1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved. 4 * Copyright 2004-2011 Red Hat, Inc. 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/fs.h> 10 #include <linux/dlm.h> 11 #include <linux/slab.h> 12 #include <linux/types.h> 13 #include <linux/delay.h> 14 #include <linux/gfs2_ondisk.h> 15 #include <linux/sched/signal.h> 16 17 #include "incore.h" 18 #include "util.h" 19 #include "sys.h" 20 #include "trace_gfs2.h" 21 22 /** 23 * gfs2_update_stats - Update time based stats 24 * @s: The stats to update (local or global) 25 * @index: The index inside @s 26 * @sample: New data to include 27 */ 28 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index, 29 s64 sample) 30 { 31 /* 32 * @delta is the difference between the current rtt sample and the 33 * running average srtt. We add 1/8 of that to the srtt in order to 34 * update the current srtt estimate. The variance estimate is a bit 35 * more complicated. We subtract the current variance estimate from 36 * the abs value of the @delta and add 1/4 of that to the running 37 * total. That's equivalent to 3/4 of the current variance 38 * estimate plus 1/4 of the abs of @delta. 39 * 40 * Note that the index points at the array entry containing the 41 * smoothed mean value, and the variance is always in the following 42 * entry 43 * 44 * Reference: TCP/IP Illustrated, vol 2, p. 831,832 45 * All times are in units of integer nanoseconds. Unlike the TCP/IP 46 * case, they are not scaled fixed point. 47 */ 48 49 s64 delta = sample - s->stats[index]; 50 s->stats[index] += (delta >> 3); 51 index++; 52 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2; 53 } 54 55 /** 56 * gfs2_update_reply_times - Update locking statistics 57 * @gl: The glock to update 58 * @blocking: The operation may have been blocking 59 * 60 * This assumes that gl->gl_dstamp has been set earlier. 61 * 62 * The rtt (lock round trip time) is an estimate of the time 63 * taken to perform a dlm lock request. We update it on each 64 * reply from the dlm. 65 * 66 * The blocking flag is set on the glock for all dlm requests 67 * which may potentially block due to lock requests from other nodes. 68 * DLM requests where the current lock state is exclusive, the 69 * requested state is null (or unlocked) or where the TRY or 70 * TRY_1CB flags are set are classified as non-blocking. All 71 * other DLM requests are counted as (potentially) blocking. 72 */ 73 static inline void gfs2_update_reply_times(struct gfs2_glock *gl, 74 bool blocking) 75 { 76 struct gfs2_pcpu_lkstats *lks; 77 const unsigned gltype = gl->gl_name.ln_type; 78 unsigned index = blocking ? GFS2_LKS_SRTTB : GFS2_LKS_SRTT; 79 s64 rtt; 80 81 preempt_disable(); 82 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp)); 83 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 84 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */ 85 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */ 86 preempt_enable(); 87 88 trace_gfs2_glock_lock_time(gl, rtt); 89 } 90 91 /** 92 * gfs2_update_request_times - Update locking statistics 93 * @gl: The glock to update 94 * 95 * The irt (lock inter-request times) measures the average time 96 * between requests to the dlm. It is updated immediately before 97 * each dlm call. 98 */ 99 100 static inline void gfs2_update_request_times(struct gfs2_glock *gl) 101 { 102 struct gfs2_pcpu_lkstats *lks; 103 const unsigned gltype = gl->gl_name.ln_type; 104 ktime_t dstamp; 105 s64 irt; 106 107 preempt_disable(); 108 dstamp = gl->gl_dstamp; 109 gl->gl_dstamp = ktime_get_real(); 110 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp)); 111 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats); 112 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */ 113 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */ 114 preempt_enable(); 115 } 116 117 static void gdlm_ast(void *arg) 118 { 119 struct gfs2_glock *gl = arg; 120 bool blocking; 121 unsigned ret; 122 123 blocking = test_bit(GLF_BLOCKING, &gl->gl_flags); 124 gfs2_update_reply_times(gl, blocking); 125 clear_bit(GLF_BLOCKING, &gl->gl_flags); 126 127 /* If the glock is dead, we only react to a dlm_unlock() reply. */ 128 if (__lockref_is_dead(&gl->gl_lockref) && 129 gl->gl_lksb.sb_status != -DLM_EUNLOCK) 130 return; 131 132 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED); 133 134 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr) 135 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE); 136 137 switch (gl->gl_lksb.sb_status) { 138 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */ 139 gfs2_glock_free(gl); 140 return; 141 case -DLM_ECANCEL: /* Cancel while getting lock */ 142 ret = LM_OUT_CANCELED; 143 goto out; 144 case -EAGAIN: /* Try lock fails */ 145 ret = LM_OUT_TRY_AGAIN; 146 goto out; 147 case -EDEADLK: /* Deadlock detected */ 148 ret = LM_OUT_DEADLOCK; 149 goto out; 150 case -ETIMEDOUT: /* Canceled due to timeout */ 151 ret = LM_OUT_ERROR; 152 goto out; 153 case 0: /* Success */ 154 break; 155 default: /* Something unexpected */ 156 BUG(); 157 } 158 159 ret = gl->gl_req; 160 161 /* 162 * The GLF_INITIAL flag is initially set for new glocks. Upon the 163 * first successful new (non-conversion) request, we clear this flag to 164 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the 165 * identifier to use for identifying it. 166 * 167 * Any failed initial requests do not create a DLM lock, so we ignore 168 * the gl->gl_lksb.sb_lkid values that come with such requests. 