xref: /linux/fs/gfs2/lock_dlm.c (revision a769648f464c9f453b3dc5c2bb8559b28c5d78a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
4  * Copyright 2004-2011 Red Hat, Inc.
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24 
25 /**
26  * gfs2_update_stats - Update time based stats
27  * @s: The stats to update (local or global)
28  * @index: The index inside @s
29  * @sample: New data to include
30  */
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 				     s64 sample)
33 {
34 	/*
35 	 * @delta is the difference between the current rtt sample and the
36 	 * running average srtt. We add 1/8 of that to the srtt in order to
37 	 * update the current srtt estimate. The variance estimate is a bit
38 	 * more complicated. We subtract the current variance estimate from
39 	 * the abs value of the @delta and add 1/4 of that to the running
40 	 * total.  That's equivalent to 3/4 of the current variance
41 	 * estimate plus 1/4 of the abs of @delta.
42 	 *
43 	 * Note that the index points at the array entry containing the
44 	 * smoothed mean value, and the variance is always in the following
45 	 * entry
46 	 *
47 	 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 	 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 	 * case, they are not scaled fixed point.
50 	 */
51 
52 	s64 delta = sample - s->stats[index];
53 	s->stats[index] += (delta >> 3);
54 	index++;
55 	s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57 
58 /**
59  * gfs2_update_reply_times - Update locking statistics
60  * @gl: The glock to update
61  * @blocking: The operation may have been blocking
62  *
63  * This assumes that gl->gl_dstamp has been set earlier.
64  *
65  * The rtt (lock round trip time) is an estimate of the time
66  * taken to perform a dlm lock request. We update it on each
67  * reply from the dlm.
68  *
69  * The blocking flag is set on the glock for all dlm requests
70  * which may potentially block due to lock requests from other nodes.
71  * DLM requests where the current lock state is exclusive, the
72  * requested state is null (or unlocked) or where the TRY or
73  * TRY_1CB flags are set are classified as non-blocking. All
74  * other DLM requests are counted as (potentially) blocking.
75  */
gfs2_update_reply_times(struct gfs2_glock * gl,bool blocking)76 static inline void gfs2_update_reply_times(struct gfs2_glock *gl,
77 					   bool blocking)
78 {
79 	struct gfs2_pcpu_lkstats *lks;
80 	const unsigned gltype = gl->gl_name.ln_type;
81 	unsigned index = blocking ? GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
82 	s64 rtt;
83 
84 	preempt_disable();
85 	rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
86 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
87 	gfs2_update_stats(&gl->gl_stats, index, rtt);		/* Local */
88 	gfs2_update_stats(&lks->lkstats[gltype], index, rtt);	/* Global */
89 	preempt_enable();
90 
91 	trace_gfs2_glock_lock_time(gl, rtt);
92 }
93 
94 /**
95  * gfs2_update_request_times - Update locking statistics
96  * @gl: The glock to update
97  *
98  * The irt (lock inter-request times) measures the average time
99  * between requests to the dlm. It is updated immediately before
100  * each dlm call.
101  */
102 
gfs2_update_request_times(struct gfs2_glock * gl)103 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
104 {
105 	struct gfs2_pcpu_lkstats *lks;
106 	const unsigned gltype = gl->gl_name.ln_type;
107 	ktime_t dstamp;
108 	s64 irt;
109 
110 	preempt_disable();
111 	dstamp = gl->gl_dstamp;
112 	gl->gl_dstamp = ktime_get_real();
113 	irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
114 	lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
115 	gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt);		/* Local */
116 	gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt);	/* Global */
117 	preempt_enable();
118 }
119 
gdlm_ast(void * arg)120 static void gdlm_ast(void *arg)
121 {
122 	struct gfs2_glock *gl = arg;
123 	bool blocking;
124 	unsigned ret;
125 
126 	blocking = test_bit(GLF_BLOCKING, &gl->gl_flags);
127 	gfs2_update_reply_times(gl, blocking);
128 	clear_bit(GLF_BLOCKING, &gl->gl_flags);
129 
130 	/* If the glock is dead, we only react to a dlm_unlock() reply. */
131 	if (__lockref_is_dead(&gl->gl_lockref) &&
132 	    gl->gl_lksb.sb_status != -DLM_EUNLOCK)
133 		return;
134 
135 	BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
136 
137 	if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
138 		memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
139 
140 	switch (gl->gl_lksb.sb_status) {
141 	case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
142 		if (gl->gl_ops->go_unlocked)
143 			gl->gl_ops->go_unlocked(gl);
144 		gfs2_glock_free(gl);
145 		return;
146 	case -DLM_ECANCEL: /* Cancel while getting lock */
147 		ret = LM_OUT_CANCELED;
148 		goto out;
149 	case -EAGAIN: /* Try lock fails */
150 		ret = LM_OUT_TRY_AGAIN;
151 		goto out;
152 	case -EDEADLK: /* Deadlock detected */
153 		ret = LM_OUT_DEADLOCK;
154 		goto out;
155 	case -ETIMEDOUT: /* Canceled due to timeout */
156 		ret = LM_OUT_ERROR;
157 		goto out;
158 	case 0: /* Success */
159 		break;
160 	default: /* Something unexpected */
161 		BUG();
162 	}
163 
164 	ret = gl->gl_req;
165 
166 	/*
167 	 * The GLF_INITIAL flag is initially set for new glocks.  Upon the
168 	 * first successful new (non-conversion) request, we clear this flag to
169 	 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
170 	 * identifier to use for identifying it.
171 	 *
172 	 * Any failed initial requests do not create a DLM lock, so we ignore
173 	 * the gl->gl_lksb.sb_lkid values that come with such requests.
