xref: /linux/mm/memory-failure.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static DEFINE_MUTEX(mf_mutex);
78 
79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 	atomic_long_inc(&num_poisoned_pages);
82 	memblk_nr_poison_inc(pfn);
83 }
84 
85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 	atomic_long_sub(i, &num_poisoned_pages);
88 	if (pfn != -1UL)
89 		memblk_nr_poison_sub(pfn, i);
90 }
91 
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)					\
97 static ssize_t _name##_show(struct device *dev,			\
98 			    struct device_attribute *attr,	\
99 			    char *buf)				\
100 {								\
101 	struct memory_failure_stats *mf_stats =			\
102 		&NODE_DATA(dev->id)->mf_stats;			\
103 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
104 }								\
105 static DEVICE_ATTR_RO(_name)
106 
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112 
113 static struct attribute *memory_failure_attr[] = {
114 	&dev_attr_total.attr,
115 	&dev_attr_ignored.attr,
116 	&dev_attr_failed.attr,
117 	&dev_attr_delayed.attr,
118 	&dev_attr_recovered.attr,
119 	NULL,
120 };
121 
122 const struct attribute_group memory_failure_attr_group = {
123 	.name = "memory_failure",
124 	.attrs = memory_failure_attr,
125 };
126 
127 static const struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{
147 		.procname	= "enable_soft_offline",
148 		.data		= &sysctl_enable_soft_offline,
149 		.maxlen		= sizeof(sysctl_enable_soft_offline),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 		.extra2		= SYSCTL_ONE,
154 	}
155 };
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	/*
168 	 * zone_pcp_disable() can't be used here. It will
169 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 	 * optimization is enabled. This will break current lock dependency
172 	 * chain and leads to deadlock.
173 	 * Disabling pcp before dissolving the page was a deterministic
174 	 * approach because we made sure that those pages cannot end up in any
175 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 	 * but nothing guarantees that those pages do not get back to a PCP
177 	 * queue if we need to refill those.
178 	 */
179 	ret = dissolve_free_hugetlb_folio(page_folio(page));
180 	if (!ret) {
181 		drain_all_pages(page_zone(page));
182 		ret = take_page_off_buddy(page);
183 	}
184 
185 	return ret;
186 }
187 
188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 	if (hugepage_or_freepage) {
191 		/*
192 		 * Doing this check for free pages is also fine since
193 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 		 */
195 		if (__page_handle_poison(page) <= 0)
196 			/*
197 			 * We could fail to take off the target page from buddy
198 			 * for example due to racy page allocation, but that's
199 			 * acceptable because soft-offlined page is not broken
200 			 * and if someone really want to use it, they should
201 			 * take it.
202 			 */
203 			return false;
204 	}
205 
206 	SetPageHWPoison(page);
207 	if (release)
208 		put_page(page);
209 	page_ref_inc(page);
210 	num_poisoned_pages_inc(page_to_pfn(page));
211 
212 	return true;
213 }
214 
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216 
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227 
228 static int hwpoison_filter_dev(struct page *p)
229 {
230 	struct folio *folio = page_folio(p);
231 	struct address_space *mapping;
232 	dev_t dev;
233 
234 	if (hwpoison_filter_dev_major == ~0U &&
235 	    hwpoison_filter_dev_minor == ~0U)
236 		return 0;
237 
238 	mapping = folio_mapping(folio);
239 	if (mapping == NULL || mapping->host == NULL)
240 		return -EINVAL;
241 
242 	dev = mapping->host->i_sb->s_dev;
243 	if (hwpoison_filter_dev_major != ~0U &&
244 	    hwpoison_filter_dev_major != MAJOR(dev))
245 		return -EINVAL;
246 	if (hwpoison_filter_dev_minor != ~0U &&
247 	    hwpoison_filter_dev_minor != MINOR(dev))
248 		return -EINVAL;
249 
250 	return 0;
251 }
252 
253 static int hwpoison_filter_flags(struct page *p)
254 {
255 	if (!hwpoison_filter_flags_mask)
256 		return 0;
257 
258 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 				    hwpoison_filter_flags_value)
260 		return 0;
261 	else
262 		return -EINVAL;
263 }
264 
265 /*
266  * This allows stress tests to limit test scope to a collection of tasks
267  * by putting them under some memcg. This prevents killing unrelated/important
268  * processes such as /sbin/init. Note that the target task may share clean
269  * pages with init (eg. libc text), which is harmless. If the target task
270  * share _dirty_ pages with another task B, the test scheme must make sure B
271  * is also included in the memcg. At last, due to race conditions this filter
272  * can only guarantee that the page either belongs to the memcg tasks, or is
273  * a freed page.
274  */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278 static int hwpoison_filter_task(struct page *p)
279 {
280 	if (!hwpoison_filter_memcg)
281 		return 0;
282 
283 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 		return -EINVAL;
285 
286 	return 0;
287 }
288 #else
289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291 
292 int hwpoison_filter(struct page *p)
293 {
294 	if (!hwpoison_filter_enable)
295 		return 0;
296 
297 	if (hwpoison_filter_dev(p))
298 		return -EINVAL;
299 
300 	if (hwpoison_filter_flags(p))
301 		return -EINVAL;
302 
303 	if (hwpoison_filter_task(p))
304 		return -EINVAL;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
310 int hwpoison_filter(struct page *p)
311 {
312 	return 0;
313 }
314 #endif
315 
316 /*
317  * Kill all processes that have a poisoned page mapped and then isolate
318  * the page.
319  *
320  * General strategy:
321  * Find all processes having the page mapped and kill them.
322  * But we keep a page reference around so that the page is not
323  * actually freed yet.
324  * Then stash the page away
325  *
326  * There's no convenient way to get back to mapped processes
327  * from the VMAs. So do a brute-force search over all
328  * running processes.
329  *
330  * Remember that machine checks are not common (or rather
331  * if they are common you have other problems), so this shouldn't
332  * be a performance issue.
333  *
334  * Also there are some races possible while we get from the
335  * error detection to actually handle it.
336  */
337 
338 struct to_kill {
339 	struct list_head nd;
340 	struct task_struct *tsk;
341 	unsigned long addr;
342 	short size_shift;
343 };
344 
345 /*
346  * Send all the processes who have the page mapped a signal.
347  * ``action optional'' if they are not immediately affected by the error
348  * ``action required'' if error happened in current execution context
349  */
350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 	struct task_struct *t = tk->tsk;
353 	short addr_lsb = tk->size_shift;
354 	int ret = 0;
355 
356 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 			pfn, t->comm, task_pid_nr(t));
358 
359 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 		ret = force_sig_mceerr(BUS_MCEERR_AR,
361 				 (void __user *)tk->addr, addr_lsb);
362 	else
363 		/*
364 		 * Signal other processes sharing the page if they have
365 		 * PF_MCE_EARLY set.
366 		 * Don't use force here, it's convenient if the signal
367 		 * can be temporarily blocked.
368 		 */
369 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 				      addr_lsb, t);
371 	if (ret < 0)
372 		pr_info("Error sending signal to %s:%d: %d\n",
373 			t->comm, task_pid_nr(t), ret);
374 	return ret;
375 }
376 
377 /*
378  * Unknown page type encountered. Try to check whether it can turn PageLRU by
379  * lru_add_drain_all.
380  */
381 void shake_folio(struct folio *folio)
382 {
383 	if (folio_test_hugetlb(folio))
384 		return;
385 	/*
386 	 * TODO: Could shrink slab caches here if a lightweight range-based
387 	 * shrinker will be available.
388 	 */
389 	if (folio_test_slab(folio))
390 		return;
391 
392 	lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395 
396 static void shake_page(struct page *page)
397 {
398 	shake_folio(page_folio(page));
399 }
400 
401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 		unsigned long address)
403 {
404 	unsigned long ret = 0;
405 	pgd_t *pgd;
406 	p4d_t *p4d;
407 	pud_t *pud;
408 	pmd_t *pmd;
409 	pte_t *pte;
410 	pte_t ptent;
411 
412 	VM_BUG_ON_VMA(address == -EFAULT, vma);
413 	pgd = pgd_offset(vma->vm_mm, address);
414 	if (!pgd_present(*pgd))
415 		return 0;
416 	p4d = p4d_offset(pgd, address);
417 	if (!p4d_present(*p4d))
418 		return 0;
419 	pud = pud_offset(p4d, address);
420 	if (!pud_present(*pud))
421 		return 0;
422 	if (pud_trans_huge(*pud))
423 		return PUD_SHIFT;
424 	pmd = pmd_offset(pud, address);
425 	if (!pmd_present(*pmd))
426 		return 0;
427 	if (pmd_trans_huge(*pmd))
428 		return PMD_SHIFT;
429 	pte = pte_offset_map(pmd, address);
430 	if (!pte)
431 		return 0;
432 	ptent = ptep_get(pte);
433 	if (pte_present(ptent))
434 		ret = PAGE_SHIFT;
435 	pte_unmap(pte);
436 	return ret;
437 }
438 
439 /*
440  * Failure handling: if we can't find or can't kill a process there's
441  * not much we can do.	We just print a message and ignore otherwise.
442  */
443 
444 /*
445  * Schedule a process for later kill.
446  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447  */
448 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 			  struct vm_area_struct *vma, struct list_head *to_kill,
450 			  unsigned long addr)
451 {
452 	struct to_kill *tk;
453 
454 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 	if (!tk) {
456 		pr_err("Out of memory while machine check handling\n");
457 		return;
458 	}
459 
460 	tk->addr = addr;
461 	if (is_zone_device_page(p))
462 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 	else
464 		tk->size_shift = folio_shift(page_folio(p));
465 
466 	/*
467 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 	 * so "tk->size_shift == 0" effectively checks no mapping on
470 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 	 * to a process' address space, it's possible not all N VMAs
472 	 * contain mappings for the page, but at least one VMA does.
473 	 * Only deliver SIGBUS with payload derived from the VMA that
474 	 * has a mapping for the page.