169 */ 170 171 clear_bit(GLF_INITIAL, &gl->gl_flags); 172 gfs2_glock_complete(gl, ret); 173 return; 174 out: 175 if (test_bit(GLF_INITIAL, &gl->gl_flags)) 176 gl->gl_lksb.sb_lkid = 0; 177 gfs2_glock_complete(gl, ret); 178 } 179 180 static void gdlm_bast(void *arg, int mode) 181 { 182 struct gfs2_glock *gl = arg; 183 184 if (__lockref_is_dead(&gl->gl_lockref)) 185 return; 186 187 switch (mode) { 188 case DLM_LOCK_EX: 189 gfs2_glock_cb(gl, LM_ST_UNLOCKED); 190 break; 191 case DLM_LOCK_CW: 192 gfs2_glock_cb(gl, LM_ST_DEFERRED); 193 break; 194 case DLM_LOCK_PR: 195 gfs2_glock_cb(gl, LM_ST_SHARED); 196 break; 197 default: 198 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode); 199 BUG(); 200 } 201 } 202 203 /* convert gfs lock-state to dlm lock-mode */ 204 205 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate) 206 { 207 switch (lmstate) { 208 case LM_ST_UNLOCKED: 209 return DLM_LOCK_NL; 210 case LM_ST_EXCLUSIVE: 211 return DLM_LOCK_EX; 212 case LM_ST_DEFERRED: 213 return DLM_LOCK_CW; 214 case LM_ST_SHARED: 215 return DLM_LOCK_PR; 216 } 217 fs_err(sdp, "unknown LM state %d\n", lmstate); 218 BUG(); 219 return -1; 220 } 221 222 /* Taken from fs/dlm/lock.c. */ 223 224 static bool middle_conversion(int cur, int req) 225 { 226 return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) || 227 (cur == DLM_LOCK_CW && req == DLM_LOCK_PR); 228 } 229 230 static bool down_conversion(int cur, int req) 231 { 232 return !middle_conversion(cur, req) && req < cur; 233 } 234 235 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags, 236 const int req, bool blocking) 237 { 238 u32 lkf = 0; 239 240 if (gl->gl_lksb.sb_lvbptr) 241 lkf |= DLM_LKF_VALBLK; 242 243 if (gfs_flags & LM_FLAG_TRY) 244 lkf |= DLM_LKF_NOQUEUE; 245 246 if (gfs_flags & LM_FLAG_TRY_1CB) { 247 lkf |= DLM_LKF_NOQUEUE; 248 lkf |= DLM_LKF_NOQUEUEBAST; 249 } 250 251 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) { 252 lkf |= DLM_LKF_CONVERT; 253 254 /* 255 * The DLM_LKF_QUECVT flag needs to be set for "first come, 256 * first served" semantics, but it must only be set for 257 * "upward" lock conversions or else DLM will reject the 258 * request as invalid. 259 */ 260 if (blocking) 261 lkf |= DLM_LKF_QUECVT; 262 } 263 264 return lkf; 265 } 266 267 static void gfs2_reverse_hex(char *c, u64 value) 268 { 269 *c = '0'; 270 while (value) { 271 *c-- = hex_asc[value & 0x0f]; 272 value >>= 4; 273 } 274 } 275 276 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state, 277 unsigned int flags) 278 { 279 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 280 bool blocking; 281 int cur, req; 282 u32 lkf; 283 char strname[GDLM_STRNAME_BYTES] = ""; 284 int error; 285 286 gl->gl_req = req_state; 287 cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state); 288 req = make_mode(gl->gl_name.ln_sbd, req_state); 289 blocking = !down_conversion(cur, req) && 290 !(flags & (LM_FLAG_TRY|LM_FLAG_TRY_1CB)); 291 lkf = make_flags(gl, flags, req, blocking); 292 if (blocking) 293 set_bit(GLF_BLOCKING, &gl->gl_flags); 294 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 295 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 296 if (test_bit(GLF_INITIAL, &gl->gl_flags)) { 297 memset(strname, ' ', GDLM_STRNAME_BYTES - 1); 298 strname[GDLM_STRNAME_BYTES - 1] = '\0'; 299 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type); 300 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number); 301 gl->gl_dstamp = ktime_get_real(); 302 } else { 303 gfs2_update_request_times(gl); 304 } 305 /* 306 * Submit the actual lock request. 307 */ 308 309 again: 310 down_read(&ls->ls_sem); 311 error = -ENODEV; 312 if (likely(ls->ls_dlm != NULL)) { 313 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname, 314 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast); 315 } 316 up_read(&ls->ls_sem); 317 if (error == -EBUSY) { 318 msleep(20); 319 goto again; 320 } 321 return error; 322 } 323 324 static void gdlm_put_lock(struct gfs2_glock *gl) 325 { 326 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd; 327 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 328 uint32_t flags = 0; 329 int error; 330 331 BUG_ON(!__lockref_is_dead(&gl->gl_lockref)); 332 333 if (test_bit(GLF_INITIAL, &gl->gl_flags)) { 334 gfs2_glock_free(gl); 335 return; 336 } 337 338 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT); 339 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT); 340 gfs2_update_request_times(gl); 341 342 /* 343 * When the lockspace is released, all remaining glocks will be 344 * unlocked automatically. This is more efficient than unlocking them 345 * individually, but when the lock is held in DLM_LOCK_EX or 346 * DLM_LOCK_PW mode, the lock value block (LVB) would be lost. 347 */ 348 349 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) && 350 (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) { 351 gfs2_glock_free_later(gl); 352 return; 353 } 354 355 if (gl->gl_lksb.sb_lvbptr) 356 flags |= DLM_LKF_VALBLK; 357 358 again: 359 down_read(&ls->ls_sem); 360 error = -ENODEV; 361 if (likely(ls->ls_dlm != NULL)) { 362 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, flags, 363 NULL, gl); 364 } 365 up_read(&ls->ls_sem); 366 if (error == -EBUSY) { 367 msleep(20); 368 goto again; 369 } 370 371 if (error == -ENODEV) { 372 gfs2_glock_free(gl); 373 return; 374 } 375 376 if (error) { 377 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n", 378 gl->gl_name.ln_type, 379 (unsigned long long)gl->gl_name.ln_number, error); 380 } 381 } 382 383 static void gdlm_cancel(struct gfs2_glock *gl) 384 { 385 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct; 386 387 down_read(&ls->ls_sem); 388 if (likely(ls->ls_dlm != NULL)) { 389 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl); 390 } 391 up_read(&ls->ls_sem); 392 } 393 394 /* 395 * dlm/gfs2 recovery coordination using dlm_recover callbacks 396 * 397 * 1. dlm_controld sees lockspace members change 398 * 2. dlm_controld blocks dlm-kernel locking activity 399 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep) 400 * 4. dlm_controld starts and finishes its own user level recovery 401 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery 402 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot) 403 * 