xref: /linux/include/linux/energy_model.h (revision b62ce2547fe8a8ba15857bb974bcad250c5420d6)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/device.h>
6 #include <linux/jump_label.h>
7 #include <linux/kobject.h>
8 #include <linux/kref.h>
9 #include <linux/rcupdate.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/topology.h>
12 #include <linux/types.h>
13 
14 /**
15  * struct em_perf_state - Performance state of a performance domain
16  * @performance:	CPU performance (capacity) at a given frequency
17  * @frequency:	The frequency in KHz, for consistency with CPUFreq
18  * @power:	The power consumed at this level (by 1 CPU or by a registered
19  *		device). It can be a total power: static and dynamic.
20  * @cost:	The cost coefficient associated with this level, used during
21  *		energy calculation. Equal to: 10 * power * max_frequency / frequency
22  * @flags:	see "em_perf_state flags" description below.
23  */
24 struct em_perf_state {
25 	unsigned long performance;
26 	unsigned long frequency;
27 	unsigned long power;
28 	unsigned long cost;
29 	unsigned long flags;
30 };
31 
32 /*
33  * em_perf_state flags:
34  *
35  * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is
36  * in this em_perf_domain, another performance state with a higher frequency
37  * but a lower or equal power cost. Such inefficient states are ignored when
38  * using em_pd_get_efficient_*() functions.
39  */
40 #define EM_PERF_STATE_INEFFICIENT BIT(0)
41 
42 /**
43  * struct em_perf_table - Performance states table
44  * @rcu:	RCU used for safe access and destruction
45  * @kref:	Reference counter to track the users
46  * @state:	List of performance states, in ascending order
47  */
48 struct em_perf_table {
49 	struct rcu_head rcu;
50 	struct kref kref;
51 	struct em_perf_state state[];
52 };
53 
54 /**
55  * struct em_perf_domain - Performance domain
56  * @em_table:		Pointer to the runtime modifiable em_perf_table
57  * @node:		node in	em_pd_list (in energy_model.c)
58  * @id:			A unique ID number for each performance domain
59  * @nr_perf_states:	Number of performance states
60  * @min_perf_state:	Minimum allowed Performance State index
61  * @max_perf_state:	Maximum allowed Performance State index
62  * @flags:		See "em_perf_domain flags"
63  * @cpus:		Cpumask covering the CPUs of the domain. It's here
64  *			for performance reasons to avoid potential cache
65  *			misses during energy calculations in the scheduler
66  *			and simplifies allocating/freeing that memory region.
67  *
68  * In case of CPU device, a "performance domain" represents a group of CPUs
69  * whose performance is scaled together. All CPUs of a performance domain
70  * must have the same micro-architecture. Performance domains often have
71  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
72  * field is unused.
73  */
74 struct em_perf_domain {
75 	struct em_perf_table __rcu *em_table;
76 	struct list_head node;
77 	int id;
78 	int nr_perf_states;
79 	int min_perf_state;
80 	int max_perf_state;
81 	unsigned long flags;
82 	unsigned long cpus[];
83 };
84 
85 /*
86  *  em_perf_domain flags:
87  *
88  *  EM_PERF_DOMAIN_MICROWATTS: The power values are in micro-Watts or some
89  *  other scale.
90  *
91  *  EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating
92  *  energy consumption.
93  *
94  *  EM_PERF_DOMAIN_ARTIFICIAL: The power values are artificial and might be
95  *  created by platform missing real power information
96  */
97 #define EM_PERF_DOMAIN_MICROWATTS BIT(0)
98 #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1)
99 #define EM_PERF_DOMAIN_ARTIFICIAL BIT(2)
100 
101 #define em_span_cpus(em) (to_cpumask((em)->cpus))
102 #define em_is_artificial(em) ((em)->flags & EM_PERF_DOMAIN_ARTIFICIAL)
103 
104 #ifdef CONFIG_ENERGY_MODEL
105 /*
106  * The max power value in micro-Watts. The limit of 64 Watts is set as
107  * a safety net to not overflow multiplications on 32bit platforms. The
108  * 32bit value limit for total Perf Domain power implies a limit of
109  * maximum CPUs in such domain to 64.