475 	 */
476 	if (tk->addr == -EFAULT) {
477 		pr_info("Unable to find user space address %lx in %s\n",
478 			page_to_pfn(p), tsk->comm);
479 	} else if (tk->size_shift == 0) {
480 		kfree(tk);
481 		return;
482 	}
483 
484 	get_task_struct(tsk);
485 	tk->tsk = tsk;
486 	list_add_tail(&tk->nd, to_kill);
487 }
488 
489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 		struct vm_area_struct *vma, struct list_head *to_kill,
491 		unsigned long addr)
492 {
493 	if (addr == -EFAULT)
494 		return;
495 	__add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497 
498 #ifdef CONFIG_KSM
499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 				 struct task_struct *tsk)
501 {
502 	struct to_kill *tk, *next;
503 
504 	list_for_each_entry_safe(tk, next, to_kill, nd) {
505 		if (tk->tsk == tsk)
506 			return true;
507 	}
508 
509 	return false;
510 }
511 
512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 		     struct vm_area_struct *vma, struct list_head *to_kill,
514 		     unsigned long addr)
515 {
516 	if (!task_in_to_kill_list(to_kill, tsk))
517 		__add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521  * Kill the processes that have been collected earlier.
522  *
523  * Only do anything when FORCEKILL is set, otherwise just free the
524  * list (this is used for clean pages which do not need killing)
525  */
526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 		unsigned long pfn, int flags)
528 {
529 	struct to_kill *tk, *next;
530 
531 	list_for_each_entry_safe(tk, next, to_kill, nd) {
532 		if (forcekill) {
533 			if (tk->addr == -EFAULT) {
534 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 						 tk->tsk, PIDTYPE_PID);
538 			}
539 
540 			/*
541 			 * In theory the process could have mapped
542 			 * something else on the address in-between. We could
543 			 * check for that, but we need to tell the
544 			 * process anyways.
545 			 */
546 			else if (kill_proc(tk, pfn, flags) < 0)
547 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 		}
550 		list_del(&tk->nd);
551 		put_task_struct(tk->tsk);
552 		kfree(tk);
553 	}
554 }
555 
556 /*
557  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558  * on behalf of the thread group. Return task_struct of the (first found)
559  * dedicated thread if found, and return NULL otherwise.
560  *
561  * We already hold rcu lock in the caller, so we don't have to call
562  * rcu_read_lock/unlock() in this function.
563  */
564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 	struct task_struct *t;
567 
568 	for_each_thread(tsk, t) {
569 		if (t->flags & PF_MCE_PROCESS) {
570 			if (t->flags & PF_MCE_EARLY)
571 				return t;
572 		} else {
573 			if (sysctl_memory_failure_early_kill)
574 				return t;
575 		}
576 	}
577 	return NULL;
578 }
579 
580 /*
581  * Determine whether a given process is "early kill" process which expects
582  * to be signaled when some page under the process is hwpoisoned.
583  * Return task_struct of the dedicated thread (main thread unless explicitly
584  * specified) if the process is "early kill" and otherwise returns NULL.
585  *
586  * Note that the above is true for Action Optional case. For Action Required
587  * case, it's only meaningful to the current thread which need to be signaled
588  * with SIGBUS, this error is Action Optional for other non current
589  * processes sharing the same error page,if the process is "early kill", the
590  * task_struct of the dedicated thread will also be returned.
591  */
592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 	if (!tsk->mm)
595 		return NULL;
596 	/*
597 	 * Comparing ->mm here because current task might represent
598 	 * a subthread, while tsk always points to the main thread.
599 	 */
600 	if (force_early && tsk->mm == current->mm)
601 		return current;
602 
603 	return find_early_kill_thread(tsk);
604 }
605 
606 /*
607  * Collect processes when the error hit an anonymous page.
608  */
609 static void collect_procs_anon(const struct folio *folio,
610 		const struct page *page, struct list_head *to_kill,
611 		int force_early)
612 {
613 	struct task_struct *tsk;
614 	struct anon_vma *av;
615 	pgoff_t pgoff;
616 
617 	av = folio_lock_anon_vma_read(folio, NULL);
618 	if (av == NULL)	/* Not actually mapped anymore */
619 		return;
620 
621 	pgoff = page_pgoff(folio, page);
622 	rcu_read_lock();
623 	for_each_process(tsk) {
624 		struct vm_area_struct *vma;
625 		struct anon_vma_chain *vmac;
626 		struct task_struct *t = task_early_kill(tsk, force_early);
627 		unsigned long addr;
628 
629 		if (!t)
630 			continue;
631 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 					       pgoff, pgoff) {
633 			vma = vmac->vma;
634 			if (vma->vm_mm != t->mm)
635 				continue;
636 			addr = page_mapped_in_vma(page, vma);
637 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
638 		}
639 	}
640 	rcu_read_unlock();
641 	anon_vma_unlock_read(av);
642 }
643 
644 /*
645  * Collect processes when the error hit a file mapped page.
646  */
647 static void collect_procs_file(const struct folio *folio,
648 		const struct page *page, struct list_head *to_kill,
649 		int force_early)
650 {
651 	struct vm_area_struct *vma;
652 	struct task_struct *tsk;
653 	struct address_space *mapping = folio->mapping;
654 	pgoff_t pgoff;
655 
656 	i_mmap_lock_read(mapping);
657 	rcu_read_lock();
658 	pgoff = page_pgoff(folio, page);
659 	for_each_process(tsk) {
660 		struct task_struct *t = task_early_kill(tsk, force_early);
661 		unsigned long addr;
662 
663 		if (!t)
664 			continue;
665 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 				      pgoff) {
667 			/*
668 			 * Send early kill signal to tasks where a vma covers
669 			 * the page but the corrupted page is not necessarily
670 			 * mapped in its pte.
671 			 * Assume applications who requested early kill want
672 			 * to be informed of all such data corruptions.
673 			 */
674 			if (vma->vm_mm != t->mm)
675 				continue;
676 			addr = page_address_in_vma(folio, page, vma);
677 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 		}
679 	}
680 	rcu_read_unlock();
681 	i_mmap_unlock_read(mapping);
682 }
683 
684 #ifdef CONFIG_FS_DAX
685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 			      struct vm_area_struct *vma,
687 			      struct list_head *to_kill, pgoff_t pgoff)
688 {
689 	unsigned long addr = vma_address(vma, pgoff, 1);
690 	__add_to_kill(tsk, p, vma, to_kill, addr);
691 }
692 
693 /*
694  * Collect processes when the error hit a fsdax page.
695  */
696 static void collect_procs_fsdax(const struct page *page,
697 		struct address_space *mapping, pgoff_t pgoff,
698 		struct list_head *to_kill, bool pre_remove)
699 {
700 	struct vm_area_struct *vma;
701 	struct task_struct *tsk;
702 
703 	i_mmap_lock_read(mapping);
704 	rcu_read_lock();
705 	for_each_process(tsk) {
706 		struct task_struct *t = tsk;
707 
708 		/*
709 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 		 * the current may not be the one accessing the fsdax page.
711 		 * Otherwise, search for the current task.
712 		 */
713 		if (!pre_remove)
714 			t = task_early_kill(tsk, true);
715 		if (!t)
716 			continue;
717 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 			if (vma->vm_mm == t->mm)
719 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 		}
721 	}
722 	rcu_read_unlock();
723 	i_mmap_unlock_read(mapping);
724 }
725 #endif /* CONFIG_FS_DAX */
726 
727 /*
728  * Collect the processes who have the corrupted page mapped to kill.
729  */
730 static void collect_procs(const struct folio *folio, const struct page *page,
731 		struct list_head *tokill, int force_early)
732 {
733 	if (!folio->mapping)
734 		return;
735 	if (unlikely(folio_test_ksm(folio)))
736 		collect_procs_ksm(folio, page, tokill, force_early);
737 	else if (folio_test_anon(folio))
738 		collect_procs_anon(folio, page, tokill, force_early);
739 	else
740 		collect_procs_file(folio, page, tokill, force_early);
741 }
742 
743 struct hwpoison_walk {
744 	struct to_kill tk;
745 	unsigned long pfn;
746 	int flags;
747 };
748 
749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750 {
751 	tk->addr = addr;
752 	tk->size_shift = shift;
753 }
754 
755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 				unsigned long poisoned_pfn, struct to_kill *tk)
757 {
758 	unsigned long pfn = 0;
759 
760 	if (pte_present(pte)) {
761 		pfn = pte_pfn(pte);
762 	} else {
763 		swp_entry_t swp = pte_to_swp_entry(pte);
764 
765 		if (is_hwpoison_entry(swp))
766 			pfn = swp_offset_pfn(swp);
767 	}
768 
769 	if (!pfn || pfn != poisoned_pfn)
770 		return 0;
771 
772 	set_to_kill(tk, addr, shift);
773 	return 1;
774 }
775 
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 				      struct hwpoison_walk *hwp)
779 {
780 	pmd_t pmd = *pmdp;
781 	unsigned long pfn;
782 	unsigned long hwpoison_vaddr;
783 
784 	if (!pmd_present(pmd))
785 		return 0;
786 	pfn = pmd_pfn(pmd);
787 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 		return 1;
791 	}
792 	return 0;
793 }
794 #else
795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 				      struct hwpoison_walk *hwp)
797 {
798 	return 0;
799 }
800 #endif
801 
802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 			      unsigned long end, struct mm_walk *walk)
804 {
805 	struct hwpoison_walk *hwp = walk->private;
806 	int ret = 0;
807 	pte_t *ptep, *mapped_pte;
808 	spinlock_t *ptl;
809 
810 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 	if (ptl) {
812 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 		spin_unlock(ptl);
814 		goto out;
815 	}
816 
817 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 						addr, &ptl);
819 	if (!ptep)
820 		goto out;
821 
822 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 					     hwp->pfn, &hwp->tk);
825 		if (ret == 1)
826 			break;
827 	}
828 	pte_unmap_unlock(mapped_pte, ptl);
829 out:
830 	cond_resched();
831 	return ret;
832 }
833 
834 #ifdef CONFIG_HUGETLB_PAGE
835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 			    unsigned long addr, unsigned long end,
837 			    struct mm_walk *walk)
838 {
839 	struct hwpoison_walk *hwp = walk->private;
840 	pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
841 	struct hstate *h = hstate_vma(walk->vma);
842 
843 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
844 				      hwp->pfn, &hwp->tk);
845 }
846 #else
847 #define hwpoison_hugetlb_range	NULL
848 #endif
849 
850 static const struct mm_walk_ops hwpoison_walk_ops = {
851 	.pmd_entry = hwpoison_pte_range,
852 	.hugetlb_entry = hwpoison_hugetlb_range,
853 	.walk_lock = PGWALK_RDLOCK,
854 };
855 
856 /*
857  * Sends SIGBUS to the current process with error info.