7. dlm_recoverd does its own lock recovery 404 * 8. dlm_recoverd unblocks dlm-kernel locking activity 405 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation) 406 * 10. gfs2_control updates control_lock lvb with new generation and jid bits 407 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none) 408 * 12. gfs2_recover dequeues and recovers journals of failed nodes 409 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result) 410 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals 411 * 15. gfs2_control unblocks normal locking when all journals are recovered 412 * 413 * - failures during recovery 414 * 415 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control 416 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still 417 * recovering for a prior failure. gfs2_control needs a way to detect 418 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using 419 * the recover_block and recover_start values. 420 * 421 * recover_done() provides a new lockspace generation number each time it 422 * is called (step 9). This generation number is saved as recover_start. 423 * When recover_prep() is called, it sets BLOCK_LOCKS and sets 424 * recover_block = recover_start. So, while recover_block is equal to 425 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must 426 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.) 427 * 428 * - more specific gfs2 steps in sequence above 429 * 430 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start 431 * 6. recover_slot records any failed jids (maybe none) 432 * 9. recover_done sets recover_start = new generation number 433 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids 434 * 12. gfs2_recover does journal recoveries for failed jids identified above 435 * 14. gfs2_control clears control_lock lvb bits for recovered jids 436 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured 437 * again) then do nothing, otherwise if recover_start > recover_block 438 * then clear BLOCK_LOCKS. 439 * 440 * - parallel recovery steps across all nodes 441 * 442 * All nodes attempt to update the control_lock lvb with the new generation 443 * number and jid bits, but only the first to get the control_lock EX will 444 * do so; others will see that it's already done (lvb already contains new 445 * generation number.) 446 * 447 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks 448 * . All nodes attempt to set control_lock lvb gen + bits for the new gen 449 * . One node gets control_lock first and writes the lvb, others see it's done 450 * . All nodes attempt to recover jids for which they see control_lock bits set 451 * . One node succeeds for a jid, and that one clears the jid bit in the lvb 452 * . All nodes will eventually see all lvb bits clear and unblock locks 453 * 454 * - is there a problem with clearing an lvb bit that should be set 455 * and missing a journal recovery? 456 * 457 * 1. jid fails 458 * 2. lvb bit set for step 1 459 * 3. jid recovered for step 1 460 * 4. jid taken again (new mount) 461 * 5. jid fails (for step 4) 462 * 6. lvb bit set for step 5 (will already be set) 463 * 7. lvb bit cleared for step 3 464 * 465 * This is not a problem because the failure in step 5 does not 466 * require recovery, because the mount in step 4 could not have 467 * progressed far enough to unblock locks and access the fs. The 468 * control_mount() function waits for all recoveries to be complete 469 * for the latest lockspace generation before ever unblocking locks 470 * and returning. The mount in step 4 waits until the recovery in 471 * step 1 is done. 472 * 473 * - special case of first mounter: first node to mount the fs 474 * 475 * The first node to mount a gfs2 fs needs to check all the journals 476 * and recover any that need recovery before other nodes are allowed 477 * to mount the fs. (Others may begin mounting, but they must wait 478 * for the first mounter to be done before taking locks on the fs 479 * or accessing the fs.) This has two parts: 480 * 481 * 1. The mounted_lock tells a node it's the first to mount the fs. 482 * Each node holds the mounted_lock in PR while it's mounted. 483 * Each node tries to acquire the mounted_lock in EX when it mounts. 484 * If a node is granted the mounted_lock EX it means there are no 485 * other mounted nodes (no PR locks exist), and it is the first mounter. 486 * The mounted_lock is demoted to PR when first recovery is done, so 487 * others will fail to get an EX lock, but will get a PR lock. 488 * 489 * 2. The control_lock blocks others in control_mount() while the first 490 * mounter is doing first mount recovery of all journals. 491 * A mounting node needs to acquire control_lock in EX mode before 492 * it can proceed. The first mounter holds control_lock in EX while doing 493 * the first mount recovery, blocking mounts from other nodes, then demotes 494 * control_lock to NL when it's done (others_may_mount/first_done), 495 * allowing other nodes to continue mounting. 496 * 497 * first mounter: 498 * control_lock EX/NOQUEUE success 499 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters) 500 * set first=1 501 * do first mounter recovery 502 * mounted_lock EX->PR 503 * control_lock EX->NL, write lvb generation 504 * 505 * other mounter: 506 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry) 507 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR) 508 * mounted_lock PR/NOQUEUE success 509 * read lvb generation 510 * control_lock EX->NL 511 * set first=0 512 * 513 * - mount during recovery 514 * 515 * If a node mounts while others are doing recovery (not first mounter), 516 * the mounting node will get its initial recover_done() callback without 517 * having seen any previous failures/callbacks. 