xref: /linux/arch/x86/include/asm/kvm_host.h (revision 73d7cf07109e79b093d1a1fb57a88d4048cd9b4b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This header defines architecture specific interfaces, x86 version
6  */
7 
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10 
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
19 
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/kfifo.h>
28 #include <linux/sched/vhost_task.h>
29 #include <linux/call_once.h>
30 #include <linux/atomic.h>
31 
32 #include <asm/apic.h>
33 #include <asm/pvclock-abi.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/mtrr.h>
37 #include <asm/msr-index.h>
38 #include <asm/msr.h>
39 #include <asm/asm.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kvm_page_track.h>
42 #include <asm/kvm_vcpu_regs.h>
43 #include <asm/reboot.h>
44 #include <hyperv/hvhdk.h>
45 
46 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
47 
48 /*
49  * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
50  * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
51  */
52 #ifdef CONFIG_KVM_MAX_NR_VCPUS
53 #define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
54 #else
55 #define KVM_MAX_VCPUS 1024
56 #endif
57 
58 /*
59  * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
60  * might be larger than the actual number of VCPUs because the
61  * APIC ID encodes CPU topology information.
62  *
63  * In the worst case, we'll need less than one extra bit for the
64  * Core ID, and less than one extra bit for the Package (Die) ID,
65  * so ratio of 4 should be enough.
66  */
67 #define KVM_VCPU_ID_RATIO 4
68 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
69 
70 /* memory slots that are not exposed to userspace */
71 #define KVM_INTERNAL_MEM_SLOTS 3
72 
73 #define KVM_HALT_POLL_NS_DEFAULT 200000
74 
75 #define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
76 
77 #define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
78 					KVM_DIRTY_LOG_INITIALLY_SET)
79 
80 #define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
81 						 KVM_BUS_LOCK_DETECTION_EXIT)
82 
83 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
84 						 KVM_X86_NOTIFY_VMEXIT_USER)
85 
86 /* x86-specific vcpu->requests bit members */
87 #define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
88 #define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
89 #define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
90 #define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
91 #define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
92 #define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
93 #define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
94 #define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
95 #define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
96 #define KVM_REQ_NMI			KVM_ARCH_REQ(9)
97 #define KVM_REQ_PMU			KVM_ARCH_REQ(10)
98 #define KVM_REQ_PMI			KVM_ARCH_REQ(11)
99 #ifdef CONFIG_KVM_SMM
100 #define KVM_REQ_SMI			KVM_ARCH_REQ(12)
101 #endif
102 #define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
103 #define KVM_REQ_MCLOCK_INPROGRESS \
104 	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_SCAN_IOAPIC \
106 	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
107 #define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
108 #define KVM_REQ_APIC_PAGE_RELOAD \
109 	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
110 #define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
111 #define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
112 #define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
113 #define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
114 #define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
115 #define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
116 #define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
117 #define KVM_REQ_APICV_UPDATE \
118 	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
119 #define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
120 #define KVM_REQ_TLB_FLUSH_GUEST \
121 	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
122 #define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
123 #define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
124 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
125 	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
126 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
127 	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
128 #define KVM_REQ_HV_TLB_FLUSH \
129 	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
130 #define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE \
131 	KVM_ARCH_REQ_FLAGS(34, KVM_REQUEST_WAIT)
132 
133 #define CR0_RESERVED_BITS                                               \
134 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
135 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
136 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
137 
138 #define CR4_RESERVED_BITS                                               \
139 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
140 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
141 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
142 			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
143 			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
144 			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
145 			  | X86_CR4_LAM_SUP))
146 
147 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
148 
149 
150 
151 #define INVALID_PAGE (~(hpa_t)0)
152 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
153 
154 /* KVM Hugepage definitions for x86 */
155 #define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
156 #define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
157 #define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
158 #define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
159 #define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
160 #define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
161 #define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
162 
163 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
164 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
165 #define KVM_MMU_HASH_SHIFT 12
166 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
167 #define KVM_MIN_FREE_MMU_PAGES 5
168 #define KVM_REFILL_PAGES 25
169 #define KVM_MAX_CPUID_ENTRIES 256
170 #define KVM_NR_VAR_MTRR 8
171 
172 #define ASYNC_PF_PER_VCPU 64
173 
174 enum kvm_reg {
175 	VCPU_REGS_RAX = __VCPU_REGS_RAX,
176 	VCPU_REGS_RCX = __VCPU_REGS_RCX,
177 	VCPU_REGS_RDX = __VCPU_REGS_RDX,
178 	VCPU_REGS_RBX = __VCPU_REGS_RBX,
179 	VCPU_REGS_RSP = __VCPU_REGS_RSP,
180 	VCPU_REGS_RBP = __VCPU_REGS_RBP,
181 	VCPU_REGS_RSI = __VCPU_REGS_RSI,
182 	VCPU_REGS_RDI = __VCPU_REGS_RDI,
183 #ifdef CONFIG_X86_64
184 	VCPU_REGS_R8  = __VCPU_REGS_R8,
185 	VCPU_REGS_R9  = __VCPU_REGS_R9,
186 	VCPU_REGS_R10 = __VCPU_REGS_R10,
187 	VCPU_REGS_R11 = __VCPU_REGS_R11,
188 	VCPU_REGS_R12 = __VCPU_REGS_R12,
189 	VCPU_REGS_R13 = __VCPU_REGS_R13,
190 	VCPU_REGS_R14 = __VCPU_REGS_R14,
191 	VCPU_REGS_R15 = __VCPU_REGS_R15,
192 #endif
193 	VCPU_REGS_RIP,
194 	NR_VCPU_REGS,
195 
196 	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
197 	VCPU_EXREG_CR0,
198 	VCPU_EXREG_CR3,
199 	VCPU_EXREG_CR4,
200 	VCPU_EXREG_RFLAGS,
201 	VCPU_EXREG_SEGMENTS,
202 	VCPU_EXREG_EXIT_INFO_1,
203 	VCPU_EXREG_EXIT_INFO_2,
204 };
205 
206 enum {
207 	VCPU_SREG_ES,
208 	VCPU_SREG_CS,
209 	VCPU_SREG_SS,
210 	VCPU_SREG_DS,
211 	VCPU_SREG_FS,
212 	VCPU_SREG_GS,
213 	VCPU_SREG_TR,
214 	VCPU_SREG_LDTR,
215 };
216 
217 enum exit_fastpath_completion {
218 	EXIT_FASTPATH_NONE,
219 	EXIT_FASTPATH_REENTER_GUEST,
220 	EXIT_FASTPATH_EXIT_HANDLED,
221 	EXIT_FASTPATH_EXIT_USERSPACE,
222 };
223 typedef enum exit_fastpath_completion fastpath_t;
224 
225 struct x86_emulate_ctxt;
226 struct x86_exception;
227 union kvm_smram;
228 enum x86_intercept;
229 enum x86_intercept_stage;
230 
231 #define KVM_NR_DB_REGS	4
232 
233 #define DR6_BUS_LOCK   (1 << 11)
234 #define DR6_BD		(1 << 13)
235 #define DR6_BS		(1 << 14)
236 #define DR6_BT		(1 << 15)
237 #define DR6_RTM		(1 << 16)
238 /*
239  * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
240  * We can regard all the bits in DR6_FIXED_1 as active_low bits;
241  * they will never be 0 for now, but when they are defined
242  * in the future it will require no code change.
243  *
244  * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
245  */
246 #define DR6_ACTIVE_LOW	0xffff0ff0
247 #define DR6_VOLATILE	0x0001e80f
248 #define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
249 
250 #define DR7_BP_EN_MASK	0x000000ff
251 #define DR7_GE		(1 << 9)
252 #define DR7_GD		(1 << 13)
253 #define DR7_VOLATILE	0xffff2bff
254 
255 #define KVM_GUESTDBG_VALID_MASK \
256 	(KVM_GUESTDBG_ENABLE | \
257 	KVM_GUESTDBG_SINGLESTEP | \
258 	KVM_GUESTDBG_USE_HW_BP | \
259 	KVM_GUESTDBG_USE_SW_BP | \
260 	KVM_GUESTDBG_INJECT_BP | \
261 	KVM_GUESTDBG_INJECT_DB | \
262 	KVM_GUESTDBG_BLOCKIRQ)
263 
264 #define PFERR_PRESENT_MASK	BIT(0)
265 #define PFERR_WRITE_MASK	BIT(1)
266 #define PFERR_USER_MASK		BIT(2)
267 #define PFERR_RSVD_MASK		BIT(3)
268 #define PFERR_FETCH_MASK	BIT(4)
269 #define PFERR_PK_MASK		BIT(5)
270 #define PFERR_SGX_MASK		BIT(15)
271 #define PFERR_GUEST_RMP_MASK	BIT_ULL(31)
272 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(32)
273 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(33)
274 #define PFERR_GUEST_ENC_MASK	BIT_ULL(34)
275 #define PFERR_GUEST_SIZEM_MASK	BIT_ULL(35)
276 #define PFERR_GUEST_VMPL_MASK	BIT_ULL(36)
277 
278 /*
279  * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
280  * when emulating instructions that triggers implicit access.
281  */
282 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(48)
283 /*
284  * PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
285  * when the guest was accessing private memory.
286  */
287 #define PFERR_PRIVATE_ACCESS   BIT_ULL(49)
288 #define PFERR_SYNTHETIC_MASK   (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
289 
290 /* apic attention bits */
291 #define KVM_APIC_CHECK_VAPIC	0
292 /*
293  * The following bit is set with PV-EOI, unset on EOI.
294  * We detect PV-EOI changes by guest by comparing
295  * this bit with PV-EOI in guest memory.
296  * See the implementation in apic_update_pv_eoi.
297  */
298 #define KVM_APIC_PV_EOI_PENDING	1
299 
300 struct kvm_kernel_irq_routing_entry;
301 
302 /*
303  * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
304  * also includes TDP pages) to determine whether or not a page can be used in
305  * the given MMU context.  This is a subset of the overall kvm_cpu_role to
306  * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
307  * allocating 2 bytes per gfn instead of 4 bytes per gfn.