174 	 */
175 
176 	clear_bit(GLF_INITIAL, &gl->gl_flags);
177 	gfs2_glock_complete(gl, ret);
178 	return;
179 out:
180 	if (test_bit(GLF_INITIAL, &gl->gl_flags))
181 		gl->gl_lksb.sb_lkid = 0;
182 	gfs2_glock_complete(gl, ret);
183 }
184 
gdlm_bast(void * arg,int mode)185 static void gdlm_bast(void *arg, int mode)
186 {
187 	struct gfs2_glock *gl = arg;
188 
189 	if (__lockref_is_dead(&gl->gl_lockref))
190 		return;
191 
192 	switch (mode) {
193 	case DLM_LOCK_EX:
194 		gfs2_glock_cb(gl, LM_ST_UNLOCKED);
195 		break;
196 	case DLM_LOCK_CW:
197 		gfs2_glock_cb(gl, LM_ST_DEFERRED);
198 		break;
199 	case DLM_LOCK_PR:
200 		gfs2_glock_cb(gl, LM_ST_SHARED);
201 		break;
202 	default:
203 		fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
204 		BUG();
205 	}
206 }
207 
208 /* convert gfs lock-state to dlm lock-mode */
209 
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)210 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
211 {
212 	switch (lmstate) {
213 	case LM_ST_UNLOCKED:
214 		return DLM_LOCK_NL;
215 	case LM_ST_EXCLUSIVE:
216 		return DLM_LOCK_EX;
217 	case LM_ST_DEFERRED:
218 		return DLM_LOCK_CW;
219 	case LM_ST_SHARED:
220 		return DLM_LOCK_PR;
221 	}
222 	fs_err(sdp, "unknown LM state %d\n", lmstate);
223 	BUG();
224 	return -1;
225 }
226 
227 /* Taken from fs/dlm/lock.c. */
228 
middle_conversion(int cur,int req)229 static bool middle_conversion(int cur, int req)
230 {
231 	return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) ||
232 	       (cur == DLM_LOCK_CW && req == DLM_LOCK_PR);
233 }
234 
down_conversion(int cur,int req)235 static bool down_conversion(int cur, int req)
236 {
237 	return !middle_conversion(cur, req) && req < cur;
238 }
239 
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req,bool blocking)240 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
241 		      const int req, bool blocking)
242 {
243 	u32 lkf = 0;
244 
245 	if (gl->gl_lksb.sb_lvbptr)
246 		lkf |= DLM_LKF_VALBLK;
247 
248 	if (gfs_flags & LM_FLAG_TRY)
249 		lkf |= DLM_LKF_NOQUEUE;
250 
251 	if (gfs_flags & LM_FLAG_TRY_1CB) {
252 		lkf |= DLM_LKF_NOQUEUE;
253 		lkf |= DLM_LKF_NOQUEUEBAST;
254 	}
255 
256 	if (!test_bit(GLF_INITIAL, &gl->gl_flags)) {
257 		lkf |= DLM_LKF_CONVERT;
258 
259 		/*
260 		 * The DLM_LKF_QUECVT flag needs to be set for "first come,
261 		 * first served" semantics, but it must only be set for
262 		 * "upward" lock conversions or else DLM will reject the
263 		 * request as invalid.
264 		 */
265 		if (blocking)
266 			lkf |= DLM_LKF_QUECVT;
267 	}
268 
269 	return lkf;
270 }
271 
gfs2_reverse_hex(char * c,u64 value)272 static void gfs2_reverse_hex(char *c, u64 value)
273 {
274 	*c = '0';
275 	while (value) {
276 		*c-- = hex_asc[value & 0x0f];
277 		value >>= 4;
278 	}
279 }
280 
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)281 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
282 		     unsigned int flags)
283 {
284 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
285 	bool blocking;
286 	int cur, req;
287 	u32 lkf;
288 	char strname[GDLM_STRNAME_BYTES] = "";
289 	int error;
290 
291 	gl->gl_req = req_state;
292 	cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state);
293 	req = make_mode(gl->gl_name.ln_sbd, req_state);
294 	blocking = !down_conversion(cur, req) &&
295 		   !(flags & (LM_FLAG_TRY|LM_FLAG_TRY_1CB));
296 	lkf = make_flags(gl, flags, req, blocking);
297 	if (blocking)
298 		set_bit(GLF_BLOCKING, &gl->gl_flags);
299 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
300 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
301 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
302 		memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
303 		strname[GDLM_STRNAME_BYTES - 1] = '\0';
304 		gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
305 		gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
306 		gl->gl_dstamp = ktime_get_real();
307 	} else {
308 		gfs2_update_request_times(gl);
309 	}
310 	/*
311 	 * Submit the actual lock request.
312 	 */
313 
314 again:
315 	down_read(&ls->ls_sem);
316 	error = -ENODEV;
317 	if (likely(ls->ls_dlm != NULL)) {
318 		error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
319 				GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
320 	}
321 	up_read(&ls->ls_sem);
322 	if (error == -EBUSY) {
323 		msleep(20);
324 		goto again;
325 	}
326 	return error;
327 }
328 
gdlm_put_lock(struct gfs2_glock * gl)329 static void gdlm_put_lock(struct gfs2_glock *gl)
330 {
331 	struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
332 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
333 	uint32_t flags = 0;
334 	int error;
335 
336 	BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
337 
338 	if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
339 		gfs2_glock_free(gl);
340 		return;
341 	}
342 
343 	gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
344 	gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
345 	gfs2_update_request_times(gl);
346 
347 	/*
348 	 * When the lockspace is released, all remaining glocks will be
349 	 * unlocked automatically.  This is more efficient than unlocking them
350 	 * individually, but when the lock is held in DLM_LOCK_EX or
351 	 * DLM_LOCK_PW mode, the lock value block (LVB) would be lost.
