xref: /linux/drivers/firewire/net.c (revision 7ec462100ef9142344ddbf86f2c3008b97acddbe)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * IPv4 over IEEE 1394, per RFC 2734
4   * IPv6 over IEEE 1394, per RFC 3146
5   *
6   * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
7   *
8   * based on eth1394 by Ben Collins et al
9   */
10  
11  #include <linux/bug.h>
12  #include <linux/compiler.h>
13  #include <linux/delay.h>
14  #include <linux/device.h>
15  #include <linux/ethtool.h>
16  #include <linux/firewire.h>
17  #include <linux/firewire-constants.h>
18  #include <linux/highmem.h>
19  #include <linux/in.h>
20  #include <linux/ip.h>
21  #include <linux/jiffies.h>
22  #include <linux/mod_devicetable.h>
23  #include <linux/module.h>
24  #include <linux/moduleparam.h>
25  #include <linux/mutex.h>
26  #include <linux/netdevice.h>
27  #include <linux/skbuff.h>
28  #include <linux/slab.h>
29  #include <linux/spinlock.h>
30  
31  #include <linux/unaligned.h>
32  #include <net/arp.h>
33  #include <net/firewire.h>
34  
35  /* rx limits */
36  #define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
37  #define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
38  
39  /* tx limits */
40  #define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
41  #define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
42  #define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
43  
44  #define IEEE1394_BROADCAST_CHANNEL	31
45  #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
46  #define IEEE1394_MAX_PAYLOAD_S100	512
47  #define FWNET_NO_FIFO_ADDR		(~0ULL)
48  
49  #define IANA_SPECIFIER_ID		0x00005eU
50  #define RFC2734_SW_VERSION		0x000001U
51  #define RFC3146_SW_VERSION		0x000002U
52  
53  #define IEEE1394_GASP_HDR_SIZE	8
54  
55  #define RFC2374_UNFRAG_HDR_SIZE	4
56  #define RFC2374_FRAG_HDR_SIZE	8
57  #define RFC2374_FRAG_OVERHEAD	4
58  
59  #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
60  #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
61  #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
62  #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
63  
fwnet_hwaddr_is_multicast(u8 * ha)64  static bool fwnet_hwaddr_is_multicast(u8 *ha)
65  {
66  	return !!(*ha & 1);
67  }
68  
69  /* IPv4 and IPv6 encapsulation header */
70  struct rfc2734_header {
71  	u32 w0;
72  	u32 w1;
73  };
74  
75  #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
76  #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
77  #define fwnet_get_hdr_dg_size(h)	((((h)->w0 & 0x0fff0000) >> 16) + 1)
78  #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
79  #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
80  
81  #define fwnet_set_hdr_lf(lf)		((lf) << 30)
82  #define fwnet_set_hdr_ether_type(et)	(et)
83  #define fwnet_set_hdr_dg_size(dgs)	(((dgs) - 1) << 16)
84  #define fwnet_set_hdr_fg_off(fgo)	(fgo)
85  
86  #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
87  
fwnet_make_uf_hdr(struct rfc2734_header * hdr,unsigned ether_type)88  static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
89  		unsigned ether_type)
90  {
91  	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
92  		  | fwnet_set_hdr_ether_type(ether_type);
93  }
94  
fwnet_make_ff_hdr(struct rfc2734_header * hdr,unsigned ether_type,unsigned dg_size,unsigned dgl)95  static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
96  		unsigned ether_type, unsigned dg_size, unsigned dgl)
97  {
98  	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
99  		  | fwnet_set_hdr_dg_size(dg_size)
100  		  | fwnet_set_hdr_ether_type(ether_type);
101  	hdr->w1 = fwnet_set_hdr_dgl(dgl);
102  }
103  
fwnet_make_sf_hdr(struct rfc2734_header * hdr,unsigned lf,unsigned dg_size,unsigned fg_off,unsigned dgl)104  static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
105  		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
106  {
107  	hdr->w0 = fwnet_set_hdr_lf(lf)
108  		  | fwnet_set_hdr_dg_size(dg_size)
109  		  | fwnet_set_hdr_fg_off(fg_off);
110  	hdr->w1 = fwnet_set_hdr_dgl(dgl);
111  }
112  
113  /* This list keeps track of what parts of the datagram have been filled in */
114  struct fwnet_fragment_info {
115  	struct list_head fi_link;
116  	u16 offset;
117  	u16 len;
118  };
119  
120  struct fwnet_partial_datagram {
121  	struct list_head pd_link;
122  	struct list_head fi_list;
123  	struct sk_buff *skb;
124  	/* FIXME Why not use skb->data? */
125  	char *pbuf;
126  	u16 datagram_label;
127  	u16 ether_type;
128  	u16 datagram_size;
129  };
130  
131  static DEFINE_MUTEX(fwnet_device_mutex);
132  static LIST_HEAD(fwnet_device_list);
133  
134  struct fwnet_device {
135  	struct list_head dev_link;
136  	spinlock_t lock;
137  	enum {
138  		FWNET_BROADCAST_ERROR,
139  		FWNET_BROADCAST_RUNNING,
140  		FWNET_BROADCAST_STOPPED,
141  	} broadcast_state;
142  	struct fw_iso_context *broadcast_rcv_context;
143  	struct fw_iso_buffer broadcast_rcv_buffer;
144  	void **broadcast_rcv_buffer_ptrs;
145  	unsigned broadcast_rcv_next_ptr;
146  	unsigned num_broadcast_rcv_ptrs;
147  	unsigned rcv_buffer_size;
148  	/*
149  	 * This value is the maximum unfragmented datagram size that can be
150  	 * sent by the hardware.  It already has the GASP overhead and the
151  	 * unfragmented datagram header overhead calculated into it.
152  	 */
153  	unsigned broadcast_xmt_max_payload;
154  	u16 broadcast_xmt_datagramlabel;
155  
156  	/*
157  	 * The CSR address that remote nodes must send datagrams to for us to
158  	 * receive them.
159  	 */
160  	struct fw_address_handler handler;
161  	u64 local_fifo;
162  
163  	/* Number of tx datagrams that have been queued but not yet acked */
164  	int queued_datagrams;
165  
166  	int peer_count;
167  	struct list_head peer_list;
168  	struct fw_card *card;
169  	struct net_device *netdev;
170  };
171  
172  struct fwnet_peer {
173  	struct list_head peer_link;
174  	struct fwnet_device *dev;
175  	u64 guid;
176  
177  	/* guarded by dev->lock */
178  	struct list_head pd_list; /* received partial datagrams */
179  	unsigned pdg_size;        /* pd_list size */
180  
181  	u16 datagram_label;       /* outgoing datagram label */
182  	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
183  	int node_id;
184  	int generation;
185  	unsigned speed;
186  };
187  
188  /* This is our task struct. It's used for the packet complete callback.  */
189  struct fwnet_packet_task {
190  	struct fw_transaction transaction;
191  	struct rfc2734_header hdr;
192  	struct sk_buff *skb;
193  	struct fwnet_device *dev;
194  
195  	int outstanding_pkts;
196  	u64 fifo_addr;
197  	u16 dest_node;
198  	u16 max_payload;
199  	u8 generation;
200  	u8 speed;
201  	u8 enqueued;
202  };
203  
204  /*
205   * saddr == NULL means use device source address.
206   * daddr == NULL means leave destination address (eg unresolved arp).