858  *
859  * This function is intended to handle "Action Required" MCEs on already
860  * hardware poisoned pages. They could happen, for example, when
861  * memory_failure() failed to unmap the error page at the first call, or
862  * when multiple local machine checks happened on different CPUs.
863  *
864  * MCE handler currently has no easy access to the error virtual address,
865  * so this function walks page table to find it. The returned virtual address
866  * is proper in most cases, but it could be wrong when the application
867  * process has multiple entries mapping the error page.
868  */
869 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
870 				  int flags)
871 {
872 	int ret;
873 	struct hwpoison_walk priv = {
874 		.pfn = pfn,
875 	};
876 	priv.tk.tsk = p;
877 
878 	if (!p->mm)
879 		return -EFAULT;
880 
881 	mmap_read_lock(p->mm);
882 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
883 			      (void *)&priv);
884 	/*
885 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
886 	 * succeeds or fails, then kill the process with SIGBUS.
887 	 * ret = 0 when poison page is a clean page and it's dropped, no
888 	 * SIGBUS is needed.
889 	 */
890 	if (ret == 1 && priv.tk.addr)
891 		kill_proc(&priv.tk, pfn, flags);
892 	mmap_read_unlock(p->mm);
893 
894 	return ret > 0 ? -EHWPOISON : 0;
895 }
896 
897 /*
898  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
899  * But it could not do more to isolate the page from being accessed again,
900  * nor does it kill the process. This is extremely rare and one of the
901  * potential causes is that the page state has been changed due to
902  * underlying race condition. This is the most severe outcomes.
903  *
904  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
905  * It should have killed the process, but it can't isolate the page,
906  * due to conditions such as extra pin, unmap failure, etc. Accessing
907  * the page again may trigger another MCE and the process will be killed
908  * by the m-f() handler immediately.
909  *
910  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911  * The page is unmapped, and is removed from the LRU or file mapping.
912  * An attempt to access the page again will trigger page fault and the
913  * PF handler will kill the process.
914  *
915  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
916  * The page has been completely isolated, that is, unmapped, taken out of
917  * the buddy system, or hole-punnched out of the file mapping.
918  */
919 static const char *action_name[] = {
920 	[MF_IGNORED] = "Ignored",
921 	[MF_FAILED] = "Failed",
922 	[MF_DELAYED] = "Delayed",
923 	[MF_RECOVERED] = "Recovered",
924 };
925 
926 static const char * const action_page_types[] = {
927 	[MF_MSG_KERNEL]			= "reserved kernel page",
928 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
929 	[MF_MSG_HUGE]			= "huge page",
930 	[MF_MSG_FREE_HUGE]		= "free huge page",
931 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
932 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
933 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
934 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
935 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
936 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
937 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
938 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
939 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
940 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
941 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
942 	[MF_MSG_BUDDY]			= "free buddy page",
943 	[MF_MSG_DAX]			= "dax page",
944 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
945 	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
946 	[MF_MSG_UNKNOWN]		= "unknown page",
947 };
948 
949 /*
950  * XXX: It is possible that a page is isolated from LRU cache,
951  * and then kept in swap cache or failed to remove from page cache.
952  * The page count will stop it from being freed by unpoison.
953  * Stress tests should be aware of this memory leak problem.
954  */
955 static int delete_from_lru_cache(struct folio *folio)
956 {
957 	if (folio_isolate_lru(folio)) {
958 		/*
959 		 * Clear sensible page flags, so that the buddy system won't
960 		 * complain when the folio is unpoison-and-freed.
961 		 */
962 		folio_clear_active(folio);
963 		folio_clear_unevictable(folio);
964 
965 		/*
966 		 * Poisoned page might never drop its ref count to 0 so we have
967 		 * to uncharge it manually from its memcg.
968 		 */
969 		mem_cgroup_uncharge(folio);
970 
971 		/*
972 		 * drop the refcount elevated by folio_isolate_lru()
973 		 */
974 		folio_put(folio);
975 		return 0;
976 	}
977 	return -EIO;
978 }
979 
980 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
981 				struct address_space *mapping)
982 {
983 	int ret = MF_FAILED;
984 
985 	if (mapping->a_ops->error_remove_folio) {
986 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
987 
988 		if (err != 0)
989 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
990 		else if (!filemap_release_folio(folio, GFP_NOIO))
991 			pr_info("%#lx: failed to release buffers\n", pfn);
992 		else
993 			ret = MF_RECOVERED;
994 	} else {
995 		/*
996 		 * If the file system doesn't support it just invalidate
997 		 * This fails on dirty or anything with private pages
998 		 */
999 		if (mapping_evict_folio(mapping, folio))
1000 			ret = MF_RECOVERED;
1001 		else
1002 			pr_info("%#lx: Failed to invalidate\n",	pfn);
1003 	}
1004 
1005 	return ret;
1006 }
1007 
1008 struct page_state {
1009 	unsigned long mask;
1010 	unsigned long res;
1011 	enum mf_action_page_type type;
1012 
1013 	/* Callback ->action() has to unlock the relevant page inside it. */
1014 	int (*action)(struct page_state *ps, struct page *p);
1015 };
1016 
1017 /*
1018  * Return true if page is still referenced by others, otherwise return
1019  * false.
1020  *
1021  * The extra_pins is true when one extra refcount is expected.
1022  */
1023 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1024 			       bool extra_pins)
1025 {
1026 	int count = page_count(p) - 1;
1027 
1028 	if (extra_pins)
1029 		count -= folio_nr_pages(page_folio(p));
1030 
1031 	if (count > 0) {
1032 		pr_err("%#lx: %s still referenced by %d users\n",
1033 		       page_to_pfn(p), action_page_types[ps->type], count);
1034 		return true;
1035 	}
1036 
1037 	return false;
1038 }
1039 
1040 /*
1041  * Error hit kernel page.
1042  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1043  * could be more sophisticated.
1044  */
1045 static int me_kernel(struct page_state *ps, struct page *p)
1046 {
1047 	unlock_page(p);
1048 	return MF_IGNORED;
1049 }
1050 
1051 /*
1052  * Page in unknown state. Do nothing.
1053  * This is a catch-all in case we fail to make sense of the page state.
1054  */
1055 static int me_unknown(struct page_state *ps, struct page *p)
1056 {
1057 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1058 	unlock_page(p);
1059 	return MF_IGNORED;
1060 }
1061 
1062 /*
1063  * Clean (or cleaned) page cache page.
1064  */
1065 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1066 {
1067 	struct folio *folio = page_folio(p);
1068 	int ret;
1069 	struct address_space *mapping;
1070 	bool extra_pins;
1071 
1072 	delete_from_lru_cache(folio);
1073 
1074 	/*
1075 	 * For anonymous folios the only reference left
1076 	 * should be the one m_f() holds.
1077 	 */
1078 	if (folio_test_anon(folio)) {
1079 		ret = MF_RECOVERED;
1080 		goto out;
1081 	}
1082 
1083 	/*
1084 	 * Now truncate the page in the page cache. This is really
1085 	 * more like a "temporary hole punch"
1086 	 * Don't do this for block devices when someone else
1087 	 * has a reference, because it could be file system metadata
1088 	 * and that's not safe to truncate.
1089 	 */
1090 	mapping = folio_mapping(folio);
1091 	if (!mapping) {
1092 		/* Folio has been torn down in the meantime */
1093 		ret = MF_FAILED;
1094 		goto out;
1095 	}
1096 
1097 	/*
1098 	 * The shmem page is kept in page cache instead of truncating
1099 	 * so is expected to have an extra refcount after error-handling.
1100 	 */
1101 	extra_pins = shmem_mapping(mapping);
1102 
1103 	/*
1104 	 * Truncation is a bit tricky. Enable it per file system for now.
1105 	 *
1106 	 * Open: to take i_rwsem or not for this? Right now we don't.
1107 	 */
1108 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1109 	if (has_extra_refcount(ps, p, extra_pins))
1110 		ret = MF_FAILED;
1111 
1112 out:
1113 	folio_unlock(folio);
1114 
1115 	return ret;
1116 }
1117 
1118 /*
1119  * Dirty pagecache page
1120  * Issues: when the error hit a hole page the error is not properly
1121  * propagated.
1122  */
1123 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1124 {
1125 	struct folio *folio = page_folio(p);
1126 	struct address_space *mapping = folio_mapping(folio);
1127 
1128 	/* TBD: print more information about the file. */
1129 	if (mapping) {
1130 		/*
1131 		 * IO error will be reported by write(), fsync(), etc.
1132 		 * who check the mapping.
1133 		 * This way the application knows that something went
1134 		 * wrong with its dirty file data.
1135 		 */
1136 		mapping_set_error(mapping, -EIO);
1137 	}
1138 
1139 	return me_pagecache_clean(ps, p);
1140 }
1141 
1142 /*
1143  * Clean and dirty swap cache.
1144  *
1145  * Dirty swap cache page is tricky to handle. The page could live both in page
1146  * table and swap cache(ie. page is freshly swapped in). So it could be
1147  * referenced concurrently by 2 types of PTEs:
1148  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1149  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1150  * and then
1151  *      - clear dirty bit to prevent IO
1152  *      - remove from LRU
1153  *      - but keep in the swap cache, so that when we return to it on
1154  *        a later page fault, we know the application is accessing
1155  *        corrupted data and shall be killed (we installed simple
1156  *        interception code in do_swap_page to catch it).
1157  *
1158  * Clean swap cache pages can be directly isolated. A later page fault will
1159  * bring in the known good data from disk.