518 * 519 * It must wait for all recoveries preceding its mount to be finished 520 * before it unblocks locks. It does this by repeating the "other mounter" 521 * steps above until the lvb generation number is >= its mount generation 522 * number (from initial recover_done) and all lvb bits are clear. 523 * 524 * - control_lock lvb format 525 * 526 * 4 bytes generation number: the latest dlm lockspace generation number 527 * from recover_done callback. Indicates the jid bitmap has been updated 528 * to reflect all slot failures through that generation. 529 * 4 bytes unused. 530 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates 531 * that jid N needs recovery. 532 */ 533 534 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */ 535 536 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen, 537 char *lvb_bits) 538 { 539 __le32 gen; 540 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE); 541 memcpy(&gen, lvb_bits, sizeof(__le32)); 542 *lvb_gen = le32_to_cpu(gen); 543 } 544 545 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen, 546 char *lvb_bits) 547 { 548 __le32 gen; 549 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE); 550 gen = cpu_to_le32(lvb_gen); 551 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32)); 552 } 553 554 static int all_jid_bits_clear(char *lvb) 555 { 556 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0, 557 GDLM_LVB_SIZE - JID_BITMAP_OFFSET); 558 } 559 560 static void sync_wait_cb(void *arg) 561 { 562 struct lm_lockstruct *ls = arg; 563 complete(&ls->ls_sync_wait); 564 } 565 566 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name) 567 { 568 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 569 int error; 570 571 down_read(&ls->ls_sem); 572 error = -ENODEV; 573 if (likely(ls->ls_dlm != NULL)) 574 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls); 575 up_read(&ls->ls_sem); 576 if (error) { 577 fs_err(sdp, "%s lkid %x error %d\n", 578 name, lksb->sb_lkid, error); 579 return error; 580 } 581 582 wait_for_completion(&ls->ls_sync_wait); 583 584 if (lksb->sb_status != -DLM_EUNLOCK) { 585 fs_err(sdp, "%s lkid %x status %d\n", 586 name, lksb->sb_lkid, lksb->sb_status); 587 return -1; 588 } 589 return 0; 590 } 591 592 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags, 593 unsigned int num, struct dlm_lksb *lksb, char *name) 594 { 595 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 596 char strname[GDLM_STRNAME_BYTES]; 597 int error, status; 598 599 memset(strname, 0, GDLM_STRNAME_BYTES); 600 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num); 601 602 down_read(&ls->ls_sem); 603 error = -ENODEV; 604 if (likely(ls->ls_dlm != NULL)) { 605 error = dlm_lock(ls->ls_dlm, mode, lksb, flags, 606 strname, GDLM_STRNAME_BYTES - 1, 607 0, sync_wait_cb, ls, NULL); 608 } 609 up_read(&ls->ls_sem); 610 if (error) { 611 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n", 612 name, lksb->sb_lkid, flags, mode, error); 613 return error; 614 } 615 616 wait_for_completion(&ls->ls_sync_wait); 617 618 status = lksb->sb_status; 619 620 if (status && status != -EAGAIN) { 621 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n", 622 name, lksb->sb_lkid, flags, mode, status); 623 } 624 625 return status; 626 } 627 628 static int mounted_unlock(struct gfs2_sbd *sdp) 629 { 630 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 631 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock"); 632 } 633 634 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 635 { 636 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 637 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK, 638 &ls->ls_mounted_lksb, "mounted_lock"); 639 } 640 641 static int control_unlock(struct gfs2_sbd *sdp) 642 { 643 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 644 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock"); 645 } 646 647 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags) 648 { 649 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 650 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK, 651 &ls->ls_control_lksb, "control_lock"); 652 } 653 654 static void gfs2_control_func(struct work_struct *work) 655 { 656 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work); 657 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 658 uint32_t block_gen, start_gen, lvb_gen, flags; 659 int recover_set = 0; 660 int write_lvb = 0; 661 int recover_size; 662 int i, error; 663 664 spin_lock(&ls->ls_recover_spin); 665 /* 666 * No MOUNT_DONE means we're still mounting; control_mount() 667 * will set this flag, after which this thread will take over 668 * all further clearing of BLOCK_LOCKS. 669 * 670 * FIRST_MOUNT means this node is doing first mounter recovery, 671 * for which recovery control is handled by 672 * control_mount()/control_first_done(), not this thread. 673 */ 674 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 675 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 676 spin_unlock(&ls->ls_recover_spin); 677 return; 678 } 679 block_gen = ls->ls_recover_block; 680 start_gen = ls->ls_recover_start; 681 spin_unlock(&ls->ls_recover_spin); 682 683 /* 684 * Equal block_gen and start_gen implies we are between 685 * recover_prep and recover_done callbacks, which means 686 * dlm recovery is in progress and dlm locking is blocked. 687 * There's no point trying to do any work until recover_done. 688 */ 689 690 if (block_gen == start_gen) 691 return; 692 693 /* 694 * Propagate recover_submit[] and recover_result[] to lvb: 695 * dlm_recoverd adds to recover_submit[] jids needing recovery 696 * gfs2_recover adds to recover_result[] journal recovery results 697 * 698 * set lvb bit for jids in recover_submit[] if the lvb has not 699 * yet been updated for the generation of the failure 700 * 701 * clear lvb bit for jids in recover_result[] if the result of 702 * the journal recovery is SUCCESS 703 */ 704 705 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 706 if (error) { 707 fs_err(sdp, "control lock EX error %d\n", error); 708 return; 709 } 710 711 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 712 713 spin_lock(&ls->ls_recover_spin); 714 if (block_gen != ls->ls_recover_block || 715 start_gen != ls->ls_recover_start) { 716 fs_info(sdp, "recover generation %u block1 %u %u\n", 717 start_gen, block_gen, ls->ls_recover_block); 718 spin_unlock(&ls->ls_recover_spin); 719 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 720 return; 721 } 722 723 recover_size = ls->ls_recover_size; 724 725 if (lvb_gen <= start_gen) { 726 /* 727 * Clear lvb bits for jids we've successfully recovered. 