207   */
fwnet_header_create(struct sk_buff * skb,struct net_device * net,unsigned short type,const void * daddr,const void * saddr,unsigned len)208  static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
209  			unsigned short type, const void *daddr,
210  			const void *saddr, unsigned len)
211  {
212  	struct fwnet_header *h;
213  
214  	h = skb_push(skb, sizeof(*h));
215  	put_unaligned_be16(type, &h->h_proto);
216  
217  	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
218  		memset(h->h_dest, 0, net->addr_len);
219  
220  		return net->hard_header_len;
221  	}
222  
223  	if (daddr) {
224  		memcpy(h->h_dest, daddr, net->addr_len);
225  
226  		return net->hard_header_len;
227  	}
228  
229  	return -net->hard_header_len;
230  }
231  
fwnet_header_cache(const struct neighbour * neigh,struct hh_cache * hh,__be16 type)232  static int fwnet_header_cache(const struct neighbour *neigh,
233  			      struct hh_cache *hh, __be16 type)
234  {
235  	struct net_device *net;
236  	struct fwnet_header *h;
237  
238  	if (type == cpu_to_be16(ETH_P_802_3))
239  		return -1;
240  	net = neigh->dev;
241  	h = (struct fwnet_header *)((u8 *)hh->hh_data + HH_DATA_OFF(sizeof(*h)));
242  	h->h_proto = type;
243  	memcpy(h->h_dest, neigh->ha, net->addr_len);
244  
245  	/* Pairs with the READ_ONCE() in neigh_resolve_output(),
246  	 * neigh_hh_output() and neigh_update_hhs().
247  	 */
248  	smp_store_release(&hh->hh_len, FWNET_HLEN);
249  
250  	return 0;
251  }
252  
253  /* Called by Address Resolution module to notify changes in address. */
fwnet_header_cache_update(struct hh_cache * hh,const struct net_device * net,const unsigned char * haddr)254  static void fwnet_header_cache_update(struct hh_cache *hh,
255  		const struct net_device *net, const unsigned char *haddr)
256  {
257  	memcpy((u8 *)hh->hh_data + HH_DATA_OFF(FWNET_HLEN), haddr, net->addr_len);
258  }
259  
fwnet_header_parse(const struct sk_buff * skb,unsigned char * haddr)260  static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
261  {
262  	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
263  
264  	return FWNET_ALEN;
265  }
266  
267  static const struct header_ops fwnet_header_ops = {
268  	.create         = fwnet_header_create,
269  	.cache		= fwnet_header_cache,
270  	.cache_update	= fwnet_header_cache_update,
271  	.parse          = fwnet_header_parse,
272  };
273  
274  /* FIXME: is this correct for all cases? */
fwnet_frag_overlap(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)275  static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
276  			       unsigned offset, unsigned len)
277  {
278  	struct fwnet_fragment_info *fi;
279  	unsigned end = offset + len;
280  
281  	list_for_each_entry(fi, &pd->fi_list, fi_link)
282  		if (offset < fi->offset + fi->len && end > fi->offset)
283  			return true;
284  
285  	return false;
286  }
287  
288  /* Assumes that new fragment does not overlap any existing fragments */
fwnet_frag_new(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)289  static struct fwnet_fragment_info *fwnet_frag_new(
290  	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
291  {
292  	struct fwnet_fragment_info *fi, *fi2, *new;
293  	struct list_head *list;
294  
295  	list = &pd->fi_list;
296  	list_for_each_entry(fi, &pd->fi_list, fi_link) {
297  		if (fi->offset + fi->len == offset) {
298  			/* The new fragment can be tacked on to the end */
299  			/* Did the new fragment plug a hole? */
300  			fi2 = list_entry(fi->fi_link.next,
301  					 struct fwnet_fragment_info, fi_link);
302  			if (fi->offset + fi->len == fi2->offset) {
303  				/* glue fragments together */
304  				fi->len += len + fi2->len;
305  				list_del(&fi2->fi_link);
306  				kfree(fi2);
307  			} else {
308  				fi->len += len;
309  			}
310  
311  			return fi;
312  		}
313  		if (offset + len == fi->offset) {
314  			/* The new fragment can be tacked on to the beginning */
315  			/* Did the new fragment plug a hole? */
316  			fi2 = list_entry(fi->fi_link.prev,
317  					 struct fwnet_fragment_info, fi_link);
318  			if (fi2->offset + fi2->len == fi->offset) {
319  				/* glue fragments together */
320  				fi2->len += fi->len + len;
321  				list_del(&fi->fi_link);
322  				kfree(fi);
323  
324  				return fi2;
325  			}
326  			fi->offset = offset;
327  			fi->len += len;
328  
329  			return fi;
330  		}
331  		if (offset > fi->offset + fi->len) {
332  			list = &fi->fi_link;
333  			break;
334  		}
335  		if (offset + len < fi->offset) {
336  			list = fi->fi_link.prev;
337  			break;
338  		}
339  	}
340  
341  	new = kmalloc(sizeof(*new), GFP_ATOMIC);
342  	if (!new)
343  		return NULL;
344  
345  	new->offset = offset;
346  	new->len = len;
347  	list_add(&new->fi_link, list);
348  
349  	return new;
350  }
351  
fwnet_pd_new(struct net_device * net,struct fwnet_peer * peer,u16 datagram_label,unsigned dg_size,void * frag_buf,unsigned frag_off,unsigned frag_len)352  static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
353  		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
354  		void *frag_buf, unsigned frag_off, unsigned frag_len)
355  {
356  	struct fwnet_partial_datagram *new;
357  	struct fwnet_fragment_info *fi;
358  
359  	new = kmalloc(sizeof(*new), GFP_ATOMIC);
360  	if (!new)
361  		goto fail;
362  
363  	INIT_LIST_HEAD(&new->fi_list);
364  	fi = fwnet_frag_new(new, frag_off, frag_len);
365  	if (fi == NULL)
366  		goto fail_w_new;
367  
368  	new->datagram_label = datagram_label;
369  	new->datagram_size = dg_size;
370  	new->skb = dev_alloc_skb(dg_size + LL_RESERVED_SPACE(net));
371  	if (new->skb == NULL)
372  		goto fail_w_fi;
373  
374  	skb_reserve(new->skb, LL_RESERVED_SPACE(net));
375  	new->pbuf = skb_put(new->skb, dg_size);
376  	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
377  	list_add_tail(&new->pd_link, &peer->pd_list);
378  
379  	return new;
380  
381  fail_w_fi:
382  	kfree(fi);
383  fail_w_new:
384  	kfree(new);
385  fail:
386  	return NULL;
387  }
388  
fwnet_pd_find(struct fwnet_peer * peer,u16 datagram_label)389  static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
390  						    u16 datagram_label)
391  {
392  	struct fwnet_partial_datagram *pd;
393  
394  	list_for_each_entry(pd, &peer->pd_list, pd_link)
395  		if (pd->datagram_label == datagram_label)
396  			return pd;
397  
398  	return NULL;
399  }
400  
401  
fwnet_pd_delete(struct fwnet_partial_datagram * old)402  static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
403  {
404  	struct fwnet_fragment_info *fi, *n;
405  
406  	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
407  		kfree(fi);
408  
409  	list_del(&old->pd_link);
410  	dev_kfree_skb_any(old->skb);
411  	kfree(old);
412  }
413  
fwnet_pd_update(struct fwnet_peer * peer,struct fwnet_partial_datagram * pd,void * frag_buf,unsigned frag_off,unsigned frag_len)414  static bool fwnet_pd_update(struct fwnet_peer *peer,
415  		struct fwnet_partial_datagram *pd, void *frag_buf,
416  		unsigned frag_off, unsigned frag_len)
417  {
418  	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
419  		return false;
420  
421  	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
422  
423  	/*
424  	 * Move list entry to beginning of list so that oldest partial
425  	 * datagrams percolate to the end of the list
426  	 */
427  	list_move_tail(&pd->pd_link, &peer->pd_list);
428  
429  	return true;
430  }
431  
fwnet_pd_is_complete(struct fwnet_partial_datagram * pd)432  static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
433  {
434  	struct fwnet_fragment_info *fi;
435  
436  	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
437  
438  	return fi->len == pd->datagram_size;
439  }
440  
441  /* caller must hold dev->lock */
fwnet_peer_find_by_guid(struct fwnet_device * dev,u64 guid)442  static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
443  						  u64 guid)
444  {
445  	struct fwnet_peer *peer;
446  
447  	list_for_each_entry(peer, &dev->peer_list, peer_link)
448  		if (peer->guid == guid)
449  			return peer;
450  
451  	return NULL;
452  }
453  
454  /* caller must hold dev->lock */
fwnet_peer_find_by_node_id(struct fwnet_device * dev,int node_id,int generation)455  static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
456  						int node_id, int generation)
457  {
458  	struct fwnet_peer *peer;
459  
460  	list_for_each_entry(peer, &dev->peer_list, peer_link)
461  		if (peer->node_id    == node_id &&
462  		    peer->generation == generation)
463  			return peer;
464  
465  	return NULL;
466  }
467  
468  /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
fwnet_max_payload(unsigned max_rec,unsigned speed)469  static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
470  {
471  	max_rec = min(max_rec, speed + 8);
472  	max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
473  
474  	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
475  }
476  
477  
fwnet_finish_incoming_packet(struct net_device * net,struct sk_buff * skb,u16 source_node_id,bool is_broadcast,u16 ether_type)478  static int fwnet_finish_incoming_packet(struct net_device *net,
479  					struct sk_buff *skb, u16 source_node_id,
480  					bool is_broadcast, u16 ether_type)
481  {
482  	int status, len;
483  
484  	switch (ether_type) {
485  	case ETH_P_ARP:
486  	case ETH_P_IP:
487  #if IS_ENABLED(CONFIG_IPV6)
488  	case ETH_P_IPV6:
489  #endif
490  		break;
491  	default:
492  		goto err;
493  	}
494  
495  	/* Write metadata, and then pass to the receive level */
496  	skb->dev = net;
497  	skb->ip_summed = CHECKSUM_NONE;
498  
499  	/*
500  	 * Parse the encapsulation header. This actually does the job of
501  	 * converting to an ethernet-like pseudo frame header.
