1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
4 * Author: Chao Xie <chao.xie@marvell.com>
5 * Neil Zhang <zhangwm@marvell.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/ioport.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 #include <linux/device.h>
24 #include <linux/usb/ch9.h>
25 #include <linux/usb/gadget.h>
26 #include <linux/usb/otg.h>
27 #include <linux/pm.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/platform_data/mv_usb.h>
33 #include <linux/unaligned.h>
34
35 #include "mv_udc.h"
36
37 #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
38
39 #define ep_dir(ep) (((ep)->ep_num == 0) ? \
40 ((ep)->udc->ep0_dir) : ((ep)->direction))
41
42 /* timeout value -- usec */
43 #define RESET_TIMEOUT 10000
44 #define FLUSH_TIMEOUT 10000
45 #define EPSTATUS_TIMEOUT 10000
46 #define PRIME_TIMEOUT 10000
47 #define READSAFE_TIMEOUT 1000
48
49 #define LOOPS_USEC_SHIFT 1
50 #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
51 #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
52
53 static DECLARE_COMPLETION(release_done);
54
55 static const char driver_name[] = "mv_udc";
56
57 static void nuke(struct mv_ep *ep, int status);
58 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
59
60 /* for endpoint 0 operations */
61 static const struct usb_endpoint_descriptor mv_ep0_desc = {
62 .bLength = USB_DT_ENDPOINT_SIZE,
63 .bDescriptorType = USB_DT_ENDPOINT,
64 .bEndpointAddress = 0,
65 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
66 .wMaxPacketSize = EP0_MAX_PKT_SIZE,
67 };
68
ep0_reset(struct mv_udc * udc)69 static void ep0_reset(struct mv_udc *udc)
70 {
71 struct mv_ep *ep;
72 u32 epctrlx;
73 int i = 0;
74
75 /* ep0 in and out */
76 for (i = 0; i < 2; i++) {
77 ep = &udc->eps[i];
78 ep->udc = udc;
79
80 /* ep0 dQH */
81 ep->dqh = &udc->ep_dqh[i];
82
83 /* configure ep0 endpoint capabilities in dQH */
84 ep->dqh->max_packet_length =
85 (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
86 | EP_QUEUE_HEAD_IOS;
87
88 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
89
90 epctrlx = readl(&udc->op_regs->epctrlx[0]);
91 if (i) { /* TX */
92 epctrlx |= EPCTRL_TX_ENABLE
93 | (USB_ENDPOINT_XFER_CONTROL
94 << EPCTRL_TX_EP_TYPE_SHIFT);
95
96 } else { /* RX */
97 epctrlx |= EPCTRL_RX_ENABLE
98 | (USB_ENDPOINT_XFER_CONTROL
99 << EPCTRL_RX_EP_TYPE_SHIFT);
100 }
101
102 writel(epctrlx, &udc->op_regs->epctrlx[0]);
103 }
104 }
105
106 /* protocol ep0 stall, will automatically be cleared on new transaction */
ep0_stall(struct mv_udc * udc)107 static void ep0_stall(struct mv_udc *udc)
108 {
109 u32 epctrlx;
110
111 /* set TX and RX to stall */
112 epctrlx = readl(&udc->op_regs->epctrlx[0]);
113 epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
114 writel(epctrlx, &udc->op_regs->epctrlx[0]);
115
116 /* update ep0 state */
117 udc->ep0_state = WAIT_FOR_SETUP;
118 udc->ep0_dir = EP_DIR_OUT;
119 }
120
process_ep_req(struct mv_udc * udc,int index,struct mv_req * curr_req)121 static int process_ep_req(struct mv_udc *udc, int index,
122 struct mv_req *curr_req)
123 {
124 struct mv_dtd *curr_dtd;
125 struct mv_dqh *curr_dqh;
126 int actual, remaining_length;
127 int i, direction;
128 int retval = 0;
129 u32 errors;
130 u32 bit_pos;
131
132 curr_dqh = &udc->ep_dqh[index];
133 direction = index % 2;
134
135 curr_dtd = curr_req->head;
136 actual = curr_req->req.length;
137
138 for (i = 0; i < curr_req->dtd_count; i++) {
139 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
140 dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
141 udc->eps[index].name);
142 return 1;
143 }
144
145 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
146 if (!errors) {
147 remaining_length =
148 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
149 >> DTD_LENGTH_BIT_POS;
150 actual -= remaining_length;
151
152 if (remaining_length) {
153 if (direction) {
154 dev_dbg(&udc->dev->dev,
155 "TX dTD remains data\n");
156 retval = -EPROTO;
157 break;
158 } else
159 break;
160 }
161 } else {
162 dev_info(&udc->dev->dev,
163 "complete_tr error: ep=%d %s: error = 0x%x\n",
164 index >> 1, direction ? "SEND" : "RECV",
165 errors);
166 if (errors & DTD_STATUS_HALTED) {
167 /* Clear the errors and Halt condition */
168 curr_dqh->size_ioc_int_sts &= ~errors;
169 retval = -EPIPE;
170 } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
171 retval = -EPROTO;
172 } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
173 retval = -EILSEQ;
174 }
175 }
176 if (i != curr_req->dtd_count - 1)
177 curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
178 }
179 if (retval)
180 return retval;
181
182 if (direction == EP_DIR_OUT)
183 bit_pos = 1 << curr_req->ep->ep_num;
184 else
185 bit_pos = 1 << (16 + curr_req->ep->ep_num);
186
187 while (curr_dqh->curr_dtd_ptr == curr_dtd->td_dma) {
188 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
189 while (readl(&udc->op_regs->epstatus) & bit_pos)
190 udelay(1);
191 break;
192 }
193 udelay(1);
194 }
195
196 curr_req->req.actual = actual;
197
198 return 0;
199 }
200
201 /*
202 * done() - retire a request; caller blocked irqs
203 * @status : request status to be set, only works when
204 * request is still in progress.
205 */
done(struct mv_ep * ep,struct mv_req * req,int status)206 static void done(struct mv_ep *ep, struct mv_req *req, int status)
207 __releases(&ep->udc->lock)
208 __acquires(&ep->udc->lock)
209 {
210 struct mv_udc *udc = NULL;
211 unsigned char stopped = ep->stopped;
212 struct mv_dtd *curr_td, *next_td;
213 int j;
214
215 udc = (struct mv_udc *)ep->udc;
216 /* Removed the req from fsl_ep->queue */
217 list_del_init(&req->queue);
218
219 /* req.status should be set as -EINPROGRESS in ep_queue() */
220 if (req->req.status == -EINPROGRESS)
221 req->req.status = status;
222 else
223 status = req->req.status;
224
225 /* Free dtd for the request */
226 next_td = req->head;
227 for (j = 0; j < req->dtd_count; j++) {
228 curr_td = next_td;
229 if (j != req->dtd_count - 1)
230 next_td = curr_td->next_dtd_virt;
231 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
232 }
233
234 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
235
236 if (status && (status != -ESHUTDOWN))
237 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
238 ep->ep.name, &req->req, status,
239 req->req.actual, req->req.length);
240
241 ep->stopped = 1;
242
243 spin_unlock(&ep->udc->lock);
244
245 usb_gadget_giveback_request(&ep->ep, &req->req);
246
247 spin_lock(&ep->udc->lock);
248 ep->stopped = stopped;
249 }
250
queue_dtd(struct mv_ep * ep,struct mv_req * req)251 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
252 {
253 struct mv_udc *udc;
254 struct mv_dqh *dqh;
255 u32 bit_pos, direction;
256 u32 usbcmd, epstatus;
257 unsigned int loops;
258 int retval = 0;
259
260 udc = ep->udc;
261 direction = ep_dir(ep);
262 dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
263 bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
264
265 /* check if the pipe is empty */
266 if (!(list_empty(&ep->queue))) {
267 struct mv_req *lastreq;
268 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
269 lastreq->tail->dtd_next =
270 req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
271
272 wmb();
273
274 if (readl(&udc->op_regs->epprime) & bit_pos)
275 goto done;
276
277 loops = LOOPS(READSAFE_TIMEOUT);
278 while (1) {
279 /* start with setting the semaphores */
280 usbcmd = readl(&udc->op_regs->usbcmd);
281 usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
282 writel(usbcmd, &udc->op_regs->usbcmd);
283
284 /* read the endpoint status */
285 epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
286
287 /*
288 * Reread the ATDTW semaphore bit to check if it is
289 * cleared. When hardware see a hazard, it will clear
290 * the bit or else we remain set to 1 and we can
291 * proceed with priming of endpoint if not already
292 * primed.
