SPRN_DEXCR);
1189 #endif
1190 }
1191
1192 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
kvmppc_save_user_regs(void)1193 void kvmppc_save_user_regs(void)
1194 {
1195 unsigned long usermsr;
1196
1197 if (!current->thread.regs)
1198 return;
1199
1200 usermsr = current->thread.regs->msr;
1201
1202 /* Caller has enabled FP/VEC/VSX/TM in MSR */
1203 if (usermsr & MSR_FP)
1204 __giveup_fpu(current);
1205 if (usermsr & MSR_VEC)
1206 __giveup_altivec(current);
1207
1208 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1209 if (usermsr & MSR_TM) {
1210 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
1211 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
1212 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
1213 current->thread.regs->msr &= ~MSR_TM;
1214 }
1215 #endif
1216 }
1217 EXPORT_SYMBOL_GPL(kvmppc_save_user_regs);
1218
kvmppc_save_current_sprs(void)1219 void kvmppc_save_current_sprs(void)
1220 {
1221 save_sprs(¤t->thread);
1222 }
1223 EXPORT_SYMBOL_GPL(kvmppc_save_current_sprs);
1224 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1225
restore_sprs(struct thread_struct * old_thread,struct thread_struct * new_thread)1226 static inline void restore_sprs(struct thread_struct *old_thread,
1227 struct thread_struct *new_thread)
1228 {
1229 #ifdef CONFIG_ALTIVEC
1230 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1231 old_thread->vrsave != new_thread->vrsave)
1232 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1233 #endif
1234 #ifdef CONFIG_SPE
1235 if (cpu_has_feature(CPU_FTR_SPE) &&
1236 old_thread->spefscr != new_thread->spefscr)
1237 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1238 #endif
1239 #ifdef CONFIG_PPC_BOOK3S_64
1240 if (cpu_has_feature(CPU_FTR_DSCR)) {
1241 u64 dscr = get_paca()->dscr_default;
1242 if (new_thread->dscr_inherit)
1243 dscr = new_thread->dscr;
1244
1245 if (old_thread->dscr != dscr)
1246 mtspr(SPRN_DSCR, dscr);
1247 }
1248
1249 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1250 if (old_thread->bescr != new_thread->bescr)
1251 mtspr(SPRN_BESCR, new_thread->bescr);
1252 if (old_thread->ebbhr != new_thread->ebbhr)
1253 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1254 if (old_thread->ebbrr != new_thread->ebbrr)
1255 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1256
1257 if (old_thread->fscr != new_thread->fscr)
1258 mtspr(SPRN_FSCR, new_thread->fscr);
1259
1260 if (old_thread->tar != new_thread->tar)
1261 mtspr(SPRN_TAR, new_thread->tar);
1262 }
1263
1264 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1265 old_thread->tidr != new_thread->tidr)
1266 mtspr(SPRN_TIDR, new_thread->tidr);
1267
1268 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE) &&
1269 old_thread->hashkeyr != new_thread->hashkeyr)
1270 mtspr(SPRN_HASHKEYR, new_thread->hashkeyr);
1271
1272 if (cpu_has_feature(CPU_FTR_ARCH_31) &&
1273 old_thread->dexcr != new_thread->dexcr)
1274 mtspr(SPRN_DEXCR, new_thread->dexcr);
1275 #endif
1276
1277 }
1278
__switch_to(struct task_struct * prev,struct task_struct * new)1279 struct task_struct *__switch_to(struct task_struct *prev,
1280 struct task_struct *new)
1281 {
1282 struct thread_struct *new_thread, *old_thread;
1283 struct task_struct *last;
1284 #ifdef CONFIG_PPC_64S_HASH_MMU
1285 struct ppc64_tlb_batch *batch;
1286 #endif
1287
1288 new_thread = &new->thread;
1289 old_thread = ¤t->thread;
1290
1291 WARN_ON(!irqs_disabled());
1292
1293 #ifdef CONFIG_PPC_64S_HASH_MMU
1294 batch = this_cpu_ptr(&ppc64_tlb_batch);
1295 if (batch->active) {
1296 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1297 if (batch->index)
1298 __flush_tlb_pending(batch);
1299 batch->active = 0;
1300 }
1301
1302 /*
1303 * On POWER9 the copy-paste buffer can only paste into
1304 * foreign real addresses, so unprivileged processes can not
1305 * see the data or use it in any way unless they have
1306 * foreign real mappings. If the new process has the foreign
1307 * real address mappings, we must issue a cp_abort to clear
1308 * any state and prevent snooping, corruption or a covert
1309 * channel. ISA v3.1 supports paste into local memory.
1310 */
1311 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1312 atomic_read(&new->mm->context.vas_windows)))
1313 asm volatile(PPC_CP_ABORT);
1314 #endif /* CONFIG_PPC_BOOK3S_64 */
1315
1316 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1317 switch_booke_debug_regs(&new->thread.debug);
1318 #else
1319 /*
1320 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1321 * schedule DABR
1322 */
1323 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1324 switch_hw_breakpoint(new);
1325 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1326 #endif
1327
1328 /*
1329 * We need to save SPRs before treclaim/trecheckpoint as these will
1330 * change a number of them.