308  *
309  * Upper-level shadow pages having gptes are tracked for write-protection via
310  * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
311  * not create more than 2^16-1 upper-level shadow pages at a single gfn,
312  * otherwise gfn_write_track will overflow and explosions will ensue.
313  *
314  * A unique shadow page (SP) for a gfn is created if and only if an existing SP
315  * cannot be reused.  The ability to reuse a SP is tracked by its role, which
316  * incorporates various mode bits and properties of the SP.  Roughly speaking,
317  * the number of unique SPs that can theoretically be created is 2^n, where n
318  * is the number of bits that are used to compute the role.
319  *
320  * But, even though there are 20 bits in the mask below, not all combinations
321  * of modes and flags are possible:
322  *
323  *   - invalid shadow pages are not accounted, mirror pages are not shadowed,
324  *     so the bits are effectively 18.
325  *
326  *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
327  *     execonly and ad_disabled are only used for nested EPT which has
328  *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
329  *
330  *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
331  *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
332  *     paging has exactly one upper level, making level completely redundant
333  *     when has_4_byte_gpte=1.
334  *
335  *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
336  *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
337  *
338  * Therefore, the maximum number of possible upper-level shadow pages for a
339  * single gfn is a bit less than 2^13.
340  */
341 union kvm_mmu_page_role {
342 	u32 word;
343 	struct {
344 		unsigned level:4;
345 		unsigned has_4_byte_gpte:1;
346 		unsigned quadrant:2;
347 		unsigned direct:1;
348 		unsigned access:3;
349 		unsigned invalid:1;
350 		unsigned efer_nx:1;
351 		unsigned cr0_wp:1;
352 		unsigned smep_andnot_wp:1;
353 		unsigned smap_andnot_wp:1;
354 		unsigned ad_disabled:1;
355 		unsigned guest_mode:1;
356 		unsigned passthrough:1;
357 		unsigned is_mirror:1;
358 		unsigned :4;
359 
360 		/*
361 		 * This is left at the top of the word so that
362 		 * kvm_memslots_for_spte_role can extract it with a
363 		 * simple shift.  While there is room, give it a whole
364 		 * byte so it is also faster to load it from memory.
365 		 */
366 		unsigned smm:8;
367 	};
368 };
369 
370 /*
371  * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
372  * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
373  * including on nested transitions, if nothing in the full role changes then
374  * MMU re-configuration can be skipped. @valid bit is set on first usage so we
375  * don't treat all-zero structure as valid data.
376  *
377  * The properties that are tracked in the extended role but not the page role
378  * are for things that either (a) do not affect the validity of the shadow page
379  * or (b) are indirectly reflected in the shadow page's role.  For example,
380  * CR4.PKE only affects permission checks for software walks of the guest page
381  * tables (because KVM doesn't support Protection Keys with shadow paging), and
382  * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
383  *
384  * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
385  * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
386  * SMAP, but the MMU's permission checks for software walks need to be SMEP and
387  * SMAP aware regardless of CR0.WP.
388  */
389 union kvm_mmu_extended_role {
390 	u32 word;
391 	struct {
392 		unsigned int valid:1;
393 		unsigned int execonly:1;
394 		unsigned int cr4_pse:1;
395 		unsigned int cr4_pke:1;
396 		unsigned int cr4_smap:1;
397 		unsigned int cr4_smep:1;
398 		unsigned int cr4_la57:1;
399 		unsigned int efer_lma:1;
400 	};
401 };
402 
403 union kvm_cpu_role {
404 	u64 as_u64;
405 	struct {
406 		union kvm_mmu_page_role base;
407 		union kvm_mmu_extended_role ext;
408 	};
409 };
410 
411 struct kvm_rmap_head {
412 	atomic_long_t val;
413 };
414 
415 struct kvm_pio_request {
416 	unsigned long count;
417 	int in;
418 	int port;
419 	int size;
420 };
421 
422 #define PT64_ROOT_MAX_LEVEL 5
423 
424 struct rsvd_bits_validate {
425 	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
426 	u64 bad_mt_xwr;
427 };
428 
429 struct kvm_mmu_root_info {
430 	gpa_t pgd;
431 	hpa_t hpa;
432 };
433 
434 #define KVM_MMU_ROOT_INFO_INVALID \
435 	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
436 
437 #define KVM_MMU_NUM_PREV_ROOTS 3
438 
439 #define KVM_MMU_ROOT_CURRENT		BIT(0)
440 #define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
441 #define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
442 
443 #define KVM_HAVE_MMU_RWLOCK
444 
445 struct kvm_mmu_page;
446 struct kvm_page_fault;
447 
448 /*
449  * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
450  * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
451  * current mmu mode.
452  */
453 struct kvm_mmu {
454 	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
455 	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
456 	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
457 	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
458 				  struct x86_exception *fault);
459 	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
460 			    gpa_t gva_or_gpa, u64 access,
461 			    struct x86_exception *exception);
462 	int (*sync_spte)(struct kvm_vcpu *vcpu,
463 			 struct kvm_mmu_page *sp, int i);
464 	struct kvm_mmu_root_info root;
465 	hpa_t mirror_root_hpa;
466 	union kvm_cpu_role cpu_role;
467 	union kvm_mmu_page_role root_role;
468 
469 	/*
470 	* The pkru_mask indicates if protection key checks are needed.  It
471 	* consists of 16 domains indexed by page fault error code bits [4:1],
472 	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
473 	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
474 	*/
475 	u32 pkru_mask;
476 
477 	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
478 
479 	/*
480 	 * Bitmap; bit set = permission fault
481 	 * Byte index: page fault error code [4:1]
482 	 * Bit index: pte permissions in ACC_* format
483 	 */
484 	u8 permissions[16];
485 
486 	u64 *pae_root;
487 	u64 *pml4_root;
488 	u64 *pml5_root;
489 
490 	/*
491 	 * check zero bits on shadow page table entries, these
492 	 * bits include not only hardware reserved bits but also
493 	 * the bits spte never used.
494 	 */
495 	struct rsvd_bits_validate shadow_zero_check;
496 
497 	struct rsvd_bits_validate guest_rsvd_check;
498 
499 	u64 pdptrs[4]; /* pae */
500 };
501 
502 enum pmc_type {
503 	KVM_PMC_GP = 0,
504 	KVM_PMC_FIXED,
505 };
506 
507 struct kvm_pmc {
508 	enum pmc_type type;
509 	u8 idx;
510 	bool is_paused;
511 	bool intr;
512 	/*
513 	 * Base value of the PMC counter, relative to the *consumed* count in
514 	 * the associated perf_event.  This value includes counter updates from
515 	 * the perf_event and emulated_count since the last time the counter
516 	 * was reprogrammed, but it is *not* the current value as seen by the
517 	 * guest or userspace.
518 	 *
519 	 * The count is relative to the associated perf_event so that KVM
520 	 * doesn't need to reprogram the perf_event every time the guest writes
521 	 * to the counter.
522 	 */
523 	u64 counter;
524 	/*
525 	 * PMC events triggered by KVM emulation that haven't been fully
526 	 * processed, i.e. haven't undergone overflow detection.
527 	 */
528 	u64 emulated_counter;
529 	u64 eventsel;
530 	struct perf_event *perf_event;
531 	struct kvm_vcpu *vcpu;
532 	/*
533 	 * only for creating or reusing perf_event,
534 	 * eventsel value for general purpose counters,
535 	 * ctrl value for fixed counters.
536 	 */
537 	u64 current_config;
538 };
539 
540 /* More counters may conflict with other existing Architectural MSRs */
541 #define KVM_MAX(a, b)	((a) >= (b) ? (a) : (b))
542 #define KVM_MAX_NR_INTEL_GP_COUNTERS	8
543 #define KVM_MAX_NR_AMD_GP_COUNTERS	6
544 #define KVM_MAX_NR_GP_COUNTERS		KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
545 						KVM_MAX_NR_AMD_GP_COUNTERS)
546 
547 #define KVM_MAX_NR_INTEL_FIXED_COUTNERS	3
548 #define KVM_MAX_NR_AMD_FIXED_COUTNERS	0
549 #define KVM_MAX_NR_FIXED_COUNTERS	KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
550 						KVM_MAX_NR_AMD_FIXED_COUTNERS)
551 
552 struct kvm_pmu {
553 	u8 version;
554 	unsigned nr_arch_gp_counters;
555 	unsigned nr_arch_fixed_counters;
556 	unsigned available_event_types;
557 	u64 fixed_ctr_ctrl;
558 	u64 fixed_ctr_ctrl_rsvd;
559 	u64 global_ctrl;
560 	u64 global_status;
561 	u64 counter_bitmask[2];
562 	u64 global_ctrl_rsvd;
563 	u64 global_status_rsvd;
564 	u64 reserved_bits;
565 	u64 raw_event_mask;
566 	struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
567 	struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
568 
569 	/*
570 	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
571 	 * set in a single access, e.g. to reprogram all counters when the PMU
572 	 * filter changes.
573 	 */
574 	union {
575 		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
576 		atomic64_t __reprogram_pmi;
577 	};
578 	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
579 	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
580 
581 	u64 ds_area;
582 	u64 pebs_enable;
583 	u64 pebs_enable_rsvd;
584 	u64 pebs_data_cfg;
585 	u64 pebs_data_cfg_rsvd;
586 
587 	/*
588 	 * If a guest counter is cross-mapped to host counter with different
589 	 * index, its PEBS capability will be temporarily disabled.
590 	 *
591 	 * The user should make sure that this mask is updated
592 	 * after disabling interrupts and before perf_guest_get_msrs();
593 	 */
594 	u64 host_cross_mapped_mask;
595 
596 	/*
597 	 * The gate to release perf_events not marked in
598 	 * pmc_in_use only once in a vcpu time slice.
599 	 */
600 	bool need_cleanup;
601 
602 	/*
603 	 * The total number of programmed perf_events and it helps to avoid
604 	 * redundant check before cleanup if guest don't use vPMU at all.