352 	 */
353 
354 	if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
355 	    (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
356 		gfs2_glock_free_later(gl);
357 		return;
358 	}
359 
360 	if (gl->gl_lksb.sb_lvbptr)
361 		flags |= DLM_LKF_VALBLK;
362 
363 again:
364 	down_read(&ls->ls_sem);
365 	error = -ENODEV;
366 	if (likely(ls->ls_dlm != NULL)) {
367 		error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, flags,
368 				   NULL, gl);
369 	}
370 	up_read(&ls->ls_sem);
371 	if (error == -EBUSY) {
372 		msleep(20);
373 		goto again;
374 	}
375 
376 	if (error == -ENODEV) {
377 		gfs2_glock_free(gl);
378 		return;
379 	}
380 
381 	if (error) {
382 		fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
383 		       gl->gl_name.ln_type,
384 		       (unsigned long long)gl->gl_name.ln_number, error);
385 	}
386 }
387 
gdlm_cancel(struct gfs2_glock * gl)388 static void gdlm_cancel(struct gfs2_glock *gl)
389 {
390 	struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
391 
392 	down_read(&ls->ls_sem);
393 	if (likely(ls->ls_dlm != NULL)) {
394 		dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
395 	}
396 	up_read(&ls->ls_sem);
397 }
398 
399 /*
400  * dlm/gfs2 recovery coordination using dlm_recover callbacks
401  *
402  *  0. gfs2 checks for another cluster node withdraw, needing journal replay
403  *  1. dlm_controld sees lockspace members change
404  *  2. dlm_controld blocks dlm-kernel locking activity
405  *  3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
406  *  4. dlm_controld starts and finishes its own user level recovery
407  *  5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
408  *  6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
409  *  7. dlm_recoverd does its own lock recovery
410  *  8. dlm_recoverd unblocks dlm-kernel locking activity
411  *  9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
412  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
413  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
414  * 12. gfs2_recover dequeues and recovers journals of failed nodes
415  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
416  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
417  * 15. gfs2_control unblocks normal locking when all journals are recovered
418  *
419  * - failures during recovery
420  *
421  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
422  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
423  * recovering for a prior failure.  gfs2_control needs a way to detect
424  * this so it can leave BLOCK_LOCKS set in step 15.  This is managed using
425  * the recover_block and recover_start values.
426  *
427  * recover_done() provides a new lockspace generation number each time it
428  * is called (step 9).  This generation number is saved as recover_start.
429  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
430  * recover_block = recover_start.  So, while recover_block is equal to
431  * recover_start, BLOCK_LOCKS should remain set.  (recover_spin must
432  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
433  *
434  * - more specific gfs2 steps in sequence above
435  *
436  *  3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
437  *  6. recover_slot records any failed jids (maybe none)
438  *  9. recover_done sets recover_start = new generation number
439  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
440  * 12. gfs2_recover does journal recoveries for failed jids identified above
441  * 14. gfs2_control clears control_lock lvb bits for recovered jids
442  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
443  *     again) then do nothing, otherwise if recover_start > recover_block
444  *     then clear BLOCK_LOCKS.
445  *
446  * - parallel recovery steps across all nodes
447  *
448  * All nodes attempt to update the control_lock lvb with the new generation
449  * number and jid bits, but only the first to get the control_lock EX will
450  * do so; others will see that it's already done (lvb already contains new
451  * generation number.)
452  *
453  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
454  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
455  * . One node gets control_lock first and writes the lvb, others see it's done
456  * . All nodes attempt to recover jids for which they see control_lock bits set
457  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
458  * . All nodes will eventually see all lvb bits clear and unblock locks
459  *
460  * - is there a problem with clearing an lvb bit that should be set
461  *   and missing a journal recovery?
462  *
463  * 1. jid fails
464  * 2. lvb bit set for step 1
465  * 3. jid recovered for step 1
466  * 4. jid taken again (new mount)
467  * 5. jid fails (for step 4)
468  * 6. lvb bit set for step 5 (will already be set)
469  * 7. lvb bit cleared for step 3
470  *
471  * This is not a problem because the failure in step 5 does not
472  * require recovery, because the mount in step 4 could not have
473  * progressed far enough to unblock locks and access the fs.  The
474  * control_mount() function waits for all recoveries to be complete
475  * for the latest lockspace generation before ever unblocking locks
476  * and returning.  The mount in step 4 waits until the recovery in
477  * step 1 is done.
478  *
479  * - special case of first mounter: first node to mount the fs
480  *
481  * The first node to mount a gfs2 fs needs to check all the journals
482  * and recover any that need recovery before other nodes are allowed
483  * to mount the fs.  (Others may begin mounting, but they must wait
484  * for the first mounter to be done before taking locks on the fs
485  * or accessing the fs.)  This has two parts:
486  *
487  * 1. The mounted_lock tells a node it's the first to mount the fs.
488  * Each node holds the mounted_lock in PR while it's mounted.
489  * Each node tries to acquire the mounted_lock in EX when it mounts.
490  * If a node is granted the mounted_lock EX it means there are no
491  * other mounted nodes (no PR locks exist), and it is the first mounter.
492  * The mounted_lock is demoted to PR when first recovery is done, so
493  * others will fail to get an EX lock, but will get a PR lock.
494  *
495  * 2. The control_lock blocks others in control_mount() while the first
496  * mounter is doing first mount recovery of all journals.
497  * A mounting node needs to acquire control_lock in EX mode before
498  * it can proceed.  The first mounter holds control_lock in EX while doing
499  * the first mount recovery, blocking mounts from other nodes, then demotes
500  * control_lock to NL when it's done (others_may_mount/first_done),
501  * allowing other nodes to continue mounting.
502  *
503  * first mounter:
504  * control_lock EX/NOQUEUE success
505  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
506  * set first=1
507  * do first mounter recovery
508  * mounted_lock EX->PR
509  * control_lock EX->NL, write lvb generation
510  *
511  * other mounter:
512  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
513  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
514  * mounted_lock PR/NOQUEUE success
515  * read lvb generation
516  * control_lock EX->NL
517  * set first=0
518  *
519  * - mount during recovery
520  *
521  * If a node mounts while others are doing recovery (not first mounter),
522  * the mounting node will get its initial recover_done() callback without
523  * having seen any previous failures/callbacks.
524  *
525  * It must wait for all recoveries preceding its mount to be finished
526  * before it unblocks locks.  It does this by repeating the "other mounter"
527  * steps above until the lvb generation number is >= its mount generation
528  * number (from initial recover_done) and all lvb bits are clear.
529  *
530  * - control_lock lvb format
531  *
532  * 4 bytes generation number: the latest dlm lockspace generation number
533  * from recover_done callback.  Indicates the jid bitmap has been updated
534  * to reflect all slot failures through that generation.
535  * 4 bytes unused.