1160  */
1161 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1162 {
1163 	struct folio *folio = page_folio(p);
1164 	int ret;
1165 	bool extra_pins = false;
1166 
1167 	folio_clear_dirty(folio);
1168 	/* Trigger EIO in shmem: */
1169 	folio_clear_uptodate(folio);
1170 
1171 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1172 	folio_unlock(folio);
1173 
1174 	if (ret == MF_DELAYED)
1175 		extra_pins = true;
1176 
1177 	if (has_extra_refcount(ps, p, extra_pins))
1178 		ret = MF_FAILED;
1179 
1180 	return ret;
1181 }
1182 
1183 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1184 {
1185 	struct folio *folio = page_folio(p);
1186 	int ret;
1187 
1188 	delete_from_swap_cache(folio);
1189 
1190 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1191 	folio_unlock(folio);
1192 
1193 	if (has_extra_refcount(ps, p, false))
1194 		ret = MF_FAILED;
1195 
1196 	return ret;
1197 }
1198 
1199 /*
1200  * Huge pages. Needs work.
1201  * Issues:
1202  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1203  *   To narrow down kill region to one page, we need to break up pmd.
1204  */
1205 static int me_huge_page(struct page_state *ps, struct page *p)
1206 {
1207 	struct folio *folio = page_folio(p);
1208 	int res;
1209 	struct address_space *mapping;
1210 	bool extra_pins = false;
1211 
1212 	mapping = folio_mapping(folio);
1213 	if (mapping) {
1214 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1215 		/* The page is kept in page cache. */
1216 		extra_pins = true;
1217 		folio_unlock(folio);
1218 	} else {
1219 		folio_unlock(folio);
1220 		/*
1221 		 * migration entry prevents later access on error hugepage,
1222 		 * so we can free and dissolve it into buddy to save healthy
1223 		 * subpages.
1224 		 */
1225 		folio_put(folio);
1226 		if (__page_handle_poison(p) > 0) {
1227 			page_ref_inc(p);
1228 			res = MF_RECOVERED;
1229 		} else {
1230 			res = MF_FAILED;
1231 		}
1232 	}
1233 
1234 	if (has_extra_refcount(ps, p, extra_pins))
1235 		res = MF_FAILED;
1236 
1237 	return res;
1238 }
1239 
1240 /*
1241  * Various page states we can handle.
1242  *
1243  * A page state is defined by its current page->flags bits.
1244  * The table matches them in order and calls the right handler.
1245  *
1246  * This is quite tricky because we can access page at any time
1247  * in its live cycle, so all accesses have to be extremely careful.
1248  *
1249  * This is not complete. More states could be added.
1250  * For any missing state don't attempt recovery.
1251  */
1252 
1253 #define dirty		(1UL << PG_dirty)
1254 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1255 #define unevict		(1UL << PG_unevictable)
1256 #define mlock		(1UL << PG_mlocked)
1257 #define lru		(1UL << PG_lru)
1258 #define head		(1UL << PG_head)
1259 #define reserved	(1UL << PG_reserved)
1260 
1261 static struct page_state error_states[] = {
1262 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1263 	/*
1264 	 * free pages are specially detected outside this table:
1265 	 * PG_buddy pages only make a small fraction of all free pages.
1266 	 */
1267 
1268 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1269 
1270 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1271 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1272 
1273 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1274 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1275 
1276 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1277 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1278 
1279 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1280 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1281 
1282 	/*
1283 	 * Catchall entry: must be at end.
1284 	 */
1285 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1286 };
1287 
1288 #undef dirty
1289 #undef sc
1290 #undef unevict
1291 #undef mlock
1292 #undef lru
1293 #undef head
1294 #undef reserved
1295 
1296 static void update_per_node_mf_stats(unsigned long pfn,
1297 				     enum mf_result result)
1298 {
1299 	int nid = MAX_NUMNODES;
1300 	struct memory_failure_stats *mf_stats = NULL;
1301 
1302 	nid = pfn_to_nid(pfn);
1303 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1304 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1305 		return;
1306 	}
1307 
1308 	mf_stats = &NODE_DATA(nid)->mf_stats;
1309 	switch (result) {
1310 	case MF_IGNORED:
1311 		++mf_stats->ignored;
1312 		break;
1313 	case MF_FAILED:
1314 		++mf_stats->failed;
1315 		break;
1316 	case MF_DELAYED:
1317 		++mf_stats->delayed;
1318 		break;
1319 	case MF_RECOVERED:
1320 		++mf_stats->recovered;
1321 		break;
1322 	default:
1323 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1324 		break;
1325 	}
1326 	++mf_stats->total;
1327 }
1328 
1329 /*
1330  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1331  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1332  */
1333 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1334 			 enum mf_result result)
1335 {
1336 	trace_memory_failure_event(pfn, type, result);
1337 
1338 	num_poisoned_pages_inc(pfn);
1339 
1340 	update_per_node_mf_stats(pfn, result);
1341 
1342 	pr_err("%#lx: recovery action for %s: %s\n",
1343 		pfn, action_page_types[type], action_name[result]);
1344 
1345 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1346 }
1347 
1348 static int page_action(struct page_state *ps, struct page *p,
1349 			unsigned long pfn)
1350 {
1351 	int result;
1352 
1353 	/* page p should be unlocked after returning from ps->action().  */
1354 	result = ps->action(ps, p);
1355 
1356 	/* Could do more checks here if page looks ok */
1357 	/*
1358 	 * Could adjust zone counters here to correct for the missing page.
1359 	 */
1360 
1361 	return action_result(pfn, ps->type, result);
1362 }
1363 
1364 static inline bool PageHWPoisonTakenOff(struct page *page)
1365 {
1366 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1367 }
1368 
1369 void SetPageHWPoisonTakenOff(struct page *page)
1370 {
1371 	set_page_private(page, MAGIC_HWPOISON);
1372 }
1373 
1374 void ClearPageHWPoisonTakenOff(struct page *page)
1375 {
1376 	if (PageHWPoison(page))
1377 		set_page_private(page, 0);
1378 }
1379 
1380 /*
1381  * Return true if a page type of a given page is supported by hwpoison
1382  * mechanism (while handling could fail), otherwise false.  This function
1383  * does not return true for hugetlb or device memory pages, so it's assumed
1384  * to be called only in the context where we never have such pages.
1385  */
1386 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1387 {
1388 	if (PageSlab(page))
1389 		return false;
1390 
1391 	/* Soft offline could migrate movable_ops pages */
1392 	if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
1393 		return true;
1394 
1395 	return PageLRU(page) || is_free_buddy_page(page);
1396 }
1397 
1398 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1399 {
1400 	struct folio *folio = page_folio(page);
1401 	int ret = 0;
1402 	bool hugetlb = false;
1403 
1404 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1405 	if (hugetlb) {
1406 		/* Make sure hugetlb demotion did not happen from under us. */
1407 		if (folio == page_folio(page))
1408 			return ret;
1409 		if (ret > 0) {
1410 			folio_put(folio);
1411 			folio = page_folio(page);
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * This check prevents from calling folio_try_get() for any
1417 	 * unsupported type of folio in order to reduce the risk of unexpected
1418 	 * races caused by taking a folio refcount.
1419 	 */
1420 	if (!HWPoisonHandlable(&folio->page, flags))
1421 		return -EBUSY;
1422 
1423 	if (folio_try_get(folio)) {
1424 		if (folio == page_folio(page))
1425 			return 1;
1426 
1427 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1428 		folio_put(folio);
1429 	}
1430 
1431 	return 0;
1432 }
1433 
1434 #define GET_PAGE_MAX_RETRY_NUM 3
1435 
1436 static int get_any_page(struct page *p, unsigned long flags)
1437 {
1438 	int ret = 0, pass = 0;
1439 	bool count_increased = false;
1440 
1441 	if (flags & MF_COUNT_INCREASED)
1442 		count_increased = true;
1443 
1444 try_again:
1445 	if (!count_increased) {
1446 		ret = __get_hwpoison_page(p, flags);
1447 		if (!ret) {
1448 			if (page_count(p)) {
1449 				/* We raced with an allocation, retry. */
1450 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1451 					goto try_again;
1452 				ret = -EBUSY;
1453 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1454 				/* We raced with put_page, retry. */
1455 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1456 					goto try_again;
1457 				ret = -EIO;
1458 			}
1459 			goto out;
1460 		} else if (ret == -EBUSY) {
1461 			/*
1462 			 * We raced with (possibly temporary) unhandlable
1463 			 * page, retry.
1464 			 */
1465 			if (pass++ < 3) {
1466 				shake_page(p);
1467 				goto try_again;
1468 			}
1469 			ret = -EIO;
1470 			goto out;
1471 		}
1472 	}
1473 
1474 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1475 		ret = 1;
1476 	} else {
1477 		/*
1478 		 * A page we cannot handle. Check whether we can turn
1479 		 * it into something we can handle.
1480 		 */
1481 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1482 			put_page(p);
1483 			shake_page(p);
1484 			count_increased = false;
1485 			goto try_again;
1486 		}
1487 		put_page(p);
1488 		ret = -EIO;
1489 	}
1490 out:
1491 	if (ret == -EIO)
1492 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1493 
1494 	return ret;
1495 }
1496 
1497 static int __get_unpoison_page(struct page *page)
1498 {
1499 	struct folio *folio = page_folio(page);
1500 	int ret = 0;
1501 	bool hugetlb = false;
1502 
1503 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1504 	if (hugetlb) {
1505 		/* Make sure hugetlb demotion did not happen from under us. */
1506 		if (folio == page_folio(page))
1507 			return ret;
1508 		if (ret > 0)
1509 			folio_put(folio);
1510 	}
1511 
1512 	/*
1513 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1514 	 * but also isolated from buddy freelist, so need to identify the
1515 	 * state and have to cancel both operations to unpoison.
1516 	 */
1517 	if (PageHWPoisonTakenOff(page))
1518 		return -EHWPOISON;
1519 
1520 	return get_page_unless_zero(page) ? 1 : 0;
1521 }
1522 
1523 /**
1524  * get_hwpoison_page() - Get refcount for memory error handling
1525  * @p:		Raw error page (hit by memory error)
1526  * @flags:	Flags controlling behavior of error handling
1527  *
1528  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1529  * error on it, after checking that the error page is in a well-defined state
1530  * (defined as a page-type we can successfully handle the memory error on it,
1531  * such as LRU page and hugetlb page).