605 	 */
606 	u8 event_count;
607 };
608 
609 struct kvm_pmu_ops;
610 
611 enum {
612 	KVM_DEBUGREG_BP_ENABLED		= BIT(0),
613 	KVM_DEBUGREG_WONT_EXIT		= BIT(1),
614 	/*
615 	 * Guest debug registers (DR0-3, DR6 and DR7) are saved/restored by
616 	 * hardware on exit from or enter to guest. KVM needn't switch them.
617 	 * DR0-3, DR6 and DR7 are set to their architectural INIT value on VM
618 	 * exit, host values need to be restored.
619 	 */
620 	KVM_DEBUGREG_AUTO_SWITCH	= BIT(2),
621 };
622 
623 struct kvm_mtrr {
624 	u64 var[KVM_NR_VAR_MTRR * 2];
625 	u64 fixed_64k;
626 	u64 fixed_16k[2];
627 	u64 fixed_4k[8];
628 	u64 deftype;
629 };
630 
631 /* Hyper-V SynIC timer */
632 struct kvm_vcpu_hv_stimer {
633 	struct hrtimer timer;
634 	int index;
635 	union hv_stimer_config config;
636 	u64 count;
637 	u64 exp_time;
638 	struct hv_message msg;
639 	bool msg_pending;
640 };
641 
642 /* Hyper-V synthetic interrupt controller (SynIC)*/
643 struct kvm_vcpu_hv_synic {
644 	u64 version;
645 	u64 control;
646 	u64 msg_page;
647 	u64 evt_page;
648 	atomic64_t sint[HV_SYNIC_SINT_COUNT];
649 	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
650 	DECLARE_BITMAP(auto_eoi_bitmap, 256);
651 	DECLARE_BITMAP(vec_bitmap, 256);
652 	bool active;
653 	bool dont_zero_synic_pages;
654 };
655 
656 /* The maximum number of entries on the TLB flush fifo. */
657 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
658 /*
659  * Note: the following 'magic' entry is made up by KVM to avoid putting
660  * anything besides GVA on the TLB flush fifo. It is theoretically possible
661  * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
662  * which will look identical. KVM's action to 'flush everything' instead of
663  * flushing these particular addresses is, however, fully legitimate as
664  * flushing more than requested is always OK.
665  */
666 #define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
667 
668 enum hv_tlb_flush_fifos {
669 	HV_L1_TLB_FLUSH_FIFO,
670 	HV_L2_TLB_FLUSH_FIFO,
671 	HV_NR_TLB_FLUSH_FIFOS,
672 };
673 
674 struct kvm_vcpu_hv_tlb_flush_fifo {
675 	spinlock_t write_lock;
676 	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
677 };
678 
679 /* Hyper-V per vcpu emulation context */
680 struct kvm_vcpu_hv {
681 	struct kvm_vcpu *vcpu;
682 	u32 vp_index;
683 	u64 hv_vapic;
684 	s64 runtime_offset;
685 	struct kvm_vcpu_hv_synic synic;
686 	struct kvm_hyperv_exit exit;
687 	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
688 	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
689 	bool enforce_cpuid;
690 	struct {
691 		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
692 		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
693 		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
694 		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
695 		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
696 		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
697 		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
698 		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
699 	} cpuid_cache;
700 
701 	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
702 
703 	/*
704 	 * Preallocated buffers for handling hypercalls that pass sparse vCPU
705 	 * sets (for high vCPU counts, they're too large to comfortably fit on
706 	 * the stack).
707 	 */
708 	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
709 	DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
710 
711 	struct hv_vp_assist_page vp_assist_page;
712 
713 	struct {
714 		u64 pa_page_gpa;
715 		u64 vm_id;
716 		u32 vp_id;
717 	} nested;
718 };
719 
720 struct kvm_hypervisor_cpuid {
721 	u32 base;
722 	u32 limit;
723 };
724 
725 #ifdef CONFIG_KVM_XEN
726 /* Xen HVM per vcpu emulation context */
727 struct kvm_vcpu_xen {
728 	u64 hypercall_rip;
729 	u32 current_runstate;
730 	u8 upcall_vector;
731 	struct gfn_to_pfn_cache vcpu_info_cache;
732 	struct gfn_to_pfn_cache vcpu_time_info_cache;
733 	struct gfn_to_pfn_cache runstate_cache;
734 	struct gfn_to_pfn_cache runstate2_cache;
735 	u64 last_steal;
736 	u64 runstate_entry_time;
737 	u64 runstate_times[4];
738 	unsigned long evtchn_pending_sel;
739 	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
740 	u32 timer_virq;
741 	u64 timer_expires; /* In guest epoch */
742 	atomic_t timer_pending;
743 	struct hrtimer timer;
744 	int poll_evtchn;
745 	struct timer_list poll_timer;
746 	struct kvm_hypervisor_cpuid cpuid;
747 };
748 #endif
749 
750 struct kvm_queued_exception {
751 	bool pending;
752 	bool injected;
753 	bool has_error_code;
754 	u8 vector;
755 	u32 error_code;
756 	unsigned long payload;
757 	bool has_payload;
758 };
759 
760 /*
761  * Hardware-defined CPUID leafs that are either scattered by the kernel or are
762  * unknown to the kernel, but need to be directly used by KVM.  Note, these
763  * word values conflict with the kernel's "bug" caps, but KVM doesn't use those.
764  */
765 enum kvm_only_cpuid_leafs {
766 	CPUID_12_EAX	 = NCAPINTS,
767 	CPUID_7_1_EDX,
768 	CPUID_8000_0007_EDX,
769 	CPUID_8000_0022_EAX,
770 	CPUID_7_2_EDX,
771 	CPUID_24_0_EBX,
772 	CPUID_8000_0021_ECX,
773 	NR_KVM_CPU_CAPS,
774 
775 	NKVMCAPINTS = NR_KVM_CPU_CAPS - NCAPINTS,
776 };
777 
778 struct kvm_vcpu_arch {
779 	/*
780 	 * rip and regs accesses must go through
781 	 * kvm_{register,rip}_{read,write} functions.
782 	 */
783 	unsigned long regs[NR_VCPU_REGS];
784 	u32 regs_avail;
785 	u32 regs_dirty;
786 
787 	unsigned long cr0;
788 	unsigned long cr0_guest_owned_bits;
789 	unsigned long cr2;
790 	unsigned long cr3;
791 	unsigned long cr4;
792 	unsigned long cr4_guest_owned_bits;
793 	unsigned long cr4_guest_rsvd_bits;
794 	unsigned long cr8;
795 	u32 host_pkru;
796 	u32 pkru;
797 	u32 hflags;
798 	u64 efer;
799 	u64 host_debugctl;
800 	u64 apic_base;
801 	struct kvm_lapic *apic;    /* kernel irqchip context */
802 	bool load_eoi_exitmap_pending;
803 	DECLARE_BITMAP(ioapic_handled_vectors, 256);
804 	unsigned long apic_attention;
805 	int32_t apic_arb_prio;
806 	int mp_state;
807 	u64 ia32_misc_enable_msr;
808 	u64 smbase;
809 	u64 smi_count;
810 	bool at_instruction_boundary;
811 	bool tpr_access_reporting;
812 	bool xfd_no_write_intercept;
813 	u64 ia32_xss;
814 	u64 microcode_version;
815 	u64 arch_capabilities;
816 	u64 perf_capabilities;
817 
818 	/*
819 	 * Paging state of the vcpu
820 	 *
821 	 * If the vcpu runs in guest mode with two level paging this still saves
822 	 * the paging mode of the l1 guest. This context is always used to
823 	 * handle faults.
824 	 */
825 	struct kvm_mmu *mmu;
826 
827 	/* Non-nested MMU for L1 */
828 	struct kvm_mmu root_mmu;
829 
830 	/* L1 MMU when running nested */
831 	struct kvm_mmu guest_mmu;
832 
833 	/*
834 	 * Paging state of an L2 guest (used for nested npt)
835 	 *
836 	 * This context will save all necessary information to walk page tables
837 	 * of an L2 guest. This context is only initialized for page table
838 	 * walking and not for faulting since we never handle l2 page faults on
839 	 * the host.
840 	 */
841 	struct kvm_mmu nested_mmu;
842 
843 	/*
844 	 * Pointer to the mmu context currently used for
845 	 * gva_to_gpa translations.
846 	 */
847 	struct kvm_mmu *walk_mmu;
848 
849 	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
850 	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
851 	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
852 	struct kvm_mmu_memory_cache mmu_page_header_cache;
853 	/*
854 	 * This cache is to allocate external page table. E.g. private EPT used
855 	 * by the TDX module.
856 	 */
857 	struct kvm_mmu_memory_cache mmu_external_spt_cache;
858 
859 	/*
860 	 * QEMU userspace and the guest each have their own FPU state.
861 	 * In vcpu_run, we switch between the user and guest FPU contexts.
862 	 * While running a VCPU, the VCPU thread will have the guest FPU
863 	 * context.
864 	 *
865 	 * Note that while the PKRU state lives inside the fpu registers,
866 	 * it is switched out separately at VMENTER and VMEXIT time. The
867 	 * "guest_fpstate" state here contains the guest FPU context, with the
868 	 * host PRKU bits.
869 	 */
870 	struct fpu_guest guest_fpu;
871 
872 	u64 xcr0;
873 	u64 guest_supported_xcr0;
874 
875 	struct kvm_pio_request pio;
876 	void *pio_data;
877 	void *sev_pio_data;
878 	unsigned sev_pio_count;
879 
880 	u8 event_exit_inst_len;
881 
882 	bool exception_from_userspace;
883 
884 	/* Exceptions to be injected to the guest. */
885 	struct kvm_queued_exception exception;
886 	/* Exception VM-Exits to be synthesized to L1. */
887 	struct kvm_queued_exception exception_vmexit;
888 
889 	struct kvm_queued_interrupt {
890 		bool injected;
891 		bool soft;
892 		u8 nr;
893 	} interrupt;
894 
895 	int halt_request; /* real mode on Intel only */
896 
897 	int cpuid_nent;
898 	struct kvm_cpuid_entry2 *cpuid_entries;
899 	bool cpuid_dynamic_bits_dirty;
900 	bool is_amd_compatible;
901 
902 	/*
903 	 * cpu_caps holds the effective guest capabilities, i.e. the features
904 	 * the vCPU is allowed to use.  Typically, but not always, features can
905 	 * be used by the guest if and only if both KVM and userspace want to
906 	 * expose the feature to the guest.