536  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
537  * that jid N needs recovery.
538  */
539 
540 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
541 
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)542 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
543 			     char *lvb_bits)
544 {
545 	__le32 gen;
546 	memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
547 	memcpy(&gen, lvb_bits, sizeof(__le32));
548 	*lvb_gen = le32_to_cpu(gen);
549 }
550 
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)551 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
552 			      char *lvb_bits)
553 {
554 	__le32 gen;
555 	memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
556 	gen = cpu_to_le32(lvb_gen);
557 	memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
558 }
559 
all_jid_bits_clear(char * lvb)560 static int all_jid_bits_clear(char *lvb)
561 {
562 	return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
563 			GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
564 }
565 
sync_wait_cb(void * arg)566 static void sync_wait_cb(void *arg)
567 {
568 	struct lm_lockstruct *ls = arg;
569 	complete(&ls->ls_sync_wait);
570 }
571 
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)572 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
573 {
574 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
575 	int error;
576 
577 	down_read(&ls->ls_sem);
578 	error = -ENODEV;
579 	if (likely(ls->ls_dlm != NULL))
580 		error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
581 	up_read(&ls->ls_sem);
582 	if (error) {
583 		fs_err(sdp, "%s lkid %x error %d\n",
584 		       name, lksb->sb_lkid, error);
585 		return error;
586 	}
587 
588 	wait_for_completion(&ls->ls_sync_wait);
589 
590 	if (lksb->sb_status != -DLM_EUNLOCK) {
591 		fs_err(sdp, "%s lkid %x status %d\n",
592 		       name, lksb->sb_lkid, lksb->sb_status);
593 		return -1;
594 	}
595 	return 0;
596 }
597 
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)598 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
599 		     unsigned int num, struct dlm_lksb *lksb, char *name)
600 {
601 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
602 	char strname[GDLM_STRNAME_BYTES];
603 	int error, status;
604 
605 	memset(strname, 0, GDLM_STRNAME_BYTES);
606 	snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
607 
608 	down_read(&ls->ls_sem);
609 	error = -ENODEV;
610 	if (likely(ls->ls_dlm != NULL)) {
611 		error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
612 				 strname, GDLM_STRNAME_BYTES - 1,
613 				 0, sync_wait_cb, ls, NULL);
614 	}
615 	up_read(&ls->ls_sem);
616 	if (error) {
617 		fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
618 		       name, lksb->sb_lkid, flags, mode, error);
619 		return error;
620 	}
621 
622 	wait_for_completion(&ls->ls_sync_wait);
623 
624 	status = lksb->sb_status;
625 
626 	if (status && status != -EAGAIN) {
627 		fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
628 		       name, lksb->sb_lkid, flags, mode, status);
629 	}
630 
631 	return status;
632 }
633 
mounted_unlock(struct gfs2_sbd * sdp)634 static int mounted_unlock(struct gfs2_sbd *sdp)
635 {
636 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
637 	return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
638 }
639 
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)640 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
641 {
642 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
643 	return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
644 			 &ls->ls_mounted_lksb, "mounted_lock");
645 }
646 
control_unlock(struct gfs2_sbd * sdp)647 static int control_unlock(struct gfs2_sbd *sdp)
648 {
649 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
650 	return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
651 }
652 
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)653 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
654 {
655 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
656 	return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
657 			 &ls->ls_control_lksb, "control_lock");
658 }
659 
660 /**
661  * remote_withdraw - react to a node withdrawing from the file system
662  * @sdp: The superblock
663  */
remote_withdraw(struct gfs2_sbd * sdp)664 static void remote_withdraw(struct gfs2_sbd *sdp)
665 {
666 	struct gfs2_jdesc *jd;
667 	int ret = 0, count = 0;
668 
669 	list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
670 		if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
671 			continue;
672 		ret = gfs2_recover_journal(jd, true);
673 		if (ret)
674 			break;
675 		count++;
676 	}
677 
678 	/* Now drop the additional reference we acquired */
679 	fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
680 }
681 
gfs2_control_func(struct work_struct * work)682 static void gfs2_control_func(struct work_struct *work)
683 {
684 	struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
685 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
686 	uint32_t block_gen, start_gen, lvb_gen, flags;
687 	int recover_set = 0;
688 	int write_lvb = 0;
689 	int recover_size;
690 	int i, error;
691 
692 	/* First check for other nodes that may have done a withdraw. */
693 	if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
694 		remote_withdraw(sdp);
695 		clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
696 		return;
697 	}
698 
699 	spin_lock(&ls->ls_recover_spin);
700 	/*
701 	 * No MOUNT_DONE means we're still mounting; control_mount()
702 	 * will set this flag, after which this thread will take over
703 	 * all further clearing of BLOCK_LOCKS.
704 	 *
705 	 * FIRST_MOUNT means this node is doing first mounter recovery,
706 	 * for which recovery control is handled by
707 	 * control_mount()/control_first_done(), not this thread.
708 	 */
709 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
710 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
711 		spin_unlock(&ls->ls_recover_spin);
712 		return;
713 	}
714 	block_gen = ls->ls_recover_block;
715 	start_gen = ls->ls_recover_start;
716 	spin_unlock(&ls->ls_recover_spin);
717 
718 	/*
719 	 * Equal block_gen and start_gen implies we are between
720 	 * recover_prep and recover_done callbacks, which means
721 	 * dlm recovery is in progress and dlm locking is blocked.
722 	 * There's no point trying to do any work until recover_done.