293 */
294 if (readl(&udc->op_regs->usbcmd)
295 & USBCMD_ATDTW_TRIPWIRE_SET)
296 break;
297
298 loops--;
299 if (loops == 0) {
300 dev_err(&udc->dev->dev,
301 "Timeout for ATDTW_TRIPWIRE...\n");
302 retval = -ETIME;
303 goto done;
304 }
305 udelay(LOOPS_USEC);
306 }
307
308 /* Clear the semaphore */
309 usbcmd = readl(&udc->op_regs->usbcmd);
310 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
311 writel(usbcmd, &udc->op_regs->usbcmd);
312
313 if (epstatus)
314 goto done;
315 }
316
317 /* Write dQH next pointer and terminate bit to 0 */
318 dqh->next_dtd_ptr = req->head->td_dma
319 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
320
321 /* clear active and halt bit, in case set from a previous error */
322 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
323
324 /* Ensure that updates to the QH will occur before priming. */
325 wmb();
326
327 /* Prime the Endpoint */
328 writel(bit_pos, &udc->op_regs->epprime);
329
330 done:
331 return retval;
332 }
333
build_dtd(struct mv_req * req,unsigned * length,dma_addr_t * dma,int * is_last)334 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
335 dma_addr_t *dma, int *is_last)
336 {
337 struct mv_dtd *dtd;
338 struct mv_udc *udc;
339 struct mv_dqh *dqh;
340 u32 temp, mult = 0;
341
342 /* how big will this transfer be? */
343 if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
344 dqh = req->ep->dqh;
345 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
346 & 0x3;
347 *length = min(req->req.length - req->req.actual,
348 (unsigned)(mult * req->ep->ep.maxpacket));
349 } else
350 *length = min(req->req.length - req->req.actual,
351 (unsigned)EP_MAX_LENGTH_TRANSFER);
352
353 udc = req->ep->udc;
354
355 /*
356 * Be careful that no _GFP_HIGHMEM is set,
357 * or we can not use dma_to_virt
358 */
359 dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
360 if (dtd == NULL)
361 return dtd;
362
363 dtd->td_dma = *dma;
364 /* initialize buffer page pointers */
365 temp = (u32)(req->req.dma + req->req.actual);
366 dtd->buff_ptr0 = cpu_to_le32(temp);
367 temp &= ~0xFFF;
368 dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
369 dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
370 dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
371 dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
372
373 req->req.actual += *length;
374
375 /* zlp is needed if req->req.zero is set */
376 if (req->req.zero) {
377 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
378 *is_last = 1;
379 else
380 *is_last = 0;
381 } else if (req->req.length == req->req.actual)
382 *is_last = 1;
383 else
384 *is_last = 0;
385
386 /* Fill in the transfer size; set active bit */
387 temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
388
389 /* Enable interrupt for the last dtd of a request */
390 if (*is_last && !req->req.no_interrupt)
391 temp |= DTD_IOC;
392
393 temp |= mult << 10;
394
395 dtd->size_ioc_sts = temp;
396
397 mb();
398
399 return dtd;
400 }
401
402 /* generate dTD linked list for a request */
req_to_dtd(struct mv_req * req)403 static int req_to_dtd(struct mv_req *req)
404 {
405 unsigned count;
406 int is_last, is_first = 1;
407 struct mv_dtd *dtd, *last_dtd = NULL;
408 dma_addr_t dma;
409
410 do {
411 dtd = build_dtd(req, &count, &dma, &is_last);
412 if (dtd == NULL)
413 return -ENOMEM;
414
415 if (is_first) {
416 is_first = 0;
417 req->head = dtd;
418 } else {
419 last_dtd->dtd_next = dma;
420 last_dtd->next_dtd_virt = dtd;
421 }
422 last_dtd = dtd;
423 req->dtd_count++;
424 } while (!is_last);
425
426 /* set terminate bit to 1 for the last dTD */
427 dtd->dtd_next = DTD_NEXT_TERMINATE;
428
429 req->tail = dtd;
430
431 return 0;
432 }
433
mv_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)434 static int mv_ep_enable(struct usb_ep *_ep,
435 const struct usb_endpoint_descriptor *desc)
436 {
437 struct mv_udc *udc;
438 struct mv_ep *ep;
439 struct mv_dqh *dqh;
440 u16 max = 0;
441 u32 bit_pos, epctrlx, direction;
442 const unsigned char zlt = 1;
443 unsigned char ios, mult;
444 unsigned long flags;
445
446 ep = container_of(_ep, struct mv_ep, ep);
447 udc = ep->udc;
448
449 if (!_ep || !desc
450 || desc->bDescriptorType != USB_DT_ENDPOINT)
451 return -EINVAL;
452
453 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
454 return -ESHUTDOWN;
455
456 direction = ep_dir(ep);
457 max = usb_endpoint_maxp(desc);
458
459 /*
460 * disable HW zero length termination select
461 * driver handles zero length packet through req->req.zero
462 */
463 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
464
465 /* Check if the Endpoint is Primed */
466 if ((readl(&udc->op_regs->epprime) & bit_pos)
467 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
468 dev_info(&udc->dev->dev,
469 "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
470 " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
471 (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
472 (unsigned)readl(&udc->op_regs->epprime),
473 (unsigned)readl(&udc->op_regs->epstatus),
474 (unsigned)bit_pos);
475 goto en_done;
476 }
477
478 /* Set the max packet length, interrupt on Setup and Mult fields */
479 ios = 0;
480 mult = 0;
481 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
482 case USB_ENDPOINT_XFER_BULK:
483 case USB_ENDPOINT_XFER_INT:
484 break;
485 case USB_ENDPOINT_XFER_CONTROL:
486 ios = 1;
487 break;
488 case USB_ENDPOINT_XFER_ISOC:
489 /* Calculate transactions needed for high bandwidth iso */
490 mult = usb_endpoint_maxp_mult(desc);
491 /* 3 transactions at most */
492 if (mult > 3)
493 goto en_done;
494 break;
495 default:
496 goto en_done;
497 }
498
499 spin_lock_irqsave(&udc->lock, flags);
500 /* Get the endpoint queue head address */
501 dqh = ep->dqh;
502 dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
503 | (mult << EP_QUEUE_HEAD_MULT_POS)
504 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
505 | (ios ? EP_QUEUE_HEAD_IOS : 0);
506 dqh->next_dtd_ptr = 1;
507 dqh->size_ioc_int_sts = 0;
508
509 ep->ep.maxpacket = max;
510 ep->ep.desc = desc;
511 ep->stopped = 0;
512
513 /* Enable the endpoint for Rx or Tx and set the endpoint type */
514 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
515 if (direction == EP_DIR_IN) {
516 epctrlx &= ~EPCTRL_TX_ALL_MASK;
517 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
518 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
519 << EPCTRL_TX_EP_TYPE_SHIFT);
520 } else {
521 epctrlx &= ~EPCTRL_RX_ALL_MASK;
522 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
523 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
524 << EPCTRL_RX_EP_TYPE_SHIFT);
525 }
526 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
527
528 /*
529 * Implement Guideline (GL# USB-7) The unused endpoint type must
530 * be programmed to bulk.
531 */
532 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
533 if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
534 epctrlx |= (USB_ENDPOINT_XFER_BULK
535 << EPCTRL_RX_EP_TYPE_SHIFT);
536 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
537 }
538
539 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
540 if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
541 epctrlx |= (USB_ENDPOINT_XFER_BULK
542 << EPCTRL_TX_EP_TYPE_SHIFT);
543 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
544 }
545
546 spin_unlock_irqrestore(&udc->lock, flags);
547
548 return 0;
549 en_done:
550 return -EINVAL;
551 }
552
mv_ep_disable(struct usb_ep * _ep)553 static int mv_ep_disable(struct usb_ep *_ep)
554 {
555 struct mv_udc *udc;
556 struct mv_ep *ep;
557 struct mv_dqh *dqh;
558 u32 epctrlx, direction;
559 unsigned long flags;
560
561 ep = container_of(_ep, struct mv_ep, ep);
562 if ((_ep == NULL) || !ep->ep.desc)
563 return -EINVAL;
564
565 udc = ep->udc;
566
567 /* Get the endpoint queue head address */
568 dqh = ep->dqh;
569
570 spin_lock_irqsave(&udc->lock, flags);
571
572 direction = ep_dir(ep);
573
574 /* Reset the max packet length and the interrupt on Setup */
575 dqh->max_packet_length = 0;
576
577 /* Disable the endpoint for Rx or Tx and reset the endpoint type */
578 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
579 epctrlx &= ~((direction == EP_DIR_IN)
580 ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
581 : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
582 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
583
584 /* nuke all pending requests (does flush) */
585 nuke(ep, -ESHUTDOWN);
586
587 ep->ep.desc = NULL;
588 ep->stopped = 1;
589
590 spin_unlock_irqrestore(&udc->lock, flags);
591
592 return 0;
593 }
594
595 static struct usb_request *