1331 */
1332 save_sprs(&prev->thread);
1333
1334 /* Save FPU, Altivec, VSX and SPE state */
1335 giveup_all(prev);
1336
1337 __switch_to_tm(prev, new);
1338
1339 if (!radix_enabled()) {
1340 /*
1341 * We can't take a PMU exception inside _switch() since there
1342 * is a window where the kernel stack SLB and the kernel stack
1343 * are out of sync. Hard disable here.
1344 */
1345 hard_irq_disable();
1346 }
1347
1348 /*
1349 * Call restore_sprs() and set_return_regs_changed() before calling
1350 * _switch(). If we move it after _switch() then we miss out on calling
1351 * it for new tasks. The reason for this is we manually create a stack
1352 * frame for new tasks that directly returns through ret_from_fork() or
1353 * ret_from_kernel_thread(). See copy_thread() for details.
1354 */
1355 restore_sprs(old_thread, new_thread);
1356
1357 set_return_regs_changed(); /* _switch changes stack (and regs) */
1358
1359 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1360 kuap_assert_locked();
1361
1362 last = _switch(old_thread, new_thread);
1363
1364 /*
1365 * Nothing after _switch will be run for newly created tasks,
1366 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1367 * etc. Code added here should have a comment explaining why that is
1368 * okay.
1369 */
1370
1371 #ifdef CONFIG_PPC_BOOK3S_64
1372 #ifdef CONFIG_PPC_64S_HASH_MMU
1373 /*
1374 * This applies to a process that was context switched while inside
1375 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1376 * deactivated above, before _switch(). This will never be the case
1377 * for new tasks.
1378 */
1379 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1380 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1381 batch = this_cpu_ptr(&ppc64_tlb_batch);
1382 batch->active = 1;
1383 }
1384 #endif
1385
1386 /*
1387 * Math facilities are masked out of the child MSR in copy_thread.
1388 * A new task does not need to restore_math because it will
1389 * demand fault them.
1390 */
1391 if (current->thread.regs)
1392 restore_math(current->thread.regs);
1393 #endif /* CONFIG_PPC_BOOK3S_64 */
1394
1395 return last;
1396 }
1397
1398 #define NR_INSN_TO_PRINT 16
1399
show_instructions(struct pt_regs * regs)1400 static void show_instructions(struct pt_regs *regs)
1401 {
1402 int i;
1403 unsigned long nip = regs->nip;
1404 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1405
1406 printk("Code: ");
1407
1408 /*
1409 * If we were executing with the MMU off for instructions, adjust pc
1410 * rather than printing XXXXXXXX.
1411 */
1412 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1413 pc = (unsigned long)phys_to_virt(pc);
1414 nip = (unsigned long)phys_to_virt(regs->nip);
1415 }
1416
1417 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1418 int instr;
1419
1420 if (get_kernel_nofault(instr, (const void *)pc)) {
1421 pr_cont("XXXXXXXX ");
1422 } else {
1423 if (nip == pc)
1424 pr_cont("<%08x> ", instr);
1425 else
1426 pr_cont("%08x ", instr);
1427 }
1428
1429 pc += sizeof(int);
1430 }
1431
1432 pr_cont("\n");
1433 }
1434
show_user_instructions(struct pt_regs * regs)1435 void show_user_instructions(struct pt_regs *regs)
1436 {
1437 unsigned long pc;
1438 int n = NR_INSN_TO_PRINT;
1439 struct seq_buf s;
1440 char buf[96]; /* enough for 8 times 9 + 2 chars */
1441
1442 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1443
1444 seq_buf_init(&s, buf, sizeof(buf));
1445
1446 while (n) {
1447 int i;
1448
1449 seq_buf_clear(&s);
1450
1451 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1452 int instr;
1453
1454 if (copy_from_user_nofault(&instr, (void __user *)pc,
1455 sizeof(instr))) {
1456 seq_buf_printf(&s, "XXXXXXXX ");
1457 continue;
1458 }
1459 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1460 }
1461
1462 if (!seq_buf_has_overflowed(&s))
1463 pr_info("%s[%d]: code: %s\n", current->comm,
1464 current->pid, s.buffer);
1465 }
1466 }
1467
1468 struct regbit {
1469 unsigned long bit;
1470 const char *name;
1471 };
1472
1473 static struct regbit msr_bits[] = {
1474 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1475 {MSR_SF, "SF"},
1476 {MSR_HV, "HV"},
1477 #endif
1478 {MSR_VEC, "VEC"},
1479 {MSR_VSX, "VSX"},
1480 #ifdef CONFIG_BOOKE
1481 {MSR_CE, "CE"},
1482 #endif
1483 {MSR_EE, "EE"},
1484 {MSR_PR, "PR"},
1485 {MSR_FP, "FP"},
1486 {MSR_ME, "ME"},
1487 #ifdef CONFIG_BOOKE
1488 {MSR_DE, "DE"},
1489 #else
1490 {MSR_SE, "SE"},
1491 {MSR_BE, "BE"},
1492 #endif
1493 {MSR_IR, "IR"},
1494 {MSR_DR, "DR"},
1495 {MSR_PMM, "PMM"},
1496 #ifndef CONFIG_BOOKE
1497 {MSR_RI, "RI"},
1498 {MSR_LE, "LE"},
1499 #endif
1500 {0, NULL}
1501 };
1502
print_bits(unsigned long val,struct regbit * bits,const char * sep)1503 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1504 {
1505 const char *s = "";
1506
1507 for (; bits->bit; ++bits)
1508 if (val & bits->bit) {
1509 pr_cont("%s%s", s, bits->name);
1510 s = sep;
1511 }
1512 }
1513
1514 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1515 static struct regbit msr_tm_bits[] = {
1516 {MSR_TS_T, "T"},
1517 {MSR_TS_S, "S"},
1518 {MSR_TM, "E"},
1519 {0, NULL}
1520 };
1521
print_tm_bits(unsigned long val)1522 static void print_tm_bits(unsigned long val)
1523 {
1524 /*
1525 * This only prints something if at least one of the TM bit is set.
