xref: /linux/arch/arm64/crypto/ghash-ce-glue.c (revision 370960c153db82fbdd55539be4d4eb41ef3a7e40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Accelerated GHASH implementation with ARMv8 PMULL instructions.
4  *
5  * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <crypto/aes.h>
9 #include <crypto/b128ops.h>
10 #include <crypto/gcm.h>
11 #include <crypto/ghash.h>
12 #include <crypto/gf128mul.h>
13 #include <crypto/internal/aead.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/skcipher.h>
16 #include <crypto/scatterwalk.h>
17 #include <linux/cpufeature.h>
18 #include <linux/errno.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/unaligned.h>
23 
24 #include <asm/simd.h>
25 
26 MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
27 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
28 MODULE_LICENSE("GPL v2");
29 MODULE_ALIAS_CRYPTO("ghash");
30 
31 #define RFC4106_NONCE_SIZE	4
32 
33 struct ghash_key {
34 	be128			k;
35 	u64			h[][2];
36 };
37 
38 struct arm_ghash_desc_ctx {
39 	u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)];
40 };
41 
42 struct gcm_aes_ctx {
43 	struct aes_enckey	aes_key;
44 	u8			nonce[RFC4106_NONCE_SIZE];
45 	struct ghash_key	ghash_key;
46 };
47 
48 asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
49 				       u64 const h[][2], const char *head);
50 
51 asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
52 				      u64 const h[][2], const char *head);
53 
54 asmlinkage void pmull_gcm_encrypt(int bytes, u8 dst[], const u8 src[],
55 				  u64 const h[][2], u64 dg[], u8 ctr[],
56 				  u32 const rk[], int rounds, u8 tag[]);
57 asmlinkage int pmull_gcm_decrypt(int bytes, u8 dst[], const u8 src[],
58 				 u64 const h[][2], u64 dg[], u8 ctr[],
59 				 u32 const rk[], int rounds, const u8 l[],
60 				 const u8 tag[], u64 authsize);
61 
62 static int ghash_init(struct shash_desc *desc)
63 {
64 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
65 
66 	*ctx = (struct arm_ghash_desc_ctx){};
67 	return 0;
68 }
69 
70 static __always_inline
71 void ghash_do_simd_update(int blocks, u64 dg[], const char *src,
72 			  struct ghash_key *key, const char *head,
73 			  void (*simd_update)(int blocks, u64 dg[],
74 					      const char *src,
75 					      u64 const h[][2],
76 					      const char *head))
77 {
78 	scoped_ksimd()
79 		simd_update(blocks, dg, src, key->h, head);
80 }
81 
82 /* avoid hogging the CPU for too long */
83 #define MAX_BLOCKS	(SZ_64K / GHASH_BLOCK_SIZE)
84 
85 static int ghash_update(struct shash_desc *desc, const u8 *src,
86 			unsigned int len)
87 {
88 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
89 	struct ghash_key *key = crypto_shash_ctx(desc->tfm);
90 	int blocks;
91 
92 	blocks = len / GHASH_BLOCK_SIZE;
93 	len -= blocks * GHASH_BLOCK_SIZE;
94 
95 	do {
96 		int chunk = min(blocks, MAX_BLOCKS);
97 
98 		ghash_do_simd_update(chunk, ctx->digest, src, key, NULL,
99 				     pmull_ghash_update_p8);
100 		blocks -= chunk;
101 		src += chunk * GHASH_BLOCK_SIZE;
102 	} while (unlikely(blocks > 0));
103 	return len;
104 }
105 
106 static int ghash_export(struct shash_desc *desc, void *out)
107 {
108 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
109 	u8 *dst = out;
110 
111 	put_unaligned_be64(ctx->digest[1], dst);
112 	put_unaligned_be64(ctx->digest[0], dst + 8);
113 	return 0;
114 }
115 
116 static int ghash_import(struct shash_desc *desc, const void *in)
117 {
118 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
119 	const u8 *src = in;
120 
121 	ctx->digest[1] = get_unaligned_be64(src);
122 	ctx->digest[0] = get_unaligned_be64(src + 8);
123 	return 0;
124 }
125 
126 static int ghash_finup(struct shash_desc *desc, const u8 *src,
127 		       unsigned int len, u8 *dst)
128 {
129 	struct arm_ghash_desc_ctx *ctx = shash_desc_ctx(desc);
130 	struct ghash_key *key = crypto_shash_ctx(desc->tfm);
131 
132 	if (len) {