mv_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)596 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
597 {
598 struct mv_req *req;
599
600 req = kzalloc(sizeof *req, gfp_flags);
601 if (!req)
602 return NULL;
603
604 req->req.dma = DMA_ADDR_INVALID;
605 INIT_LIST_HEAD(&req->queue);
606
607 return &req->req;
608 }
609
mv_free_request(struct usb_ep * _ep,struct usb_request * _req)610 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
611 {
612 struct mv_req *req = NULL;
613
614 req = container_of(_req, struct mv_req, req);
615
616 if (_req)
617 kfree(req);
618 }
619
mv_ep_fifo_flush(struct usb_ep * _ep)620 static void mv_ep_fifo_flush(struct usb_ep *_ep)
621 {
622 struct mv_udc *udc;
623 u32 bit_pos, direction;
624 struct mv_ep *ep;
625 unsigned int loops;
626
627 if (!_ep)
628 return;
629
630 ep = container_of(_ep, struct mv_ep, ep);
631 if (!ep->ep.desc)
632 return;
633
634 udc = ep->udc;
635 direction = ep_dir(ep);
636
637 if (ep->ep_num == 0)
638 bit_pos = (1 << 16) | 1;
639 else if (direction == EP_DIR_OUT)
640 bit_pos = 1 << ep->ep_num;
641 else
642 bit_pos = 1 << (16 + ep->ep_num);
643
644 loops = LOOPS(EPSTATUS_TIMEOUT);
645 do {
646 unsigned int inter_loops;
647
648 if (loops == 0) {
649 dev_err(&udc->dev->dev,
650 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
651 (unsigned)readl(&udc->op_regs->epstatus),
652 (unsigned)bit_pos);
653 return;
654 }
655 /* Write 1 to the Flush register */
656 writel(bit_pos, &udc->op_regs->epflush);
657
658 /* Wait until flushing completed */
659 inter_loops = LOOPS(FLUSH_TIMEOUT);
660 while (readl(&udc->op_regs->epflush)) {
661 /*
662 * ENDPTFLUSH bit should be cleared to indicate this
663 * operation is complete
664 */
665 if (inter_loops == 0) {
666 dev_err(&udc->dev->dev,
667 "TIMEOUT for ENDPTFLUSH=0x%x,"
668 "bit_pos=0x%x\n",
669 (unsigned)readl(&udc->op_regs->epflush),
670 (unsigned)bit_pos);
671 return;
672 }
673 inter_loops--;
674 udelay(LOOPS_USEC);
675 }
676 loops--;
677 } while (readl(&udc->op_regs->epstatus) & bit_pos);
678 }
679
680 /* queues (submits) an I/O request to an endpoint */
681 static int
mv_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)682 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
683 {
684 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
685 struct mv_req *req = container_of(_req, struct mv_req, req);
686 struct mv_udc *udc = ep->udc;
687 unsigned long flags;
688 int retval;
689
690 /* catch various bogus parameters */
691 if (!_req || !req->req.complete || !req->req.buf
692 || !list_empty(&req->queue)) {
693 dev_err(&udc->dev->dev, "%s, bad params", __func__);
694 return -EINVAL;
695 }
696 if (unlikely(!_ep || !ep->ep.desc)) {
697 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
698 return -EINVAL;
699 }
700
701 udc = ep->udc;
702 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
703 return -ESHUTDOWN;
704
705 req->ep = ep;
706
707 /* map virtual address to hardware */
708 retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
709 if (retval)
710 return retval;
711
712 req->req.status = -EINPROGRESS;
713 req->req.actual = 0;
714 req->dtd_count = 0;
715
716 spin_lock_irqsave(&udc->lock, flags);
717
718 /* build dtds and push them to device queue */
719 if (!req_to_dtd(req)) {
720 retval = queue_dtd(ep, req);
721 if (retval) {
722 spin_unlock_irqrestore(&udc->lock, flags);
723 dev_err(&udc->dev->dev, "Failed to queue dtd\n");
724 goto err_unmap_dma;
725 }
726 } else {
727 spin_unlock_irqrestore(&udc->lock, flags);
728 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
729 retval = -ENOMEM;
730 goto err_unmap_dma;
731 }
732
733 /* Update ep0 state */
734 if (ep->ep_num == 0)
735 udc->ep0_state = DATA_STATE_XMIT;
736
737 /* irq handler advances the queue */
738 list_add_tail(&req->queue, &ep->queue);
739 spin_unlock_irqrestore(&udc->lock, flags);
740
741 return 0;
742
743 err_unmap_dma:
744 usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
745
746 return retval;
747 }
748
mv_prime_ep(struct mv_ep * ep,struct mv_req * req)749 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
750 {
751 struct mv_dqh *dqh = ep->dqh;
752 u32 bit_pos;
753
754 /* Write dQH next pointer and terminate bit to 0 */
755 dqh->next_dtd_ptr = req->head->td_dma
756 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
757
758 /* clear active and halt bit, in case set from a previous error */
759 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
760
761 /* Ensure that updates to the QH will occure before priming. */
762 wmb();
763
764 bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
765
766 /* Prime the Endpoint */
767 writel(bit_pos, &ep->udc->op_regs->epprime);
768 }
769
770 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
mv_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)771 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
772 {
773 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
774 struct mv_req *req = NULL, *iter;
775 struct mv_udc *udc = ep->udc;
776 unsigned long flags;
777 int stopped, ret = 0;
778 u32 epctrlx;
779
780 if (!_ep || !_req)
781 return -EINVAL;
782
783 spin_lock_irqsave(&ep->udc->lock, flags);
784 stopped = ep->stopped;
785
786 /* Stop the ep before we deal with the queue */
787 ep->stopped = 1;
788 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
789 if (ep_dir(ep) == EP_DIR_IN)
790 epctrlx &= ~EPCTRL_TX_ENABLE;
791 else
792 epctrlx &= ~EPCTRL_RX_ENABLE;
793 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
794
795 /* make sure it's actually queued on this endpoint */
796 list_for_each_entry(iter, &ep->queue, queue) {
797 if (&iter->req != _req)
798 continue;
799 req = iter;
800 break;
801 }
802 if (!req) {
803 ret = -EINVAL;
804 goto out;
805 }
806
807 /* The request is in progress, or completed but not dequeued */
808 if (ep->queue.next == &req->queue) {
809 _req->status = -ECONNRESET;
810 mv_ep_fifo_flush(_ep); /* flush current transfer */
811
812 /* The request isn't the last request in this ep queue */
813 if (req->queue.next != &ep->queue) {
814 struct mv_req *next_req;
815
816 next_req = list_entry(req->queue.next,
817 struct mv_req, queue);
818
819 /* Point the QH to the first TD of next request */
820 mv_prime_ep(ep, next_req);
821 } else {
822 struct mv_dqh *qh;
823
824 qh = ep->dqh;
825 qh->next_dtd_ptr = 1;
826 qh->size_ioc_int_sts = 0;
827 }
828
829 /* The request hasn't been processed, patch up the TD chain */
830 } else {
831 struct mv_req *prev_req;
832
833 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
834 writel(readl(&req->tail->dtd_next),
835 &prev_req->tail->dtd_next);
836
837 }
838
839 done(ep, req, -ECONNRESET);
840
841 /* Enable EP */
842 out:
843 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
844 if (ep_dir(ep) == EP_DIR_IN)
845 epctrlx |= EPCTRL_TX_ENABLE;
846 else
847 epctrlx |= EPCTRL_RX_ENABLE;
848 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
849 ep->stopped = stopped;
850
851 spin_unlock_irqrestore(&ep->udc->lock, flags);
852 return ret;
853 }
854
ep_set_stall(struct mv_udc * udc,u8 ep_num,u8 direction,int stall)855 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
856 {
857 u32 epctrlx;
858
859 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
860
861 if (stall) {
862 if (direction == EP_DIR_IN)
863 epctrlx |= EPCTRL_TX_EP_STALL;
864 else
865 epctrlx |= EPCTRL_RX_EP_STALL;
866 } else {
867 if (direction == EP_DIR_IN) {
868 epctrlx &= ~EPCTRL_TX_EP_STALL;
869 epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
870 } else {
871 epctrlx &= ~EPCTRL_RX_EP_STALL;
872 epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
873 }
874 }
875 writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
876 }
877
ep_is_stall(struct mv_udc * udc,u8 ep_num,u8 direction)878 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
879 {
880 u32 epctrlx;
881
882 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
883
884 if (direction == EP_DIR_OUT)
885 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
886 else
887 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
888 }
889
mv_ep_set_halt_wedge(struct usb_ep * _ep,int halt,int wedge)890 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
891 {
892 struct mv_ep *ep;
893 unsigned long flags;
894 int status = 0;
895 struct mv_udc *udc;
896
897 ep = container_of(_ep, struct mv_ep, ep);
898 udc = ep->udc;
899 if (!_ep || !ep->ep.desc) {
900 status = -EINVAL;
901 goto out;
902 }
903
904 if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
905 status = -EOPNOTSUPP;
906 goto out;
907 }
908
909 /*
910 * Attempt to halt IN ep will fail if any transfer requests
911 * are still queue
912 */