1526 * Inside the TM[], the output means:
1527 * E: Enabled (bit 32)
1528 * S: Suspended (bit 33)
1529 * T: Transactional (bit 34)
1530 */
1531 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1532 pr_cont(",TM[");
1533 print_bits(val, msr_tm_bits, "");
1534 pr_cont("]");
1535 }
1536 }
1537 #else
print_tm_bits(unsigned long val)1538 static void print_tm_bits(unsigned long val) {}
1539 #endif
1540
print_msr_bits(unsigned long val)1541 static void print_msr_bits(unsigned long val)
1542 {
1543 pr_cont("<");
1544 print_bits(val, msr_bits, ",");
1545 print_tm_bits(val);
1546 pr_cont(">");
1547 }
1548
1549 #ifdef CONFIG_PPC64
1550 #define REG "%016lx"
1551 #define REGS_PER_LINE 4
1552 #else
1553 #define REG "%08lx"
1554 #define REGS_PER_LINE 8
1555 #endif
1556
__show_regs(struct pt_regs * regs)1557 static void __show_regs(struct pt_regs *regs)
1558 {
1559 int i, trap;
1560
1561 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1562 regs->nip, regs->link, regs->ctr);
1563 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1564 regs, regs->trap, print_tainted(), init_utsname()->release);
1565 printk("MSR: "REG" ", regs->msr);
1566 print_msr_bits(regs->msr);
1567 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1568 trap = TRAP(regs);
1569 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1570 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1571 if (trap == INTERRUPT_MACHINE_CHECK ||
1572 trap == INTERRUPT_DATA_STORAGE ||
1573 trap == INTERRUPT_ALIGNMENT) {
1574 if (IS_ENABLED(CONFIG_BOOKE))
1575 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dear, regs->esr);
1576 else
1577 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1578 }
1579
1580 #ifdef CONFIG_PPC64
1581 pr_cont("IRQMASK: %lx ", regs->softe);
1582 #endif
1583 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1584 if (MSR_TM_ACTIVE(regs->msr))
1585 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1586 #endif
1587
1588 for (i = 0; i < 32; i++) {
1589 if ((i % REGS_PER_LINE) == 0)
1590 pr_cont("\nGPR%02d: ", i);
1591 pr_cont(REG " ", regs->gpr[i]);
1592 }
1593 pr_cont("\n");
1594 /*
1595 * Lookup NIP late so we have the best change of getting the
1596 * above info out without failing
1597 */
1598 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1599 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1600 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1601 }
1602 }
1603
show_regs(struct pt_regs * regs)1604 void show_regs(struct pt_regs *regs)
1605 {
1606 show_regs_print_info(KERN_DEFAULT);
1607 __show_regs(regs);
1608 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1609 if (!user_mode(regs))
1610 show_instructions(regs);
1611 }
1612
flush_thread(void)1613 void flush_thread(void)
1614 {
1615 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1616 flush_ptrace_hw_breakpoint(current);
1617 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1618 set_debug_reg_defaults(¤t->thread);
1619 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1620 }
1621
arch_setup_new_exec(void)1622 void arch_setup_new_exec(void)
1623 {
1624
1625 #ifdef CONFIG_PPC_BOOK3S_64
1626 if (!radix_enabled())
1627 hash__setup_new_exec();
1628 #endif
1629 /*
1630 * If we exec out of a kernel thread then thread.regs will not be
1631 * set. Do it now.
1632 */
1633 if (!current->thread.regs) {
1634 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1635 current->thread.regs = regs - 1;
1636 }
1637
1638 #ifdef CONFIG_PPC_MEM_KEYS
1639 current->thread.regs->amr = default_amr;
1640 current->thread.regs->iamr = default_iamr;
1641 #endif
1642
1643 #ifdef CONFIG_PPC_BOOK3S_64
1644 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
1645 current->thread.dexcr = current->thread.dexcr_onexec;
1646 mtspr(SPRN_DEXCR, current->thread.dexcr);
1647 }
1648 #endif /* CONFIG_PPC_BOOK3S_64 */
1649 }
1650
1651 #ifdef CONFIG_PPC64
1652 /*
1653 * Assign a TIDR (thread ID) for task @t and set it in the thread
1654 * structure. For now, we only support setting TIDR for 'current' task.
1655 *
1656 * Since the TID value is a truncated form of it PID, it is possible
1657 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1658 * that 2 threads share the same TID and are waiting, one of the following
1659 * cases will happen:
1660 *
1661 * 1. The correct thread is running, the wrong thread is not
1662 * In this situation, the correct thread is woken and proceeds to pass its
1663 * condition check.
1664 *
1665 * 2. Neither threads are running
1666 * In this situation, neither thread will be woken. When scheduled, the waiting
1667 * threads will execute either a wait, which will return immediately, followed
1668 * by a condition check, which will pass for the correct thread and fail
1669 * for the wrong thread, or they will execute the condition check immediately.