1532  *
1533  * Memory error handling could be triggered at any time on any type of page,
1534  * so it's prone to race with typical memory management lifecycle (like
1535  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1536  * extra care for the error page's state (as done in __get_hwpoison_page()),
1537  * and has some retry logic in get_any_page().
1538  *
1539  * When called from unpoison_memory(), the caller should already ensure that
1540  * the given page has PG_hwpoison. So it's never reused for other page
1541  * allocations, and __get_unpoison_page() never races with them.
1542  *
1543  * Return: 0 on failure or free buddy (hugetlb) page,
1544  *         1 on success for in-use pages in a well-defined state,
1545  *         -EIO for pages on which we can not handle memory errors,
1546  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1547  *         operations like allocation and free,
1548  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1549  */
1550 static int get_hwpoison_page(struct page *p, unsigned long flags)
1551 {
1552 	int ret;
1553 
1554 	zone_pcp_disable(page_zone(p));
1555 	if (flags & MF_UNPOISON)
1556 		ret = __get_unpoison_page(p);
1557 	else
1558 		ret = get_any_page(p, flags);
1559 	zone_pcp_enable(page_zone(p));
1560 
1561 	return ret;
1562 }
1563 
1564 /*
1565  * The caller must guarantee the folio isn't large folio, except hugetlb.
1566  * try_to_unmap() can't handle it.
1567  */
1568 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1569 {
1570 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1571 	struct address_space *mapping;
1572 
1573 	if (folio_test_swapcache(folio)) {
1574 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1575 		ttu &= ~TTU_HWPOISON;
1576 	}
1577 
1578 	/*
1579 	 * Propagate the dirty bit from PTEs to struct page first, because we
1580 	 * need this to decide if we should kill or just drop the page.
1581 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1582 	 * be called inside page lock (it's recommended but not enforced).
1583 	 */
1584 	mapping = folio_mapping(folio);
1585 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1586 	    mapping_can_writeback(mapping)) {
1587 		if (folio_mkclean(folio)) {
1588 			folio_set_dirty(folio);
1589 		} else {
1590 			ttu &= ~TTU_HWPOISON;
1591 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1592 				pfn);
1593 		}
1594 	}
1595 
1596 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1597 		/*
1598 		 * For hugetlb folios in shared mappings, try_to_unmap
1599 		 * could potentially call huge_pmd_unshare.  Because of
1600 		 * this, take semaphore in write mode here and set
1601 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1602 		 * at this higher level.
1603 		 */
1604 		mapping = hugetlb_folio_mapping_lock_write(folio);
1605 		if (!mapping) {
1606 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1607 				folio_pfn(folio));
1608 			return -EBUSY;
1609 		}
1610 
1611 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1612 		i_mmap_unlock_write(mapping);
1613 	} else {
1614 		try_to_unmap(folio, ttu);
1615 	}
1616 
1617 	return folio_mapped(folio) ? -EBUSY : 0;
1618 }
1619 
1620 /*
1621  * Do all that is necessary to remove user space mappings. Unmap
1622  * the pages and send SIGBUS to the processes if the data was dirty.
1623  */
1624 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1625 		unsigned long pfn, int flags)
1626 {
1627 	LIST_HEAD(tokill);
1628 	bool unmap_success;
1629 	int forcekill;
1630 	bool mlocked = folio_test_mlocked(folio);
1631 
1632 	/*
1633 	 * Here we are interested only in user-mapped pages, so skip any
1634 	 * other types of pages.
1635 	 */
1636 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1637 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1638 		return true;
1639 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1640 		return true;
1641 
1642 	/*
1643 	 * This check implies we don't kill processes if their pages
1644 	 * are in the swap cache early. Those are always late kills.
1645 	 */
1646 	if (!folio_mapped(folio))
1647 		return true;
1648 
1649 	/*
1650 	 * First collect all the processes that have the page
1651 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1652 	 * because ttu takes the rmap data structures down.
1653 	 */
1654 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1655 
1656 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1657 	if (!unmap_success)
1658 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1659 		       pfn, folio_mapcount(folio));
1660 
1661 	/*
1662 	 * try_to_unmap() might put mlocked page in lru cache, so call
1663 	 * shake_page() again to ensure that it's flushed.
1664 	 */
1665 	if (mlocked)
1666 		shake_folio(folio);
1667 
1668 	/*
1669 	 * Now that the dirty bit has been propagated to the
1670 	 * struct page and all unmaps done we can decide if
1671 	 * killing is needed or not.  Only kill when the page
1672 	 * was dirty or the process is not restartable,
1673 	 * otherwise the tokill list is merely
1674 	 * freed.  When there was a problem unmapping earlier
1675 	 * use a more force-full uncatchable kill to prevent
1676 	 * any accesses to the poisoned memory.
1677 	 */
1678 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1679 		    !unmap_success;
1680 	kill_procs(&tokill, forcekill, pfn, flags);
1681 
1682 	return unmap_success;
1683 }
1684 
1685 static int identify_page_state(unsigned long pfn, struct page *p,
1686 				unsigned long page_flags)
1687 {
1688 	struct page_state *ps;
1689 
1690 	/*
1691 	 * The first check uses the current page flags which may not have any
1692 	 * relevant information. The second check with the saved page flags is
1693 	 * carried out only if the first check can't determine the page status.
1694 	 */
1695 	for (ps = error_states;; ps++)
1696 		if ((p->flags & ps->mask) == ps->res)
1697 			break;
1698 
1699 	page_flags |= (p->flags & (1UL << PG_dirty));
1700 
1701 	if (!ps->mask)
1702 		for (ps = error_states;; ps++)
1703 			if ((page_flags & ps->mask) == ps->res)
1704 				break;
1705 	return page_action(ps, p, pfn);
1706 }
1707 
1708 /*
1709  * When 'release' is 'false', it means that if thp split has failed,
1710  * there is still more to do, hence the page refcount we took earlier
1711  * is still needed.
1712  */
1713 static int try_to_split_thp_page(struct page *page, bool release)
1714 {
1715 	int ret;
1716 
1717 	lock_page(page);
1718 	ret = split_huge_page(page);
1719 	unlock_page(page);
1720 
1721 	if (ret && release)
1722 		put_page(page);
1723 
1724 	return ret;
1725 }
1726 
1727 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1728 		struct address_space *mapping, pgoff_t index, int flags)
1729 {
1730 	struct to_kill *tk;
1731 	unsigned long size = 0;
1732 
1733 	list_for_each_entry(tk, to_kill, nd)
1734 		if (tk->size_shift)
1735 			size = max(size, 1UL << tk->size_shift);
1736 
1737 	if (size) {
1738 		/*
1739 		 * Unmap the largest mapping to avoid breaking up device-dax
1740 		 * mappings which are constant size. The actual size of the
1741 		 * mapping being torn down is communicated in siginfo, see
1742 		 * kill_proc()
1743 		 */
1744 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1745 
1746 		unmap_mapping_range(mapping, start, size, 0);
1747 	}
1748 
1749 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1750 }
1751 
1752 /*
1753  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1754  * either do not claim or fails to claim a hwpoison event, or devdax.
1755  * The fsdax pages are initialized per base page, and the devdax pages
1756  * could be initialized either as base pages, or as compound pages with
1757  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1758  * hwpoison, such that, if a subpage of a compound page is poisoned,
1759  * simply mark the compound head page is by far sufficient.
1760  */
1761 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1762 		struct dev_pagemap *pgmap)
1763 {
1764 	struct folio *folio = pfn_folio(pfn);
1765 	LIST_HEAD(to_kill);
1766 	dax_entry_t cookie;
1767 	int rc = 0;
1768 
1769 	/*
1770 	 * Prevent the inode from being freed while we are interrogating
1771 	 * the address_space, typically this would be handled by
1772 	 * lock_page(), but dax pages do not use the page lock. This
1773 	 * also prevents changes to the mapping of this pfn until
1774 	 * poison signaling is complete.
1775 	 */
1776 	cookie = dax_lock_folio(folio);
1777 	if (!cookie)
1778 		return -EBUSY;
1779 
1780 	if (hwpoison_filter(&folio->page)) {
1781 		rc = -EOPNOTSUPP;
1782 		goto unlock;
1783 	}
1784 
1785 	switch (pgmap->type) {
1786 	case MEMORY_DEVICE_PRIVATE:
1787 	case MEMORY_DEVICE_COHERENT:
1788 		/*
1789 		 * TODO: Handle device pages which may need coordination
1790 		 * with device-side memory.
1791 		 */
1792 		rc = -ENXIO;
1793 		goto unlock;
1794 	default:
1795 		break;
1796 	}
1797 
1798 	/*
1799 	 * Use this flag as an indication that the dax page has been
1800 	 * remapped UC to prevent speculative consumption of poison.
1801 	 */
1802 	SetPageHWPoison(&folio->page);
1803 
1804 	/*
1805 	 * Unlike System-RAM there is no possibility to swap in a
1806 	 * different physical page at a given virtual address, so all
1807 	 * userspace consumption of ZONE_DEVICE memory necessitates
1808 	 * SIGBUS (i.e. MF_MUST_KILL)
1809 	 */
1810 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1811 	collect_procs(folio, &folio->page, &to_kill, true);
1812 
1813 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1814 unlock:
1815 	dax_unlock_folio(folio, cookie);
1816 	return rc;
1817 }
1818 
1819 #ifdef CONFIG_FS_DAX
1820 /**
1821  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1822  * @mapping:	address_space of the file in use
1823  * @index:	start pgoff of the range within the file
1824  * @count:	length of the range, in unit of PAGE_SIZE
1825  * @mf_flags:	memory failure flags
1826  */
1827 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1828 		unsigned long count, int mf_flags)
1829 {
1830 	LIST_HEAD(to_kill);
1831 	dax_entry_t cookie;
1832 	struct page *page;
1833 	size_t end = index + count;
1834 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1835 
1836 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1837 
1838 	for (; index < end; index++) {
1839 		page = NULL;
1840 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1841 		if (!cookie)
1842 			return -EBUSY;
1843 		if (!page)
1844 			goto unlock;
1845 
1846 		if (!pre_remove)
1847 			SetPageHWPoison(page);
1848 
1849 		/*
1850 		 * The pre_remove case is revoking access, the memory is still
1851 		 * good and could theoretically be put back into service.