913 if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
914 status = -EAGAIN;
915 goto out;
916 }
917
918 spin_lock_irqsave(&ep->udc->lock, flags);
919 ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
920 if (halt && wedge)
921 ep->wedge = 1;
922 else if (!halt)
923 ep->wedge = 0;
924 spin_unlock_irqrestore(&ep->udc->lock, flags);
925
926 if (ep->ep_num == 0) {
927 udc->ep0_state = WAIT_FOR_SETUP;
928 udc->ep0_dir = EP_DIR_OUT;
929 }
930 out:
931 return status;
932 }
933
mv_ep_set_halt(struct usb_ep * _ep,int halt)934 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
935 {
936 return mv_ep_set_halt_wedge(_ep, halt, 0);
937 }
938
mv_ep_set_wedge(struct usb_ep * _ep)939 static int mv_ep_set_wedge(struct usb_ep *_ep)
940 {
941 return mv_ep_set_halt_wedge(_ep, 1, 1);
942 }
943
944 static const struct usb_ep_ops mv_ep_ops = {
945 .enable = mv_ep_enable,
946 .disable = mv_ep_disable,
947
948 .alloc_request = mv_alloc_request,
949 .free_request = mv_free_request,
950
951 .queue = mv_ep_queue,
952 .dequeue = mv_ep_dequeue,
953
954 .set_wedge = mv_ep_set_wedge,
955 .set_halt = mv_ep_set_halt,
956 .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
957 };
958
udc_clock_enable(struct mv_udc * udc)959 static int udc_clock_enable(struct mv_udc *udc)
960 {
961 return clk_prepare_enable(udc->clk);
962 }
963
udc_clock_disable(struct mv_udc * udc)964 static void udc_clock_disable(struct mv_udc *udc)
965 {
966 clk_disable_unprepare(udc->clk);
967 }
968
udc_stop(struct mv_udc * udc)969 static void udc_stop(struct mv_udc *udc)
970 {
971 u32 tmp;
972
973 /* Disable interrupts */
974 tmp = readl(&udc->op_regs->usbintr);
975 tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
976 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
977 writel(tmp, &udc->op_regs->usbintr);
978
979 udc->stopped = 1;
980
981 /* Reset the Run the bit in the command register to stop VUSB */
982 tmp = readl(&udc->op_regs->usbcmd);
983 tmp &= ~USBCMD_RUN_STOP;
984 writel(tmp, &udc->op_regs->usbcmd);
985 }
986
udc_start(struct mv_udc * udc)987 static void udc_start(struct mv_udc *udc)
988 {
989 u32 usbintr;
990
991 usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
992 | USBINTR_PORT_CHANGE_DETECT_EN
993 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
994 /* Enable interrupts */
995 writel(usbintr, &udc->op_regs->usbintr);
996
997 udc->stopped = 0;
998
999 /* Set the Run bit in the command register */
1000 writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1001 }
1002
udc_reset(struct mv_udc * udc)1003 static int udc_reset(struct mv_udc *udc)
1004 {
1005 unsigned int loops;
1006 u32 tmp, portsc;
1007
1008 /* Stop the controller */
1009 tmp = readl(&udc->op_regs->usbcmd);
1010 tmp &= ~USBCMD_RUN_STOP;
1011 writel(tmp, &udc->op_regs->usbcmd);
1012
1013 /* Reset the controller to get default values */
1014 writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1015
1016 /* wait for reset to complete */
1017 loops = LOOPS(RESET_TIMEOUT);
1018 while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1019 if (loops == 0) {
1020 dev_err(&udc->dev->dev,
1021 "Wait for RESET completed TIMEOUT\n");
1022 return -ETIMEDOUT;
1023 }
1024 loops--;
1025 udelay(LOOPS_USEC);
1026 }
1027
1028 /* set controller to device mode */
1029 tmp = readl(&udc->op_regs->usbmode);
1030 tmp |= USBMODE_CTRL_MODE_DEVICE;
1031
1032 /* turn setup lockout off, require setup tripwire in usbcmd */
1033 tmp |= USBMODE_SETUP_LOCK_OFF;
1034
1035 writel(tmp, &udc->op_regs->usbmode);
1036
1037 writel(0x0, &udc->op_regs->epsetupstat);
1038
1039 /* Configure the Endpoint List Address */
1040 writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1041 &udc->op_regs->eplistaddr);
1042
1043 portsc = readl(&udc->op_regs->portsc[0]);
1044 if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1045 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1046
1047 if (udc->force_fs)
1048 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1049 else
1050 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1051
1052 writel(portsc, &udc->op_regs->portsc[0]);
1053
1054 tmp = readl(&udc->op_regs->epctrlx[0]);
1055 tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1056 writel(tmp, &udc->op_regs->epctrlx[0]);
1057
1058 return 0;
1059 }
1060
mv_udc_enable_internal(struct mv_udc * udc)1061 static int mv_udc_enable_internal(struct mv_udc *udc)
1062 {
1063 int retval;
1064
1065 if (udc->active)
1066 return 0;
1067
1068 dev_dbg(&udc->dev->dev, "enable udc\n");
1069 retval = udc_clock_enable(udc);
1070 if (retval)
1071 return retval;
1072
1073 if (udc->pdata->phy_init) {
1074 retval = udc->pdata->phy_init(udc->phy_regs);
1075 if (retval) {
1076 dev_err(&udc->dev->dev,
1077 "init phy error %d\n", retval);
1078 udc_clock_disable(udc);
1079 return retval;
1080 }
1081 }
1082 udc->active = 1;
1083
1084 return 0;
1085 }
1086
mv_udc_enable(struct mv_udc * udc)1087 static int mv_udc_enable(struct mv_udc *udc)
1088 {
1089 if (udc->clock_gating)
1090 return mv_udc_enable_internal(udc);
1091
1092 return 0;
1093 }
1094
mv_udc_disable_internal(struct mv_udc * udc)1095 static void mv_udc_disable_internal(struct mv_udc *udc)
1096 {
1097 if (udc->active) {
1098 dev_dbg(&udc->dev->dev, "disable udc\n");
1099 if (udc->pdata->phy_deinit)
1100 udc->pdata->phy_deinit(udc->phy_regs);
1101 udc_clock_disable(udc);
1102 udc->active = 0;
1103 }
1104 }
1105
mv_udc_disable(struct mv_udc * udc)1106 static void mv_udc_disable(struct mv_udc *udc)
1107 {
1108 if (udc->clock_gating)
1109 mv_udc_disable_internal(udc);
1110 }
1111
mv_udc_get_frame(struct usb_gadget * gadget)1112 static int mv_udc_get_frame(struct usb_gadget *gadget)
1113 {
1114 struct mv_udc *udc;
1115 u16 retval;
1116
1117 if (!gadget)
1118 return -ENODEV;
1119
1120 udc = container_of(gadget, struct mv_udc, gadget);
1121
1122 retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1123
1124 return retval;
1125 }
1126
1127 /* Tries to wake up the host connected to this gadget */
mv_udc_wakeup(struct usb_gadget * gadget)1128 static int mv_udc_wakeup(struct usb_gadget *gadget)
1129 {
1130 struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1131 u32 portsc;
1132
1133 /* Remote wakeup feature not enabled by host */
1134 if (!udc->remote_wakeup)
1135 return -ENOTSUPP;
1136
1137 portsc = readl(&udc->op_regs->portsc);
1138 /* not suspended? */
1139 if (!(portsc & PORTSCX_PORT_SUSPEND))
1140 return 0;
1141 /* trigger force resume */
1142 portsc |= PORTSCX_PORT_FORCE_RESUME;
1143 writel(portsc, &udc->op_regs->portsc[0]);
1144 return 0;
1145 }
1146
mv_udc_vbus_session(struct usb_gadget * gadget,int is_active)1147 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1148 {
1149 struct mv_udc *udc;
1150 unsigned long flags;
1151 int retval = 0;
1152
1153 udc = container_of(gadget, struct mv_udc, gadget);
1154 spin_lock_irqsave(&udc->lock, flags);
1155
1156 udc->vbus_active = (is_active != 0);
1157
1158 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1159 __func__, udc->softconnect, udc->vbus_active);
1160
1161 if (udc->driver && udc->softconnect && udc->vbus_active) {
1162 retval = mv_udc_enable(udc);
1163 if (retval == 0) {
1164 /* Clock is disabled, need re-init registers */
1165 udc_reset(udc);
1166 ep0_reset(udc);
1167 udc_start(udc);
1168 }
1169 } else if (udc->driver && udc->softconnect) {
1170 if (!udc->active)
1171 goto out;
1172
1173 /* stop all the transfer in queue*/
1174 stop_activity(udc, udc->driver);
1175 udc_stop(udc);
1176 mv_udc_disable(udc);
1177 }
1178
1179 out:
1180 spin_unlock_irqrestore(&udc->lock, flags);
1181 return retval;
1182 }
1183
mv_udc_pullup(struct usb_gadget * gadget,int is_on)1184 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1185 {
1186 struct mv_udc *udc;
1187 unsigned long flags;
1188 int retval = 0;
1189
1190 udc = container_of(gadget, struct mv_udc, gadget);
1191 spin_lock_irqsave(&udc->lock, flags);
1192
1193 udc->softconnect = (is_on != 0);
1194
1195 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1196 __func__, udc->softconnect, udc->vbus_active);
1197
1198 if (udc->driver && udc->softconnect && udc->vbus_active) {
1199 retval = mv_udc_enable(udc);
1200 if (retval == 0) {
1201 /* Clock is disabled, need re-init registers */
1202 udc_reset(udc);
1203 ep0_reset(udc);
1204 udc_start(udc);
1205 }
1206 } else if (udc->driver && udc->vbus_active) {
1207 /* stop all the transfer in queue*/
1208 stop_activity(udc, udc->driver);
1209 udc_stop(udc);
1210 mv_udc_disable(udc);
1211 }
1212
1213 spin_unlock_irqrestore(&udc->lock, flags);
1214 return retval;
1215 }
1216
1217 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1218 static int mv_udc_stop(struct usb_gadget *);