728 * Because all nodes attempt to recover failed journals, 729 * a journal can be recovered multiple times successfully 730 * in succession. Only the first will really do recovery, 731 * the others find it clean, but still report a successful 732 * recovery. So, another node may have already recovered 733 * the jid and cleared the lvb bit for it. 734 */ 735 for (i = 0; i < recover_size; i++) { 736 if (ls->ls_recover_result[i] != LM_RD_SUCCESS) 737 continue; 738 739 ls->ls_recover_result[i] = 0; 740 741 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) 742 continue; 743 744 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 745 write_lvb = 1; 746 } 747 } 748 749 if (lvb_gen == start_gen) { 750 /* 751 * Failed slots before start_gen are already set in lvb. 752 */ 753 for (i = 0; i < recover_size; i++) { 754 if (!ls->ls_recover_submit[i]) 755 continue; 756 if (ls->ls_recover_submit[i] < lvb_gen) 757 ls->ls_recover_submit[i] = 0; 758 } 759 } else if (lvb_gen < start_gen) { 760 /* 761 * Failed slots before start_gen are not yet set in lvb. 762 */ 763 for (i = 0; i < recover_size; i++) { 764 if (!ls->ls_recover_submit[i]) 765 continue; 766 if (ls->ls_recover_submit[i] < start_gen) { 767 ls->ls_recover_submit[i] = 0; 768 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET); 769 } 770 } 771 /* even if there are no bits to set, we need to write the 772 latest generation to the lvb */ 773 write_lvb = 1; 774 } else { 775 /* 776 * we should be getting a recover_done() for lvb_gen soon 777 */ 778 } 779 spin_unlock(&ls->ls_recover_spin); 780 781 if (write_lvb) { 782 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 783 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK; 784 } else { 785 flags = DLM_LKF_CONVERT; 786 } 787 788 error = control_lock(sdp, DLM_LOCK_NL, flags); 789 if (error) { 790 fs_err(sdp, "control lock NL error %d\n", error); 791 return; 792 } 793 794 /* 795 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(), 796 * and clear a jid bit in the lvb if the recovery is a success. 797 * Eventually all journals will be recovered, all jid bits will 798 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS. 799 */ 800 801 for (i = 0; i < recover_size; i++) { 802 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) { 803 fs_info(sdp, "recover generation %u jid %d\n", 804 start_gen, i); 805 gfs2_recover_set(sdp, i); 806 recover_set++; 807 } 808 } 809 if (recover_set) 810 return; 811 812 /* 813 * No more jid bits set in lvb, all recovery is done, unblock locks 814 * (unless a new recover_prep callback has occured blocking locks 815 * again while working above) 816 */ 817 818 spin_lock(&ls->ls_recover_spin); 819 if (ls->ls_recover_block == block_gen && 820 ls->ls_recover_start == start_gen) { 821 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 822 spin_unlock(&ls->ls_recover_spin); 823 fs_info(sdp, "recover generation %u done\n", start_gen); 824 gfs2_glock_thaw(sdp); 825 } else { 826 fs_info(sdp, "recover generation %u block2 %u %u\n", 827 start_gen, block_gen, ls->ls_recover_block); 828 spin_unlock(&ls->ls_recover_spin); 829 } 830 } 831 832 static int control_mount(struct gfs2_sbd *sdp) 833 { 834 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 835 uint32_t start_gen, block_gen, mount_gen, lvb_gen; 836 int mounted_mode; 837 int retries = 0; 838 int error; 839 840 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb)); 841 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb)); 842 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE); 843 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb; 844 init_completion(&ls->ls_sync_wait); 845 846 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 847 848 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK); 849 if (error) { 850 fs_err(sdp, "control_mount control_lock NL error %d\n", error); 851 return error; 852 } 853 854 error = mounted_lock(sdp, DLM_LOCK_NL, 0); 855 if (error) { 856 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error); 857 control_unlock(sdp); 858 return error; 859 } 860 mounted_mode = DLM_LOCK_NL; 861 862 restart: 863 if (retries++ && signal_pending(current)) { 864 error = -EINTR; 865 goto fail; 866 } 867 868 /* 869 * We always start with both locks in NL. control_lock is 870 * demoted to NL below so we don't need to do it here. 871 */ 872 873 if (mounted_mode != DLM_LOCK_NL) { 874 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 875 if (error) 876 goto fail; 877 mounted_mode = DLM_LOCK_NL; 878 } 879 880 /* 881 * Other nodes need to do some work in dlm recovery and gfs2_control 882 * before the recover_done and control_lock will be ready for us below. 883 * A delay here is not required but often avoids having to retry. 884 */ 885 886 msleep_interruptible(500); 887 888 /* 889 * Acquire control_lock in EX and mounted_lock in either EX or PR. 890 * control_lock lvb keeps track of any pending journal recoveries. 891 * mounted_lock indicates if any other nodes have the fs mounted. 892 */ 893 894 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK); 895 if (error == -EAGAIN) { 896 goto restart; 897 } else if (error) { 898 fs_err(sdp, "control_mount control_lock EX error %d\n", error); 899 goto fail; 900 } 901 902 /** 903 * If we're a spectator, we don't want to take the lock in EX because 904 * we cannot do the first-mount responsibility it implies: recovery. 