110  */
111 #define EM_MAX_POWER (64000000) /* 64 Watts */
112 
113 /*
114  * To avoid possible energy estimation overflow on 32bit machines add
115  * limits to number of CPUs in the Perf. Domain.
116  * We are safe on 64bit machine, thus some big number.
117  */
118 #ifdef CONFIG_64BIT
119 #define EM_MAX_NUM_CPUS 4096
120 #else
121 #define EM_MAX_NUM_CPUS 16
122 #endif
123 
124 struct em_data_callback {
125 	/**
126 	 * active_power() - Provide power at the next performance state of
127 	 *		a device
128 	 * @dev		: Device for which we do this operation (can be a CPU)
129 	 * @power	: Active power at the performance state
130 	 *		(modified)
131 	 * @freq	: Frequency at the performance state in kHz
132 	 *		(modified)
133 	 *
134 	 * active_power() must find the lowest performance state of 'dev' above
135 	 * 'freq' and update 'power' and 'freq' to the matching active power
136 	 * and frequency.
137 	 *
138 	 * In case of CPUs, the power is the one of a single CPU in the domain,
139 	 * expressed in micro-Watts or an abstract scale. It is expected to
140 	 * fit in the [0, EM_MAX_POWER] range.
141 	 *
142 	 * Return 0 on success.
143 	 */
144 	int (*active_power)(struct device *dev, unsigned long *power,
145 			    unsigned long *freq);
146 
147 	/**
148 	 * get_cost() - Provide the cost at the given performance state of
149 	 *		a device
150 	 * @dev		: Device for which we do this operation (can be a CPU)
151 	 * @freq	: Frequency at the performance state in kHz
152 	 * @cost	: The cost value for the performance state
153 	 *		(modified)
154 	 *
155 	 * In case of CPUs, the cost is the one of a single CPU in the domain.
156 	 * It is expected to fit in the [0, EM_MAX_POWER] range due to internal
157 	 * usage in EAS calculation.
158 	 *
159 	 * Return 0 on success, or appropriate error value in case of failure.
160 	 */
161 	int (*get_cost)(struct device *dev, unsigned long freq,
162 			unsigned long *cost);
163 };
164 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) ((em_cb).active_power = cb)
165 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb)	\
166 	{ .active_power = _active_power_cb,		\
167 	  .get_cost = _cost_cb }
168 #define EM_DATA_CB(_active_power_cb)			\
169 		EM_ADV_DATA_CB(_active_power_cb, NULL)
170 
171 struct em_perf_domain *em_cpu_get(int cpu);
172 struct em_perf_domain *em_pd_get(struct device *dev);
173 int em_dev_update_perf_domain(struct device *dev,
174 			      struct em_perf_table *new_table);
175 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
176 				const struct em_data_callback *cb,
177 				const cpumask_t *cpus, bool microwatts);
178 int em_dev_register_pd_no_update(struct device *dev, unsigned int nr_states,
179 				 const struct em_data_callback *cb,
180 				 const cpumask_t *cpus, bool microwatts);
181 void em_dev_unregister_perf_domain(struct device *dev);
182 struct em_perf_table *em_table_alloc(struct em_perf_domain *pd);
183 void em_table_free(struct em_perf_table *table);
184 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
185 			 int nr_states);
186 int em_dev_update_chip_binning(struct device *dev);
187 int em_update_performance_limits(struct em_perf_domain *pd,
188 		unsigned long freq_min_khz, unsigned long freq_max_khz);
189 void em_adjust_cpu_capacity(unsigned int cpu);
190 void em_rebuild_sched_domains(void);
191 
192 /**
193  * em_pd_get_efficient_state() - Get an efficient performance state from the EM
194  * @table:		List of performance states, in ascending order
195  * @pd:			performance domain for which this must be done
196  * @max_util:		Max utilization to map with the EM
197  *
198  * It is called from the scheduler code quite frequently and as a consequence
199  * doesn't implement any check.
200  *
201  * Return: An efficient performance state id, high enough to meet @max_util
202  * requirement.