907 	 *
908 	 * A common exception is for virtualization holes, i.e. when KVM can't
909 	 * prevent the guest from using a feature, in which case the vCPU "has"
910 	 * the feature regardless of what KVM or userspace desires.
911 	 *
912 	 * Note, features that don't require KVM involvement in any way are
913 	 * NOT enforced/sanitized by KVM, i.e. are taken verbatim from the
914 	 * guest CPUID provided by userspace.
915 	 */
916 	u32 cpu_caps[NR_KVM_CPU_CAPS];
917 
918 	u64 reserved_gpa_bits;
919 	int maxphyaddr;
920 
921 	/* emulate context */
922 
923 	struct x86_emulate_ctxt *emulate_ctxt;
924 	bool emulate_regs_need_sync_to_vcpu;
925 	bool emulate_regs_need_sync_from_vcpu;
926 	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
927 	unsigned long cui_linear_rip;
928 
929 	gpa_t time;
930 	s8  pvclock_tsc_shift;
931 	u32 pvclock_tsc_mul;
932 	unsigned int hw_tsc_khz;
933 	struct gfn_to_pfn_cache pv_time;
934 	/* set guest stopped flag in pvclock flags field */
935 	bool pvclock_set_guest_stopped_request;
936 
937 	struct {
938 		u8 preempted;
939 		u64 msr_val;
940 		u64 last_steal;
941 		struct gfn_to_hva_cache cache;
942 	} st;
943 
944 	u64 l1_tsc_offset;
945 	u64 tsc_offset; /* current tsc offset */
946 	u64 last_guest_tsc;
947 	u64 last_host_tsc;
948 	u64 tsc_offset_adjustment;
949 	u64 this_tsc_nsec;
950 	u64 this_tsc_write;
951 	u64 this_tsc_generation;
952 	bool tsc_catchup;
953 	bool tsc_always_catchup;
954 	s8 virtual_tsc_shift;
955 	u32 virtual_tsc_mult;
956 	u32 virtual_tsc_khz;
957 	s64 ia32_tsc_adjust_msr;
958 	u64 msr_ia32_power_ctl;
959 	u64 l1_tsc_scaling_ratio;
960 	u64 tsc_scaling_ratio; /* current scaling ratio */
961 
962 	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
963 	/* Number of NMIs pending injection, not including hardware vNMIs. */
964 	unsigned int nmi_pending;
965 	bool nmi_injected;    /* Trying to inject an NMI this entry */
966 	bool smi_pending;    /* SMI queued after currently running handler */
967 	u8 handling_intr_from_guest;
968 
969 	struct kvm_mtrr mtrr_state;
970 	u64 pat;
971 
972 	unsigned switch_db_regs;
973 	unsigned long db[KVM_NR_DB_REGS];
974 	unsigned long dr6;
975 	unsigned long dr7;
976 	unsigned long eff_db[KVM_NR_DB_REGS];
977 	unsigned long guest_debug_dr7;
978 	u64 msr_platform_info;
979 	u64 msr_misc_features_enables;
980 
981 	u64 mcg_cap;
982 	u64 mcg_status;
983 	u64 mcg_ctl;
984 	u64 mcg_ext_ctl;
985 	u64 *mce_banks;
986 	u64 *mci_ctl2_banks;
987 
988 	/* Cache MMIO info */
989 	u64 mmio_gva;
990 	unsigned mmio_access;
991 	gfn_t mmio_gfn;
992 	u64 mmio_gen;
993 
994 	struct kvm_pmu pmu;
995 
996 	/* used for guest single stepping over the given code position */
997 	unsigned long singlestep_rip;
998 
999 #ifdef CONFIG_KVM_HYPERV
1000 	bool hyperv_enabled;
1001 	struct kvm_vcpu_hv *hyperv;
1002 #endif
1003 #ifdef CONFIG_KVM_XEN
1004 	struct kvm_vcpu_xen xen;
1005 #endif
1006 	cpumask_var_t wbinvd_dirty_mask;
1007 
1008 	unsigned long last_retry_eip;
1009 	unsigned long last_retry_addr;
1010 
1011 	struct {
1012 		bool halted;
1013 		gfn_t gfns[ASYNC_PF_PER_VCPU];
1014 		struct gfn_to_hva_cache data;
1015 		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
1016 		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
1017 		u16 vec;
1018 		u32 id;
1019 		u32 host_apf_flags;
1020 		bool send_always;
1021 		bool delivery_as_pf_vmexit;
1022 		bool pageready_pending;
1023 	} apf;
1024 
1025 	/* OSVW MSRs (AMD only) */
1026 	struct {
1027 		u64 length;
1028 		u64 status;
1029 	} osvw;
1030 
1031 	struct {
1032 		u64 msr_val;
1033 		struct gfn_to_hva_cache data;
1034 	} pv_eoi;
1035 
1036 	u64 msr_kvm_poll_control;
1037 
1038 	/* pv related host specific info */
1039 	struct {
1040 		bool pv_unhalted;
1041 	} pv;
1042 
1043 	int pending_ioapic_eoi;
1044 	int pending_external_vector;
1045 	int highest_stale_pending_ioapic_eoi;
1046 
1047 	/* be preempted when it's in kernel-mode(cpl=0) */
1048 	bool preempted_in_kernel;
1049 
1050 	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1051 	bool l1tf_flush_l1d;
1052 
1053 	/* Host CPU on which VM-entry was most recently attempted */
1054 	int last_vmentry_cpu;
1055 
1056 	/* AMD MSRC001_0015 Hardware Configuration */
1057 	u64 msr_hwcr;
1058 
1059 	/* pv related cpuid info */
1060 	struct {
1061 		/*
1062 		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1063 		 * leaf.
1064 		 */
1065 		u32 features;
1066 
1067 		/*
1068 		 * indicates whether pv emulation should be disabled if features
1069 		 * are not present in the guest's cpuid
1070 		 */
1071 		bool enforce;
1072 	} pv_cpuid;
1073 
1074 	/* Protected Guests */
1075 	bool guest_state_protected;
1076 	bool guest_tsc_protected;
1077 
1078 	/*
1079 	 * Set when PDPTS were loaded directly by the userspace without
1080 	 * reading the guest memory
1081 	 */
1082 	bool pdptrs_from_userspace;
1083 
1084 #if IS_ENABLED(CONFIG_HYPERV)
1085 	hpa_t hv_root_tdp;
1086 #endif
1087 };
1088 
1089 struct kvm_lpage_info {
1090 	int disallow_lpage;
1091 };
1092 
1093 struct kvm_arch_memory_slot {
1094 	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1095 	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1096 	unsigned short *gfn_write_track;
1097 };
1098 
1099 /*
1100  * Track the mode of the optimized logical map, as the rules for decoding the
1101  * destination vary per mode.  Enabling the optimized logical map requires all
1102  * software-enabled local APIs to be in the same mode, each addressable APIC to
1103  * be mapped to only one MDA, and each MDA to map to at most one APIC.
1104  */
1105 enum kvm_apic_logical_mode {
1106 	/* All local APICs are software disabled. */
1107 	KVM_APIC_MODE_SW_DISABLED,
1108 	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1109 	KVM_APIC_MODE_XAPIC_CLUSTER,
1110 	/* All software enabled local APICs in xAPIC flat addressing mode. */
1111 	KVM_APIC_MODE_XAPIC_FLAT,
1112 	/* All software enabled local APICs in x2APIC mode. */
1113 	KVM_APIC_MODE_X2APIC,
1114 	/*
1115 	 * Optimized map disabled, e.g. not all local APICs in the same logical
1116 	 * mode, same logical ID assigned to multiple APICs, etc.
1117 	 */
1118 	KVM_APIC_MODE_MAP_DISABLED,
1119 };
1120 
1121 struct kvm_apic_map {
1122 	struct rcu_head rcu;
1123 	enum kvm_apic_logical_mode logical_mode;
1124 	u32 max_apic_id;
1125 	union {
1126 		struct kvm_lapic *xapic_flat_map[8];
1127 		struct kvm_lapic *xapic_cluster_map[16][4];
1128 	};
1129 	struct kvm_lapic *phys_map[];
1130 };
1131 
1132 /* Hyper-V synthetic debugger (SynDbg)*/
1133 struct kvm_hv_syndbg {
1134 	struct {
1135 		u64 control;
1136 		u64 status;
1137 		u64 send_page;
1138 		u64 recv_page;
1139 		u64 pending_page;
1140 	} control;
1141 	u64 options;
1142 };
1143 
1144 /* Current state of Hyper-V TSC page clocksource */
1145 enum hv_tsc_page_status {
1146 	/* TSC page was not set up or disabled */
1147 	HV_TSC_PAGE_UNSET = 0,
1148 	/* TSC page MSR was written by the guest, update pending */
1149 	HV_TSC_PAGE_GUEST_CHANGED,
1150 	/* TSC page update was triggered from the host side */
1151 	HV_TSC_PAGE_HOST_CHANGED,
1152 	/* TSC page was properly set up and is currently active  */
1153 	HV_TSC_PAGE_SET,
1154 	/* TSC page was set up with an inaccessible GPA */
1155 	HV_TSC_PAGE_BROKEN,
1156 };
1157 
1158 #ifdef CONFIG_KVM_HYPERV
1159 /* Hyper-V emulation context */
1160 struct kvm_hv {
1161 	struct mutex hv_lock;
1162 	u64 hv_guest_os_id;
1163 	u64 hv_hypercall;
1164 	u64 hv_tsc_page;
1165 	enum hv_tsc_page_status hv_tsc_page_status;
1166 
1167 	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1168 	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1169 	u64 hv_crash_ctl;
1170 
1171 	struct ms_hyperv_tsc_page tsc_ref;
1172 
1173 	struct idr conn_to_evt;
1174 
1175 	u64 hv_reenlightenment_control;
1176 	u64 hv_tsc_emulation_control;
1177 	u64 hv_tsc_emulation_status;
1178 	u64 hv_invtsc_control;
1179 
1180 	/* How many vCPUs have VP index != vCPU index */
1181 	atomic_t num_mismatched_vp_indexes;
1182 
1183 	/*
1184 	 * How many SynICs use 'AutoEOI' feature
1185 	 * (protected by arch.apicv_update_lock)
1186 	 */
1187 	unsigned int synic_auto_eoi_used;
1188 
1189 	struct kvm_hv_syndbg hv_syndbg;
1190 
1191 	bool xsaves_xsavec_checked;
1192 };
1193 #endif
1194 
1195 struct msr_bitmap_range {
1196 	u32 flags;
1197 	u32 nmsrs;
1198 	u32 base;
1199 	unsigned long *bitmap;
1200 };
1201 
1202 #ifdef CONFIG_KVM_XEN
1203 /* Xen emulation context */
1204 struct kvm_xen {
1205 	struct mutex xen_lock;
1206 	u32 xen_version;
1207 	bool long_mode;
1208 	bool runstate_update_flag;
1209 	u8 upcall_vector;
1210 	struct gfn_to_pfn_cache shinfo_cache;
1211 	struct idr evtchn_ports;
1212 	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1213 
1214 	struct kvm_xen_hvm_config hvm_config;
1215 };
1216 #endif
1217 
1218 enum kvm_irqchip_mode {
1219 	KVM_IRQCHIP_NONE,
1220 	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1221 	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1222 };
1223 
1224 struct kvm_x86_msr_filter {
1225 	u8 count;
1226 	bool default_allow:1;
1227 	struct msr_bitmap_range ranges[16];
1228 };
1229 
1230 struct kvm_x86_pmu_event_filter {
1231 	__u32 action;
1232 	__u32 nevents;
1233 	__u32 fixed_counter_bitmap;
1234 	__u32 flags;
1235 	__u32 nr_includes;
1236 	__u32 nr_excludes;
1237 	__u64 *includes;
1238 	__u64 *excludes;
1239 	__u64 events[];
1240 };
1241 
1242 enum kvm_apicv_inhibit {
1243 
1244 	/********************************************************************/
1245 	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1246 	/********************************************************************/
1247 
1248 	/*
1249 	 * APIC acceleration is disabled by a module parameter
1250 	 * and/or not supported in hardware.