1852 		 */
1853 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1854 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1855 				index, mf_flags);
1856 unlock:
1857 		dax_unlock_mapping_entry(mapping, index, cookie);
1858 	}
1859 	return 0;
1860 }
1861 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1862 #endif /* CONFIG_FS_DAX */
1863 
1864 #ifdef CONFIG_HUGETLB_PAGE
1865 
1866 /*
1867  * Struct raw_hwp_page represents information about "raw error page",
1868  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1869  */
1870 struct raw_hwp_page {
1871 	struct llist_node node;
1872 	struct page *page;
1873 };
1874 
1875 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1876 {
1877 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1878 }
1879 
1880 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1881 {
1882 	struct llist_head *raw_hwp_head;
1883 	struct raw_hwp_page *p;
1884 	struct folio *folio = page_folio(page);
1885 	bool ret = false;
1886 
1887 	if (!folio_test_hwpoison(folio))
1888 		return false;
1889 
1890 	if (!folio_test_hugetlb(folio))
1891 		return PageHWPoison(page);
1892 
1893 	/*
1894 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1895 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1896 	 */
1897 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1898 		return true;
1899 
1900 	mutex_lock(&mf_mutex);
1901 
1902 	raw_hwp_head = raw_hwp_list_head(folio);
1903 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1904 		if (page == p->page) {
1905 			ret = true;
1906 			break;
1907 		}
1908 	}
1909 
1910 	mutex_unlock(&mf_mutex);
1911 
1912 	return ret;
1913 }
1914 
1915 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1916 {
1917 	struct llist_node *head;
1918 	struct raw_hwp_page *p, *next;
1919 	unsigned long count = 0;
1920 
1921 	head = llist_del_all(raw_hwp_list_head(folio));
1922 	llist_for_each_entry_safe(p, next, head, node) {
1923 		if (move_flag)
1924 			SetPageHWPoison(p->page);
1925 		else
1926 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1927 		kfree(p);
1928 		count++;
1929 	}
1930 	return count;
1931 }
1932 
1933 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1934 {
1935 	struct llist_head *head;
1936 	struct raw_hwp_page *raw_hwp;
1937 	struct raw_hwp_page *p;
1938 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1939 
1940 	/*
1941 	 * Once the hwpoison hugepage has lost reliable raw error info,
1942 	 * there is little meaning to keep additional error info precisely,
1943 	 * so skip to add additional raw error info.
1944 	 */
1945 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1946 		return -EHWPOISON;
1947 	head = raw_hwp_list_head(folio);
1948 	llist_for_each_entry(p, head->first, node) {
1949 		if (p->page == page)
1950 			return -EHWPOISON;
1951 	}
1952 
1953 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1954 	if (raw_hwp) {
1955 		raw_hwp->page = page;
1956 		llist_add(&raw_hwp->node, head);
1957 		/* the first error event will be counted in action_result(). */
1958 		if (ret)
1959 			num_poisoned_pages_inc(page_to_pfn(page));
1960 	} else {
1961 		/*
1962 		 * Failed to save raw error info.  We no longer trace all
1963 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1964 		 * this hwpoisoned hugepage.
1965 		 */
1966 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1967 		/*
1968 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1969 		 * used any more, so free it.
1970 		 */
1971 		__folio_free_raw_hwp(folio, false);
1972 	}
1973 	return ret;
1974 }
1975 
1976 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1977 {
1978 	/*
1979 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1980 	 * pages for tail pages are required but they don't exist.
1981 	 */
1982 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1983 		return 0;
1984 
1985 	/*
1986 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1987 	 * definition.
1988 	 */
1989 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1990 		return 0;
1991 
1992 	return __folio_free_raw_hwp(folio, move_flag);
1993 }
1994 
1995 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1996 {
1997 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1998 		return;
1999 	if (folio_test_hugetlb_vmemmap_optimized(folio))
2000 		return;
2001 	folio_clear_hwpoison(folio);
2002 	folio_free_raw_hwp(folio, true);
2003 }
2004 
2005 /*
2006  * Called from hugetlb code with hugetlb_lock held.
2007  *
2008  * Return values:
2009  *   0             - free hugepage
2010  *   1             - in-use hugepage
2011  *   2             - not a hugepage
2012  *   -EBUSY        - the hugepage is busy (try to retry)
2013  *   -EHWPOISON    - the hugepage is already hwpoisoned
2014  */
2015 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2016 				 bool *migratable_cleared)
2017 {
2018 	struct page *page = pfn_to_page(pfn);
2019 	struct folio *folio = page_folio(page);
2020 	int ret = 2;	/* fallback to normal page handling */
2021 	bool count_increased = false;
2022 
2023 	if (!folio_test_hugetlb(folio))
2024 		goto out;
2025 
2026 	if (flags & MF_COUNT_INCREASED) {
2027 		ret = 1;
2028 		count_increased = true;
2029 	} else if (folio_test_hugetlb_freed(folio)) {
2030 		ret = 0;
2031 	} else if (folio_test_hugetlb_migratable(folio)) {
2032 		ret = folio_try_get(folio);
2033 		if (ret)
2034 			count_increased = true;
2035 	} else {
2036 		ret = -EBUSY;
2037 		if (!(flags & MF_NO_RETRY))
2038 			goto out;
2039 	}
2040 
2041 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2042 		ret = -EHWPOISON;
2043 		goto out;
2044 	}
2045 
2046 	/*
2047 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2048 	 * from being migrated by memory hotremove.
2049 	 */
2050 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2051 		folio_clear_hugetlb_migratable(folio);
2052 		*migratable_cleared = true;
2053 	}
2054 
2055 	return ret;
2056 out:
2057 	if (count_increased)
2058 		folio_put(folio);
2059 	return ret;
2060 }
2061 
2062 /*
2063  * Taking refcount of hugetlb pages needs extra care about race conditions
2064  * with basic operations like hugepage allocation/free/demotion.
2065  * So some of prechecks for hwpoison (pinning, and testing/setting
2066  * PageHWPoison) should be done in single hugetlb_lock range.
2067  */
2068 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2069 {
2070 	int res;
2071 	struct page *p = pfn_to_page(pfn);
2072 	struct folio *folio;
2073 	unsigned long page_flags;
2074 	bool migratable_cleared = false;
2075 
2076 	*hugetlb = 1;
2077 retry:
2078 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2079 	if (res == 2) { /* fallback to normal page handling */
2080 		*hugetlb = 0;
2081 		return 0;
2082 	} else if (res == -EHWPOISON) {
2083 		pr_err("%#lx: already hardware poisoned\n", pfn);
2084 		if (flags & MF_ACTION_REQUIRED) {
2085 			folio = page_folio(p);
2086 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2087 			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2088 		}
2089 		return res;
2090 	} else if (res == -EBUSY) {
2091 		if (!(flags & MF_NO_RETRY)) {
2092 			flags |= MF_NO_RETRY;
2093 			goto retry;
2094 		}
2095 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2096 	}
2097 
2098 	folio = page_folio(p);
2099 	folio_lock(folio);
2100 
2101 	if (hwpoison_filter(p)) {
2102 		folio_clear_hugetlb_hwpoison(folio);
2103 		if (migratable_cleared)
2104 			folio_set_hugetlb_migratable(folio);
2105 		folio_unlock(folio);
2106 		if (res == 1)
2107 			folio_put(folio);
2108 		return -EOPNOTSUPP;
2109 	}
2110 
2111 	/*
2112 	 * Handling free hugepage.  The possible race with hugepage allocation
2113 	 * or demotion can be prevented by PageHWPoison flag.
2114 	 */
2115 	if (res == 0) {
2116 		folio_unlock(folio);
2117 		if (__page_handle_poison(p) > 0) {
2118 			page_ref_inc(p);
2119 			res = MF_RECOVERED;
2120 		} else {
2121 			res = MF_FAILED;
2122 		}
2123 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2124 	}
2125 
2126 	page_flags = folio->flags;
2127 
2128 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2129 		folio_unlock(folio);
2130 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2131 	}
2132 
2133 	return identify_page_state(pfn, p, page_flags);
2134 }
2135 
2136 #else
2137 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2138 {
2139 	return 0;
2140 }
2141 
2142 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2143 {
2144 	return 0;
2145 }
2146 #endif	/* CONFIG_HUGETLB_PAGE */
2147 
2148 /* Drop the extra refcount in case we come from madvise() */
2149 static void put_ref_page(unsigned long pfn, int flags)
2150 {
2151 	if (!(flags & MF_COUNT_INCREASED))
2152 		return;
2153 
2154 	put_page(pfn_to_page(pfn));
2155 }
2156 
2157 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2158 		struct dev_pagemap *pgmap)
2159 {
2160 	int rc = -ENXIO;
2161 
2162 	/* device metadata space is not recoverable */
2163 	if (!pgmap_pfn_valid(pgmap, pfn))
2164 		goto out;
2165 
2166 	/*
2167 	 * Call driver's implementation to handle the memory failure, otherwise
2168 	 * fall back to generic handler.
2169 	 */
2170 	if (pgmap_has_memory_failure(pgmap)) {
2171 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2172 		/*
2173 		 * Fall back to generic handler too if operation is not
2174 		 * supported inside the driver/device/filesystem.
2175 		 */
2176 		if (rc != -EOPNOTSUPP)
2177 			goto out;
2178 	}
2179 
2180 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2181 out:
2182 	/* drop pgmap ref acquired in caller */
2183 	put_dev_pagemap(pgmap);
2184 	if (rc != -EOPNOTSUPP)
2185 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2186 	return rc;
2187 }
2188 
2189 /*
2190  * The calling condition is as such: thp split failed, page might have
2191  * been RDMA pinned, not much can be done for recovery.
2192  * But a SIGBUS should be delivered with vaddr provided so that the user
2193  * application has a chance to recover. Also, application processes'
2194  * election for MCE early killed will be honored.
2195  */
2196 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2197 				struct folio *folio)
2198 {
2199 	LIST_HEAD(tokill);
2200 
2201 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2202 	kill_procs(&tokill, true, pfn, flags);
2203 }
2204 
2205 /**
2206  * memory_failure - Handle memory failure of a page.