133 		u8 buf[GHASH_BLOCK_SIZE] = {};
134 
135 		memcpy(buf, src, len);
136 		ghash_do_simd_update(1, ctx->digest, buf, key, NULL,
137 				     pmull_ghash_update_p8);
138 		memzero_explicit(buf, sizeof(buf));
139 	}
140 	return ghash_export(desc, dst);
141 }
142 
143 static void ghash_reflect(u64 h[], const be128 *k)
144 {
145 	u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0;
146 
147 	h[0] = (be64_to_cpu(k->b) << 1) | carry;
148 	h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63);
149 
150 	if (carry)
151 		h[1] ^= 0xc200000000000000UL;
152 }
153 
154 static int ghash_setkey(struct crypto_shash *tfm,
155 			const u8 *inkey, unsigned int keylen)
156 {
157 	struct ghash_key *key = crypto_shash_ctx(tfm);
158 
159 	if (keylen != GHASH_BLOCK_SIZE)
160 		return -EINVAL;
161 
162 	/* needed for the fallback */
163 	memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
164 
165 	ghash_reflect(key->h[0], &key->k);
166 	return 0;
167 }
168 
169 static struct shash_alg ghash_alg = {
170 	.base.cra_name		= "ghash",
171 	.base.cra_driver_name	= "ghash-neon",
172 	.base.cra_priority	= 150,
173 	.base.cra_flags		= CRYPTO_AHASH_ALG_BLOCK_ONLY,
174 	.base.cra_blocksize	= GHASH_BLOCK_SIZE,
175 	.base.cra_ctxsize	= sizeof(struct ghash_key) + sizeof(u64[2]),
176 	.base.cra_module	= THIS_MODULE,
177 
178 	.digestsize		= GHASH_DIGEST_SIZE,
179 	.init			= ghash_init,
180 	.update			= ghash_update,
181 	.finup			= ghash_finup,
182 	.setkey			= ghash_setkey,
183 	.export			= ghash_export,
184 	.import			= ghash_import,
185 	.descsize		= sizeof(struct arm_ghash_desc_ctx),
186 	.statesize		= sizeof(struct ghash_desc_ctx),
187 };
188 
189 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *inkey,
190 			  unsigned int keylen)
191 {
192 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
193 	u8 key[GHASH_BLOCK_SIZE];
194 	be128 h;
195 	int ret;
196 
197 	ret = aes_prepareenckey(&ctx->aes_key, inkey, keylen);
198 	if (ret)
199 		return -EINVAL;
200 
201 	aes_encrypt(&ctx->aes_key, key, (u8[AES_BLOCK_SIZE]){});
202 
203 	/* needed for the fallback */
204 	memcpy(&ctx->ghash_key.k, key, GHASH_BLOCK_SIZE);
205 
206 	ghash_reflect(ctx->ghash_key.h[0], &ctx->ghash_key.k);
207 
208 	h = ctx->ghash_key.k;
209 	gf128mul_lle(&h, &ctx->ghash_key.k);
210 	ghash_reflect(ctx->ghash_key.h[1], &h);
211 
212 	gf128mul_lle(&h, &ctx->ghash_key.k);
213 	ghash_reflect(ctx->ghash_key.h[2], &h);
214 
215 	gf128mul_lle(&h, &ctx->ghash_key.k);
216 	ghash_reflect(ctx->ghash_key.h[3], &h);
217 
218 	return 0;
219 }
220 
221 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
222 {
223 	return crypto_gcm_check_authsize(authsize);
224 }
225 
226 static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
227 			   int *buf_count, struct gcm_aes_ctx *ctx)
228 {
229 	if (*buf_count > 0) {
230 		int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
231 
232 		memcpy(&buf[*buf_count], src, buf_added);
233 
234 		*buf_count += buf_added;
235 		src += buf_added;
236 		count -= buf_added;
237 	}
238 
239 	if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
240 		int blocks = count / GHASH_BLOCK_SIZE;
241 
242 		ghash_do_simd_update(blocks, dg, src, &ctx->ghash_key,
243 				     *buf_count ? buf : NULL,
244 				     pmull_ghash_update_p64);
245 
246 		src += blocks * GHASH_BLOCK_SIZE;
247 		count %= GHASH_BLOCK_SIZE;
248 		*buf_count = 0;
249 	}
250 
251 	if (count > 0) {
252 		memcpy(buf, src, count);
253 		*buf_count = count;
254 	}
255 }
256 
257 static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[], u32 len)
258 {
259 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
260 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
261 	u8 buf[GHASH_BLOCK_SIZE];
262 	struct scatter_walk walk;
263 	int buf_count = 0;
264 
265 	scatterwalk_start(&walk, req->src);
266 
267 	do {
268 		unsigned int n;
269 