1670 *
1671 * 3. The wrong thread is running, the correct thread is not
1672 * The wrong thread will be woken, but will fail its condition check and
1673 * re-execute wait. The correct thread, when scheduled, will execute either
1674 * its condition check (which will pass), or wait, which returns immediately
1675 * when called the first time after the thread is scheduled, followed by its
1676 * condition check (which will pass).
1677 *
1678 * 4. Both threads are running
1679 * Both threads will be woken. The wrong thread will fail its condition check
1680 * and execute another wait, while the correct thread will pass its condition
1681 * check.
1682 *
1683 * @t: the task to set the thread ID for
1684 */
set_thread_tidr(struct task_struct * t)1685 int set_thread_tidr(struct task_struct *t)
1686 {
1687 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1688 return -EINVAL;
1689
1690 if (t != current)
1691 return -EINVAL;
1692
1693 if (t->thread.tidr)
1694 return 0;
1695
1696 t->thread.tidr = (u16)task_pid_nr(t);
1697 mtspr(SPRN_TIDR, t->thread.tidr);
1698
1699 return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(set_thread_tidr);
1702
1703 #endif /* CONFIG_PPC64 */
1704
1705 /*
1706 * this gets called so that we can store coprocessor state into memory and
1707 * copy the current task into the new thread.
1708 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1709 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1710 {
1711 flush_all_to_thread(src);
1712 /*
1713 * Flush TM state out so we can copy it. __switch_to_tm() does this
1714 * flush but it removes the checkpointed state from the current CPU and
1715 * transitions the CPU out of TM mode. Hence we need to call
1716 * tm_recheckpoint_new_task() (on the same task) to restore the
1717 * checkpointed state back and the TM mode.
1718 *
1719 * Can't pass dst because it isn't ready. Doesn't matter, passing
1720 * dst is only important for __switch_to()
1721 */
1722 __switch_to_tm(src, src);
1723
1724 *dst = *src;
1725
1726 clear_task_ebb(dst);
1727
1728 return 0;
1729 }
1730
setup_ksp_vsid(struct task_struct * p,unsigned long sp)1731 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1732 {
1733 #ifdef CONFIG_PPC_64S_HASH_MMU
1734 unsigned long sp_vsid;
1735 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1736
1737 if (radix_enabled())
1738 return;
1739
1740 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1741 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1742 << SLB_VSID_SHIFT_1T;
1743 else
1744 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1745 << SLB_VSID_SHIFT;
1746 sp_vsid |= SLB_VSID_KERNEL | llp;
1747 p->thread.ksp_vsid = sp_vsid;
1748 #endif
1749 }
1750
1751 /*
1752 * Copy a thread..
1753 */
1754
1755 /*
1756 * Copy architecture-specific thread state
1757 */
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)1758 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
1759 {
1760 struct pt_regs *kregs; /* Switch frame regs */
1761 extern void ret_from_fork(void);
1762 extern void ret_from_fork_scv(void);
1763 extern void ret_from_kernel_user_thread(void);
1764 extern void start_kernel_thread(void);
1765 void (*f)(void);
1766 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1767 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1768 int i;
1769 #endif
1770
1771 klp_init_thread_info(p);
1772
1773 if (unlikely(p->flags & PF_KTHREAD)) {
1774 /* kernel thread */
1775
1776 /* Create initial minimum stack frame. */
1777 sp -= STACK_FRAME_MIN_SIZE;
1778 ((unsigned long *)sp)[0] = 0;
1779
1780 f = start_kernel_thread;
1781 p->thread.regs = NULL; /* no user register state */
1782 clear_tsk_compat_task(p);
1783 } else {
1784 /* user thread */
1785 struct pt_regs *childregs;
1786
1787 /* Create initial user return stack frame. */
1788 sp -= STACK_USER_INT_FRAME_SIZE;
1789 *(unsigned long *)(sp + STACK_INT_FRAME_MARKER) = STACK_FRAME_REGS_MARKER;
1790
1791 childregs = (struct pt_regs *)(sp + STACK_INT_FRAME_REGS);
1792
1793 if (unlikely(args->fn)) {
1794 /*
1795 * A user space thread, but it first runs a kernel
1796 * thread, and then returns as though it had called
1797 * execve rather than fork, so user regs will be
1798 * filled in (e.g., by kernel_execve()).
1799 */
1800 ((unsigned long *)sp)[0] = 0;
1801 memset(childregs, 0, sizeof(struct pt_regs));
1802 #ifdef CONFIG_PPC64
1803 childregs->softe = IRQS_ENABLED;
1804 #endif
1805 f = ret_from_kernel_user_thread;
1806 } else {
1807 struct pt_regs *regs = current_pt_regs();
1808 unsigned long clone_flags = args->flags;
1809 unsigned long usp = args->stack;
1810
1811 /* Copy registers */
1812 *childregs = *regs;
1813 if (usp)
1814 childregs->gpr[1] = usp;
1815 ((unsigned long *)sp)[0] = childregs->gpr[1];
1816 #ifdef CONFIG_PPC_IRQ_SOFT_MASK_DEBUG
1817 WARN_ON_ONCE(childregs->softe != IRQS_ENABLED);
1818 #endif
1819 if (clone_flags & CLONE_SETTLS) {
1820 unsigned long tls = args->tls;
1821
1822 if (!is_32bit_task())
1823 childregs->gpr[13] = tls;
1824 else
1825 childregs->gpr[2] = tls;
1826 }
1827
1828 if (trap_is_scv(regs))
1829 f = ret_from_fork_scv;
1830 else
1831 f = ret_from_fork;
1832 }
1833
1834 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1835 p->thread.regs = childregs;
1836 }
1837
1838 /*
1839 * The way this works is that at some point in the future
1840 * some task will call _switch to switch to the new task.