502  	 */
503  	if (dev_hard_header(skb, net, ether_type,
504  			   is_broadcast ? net->broadcast : net->dev_addr,
505  			   NULL, skb->len) >= 0) {
506  		struct fwnet_header *eth;
507  		u16 *rawp;
508  		__be16 protocol;
509  
510  		skb_reset_mac_header(skb);
511  		skb_pull(skb, sizeof(*eth));
512  		eth = (struct fwnet_header *)skb_mac_header(skb);
513  		if (fwnet_hwaddr_is_multicast(eth->h_dest)) {
514  			if (memcmp(eth->h_dest, net->broadcast,
515  				   net->addr_len) == 0)
516  				skb->pkt_type = PACKET_BROADCAST;
517  #if 0
518  			else
519  				skb->pkt_type = PACKET_MULTICAST;
520  #endif
521  		} else {
522  			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
523  				skb->pkt_type = PACKET_OTHERHOST;
524  		}
525  		if (ntohs(eth->h_proto) >= ETH_P_802_3_MIN) {
526  			protocol = eth->h_proto;
527  		} else {
528  			rawp = (u16 *)skb->data;
529  			if (*rawp == 0xffff)
530  				protocol = htons(ETH_P_802_3);
531  			else
532  				protocol = htons(ETH_P_802_2);
533  		}
534  		skb->protocol = protocol;
535  	}
536  
537  	len = skb->len;
538  	status = netif_rx(skb);
539  	if (status == NET_RX_DROP) {
540  		net->stats.rx_errors++;
541  		net->stats.rx_dropped++;
542  	} else {
543  		net->stats.rx_packets++;
544  		net->stats.rx_bytes += len;
545  	}
546  
547  	return 0;
548  
549   err:
550  	net->stats.rx_errors++;
551  	net->stats.rx_dropped++;
552  
553  	dev_kfree_skb_any(skb);
554  
555  	return -ENOENT;
556  }
557  
fwnet_incoming_packet(struct fwnet_device * dev,__be32 * buf,int len,int source_node_id,int generation,bool is_broadcast)558  static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
559  				 int source_node_id, int generation,
560  				 bool is_broadcast)
561  {
562  	struct sk_buff *skb;
563  	struct net_device *net = dev->netdev;
564  	struct rfc2734_header hdr;
565  	unsigned lf;
566  	unsigned long flags;
567  	struct fwnet_peer *peer;
568  	struct fwnet_partial_datagram *pd;
569  	int fg_off;
570  	int dg_size;
571  	u16 datagram_label;
572  	int retval;
573  	u16 ether_type;
574  
575  	if (len <= RFC2374_UNFRAG_HDR_SIZE)
576  		return 0;
577  
578  	hdr.w0 = be32_to_cpu(buf[0]);
579  	lf = fwnet_get_hdr_lf(&hdr);
580  	if (lf == RFC2374_HDR_UNFRAG) {
581  		/*
582  		 * An unfragmented datagram has been received by the ieee1394
583  		 * bus. Build an skbuff around it so we can pass it to the
584  		 * high level network layer.
585  		 */
586  		ether_type = fwnet_get_hdr_ether_type(&hdr);
587  		buf++;
588  		len -= RFC2374_UNFRAG_HDR_SIZE;
589  
590  		skb = dev_alloc_skb(len + LL_RESERVED_SPACE(net));
591  		if (unlikely(!skb)) {
592  			net->stats.rx_dropped++;
593  
594  			return -ENOMEM;
595  		}
596  		skb_reserve(skb, LL_RESERVED_SPACE(net));
597  		skb_put_data(skb, buf, len);
598  
599  		return fwnet_finish_incoming_packet(net, skb, source_node_id,
600  						    is_broadcast, ether_type);
601  	}
602  
603  	/* A datagram fragment has been received, now the fun begins. */
604  
605  	if (len <= RFC2374_FRAG_HDR_SIZE)
606  		return 0;
607  
608  	hdr.w1 = ntohl(buf[1]);
609  	buf += 2;
610  	len -= RFC2374_FRAG_HDR_SIZE;
611  	if (lf == RFC2374_HDR_FIRSTFRAG) {
612  		ether_type = fwnet_get_hdr_ether_type(&hdr);
613  		fg_off = 0;
614  	} else {
615  		ether_type = 0;
616  		fg_off = fwnet_get_hdr_fg_off(&hdr);
617  	}
618  	datagram_label = fwnet_get_hdr_dgl(&hdr);
619  	dg_size = fwnet_get_hdr_dg_size(&hdr);
620  
621  	if (fg_off + len > dg_size)
622  		return 0;
623  
624  	spin_lock_irqsave(&dev->lock, flags);
625  
626  	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
627  	if (!peer) {
628  		retval = -ENOENT;
629  		goto fail;
630  	}
631  
632  	pd = fwnet_pd_find(peer, datagram_label);
633  	if (pd == NULL) {
634  		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
635  			/* remove the oldest */
636  			fwnet_pd_delete(list_first_entry(&peer->pd_list,
637  				struct fwnet_partial_datagram, pd_link));
638  			peer->pdg_size--;
639  		}
640  		pd = fwnet_pd_new(net, peer, datagram_label,
641  				  dg_size, buf, fg_off, len);
642  		if (pd == NULL) {
643  			retval = -ENOMEM;
644  			goto fail;
645  		}
646  		peer->pdg_size++;
647  	} else {
648  		if (fwnet_frag_overlap(pd, fg_off, len) ||
649  		    pd->datagram_size != dg_size) {
650  			/*
651  			 * Differing datagram sizes or overlapping fragments,
652  			 * discard old datagram and start a new one.