270 		n = scatterwalk_next(&walk, len);
271 		gcm_update_mac(dg, walk.addr, n, buf, &buf_count, ctx);
272 		scatterwalk_done_src(&walk, n);
273 		len -= n;
274 	} while (len);
275 
276 	if (buf_count) {
277 		memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
278 		ghash_do_simd_update(1, dg, buf, &ctx->ghash_key, NULL,
279 				     pmull_ghash_update_p64);
280 	}
281 }
282 
283 static int gcm_encrypt(struct aead_request *req, char *iv, int assoclen)
284 {
285 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
286 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
287 	struct skcipher_walk walk;
288 	u8 buf[AES_BLOCK_SIZE];
289 	u64 dg[2] = {};
290 	be128 lengths;
291 	u8 *tag;
292 	int err;
293 
294 	lengths.a = cpu_to_be64(assoclen * 8);
295 	lengths.b = cpu_to_be64(req->cryptlen * 8);
296 
297 	if (assoclen)
298 		gcm_calculate_auth_mac(req, dg, assoclen);
299 
300 	put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
301 
302 	err = skcipher_walk_aead_encrypt(&walk, req, false);
303 
304 	do {
305 		const u8 *src = walk.src.virt.addr;
306 		u8 *dst = walk.dst.virt.addr;
307 		int nbytes = walk.nbytes;
308 
309 		tag = (u8 *)&lengths;
310 
311 		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
312 			src = dst = memcpy(buf + sizeof(buf) - nbytes,
313 					   src, nbytes);
314 		} else if (nbytes < walk.total) {
315 			nbytes &= ~(AES_BLOCK_SIZE - 1);
316 			tag = NULL;
317 		}
318 
319 		scoped_ksimd()
320 			pmull_gcm_encrypt(nbytes, dst, src, ctx->ghash_key.h,
321 					  dg, iv, ctx->aes_key.k.rndkeys,
322 					  ctx->aes_key.nrounds, tag);
323 
324 		if (unlikely(!nbytes))
325 			break;
326 
327 		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
328 			memcpy(walk.dst.virt.addr,
329 			       buf + sizeof(buf) - nbytes, nbytes);
330 
331 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
332 	} while (walk.nbytes);
333 
334 	if (err)
335 		return err;
336 
337 	/* copy authtag to end of dst */
338 	scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
339 				 crypto_aead_authsize(aead), 1);
340 
341 	return 0;
342 }
343 
344 static int gcm_decrypt(struct aead_request *req, char *iv, int assoclen)
345 {
346 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
347 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
348 	unsigned int authsize = crypto_aead_authsize(aead);
349 	struct skcipher_walk walk;
350 	u8 otag[AES_BLOCK_SIZE];
351 	u8 buf[AES_BLOCK_SIZE];
352 	u64 dg[2] = {};
353 	be128 lengths;
354 	u8 *tag;
355 	int ret;
356 	int err;
357 
358 	lengths.a = cpu_to_be64(assoclen * 8);
359 	lengths.b = cpu_to_be64((req->cryptlen - authsize) * 8);
360 
361 	if (assoclen)
362 		gcm_calculate_auth_mac(req, dg, assoclen);
363 
364 	put_unaligned_be32(2, iv + GCM_AES_IV_SIZE);
365 
366 	scatterwalk_map_and_copy(otag, req->src,
367 				 req->assoclen + req->cryptlen - authsize,
368 				 authsize, 0);
369 
370 	err = skcipher_walk_aead_decrypt(&walk, req, false);
371 
372 	do {
373 		const u8 *src = walk.src.virt.addr;
374 		u8 *dst = walk.dst.virt.addr;
375 		int nbytes = walk.nbytes;
376 
377 		tag = (u8 *)&lengths;
378 
379 		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE)) {
380 			src = dst = memcpy(buf + sizeof(buf) - nbytes,
381 					   src, nbytes);
382 		} else if (nbytes < walk.total) {
383 			nbytes &= ~(AES_BLOCK_SIZE - 1);
384 			tag = NULL;
385 		}
386 
387 		scoped_ksimd()
388 			ret = pmull_gcm_decrypt(nbytes, dst, src,
389 						ctx->ghash_key.h,
390 						dg, iv, ctx->aes_key.k.rndkeys,
391 						ctx->aes_key.nrounds, tag, otag,
392 						authsize);
393 
394 		if (unlikely(!nbytes))
395 			break;
396 
397 		if (unlikely(nbytes > 0 && nbytes < AES_BLOCK_SIZE))
398 			memcpy(walk.dst.virt.addr,
399 			       buf + sizeof(buf) - nbytes, nbytes);
400 
401 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
402 	} while (walk.nbytes);
403 
404 	if (err)
405 		return err;