1251 	 */
1252 	APICV_INHIBIT_REASON_DISABLED,
1253 
1254 	/*
1255 	 * APIC acceleration is inhibited because AutoEOI feature is
1256 	 * being used by a HyperV guest.
1257 	 */
1258 	APICV_INHIBIT_REASON_HYPERV,
1259 
1260 	/*
1261 	 * APIC acceleration is inhibited because the userspace didn't yet
1262 	 * enable the kernel/split irqchip.
1263 	 */
1264 	APICV_INHIBIT_REASON_ABSENT,
1265 
1266 	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1267 	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1268 	 * was enabled, to avoid AVIC/APICv bypassing it.
1269 	 */
1270 	APICV_INHIBIT_REASON_BLOCKIRQ,
1271 
1272 	/*
1273 	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1274 	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1275 	 */
1276 	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1277 
1278 	/*
1279 	 * For simplicity, the APIC acceleration is inhibited
1280 	 * first time either APIC ID or APIC base are changed by the guest
1281 	 * from their reset values.
1282 	 */
1283 	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1284 	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1285 
1286 	/******************************************************/
1287 	/* INHIBITs that are relevant only to the AMD's AVIC. */
1288 	/******************************************************/
1289 
1290 	/*
1291 	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1292 	 *
1293 	 * This is needed because unlike APICv, the peers of this vCPU
1294 	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1295 	 * a vCPU runs nested.
1296 	 */
1297 	APICV_INHIBIT_REASON_NESTED,
1298 
1299 	/*
1300 	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1301 	 * which cannot be injected when the AVIC is enabled, thus AVIC
1302 	 * is inhibited while KVM waits for IRQ window.
1303 	 */
1304 	APICV_INHIBIT_REASON_IRQWIN,
1305 
1306 	/*
1307 	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1308 	 * which AVIC doesn't support for edge triggered interrupts.
1309 	 */
1310 	APICV_INHIBIT_REASON_PIT_REINJ,
1311 
1312 	/*
1313 	 * AVIC is disabled because SEV doesn't support it.
1314 	 */
1315 	APICV_INHIBIT_REASON_SEV,
1316 
1317 	/*
1318 	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1319 	 * mapping between logical ID and vCPU.
1320 	 */
1321 	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1322 
1323 	NR_APICV_INHIBIT_REASONS,
1324 };
1325 
1326 #define __APICV_INHIBIT_REASON(reason)			\
1327 	{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
1328 
1329 #define APICV_INHIBIT_REASONS				\
1330 	__APICV_INHIBIT_REASON(DISABLED),		\
1331 	__APICV_INHIBIT_REASON(HYPERV),			\
1332 	__APICV_INHIBIT_REASON(ABSENT),			\
1333 	__APICV_INHIBIT_REASON(BLOCKIRQ),		\
1334 	__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED),	\
1335 	__APICV_INHIBIT_REASON(APIC_ID_MODIFIED),	\
1336 	__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED),	\
1337 	__APICV_INHIBIT_REASON(NESTED),			\
1338 	__APICV_INHIBIT_REASON(IRQWIN),			\
1339 	__APICV_INHIBIT_REASON(PIT_REINJ),		\
1340 	__APICV_INHIBIT_REASON(SEV),			\
1341 	__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
1342 
1343 struct kvm_arch {
1344 	unsigned long n_used_mmu_pages;
1345 	unsigned long n_requested_mmu_pages;
1346 	unsigned long n_max_mmu_pages;
1347 	unsigned int indirect_shadow_pages;
1348 	u8 mmu_valid_gen;
1349 	u8 vm_type;
1350 	bool has_private_mem;
1351 	bool has_protected_state;
1352 	bool pre_fault_allowed;
1353 	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1354 	struct list_head active_mmu_pages;
1355 	/*
1356 	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1357 	 * replaced by an NX huge page.  A shadow page is on this list if its
1358 	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1359 	 * and there are no other conditions that prevent a huge page, e.g.
1360 	 * the backing host page is huge, dirtly logging is not enabled for its
1361 	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1362 	 * guarantee an NX huge page will be created in its stead, e.g. if the
1363 	 * guest attempts to execute from the region then KVM obviously can't
1364 	 * create an NX huge page (without hanging the guest).
1365 	 */
1366 	struct list_head possible_nx_huge_pages;
1367 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1368 	struct kvm_page_track_notifier_head track_notifier_head;
1369 #endif
1370 	/*
1371 	 * Protects marking pages unsync during page faults, as TDP MMU page
1372 	 * faults only take mmu_lock for read.  For simplicity, the unsync
1373 	 * pages lock is always taken when marking pages unsync regardless of
1374 	 * whether mmu_lock is held for read or write.
1375 	 */
1376 	spinlock_t mmu_unsync_pages_lock;
1377 
1378 	u64 shadow_mmio_value;
1379 
1380 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1381 	atomic_t noncoherent_dma_count;
1382 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1383 	atomic_t assigned_device_count;
1384 	struct kvm_pic *vpic;
1385 	struct kvm_ioapic *vioapic;
1386 	struct kvm_pit *vpit;
1387 	atomic_t vapics_in_nmi_mode;
1388 	struct mutex apic_map_lock;
1389 	struct kvm_apic_map __rcu *apic_map;
1390 	atomic_t apic_map_dirty;
1391 
1392 	bool apic_access_memslot_enabled;
1393 	bool apic_access_memslot_inhibited;
1394 
1395 	/* Protects apicv_inhibit_reasons */
1396 	struct rw_semaphore apicv_update_lock;
1397 	unsigned long apicv_inhibit_reasons;
1398 
1399 	gpa_t wall_clock;
1400 
1401 	bool mwait_in_guest;
1402 	bool hlt_in_guest;
1403 	bool pause_in_guest;
1404 	bool cstate_in_guest;
1405 
1406 	unsigned long irq_sources_bitmap;
1407 	s64 kvmclock_offset;
1408 
1409 	/*
1410 	 * This also protects nr_vcpus_matched_tsc which is read from a
1411 	 * preemption-disabled region, so it must be a raw spinlock.
1412 	 */
1413 	raw_spinlock_t tsc_write_lock;
1414 	u64 last_tsc_nsec;
1415 	u64 last_tsc_write;
1416 	u32 last_tsc_khz;
1417 	u64 last_tsc_offset;
1418 	u64 cur_tsc_nsec;
1419 	u64 cur_tsc_write;
1420 	u64 cur_tsc_offset;
1421 	u64 cur_tsc_generation;
1422 	int nr_vcpus_matched_tsc;
1423 
1424 	u32 default_tsc_khz;
1425 	bool user_set_tsc;
1426 	u64 apic_bus_cycle_ns;
1427 
1428 	seqcount_raw_spinlock_t pvclock_sc;
1429 	bool use_master_clock;
1430 	u64 master_kernel_ns;
1431 	u64 master_cycle_now;
1432 	struct delayed_work kvmclock_update_work;
1433 	struct delayed_work kvmclock_sync_work;
1434 
1435 	/* reads protected by irq_srcu, writes by irq_lock */
1436 	struct hlist_head mask_notifier_list;
1437 
1438 #ifdef CONFIG_KVM_HYPERV
1439 	struct kvm_hv hyperv;
1440 #endif
1441 
1442 #ifdef CONFIG_KVM_XEN
1443 	struct kvm_xen xen;
1444 #endif
1445 
1446 	bool backwards_tsc_observed;
1447 	bool boot_vcpu_runs_old_kvmclock;
1448 	u32 bsp_vcpu_id;
1449 
1450 	u64 disabled_quirks;
1451 
1452 	enum kvm_irqchip_mode irqchip_mode;
1453 	u8 nr_reserved_ioapic_pins;
1454 
1455 	bool disabled_lapic_found;
1456 
1457 	bool x2apic_format;
1458 	bool x2apic_broadcast_quirk_disabled;
1459 
1460 	bool guest_can_read_msr_platform_info;
1461 	bool exception_payload_enabled;
1462 
1463 	bool triple_fault_event;
1464 
1465 	bool bus_lock_detection_enabled;
1466 	bool enable_pmu;
1467 
1468 	u32 notify_window;
1469 	u32 notify_vmexit_flags;
1470 	/*
1471 	 * If exit_on_emulation_error is set, and the in-kernel instruction
1472 	 * emulator fails to emulate an instruction, allow userspace
1473 	 * the opportunity to look at it.