1841 * That will pop off the stack frame created below and start
1842 * the new task running at ret_from_fork. The new task will
1843 * do some house keeping and then return from the fork or clone
1844 * system call, using the stack frame created above.
1845 */
1846 ((unsigned long *)sp)[STACK_FRAME_LR_SAVE] = (unsigned long)f;
1847 sp -= STACK_SWITCH_FRAME_SIZE;
1848 ((unsigned long *)sp)[0] = sp + STACK_SWITCH_FRAME_SIZE;
1849 kregs = (struct pt_regs *)(sp + STACK_SWITCH_FRAME_REGS);
1850 kregs->nip = ppc_function_entry(f);
1851 if (unlikely(args->fn)) {
1852 /*
1853 * Put kthread fn, arg parameters in non-volatile GPRs in the
1854 * switch frame so they are loaded by _switch before it returns
1855 * to ret_from_kernel_thread.
1856 */
1857 kregs->gpr[14] = ppc_function_entry((void *)args->fn);
1858 kregs->gpr[15] = (unsigned long)args->fn_arg;
1859 }
1860 p->thread.ksp = sp;
1861
1862 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1863 for (i = 0; i < nr_wp_slots(); i++)
1864 p->thread.ptrace_bps[i] = NULL;
1865 #endif
1866
1867 #ifdef CONFIG_PPC_FPU_REGS
1868 p->thread.fp_save_area = NULL;
1869 #endif
1870 #ifdef CONFIG_ALTIVEC
1871 p->thread.vr_save_area = NULL;
1872 #endif
1873 #if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1874 p->thread.kuap = KUAP_NONE;
1875 #endif
1876 #if defined(CONFIG_BOOKE) && defined(CONFIG_PPC_KUAP)
1877 p->thread.pid = MMU_NO_CONTEXT;
1878 #endif
1879
1880 setup_ksp_vsid(p, sp);
1881
1882 #ifdef CONFIG_PPC64
1883 if (cpu_has_feature(CPU_FTR_DSCR)) {
1884 p->thread.dscr_inherit = current->thread.dscr_inherit;
1885 p->thread.dscr = mfspr(SPRN_DSCR);
1886 }
1887
1888 p->thread.tidr = 0;
1889 #endif
1890 #ifdef CONFIG_PPC_BOOK3S_64
1891 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE))
1892 p->thread.hashkeyr = current->thread.hashkeyr;
1893
1894 if (cpu_has_feature(CPU_FTR_ARCH_31))
1895 p->thread.dexcr = mfspr(SPRN_DEXCR);
1896 #endif
1897 return 0;
1898 }
1899
1900 void preload_new_slb_context(unsigned long start, unsigned long sp);
1901
1902 /*
1903 * Set up a thread for executing a new program
1904 */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1905 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1906 {
1907 #ifdef CONFIG_PPC64
1908 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1909
1910 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1911 preload_new_slb_context(start, sp);
1912 #endif
1913
1914 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1915 /*
1916 * Clear any transactional state, we're exec()ing. The cause is
1917 * not important as there will never be a recheckpoint so it's not
1918 * user visible.
1919 */
1920 if (MSR_TM_SUSPENDED(mfmsr()))
1921 tm_reclaim_current(0);
1922 #endif
1923
1924 memset(®s->gpr[1], 0, sizeof(regs->gpr) - sizeof(regs->gpr[0]));
1925 regs->ctr = 0;
1926 regs->link = 0;
1927 regs->xer = 0;
1928 regs->ccr = 0;
1929 regs->gpr[1] = sp;
1930
1931 #ifdef CONFIG_PPC32
1932 regs->mq = 0;
1933 regs->nip = start;
1934 regs->msr = MSR_USER;
1935 #else
1936 if (!is_32bit_task()) {
1937 unsigned long entry;
1938
1939 if (is_elf2_task()) {
1940 /* Look ma, no function descriptors! */
1941 entry = start;
1942
1943 /*
1944 * Ulrich says:
1945 * The latest iteration of the ABI requires that when
1946 * calling a function (at its global entry point),
1947 * the caller must ensure r12 holds the entry point
1948 * address (so that the function can quickly
1949 * establish addressability).
1950 */
1951 regs->gpr[12] = start;
1952 /* Make sure that's restored on entry to userspace. */
1953 set_thread_flag(TIF_RESTOREALL);
1954 } else {
1955 unsigned long toc;
1956
1957 /* start is a relocated pointer to the function
1958 * descriptor for the elf _start routine. The first
1959 * entry in the function descriptor is the entry
1960 * address of _start and the second entry is the TOC
1961 * value we need to use.
1962 */
1963 __get_user(entry, (unsigned long __user *)start);
1964 __get_user(toc, (unsigned long __user *)start+1);
1965
1966 /* Check whether the e_entry function descriptor entries
1967 * need to be relocated before we can use them.