1219 /* device controller usb_gadget_ops structure */
1220 static const struct usb_gadget_ops mv_ops = {
1221
1222 /* returns the current frame number */
1223 .get_frame = mv_udc_get_frame,
1224
1225 /* tries to wake up the host connected to this gadget */
1226 .wakeup = mv_udc_wakeup,
1227
1228 /* notify controller that VBUS is powered or not */
1229 .vbus_session = mv_udc_vbus_session,
1230
1231 /* D+ pullup, software-controlled connect/disconnect to USB host */
1232 .pullup = mv_udc_pullup,
1233 .udc_start = mv_udc_start,
1234 .udc_stop = mv_udc_stop,
1235 };
1236
eps_init(struct mv_udc * udc)1237 static int eps_init(struct mv_udc *udc)
1238 {
1239 struct mv_ep *ep;
1240 char name[14];
1241 int i;
1242
1243 /* initialize ep0 */
1244 ep = &udc->eps[0];
1245 ep->udc = udc;
1246 strncpy(ep->name, "ep0", sizeof(ep->name));
1247 ep->ep.name = ep->name;
1248 ep->ep.ops = &mv_ep_ops;
1249 ep->wedge = 0;
1250 ep->stopped = 0;
1251 usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1252 ep->ep.caps.type_control = true;
1253 ep->ep.caps.dir_in = true;
1254 ep->ep.caps.dir_out = true;
1255 ep->ep_num = 0;
1256 ep->ep.desc = &mv_ep0_desc;
1257 INIT_LIST_HEAD(&ep->queue);
1258
1259 ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1260
1261 /* initialize other endpoints */
1262 for (i = 2; i < udc->max_eps * 2; i++) {
1263 ep = &udc->eps[i];
1264 if (i % 2) {
1265 snprintf(name, sizeof(name), "ep%din", i / 2);
1266 ep->direction = EP_DIR_IN;
1267 ep->ep.caps.dir_in = true;
1268 } else {
1269 snprintf(name, sizeof(name), "ep%dout", i / 2);
1270 ep->direction = EP_DIR_OUT;
1271 ep->ep.caps.dir_out = true;
1272 }
1273 ep->udc = udc;
1274 strncpy(ep->name, name, sizeof(ep->name));
1275 ep->ep.name = ep->name;
1276
1277 ep->ep.caps.type_iso = true;
1278 ep->ep.caps.type_bulk = true;
1279 ep->ep.caps.type_int = true;
1280
1281 ep->ep.ops = &mv_ep_ops;
1282 ep->stopped = 0;
1283 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1284 ep->ep_num = i / 2;
1285
1286 INIT_LIST_HEAD(&ep->queue);
1287 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1288
1289 ep->dqh = &udc->ep_dqh[i];
1290 }
1291
1292 return 0;
1293 }
1294
1295 /* delete all endpoint requests, called with spinlock held */
nuke(struct mv_ep * ep,int status)1296 static void nuke(struct mv_ep *ep, int status)
1297 {
1298 /* called with spinlock held */
1299 ep->stopped = 1;
1300
1301 /* endpoint fifo flush */
1302 mv_ep_fifo_flush(&ep->ep);
1303
1304 while (!list_empty(&ep->queue)) {
1305 struct mv_req *req = NULL;
1306 req = list_entry(ep->queue.next, struct mv_req, queue);
1307 done(ep, req, status);
1308 }
1309 }
1310
gadget_reset(struct mv_udc * udc,struct usb_gadget_driver * driver)1311 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1312 {
1313 struct mv_ep *ep;
1314
1315 nuke(&udc->eps[0], -ESHUTDOWN);
1316
1317 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1318 nuke(ep, -ESHUTDOWN);
1319 }
1320
1321 /* report reset; the driver is already quiesced */
1322 if (driver) {
1323 spin_unlock(&udc->lock);
1324 usb_gadget_udc_reset(&udc->gadget, driver);
1325 spin_lock(&udc->lock);
1326 }
1327 }
1328 /* stop all USB activities */
stop_activity(struct mv_udc * udc,struct usb_gadget_driver * driver)1329 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1330 {
1331 struct mv_ep *ep;
1332
1333 nuke(&udc->eps[0], -ESHUTDOWN);
1334
1335 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1336 nuke(ep, -ESHUTDOWN);
1337 }
1338
1339 /* report disconnect; the driver is already quiesced */
1340 if (driver) {
1341 spin_unlock(&udc->lock);
1342 driver->disconnect(&udc->gadget);
1343 spin_lock(&udc->lock);
1344 }
1345 }
1346
mv_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1347 static int mv_udc_start(struct usb_gadget *gadget,
1348 struct usb_gadget_driver *driver)
1349 {
1350 struct mv_udc *udc;
1351 int retval = 0;
1352 unsigned long flags;
1353
1354 udc = container_of(gadget, struct mv_udc, gadget);
1355
1356 if (udc->driver)
1357 return -EBUSY;
1358
1359 spin_lock_irqsave(&udc->lock, flags);
1360
1361 /* hook up the driver ... */
1362 udc->driver = driver;
1363
1364 udc->usb_state = USB_STATE_ATTACHED;
1365 udc->ep0_state = WAIT_FOR_SETUP;
1366 udc->ep0_dir = EP_DIR_OUT;
1367
1368 spin_unlock_irqrestore(&udc->lock, flags);
1369
1370 if (udc->transceiver) {
1371 retval = otg_set_peripheral(udc->transceiver->otg,
1372 &udc->gadget);
1373 if (retval) {
1374 dev_err(&udc->dev->dev,
1375 "unable to register peripheral to otg\n");
1376 udc->driver = NULL;
1377 return retval;
1378 }
1379 }
1380
1381 /* When boot with cable attached, there will be no vbus irq occurred */
1382 if (udc->qwork)
1383 queue_work(udc->qwork, &udc->vbus_work);
1384
1385 return 0;
1386 }
1387
mv_udc_stop(struct usb_gadget * gadget)1388 static int mv_udc_stop(struct usb_gadget *gadget)
1389 {
1390 struct mv_udc *udc;
1391 unsigned long flags;
1392
1393 udc = container_of(gadget, struct mv_udc, gadget);
1394
1395 spin_lock_irqsave(&udc->lock, flags);
1396
1397 mv_udc_enable(udc);
1398 udc_stop(udc);
1399
1400 /* stop all usb activities */
1401 udc->gadget.speed = USB_SPEED_UNKNOWN;
1402 stop_activity(udc, NULL);
1403 mv_udc_disable(udc);
1404
1405 spin_unlock_irqrestore(&udc->lock, flags);
1406
1407 /* unbind gadget driver */
1408 udc->driver = NULL;
1409
1410 return 0;
1411 }
1412
mv_set_ptc(struct mv_udc * udc,u32 mode)1413 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1414 {
1415 u32 portsc;
1416
1417 portsc = readl(&udc->op_regs->portsc[0]);
1418 portsc |= mode << 16;
1419 writel(portsc, &udc->op_regs->portsc[0]);
1420 }
1421
prime_status_complete(struct usb_ep * ep,struct usb_request * _req)1422 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1423 {
1424 struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1425 struct mv_req *req = container_of(_req, struct mv_req, req);
1426 struct mv_udc *udc;
1427 unsigned long flags;
1428
1429 udc = mvep->udc;
1430
1431 dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1432
1433 spin_lock_irqsave(&udc->lock, flags);
1434 if (req->test_mode) {
1435 mv_set_ptc(udc, req->test_mode);
1436 req->test_mode = 0;
1437 }
1438 spin_unlock_irqrestore(&udc->lock, flags);
1439 }
1440
1441 static int
udc_prime_status(struct mv_udc * udc,u8 direction,u16 status,bool empty)1442 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1443 {
1444 int retval = 0;
1445 struct mv_req *req;
1446 struct mv_ep *ep;
1447
1448 ep = &udc->eps[0];
1449 udc->ep0_dir = direction;
1450 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1451
1452 req = udc->status_req;
1453
1454 /* fill in the request structure */
1455 if (empty == false) {
1456 *((u16 *) req->req.buf) = cpu_to_le16(status);
1457 req->req.length = 2;
1458 } else
1459 req->req.length = 0;
1460
1461 req->ep = ep;
1462 req->req.status = -EINPROGRESS;
1463 req->req.actual = 0;
1464 if (udc->test_mode) {
1465 req->req.complete = prime_status_complete;
1466 req->test_mode = udc->test_mode;
1467 udc->test_mode = 0;
1468 } else
1469 req->req.complete = NULL;
1470 req->dtd_count = 0;
1471
1472 if (req->req.dma == DMA_ADDR_INVALID) {
1473 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1474 req->req.buf, req->req.length,
1475 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1476 req->mapped = 1;
1477 }
1478
1479 /* prime the data phase */
1480 if (!req_to_dtd(req)) {
1481 retval = queue_dtd(ep, req);
1482 if (retval) {
1483 dev_err(&udc->dev->dev,
1484 "Failed to queue dtd when prime status\n");
1485 goto out;
1486 }
1487 } else{ /* no mem */
1488 retval = -ENOMEM;
1489 dev_err(&udc->dev->dev,
1490 "Failed to dma_pool_alloc when prime status\n");
1491 goto out;
1492 }
1493
1494 list_add_tail(&req->queue, &ep->queue);
1495
1496 return 0;
1497 out:
1498 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1499
1500 return retval;
1501 }
1502
mv_udc_testmode(struct mv_udc * udc,u16 index)1503 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1504 {
1505 if (index <= USB_TEST_FORCE_ENABLE) {
1506 udc->test_mode = index;
1507 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1508 ep0_stall(udc);
1509 } else
1510 dev_err(&udc->dev->dev,
1511 "This test mode(%d) is not supported\n", index);
1512 }
1513
ch9setaddress(struct mv_udc * udc,struct usb_ctrlrequest * setup)1514 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1515 {
1516 udc->dev_addr = (u8)setup->wValue;
1517
1518 /* update usb state */
1519 udc->usb_state = USB_STATE_ADDRESS;
1520
1521 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1522 ep0_stall(udc);
1523 }
1524