1474 	 */
1475 	bool exit_on_emulation_error;
1476 
1477 	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1478 	u32 user_space_msr_mask;
1479 	struct kvm_x86_msr_filter __rcu *msr_filter;
1480 
1481 	u32 hypercall_exit_enabled;
1482 
1483 	/* Guest can access the SGX PROVISIONKEY. */
1484 	bool sgx_provisioning_allowed;
1485 
1486 	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1487 	struct vhost_task *nx_huge_page_recovery_thread;
1488 	u64 nx_huge_page_last;
1489 	struct once nx_once;
1490 
1491 #ifdef CONFIG_X86_64
1492 #ifdef CONFIG_KVM_PROVE_MMU
1493 	/*
1494 	 * The number of TDP MMU pages across all roots.  Used only to sanity
1495 	 * check that KVM isn't leaking TDP MMU pages.
1496 	 */
1497 	atomic64_t tdp_mmu_pages;
1498 #endif
1499 
1500 	/*
1501 	 * List of struct kvm_mmu_pages being used as roots.
1502 	 * All struct kvm_mmu_pages in the list should have
1503 	 * tdp_mmu_page set.
1504 	 *
1505 	 * For reads, this list is protected by:
1506 	 *	RCU alone or
1507 	 *	the MMU lock in read mode + RCU or
1508 	 *	the MMU lock in write mode
1509 	 *
1510 	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1511 	 * below for the details.
1512 	 *
1513 	 * Roots will remain in the list until their tdp_mmu_root_count
1514 	 * drops to zero, at which point the thread that decremented the
1515 	 * count to zero should removed the root from the list and clean
1516 	 * it up, freeing the root after an RCU grace period.
1517 	 */
1518 	struct list_head tdp_mmu_roots;
1519 
1520 	/*
1521 	 * Protects accesses to the following fields when the MMU lock
1522 	 * is held in read mode:
1523 	 *  - tdp_mmu_roots (above)
1524 	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1525 	 *  - possible_nx_huge_pages;
1526 	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1527 	 *    by the TDP MMU
1528 	 * Because the lock is only taken within the MMU lock, strictly
1529 	 * speaking it is redundant to acquire this lock when the thread
1530 	 * holds the MMU lock in write mode.  However it often simplifies
1531 	 * the code to do so.
1532 	 */
1533 	spinlock_t tdp_mmu_pages_lock;
1534 #endif /* CONFIG_X86_64 */
1535 
1536 	/*
1537 	 * If set, at least one shadow root has been allocated. This flag
1538 	 * is used as one input when determining whether certain memslot
1539 	 * related allocations are necessary.
1540 	 */
1541 	bool shadow_root_allocated;
1542 
1543 #ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1544 	/*
1545 	 * If set, the VM has (or had) an external write tracking user, and
1546 	 * thus all write tracking metadata has been allocated, even if KVM
1547 	 * itself isn't using write tracking.
1548 	 */
1549 	bool external_write_tracking_enabled;
1550 #endif
1551 
1552 #if IS_ENABLED(CONFIG_HYPERV)
1553 	hpa_t	hv_root_tdp;
1554 	spinlock_t hv_root_tdp_lock;
1555 	struct hv_partition_assist_pg *hv_pa_pg;
1556 #endif
1557 	/*
1558 	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1559 	 * that increase along with the maximum vCPU ID, in which case, using
1560 	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1561 	 */
1562 	u32 max_vcpu_ids;
1563 
1564 	bool disable_nx_huge_pages;
1565 
1566 	/*
1567 	 * Memory caches used to allocate shadow pages when performing eager
1568 	 * page splitting. No need for a shadowed_info_cache since eager page
1569 	 * splitting only allocates direct shadow pages.
1570 	 *
1571 	 * Protected by kvm->slots_lock.
1572 	 */
1573 	struct kvm_mmu_memory_cache split_shadow_page_cache;
1574 	struct kvm_mmu_memory_cache split_page_header_cache;
1575 
1576 	/*
1577 	 * Memory cache used to allocate pte_list_desc structs while splitting
1578 	 * huge pages. In the worst case, to split one huge page, 512
1579 	 * pte_list_desc structs are needed to add each lower level leaf sptep
1580 	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1581 	 * page table.
1582 	 *
1583 	 * Protected by kvm->slots_lock.
1584 	 */
1585 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1586 	struct kvm_mmu_memory_cache split_desc_cache;
1587 
1588 	gfn_t gfn_direct_bits;
1589 
1590 	/*
1591 	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A Zero
1592 	 * value indicates CPU dirty logging is unsupported or disabled in
1593 	 * current VM.
1594 	 */
1595 	int cpu_dirty_log_size;
1596 };
1597 
1598 struct kvm_vm_stat {
1599 	struct kvm_vm_stat_generic generic;
1600 	u64 mmu_shadow_zapped;
1601 	u64 mmu_pte_write;
1602 	u64 mmu_pde_zapped;
1603 	u64 mmu_flooded;
1604 	u64 mmu_recycled;
1605 	u64 mmu_cache_miss;
1606 	u64 mmu_unsync;
1607 	union {
1608 		struct {
1609 			atomic64_t pages_4k;
1610 			atomic64_t pages_2m;
1611 			atomic64_t pages_1g;
1612 		};
1613 		atomic64_t pages[KVM_NR_PAGE_SIZES];
1614 	};
1615 	u64 nx_lpage_splits;
1616 	u64 max_mmu_page_hash_collisions;
1617 	u64 max_mmu_rmap_size;
1618 };
1619 
1620 struct kvm_vcpu_stat {
1621 	struct kvm_vcpu_stat_generic generic;
1622 	u64 pf_taken;
1623 	u64 pf_fixed;
1624 	u64 pf_emulate;
1625 	u64 pf_spurious;
1626 	u64 pf_fast;
1627 	u64 pf_mmio_spte_created;
1628 	u64 pf_guest;
1629 	u64 tlb_flush;
1630 	u64 invlpg;
1631 
1632 	u64 exits;
1633 	u64 io_exits;
1634 	u64 mmio_exits;
1635 	u64 signal_exits;
1636 	u64 irq_window_exits;
1637 	u64 nmi_window_exits;
1638 	u64 l1d_flush;
1639 	u64 halt_exits;
1640 	u64 request_irq_exits;
1641 	u64 irq_exits;
1642 	u64 host_state_reload;
1643 	u64 fpu_reload;
1644 	u64 insn_emulation;
1645 	u64 insn_emulation_fail;
1646 	u64 hypercalls;
1647 	u64 irq_injections;
1648 	u64 nmi_injections;
1649 	u64 req_event;
1650 	u64 nested_run;
1651 	u64 directed_yield_attempted;
1652 	u64 directed_yield_successful;
1653 	u64 preemption_reported;
1654 	u64 preemption_other;
1655 	u64 guest_mode;
1656 	u64 notify_window_exits;
1657 };
1658 
1659 struct x86_instruction_info;
1660 
1661 struct msr_data {
1662 	bool host_initiated;
1663 	u32 index;
1664 	u64 data;
1665 };
1666 
1667 struct kvm_lapic_irq {
1668 	u32 vector;
1669 	u16 delivery_mode;
1670 	u16 dest_mode;
1671 	bool level;
1672 	u16 trig_mode;
1673 	u32 shorthand;
1674 	u32 dest_id;
1675 	bool msi_redir_hint;
1676 };
1677 
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1678 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1679 {
1680 	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1681 }
1682 
1683 struct kvm_x86_ops {
1684 	const char *name;
1685 
1686 	int (*check_processor_compatibility)(void);
1687 
1688 	int (*enable_virtualization_cpu)(void);
1689 	void (*disable_virtualization_cpu)(void);
1690 	cpu_emergency_virt_cb *emergency_disable_virtualization_cpu;
1691 
1692 	void (*hardware_unsetup)(void);
1693 	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1694 	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1695 
1696 	unsigned int vm_size;
1697 	int (*vm_init)(struct kvm *kvm);
1698 	void (*vm_destroy)(struct kvm *kvm);
1699 	void (*vm_pre_destroy)(struct kvm *kvm);
1700 
1701 	/* Create, but do not attach this VCPU */
1702 	int (*vcpu_precreate)(struct kvm *kvm);
1703 	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1704 	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1705 	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1706 
1707 	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1708 	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1709 	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1710 
1711 	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1712 	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1713 	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1714 	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1715 	void (*get_segment)(struct kvm_vcpu *vcpu,
1716 			    struct kvm_segment *var, int seg);
1717 	int (*get_cpl)(struct kvm_vcpu *vcpu);
1718 	int (*get_cpl_no_cache)(struct kvm_vcpu *vcpu);
1719 	void (*set_segment)(struct kvm_vcpu *vcpu,
1720 			    struct kvm_segment *var, int seg);
1721 	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1722 	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1723 	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1724 	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1725 	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1726 	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1727 	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1728 	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1729 	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1730 	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1731 	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1732 	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1733 	void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
1734 	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1735 	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1736 	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1737 	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1738 	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1739 
1740 	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1741 	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1742 #if IS_ENABLED(CONFIG_HYPERV)
1743 	int  (*flush_remote_tlbs)(struct kvm *kvm);
1744 	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1745 					gfn_t nr_pages);
1746 #endif
1747 
1748 	/*
1749 	 * Flush any TLB entries associated with the given GVA.
1750 	 * Does not need to flush GPA->HPA mappings.
1751 	 * Can potentially get non-canonical addresses through INVLPGs, which
1752 	 * the implementation may choose to ignore if appropriate.
1753 	 */
1754 	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1755 
1756 	/*
1757 	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1758 	 * does not need to flush GPA->HPA mappings.