723 	 */
724 
725 	if (block_gen == start_gen)
726 		return;
727 
728 	/*
729 	 * Propagate recover_submit[] and recover_result[] to lvb:
730 	 * dlm_recoverd adds to recover_submit[] jids needing recovery
731 	 * gfs2_recover adds to recover_result[] journal recovery results
732 	 *
733 	 * set lvb bit for jids in recover_submit[] if the lvb has not
734 	 * yet been updated for the generation of the failure
735 	 *
736 	 * clear lvb bit for jids in recover_result[] if the result of
737 	 * the journal recovery is SUCCESS
738 	 */
739 
740 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
741 	if (error) {
742 		fs_err(sdp, "control lock EX error %d\n", error);
743 		return;
744 	}
745 
746 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
747 
748 	spin_lock(&ls->ls_recover_spin);
749 	if (block_gen != ls->ls_recover_block ||
750 	    start_gen != ls->ls_recover_start) {
751 		fs_info(sdp, "recover generation %u block1 %u %u\n",
752 			start_gen, block_gen, ls->ls_recover_block);
753 		spin_unlock(&ls->ls_recover_spin);
754 		control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
755 		return;
756 	}
757 
758 	recover_size = ls->ls_recover_size;
759 
760 	if (lvb_gen <= start_gen) {
761 		/*
762 		 * Clear lvb bits for jids we've successfully recovered.
763 		 * Because all nodes attempt to recover failed journals,
764 		 * a journal can be recovered multiple times successfully
765 		 * in succession.  Only the first will really do recovery,
766 		 * the others find it clean, but still report a successful
767 		 * recovery.  So, another node may have already recovered
768 		 * the jid and cleared the lvb bit for it.
769 		 */
770 		for (i = 0; i < recover_size; i++) {
771 			if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
772 				continue;
773 
774 			ls->ls_recover_result[i] = 0;
775 
776 			if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
777 				continue;
778 
779 			__clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
780 			write_lvb = 1;
781 		}
782 	}
783 
784 	if (lvb_gen == start_gen) {
785 		/*
786 		 * Failed slots before start_gen are already set in lvb.
787 		 */
788 		for (i = 0; i < recover_size; i++) {
789 			if (!ls->ls_recover_submit[i])
790 				continue;
791 			if (ls->ls_recover_submit[i] < lvb_gen)
792 				ls->ls_recover_submit[i] = 0;
793 		}
794 	} else if (lvb_gen < start_gen) {
795 		/*
796 		 * Failed slots before start_gen are not yet set in lvb.
797 		 */
798 		for (i = 0; i < recover_size; i++) {
799 			if (!ls->ls_recover_submit[i])
800 				continue;
801 			if (ls->ls_recover_submit[i] < start_gen) {
802 				ls->ls_recover_submit[i] = 0;
803 				__set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
804 			}
805 		}
806 		/* even if there are no bits to set, we need to write the
807 		   latest generation to the lvb */
808 		write_lvb = 1;
809 	} else {
810 		/*
811 		 * we should be getting a recover_done() for lvb_gen soon
812 		 */
813 	}
814 	spin_unlock(&ls->ls_recover_spin);
815 
816 	if (write_lvb) {
817 		control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
818 		flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
819 	} else {
820 		flags = DLM_LKF_CONVERT;
821 	}
822 
823 	error = control_lock(sdp, DLM_LOCK_NL, flags);
824 	if (error) {
825 		fs_err(sdp, "control lock NL error %d\n", error);
826 		return;
827 	}
828 
829 	/*
830 	 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
831 	 * and clear a jid bit in the lvb if the recovery is a success.
832 	 * Eventually all journals will be recovered, all jid bits will
833 	 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
834 	 */
835 
836 	for (i = 0; i < recover_size; i++) {
837 		if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
838 			fs_info(sdp, "recover generation %u jid %d\n",
839 				start_gen, i);
840 			gfs2_recover_set(sdp, i);
841 			recover_set++;
842 		}
843 	}
844 	if (recover_set)
845 		return;
846 
847 	/*
848 	 * No more jid bits set in lvb, all recovery is done, unblock locks
849 	 * (unless a new recover_prep callback has occured blocking locks
850 	 * again while working above)
851 	 */
852 
853 	spin_lock(&ls->ls_recover_spin);
854 	if (ls->ls_recover_block == block_gen &&
855 	    ls->ls_recover_start == start_gen) {
856 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
857 		spin_unlock(&ls->ls_recover_spin);
858 		fs_info(sdp, "recover generation %u done\n", start_gen);
859 		gfs2_glock_thaw(sdp);
860 	} else {
861 		fs_info(sdp, "recover generation %u block2 %u %u\n",
862 			start_gen, block_gen, ls->ls_recover_block);
863 		spin_unlock(&ls->ls_recover_spin);
864 	}
865 }
866 
control_mount(struct gfs2_sbd * sdp)867 static int control_mount(struct gfs2_sbd *sdp)
868 {
869 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
870 	uint32_t start_gen, block_gen, mount_gen, lvb_gen;
871 	int mounted_mode;
872 	int retries = 0;
873 	int error;
874 
875 	memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
876 	memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
877 	memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
878 	ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
879 	init_completion(&ls->ls_sync_wait);
880 
881 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
882 
883 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
884 	if (error) {
885 		fs_err(sdp, "control_mount control_lock NL error %d\n", error);
886 		return error;
887 	}
888 
889 	error = mounted_lock(sdp, DLM_LOCK_NL, 0);
890 	if (error) {
891 		fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
892 		control_unlock(sdp);
893 		return error;
894 	}
895 	mounted_mode = DLM_LOCK_NL;
896 
897 restart:
898 	if (retries++ && signal_pending(current)) {
899 		error = -EINTR;
900 		goto fail;
901 	}
902 
903 	/*
904 	 * We always start with both locks in NL. control_lock is
905 	 * demoted to NL below so we don't need to do it here.
906 	 */
907 
908 	if (mounted_mode != DLM_LOCK_NL) {
909 		error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
910 		if (error)
911 			goto fail;
912 		mounted_mode = DLM_LOCK_NL;
913 	}
914 
915 	/*
916 	 * Other nodes need to do some work in dlm recovery and gfs2_control
917 	 * before the recover_done and control_lock will be ready for us below.
918 	 * A delay here is not required but often avoids having to retry.
919 	 */
920 
921 	msleep_interruptible(500);
922 
923 	/*
924 	 * Acquire control_lock in EX and mounted_lock in either EX or PR.
925 	 * control_lock lvb keeps track of any pending journal recoveries.
926 	 * mounted_lock indicates if any other nodes have the fs mounted.