2207  * @pfn: Page Number of the corrupted page
2208  * @flags: fine tune action taken
2209  *
2210  * This function is called by the low level machine check code
2211  * of an architecture when it detects hardware memory corruption
2212  * of a page. It tries its best to recover, which includes
2213  * dropping pages, killing processes etc.
2214  *
2215  * The function is primarily of use for corruptions that
2216  * happen outside the current execution context (e.g. when
2217  * detected by a background scrubber)
2218  *
2219  * Must run in process context (e.g. a work queue) with interrupts
2220  * enabled and no spinlocks held.
2221  *
2222  * Return:
2223  *   0             - success,
2224  *   -ENXIO        - memory not managed by the kernel
2225  *   -EOPNOTSUPP   - hwpoison_filter() filtered the error event,
2226  *   -EHWPOISON    - the page was already poisoned, potentially
2227  *                   kill process,
2228  *   other negative values - failure.
2229  */
2230 int memory_failure(unsigned long pfn, int flags)
2231 {
2232 	struct page *p;
2233 	struct folio *folio;
2234 	struct dev_pagemap *pgmap;
2235 	int res = 0;
2236 	unsigned long page_flags;
2237 	bool retry = true;
2238 	int hugetlb = 0;
2239 
2240 	if (!sysctl_memory_failure_recovery)
2241 		panic("Memory failure on page %lx", pfn);
2242 
2243 	mutex_lock(&mf_mutex);
2244 
2245 	if (!(flags & MF_SW_SIMULATED))
2246 		hw_memory_failure = true;
2247 
2248 	p = pfn_to_online_page(pfn);
2249 	if (!p) {
2250 		res = arch_memory_failure(pfn, flags);
2251 		if (res == 0)
2252 			goto unlock_mutex;
2253 
2254 		if (pfn_valid(pfn)) {
2255 			pgmap = get_dev_pagemap(pfn, NULL);
2256 			put_ref_page(pfn, flags);
2257 			if (pgmap) {
2258 				res = memory_failure_dev_pagemap(pfn, flags,
2259 								 pgmap);
2260 				goto unlock_mutex;
2261 			}
2262 		}
2263 		pr_err("%#lx: memory outside kernel control\n", pfn);
2264 		res = -ENXIO;
2265 		goto unlock_mutex;
2266 	}
2267 
2268 try_again:
2269 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2270 	if (hugetlb)
2271 		goto unlock_mutex;
2272 
2273 	if (TestSetPageHWPoison(p)) {
2274 		pr_err("%#lx: already hardware poisoned\n", pfn);
2275 		res = -EHWPOISON;
2276 		if (flags & MF_ACTION_REQUIRED)
2277 			res = kill_accessing_process(current, pfn, flags);
2278 		if (flags & MF_COUNT_INCREASED)
2279 			put_page(p);
2280 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2281 		goto unlock_mutex;
2282 	}
2283 
2284 	/*
2285 	 * We need/can do nothing about count=0 pages.
2286 	 * 1) it's a free page, and therefore in safe hand:
2287 	 *    check_new_page() will be the gate keeper.
2288 	 * 2) it's part of a non-compound high order page.
2289 	 *    Implies some kernel user: cannot stop them from
2290 	 *    R/W the page; let's pray that the page has been
2291 	 *    used and will be freed some time later.
2292 	 * In fact it's dangerous to directly bump up page count from 0,
2293 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2294 	 */
2295 	if (!(flags & MF_COUNT_INCREASED)) {
2296 		res = get_hwpoison_page(p, flags);
2297 		if (!res) {
2298 			if (is_free_buddy_page(p)) {
2299 				if (take_page_off_buddy(p)) {
2300 					page_ref_inc(p);
2301 					res = MF_RECOVERED;
2302 				} else {
2303 					/* We lost the race, try again */
2304 					if (retry) {
2305 						ClearPageHWPoison(p);
2306 						retry = false;
2307 						goto try_again;
2308 					}
2309 					res = MF_FAILED;
2310 				}
2311 				res = action_result(pfn, MF_MSG_BUDDY, res);
2312 			} else {
2313 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2314 			}
2315 			goto unlock_mutex;
2316 		} else if (res < 0) {
2317 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2318 			goto unlock_mutex;
2319 		}
2320 	}
2321 
2322 	folio = page_folio(p);
2323 
2324 	/* filter pages that are protected from hwpoison test by users */
2325 	folio_lock(folio);
2326 	if (hwpoison_filter(p)) {
2327 		ClearPageHWPoison(p);
2328 		folio_unlock(folio);
2329 		folio_put(folio);
2330 		res = -EOPNOTSUPP;
2331 		goto unlock_mutex;
2332 	}
2333 	folio_unlock(folio);
2334 
2335 	if (folio_test_large(folio)) {
2336 		/*
2337 		 * The flag must be set after the refcount is bumped
2338 		 * otherwise it may race with THP split.
2339 		 * And the flag can't be set in get_hwpoison_page() since
2340 		 * it is called by soft offline too and it is just called
2341 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2342 		 * place.
2343 		 *
2344 		 * Don't need care about the above error handling paths for
2345 		 * get_hwpoison_page() since they handle either free page
2346 		 * or unhandlable page.  The refcount is bumped iff the
2347 		 * page is a valid handlable page.
2348 		 */
2349 		folio_set_has_hwpoisoned(folio);
2350 		if (try_to_split_thp_page(p, false) < 0) {
2351 			res = -EHWPOISON;
2352 			kill_procs_now(p, pfn, flags, folio);
2353 			put_page(p);
2354 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2355 			goto unlock_mutex;
2356 		}
2357 		VM_BUG_ON_PAGE(!page_count(p), p);
2358 		folio = page_folio(p);
2359 	}
2360 
2361 	/*
2362 	 * We ignore non-LRU pages for good reasons.
2363 	 * - PG_locked is only well defined for LRU pages and a few others
2364 	 * - to avoid races with __SetPageLocked()
2365 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2366 	 * The check (unnecessarily) ignores LRU pages being isolated and
2367 	 * walked by the page reclaim code, however that's not a big loss.
2368 	 */
2369 	shake_folio(folio);
2370 
2371 	folio_lock(folio);
2372 
2373 	/*
2374 	 * We're only intended to deal with the non-Compound page here.
2375 	 * The page cannot become compound pages again as folio has been
2376 	 * splited and extra refcnt is held.
2377 	 */
2378 	WARN_ON(folio_test_large(folio));
2379 
2380 	/*
2381 	 * We use page flags to determine what action should be taken, but
2382 	 * the flags can be modified by the error containment action.  One
2383 	 * example is an mlocked page, where PG_mlocked is cleared by
2384 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2385 	 * status correctly, we save a copy of the page flags at this time.
2386 	 */
2387 	page_flags = folio->flags;
2388 
2389 	/*
2390 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2391 	 * the folio lock. We need to wait for writeback completion for this
2392 	 * folio or it may trigger a vfs BUG while evicting inode.
2393 	 */
2394 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2395 		goto identify_page_state;
2396 
2397 	/*
2398 	 * It's very difficult to mess with pages currently under IO
2399 	 * and in many cases impossible, so we just avoid it here.
2400 	 */
2401 	folio_wait_writeback(folio);
2402 
2403 	/*
2404 	 * Now take care of user space mappings.
2405 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2406 	 */
2407 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2408 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2409 		goto unlock_page;
2410 	}
2411 
2412 	/*
2413 	 * Torn down by someone else?
2414 	 */
2415 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2416 	    folio->mapping == NULL) {
2417 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2418 		goto unlock_page;
2419 	}
2420 
2421 identify_page_state:
2422 	res = identify_page_state(pfn, p, page_flags);
2423 	mutex_unlock(&mf_mutex);
2424 	return res;
2425 unlock_page:
2426 	folio_unlock(folio);
2427 unlock_mutex:
2428 	mutex_unlock(&mf_mutex);
2429 	return res;
2430 }
2431 EXPORT_SYMBOL_GPL(memory_failure);
2432 
2433 #define MEMORY_FAILURE_FIFO_ORDER	4
2434 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2435 
2436 struct memory_failure_entry {
2437 	unsigned long pfn;
2438 	int flags;
2439 };
2440 
2441 struct memory_failure_cpu {
2442 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2443 		      MEMORY_FAILURE_FIFO_SIZE);
2444 	raw_spinlock_t lock;
2445 	struct work_struct work;
2446 };
2447 
2448 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2449 
2450 /**
2451  * memory_failure_queue - Schedule handling memory failure of a page.
2452  * @pfn: Page Number of the corrupted page
2453  * @flags: Flags for memory failure handling
2454  *
2455  * This function is called by the low level hardware error handler
2456  * when it detects hardware memory corruption of a page. It schedules
2457  * the recovering of error page, including dropping pages, killing
2458  * processes etc.
2459  *
2460  * The function is primarily of use for corruptions that
2461  * happen outside the current execution context (e.g. when
2462  * detected by a background scrubber)
2463  *
2464  * Can run in IRQ context.
2465  */
2466 void memory_failure_queue(unsigned long pfn, int flags)
2467 {
2468 	struct memory_failure_cpu *mf_cpu;
2469 	unsigned long proc_flags;
2470 	bool buffer_overflow;
2471 	struct memory_failure_entry entry = {
2472 		.pfn =		pfn,
2473 		.flags =	flags,
2474 	};
2475 
2476 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2477 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2478 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2479 	if (!buffer_overflow)
2480 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2481 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2482 	put_cpu_var(memory_failure_cpu);
2483 	if (buffer_overflow)
2484 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2485 		       pfn);
2486 }
2487 EXPORT_SYMBOL_GPL(memory_failure_queue);
2488 
2489 static void memory_failure_work_func(struct work_struct *work)
2490 {
2491 	struct memory_failure_cpu *mf_cpu;
2492 	struct memory_failure_entry entry = { 0, };
2493 	unsigned long proc_flags;
2494 	int gotten;
2495 
2496 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2497 	for (;;) {
2498 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2499 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2500 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2501 		if (!gotten)
2502 			break;
2503 		if (entry.flags & MF_SOFT_OFFLINE)
2504 			soft_offline_page(entry.pfn, entry.flags);
2505 		else
2506 			memory_failure(entry.pfn, entry.flags);
2507 	}
2508 }
2509 
2510 static int __init memory_failure_init(void)
2511 {
2512 	struct memory_failure_cpu *mf_cpu;
2513 	int cpu;
2514 
2515 	for_each_possible_cpu(cpu) {
2516 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2517 		raw_spin_lock_init(&mf_cpu->lock);
2518 		INIT_KFIFO(mf_cpu->fifo);
2519 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2520 	}
2521 
2522 	register_sysctl_init("vm", memory_failure_table);
2523 
2524 	return 0;
2525 }
2526 core_initcall(memory_failure_init);
2527 
2528 #undef pr_fmt
2529 #define pr_fmt(fmt)	"Unpoison: " fmt
2530 #define unpoison_pr_info(fmt, pfn, rs)			\
2531 ({							\
2532 	if (__ratelimit(rs))				\
2533 		pr_info(fmt, pfn);			\
2534 })
2535 
2536 /**
2537  * unpoison_memory - Unpoison a previously poisoned page
2538  * @pfn: Page number of the to be unpoisoned page
2539  *
2540  * Software-unpoison a page that has been poisoned by
2541  * memory_failure() earlier.