905 */ 906 if (sdp->sd_args.ar_spectator) 907 goto locks_done; 908 909 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 910 if (!error) { 911 mounted_mode = DLM_LOCK_EX; 912 goto locks_done; 913 } else if (error != -EAGAIN) { 914 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error); 915 goto fail; 916 } 917 918 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE); 919 if (!error) { 920 mounted_mode = DLM_LOCK_PR; 921 goto locks_done; 922 } else { 923 /* not even -EAGAIN should happen here */ 924 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error); 925 goto fail; 926 } 927 928 locks_done: 929 /* 930 * If we got both locks above in EX, then we're the first mounter. 931 * If not, then we need to wait for the control_lock lvb to be 932 * updated by other mounted nodes to reflect our mount generation. 933 * 934 * In simple first mounter cases, first mounter will see zero lvb_gen, 935 * but in cases where all existing nodes leave/fail before mounting 936 * nodes finish control_mount, then all nodes will be mounting and 937 * lvb_gen will be non-zero. 938 */ 939 940 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits); 941 942 if (lvb_gen == 0xFFFFFFFF) { 943 /* special value to force mount attempts to fail */ 944 fs_err(sdp, "control_mount control_lock disabled\n"); 945 error = -EINVAL; 946 goto fail; 947 } 948 949 if (mounted_mode == DLM_LOCK_EX) { 950 /* first mounter, keep both EX while doing first recovery */ 951 spin_lock(&ls->ls_recover_spin); 952 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 953 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 954 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 955 spin_unlock(&ls->ls_recover_spin); 956 fs_info(sdp, "first mounter control generation %u\n", lvb_gen); 957 return 0; 958 } 959 960 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT); 961 if (error) 962 goto fail; 963 964 /* 965 * We are not first mounter, now we need to wait for the control_lock 966 * lvb generation to be >= the generation from our first recover_done 967 * and all lvb bits to be clear (no pending journal recoveries.) 968 */ 969 970 if (!all_jid_bits_clear(ls->ls_lvb_bits)) { 971 /* journals need recovery, wait until all are clear */ 972 fs_info(sdp, "control_mount wait for journal recovery\n"); 973 goto restart; 974 } 975 976 spin_lock(&ls->ls_recover_spin); 977 block_gen = ls->ls_recover_block; 978 start_gen = ls->ls_recover_start; 979 mount_gen = ls->ls_recover_mount; 980 981 if (lvb_gen < mount_gen) { 982 /* wait for mounted nodes to update control_lock lvb to our 983 generation, which might include new recovery bits set */ 984 if (sdp->sd_args.ar_spectator) { 985 fs_info(sdp, "Recovery is required. Waiting for a " 986 "non-spectator to mount.\n"); 987 spin_unlock(&ls->ls_recover_spin); 988 msleep_interruptible(1000); 989 } else { 990 fs_info(sdp, "control_mount wait1 block %u start %u " 991 "mount %u lvb %u flags %lx\n", block_gen, 992 start_gen, mount_gen, lvb_gen, 993 ls->ls_recover_flags); 994 spin_unlock(&ls->ls_recover_spin); 995 } 996 goto restart; 997 } 998 999 if (lvb_gen != start_gen) { 1000 /* wait for mounted nodes to update control_lock lvb to the 1001 latest recovery generation */ 1002 fs_info(sdp, "control_mount wait2 block %u start %u mount %u " 1003 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 1004 lvb_gen, ls->ls_recover_flags); 1005 spin_unlock(&ls->ls_recover_spin); 1006 goto restart; 1007 } 1008 1009 if (block_gen == start_gen) { 1010 /* dlm recovery in progress, wait for it to finish */ 1011 fs_info(sdp, "control_mount wait3 block %u start %u mount %u " 1012 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen, 1013 lvb_gen, ls->ls_recover_flags); 1014 spin_unlock(&ls->ls_recover_spin); 1015 goto restart; 1016 } 1017 1018 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1019 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags); 1020 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1021 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1022 spin_unlock(&ls->ls_recover_spin); 1023 return 0; 1024 1025 fail: 1026 mounted_unlock(sdp); 1027 control_unlock(sdp); 1028 return error; 1029 } 1030 1031 static int control_first_done(struct gfs2_sbd *sdp) 1032 { 1033 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1034 uint32_t start_gen, block_gen; 1035 int error; 1036 1037 restart: 1038 spin_lock(&ls->ls_recover_spin); 1039 start_gen = ls->ls_recover_start; 1040 block_gen = ls->ls_recover_block; 1041 1042 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) || 1043 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1044 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1045 /* sanity check, should not happen */ 1046 fs_err(sdp, "control_first_done start %u block %u flags %lx\n", 1047 start_gen, block_gen, ls->ls_recover_flags); 1048 spin_unlock(&ls->ls_recover_spin); 1049 control_unlock(sdp); 1050 return -1; 1051 } 1052 1053 if (start_gen == block_gen) { 1054 /* 1055 * Wait for the end of a dlm recovery cycle to switch from 1056 * first mounter recovery. We can ignore any recover_slot 1057 * callbacks between the recover_prep and next recover_done 1058 * because we are still the first mounter and any failed nodes 1059 * have not fully mounted, so they don't need recovery. 