ch9getstatus(struct mv_udc * udc,u8 ep_num,struct usb_ctrlrequest * setup)1525 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1526 struct usb_ctrlrequest *setup)
1527 {
1528 u16 status = 0;
1529 int retval;
1530
1531 if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1532 != (USB_DIR_IN | USB_TYPE_STANDARD))
1533 return;
1534
1535 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1536 status = 1 << USB_DEVICE_SELF_POWERED;
1537 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1538 } else if ((setup->bRequestType & USB_RECIP_MASK)
1539 == USB_RECIP_INTERFACE) {
1540 /* get interface status */
1541 status = 0;
1542 } else if ((setup->bRequestType & USB_RECIP_MASK)
1543 == USB_RECIP_ENDPOINT) {
1544 u8 ep_num, direction;
1545
1546 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1547 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1548 ? EP_DIR_IN : EP_DIR_OUT;
1549 status = ep_is_stall(udc, ep_num, direction)
1550 << USB_ENDPOINT_HALT;
1551 }
1552
1553 retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1554 if (retval)
1555 ep0_stall(udc);
1556 else
1557 udc->ep0_state = DATA_STATE_XMIT;
1558 }
1559
ch9clearfeature(struct mv_udc * udc,struct usb_ctrlrequest * setup)1560 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1561 {
1562 u8 ep_num;
1563 u8 direction;
1564 struct mv_ep *ep;
1565
1566 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1567 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1568 switch (setup->wValue) {
1569 case USB_DEVICE_REMOTE_WAKEUP:
1570 udc->remote_wakeup = 0;
1571 break;
1572 default:
1573 goto out;
1574 }
1575 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1576 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1577 switch (setup->wValue) {
1578 case USB_ENDPOINT_HALT:
1579 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1580 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1581 ? EP_DIR_IN : EP_DIR_OUT;
1582 if (setup->wValue != 0 || setup->wLength != 0
1583 || ep_num > udc->max_eps)
1584 goto out;
1585 ep = &udc->eps[ep_num * 2 + direction];
1586 if (ep->wedge == 1)
1587 break;
1588 spin_unlock(&udc->lock);
1589 ep_set_stall(udc, ep_num, direction, 0);
1590 spin_lock(&udc->lock);
1591 break;
1592 default:
1593 goto out;
1594 }
1595 } else
1596 goto out;
1597
1598 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1599 ep0_stall(udc);
1600 out:
1601 return;
1602 }
1603
ch9setfeature(struct mv_udc * udc,struct usb_ctrlrequest * setup)1604 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1605 {
1606 u8 ep_num;
1607 u8 direction;
1608
1609 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1610 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1611 switch (setup->wValue) {
1612 case USB_DEVICE_REMOTE_WAKEUP:
1613 udc->remote_wakeup = 1;
1614 break;
1615 case USB_DEVICE_TEST_MODE:
1616 if (setup->wIndex & 0xFF
1617 || udc->gadget.speed != USB_SPEED_HIGH)
1618 ep0_stall(udc);
1619
1620 if (udc->usb_state != USB_STATE_CONFIGURED
1621 && udc->usb_state != USB_STATE_ADDRESS
1622 && udc->usb_state != USB_STATE_DEFAULT)
1623 ep0_stall(udc);
1624
1625 mv_udc_testmode(udc, (setup->wIndex >> 8));
1626 goto out;
1627 default:
1628 goto out;
1629 }
1630 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1631 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1632 switch (setup->wValue) {
1633 case USB_ENDPOINT_HALT:
1634 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1635 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1636 ? EP_DIR_IN : EP_DIR_OUT;
1637 if (setup->wValue != 0 || setup->wLength != 0
1638 || ep_num > udc->max_eps)
1639 goto out;
1640 spin_unlock(&udc->lock);
1641 ep_set_stall(udc, ep_num, direction, 1);
1642 spin_lock(&udc->lock);
1643 break;
1644 default:
1645 goto out;
1646 }
1647 } else
1648 goto out;
1649
1650 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1651 ep0_stall(udc);
1652 out:
1653 return;
1654 }
1655
handle_setup_packet(struct mv_udc * udc,u8 ep_num,struct usb_ctrlrequest * setup)1656 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1657 struct usb_ctrlrequest *setup)
1658 __releases(&ep->udc->lock)
1659 __acquires(&ep->udc->lock)
1660 {
1661 bool delegate = false;
1662
1663 nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1664
1665 dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1666 setup->bRequestType, setup->bRequest,
1667 setup->wValue, setup->wIndex, setup->wLength);
1668 /* We process some standard setup requests here */
1669 if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1670 switch (setup->bRequest) {
1671 case USB_REQ_GET_STATUS:
1672 ch9getstatus(udc, ep_num, setup);
1673 break;
1674
1675 case USB_REQ_SET_ADDRESS:
1676 ch9setaddress(udc, setup);
1677 break;
1678
1679 case USB_REQ_CLEAR_FEATURE:
1680 ch9clearfeature(udc, setup);
1681 break;
1682
1683 case USB_REQ_SET_FEATURE:
1684 ch9setfeature(udc, setup);
1685 break;
1686
1687 default:
1688 delegate = true;
1689 }
1690 } else
1691 delegate = true;
1692
1693 /* delegate USB standard requests to the gadget driver */
1694 if (delegate == true) {
1695 /* USB requests handled by gadget */
1696 if (setup->wLength) {
1697 /* DATA phase from gadget, STATUS phase from udc */
1698 udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1699 ? EP_DIR_IN : EP_DIR_OUT;
1700 spin_unlock(&udc->lock);
1701 if (udc->driver->setup(&udc->gadget,
1702 &udc->local_setup_buff) < 0)
1703 ep0_stall(udc);
1704 spin_lock(&udc->lock);
1705 udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1706 ? DATA_STATE_XMIT : DATA_STATE_RECV;
1707 } else {
1708 /* no DATA phase, IN STATUS phase from gadget */
1709 udc->ep0_dir = EP_DIR_IN;
1710 spin_unlock(&udc->lock);
1711 if (udc->driver->setup(&udc->gadget,
1712 &udc->local_setup_buff) < 0)
1713 ep0_stall(udc);
1714 spin_lock(&udc->lock);
1715 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1716 }
1717 }
1718 }
1719
1720 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
ep0_req_complete(struct mv_udc * udc,struct mv_ep * ep0,struct mv_req * req)1721 static void ep0_req_complete(struct mv_udc *udc,
1722 struct mv_ep *ep0, struct mv_req *req)
1723 {
1724 u32 new_addr;
1725
1726 if (udc->usb_state == USB_STATE_ADDRESS) {
1727 /* set the new address */
1728 new_addr = (u32)udc->dev_addr;
1729 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1730 &udc->op_regs->deviceaddr);
1731 }
1732
1733 done(ep0, req, 0);
1734
1735 switch (udc->ep0_state) {
1736 case DATA_STATE_XMIT:
1737 /* receive status phase */
1738 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1739 ep0_stall(udc);
1740 break;
1741 case DATA_STATE_RECV:
1742 /* send status phase */
1743 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1744 ep0_stall(udc);
1745 break;
1746 case WAIT_FOR_OUT_STATUS:
1747 udc->ep0_state = WAIT_FOR_SETUP;
1748 break;
1749 case WAIT_FOR_SETUP:
1750 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1751 break;
1752 default:
1753 ep0_stall(udc);
1754 break;
1755 }
1756 }
1757
get_setup_data(struct mv_udc * udc,u8 ep_num,u8 * buffer_ptr)1758 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1759 {
1760 u32 temp;
1761 struct mv_dqh *dqh;
1762
1763 dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1764
1765 /* Clear bit in ENDPTSETUPSTAT */
1766 writel((1 << ep_num), &udc->op_regs->epsetupstat);
1767
1768 /* while a hazard exists when setup package arrives */
1769 do {
1770 /* Set Setup Tripwire */
1771 temp = readl(&udc->op_regs->usbcmd);
1772 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1773
1774 /* Copy the setup packet to local buffer */
1775 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1776 } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1777
1778 /* Clear Setup Tripwire */
1779 temp = readl(&udc->op_regs->usbcmd);
1780 writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1781 }
1782
irq_process_tr_complete(struct mv_udc * udc)1783 static void irq_process_tr_complete(struct mv_udc *udc)
1784 {
1785 u32 tmp, bit_pos;
1786 int i, ep_num = 0, direction = 0;
1787 struct mv_ep *curr_ep;
1788 struct mv_req *curr_req, *temp_req;
1789 int status;
1790
1791 /*
1792 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1793 * because the setup packets are to be read ASAP
1794 */
1795
1796 /* Process all Setup packet received interrupts */
1797 tmp = readl(&udc->op_regs->epsetupstat);
1798
1799 if (tmp) {
1800 for (i = 0; i < udc->max_eps; i++) {
1801 if (tmp & (1 << i)) {
1802 get_setup_data(udc, i,
1803 (u8 *)(&udc->local_setup_buff));
1804 handle_setup_packet(udc, i,
1805 &udc->local_setup_buff);
1806 }
1807 }
1808 }
1809
1810 /* Don't clear the endpoint setup status register here.