1968 */
1969 if (load_addr != 0) {
1970 entry += load_addr;
1971 toc += load_addr;
1972 }
1973 regs->gpr[2] = toc;
1974 }
1975 regs_set_return_ip(regs, entry);
1976 regs_set_return_msr(regs, MSR_USER64);
1977 } else {
1978 regs->gpr[2] = 0;
1979 regs_set_return_ip(regs, start);
1980 regs_set_return_msr(regs, MSR_USER32);
1981 }
1982
1983 #endif
1984 #ifdef CONFIG_VSX
1985 current->thread.used_vsr = 0;
1986 #endif
1987 current->thread.load_slb = 0;
1988 current->thread.load_fp = 0;
1989 #ifdef CONFIG_PPC_FPU_REGS
1990 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1991 current->thread.fp_save_area = NULL;
1992 #endif
1993 #ifdef CONFIG_ALTIVEC
1994 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1995 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1996 current->thread.vr_save_area = NULL;
1997 current->thread.vrsave = 0;
1998 current->thread.used_vr = 0;
1999 current->thread.load_vec = 0;
2000 #endif /* CONFIG_ALTIVEC */
2001 #ifdef CONFIG_SPE
2002 memset(current->thread.evr, 0, sizeof(current->thread.evr));
2003 current->thread.acc = 0;
2004 current->thread.spefscr = 0;
2005 current->thread.used_spe = 0;
2006 #endif /* CONFIG_SPE */
2007 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2008 current->thread.tm_tfhar = 0;
2009 current->thread.tm_texasr = 0;
2010 current->thread.tm_tfiar = 0;
2011 current->thread.load_tm = 0;
2012 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
2013 #ifdef CONFIG_PPC_BOOK3S_64
2014 if (cpu_has_feature(CPU_FTR_DEXCR_NPHIE)) {
2015 current->thread.hashkeyr = get_random_long();
2016 mtspr(SPRN_HASHKEYR, current->thread.hashkeyr);
2017 }
2018 #endif /* CONFIG_PPC_BOOK3S_64 */
2019 }
2020 EXPORT_SYMBOL(start_thread);
2021
2022 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
2023 | PR_FP_EXC_RES | PR_FP_EXC_INV)
2024
set_fpexc_mode(struct task_struct * tsk,unsigned int val)2025 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
2026 {
2027 struct pt_regs *regs = tsk->thread.regs;
2028
2029 /* This is a bit hairy. If we are an SPE enabled processor
2030 * (have embedded fp) we store the IEEE exception enable flags in
2031 * fpexc_mode. fpexc_mode is also used for setting FP exception
2032 * mode (asyn, precise, disabled) for 'Classic' FP. */
2033 if (val & PR_FP_EXC_SW_ENABLE) {
2034 if (cpu_has_feature(CPU_FTR_SPE)) {
2035 /*
2036 * When the sticky exception bits are set
2037 * directly by userspace, it must call prctl
2038 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2039 * in the existing prctl settings) or
2040 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2041 * the bits being set). <fenv.h> functions
2042 * saving and restoring the whole
2043 * floating-point environment need to do so
2044 * anyway to restore the prctl settings from
2045 * the saved environment.
2046 */
2047 #ifdef CONFIG_SPE
2048 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2049 tsk->thread.fpexc_mode = val &
2050 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
2051 #endif
2052 return 0;
2053 } else {
2054 return -EINVAL;
2055 }
2056 }
2057
2058 /* on a CONFIG_SPE this does not hurt us. The bits that
2059 * __pack_fe01 use do not overlap with bits used for
2060 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
2061 * on CONFIG_SPE implementations are reserved so writing to
2062 * them does not change anything */
2063 if (val > PR_FP_EXC_PRECISE)
2064 return -EINVAL;
2065 tsk->thread.fpexc_mode = __pack_fe01(val);
2066 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
2067 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
2068 | tsk->thread.fpexc_mode);
2069 }
2070 return 0;
2071 }
2072
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)2073 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
2074 {
2075 unsigned int val = 0;
2076
2077 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
2078 if (cpu_has_feature(CPU_FTR_SPE)) {
2079 /*
2080 * When the sticky exception bits are set
2081 * directly by userspace, it must call prctl
2082 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
2083 * in the existing prctl settings) or
2084 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
2085 * the bits being set). <fenv.h> functions
2086 * saving and restoring the whole
2087 * floating-point environment need to do so
2088 * anyway to restore the prctl settings from
2089 * the saved environment.