927 	 */
928 
929 	error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
930 	if (error == -EAGAIN) {
931 		goto restart;
932 	} else if (error) {
933 		fs_err(sdp, "control_mount control_lock EX error %d\n", error);
934 		goto fail;
935 	}
936 
937 	/**
938 	 * If we're a spectator, we don't want to take the lock in EX because
939 	 * we cannot do the first-mount responsibility it implies: recovery.
940 	 */
941 	if (sdp->sd_args.ar_spectator)
942 		goto locks_done;
943 
944 	error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
945 	if (!error) {
946 		mounted_mode = DLM_LOCK_EX;
947 		goto locks_done;
948 	} else if (error != -EAGAIN) {
949 		fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
950 		goto fail;
951 	}
952 
953 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
954 	if (!error) {
955 		mounted_mode = DLM_LOCK_PR;
956 		goto locks_done;
957 	} else {
958 		/* not even -EAGAIN should happen here */
959 		fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
960 		goto fail;
961 	}
962 
963 locks_done:
964 	/*
965 	 * If we got both locks above in EX, then we're the first mounter.
966 	 * If not, then we need to wait for the control_lock lvb to be
967 	 * updated by other mounted nodes to reflect our mount generation.
968 	 *
969 	 * In simple first mounter cases, first mounter will see zero lvb_gen,
970 	 * but in cases where all existing nodes leave/fail before mounting
971 	 * nodes finish control_mount, then all nodes will be mounting and
972 	 * lvb_gen will be non-zero.
973 	 */
974 
975 	control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
976 
977 	if (lvb_gen == 0xFFFFFFFF) {
978 		/* special value to force mount attempts to fail */
979 		fs_err(sdp, "control_mount control_lock disabled\n");
980 		error = -EINVAL;
981 		goto fail;
982 	}
983 
984 	if (mounted_mode == DLM_LOCK_EX) {
985 		/* first mounter, keep both EX while doing first recovery */
986 		spin_lock(&ls->ls_recover_spin);
987 		clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
988 		set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
989 		set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
990 		spin_unlock(&ls->ls_recover_spin);
991 		fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
992 		return 0;
993 	}
994 
995 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
996 	if (error)
997 		goto fail;
998 
999 	/*
1000 	 * We are not first mounter, now we need to wait for the control_lock
1001 	 * lvb generation to be >= the generation from our first recover_done
1002 	 * and all lvb bits to be clear (no pending journal recoveries.)
1003 	 */
1004 
1005 	if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
1006 		/* journals need recovery, wait until all are clear */
1007 		fs_info(sdp, "control_mount wait for journal recovery\n");
1008 		goto restart;
1009 	}
1010 
1011 	spin_lock(&ls->ls_recover_spin);
1012 	block_gen = ls->ls_recover_block;
1013 	start_gen = ls->ls_recover_start;
1014 	mount_gen = ls->ls_recover_mount;
1015 
1016 	if (lvb_gen < mount_gen) {
1017 		/* wait for mounted nodes to update control_lock lvb to our
1018 		   generation, which might include new recovery bits set */
1019 		if (sdp->sd_args.ar_spectator) {
1020 			fs_info(sdp, "Recovery is required. Waiting for a "
1021 				"non-spectator to mount.\n");
1022 			spin_unlock(&ls->ls_recover_spin);
1023 			msleep_interruptible(1000);
1024 		} else {
1025 			fs_info(sdp, "control_mount wait1 block %u start %u "
1026 				"mount %u lvb %u flags %lx\n", block_gen,
1027 				start_gen, mount_gen, lvb_gen,
1028 				ls->ls_recover_flags);
1029 			spin_unlock(&ls->ls_recover_spin);
1030 		}
1031 		goto restart;
1032 	}
1033 
1034 	if (lvb_gen != start_gen) {
1035 		/* wait for mounted nodes to update control_lock lvb to the
1036 		   latest recovery generation */
1037 		fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
1038 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1039 			lvb_gen, ls->ls_recover_flags);
1040 		spin_unlock(&ls->ls_recover_spin);
1041 		goto restart;
1042 	}
1043 
1044 	if (block_gen == start_gen) {
1045 		/* dlm recovery in progress, wait for it to finish */
1046 		fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
1047 			"lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1048 			lvb_gen, ls->ls_recover_flags);
1049 		spin_unlock(&ls->ls_recover_spin);
1050 		goto restart;
1051 	}
1052 
1053 	clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1054 	set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1055 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1056 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1057 	spin_unlock(&ls->ls_recover_spin);
1058 	return 0;
1059 
1060 fail:
1061 	mounted_unlock(sdp);
1062 	control_unlock(sdp);
1063 	return error;
1064 }
1065 
control_first_done(struct gfs2_sbd * sdp)1066 static int control_first_done(struct gfs2_sbd *sdp)
1067 {
1068 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1069 	uint32_t start_gen, block_gen;
1070 	int error;
1071 
1072 restart:
1073 	spin_lock(&ls->ls_recover_spin);
1074 	start_gen = ls->ls_recover_start;
1075 	block_gen = ls->ls_recover_block;
1076 
1077 	if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1078 	    !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1079 	    !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1080 		/* sanity check, should not happen */
1081 		fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1082 		       start_gen, block_gen, ls->ls_recover_flags);
1083 		spin_unlock(&ls->ls_recover_spin);
1084 		control_unlock(sdp);
1085 		return -1;
1086 	}
1087 
1088 	if (start_gen == block_gen) {
1089 		/*
1090 		 * Wait for the end of a dlm recovery cycle to switch from
1091 		 * first mounter recovery.  We can ignore any recover_slot
1092 		 * callbacks between the recover_prep and next recover_done
1093 		 * because we are still the first mounter and any failed nodes
1094 		 * have not fully mounted, so they don't need recovery.