1759 	 */
1760 	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1761 
1762 	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1763 	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
1764 						  bool force_immediate_exit);
1765 	int (*handle_exit)(struct kvm_vcpu *vcpu,
1766 		enum exit_fastpath_completion exit_fastpath);
1767 	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1768 	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1769 	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1770 	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1771 	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1772 				unsigned char *hypercall_addr);
1773 	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1774 	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1775 	void (*inject_exception)(struct kvm_vcpu *vcpu);
1776 	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1777 	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1778 	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1779 	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1780 	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1781 	/* Whether or not a virtual NMI is pending in hardware. */
1782 	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1783 	/*
1784 	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1785 	 * to allow using static_call_ret0 as the fallback.
1786 	 */
1787 	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1788 	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1789 	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1790 	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1791 
1792 	const bool x2apic_icr_is_split;
1793 	const unsigned long required_apicv_inhibits;
1794 	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1795 	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1796 	void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1797 	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1798 	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1799 	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1800 	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1801 				  int trig_mode, int vector);
1802 	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1803 	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1804 	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1805 	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1806 
1807 	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1808 			     int root_level);
1809 
1810 	/* Update external mapping with page table link. */
1811 	int (*link_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1812 				void *external_spt);
1813 	/* Update the external page table from spte getting set. */
1814 	int (*set_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1815 				 kvm_pfn_t pfn_for_gfn);
1816 
1817 	/* Update external page tables for page table about to be freed. */
1818 	int (*free_external_spt)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1819 				 void *external_spt);
1820 
1821 	/* Update external page table from spte getting removed, and flush TLB. */
1822 	int (*remove_external_spte)(struct kvm *kvm, gfn_t gfn, enum pg_level level,
1823 				    kvm_pfn_t pfn_for_gfn);
1824 
1825 	bool (*has_wbinvd_exit)(void);
1826 
1827 	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1828 	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1829 	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1830 	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1831 
1832 	/*
1833 	 * Retrieve somewhat arbitrary exit/entry information.  Intended to
1834 	 * be used only from within tracepoints or error paths.
1835 	 */
1836 	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1837 			      u64 *info1, u64 *info2,
1838 			      u32 *intr_info, u32 *error_code);
1839 
1840 	void (*get_entry_info)(struct kvm_vcpu *vcpu,
1841 			       u32 *intr_info, u32 *error_code);
1842 
1843 	int (*check_intercept)(struct kvm_vcpu *vcpu,
1844 			       struct x86_instruction_info *info,
1845 			       enum x86_intercept_stage stage,
1846 			       struct x86_exception *exception);
1847 	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1848 
1849 	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1850 
1851 	const struct kvm_x86_nested_ops *nested_ops;
1852 
1853 	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1854 	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1855 
1856 	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1857 			      uint32_t guest_irq, bool set);
1858 	void (*pi_start_assignment)(struct kvm *kvm);
1859 	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1860 	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1861 	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1862 	bool (*protected_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1863 
1864 	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1865 			    bool *expired);
1866 	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1867 
1868 	void (*setup_mce)(struct kvm_vcpu *vcpu);
1869 
1870 #ifdef CONFIG_KVM_SMM
1871 	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1872 	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1873 	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1874 	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1875 #endif
1876 
1877 	int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
1878 	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1879 	int (*vcpu_mem_enc_ioctl)(struct kvm_vcpu *vcpu, void __user *argp);
1880 	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1881 	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1882 	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1883 	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1884 	void (*guest_memory_reclaimed)(struct kvm *kvm);
1885 
1886 	int (*get_feature_msr)(u32 msr, u64 *data);
1887 
1888 	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1889 					 void *insn, int insn_len);
1890 
1891 	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1892 	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1893 
1894 	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1895 	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1896 	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1897 
1898 	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1899 
1900 	/*
1901 	 * Returns vCPU specific APICv inhibit reasons
1902 	 */
1903 	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1904 
1905 	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1906 	void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
1907 	int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
1908 	void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
1909 	int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
1910 };
1911 
1912 struct kvm_x86_nested_ops {
1913 	void (*leave_nested)(struct kvm_vcpu *vcpu);
1914 	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1915 				    u32 error_code);
1916 	int (*check_events)(struct kvm_vcpu *vcpu);
1917 	bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
1918 	void (*triple_fault)(struct kvm_vcpu *vcpu);
1919 	int (*get_state)(struct kvm_vcpu *vcpu,
1920 			 struct kvm_nested_state __user *user_kvm_nested_state,
1921 			 unsigned user_data_size);
1922 	int (*set_state)(struct kvm_vcpu *vcpu,
1923 			 struct kvm_nested_state __user *user_kvm_nested_state,
1924 			 struct kvm_nested_state *kvm_state);
1925 	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1926 	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1927 
1928 	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1929 			    uint16_t *vmcs_version);
1930 	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1931 	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1932 };
1933 
1934 struct kvm_x86_init_ops {
1935 	int (*hardware_setup)(void);
1936 	unsigned int (*handle_intel_pt_intr)(void);
1937 
1938 	struct kvm_x86_ops *runtime_ops;
1939 	struct kvm_pmu_ops *pmu_ops;
1940 };
1941 
1942 struct kvm_arch_async_pf {
1943 	u32 token;
1944 	gfn_t gfn;
1945 	unsigned long cr3;
1946 	bool direct_map;
1947 	u64 error_code;
1948 };
1949 
1950 extern u32 __read_mostly kvm_nr_uret_msrs;
1951 extern bool __read_mostly allow_smaller_maxphyaddr;
1952 extern bool __read_mostly enable_apicv;
1953 extern bool __read_mostly enable_device_posted_irqs;
1954 extern struct kvm_x86_ops kvm_x86_ops;
1955 
1956 #define kvm_x86_call(func) static_call(kvm_x86_##func)
1957 #define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
1958 
1959 #define KVM_X86_OP(func) \
1960 	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1961 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1962 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1963 #include <asm/kvm-x86-ops.h>
1964 
1965 int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1966 void kvm_x86_vendor_exit(void);
1967 
1968 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1969 static inline struct kvm *kvm_arch_alloc_vm(void)
1970 {
1971 	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1972 }
1973 
1974 #define __KVM_HAVE_ARCH_VM_FREE
1975 void kvm_arch_free_vm(struct kvm *kvm);
1976 
1977 #if IS_ENABLED(CONFIG_HYPERV)
1978 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1979 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1980 {
1981 	if (kvm_x86_ops.flush_remote_tlbs &&
1982 	    !kvm_x86_call(flush_remote_tlbs)(kvm))
1983 		return 0;
1984 	else
1985 		return -ENOTSUPP;
1986 }
1987 
1988 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1989 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1990 						   u64 nr_pages)
1991 {
1992 	if (!kvm_x86_ops.flush_remote_tlbs_range)
1993 		return -EOPNOTSUPP;
1994 
1995 	return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1996 }
1997 #endif /* CONFIG_HYPERV */
1998 
1999 enum kvm_intr_type {
2000 	/* Values are arbitrary, but must be non-zero. */
2001 	KVM_HANDLING_IRQ = 1,
2002 	KVM_HANDLING_NMI,
2003 };
2004 
2005 /* Enable perf NMI and timer modes to work, and minimise false positives. */
2006 #define kvm_arch_pmi_in_guest(vcpu) \
2007 	((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
2008 	 (!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
2009 
2010 void __init kvm_mmu_x86_module_init(void);
2011 int kvm_mmu_vendor_module_init(void);
2012 void kvm_mmu_vendor_module_exit(void);
2013 
2014 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
2015 int kvm_mmu_create(struct kvm_vcpu *vcpu);
2016 void kvm_mmu_init_vm(struct kvm *kvm);
2017 void kvm_mmu_uninit_vm(struct kvm *kvm);
2018 
2019 void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
2020 					    struct kvm_memory_slot *slot);
2021 
2022 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
2023 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
2024 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
2025 				      const struct kvm_memory_slot *memslot,
2026 				      int start_level);
2027 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
2028 				       const struct kvm_memory_slot *memslot,
2029 				       int target_level);
2030 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
2031 				  const struct kvm_memory_slot *memslot,
2032 				  u64 start, u64 end,
2033 				  int target_level);
2034 void kvm_mmu_recover_huge_pages(struct kvm *kvm,
2035 				const struct kvm_memory_slot *memslot);
2036 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
2037 				   const struct kvm_memory_slot *memslot);
2038 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
2039 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
2040 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
2041 
2042 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
2043 
2044 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2045 			  const void *val, int bytes);
2046 
2047 struct kvm_irq_mask_notifier {
2048 	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
2049 	int irq;
2050 	struct hlist_node link;
2051 };
2052 
2053 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
2054 				    struct kvm_irq_mask_notifier *kimn);
2055 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
2056 				      struct kvm_irq_mask_notifier *kimn);
2057 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
2058 			     bool mask);
2059 
2060 extern bool tdp_enabled;
2061 
2062 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
2063 
2064 /*
2065  * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
2066  *			userspace I/O) to indicate that the emulation context
2067  *			should be reused as is, i.e. skip initialization of
2068  *			emulation context, instruction fetch and decode.
2069  *
2070  * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
2071  *		      Indicates that only select instructions (tagged with
2072  *		      EmulateOnUD) should be emulated (to minimize the emulator
2073  *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
2074  *
2075  * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
2076  *		   decode the instruction length.  For use *only* by
2077  *		   kvm_x86_ops.skip_emulated_instruction() implementations if
2078  *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
2079  *
2080  * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
2081  *			     retry native execution under certain conditions,
2082  *			     Can only be set in conjunction with EMULTYPE_PF.
2083  *
2084  * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
2085  *			     triggered by KVM's magic "force emulation" prefix,
2086  *			     which is opt in via module param (off by default).
2087  *			     Bypasses EmulateOnUD restriction despite emulating
2088  *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
2089  *			     Used to test the full emulator from userspace.
2090  *
2091  * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
2092  *			backdoor emulation, which is opt in via module param.
2093  *			VMware backdoor emulation handles select instructions
2094  *			and reinjects the #GP for all other cases.