653  			 */
654  			fwnet_pd_delete(pd);
655  			pd = fwnet_pd_new(net, peer, datagram_label,
656  					  dg_size, buf, fg_off, len);
657  			if (pd == NULL) {
658  				peer->pdg_size--;
659  				retval = -ENOMEM;
660  				goto fail;
661  			}
662  		} else {
663  			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
664  				/*
665  				 * Couldn't save off fragment anyway
666  				 * so might as well obliterate the
667  				 * datagram now.
668  				 */
669  				fwnet_pd_delete(pd);
670  				peer->pdg_size--;
671  				retval = -ENOMEM;
672  				goto fail;
673  			}
674  		}
675  	} /* new datagram or add to existing one */
676  
677  	if (lf == RFC2374_HDR_FIRSTFRAG)
678  		pd->ether_type = ether_type;
679  
680  	if (fwnet_pd_is_complete(pd)) {
681  		ether_type = pd->ether_type;
682  		peer->pdg_size--;
683  		skb = skb_get(pd->skb);
684  		fwnet_pd_delete(pd);
685  
686  		spin_unlock_irqrestore(&dev->lock, flags);
687  
688  		return fwnet_finish_incoming_packet(net, skb, source_node_id,
689  						    false, ether_type);
690  	}
691  	/*
692  	 * Datagram is not complete, we're done for the
693  	 * moment.
694  	 */
695  	retval = 0;
696   fail:
697  	spin_unlock_irqrestore(&dev->lock, flags);
698  
699  	return retval;
700  }
701  
fwnet_receive_packet(struct fw_card * card,struct fw_request * r,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)702  static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
703  		int tcode, int destination, int source, int generation,
704  		unsigned long long offset, void *payload, size_t length,
705  		void *callback_data)
706  {
707  	struct fwnet_device *dev = callback_data;
708  	int rcode;
709  
710  	if (destination == IEEE1394_ALL_NODES) {
711  		// Although the response to the broadcast packet is not necessarily required, the
712  		// fw_send_response() function should still be called to maintain the reference
713  		// counting of the object. In the case, the call of function just releases the
714  		// object as a result to decrease the reference counting.
715  		rcode = RCODE_COMPLETE;
716  	} else if (offset != dev->handler.offset) {
717  		rcode = RCODE_ADDRESS_ERROR;
718  	} else if (tcode != TCODE_WRITE_BLOCK_REQUEST) {
719  		rcode = RCODE_TYPE_ERROR;
720  	} else if (fwnet_incoming_packet(dev, payload, length,
721  					 source, generation, false) != 0) {
722  		dev_err(&dev->netdev->dev, "incoming packet failure\n");
723  		rcode = RCODE_CONFLICT_ERROR;
724  	} else {
725  		rcode = RCODE_COMPLETE;
726  	}
727  
728  	fw_send_response(card, r, rcode);
729  }
730  
gasp_source_id(__be32 * p)731  static int gasp_source_id(__be32 *p)
732  {
733  	return be32_to_cpu(p[0]) >> 16;
734  }
735  
gasp_specifier_id(__be32 * p)736  static u32 gasp_specifier_id(__be32 *p)
737  {
738  	return (be32_to_cpu(p[0]) & 0xffff) << 8 |
739  	       (be32_to_cpu(p[1]) & 0xff000000) >> 24;
740  }
741  
gasp_version(__be32 * p)742  static u32 gasp_version(__be32 *p)
743  {
744  	return be32_to_cpu(p[1]) & 0xffffff;
745  }
746  
fwnet_receive_broadcast(struct fw_iso_context * context,u32 cycle,size_t header_length,void * header,void * data)747  static void fwnet_receive_broadcast(struct fw_iso_context *context,
748  		u32 cycle, size_t header_length, void *header, void *data)
749  {
750  	struct fwnet_device *dev;
751  	struct fw_iso_packet packet;
752  	__be16 *hdr_ptr;
753  	__be32 *buf_ptr;
754  	int retval;
755  	u32 length;
756  	unsigned long offset;
757  	unsigned long flags;
758  
759  	dev = data;
760  	hdr_ptr = header;
761  	length = be16_to_cpup(hdr_ptr);
762  
763  	spin_lock_irqsave(&dev->lock, flags);
764  
765  	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
766  	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
767  	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
768  		dev->broadcast_rcv_next_ptr = 0;
769  
770  	spin_unlock_irqrestore(&dev->lock, flags);
771  
772  	if (length > IEEE1394_GASP_HDR_SIZE &&
773  	    gasp_specifier_id(buf_ptr) == IANA_SPECIFIER_ID &&
774  	    (gasp_version(buf_ptr) == RFC2734_SW_VERSION
775  #if IS_ENABLED(CONFIG_IPV6)
776  	     || gasp_version(buf_ptr) == RFC3146_SW_VERSION
777  #endif
778  	    ))
779  		fwnet_incoming_packet(dev, buf_ptr + 2,
780  				      length - IEEE1394_GASP_HDR_SIZE,
781  				      gasp_source_id(buf_ptr),
782  				      context->card->generation, true);
783  
784  	packet.payload_length = dev->rcv_buffer_size;
785  	packet.interrupt = 1;
786  	packet.skip = 0;
787  	packet.tag = 3;
788  	packet.sy = 0;
789  	packet.header_length = IEEE1394_GASP_HDR_SIZE;
790  
791  	spin_lock_irqsave(&dev->lock, flags);
792  
793  	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
794  				      &dev->broadcast_rcv_buffer, offset);
795  
796  	spin_unlock_irqrestore(&dev->lock, flags);
797  
798  	if (retval >= 0)
799  		fw_iso_context_queue_flush(dev->broadcast_rcv_context);
800  	else
801  		dev_err(&dev->netdev->dev, "requeue failed\n");
802  }
803  
804  static struct kmem_cache *fwnet_packet_task_cache;
805  
fwnet_free_ptask(struct fwnet_packet_task * ptask)806  static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
807  {
808  	dev_kfree_skb_any(ptask->skb);
809  	kmem_cache_free(fwnet_packet_task_cache, ptask);
810  }
811  
812  /* Caller must hold dev->lock. */
dec_queued_datagrams(struct fwnet_device * dev)813  static void dec_queued_datagrams(struct fwnet_device *dev)
814  {
815  	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
816  		netif_wake_queue(dev->netdev);
817  }
818  
819  static int fwnet_send_packet(struct fwnet_packet_task *ptask);
820  
fwnet_transmit_packet_done(struct fwnet_packet_task * ptask)821  static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
822  {
823  	struct fwnet_device *dev = ptask->dev;
824  	struct sk_buff *skb = ptask->skb;
825  	unsigned long flags;
826  	bool free;
827  
828  	spin_lock_irqsave(&dev->lock, flags);
829  
830  	ptask->outstanding_pkts--;
831  
832  	/* Check whether we or the networking TX soft-IRQ is last user. */
833  	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
834  	if (free)
835  		dec_queued_datagrams(dev);
836  
837  	if (ptask->outstanding_pkts == 0) {
838  		dev->netdev->stats.tx_packets++;
839  		dev->netdev->stats.tx_bytes += skb->len;
840  	}
841  
842  	spin_unlock_irqrestore(&dev->lock, flags);
843  
844  	if (ptask->outstanding_pkts > 0) {
845  		u16 dg_size;
846  		u16 fg_off;
847  		u16 datagram_label;
848  		u16 lf;
849  
850  		/* Update the ptask to point to the next fragment and send it */
851  		lf = fwnet_get_hdr_lf(&ptask->hdr);
852  		switch (lf) {
853  		case RFC2374_HDR_LASTFRAG:
854  		case RFC2374_HDR_UNFRAG:
855  		default:
856  			dev_err(&dev->netdev->dev,