1095 		 */
1096 		spin_unlock(&ls->ls_recover_spin);
1097 		fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1098 
1099 		wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1100 			    TASK_UNINTERRUPTIBLE);
1101 		goto restart;
1102 	}
1103 
1104 	clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1105 	set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1106 	memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1107 	memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1108 	spin_unlock(&ls->ls_recover_spin);
1109 
1110 	memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1111 	control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1112 
1113 	error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1114 	if (error)
1115 		fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1116 
1117 	error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1118 	if (error)
1119 		fs_err(sdp, "control_first_done control NL error %d\n", error);
1120 
1121 	return error;
1122 }
1123 
1124 /*
1125  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1126  * to accommodate the largest slot number.  (NB dlm slot numbers start at 1,
1127  * gfs2 jids start at 0, so jid = slot - 1)
1128  */
1129 
1130 #define RECOVER_SIZE_INC 16
1131 
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1132 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1133 			    int num_slots)
1134 {
1135 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1136 	uint32_t *submit = NULL;
1137 	uint32_t *result = NULL;
1138 	uint32_t old_size, new_size;
1139 	int i, max_jid;
1140 
1141 	if (!ls->ls_lvb_bits) {
1142 		ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1143 		if (!ls->ls_lvb_bits)
1144 			return -ENOMEM;
1145 	}
1146 
1147 	max_jid = 0;
1148 	for (i = 0; i < num_slots; i++) {
1149 		if (max_jid < slots[i].slot - 1)
1150 			max_jid = slots[i].slot - 1;
1151 	}
1152 
1153 	old_size = ls->ls_recover_size;
1154 	new_size = old_size;
1155 	while (new_size < max_jid + 1)
1156 		new_size += RECOVER_SIZE_INC;
1157 	if (new_size == old_size)
1158 		return 0;
1159 
1160 	submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1161 	result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1162 	if (!submit || !result) {
1163 		kfree(submit);
1164 		kfree(result);
1165 		return -ENOMEM;
1166 	}
1167 
1168 	spin_lock(&ls->ls_recover_spin);
1169 	memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1170 	memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1171 	kfree(ls->ls_recover_submit);
1172 	kfree(ls->ls_recover_result);
1173 	ls->ls_recover_submit = submit;
1174 	ls->ls_recover_result = result;
1175 	ls->ls_recover_size = new_size;
1176 	spin_unlock(&ls->ls_recover_spin);
1177 	return 0;
1178 }
1179 
free_recover_size(struct lm_lockstruct * ls)1180 static void free_recover_size(struct lm_lockstruct *ls)
1181 {
1182 	kfree(ls->ls_lvb_bits);
1183 	kfree(ls->ls_recover_submit);
1184 	kfree(ls->ls_recover_result);
1185 	ls->ls_recover_submit = NULL;
1186 	ls->ls_recover_result = NULL;
1187 	ls->ls_recover_size = 0;
1188 	ls->ls_lvb_bits = NULL;
1189 }
1190 
1191 /* dlm calls before it does lock recovery */
1192 
gdlm_recover_prep(void * arg)1193 static void gdlm_recover_prep(void *arg)
1194 {
1195 	struct gfs2_sbd *sdp = arg;
1196 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1197 
1198 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1199 		fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1200 		return;
1201 	}
1202 	spin_lock(&ls->ls_recover_spin);
1203 	ls->ls_recover_block = ls->ls_recover_start;
1204 	set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1205 
1206 	if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1207 	     test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1208 		spin_unlock(&ls->ls_recover_spin);
1209 		return;
1210 	}
1211 	set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1212 	spin_unlock(&ls->ls_recover_spin);
1213 }
1214 
1215 /* dlm calls after recover_prep has been completed on all lockspace members;
1216    identifies slot/jid of failed member */
1217 
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1218 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1219 {
1220 	struct gfs2_sbd *sdp = arg;
1221 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1222 	int jid = slot->slot - 1;
1223 
1224 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1225 		fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1226 		       jid);
1227 		return;
1228 	}
1229 	spin_lock(&ls->ls_recover_spin);
1230 	if (ls->ls_recover_size < jid + 1) {
1231 		fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1232 		       jid, ls->ls_recover_block, ls->ls_recover_size);
1233 		spin_unlock(&ls->ls_recover_spin);
1234 		return;
1235 	}
1236 
1237 	if (ls->ls_recover_submit[jid]) {
1238 		fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1239 			jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1240 	}
1241 	ls->ls_recover_submit[jid] = ls->ls_recover_block;
1242 	spin_unlock(&ls->ls_recover_spin);
1243 }
1244 
1245 /* dlm calls after recover_slot and after it completes lock recovery */
1246 
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1247 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1248 			      int our_slot, uint32_t generation)
1249 {
1250 	struct gfs2_sbd *sdp = arg;
1251 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1252 
1253 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1254 		fs_err(sdp, "recover_done ignored due to withdraw.\n");
1255 		return;
1256 	}
1257 	/* ensure the ls jid arrays are large enough */
1258 	set_recover_size(sdp, slots, num_slots);
1259 
1260 	spin_lock(&ls->ls_recover_spin);
1261 	ls->ls_recover_start = generation;
1262 
1263 	if (!ls->ls_recover_mount) {
1264 		ls->ls_recover_mount = generation;
1265 		ls->ls_jid = our_slot - 1;
1266 	}
1267 
1268 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1269 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1270 
1271 	clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1272 	smp_mb__after_atomic();
1273 	wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1274 	spin_unlock(&ls->ls_recover_spin);
1275 }
1276 
1277 /* gfs2_recover thread has a journal recovery result */
1278 