203  */
204 static inline int
em_pd_get_efficient_state(struct em_perf_state * table,struct em_perf_domain * pd,unsigned long max_util)205 em_pd_get_efficient_state(struct em_perf_state *table,
206 			  struct em_perf_domain *pd, unsigned long max_util)
207 {
208 	unsigned long pd_flags = pd->flags;
209 	int min_ps = pd->min_perf_state;
210 	int max_ps = pd->max_perf_state;
211 	struct em_perf_state *ps;
212 	int i;
213 
214 	for (i = min_ps; i <= max_ps; i++) {
215 		ps = &table[i];
216 		if (ps->performance >= max_util) {
217 			if (pd_flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES &&
218 			    ps->flags & EM_PERF_STATE_INEFFICIENT)
219 				continue;
220 			return i;
221 		}
222 	}
223 
224 	return max_ps;
225 }
226 
227 /**
228  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
229  *		performance domain
230  * @pd		: performance domain for which energy has to be estimated
231  * @max_util	: highest utilization among CPUs of the domain
232  * @sum_util	: sum of the utilization of all CPUs in the domain
233  * @allowed_cpu_cap	: maximum allowed CPU capacity for the @pd, which
234  *			  might reflect reduced frequency (due to thermal)
235  *
236  * This function must be used only for CPU devices. There is no validation,
237  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
238  * the scheduler code quite frequently and that is why there is not checks.
239  *
240  * Return: the sum of the energy consumed by the CPUs of the domain assuming
241  * a capacity state satisfying the max utilization of the domain.
242  */
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)243 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
244 				unsigned long max_util, unsigned long sum_util,
245 				unsigned long allowed_cpu_cap)
246 {
247 	struct em_perf_table *em_table;
248 	struct em_perf_state *ps;
249 	int i;
250 
251 	WARN_ONCE(!rcu_read_lock_held(), "EM: rcu read lock needed\n");
252 
253 	if (!sum_util)
254 		return 0;
255 
256 	/*
257 	 * In order to predict the performance state, map the utilization of
258 	 * the most utilized CPU of the performance domain to a requested
259 	 * performance, like schedutil. Take also into account that the real
260 	 * performance might be set lower (due to thermal capping). Thus, clamp
261 	 * max utilization to the allowed CPU capacity before calculating
262 	 * effective performance.
263 	 */
264 	max_util = min(max_util, allowed_cpu_cap);
265 
266 	/*
267 	 * Find the lowest performance state of the Energy Model above the
268 	 * requested performance.
269 	 */
270 	em_table = rcu_dereference(pd->em_table);
271 	i = em_pd_get_efficient_state(em_table->state, pd, max_util);
272 	ps = &em_table->state[i];
273 
274 	/*
275 	 * The performance (capacity) of a CPU in the domain at the performance
276 	 * state (ps) can be computed as:
277 	 *
278 	 *                     ps->freq * scale_cpu
279 	 *   ps->performance = --------------------                  (1)
280 	 *                         cpu_max_freq
281 	 *
282 	 * So, ignoring the costs of idle states (which are not available in
283 	 * the EM), the energy consumed by this CPU at that performance state
284 	 * is estimated as:
285 	 *
286 	 *             ps->power * cpu_util
287 	 *   cpu_nrg = --------------------                          (2)
288 	 *               ps->performance
289 	 *
290 	 * since 'cpu_util / ps->performance' represents its percentage of busy
291 	 * time.
292 	 *
293 	 *   NOTE: Although the result of this computation actually is in
294 	 *         units of power, it can be manipulated as an energy value
295 	 *         over a scheduling period, since it is assumed to be
296 	 *         constant during that interval.
297 	 *
298 	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
299 	 * of two terms:
300 	 *
301 	 *             ps->power * cpu_max_freq
302 	 *   cpu_nrg = ------------------------ * cpu_util           (3)
303 	 *               ps->freq * scale_cpu
304 	 *
305 	 * The first term is static, and is stored in the em_perf_state struct
306 	 * as 'ps->cost'.
307 	 *
308 	 * Since all CPUs of the domain have the same micro-architecture, they
309 	 * share the same 'ps->cost', and the same CPU capacity. Hence, the
310 	 * total energy of the domain (which is the simple sum of the energy of
311 	 * all of its CPUs) can be factorized as:
312 	 *
313 	 *   pd_nrg = ps->cost * \Sum cpu_util                       (4)
314 	 */
315 	return ps->cost * sum_util;
316 }
317 
318 /**
319  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
320  *				domain
321  * @pd		: performance domain for which this must be done
322  *
323  * Return: the number of performance states in the performance domain table
324  */
em_pd_nr_perf_states(struct em_perf_domain * pd)325 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
326 {
327 	return pd->nr_perf_states;
328 }
329 
330 /**
331  * em_perf_state_from_pd() - Get the performance states table of perf.