1060 */ 1061 spin_unlock(&ls->ls_recover_spin); 1062 fs_info(sdp, "control_first_done wait gen %u\n", start_gen); 1063 1064 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY, 1065 TASK_UNINTERRUPTIBLE); 1066 goto restart; 1067 } 1068 1069 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1070 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags); 1071 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t)); 1072 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t)); 1073 spin_unlock(&ls->ls_recover_spin); 1074 1075 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE); 1076 control_lvb_write(ls, start_gen, ls->ls_lvb_bits); 1077 1078 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT); 1079 if (error) 1080 fs_err(sdp, "control_first_done mounted PR error %d\n", error); 1081 1082 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK); 1083 if (error) 1084 fs_err(sdp, "control_first_done control NL error %d\n", error); 1085 1086 return error; 1087 } 1088 1089 /* 1090 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC) 1091 * to accommodate the largest slot number. (NB dlm slot numbers start at 1, 1092 * gfs2 jids start at 0, so jid = slot - 1) 1093 */ 1094 1095 #define RECOVER_SIZE_INC 16 1096 1097 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots, 1098 int num_slots) 1099 { 1100 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1101 uint32_t *submit = NULL; 1102 uint32_t *result = NULL; 1103 uint32_t old_size, new_size; 1104 int i, max_jid; 1105 1106 if (!ls->ls_lvb_bits) { 1107 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS); 1108 if (!ls->ls_lvb_bits) 1109 return -ENOMEM; 1110 } 1111 1112 max_jid = 0; 1113 for (i = 0; i < num_slots; i++) { 1114 if (max_jid < slots[i].slot - 1) 1115 max_jid = slots[i].slot - 1; 1116 } 1117 1118 old_size = ls->ls_recover_size; 1119 new_size = old_size; 1120 while (new_size < max_jid + 1) 1121 new_size += RECOVER_SIZE_INC; 1122 if (new_size == old_size) 1123 return 0; 1124 1125 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1126 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS); 1127 if (!submit || !result) { 1128 kfree(submit); 1129 kfree(result); 1130 return -ENOMEM; 1131 } 1132 1133 spin_lock(&ls->ls_recover_spin); 1134 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t)); 1135 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t)); 1136 kfree(ls->ls_recover_submit); 1137 kfree(ls->ls_recover_result); 1138 ls->ls_recover_submit = submit; 1139 ls->ls_recover_result = result; 1140 ls->ls_recover_size = new_size; 1141 spin_unlock(&ls->ls_recover_spin); 1142 return 0; 1143 } 1144 1145 static void free_recover_size(struct lm_lockstruct *ls) 1146 { 1147 kfree(ls->ls_lvb_bits); 1148 kfree(ls->ls_recover_submit); 1149 kfree(ls->ls_recover_result); 1150 ls->ls_recover_submit = NULL; 1151 ls->ls_recover_result = NULL; 1152 ls->ls_recover_size = 0; 1153 ls->ls_lvb_bits = NULL; 1154 } 1155 1156 /* dlm calls before it does lock recovery */ 1157 1158 static void gdlm_recover_prep(void *arg) 1159 { 1160 struct gfs2_sbd *sdp = arg; 1161 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1162 1163 if (gfs2_withdrawn(sdp)) { 1164 fs_err(sdp, "recover_prep ignored due to withdraw.\n"); 1165 return; 1166 } 1167 spin_lock(&ls->ls_recover_spin); 1168 ls->ls_recover_block = ls->ls_recover_start; 1169 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1170 1171 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) || 1172 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1173 spin_unlock(&ls->ls_recover_spin); 1174 return; 1175 } 1176 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags); 1177 spin_unlock(&ls->ls_recover_spin); 1178 } 1179 1180 /* dlm calls after recover_prep has been completed on all lockspace members; 1181 identifies slot/jid of failed member */ 1182 1183 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot) 1184 { 1185 struct gfs2_sbd *sdp = arg; 1186 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1187 int jid = slot->slot - 1; 1188 1189 if (gfs2_withdrawn(sdp)) { 1190 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n", 1191 jid); 1192 return; 1193 } 1194 spin_lock(&ls->ls_recover_spin); 1195 if (ls->ls_recover_size < jid + 1) { 1196 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n", 1197 jid, ls->ls_recover_block, ls->ls_recover_size); 1198 spin_unlock(&ls->ls_recover_spin); 1199 return; 1200 } 1201 1202 if (ls->ls_recover_submit[jid]) { 1203 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n", 1204 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]); 1205 } 1206 ls->ls_recover_submit[jid] = ls->ls_recover_block; 1207 spin_unlock(&ls->ls_recover_spin); 1208 } 1209 1210 /* dlm calls after recover_slot and after it completes lock recovery */ 1211 1212 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots, 1213 int our_slot, uint32_t generation) 1214 { 1215 struct gfs2_sbd *sdp = arg; 1216 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1217 1218 if (gfs2_withdrawn(sdp)) { 1219 fs_err(sdp, "recover_done ignored due to withdraw.\n"); 1220 return; 1221 } 1222 /* ensure the ls jid arrays are large enough */ 1223 set_recover_size(sdp, slots, num_slots); 1224 1225 spin_lock(&ls->ls_recover_spin); 1226 ls->ls_recover_start = generation; 1227 1228 if (!ls->ls_recover_mount) { 1229 ls->ls_recover_mount = generation; 1230 ls->ls_jid = our_slot - 1; 1231 } 1232 1233 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1234 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0); 1235 1236 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags); 1237 smp_mb__after_atomic(); 1238 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY); 1239 spin_unlock(&ls->ls_recover_spin); 1240 } 1241 1242 /* gfs2_recover thread has a journal recovery result */ 1243 1244 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid, 1245 unsigned int result) 1246 { 1247 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1248 1249 if (gfs2_withdrawn(sdp)) { 1250 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n", 1251 jid); 1252 return; 1253 } 1254 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1255 return; 1256 1257 /* don't care about the recovery of own journal during mount */ 1258 if (jid == ls->ls_jid) 1259 