1811 * It is cleared as a setup packet is read out of the buffer
1812 */
1813
1814 /* Process non-setup transaction complete interrupts */
1815 tmp = readl(&udc->op_regs->epcomplete);
1816
1817 if (!tmp)
1818 return;
1819
1820 writel(tmp, &udc->op_regs->epcomplete);
1821
1822 for (i = 0; i < udc->max_eps * 2; i++) {
1823 ep_num = i >> 1;
1824 direction = i % 2;
1825
1826 bit_pos = 1 << (ep_num + 16 * direction);
1827
1828 if (!(bit_pos & tmp))
1829 continue;
1830
1831 if (i == 1)
1832 curr_ep = &udc->eps[0];
1833 else
1834 curr_ep = &udc->eps[i];
1835 /* process the req queue until an uncomplete request */
1836 list_for_each_entry_safe(curr_req, temp_req,
1837 &curr_ep->queue, queue) {
1838 status = process_ep_req(udc, i, curr_req);
1839 if (status)
1840 break;
1841
1842 /* write back status to req */
1843 curr_req->req.status = status;
1844
1845 /* ep0 request completion */
1846 if (ep_num == 0) {
1847 ep0_req_complete(udc, curr_ep, curr_req);
1848 break;
1849 } else {
1850 done(curr_ep, curr_req, status);
1851 }
1852 }
1853 }
1854 }
1855
irq_process_reset(struct mv_udc * udc)1856 static void irq_process_reset(struct mv_udc *udc)
1857 {
1858 u32 tmp;
1859 unsigned int loops;
1860
1861 udc->ep0_dir = EP_DIR_OUT;
1862 udc->ep0_state = WAIT_FOR_SETUP;
1863 udc->remote_wakeup = 0; /* default to 0 on reset */
1864
1865 /* The address bits are past bit 25-31. Set the address */
1866 tmp = readl(&udc->op_regs->deviceaddr);
1867 tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1868 writel(tmp, &udc->op_regs->deviceaddr);
1869
1870 /* Clear all the setup token semaphores */
1871 tmp = readl(&udc->op_regs->epsetupstat);
1872 writel(tmp, &udc->op_regs->epsetupstat);
1873
1874 /* Clear all the endpoint complete status bits */
1875 tmp = readl(&udc->op_regs->epcomplete);
1876 writel(tmp, &udc->op_regs->epcomplete);
1877
1878 /* wait until all endptprime bits cleared */
1879 loops = LOOPS(PRIME_TIMEOUT);
1880 while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1881 if (loops == 0) {
1882 dev_err(&udc->dev->dev,
1883 "Timeout for ENDPTPRIME = 0x%x\n",
1884 readl(&udc->op_regs->epprime));
1885 break;
1886 }
1887 loops--;
1888 udelay(LOOPS_USEC);
1889 }
1890
1891 /* Write 1s to the Flush register */
1892 writel((u32)~0, &udc->op_regs->epflush);
1893
1894 if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1895 dev_info(&udc->dev->dev, "usb bus reset\n");
1896 udc->usb_state = USB_STATE_DEFAULT;
1897 /* reset all the queues, stop all USB activities */
1898 gadget_reset(udc, udc->driver);
1899 } else {
1900 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1901 readl(&udc->op_regs->portsc));
1902
1903 /*
1904 * re-initialize
1905 * controller reset
1906 */
1907 udc_reset(udc);
1908
1909 /* reset all the queues, stop all USB activities */
1910 stop_activity(udc, udc->driver);
1911
1912 /* reset ep0 dQH and endptctrl */
1913 ep0_reset(udc);
1914
1915 /* enable interrupt and set controller to run state */
1916 udc_start(udc);
1917
1918 udc->usb_state = USB_STATE_ATTACHED;
1919 }
1920 }
1921
handle_bus_resume(struct mv_udc * udc)1922 static void handle_bus_resume(struct mv_udc *udc)
1923 {
1924 udc->usb_state = udc->resume_state;
1925 udc->resume_state = 0;
1926
1927 /* report resume to the driver */
1928 if (udc->driver) {
1929 if (udc->driver->resume) {
1930 spin_unlock(&udc->lock);
1931 udc->driver->resume(&udc->gadget);
1932 spin_lock(&udc->lock);
1933 }
1934 }
1935 }
1936
irq_process_suspend(struct mv_udc * udc)1937 static void irq_process_suspend(struct mv_udc *udc)
1938 {
1939 udc->resume_state = udc->usb_state;
1940 udc->usb_state = USB_STATE_SUSPENDED;
1941
1942 if (udc->driver->suspend) {
1943 spin_unlock(&udc->lock);
1944 udc->driver->suspend(&udc->gadget);
1945 spin_lock(&udc->lock);
1946 }
1947 }
1948
irq_process_port_change(struct mv_udc * udc)1949 static void irq_process_port_change(struct mv_udc *udc)
1950 {
1951 u32 portsc;
1952
1953 portsc = readl(&udc->op_regs->portsc[0]);
1954 if (!(portsc & PORTSCX_PORT_RESET)) {
1955 /* Get the speed */
1956 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1957 switch (speed) {
1958 case PORTSCX_PORT_SPEED_HIGH:
1959 udc->gadget.speed = USB_SPEED_HIGH;
1960 break;
1961 case PORTSCX_PORT_SPEED_FULL:
1962 udc->gadget.speed = USB_SPEED_FULL;
1963 break;
1964 case PORTSCX_PORT_SPEED_LOW:
1965 udc->gadget.speed = USB_SPEED_LOW;
1966 break;
1967 default:
1968 udc->gadget.speed = USB_SPEED_UNKNOWN;
1969 break;
1970 }
1971 }
1972
1973 if (portsc & PORTSCX_PORT_SUSPEND) {
1974 udc->resume_state = udc->usb_state;
1975 udc->usb_state = USB_STATE_SUSPENDED;
1976 if (udc->driver->suspend) {
1977 spin_unlock(&udc->lock);
1978 udc->driver->suspend(&udc->gadget);
1979 spin_lock(&udc->lock);
1980 }
1981 }
1982
1983 if (!(portsc & PORTSCX_PORT_SUSPEND)
1984 && udc->usb_state == USB_STATE_SUSPENDED) {
1985 handle_bus_resume(udc);
1986 }
1987
1988 if (!udc->resume_state)
1989 udc->usb_state = USB_STATE_DEFAULT;
1990 }
1991
irq_process_error(struct mv_udc * udc)1992 static void irq_process_error(struct mv_udc *udc)
1993 {
1994 /* Increment the error count */
1995 udc->errors++;
1996 }
1997
mv_udc_irq(int irq,void * dev)1998 static irqreturn_t mv_udc_irq(int irq, void *dev)
1999 {
2000 struct mv_udc *udc = (struct mv_udc *)dev;
2001 u32 status, intr;
2002
2003 /* Disable ISR when stopped bit is set */
2004 if (udc->stopped)
2005 return IRQ_NONE;
2006
2007 spin_lock(&udc->lock);
2008
2009 status = readl(&udc->op_regs->usbsts);
2010 intr = readl(&udc->op_regs->usbintr);
2011 status &= intr;
2012
2013 if (status == 0) {
2014 spin_unlock(&udc->lock);
2015 return IRQ_NONE;
2016 }
2017
2018 /* Clear all the interrupts occurred */
2019 writel(status, &udc->op_regs->usbsts);
2020
2021 if (status & USBSTS_ERR)
2022 irq_process_error(udc);
2023
2024 if (status & USBSTS_RESET)
2025 irq_process_reset(udc);
2026
2027 if (status & USBSTS_PORT_CHANGE)
2028 irq_process_port_change(udc);
2029
2030 if (status & USBSTS_INT)
2031 irq_process_tr_complete(udc);
2032
2033 if (status & USBSTS_SUSPEND)
2034 irq_process_suspend(udc);
2035
2036 spin_unlock(&udc->lock);
2037
2038 return IRQ_HANDLED;
2039 }
2040
mv_udc_vbus_irq(int irq,void * dev)2041 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2042 {
2043 struct mv_udc *udc = (struct mv_udc *)dev;
2044
2045 /* polling VBUS and init phy may cause too much time*/
2046 if (udc->qwork)
2047 queue_work(udc->qwork, &udc->vbus_work);
2048
2049 return IRQ_HANDLED;
2050 }
2051
mv_udc_vbus_work(struct work_struct * work)2052 static void mv_udc_vbus_work(struct work_struct *work)
2053 {
2054 struct mv_udc *udc;
2055 unsigned int vbus;
2056
2057 udc = container_of(work, struct mv_udc, vbus_work);
2058 if (!udc->pdata->vbus)
2059 return;
2060
2061 vbus = udc->pdata->vbus->poll();
2062 dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2063
2064 if (vbus == VBUS_HIGH)
2065 mv_udc_vbus_session(&udc->gadget, 1);
2066 else if (vbus == VBUS_LOW)
2067 mv_udc_vbus_session(&udc->gadget, 0);
2068 }
2069
2070 /* release device structure */
gadget_release(struct device * _dev)2071 static void gadget_release(struct device *_dev)
2072 {
2073 struct mv_udc *udc;
2074
2075 udc = dev_get_drvdata(_dev);
2076
2077 complete(udc->done);
2078 }
2079
mv_udc_remove(struct platform_device * pdev)2080 static void mv_udc_remove(struct platform_device *pdev)
2081 {
2082 struct mv_udc *udc;
2083
2084 udc = platform_get_drvdata(pdev);
2085
2086 usb_del_gadget_udc(&udc->gadget);
2087
2088 if (udc->qwork)
2089 destroy_workqueue(udc->qwork);
2090
2091 /* free memory allocated in probe */
2092 dma_pool_destroy(udc->dtd_pool);
2093
2094 if (udc->ep_dqh)
2095 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2096 udc->ep_dqh, udc->ep_dqh_dma);
2097
2098 mv_udc_disable(udc);
2099
2100 /* free dev, wait for the release() finished */
2101 wait_for_completion(udc->done);
2102 }
2103
mv_udc_probe(struct platform_device * pdev)2104 static int mv_udc_probe(struct platform_device *pdev)
2105 {
2106 struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2107 struct mv_udc *udc;
2108 int retval = 0;
2109 struct resource *r;
2110 size_t size;
2111
2112 if (pdata == NULL) {
2113 dev_err(&pdev->dev, "missing platform_data\n");
2114 return -ENODEV;
2115 }
2116
2117 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2118 if (udc == NULL)
2119 return -ENOMEM;
2120
2121 udc->done = &release_done;
2122 udc->pdata = dev_get_platdata(&pdev->dev);
2123 spin_lock_init(&udc->lock);
2124
2125 udc->dev = pdev;
2126
2127 if (pdata->mode == MV_USB_MODE_OTG) {
2128 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2129 USB_PHY_TYPE_USB2);
2130 if (IS_ERR(udc->transceiver)) {
2131 retval = PTR_ERR(udc->transceiver);
2132
2133 if (retval == -ENXIO)
2134 return retval;
2135
2136 udc->transceiver = NULL;
2137 return -EPROBE_DEFER;
2138 }
2139 }
2140
2141 /* udc only have one sysclk. */
2142 udc->clk = devm_clk_get(&pdev->dev, NULL);
2143 if (IS_ERR(udc->clk))
2144 return PTR_ERR(udc->clk);
2145
2146 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2147 if (r == NULL) {
2148 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2149 return -ENODEV;
2150 }
2151
2152 udc->cap_regs = (struct mv_cap_regs __iomem *)
2153 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2154 if (udc->cap_regs == NULL) {
2155 dev_err(&pdev->dev, "failed to map I/O memory\n");
2156 return -EBUSY;
2157 }
2158
2159 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2160 if (r == NULL) {
2161 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2162 return -ENODEV;
2163 }
2164
2165 udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2166 if (udc->phy_regs == NULL) {
2167 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2168 return -EBUSY;
2169 }
2170
2171 /* we will acces controller register, so enable the clk */
2172 retval = mv_udc_enable_internal(udc);
2173 if (retval)
2174 return retval;
2175
2176 udc->op_regs =
2177 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2178 + (readl(&udc->cap_regs->caplength_hciversion)
2179 & CAPLENGTH_MASK));
2180 udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2181
2182 /*
2183 * some platform will use usb to download image, it may not disconnect
2184 * usb gadget before loading kernel. So first stop udc here.