857  				"outstanding packet %x lf %x, header %x,%x\n",
858  				ptask->outstanding_pkts, lf, ptask->hdr.w0,
859  				ptask->hdr.w1);
860  			BUG();
861  
862  		case RFC2374_HDR_FIRSTFRAG:
863  			/* Set frag type here for future interior fragments */
864  			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
865  			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
866  			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
867  			break;
868  
869  		case RFC2374_HDR_INTFRAG:
870  			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
871  			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
872  				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
873  			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
874  			break;
875  		}
876  
877  		if (ptask->dest_node == IEEE1394_ALL_NODES) {
878  			skb_pull(skb,
879  				 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
880  		} else {
881  			skb_pull(skb, ptask->max_payload);
882  		}
883  		if (ptask->outstanding_pkts > 1) {
884  			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
885  					  dg_size, fg_off, datagram_label);
886  		} else {
887  			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
888  					  dg_size, fg_off, datagram_label);
889  			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
890  		}
891  		fwnet_send_packet(ptask);
892  	}
893  
894  	if (free)
895  		fwnet_free_ptask(ptask);
896  }
897  
fwnet_transmit_packet_failed(struct fwnet_packet_task * ptask)898  static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
899  {
900  	struct fwnet_device *dev = ptask->dev;
901  	unsigned long flags;
902  	bool free;
903  
904  	spin_lock_irqsave(&dev->lock, flags);
905  
906  	/* One fragment failed; don't try to send remaining fragments. */
907  	ptask->outstanding_pkts = 0;
908  
909  	/* Check whether we or the networking TX soft-IRQ is last user. */
910  	free = ptask->enqueued;
911  	if (free)
912  		dec_queued_datagrams(dev);
913  
914  	dev->netdev->stats.tx_dropped++;
915  	dev->netdev->stats.tx_errors++;
916  
917  	spin_unlock_irqrestore(&dev->lock, flags);
918  
919  	if (free)
920  		fwnet_free_ptask(ptask);
921  }
922  
fwnet_write_complete(struct fw_card * card,int rcode,void * payload,size_t length,void * data)923  static void fwnet_write_complete(struct fw_card *card, int rcode,
924  				 void *payload, size_t length, void *data)
925  {
926  	struct fwnet_packet_task *ptask = data;
927  	static unsigned long j;
928  	static int last_rcode, errors_skipped;
929  
930  	if (rcode == RCODE_COMPLETE) {
931  		fwnet_transmit_packet_done(ptask);
932  	} else {
933  		if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
934  			dev_err(&ptask->dev->netdev->dev,
935  				"fwnet_write_complete failed: %x (skipped %d)\n",
936  				rcode, errors_skipped);
937  
938  			errors_skipped = 0;
939  			last_rcode = rcode;
940  		} else {
941  			errors_skipped++;
942  		}
943  		fwnet_transmit_packet_failed(ptask);
944  	}
945  }
946  
fwnet_send_packet(struct fwnet_packet_task * ptask)947  static int fwnet_send_packet(struct fwnet_packet_task *ptask)
948  {
949  	struct fwnet_device *dev;
950  	unsigned tx_len;
951  	struct rfc2734_header *bufhdr;
952  	unsigned long flags;
953  	bool free;
954  
955  	dev = ptask->dev;
956  	tx_len = ptask->max_payload;
957  	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
958  	case RFC2374_HDR_UNFRAG:
959  		bufhdr = skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
960  		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
961  		break;
962  
963  	case RFC2374_HDR_FIRSTFRAG:
964  	case RFC2374_HDR_INTFRAG:
965  	case RFC2374_HDR_LASTFRAG:
966  		bufhdr = skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
967  		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
968  		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
969  		break;
970  
971  	default:
972  		BUG();
973  	}
974  	if (ptask->dest_node == IEEE1394_ALL_NODES) {
975  		u8 *p;
976  		int generation;
977  		int node_id;
978  		unsigned int sw_version;
979  
980  		/* ptask->generation may not have been set yet */
981  		generation = dev->card->generation;
982  		smp_rmb();
983  		node_id = dev->card->node_id;
984  
985  		switch (ptask->skb->protocol) {
986  		default:
987  			sw_version = RFC2734_SW_VERSION;
988  			break;
989  #if IS_ENABLED(CONFIG_IPV6)
990  		case htons(ETH_P_IPV6):
991  			sw_version = RFC3146_SW_VERSION;
992  #endif
993  		}
994  
995  		p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
996  		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
997  		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
998  						| sw_version, &p[4]);
999  
1000  		/* We should not transmit if broadcast_channel.valid == 0. */
1001  		fw_send_request(dev->card, &ptask->transaction,
1002  				TCODE_STREAM_DATA,
1003  				fw_stream_packet_destination_id(3,
1004  						IEEE1394_BROADCAST_CHANNEL, 0),
1005  				generation, SCODE_100, 0ULL, ptask->skb->data,
1006  				tx_len + 8, fwnet_write_complete, ptask);
1007  
1008  		spin_lock_irqsave(&dev->lock, flags);
1009  
1010  		/* If the AT tasklet already ran, we may be last user. */
1011  		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1012  		if (!free)
1013  			ptask->enqueued = true;
1014  		else
1015  			dec_queued_datagrams(dev);
1016  
1017  		spin_unlock_irqrestore(&dev->lock, flags);
1018  
1019  		goto out;
1020  	}
1021  
1022  	fw_send_request(dev->card, &ptask->transaction,
1023  			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1024  			ptask->generation, ptask->speed, ptask->fifo_addr,
1025  			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1026  
1027  	spin_lock_irqsave(&dev->lock, flags);
1028  
1029  	/* If the AT tasklet already ran, we may be last user. */
1030  	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1031  	if (!free)
1032  		ptask->enqueued = true;
1033  	else
1034  		dec_queued_datagrams(dev);
1035  
1036  	spin_unlock_irqrestore(&dev->lock, flags);
1037  
1038  	netif_trans_update(dev->netdev);
1039   out:
1040  	if (free)
1041  		fwnet_free_ptask(ptask);
1042  
1043  	return 0;
1044  }
1045  
fwnet_fifo_stop(struct fwnet_device * dev)1046  static void fwnet_fifo_stop(struct fwnet_device *dev)
1047  {
1048  	if (dev->local_fifo == FWNET_NO_FIFO_ADDR)
1049  		return;
1050  
1051  	fw_core_remove_address_handler(&dev->handler);
1052  	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1053  }
1054  
fwnet_fifo_start(struct fwnet_device * dev)1055  static int fwnet_fifo_start(struct fwnet_device *dev)
1056  {
1057  	int retval;
1058  
1059  	if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1060  		return 0;
1061  
1062  	dev->handler.length = 4096;