2542  *
2543  * This is only done on the software-level, so it only works
2544  * for linux injected failures, not real hardware failures
2545  *
2546  * Returns 0 for success, otherwise -errno.
2547  */
2548 int unpoison_memory(unsigned long pfn)
2549 {
2550 	struct folio *folio;
2551 	struct page *p;
2552 	int ret = -EBUSY, ghp;
2553 	unsigned long count;
2554 	bool huge = false;
2555 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2556 					DEFAULT_RATELIMIT_BURST);
2557 
2558 	if (!pfn_valid(pfn))
2559 		return -ENXIO;
2560 
2561 	p = pfn_to_page(pfn);
2562 	folio = page_folio(p);
2563 
2564 	mutex_lock(&mf_mutex);
2565 
2566 	if (hw_memory_failure) {
2567 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2568 				 pfn, &unpoison_rs);
2569 		ret = -EOPNOTSUPP;
2570 		goto unlock_mutex;
2571 	}
2572 
2573 	if (is_huge_zero_folio(folio)) {
2574 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2575 				 pfn, &unpoison_rs);
2576 		ret = -EOPNOTSUPP;
2577 		goto unlock_mutex;
2578 	}
2579 
2580 	if (!PageHWPoison(p)) {
2581 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2582 				 pfn, &unpoison_rs);
2583 		goto unlock_mutex;
2584 	}
2585 
2586 	if (folio_ref_count(folio) > 1) {
2587 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2588 				 pfn, &unpoison_rs);
2589 		goto unlock_mutex;
2590 	}
2591 
2592 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2593 	    folio_test_reserved(folio) || folio_test_offline(folio))
2594 		goto unlock_mutex;
2595 
2596 	if (folio_mapped(folio)) {
2597 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2598 				 pfn, &unpoison_rs);
2599 		goto unlock_mutex;
2600 	}
2601 
2602 	if (folio_mapping(folio)) {
2603 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2604 				 pfn, &unpoison_rs);
2605 		goto unlock_mutex;
2606 	}
2607 
2608 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2609 	if (!ghp) {
2610 		if (folio_test_hugetlb(folio)) {
2611 			huge = true;
2612 			count = folio_free_raw_hwp(folio, false);
2613 			if (count == 0)
2614 				goto unlock_mutex;
2615 		}
2616 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2617 	} else if (ghp < 0) {
2618 		if (ghp == -EHWPOISON) {
2619 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2620 		} else {
2621 			ret = ghp;
2622 			unpoison_pr_info("%#lx: failed to grab page\n",
2623 					 pfn, &unpoison_rs);
2624 		}
2625 	} else {
2626 		if (folio_test_hugetlb(folio)) {
2627 			huge = true;
2628 			count = folio_free_raw_hwp(folio, false);
2629 			if (count == 0) {
2630 				folio_put(folio);
2631 				goto unlock_mutex;
2632 			}
2633 		}
2634 
2635 		folio_put(folio);
2636 		if (TestClearPageHWPoison(p)) {
2637 			folio_put(folio);
2638 			ret = 0;
2639 		}
2640 	}
2641 
2642 unlock_mutex:
2643 	mutex_unlock(&mf_mutex);
2644 	if (!ret) {
2645 		if (!huge)
2646 			num_poisoned_pages_sub(pfn, 1);
2647 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2648 				 page_to_pfn(p), &unpoison_rs);
2649 	}
2650 	return ret;
2651 }
2652 EXPORT_SYMBOL(unpoison_memory);
2653 
2654 #undef pr_fmt
2655 #define pr_fmt(fmt) "Soft offline: " fmt
2656 
2657 /*
2658  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2659  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2660  * If the page is mapped, it migrates the contents over.
2661  */
2662 static int soft_offline_in_use_page(struct page *page)
2663 {
2664 	long ret = 0;
2665 	unsigned long pfn = page_to_pfn(page);
2666 	struct folio *folio = page_folio(page);
2667 	char const *msg_page[] = {"page", "hugepage"};
2668 	bool huge = folio_test_hugetlb(folio);
2669 	bool isolated;
2670 	LIST_HEAD(pagelist);
2671 	struct migration_target_control mtc = {
2672 		.nid = NUMA_NO_NODE,
2673 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2674 		.reason = MR_MEMORY_FAILURE,
2675 	};
2676 
2677 	if (!huge && folio_test_large(folio)) {
2678 		if (try_to_split_thp_page(page, true)) {
2679 			pr_info("%#lx: thp split failed\n", pfn);
2680 			return -EBUSY;
2681 		}
2682 		folio = page_folio(page);
2683 	}
2684 
2685 	folio_lock(folio);
2686 	if (!huge)
2687 		folio_wait_writeback(folio);
2688 	if (PageHWPoison(page)) {
2689 		folio_unlock(folio);
2690 		folio_put(folio);
2691 		pr_info("%#lx: page already poisoned\n", pfn);
2692 		return 0;
2693 	}
2694 
2695 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2696 		/*
2697 		 * Try to invalidate first. This should work for
2698 		 * non dirty unmapped page cache pages.
2699 		 */
2700 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2701 	folio_unlock(folio);
2702 
2703 	if (ret) {
2704 		pr_info("%#lx: invalidated\n", pfn);
2705 		page_handle_poison(page, false, true);
2706 		return 0;
2707 	}
2708 
2709 	isolated = isolate_folio_to_list(folio, &pagelist);
2710 
2711 	/*
2712 	 * If we succeed to isolate the folio, we grabbed another refcount on
2713 	 * the folio, so we can safely drop the one we got from get_any_page().
2714 	 * If we failed to isolate the folio, it means that we cannot go further
2715 	 * and we will return an error, so drop the reference we got from
2716 	 * get_any_page() as well.
2717 	 */
2718 	folio_put(folio);
2719 
2720 	if (isolated) {
2721 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2722 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2723 		if (!ret) {
2724 			bool release = !huge;
2725 
2726 			if (!page_handle_poison(page, huge, release))
2727 				ret = -EBUSY;
2728 		} else {
2729 			if (!list_empty(&pagelist))
2730 				putback_movable_pages(&pagelist);
2731 
2732 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2733 				pfn, msg_page[huge], ret, &page->flags);
2734 			if (ret > 0)
2735 				ret = -EBUSY;
2736 		}
2737 	} else {
2738 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2739 			pfn, msg_page[huge], page_count(page), &page->flags);
2740 		ret = -EBUSY;
2741 	}
2742 	return ret;
2743 }
2744 
2745 /**
2746  * soft_offline_page - Soft offline a page.
2747  * @pfn: pfn to soft-offline
2748  * @flags: flags. Same as memory_failure().
2749  *
2750  * Returns 0 on success,
2751  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2752  *         disabled by /proc/sys/vm/enable_soft_offline,
2753  *         < 0 otherwise negated errno.
2754  *
2755  * Soft offline a page, by migration or invalidation,
2756  * without killing anything. This is for the case when
2757  * a page is not corrupted yet (so it's still valid to access),
2758  * but has had a number of corrected errors and is better taken
2759  * out.
2760  *
2761  * The actual policy on when to do that is maintained by
2762  * user space.
2763  *
2764  * This should never impact any application or cause data loss,
2765  * however it might take some time.
2766  *
2767  * This is not a 100% solution for all memory, but tries to be
2768  * ``good enough'' for the majority of memory.
2769  */
2770 int soft_offline_page(unsigned long pfn, int flags)
2771 {
2772 	int ret;
2773 	bool try_again = true;
2774 	struct page *page;
2775 
2776 	if (!pfn_valid(pfn)) {
2777 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2778 		return -ENXIO;
2779 	}
2780 
2781 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2782 	page = pfn_to_online_page(pfn);
2783 	if (!page) {
2784 		put_ref_page(pfn, flags);
2785 		return -EIO;
2786 	}
2787 
2788 	if (!sysctl_enable_soft_offline) {
2789 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2790 		put_ref_page(pfn, flags);
2791 		return -EOPNOTSUPP;
2792 	}
2793 
2794 	mutex_lock(&mf_mutex);
2795 
2796 	if (PageHWPoison(page)) {
2797 		pr_info("%#lx: page already poisoned\n", pfn);
2798 		put_ref_page(pfn, flags);
2799 		mutex_unlock(&mf_mutex);
2800 		return 0;
2801 	}
2802 
2803 retry:
2804 	get_online_mems();
2805 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2806 	put_online_mems();
2807 
2808 	if (hwpoison_filter(page)) {
2809 		if (ret > 0)
2810 			put_page(page);
2811 
2812 		mutex_unlock(&mf_mutex);
2813 		return -EOPNOTSUPP;
2814 	}
2815 
2816 	if (ret > 0) {
2817 		ret = soft_offline_in_use_page(page);
2818 	} else if (ret == 0) {
2819 		if (!page_handle_poison(page, true, false)) {
2820 			if (try_again) {
2821 				try_again = false;
2822 				flags &= ~MF_COUNT_INCREASED;
2823 				goto retry;
2824 			}
2825 			ret = -EBUSY;
2826 		}
2827 	}
2828 
2829 	mutex_unlock(&mf_mutex);
2830 
2831 	return ret;
2832 }
2833