2185 */
2186 udc_stop(udc);
2187 writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2188
2189 size = udc->max_eps * sizeof(struct mv_dqh) *2;
2190 size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2191 udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2192 &udc->ep_dqh_dma, GFP_KERNEL);
2193
2194 if (udc->ep_dqh == NULL) {
2195 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2196 retval = -ENOMEM;
2197 goto err_disable_clock;
2198 }
2199 udc->ep_dqh_size = size;
2200
2201 /* create dTD dma_pool resource */
2202 udc->dtd_pool = dma_pool_create("mv_dtd",
2203 &pdev->dev,
2204 sizeof(struct mv_dtd),
2205 DTD_ALIGNMENT,
2206 DMA_BOUNDARY);
2207
2208 if (!udc->dtd_pool) {
2209 retval = -ENOMEM;
2210 goto err_free_dma;
2211 }
2212
2213 size = udc->max_eps * sizeof(struct mv_ep) *2;
2214 udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2215 if (udc->eps == NULL) {
2216 retval = -ENOMEM;
2217 goto err_destroy_dma;
2218 }
2219
2220 /* initialize ep0 status request structure */
2221 udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2222 GFP_KERNEL);
2223 if (!udc->status_req) {
2224 retval = -ENOMEM;
2225 goto err_destroy_dma;
2226 }
2227 INIT_LIST_HEAD(&udc->status_req->queue);
2228
2229 /* allocate a small amount of memory to get valid address */
2230 udc->status_req->req.buf = devm_kzalloc(&pdev->dev, 8, GFP_KERNEL);
2231 if (!udc->status_req->req.buf) {
2232 retval = -ENOMEM;
2233 goto err_destroy_dma;
2234 }
2235 udc->status_req->req.dma = DMA_ADDR_INVALID;
2236
2237 udc->resume_state = USB_STATE_NOTATTACHED;
2238 udc->usb_state = USB_STATE_POWERED;
2239 udc->ep0_dir = EP_DIR_OUT;
2240 udc->remote_wakeup = 0;
2241
2242 r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2243 if (r == NULL) {
2244 dev_err(&pdev->dev, "no IRQ resource defined\n");
2245 retval = -ENODEV;
2246 goto err_destroy_dma;
2247 }
2248 udc->irq = r->start;
2249 if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2250 IRQF_SHARED, driver_name, udc)) {
2251 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2252 udc->irq);
2253 retval = -ENODEV;
2254 goto err_destroy_dma;
2255 }
2256
2257 /* initialize gadget structure */
2258 udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
2259 udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
2260 INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
2261 udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
2262 udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2263
2264 /* the "gadget" abstracts/virtualizes the controller */
2265 udc->gadget.name = driver_name; /* gadget name */
2266
2267 eps_init(udc);
2268
2269 /* VBUS detect: we can disable/enable clock on demand.*/
2270 if (udc->transceiver)
2271 udc->clock_gating = 1;
2272 else if (pdata->vbus) {
2273 udc->clock_gating = 1;
2274 retval = devm_request_threaded_irq(&pdev->dev,
2275 pdata->vbus->irq, NULL,
2276 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2277 if (retval) {
2278 dev_info(&pdev->dev,
2279 "Can not request irq for VBUS, "
2280 "disable clock gating\n");
2281 udc->clock_gating = 0;
2282 }
2283
2284 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2285 if (!udc->qwork) {
2286 dev_err(&pdev->dev, "cannot create workqueue\n");
2287 retval = -ENOMEM;
2288 goto err_destroy_dma;
2289 }
2290
2291 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2292 }
2293
2294 /*
2295 * When clock gating is supported, we can disable clk and phy.
2296 * If not, it means that VBUS detection is not supported, we
2297 * have to enable vbus active all the time to let controller work.
2298 */
2299 if (udc->clock_gating)
2300 mv_udc_disable_internal(udc);
2301 else
2302 udc->vbus_active = 1;
2303
2304 retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2305 gadget_release);
2306 if (retval)
2307 goto err_create_workqueue;
2308
2309 platform_set_drvdata(pdev, udc);
2310 dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2311 udc->clock_gating ? "with" : "without");
2312
2313 return 0;
2314
2315 err_create_workqueue:
2316 if (udc->qwork)
2317 destroy_workqueue(udc->qwork);
2318 err_destroy_dma:
2319 dma_pool_destroy(udc->dtd_pool);
2320 err_free_dma:
2321 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2322 udc->ep_dqh, udc->ep_dqh_dma);
2323 err_disable_clock:
2324 mv_udc_disable_internal(udc);
2325
2326 return retval;
2327 }
2328
2329 #ifdef CONFIG_PM
mv_udc_suspend(struct device * dev)2330 static int mv_udc_suspend(struct device *dev)
2331 {
2332 struct mv_udc *udc;
2333
2334 udc = dev_get_drvdata(dev);
2335
2336 /* if OTG is enabled, the following will be done in OTG driver*/
2337 if (udc->transceiver)
2338 return 0;
2339
2340 if (udc->pdata->vbus && udc->pdata->vbus->poll)
2341 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2342 dev_info(&udc->dev->dev, "USB cable is connected!\n");
2343 return -EAGAIN;
2344 }
2345
2346 /*
2347 * only cable is unplugged, udc can suspend.
2348 * So do not care about clock_gating == 1.
2349 */
2350 if (!udc->clock_gating) {
2351 udc_stop(udc);
2352
2353 spin_lock_irq(&udc->lock);
2354 /* stop all usb activities */
2355 stop_activity(udc, udc->driver);
2356 spin_unlock_irq(&udc->lock);
2357
2358 mv_udc_disable_internal(udc);
2359 }
2360
2361 return 0;
2362 }
2363
mv_udc_resume(struct device * dev)2364 static int mv_udc_resume(struct device *dev)
2365 {
2366 struct mv_udc *udc;
2367 int retval;
2368
2369 udc = dev_get_drvdata(dev);
2370
2371 /* if OTG is enabled, the following will be done in OTG driver*/
2372 if (udc->transceiver)
2373 return 0;
2374
2375 if (!udc->clock_gating) {
2376 retval = mv_udc_enable_internal(udc);
2377 if (retval)
2378 return retval;
2379
2380 if (udc->driver && udc->softconnect) {
2381 udc_reset(udc);
2382 ep0_reset(udc);
2383 udc_start(udc);
2384 }
2385 }
2386
2387 return 0;
2388 }
2389
2390 static const struct dev_pm_ops mv_udc_pm_ops = {
2391 .suspend = mv_udc_suspend,
2392 .resume = mv_udc_resume,
2393 };
2394 #endif
2395
mv_udc_shutdown(struct platform_device * pdev)2396 static void mv_udc_shutdown(struct platform_device *pdev)
2397 {
2398 struct mv_udc *udc;
2399 u32 mode;
2400
2401 udc = platform_get_drvdata(pdev);
2402 /* reset controller mode to IDLE */
2403 mv_udc_enable(udc);
2404 mode = readl(&udc->op_regs->usbmode);
2405 mode &= ~3;
2406 writel(mode, &udc->op_regs->usbmode);
2407 mv_udc_disable(udc);
2408 }
2409
2410 static struct platform_driver udc_driver = {
2411 .probe = mv_udc_probe,
2412 .remove_new = mv_udc_remove,
2413 .shutdown = mv_udc_shutdown,
2414 .driver = {
2415 .name = "mv-udc",
2416 #ifdef CONFIG_PM
2417 .pm = &mv_udc_pm_ops,
2418 #endif
2419 },
2420 };
2421
2422 module_platform_driver(udc_driver);
2423 MODULE_ALIAS("platform:mv-udc");
2424 MODULE_DESCRIPTION(DRIVER_DESC);
2425 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2426 MODULE_LICENSE("GPL");
2427