2095  *
2096  * EMULTYPE_PF - Set when an intercepted #PF triggers the emulation, in which case
2097  *		 the CR2/GPA value pass on the stack is valid.
2098  *
2099  * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
2100  *				 state and inject single-step #DBs after skipping
2101  *				 an instruction (after completing userspace I/O).
2102  *
2103  * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
2104  *			     is attempting to write a gfn that contains one or
2105  *			     more of the PTEs used to translate the write itself,
2106  *			     and the owning page table is being shadowed by KVM.
2107  *			     If emulation of the faulting instruction fails and
2108  *			     this flag is set, KVM will exit to userspace instead
2109  *			     of retrying emulation as KVM cannot make forward
2110  *			     progress.
2111  *
2112  *			     If emulation fails for a write to guest page tables,
2113  *			     KVM unprotects (zaps) the shadow page for the target
2114  *			     gfn and resumes the guest to retry the non-emulatable
2115  *			     instruction (on hardware).  Unprotecting the gfn
2116  *			     doesn't allow forward progress for a self-changing
2117  *			     access because doing so also zaps the translation for
2118  *			     the gfn, i.e. retrying the instruction will hit a
2119  *			     !PRESENT fault, which results in a new shadow page
2120  *			     and sends KVM back to square one.
2121  */
2122 #define EMULTYPE_NO_DECODE	    (1 << 0)
2123 #define EMULTYPE_TRAP_UD	    (1 << 1)
2124 #define EMULTYPE_SKIP		    (1 << 2)
2125 #define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2126 #define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2127 #define EMULTYPE_VMWARE_GP	    (1 << 5)
2128 #define EMULTYPE_PF		    (1 << 6)
2129 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2130 #define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2131 
kvm_can_emulate_event_vectoring(int emul_type)2132 static inline bool kvm_can_emulate_event_vectoring(int emul_type)
2133 {
2134 	return !(emul_type & EMULTYPE_PF);
2135 }
2136 
2137 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2138 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2139 					void *insn, int insn_len);
2140 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2141 					  u64 *data, u8 ndata);
2142 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2143 
2144 void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa);
2145 
2146 void kvm_enable_efer_bits(u64);
2147 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2148 int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2149 int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data);
2150 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2151 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2152 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2153 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2154 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2155 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2156 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2157 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2158 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2159 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2160 
2161 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2162 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2163 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2164 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2165 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2166 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2167 
2168 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2169 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2170 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2171 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2172 
2173 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2174 		    int reason, bool has_error_code, u32 error_code);
2175 
2176 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2177 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2178 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2179 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2180 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2181 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2182 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2183 unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
2184 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2185 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2186 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
2187 
2188 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2189 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2190 
2191 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2192 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2193 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2194 
2195 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2196 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2197 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2198 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr,
2199 			   bool has_error_code, u32 error_code);
2200 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2201 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2202 				    struct x86_exception *fault);
2203 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2204 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2205 
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)2206 static inline int __kvm_irq_line_state(unsigned long *irq_state,
2207 				       int irq_source_id, int level)
2208 {
2209 	/* Logical OR for level trig interrupt */
2210 	if (level)
2211 		__set_bit(irq_source_id, irq_state);
2212 	else
2213 		__clear_bit(irq_source_id, irq_state);
2214 
2215 	return !!(*irq_state);
2216 }
2217 
2218 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2219 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2220 
2221 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2222 int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2223 
2224 void kvm_update_dr7(struct kvm_vcpu *vcpu);
2225 
2226 bool __kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
2227 				       bool always_retry);
2228 
kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa)2229 static inline bool kvm_mmu_unprotect_gfn_and_retry(struct kvm_vcpu *vcpu,
2230 						   gpa_t cr2_or_gpa)
2231 {
2232 	return __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, false);
2233 }
2234 
2235 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2236 			ulong roots_to_free);
2237 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2238 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2239 			      struct x86_exception *exception);
2240 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2241 			       struct x86_exception *exception);
2242 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2243 				struct x86_exception *exception);
2244 
2245 bool kvm_apicv_activated(struct kvm *kvm);
2246 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2247 void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2248 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2249 				      enum kvm_apicv_inhibit reason, bool set);
2250 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2251 				    enum kvm_apicv_inhibit reason, bool set);
2252 
kvm_set_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2253 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2254 					 enum kvm_apicv_inhibit reason)
2255 {
2256 	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2257 }
2258 
kvm_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason)2259 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2260 					   enum kvm_apicv_inhibit reason)
2261 {
2262 	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2263 }
2264 
2265 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2266 		       void *insn, int insn_len);
2267 void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
2268 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2269 void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2270 			     u64 addr, unsigned long roots);
2271 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2272 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2273 
2274 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2275 		       int tdp_max_root_level, int tdp_huge_page_level);
2276 
2277 
2278 #ifdef CONFIG_KVM_PRIVATE_MEM
2279 #define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
2280 #else
2281 #define kvm_arch_has_private_mem(kvm) false
2282 #endif
2283 
2284 #define kvm_arch_has_readonly_mem(kvm) (!(kvm)->arch.has_protected_state)
2285 
kvm_read_ldt(void)2286 static inline u16 kvm_read_ldt(void)
2287 {
2288 	u16 ldt;
2289 	asm("sldt %0" : "=g"(ldt));
2290 	return ldt;
2291 }
2292 
kvm_load_ldt(u16 sel)2293 static inline void kvm_load_ldt(u16 sel)
2294 {
2295 	asm("lldt %0" : : "rm"(sel));
2296 }
2297 
2298 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)2299 static inline unsigned long read_msr(unsigned long msr)
2300 {
2301 	u64 value;
2302 
2303 	rdmsrq(msr, value);
2304 	return value;
2305 }
2306 #endif
2307 
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)2308 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2309 {
2310 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2311 }
2312 
2313 #define TSS_IOPB_BASE_OFFSET 0x66
2314 #define TSS_BASE_SIZE 0x68
2315 #define TSS_IOPB_SIZE (65536 / 8)
2316 #define TSS_REDIRECTION_SIZE (256 / 8)
2317 #define RMODE_TSS_SIZE							\
2318 	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2319 
2320 enum {
2321 	TASK_SWITCH_CALL = 0,
2322 	TASK_SWITCH_IRET = 1,
2323 	TASK_SWITCH_JMP = 2,
2324 	TASK_SWITCH_GATE = 3,
2325 };
2326 
2327 #define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2328 
2329 #ifdef CONFIG_KVM_SMM
2330 #define HF_SMM_MASK		(1 << 1)
2331 #define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2332 
2333 # define KVM_MAX_NR_ADDRESS_SPACES	2
2334 /* SMM is currently unsupported for guests with private memory. */
2335 # define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2336 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2337 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2338 #else
2339 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2340 #endif
2341 
2342 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2343 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2344 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2345 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2346 int kvm_cpu_get_extint(struct kvm_vcpu *v);
2347 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2348 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2349 
2350 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2351 		    unsigned long ipi_bitmap_high, u32 min,
2352 		    unsigned long icr, int op_64_bit);
2353 
2354 int kvm_add_user_return_msr(u32 msr);
2355 int kvm_find_user_return_msr(u32 msr);
2356 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2357 void kvm_user_return_msr_update_cache(unsigned int index, u64 val);
2358 
kvm_is_supported_user_return_msr(u32 msr)2359 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2360 {
2361 	return kvm_find_user_return_msr(msr) >= 0;
2362 }
2363 
2364 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2365 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2366 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2367 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2368 
2369 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2370 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2371 
2372 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2373 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2374 				       unsigned long *vcpu_bitmap);
2375 
2376 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2377 				     struct kvm_async_pf *work);
2378 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2379 				 struct kvm_async_pf *work);
2380 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2381 			       struct kvm_async_pf *work);
2382 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2383 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2384 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2385 
2386 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2387 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2388 
2389 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2390 				     u32 size);
2391 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2392 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2393 
2394 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2395 			     struct kvm_vcpu **dest_vcpu);
2396 
2397 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2398 		     struct kvm_lapic_irq *irq);
2399 
kvm_irq_is_postable(struct kvm_lapic_irq * irq)2400 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2401 {
2402 	/* We can only post Fixed and LowPrio IRQs */
2403 	return (irq->delivery_mode == APIC_DM_FIXED ||
2404 		irq->delivery_mode == APIC_DM_LOWEST);
2405 }
2406 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)2407 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2408 {
2409 	kvm_x86_call(vcpu_blocking)(vcpu);
2410 }
2411 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)2412 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2413 {
2414 	kvm_x86_call(vcpu_unblocking)(vcpu);
2415 }
2416 
kvm_cpu_get_apicid(int mps_cpu)2417 static inline int kvm_cpu_get_apicid(int mps_cpu)
2418 {
2419 #ifdef CONFIG_X86_LOCAL_APIC
2420 	return default_cpu_present_to_apicid(mps_cpu);
2421 #else
2422 	WARN_ON_ONCE(1);
2423 	return BAD_APICID;
2424 #endif
2425 }
2426 
2427 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2428 
2429 #define KVM_CLOCK_VALID_FLAGS						\
2430 	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2431 
2432 #define KVM_X86_VALID_QUIRKS			\
2433 	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2434 	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2435 	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2436 	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2437 	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2438 	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2439 	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS |	\
2440 	 KVM_X86_QUIRK_SLOT_ZAP_ALL |		\
2441 	 KVM_X86_QUIRK_STUFF_FEATURE_MSRS |	\
2442 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2443 
2444 #define KVM_X86_CONDITIONAL_QUIRKS		\
2445 	(KVM_X86_QUIRK_CD_NW_CLEARED |		\
2446 	 KVM_X86_QUIRK_IGNORE_GUEST_PAT)
2447 
2448 /*
2449  * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2450  * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2451  * remaining 31 lower bits must be 0 to preserve ABI.
2452  */
2453 #define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2454 
kvm_arch_has_irq_bypass(void)2455 static inline bool kvm_arch_has_irq_bypass(void)
2456 {
2457 	return enable_device_posted_irqs;
2458 }
2459 
2460 #endif /* _ASM_X86_KVM_HOST_H */
2461