406 
407 	return ret ? -EBADMSG : 0;
408 }
409 
410 static int gcm_aes_encrypt(struct aead_request *req)
411 {
412 	u8 iv[AES_BLOCK_SIZE];
413 
414 	memcpy(iv, req->iv, GCM_AES_IV_SIZE);
415 	return gcm_encrypt(req, iv, req->assoclen);
416 }
417 
418 static int gcm_aes_decrypt(struct aead_request *req)
419 {
420 	u8 iv[AES_BLOCK_SIZE];
421 
422 	memcpy(iv, req->iv, GCM_AES_IV_SIZE);
423 	return gcm_decrypt(req, iv, req->assoclen);
424 }
425 
426 static int rfc4106_setkey(struct crypto_aead *tfm, const u8 *inkey,
427 			  unsigned int keylen)
428 {
429 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
430 	int err;
431 
432 	keylen -= RFC4106_NONCE_SIZE;
433 	err = gcm_aes_setkey(tfm, inkey, keylen);
434 	if (err)
435 		return err;
436 
437 	memcpy(ctx->nonce, inkey + keylen, RFC4106_NONCE_SIZE);
438 	return 0;
439 }
440 
441 static int rfc4106_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
442 {
443 	return crypto_rfc4106_check_authsize(authsize);
444 }
445 
446 static int rfc4106_encrypt(struct aead_request *req)
447 {
448 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
449 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
450 	u8 iv[AES_BLOCK_SIZE];
451 
452 	memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
453 	memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
454 
455 	return crypto_ipsec_check_assoclen(req->assoclen) ?:
456 	       gcm_encrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
457 }
458 
459 static int rfc4106_decrypt(struct aead_request *req)
460 {
461 	struct crypto_aead *aead = crypto_aead_reqtfm(req);
462 	struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
463 	u8 iv[AES_BLOCK_SIZE];
464 
465 	memcpy(iv, ctx->nonce, RFC4106_NONCE_SIZE);
466 	memcpy(iv + RFC4106_NONCE_SIZE, req->iv, GCM_RFC4106_IV_SIZE);
467 
468 	return crypto_ipsec_check_assoclen(req->assoclen) ?:
469 	       gcm_decrypt(req, iv, req->assoclen - GCM_RFC4106_IV_SIZE);
470 }
471 
472 static struct aead_alg gcm_aes_algs[] = {{
473 	.ivsize			= GCM_AES_IV_SIZE,
474 	.chunksize		= AES_BLOCK_SIZE,
475 	.maxauthsize		= AES_BLOCK_SIZE,
476 	.setkey			= gcm_aes_setkey,
477 	.setauthsize		= gcm_aes_setauthsize,
478 	.encrypt		= gcm_aes_encrypt,
479 	.decrypt		= gcm_aes_decrypt,
480 
481 	.base.cra_name		= "gcm(aes)",
482 	.base.cra_driver_name	= "gcm-aes-ce",
483 	.base.cra_priority	= 300,
484 	.base.cra_blocksize	= 1,
485 	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx) +
486 				  4 * sizeof(u64[2]),
487 	.base.cra_module	= THIS_MODULE,
488 }, {
489 	.ivsize			= GCM_RFC4106_IV_SIZE,
490 	.chunksize		= AES_BLOCK_SIZE,
491 	.maxauthsize		= AES_BLOCK_SIZE,
492 	.setkey			= rfc4106_setkey,
493 	.setauthsize		= rfc4106_setauthsize,
494 	.encrypt		= rfc4106_encrypt,
495 	.decrypt		= rfc4106_decrypt,
496 
497 	.base.cra_name		= "rfc4106(gcm(aes))",
498 	.base.cra_driver_name	= "rfc4106-gcm-aes-ce",
499 	.base.cra_priority	= 300,
500 	.base.cra_blocksize	= 1,
501 	.base.cra_ctxsize	= sizeof(struct gcm_aes_ctx) +
502 				  4 * sizeof(u64[2]),
503 	.base.cra_module	= THIS_MODULE,
504 }};
505 
506 static int __init ghash_ce_mod_init(void)
507 {
508 	if (!cpu_have_named_feature(ASIMD))
509 		return -ENODEV;
510 
511 	if (cpu_have_named_feature(PMULL))
512 		return crypto_register_aeads(gcm_aes_algs,
513 					     ARRAY_SIZE(gcm_aes_algs));
514 
515 	return crypto_register_shash(&ghash_alg);
516 }
517 
518 static void __exit ghash_ce_mod_exit(void)
519 {
520 	if (cpu_have_named_feature(PMULL))
521 		crypto_unregister_aeads(gcm_aes_algs, ARRAY_SIZE(gcm_aes_algs));
522 	else
523 		crypto_unregister_shash(&ghash_alg);
524 }
525 
526 static const struct cpu_feature __maybe_unused ghash_cpu_feature[] = {
527 	{ cpu_feature(PMULL) }, { }
528 };
529 MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
530 
531 module_init(ghash_ce_mod_init);
532 module_exit(ghash_ce_mod_exit);
533