2090 */
2091 #ifdef CONFIG_SPE
2092 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
2093 val = tsk->thread.fpexc_mode;
2094 #endif
2095 } else
2096 return -EINVAL;
2097 } else {
2098 val = __unpack_fe01(tsk->thread.fpexc_mode);
2099 }
2100 return put_user(val, (unsigned int __user *) adr);
2101 }
2102
set_endian(struct task_struct * tsk,unsigned int val)2103 int set_endian(struct task_struct *tsk, unsigned int val)
2104 {
2105 struct pt_regs *regs = tsk->thread.regs;
2106
2107 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
2108 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2109 return -EINVAL;
2110
2111 if (regs == NULL)
2112 return -EINVAL;
2113
2114 if (val == PR_ENDIAN_BIG)
2115 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2116 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2117 regs_set_return_msr(regs, regs->msr | MSR_LE);
2118 else
2119 return -EINVAL;
2120
2121 return 0;
2122 }
2123
get_endian(struct task_struct * tsk,unsigned long adr)2124 int get_endian(struct task_struct *tsk, unsigned long adr)
2125 {
2126 struct pt_regs *regs = tsk->thread.regs;
2127 unsigned int val;
2128
2129 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2130 !cpu_has_feature(CPU_FTR_REAL_LE))
2131 return -EINVAL;
2132
2133 if (regs == NULL)
2134 return -EINVAL;
2135
2136 if (regs->msr & MSR_LE) {
2137 if (cpu_has_feature(CPU_FTR_REAL_LE))
2138 val = PR_ENDIAN_LITTLE;
2139 else
2140 val = PR_ENDIAN_PPC_LITTLE;
2141 } else
2142 val = PR_ENDIAN_BIG;
2143
2144 return put_user(val, (unsigned int __user *)adr);
2145 }
2146
set_unalign_ctl(struct task_struct * tsk,unsigned int val)2147 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2148 {
2149 tsk->thread.align_ctl = val;
2150 return 0;
2151 }
2152
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)2153 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2154 {
2155 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2156 }
2157
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)2158 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2159 unsigned long nbytes)
2160 {
2161 unsigned long stack_page;
2162 unsigned long cpu = task_cpu(p);
2163
2164 if (!hardirq_ctx[cpu] || !softirq_ctx[cpu])
2165 return 0;
2166
2167 stack_page = (unsigned long)hardirq_ctx[cpu];
2168 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2169 return 1;
2170
2171 stack_page = (unsigned long)softirq_ctx[cpu];
2172 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2173 return 1;
2174
2175 return 0;
2176 }
2177
2178 #ifdef CONFIG_PPC64
valid_emergency_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)2179 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2180 unsigned long nbytes)
2181 {
2182 unsigned long stack_page;
2183 unsigned long cpu = task_cpu(p);
2184
2185 if (!paca_ptrs)
2186 return 0;
2187
2188 if (!paca_ptrs[cpu]->emergency_sp)
2189 return 0;
2190
2191 # ifdef CONFIG_PPC_BOOK3S_64
2192 if (!paca_ptrs[cpu]->nmi_emergency_sp || !paca_ptrs[cpu]->mc_emergency_sp)
2193 return 0;
2194 #endif
2195
2196 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2197 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2198 return 1;
2199
2200 # ifdef CONFIG_PPC_BOOK3S_64
2201 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2202 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2203 return 1;
2204
2205 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2206 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2207 return 1;
2208 # endif
2209
2210 return 0;
2211 }
2212 #else
valid_emergency_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)2213 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2214 unsigned long nbytes)
2215 {
2216 unsigned long stack_page;
2217 unsigned long cpu = task_cpu(p);
2218
2219 if (!IS_ENABLED(CONFIG_VMAP_STACK))
2220 return 0;
2221
2222 stack_page = (unsigned long)emergency_ctx[cpu] - THREAD_SIZE;
2223 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2224 return 1;
2225
2226 return 0;
2227 }
2228 #endif
2229
2230 /*
2231 * validate the stack frame of a particular minimum size, used for when we are
2232 * looking at a certain object in the stack beyond the minimum.
2233 */
validate_sp_size(unsigned long sp,struct task_struct * p,unsigned long nbytes)2234 int validate_sp_size(unsigned long sp, struct task_struct *p,
2235 unsigned long nbytes)
2236 {
2237 unsigned long stack_page = (unsigned long)task_stack_page(p);
2238
2239 if (sp < THREAD_SIZE)
2240 return 0;
2241
2242 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2243 return 1;
2244
2245 if (valid_irq_stack(sp, p, nbytes))
2246 return 1;
2247
2248 return valid_emergency_stack(sp, p, nbytes);
2249 }
2250
validate_sp(unsigned long sp,struct task_struct * p)2251 int validate_sp(unsigned long sp, struct task_struct *p)
2252 {
2253 return validate_sp_size(sp, p, STACK_FRAME_MIN_SIZE);
2254 }
2255
___get_wchan(struct task_struct * p)2256 static unsigned long ___get_wchan(struct task_struct *p)
2257 {
2258 unsigned long ip, sp;
2259 int count = 0;
2260
2261 sp = p->thread.ksp;
2262 if (!validate_sp(sp, p))
2263 return 0;
2264
2265 do {
2266 sp = READ_ONCE_NOCHECK(*(unsigned long *)sp);
2267 if (!validate_sp(sp, p) || task_is_running(p))
2268 return 0;
2269 if (count > 0) {
2270 ip = READ_ONCE_NOCHECK(((unsigned long *)sp)[STACK_FRAME_LR_SAVE]);
2271 if (!in_sched_functions(ip))
2272 return ip;
2273 }
2274 } while (count++ < 16);
2275 return 0;
2276 }
2277
__get_wchan(struct task_struct * p)2278 unsigned long __get_wchan(struct task_struct *p)
2279 {
2280 unsigned long ret;
2281
2282 if (!try_get_task_stack(p))
2283 return 0;
2284
2285 ret = ___get_wchan(p);
2286
2287 put_task_stack(p);
2288
2289 return ret;
2290 }
2291
empty_user_regs(struct pt_regs * regs,struct task_struct * tsk)2292 static bool empty_user_regs(struct pt_regs *regs, struct task_struct *tsk)
2293 {
2294 unsigned long stack_page;
2295
2296 // A non-empty pt_regs should never have a zero MSR or TRAP value.