1063  	dev->handler.address_callback = fwnet_receive_packet;
1064  	dev->handler.callback_data = dev;
1065  
1066  	retval = fw_core_add_address_handler(&dev->handler,
1067  					     &fw_high_memory_region);
1068  	if (retval < 0)
1069  		return retval;
1070  
1071  	dev->local_fifo = dev->handler.offset;
1072  
1073  	return 0;
1074  }
1075  
__fwnet_broadcast_stop(struct fwnet_device * dev)1076  static void __fwnet_broadcast_stop(struct fwnet_device *dev)
1077  {
1078  	unsigned u;
1079  
1080  	if (dev->broadcast_state != FWNET_BROADCAST_ERROR) {
1081  		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++)
1082  			kunmap(dev->broadcast_rcv_buffer.pages[u]);
1083  		fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1084  	}
1085  	if (dev->broadcast_rcv_context) {
1086  		fw_iso_context_destroy(dev->broadcast_rcv_context);
1087  		dev->broadcast_rcv_context = NULL;
1088  	}
1089  	kfree(dev->broadcast_rcv_buffer_ptrs);
1090  	dev->broadcast_rcv_buffer_ptrs = NULL;
1091  	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1092  }
1093  
fwnet_broadcast_stop(struct fwnet_device * dev)1094  static void fwnet_broadcast_stop(struct fwnet_device *dev)
1095  {
1096  	if (dev->broadcast_state == FWNET_BROADCAST_ERROR)
1097  		return;
1098  	fw_iso_context_stop(dev->broadcast_rcv_context);
1099  	__fwnet_broadcast_stop(dev);
1100  }
1101  
fwnet_broadcast_start(struct fwnet_device * dev)1102  static int fwnet_broadcast_start(struct fwnet_device *dev)
1103  {
1104  	struct fw_iso_context *context;
1105  	int retval;
1106  	unsigned num_packets;
1107  	unsigned max_receive;
1108  	struct fw_iso_packet packet;
1109  	unsigned long offset;
1110  	void **ptrptr;
1111  	unsigned u;
1112  
1113  	if (dev->broadcast_state != FWNET_BROADCAST_ERROR)
1114  		return 0;
1115  
1116  	max_receive = 1U << (dev->card->max_receive + 1);
1117  	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1118  
1119  	ptrptr = kmalloc_array(num_packets, sizeof(void *), GFP_KERNEL);
1120  	if (!ptrptr) {
1121  		retval = -ENOMEM;
1122  		goto failed;
1123  	}
1124  	dev->broadcast_rcv_buffer_ptrs = ptrptr;
1125  
1126  	context = fw_iso_context_create(dev->card, FW_ISO_CONTEXT_RECEIVE,
1127  					IEEE1394_BROADCAST_CHANNEL,
1128  					dev->card->link_speed, 8,
1129  					fwnet_receive_broadcast, dev);
1130  	if (IS_ERR(context)) {
1131  		retval = PTR_ERR(context);
1132  		goto failed;
1133  	}
1134  
1135  	retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer, dev->card,
1136  				    FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1137  	if (retval < 0)
1138  		goto failed;
1139  
1140  	dev->broadcast_state = FWNET_BROADCAST_STOPPED;
1141  
1142  	for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1143  		void *ptr;
1144  		unsigned v;
1145  
1146  		ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1147  		for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1148  			*ptrptr++ = (void *) ((char *)ptr + v * max_receive);
1149  	}
1150  	dev->broadcast_rcv_context = context;
1151  
1152  	packet.payload_length = max_receive;
1153  	packet.interrupt = 1;
1154  	packet.skip = 0;
1155  	packet.tag = 3;
1156  	packet.sy = 0;
1157  	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1158  	offset = 0;
1159  
1160  	for (u = 0; u < num_packets; u++) {
1161  		retval = fw_iso_context_queue(context, &packet,
1162  				&dev->broadcast_rcv_buffer, offset);
1163  		if (retval < 0)
1164  			goto failed;
1165  
1166  		offset += max_receive;
1167  	}
1168  	dev->num_broadcast_rcv_ptrs = num_packets;
1169  	dev->rcv_buffer_size = max_receive;
1170  	dev->broadcast_rcv_next_ptr = 0U;
1171  	retval = fw_iso_context_start(context, -1, 0,
1172  			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1173  	if (retval < 0)
1174  		goto failed;
1175  
1176  	/* FIXME: adjust it according to the min. speed of all known peers? */
1177  	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1178  			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1179  	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1180  
1181  	return 0;
1182  
1183   failed:
1184  	__fwnet_broadcast_stop(dev);
1185  	return retval;
1186  }
1187  
set_carrier_state(struct fwnet_device * dev)1188  static void set_carrier_state(struct fwnet_device *dev)
1189  {
1190  	if (dev->peer_count > 1)
1191  		netif_carrier_on(dev->netdev);
1192  	else
1193  		netif_carrier_off(dev->netdev);
1194  }
1195  
1196  /* ifup */
fwnet_open(struct net_device * net)1197  static int fwnet_open(struct net_device *net)
1198  {
1199  	struct fwnet_device *dev = netdev_priv(net);
1200  	int ret;
1201  
1202  	ret = fwnet_broadcast_start(dev);
1203  	if (ret)
1204  		return ret;
1205  
1206  	netif_start_queue(net);
1207  
1208  	spin_lock_irq(&dev->lock);
1209  	set_carrier_state(dev);
1210  	spin_unlock_irq(&dev->lock);
1211  
1212  	return 0;
1213  }
1214  
1215  /* ifdown */
fwnet_stop(struct net_device * net)1216  static int fwnet_stop(struct net_device *net)
1217  {
1218  	struct fwnet_device *dev = netdev_priv(net);
1219  
1220  	netif_stop_queue(net);
1221  	fwnet_broadcast_stop(dev);
1222  
1223  	return 0;
1224  }
1225  
fwnet_tx(struct sk_buff * skb,struct net_device * net)1226  static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1227  {
1228  	struct fwnet_header hdr_buf;
1229  	struct fwnet_device *dev = netdev_priv(net);
1230  	__be16 proto;
1231  	u16 dest_node;
1232  	unsigned max_payload;
1233  	u16 dg_size;
1234  	u16 *datagram_label_ptr;
1235  	struct fwnet_packet_task *ptask;
1236  	struct fwnet_peer *peer;
1237  	unsigned long flags;
1238  
1239  	spin_lock_irqsave(&dev->lock, flags);
1240  
1241  	/* Can this happen? */
1242  	if (netif_queue_stopped(dev->netdev)) {
1243  		spin_unlock_irqrestore(&dev->lock, flags);
1244  
1245  		return NETDEV_TX_BUSY;
1246  	}
1247  
1248  	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1249  	if (ptask == NULL)
1250  		goto fail;
1251  
1252  	skb = skb_share_check(skb, GFP_ATOMIC);
1253  	if (!skb)
1254  		goto fail;
1255  
1256  	/*
1257  	 * Make a copy of the driver-specific header.
1258  	 * We might need to rebuild the header on tx failure.
1259  	 */
1260  	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1261  	proto = hdr_buf.h_proto;
1262  
1263  	switch (proto) {
1264  	case htons(ETH_P_ARP):
1265  	case htons(ETH_P_IP):
1266  #if IS_ENABLED(CONFIG_IPV6)
1267  	case htons(ETH_P_IPV6):
1268  #endif
1269  		break;
1270  	default:
1271  		goto fail;
1272  	}
1273  
1274  	skb_pull(skb, sizeof(hdr_buf));
1275  	dg_size = skb->len;
1276  
1277  	/*
1278  	 * Set the transmission type for the packet.  ARP packets and IP
1279  	 * broadcast packets are sent via GASP.