return; 1260 1261 spin_lock(&ls->ls_recover_spin); 1262 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) { 1263 spin_unlock(&ls->ls_recover_spin); 1264 return; 1265 } 1266 if (ls->ls_recover_size < jid + 1) { 1267 fs_err(sdp, "recovery_result jid %d short size %d\n", 1268 jid, ls->ls_recover_size); 1269 spin_unlock(&ls->ls_recover_spin); 1270 return; 1271 } 1272 1273 fs_info(sdp, "recover jid %d result %s\n", jid, 1274 result == LM_RD_GAVEUP ? "busy" : "success"); 1275 1276 ls->ls_recover_result[jid] = result; 1277 1278 /* GAVEUP means another node is recovering the journal; delay our 1279 next attempt to recover it, to give the other node a chance to 1280 finish before trying again */ 1281 1282 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) 1283 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 1284 result == LM_RD_GAVEUP ? HZ : 0); 1285 spin_unlock(&ls->ls_recover_spin); 1286 } 1287 1288 static const struct dlm_lockspace_ops gdlm_lockspace_ops = { 1289 .recover_prep = gdlm_recover_prep, 1290 .recover_slot = gdlm_recover_slot, 1291 .recover_done = gdlm_recover_done, 1292 }; 1293 1294 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table) 1295 { 1296 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1297 char cluster[GFS2_LOCKNAME_LEN]; 1298 const char *fsname; 1299 uint32_t flags; 1300 int error, ops_result; 1301 1302 /* 1303 * initialize everything 1304 */ 1305 1306 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func); 1307 ls->ls_dlm = NULL; 1308 spin_lock_init(&ls->ls_recover_spin); 1309 ls->ls_recover_flags = 0; 1310 ls->ls_recover_mount = 0; 1311 ls->ls_recover_start = 0; 1312 ls->ls_recover_block = 0; 1313 ls->ls_recover_size = 0; 1314 ls->ls_recover_submit = NULL; 1315 ls->ls_recover_result = NULL; 1316 ls->ls_lvb_bits = NULL; 1317 1318 error = set_recover_size(sdp, NULL, 0); 1319 if (error) 1320 goto fail; 1321 1322 /* 1323 * prepare dlm_new_lockspace args 1324 */ 1325 1326 fsname = strchr(table, ':'); 1327 if (!fsname) { 1328 fs_info(sdp, "no fsname found\n"); 1329 error = -EINVAL; 1330 goto fail_free; 1331 } 1332 memset(cluster, 0, sizeof(cluster)); 1333 memcpy(cluster, table, strlen(table) - strlen(fsname)); 1334 fsname++; 1335 1336 flags = DLM_LSFL_NEWEXCL; 1337 1338 /* 1339 * create/join lockspace 1340 */ 1341 1342 init_rwsem(&ls->ls_sem); 1343 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE, 1344 &gdlm_lockspace_ops, sdp, &ops_result, 1345 &ls->ls_dlm); 1346 if (error) { 1347 fs_err(sdp, "dlm_new_lockspace error %d\n", error); 1348 goto fail_free; 1349 } 1350 1351 if (ops_result < 0) { 1352 /* 1353 * dlm does not support ops callbacks, 1354 * old dlm_controld/gfs_controld are used, try without ops. 1355 */ 1356 fs_info(sdp, "dlm lockspace ops not used\n"); 1357 free_recover_size(ls); 1358 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags); 1359 return 0; 1360 } 1361 1362 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) { 1363 fs_err(sdp, "dlm lockspace ops disallow jid preset\n"); 1364 error = -EINVAL; 1365 goto fail_release; 1366 } 1367 1368 /* 1369 * control_mount() uses control_lock to determine first mounter, 1370 * and for later mounts, waits for any recoveries to be cleared. 1371 */ 1372 1373 error = control_mount(sdp); 1374 if (error) { 1375 fs_err(sdp, "mount control error %d\n", error); 1376 goto fail_release; 1377 } 1378 1379 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags); 1380 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags); 1381 smp_mb__after_atomic(); 1382 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID); 1383 return 0; 1384 1385 fail_release: 1386 dlm_release_lockspace(ls->ls_dlm, DLM_RELEASE_NORMAL); 1387 fail_free: 1388 free_recover_size(ls); 1389 fail: 1390 return error; 1391 } 1392 1393 static void gdlm_first_done(struct gfs2_sbd *sdp) 1394 { 1395 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1396 int error; 1397 1398 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1399 return; 1400 1401 error = control_first_done(sdp); 1402 if (error) 1403 fs_err(sdp, "mount first_done error %d\n", error); 1404 } 1405 1406 /* 1407 * gdlm_unmount - release our lockspace 1408 * @sdp: the superblock 1409 * @clean: Indicates whether or not the remaining nodes in the cluster should 1410 * perform recovery. Recovery is necessary when a node withdraws and 1411 * its journal remains dirty. Recovery isn't necessary when a node 1412 * cleanly unmounts a filesystem. 1413 */ 1414 static void gdlm_unmount(struct gfs2_sbd *sdp, bool clean) 1415 { 1416 struct lm_lockstruct *ls = &sdp->sd_lockstruct; 1417 1418 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags)) 1419 goto release; 1420 1421 /* wait for gfs2_control_wq to be done with this mount */ 1422 1423 spin_lock(&ls->ls_recover_spin); 1424 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags); 1425 spin_unlock(&ls->ls_recover_spin); 1426 flush_delayed_work(&sdp->sd_control_work); 1427 1428 /* mounted_lock and control_lock will be purged in dlm recovery */ 1429 release: 1430 down_write(&ls->ls_sem); 1431 if (ls->ls_dlm) { 1432 dlm_release_lockspace(ls->ls_dlm, 1433 clean ? DLM_RELEASE_NORMAL : 1434 DLM_RELEASE_RECOVER); 1435 ls->ls_dlm = NULL; 1436 } 1437 up_write(&ls->ls_sem); 1438 1439 free_recover_size(ls); 1440 } 1441 1442 static const match_table_t dlm_tokens = { 1443 { Opt_jid, "jid=%d"}, 1444 { Opt_id, "id=%d"}, 1445 { Opt_first, "first=%d"}, 1446 { Opt_nodir, "nodir=%d"}, 1447 { Opt_err, NULL }, 1448 }; 1449 1450 const struct lm_lockops gfs2_dlm_ops = { 1451 .lm_proto_name = "lock_dlm", 1452 .lm_mount = gdlm_mount, 1453 .lm_first_done = gdlm_first_done, 1454 .lm_recovery_result = gdlm_recovery_result, 1455 .lm_unmount = gdlm_unmount, 1456 .lm_put_lock = gdlm_put_lock, 1457 .lm_lock = gdlm_lock, 1458 .lm_cancel = gdlm_cancel, 1459 .lm_tokens = &dlm_tokens, 1460 }; 1461 1462