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1279 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1280 				 unsigned int result)
1281 {
1282 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1283 
1284 	if (gfs2_withdrawing_or_withdrawn(sdp)) {
1285 		fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1286 		       jid);
1287 		return;
1288 	}
1289 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1290 		return;
1291 
1292 	/* don't care about the recovery of own journal during mount */
1293 	if (jid == ls->ls_jid)
1294 		return;
1295 
1296 	spin_lock(&ls->ls_recover_spin);
1297 	if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1298 		spin_unlock(&ls->ls_recover_spin);
1299 		return;
1300 	}
1301 	if (ls->ls_recover_size < jid + 1) {
1302 		fs_err(sdp, "recovery_result jid %d short size %d\n",
1303 		       jid, ls->ls_recover_size);
1304 		spin_unlock(&ls->ls_recover_spin);
1305 		return;
1306 	}
1307 
1308 	fs_info(sdp, "recover jid %d result %s\n", jid,
1309 		result == LM_RD_GAVEUP ? "busy" : "success");
1310 
1311 	ls->ls_recover_result[jid] = result;
1312 
1313 	/* GAVEUP means another node is recovering the journal; delay our
1314 	   next attempt to recover it, to give the other node a chance to
1315 	   finish before trying again */
1316 
1317 	if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1318 		queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1319 				   result == LM_RD_GAVEUP ? HZ : 0);
1320 	spin_unlock(&ls->ls_recover_spin);
1321 }
1322 
1323 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1324 	.recover_prep = gdlm_recover_prep,
1325 	.recover_slot = gdlm_recover_slot,
1326 	.recover_done = gdlm_recover_done,
1327 };
1328 
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1329 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1330 {
1331 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1332 	char cluster[GFS2_LOCKNAME_LEN];
1333 	const char *fsname;
1334 	uint32_t flags;
1335 	int error, ops_result;
1336 
1337 	/*
1338 	 * initialize everything
1339 	 */
1340 
1341 	INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1342 	ls->ls_dlm = NULL;
1343 	spin_lock_init(&ls->ls_recover_spin);
1344 	ls->ls_recover_flags = 0;
1345 	ls->ls_recover_mount = 0;
1346 	ls->ls_recover_start = 0;
1347 	ls->ls_recover_block = 0;
1348 	ls->ls_recover_size = 0;
1349 	ls->ls_recover_submit = NULL;
1350 	ls->ls_recover_result = NULL;
1351 	ls->ls_lvb_bits = NULL;
1352 
1353 	error = set_recover_size(sdp, NULL, 0);
1354 	if (error)
1355 		goto fail;
1356 
1357 	/*
1358 	 * prepare dlm_new_lockspace args
1359 	 */
1360 
1361 	fsname = strchr(table, ':');
1362 	if (!fsname) {
1363 		fs_info(sdp, "no fsname found\n");
1364 		error = -EINVAL;
1365 		goto fail_free;
1366 	}
1367 	memset(cluster, 0, sizeof(cluster));
1368 	memcpy(cluster, table, strlen(table) - strlen(fsname));
1369 	fsname++;
1370 
1371 	flags = DLM_LSFL_NEWEXCL;
1372 
1373 	/*
1374 	 * create/join lockspace
1375 	 */
1376 
1377 	init_rwsem(&ls->ls_sem);
1378 	error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1379 				  &gdlm_lockspace_ops, sdp, &ops_result,
1380 				  &ls->ls_dlm);
1381 	if (error) {
1382 		fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1383 		goto fail_free;
1384 	}
1385 
1386 	if (ops_result < 0) {
1387 		/*
1388 		 * dlm does not support ops callbacks,
1389 		 * old dlm_controld/gfs_controld are used, try without ops.
1390 		 */
1391 		fs_info(sdp, "dlm lockspace ops not used\n");
1392 		free_recover_size(ls);
1393 		set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1394 		return 0;
1395 	}
1396 
1397 	if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1398 		fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1399 		error = -EINVAL;
1400 		goto fail_release;
1401 	}
1402 
1403 	/*
1404 	 * control_mount() uses control_lock to determine first mounter,
1405 	 * and for later mounts, waits for any recoveries to be cleared.
1406 	 */
1407 
1408 	error = control_mount(sdp);
1409 	if (error) {
1410 		fs_err(sdp, "mount control error %d\n", error);
1411 		goto fail_release;
1412 	}
1413 
1414 	ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1415 	clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1416 	smp_mb__after_atomic();
1417 	wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1418 	return 0;
1419 
1420 fail_release:
1421 	dlm_release_lockspace(ls->ls_dlm, DLM_RELEASE_NORMAL);
1422 fail_free:
1423 	free_recover_size(ls);
1424 fail:
1425 	return error;
1426 }
1427 
gdlm_first_done(struct gfs2_sbd * sdp)1428 static void gdlm_first_done(struct gfs2_sbd *sdp)
1429 {
1430 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1431 	int error;
1432 
1433 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1434 		return;
1435 
1436 	error = control_first_done(sdp);
1437 	if (error)
1438 		fs_err(sdp, "mount first_done error %d\n", error);
1439 }
1440 
gdlm_unmount(struct gfs2_sbd * sdp)1441 static void gdlm_unmount(struct gfs2_sbd *sdp)
1442 {
1443 	struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1444 
1445 	if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1446 		goto release;
1447 
1448 	/* wait for gfs2_control_wq to be done with this mount */
1449 
1450 	spin_lock(&ls->ls_recover_spin);
1451 	set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1452 	spin_unlock(&ls->ls_recover_spin);
1453 	flush_delayed_work(&sdp->sd_control_work);
1454 
1455 	/* mounted_lock and control_lock will be purged in dlm recovery */
1456 release:
1457 	down_write(&ls->ls_sem);
1458 	if (ls->ls_dlm) {
1459 		dlm_release_lockspace(ls->ls_dlm, DLM_RELEASE_NORMAL);
1460 		ls->ls_dlm = NULL;
1461 	}
1462 	up_write(&ls->ls_sem);
1463 
1464 	free_recover_size(ls);
1465 }
1466 
1467 static const match_table_t dlm_tokens = {
1468 	{ Opt_jid, "jid=%d"},
1469 	{ Opt_id, "id=%d"},
1470 	{ Opt_first, "first=%d"},
1471 	{ Opt_nodir, "nodir=%d"},
1472 	{ Opt_err, NULL },
1473 };
1474 
1475 const struct lm_lockops gfs2_dlm_ops = {
1476 	.lm_proto_name = "lock_dlm",
1477 	.lm_mount = gdlm_mount,
1478 	.lm_first_done = gdlm_first_done,
1479 	.lm_recovery_result = gdlm_recovery_result,
1480 	.lm_unmount = gdlm_unmount,
1481 	.lm_put_lock = gdlm_put_lock,
1482 	.lm_lock = gdlm_lock,
1483 	.lm_cancel = gdlm_cancel,
1484 	.lm_tokens = &dlm_tokens,
1485 };
1486 
1487