1280  	 */
1281  	if (fwnet_hwaddr_is_multicast(hdr_buf.h_dest)) {
1282  		max_payload        = dev->broadcast_xmt_max_payload;
1283  		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1284  
1285  		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1286  		ptask->generation  = 0;
1287  		ptask->dest_node   = IEEE1394_ALL_NODES;
1288  		ptask->speed       = SCODE_100;
1289  	} else {
1290  		union fwnet_hwaddr *ha = (union fwnet_hwaddr *)hdr_buf.h_dest;
1291  		__be64 guid = get_unaligned(&ha->uc.uniq_id);
1292  		u8 generation;
1293  
1294  		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1295  		if (!peer)
1296  			goto fail;
1297  
1298  		generation         = peer->generation;
1299  		dest_node          = peer->node_id;
1300  		max_payload        = peer->max_payload;
1301  		datagram_label_ptr = &peer->datagram_label;
1302  
1303  		ptask->fifo_addr   = get_unaligned_be48(ha->uc.fifo);
1304  		ptask->generation  = generation;
1305  		ptask->dest_node   = dest_node;
1306  		ptask->speed       = peer->speed;
1307  	}
1308  
1309  	ptask->hdr.w0 = 0;
1310  	ptask->hdr.w1 = 0;
1311  	ptask->skb = skb;
1312  	ptask->dev = dev;
1313  
1314  	/* Does it all fit in one packet? */
1315  	if (dg_size <= max_payload) {
1316  		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1317  		ptask->outstanding_pkts = 1;
1318  		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1319  	} else {
1320  		u16 datagram_label;
1321  
1322  		max_payload -= RFC2374_FRAG_OVERHEAD;
1323  		datagram_label = (*datagram_label_ptr)++;
1324  		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1325  				  datagram_label);
1326  		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1327  		max_payload += RFC2374_FRAG_HDR_SIZE;
1328  	}
1329  
1330  	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1331  		netif_stop_queue(dev->netdev);
1332  
1333  	spin_unlock_irqrestore(&dev->lock, flags);
1334  
1335  	ptask->max_payload = max_payload;
1336  	ptask->enqueued    = 0;
1337  
1338  	fwnet_send_packet(ptask);
1339  
1340  	return NETDEV_TX_OK;
1341  
1342   fail:
1343  	spin_unlock_irqrestore(&dev->lock, flags);
1344  
1345  	if (ptask)
1346  		kmem_cache_free(fwnet_packet_task_cache, ptask);
1347  
1348  	if (skb != NULL)
1349  		dev_kfree_skb(skb);
1350  
1351  	net->stats.tx_dropped++;
1352  	net->stats.tx_errors++;
1353  
1354  	/*
1355  	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1356  	 * causes serious problems" here, allegedly.  Before that patch,
1357  	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1358  	 * Perhaps more needs to be done?  Stop the queue in serious
1359  	 * conditions and restart it elsewhere?
1360  	 */
1361  	return NETDEV_TX_OK;
1362  }
1363  
1364  static const struct ethtool_ops fwnet_ethtool_ops = {
1365  	.get_link	= ethtool_op_get_link,
1366  };
1367  
1368  static const struct net_device_ops fwnet_netdev_ops = {
1369  	.ndo_open       = fwnet_open,
1370  	.ndo_stop	= fwnet_stop,
1371  	.ndo_start_xmit = fwnet_tx,
1372  };
1373  
fwnet_init_dev(struct net_device * net)1374  static void fwnet_init_dev(struct net_device *net)
1375  {
1376  	net->header_ops		= &fwnet_header_ops;
1377  	net->netdev_ops		= &fwnet_netdev_ops;
1378  	net->watchdog_timeo	= 2 * HZ;
1379  	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1380  	net->features		= NETIF_F_HIGHDMA;
1381  	net->addr_len		= FWNET_ALEN;
1382  	net->hard_header_len	= FWNET_HLEN;
1383  	net->type		= ARPHRD_IEEE1394;
1384  	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1385  	net->ethtool_ops	= &fwnet_ethtool_ops;
1386  }
1387  
1388  /* caller must hold fwnet_device_mutex */
fwnet_dev_find(struct fw_card * card)1389  static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1390  {
1391  	struct fwnet_device *dev;
1392  
1393  	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1394  		if (dev->card == card)
1395  			return dev;
1396  
1397  	return NULL;
1398  }
1399  
fwnet_add_peer(struct fwnet_device * dev,struct fw_unit * unit,struct fw_device * device)1400  static int fwnet_add_peer(struct fwnet_device *dev,
1401  			  struct fw_unit *unit, struct fw_device *device)
1402  {
1403  	struct fwnet_peer *peer;
1404  
1405  	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1406  	if (!peer)
1407  		return -ENOMEM;
1408  
1409  	dev_set_drvdata(&unit->device, peer);
1410  
1411  	peer->dev = dev;
1412  	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1413  	INIT_LIST_HEAD(&peer->pd_list);
1414  	peer->pdg_size = 0;
1415  	peer->datagram_label = 0;
1416  	peer->speed = device->max_speed;
1417  	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1418  
1419  	peer->generation = device->generation;
1420  	smp_rmb();
1421  	peer->node_id = device->node_id;
1422  
1423  	spin_lock_irq(&dev->lock);
1424  	list_add_tail(&peer->peer_link, &dev->peer_list);
1425  	dev->peer_count++;
1426  	set_carrier_state(dev);
1427  	spin_unlock_irq(&dev->lock);
1428  
1429  	return 0;
1430  }
1431  
fwnet_probe(struct fw_unit * unit,const struct ieee1394_device_id * id)1432  static int fwnet_probe(struct fw_unit *unit,
1433  		       const struct ieee1394_device_id *id)
1434  {
1435  	struct fw_device *device = fw_parent_device(unit);
1436  	struct fw_card *card = device->card;
1437  	struct net_device *net;
1438  	bool allocated_netdev = false;
1439  	struct fwnet_device *dev;
1440  	union fwnet_hwaddr ha;
1441  	int ret;
1442  
1443  	mutex_lock(&fwnet_device_mutex);
1444  
1445  	dev = fwnet_dev_find(card);
1446  	if (dev) {
1447  		net = dev->netdev;
1448  		goto have_dev;
1449  	}
1450  
1451  	net = alloc_netdev(sizeof(*dev), "firewire%d", NET_NAME_UNKNOWN,
1452  			   fwnet_init_dev);
1453  	if (net == NULL) {
1454  		mutex_unlock(&fwnet_device_mutex);
1455  		return -ENOMEM;
1456  	}
1457  
1458  	allocated_netdev = true;
1459  	SET_NETDEV_DEV(net, card->device);
1460  	dev = netdev_priv(net);
1461  
1462  	spin_lock_init(&dev->lock);
1463  	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1464  	dev->broadcast_rcv_context = NULL;
1465  	dev->broadcast_xmt_max_payload = 0;
1466  	dev->broadcast_xmt_datagramlabel = 0;
1467  	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1468  	dev->queued_datagrams = 0;
1469  	INIT_LIST_HEAD(&dev->peer_list);
1470  	dev->card = card;
1471  	dev->netdev = net;
1472  
1473  	ret = fwnet_fifo_start(dev);
1474  	if (ret < 0)
1475  		goto out;
1476  	dev->local_fifo = dev->handler.offset;
1477  
1478  	/*
1479  	 * default MTU: RFC 2734 cl. 4, RFC 3146 cl. 4
1480  	 * maximum MTU: RFC 2734 cl. 4.2, fragment encapsulation header's
1481  	 *              maximum possible datagram_size + 1 = 0xfff + 1
1482  	 */
1483  	net->mtu = 1500U;
1484  	net->min_mtu = ETH_MIN_MTU;
1485  	net->max_mtu = 4096U;
1486  
1487  	/* Set our hardware address while we're at it */
1488  	ha.uc.uniq_id = cpu_to_be64(card->guid);