2297 if (regs->msr || regs->trap)
2298 return false;
2299
2300 // Check it sits at the very base of the stack
2301 stack_page = (unsigned long)task_stack_page(tsk);
2302 if ((unsigned long)(regs + 1) != stack_page + THREAD_SIZE)
2303 return false;
2304
2305 return true;
2306 }
2307
2308 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2309
show_stack(struct task_struct * tsk,unsigned long * stack,const char * loglvl)2310 void __no_sanitize_address show_stack(struct task_struct *tsk,
2311 unsigned long *stack,
2312 const char *loglvl)
2313 {
2314 unsigned long sp, ip, lr, newsp;
2315 int count = 0;
2316 int firstframe = 1;
2317 unsigned long ret_addr;
2318 int ftrace_idx = 0;
2319
2320 if (tsk == NULL)
2321 tsk = current;
2322
2323 if (!try_get_task_stack(tsk))
2324 return;
2325
2326 sp = (unsigned long) stack;
2327 if (sp == 0) {
2328 if (tsk == current)
2329 sp = current_stack_frame();
2330 else
2331 sp = tsk->thread.ksp;
2332 }
2333
2334 lr = 0;
2335 printk("%sCall Trace:\n", loglvl);
2336 do {
2337 if (!validate_sp(sp, tsk))
2338 break;
2339
2340 stack = (unsigned long *) sp;
2341 newsp = stack[0];
2342 ip = stack[STACK_FRAME_LR_SAVE];
2343 if (!firstframe || ip != lr) {
2344 printk("%s["REG"] ["REG"] %pS",
2345 loglvl, sp, ip, (void *)ip);
2346 ret_addr = ftrace_graph_ret_addr(current,
2347 &ftrace_idx, ip, stack);
2348 if (ret_addr != ip)
2349 pr_cont(" (%pS)", (void *)ret_addr);
2350 if (firstframe)
2351 pr_cont(" (unreliable)");
2352 pr_cont("\n");
2353 }
2354 firstframe = 0;
2355
2356 /*
2357 * See if this is an exception frame.
2358 * We look for the "regs" marker in the current frame.
2359 *
2360 * STACK_SWITCH_FRAME_SIZE being the smallest frame that
2361 * could hold a pt_regs, if that does not fit then it can't
2362 * have regs.
2363 */
2364 if (validate_sp_size(sp, tsk, STACK_SWITCH_FRAME_SIZE)
2365 && stack[STACK_INT_FRAME_MARKER_LONGS] == STACK_FRAME_REGS_MARKER) {
2366 struct pt_regs *regs = (struct pt_regs *)
2367 (sp + STACK_INT_FRAME_REGS);
2368
2369 lr = regs->link;
2370 printk("%s--- interrupt: %lx at %pS\n",
2371 loglvl, regs->trap, (void *)regs->nip);
2372
2373 // Detect the case of an empty pt_regs at the very base
2374 // of the stack and suppress showing it in full.
2375 if (!empty_user_regs(regs, tsk)) {
2376 __show_regs(regs);
2377 printk("%s--- interrupt: %lx\n", loglvl, regs->trap);
2378 }
2379
2380 firstframe = 1;
2381 }
2382
2383 sp = newsp;
2384 } while (count++ < kstack_depth_to_print);
2385
2386 put_task_stack(tsk);
2387 }
2388
2389 #ifdef CONFIG_PPC64
2390 /* Called with hard IRQs off */
__ppc64_runlatch_on(void)2391 void notrace __ppc64_runlatch_on(void)
2392 {
2393 struct thread_info *ti = current_thread_info();
2394
2395 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2396 /*
2397 * Least significant bit (RUN) is the only writable bit of
2398 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2399 * earliest ISA where this is the case, but it's convenient.
2400 */
2401 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2402 } else {
2403 unsigned long ctrl;
2404
2405 /*
2406 * Some architectures (e.g., Cell) have writable fields other
2407 * than RUN, so do the read-modify-write.
2408 */
2409 ctrl = mfspr(SPRN_CTRLF);
2410 ctrl |= CTRL_RUNLATCH;
2411 mtspr(SPRN_CTRLT, ctrl);
2412 }
2413
2414 ti->local_flags |= _TLF_RUNLATCH;
2415 }
2416
2417 /* Called with hard IRQs off */
__ppc64_runlatch_off(void)2418 void notrace __ppc64_runlatch_off(void)
2419 {
2420 struct thread_info *ti = current_thread_info();
2421
2422 ti->local_flags &= ~_TLF_RUNLATCH;
2423
2424 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2425 mtspr(SPRN_CTRLT, 0);
2426 } else {
2427 unsigned long ctrl;
2428
2429 ctrl = mfspr(SPRN_CTRLF);
2430 ctrl &= ~CTRL_RUNLATCH;
2431 mtspr(SPRN_CTRLT, ctrl);
2432 }
2433 }
2434 #endif /* CONFIG_PPC64 */
2435
arch_align_stack(unsigned long sp)2436 unsigned long arch_align_stack(unsigned long sp)
2437 {
2438 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2439 sp -= get_random_u32_below(PAGE_SIZE);
2440 return sp & ~0xf;
2441 }
2442