332  *				domain
333  * @pd		: performance domain for which this must be done
334  *
335  * To use this function the rcu_read_lock() should be hold. After the usage
336  * of the performance states table is finished, the rcu_read_unlock() should
337  * be called.
338  *
339  * Return: the pointer to performance states table of the performance domain
340  */
341 static inline
em_perf_state_from_pd(struct em_perf_domain * pd)342 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
343 {
344 	return rcu_dereference(pd->em_table)->state;
345 }
346 
347 #else
348 struct em_data_callback {};
349 #define EM_ADV_DATA_CB(_active_power_cb, _cost_cb) { }
350 #define EM_DATA_CB(_active_power_cb) { }
351 #define EM_SET_ACTIVE_POWER_CB(em_cb, cb) do { } while (0)
352 
353 static inline
em_dev_register_perf_domain(struct device * dev,unsigned int nr_states,const struct em_data_callback * cb,const cpumask_t * cpus,bool microwatts)354 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
355 				const struct em_data_callback *cb,
356 				const cpumask_t *cpus, bool microwatts)
357 {
358 	return -EINVAL;
359 }
360 static inline
em_dev_register_pd_no_update(struct device * dev,unsigned int nr_states,const struct em_data_callback * cb,const cpumask_t * cpus,bool microwatts)361 int em_dev_register_pd_no_update(struct device *dev, unsigned int nr_states,
362 				 const struct em_data_callback *cb,
363 				 const cpumask_t *cpus, bool microwatts)
364 {
365 	return -EINVAL;
366 }
em_dev_unregister_perf_domain(struct device * dev)367 static inline void em_dev_unregister_perf_domain(struct device *dev)
368 {
369 }
em_cpu_get(int cpu)370 static inline struct em_perf_domain *em_cpu_get(int cpu)
371 {
372 	return NULL;
373 }
em_pd_get(struct device * dev)374 static inline struct em_perf_domain *em_pd_get(struct device *dev)
375 {
376 	return NULL;
377 }
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)378 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
379 			unsigned long max_util, unsigned long sum_util,
380 			unsigned long allowed_cpu_cap)
381 {
382 	return 0;
383 }
em_pd_nr_perf_states(struct em_perf_domain * pd)384 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
385 {
386 	return 0;
387 }
388 static inline
em_table_alloc(struct em_perf_domain * pd)389 struct em_perf_table *em_table_alloc(struct em_perf_domain *pd)
390 {
391 	return NULL;
392 }
em_table_free(struct em_perf_table * table)393 static inline void em_table_free(struct em_perf_table *table) {}
394 static inline
em_dev_update_perf_domain(struct device * dev,struct em_perf_table * new_table)395 int em_dev_update_perf_domain(struct device *dev,
396 			      struct em_perf_table *new_table)
397 {
398 	return -EINVAL;
399 }
400 static inline
em_perf_state_from_pd(struct em_perf_domain * pd)401 struct em_perf_state *em_perf_state_from_pd(struct em_perf_domain *pd)
402 {
403 	return NULL;
404 }
405 static inline
em_dev_compute_costs(struct device * dev,struct em_perf_state * table,int nr_states)406 int em_dev_compute_costs(struct device *dev, struct em_perf_state *table,
407 			 int nr_states)
408 {
409 	return -EINVAL;
410 }
em_dev_update_chip_binning(struct device * dev)411 static inline int em_dev_update_chip_binning(struct device *dev)
412 {
413 	return -EINVAL;
414 }
415 static inline
em_update_performance_limits(struct em_perf_domain * pd,unsigned long freq_min_khz,unsigned long freq_max_khz)416 int em_update_performance_limits(struct em_perf_domain *pd,
417 		unsigned long freq_min_khz, unsigned long freq_max_khz)
418 {
419 	return -EINVAL;
420 }
em_adjust_cpu_capacity(unsigned int cpu)421 static inline void em_adjust_cpu_capacity(unsigned int cpu) {}
em_rebuild_sched_domains(void)422 static inline void em_rebuild_sched_domains(void) {}
423 #endif
424 
425 #endif
426