1489  	ha.uc.max_rec = dev->card->max_receive;
1490  	ha.uc.sspd = dev->card->link_speed;
1491  	put_unaligned_be48(dev->local_fifo, ha.uc.fifo);
1492  	dev_addr_set(net, ha.u);
1493  
1494  	memset(net->broadcast, -1, net->addr_len);
1495  
1496  	ret = register_netdev(net);
1497  	if (ret)
1498  		goto out;
1499  
1500  	list_add_tail(&dev->dev_link, &fwnet_device_list);
1501  	dev_notice(&net->dev, "IP over IEEE 1394 on card %s\n",
1502  		   dev_name(card->device));
1503   have_dev:
1504  	ret = fwnet_add_peer(dev, unit, device);
1505  	if (ret && allocated_netdev) {
1506  		unregister_netdev(net);
1507  		list_del(&dev->dev_link);
1508   out:
1509  		fwnet_fifo_stop(dev);
1510  		free_netdev(net);
1511  	}
1512  
1513  	mutex_unlock(&fwnet_device_mutex);
1514  
1515  	return ret;
1516  }
1517  
1518  /*
1519   * FIXME abort partially sent fragmented datagrams,
1520   * discard partially received fragmented datagrams
1521   */
fwnet_update(struct fw_unit * unit)1522  static void fwnet_update(struct fw_unit *unit)
1523  {
1524  	struct fw_device *device = fw_parent_device(unit);
1525  	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1526  	int generation;
1527  
1528  	generation = device->generation;
1529  
1530  	spin_lock_irq(&peer->dev->lock);
1531  	peer->node_id    = device->node_id;
1532  	peer->generation = generation;
1533  	spin_unlock_irq(&peer->dev->lock);
1534  }
1535  
fwnet_remove_peer(struct fwnet_peer * peer,struct fwnet_device * dev)1536  static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1537  {
1538  	struct fwnet_partial_datagram *pd, *pd_next;
1539  
1540  	spin_lock_irq(&dev->lock);
1541  	list_del(&peer->peer_link);
1542  	dev->peer_count--;
1543  	set_carrier_state(dev);
1544  	spin_unlock_irq(&dev->lock);
1545  
1546  	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1547  		fwnet_pd_delete(pd);
1548  
1549  	kfree(peer);
1550  }
1551  
fwnet_remove(struct fw_unit * unit)1552  static void fwnet_remove(struct fw_unit *unit)
1553  {
1554  	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1555  	struct fwnet_device *dev = peer->dev;
1556  	struct net_device *net;
1557  	int i;
1558  
1559  	mutex_lock(&fwnet_device_mutex);
1560  
1561  	net = dev->netdev;
1562  
1563  	fwnet_remove_peer(peer, dev);
1564  
1565  	if (list_empty(&dev->peer_list)) {
1566  		unregister_netdev(net);
1567  
1568  		fwnet_fifo_stop(dev);
1569  
1570  		for (i = 0; dev->queued_datagrams && i < 5; i++)
1571  			ssleep(1);
1572  		WARN_ON(dev->queued_datagrams);
1573  		list_del(&dev->dev_link);
1574  
1575  		free_netdev(net);
1576  	}
1577  
1578  	mutex_unlock(&fwnet_device_mutex);
1579  }
1580  
1581  static const struct ieee1394_device_id fwnet_id_table[] = {
1582  	{
1583  		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1584  				IEEE1394_MATCH_VERSION,
1585  		.specifier_id = IANA_SPECIFIER_ID,
1586  		.version      = RFC2734_SW_VERSION,
1587  	},
1588  #if IS_ENABLED(CONFIG_IPV6)
1589  	{
1590  		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1591  				IEEE1394_MATCH_VERSION,
1592  		.specifier_id = IANA_SPECIFIER_ID,
1593  		.version      = RFC3146_SW_VERSION,
1594  	},
1595  #endif
1596  	{ }
1597  };
1598  
1599  static struct fw_driver fwnet_driver = {
1600  	.driver = {
1601  		.owner  = THIS_MODULE,
1602  		.name   = KBUILD_MODNAME,
1603  		.bus    = &fw_bus_type,
1604  	},
1605  	.probe    = fwnet_probe,
1606  	.update   = fwnet_update,
1607  	.remove   = fwnet_remove,
1608  	.id_table = fwnet_id_table,
1609  };
1610  
1611  static const u32 rfc2374_unit_directory_data[] = {
1612  	0x00040000,	/* directory_length		*/
1613  	0x1200005e,	/* unit_specifier_id: IANA	*/
1614  	0x81000003,	/* textual descriptor offset	*/
1615  	0x13000001,	/* unit_sw_version: RFC 2734	*/
1616  	0x81000005,	/* textual descriptor offset	*/
1617  	0x00030000,	/* descriptor_length		*/
1618  	0x00000000,	/* text				*/
1619  	0x00000000,	/* minimal ASCII, en		*/
1620  	0x49414e41,	/* I A N A			*/
1621  	0x00030000,	/* descriptor_length		*/
1622  	0x00000000,	/* text				*/
1623  	0x00000000,	/* minimal ASCII, en		*/
1624  	0x49507634,	/* I P v 4			*/
1625  };
1626  
1627  static struct fw_descriptor rfc2374_unit_directory = {
1628  	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1629  	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1630  	.data   = rfc2374_unit_directory_data
1631  };
1632  
1633  #if IS_ENABLED(CONFIG_IPV6)
1634  static const u32 rfc3146_unit_directory_data[] = {
1635  	0x00040000,	/* directory_length		*/
1636  	0x1200005e,	/* unit_specifier_id: IANA	*/
1637  	0x81000003,	/* textual descriptor offset	*/
1638  	0x13000002,	/* unit_sw_version: RFC 3146	*/
1639  	0x81000005,	/* textual descriptor offset	*/
1640  	0x00030000,	/* descriptor_length		*/
1641  	0x00000000,	/* text				*/
1642  	0x00000000,	/* minimal ASCII, en		*/
1643  	0x49414e41,	/* I A N A			*/
1644  	0x00030000,	/* descriptor_length		*/
1645  	0x00000000,	/* text				*/
1646  	0x00000000,	/* minimal ASCII, en		*/
1647  	0x49507636,	/* I P v 6			*/
1648  };
1649  
1650  static struct fw_descriptor rfc3146_unit_directory = {
1651  	.length = ARRAY_SIZE(rfc3146_unit_directory_data),
1652  	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1653  	.data   = rfc3146_unit_directory_data
1654  };
1655  #endif
1656  
fwnet_init(void)1657  static int __init fwnet_init(void)
1658  {
1659  	int err;
1660  
1661  	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1662  	if (err)
1663  		return err;
1664  
1665  #if IS_ENABLED(CONFIG_IPV6)
1666  	err = fw_core_add_descriptor(&rfc3146_unit_directory);
1667  	if (err)
1668  		goto out;
1669  #endif
1670  
1671  	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1672  			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1673  	if (!fwnet_packet_task_cache) {
1674  		err = -ENOMEM;
1675  		goto out2;
1676  	}
1677  
1678  	err = driver_register(&fwnet_driver.driver);
1679  	if (!err)
1680  		return 0;
1681  
1682  	kmem_cache_destroy(fwnet_packet_task_cache);
1683  out2:
1684  #if IS_ENABLED(CONFIG_IPV6)
1685  	fw_core_remove_descriptor(&rfc3146_unit_directory);
1686  out:
1687  #endif
1688  	fw_core_remove_descriptor(&rfc2374_unit_directory);
1689  
1690  	return err;
1691  }
1692  module_init(fwnet_init);
1693  
fwnet_cleanup(void)1694  static void __exit fwnet_cleanup(void)
1695  {
1696  	driver_unregister(&fwnet_driver.driver);
1697  	kmem_cache_destroy(fwnet_packet_task_cache);
1698  #if IS_ENABLED(CONFIG_IPV6)
1699  	fw_core_remove_descriptor(&rfc3146_unit_directory);
1700  #endif
1701  	fw_core_remove_descriptor(&rfc2374_unit_directory);
1702  }
1703  module_exit(fwnet_cleanup);
1704  
1705  MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1706  MODULE_DESCRIPTION("IP over IEEE1394 as per RFC 2734/3146");
1707  MODULE_LICENSE("GPL");
1708  MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1709