xref: /linux/drivers/gpu/drm/xe/xe_guc_ct.c (revision 5f2b6c5f6b692c696a232d12c43b8e41c0d393b9)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "xe_guc_ct.h"
7 
8 #include <linux/bitfield.h>
9 #include <linux/circ_buf.h>
10 #include <linux/delay.h>
11 #include <linux/fault-inject.h>
12 
13 #include <kunit/static_stub.h>
14 
15 #include <drm/drm_managed.h>
16 
17 #include "abi/guc_actions_abi.h"
18 #include "abi/guc_actions_sriov_abi.h"
19 #include "abi/guc_klvs_abi.h"
20 #include "xe_bo.h"
21 #include "xe_devcoredump.h"
22 #include "xe_device.h"
23 #include "xe_gt.h"
24 #include "xe_gt_pagefault.h"
25 #include "xe_gt_printk.h"
26 #include "xe_gt_sriov_pf_control.h"
27 #include "xe_gt_sriov_pf_monitor.h"
28 #include "xe_gt_tlb_invalidation.h"
29 #include "xe_guc.h"
30 #include "xe_guc_log.h"
31 #include "xe_guc_relay.h"
32 #include "xe_guc_submit.h"
33 #include "xe_map.h"
34 #include "xe_pm.h"
35 #include "xe_trace_guc.h"
36 
37 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
38 enum {
39 	/* Internal states, not error conditions */
40 	CT_DEAD_STATE_REARM,			/* 0x0001 */
41 	CT_DEAD_STATE_CAPTURE,			/* 0x0002 */
42 
43 	/* Error conditions */
44 	CT_DEAD_SETUP,				/* 0x0004 */
45 	CT_DEAD_H2G_WRITE,			/* 0x0008 */
46 	CT_DEAD_H2G_HAS_ROOM,			/* 0x0010 */
47 	CT_DEAD_G2H_READ,			/* 0x0020 */
48 	CT_DEAD_G2H_RECV,			/* 0x0040 */
49 	CT_DEAD_G2H_RELEASE,			/* 0x0080 */
50 	CT_DEAD_DEADLOCK,			/* 0x0100 */
51 	CT_DEAD_PROCESS_FAILED,			/* 0x0200 */
52 	CT_DEAD_FAST_G2H,			/* 0x0400 */
53 	CT_DEAD_PARSE_G2H_RESPONSE,		/* 0x0800 */
54 	CT_DEAD_PARSE_G2H_UNKNOWN,		/* 0x1000 */
55 	CT_DEAD_PARSE_G2H_ORIGIN,		/* 0x2000 */
56 	CT_DEAD_PARSE_G2H_TYPE,			/* 0x4000 */
57 	CT_DEAD_CRASH,				/* 0x8000 */
58 };
59 
60 static void ct_dead_worker_func(struct work_struct *w);
61 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code);
62 
63 #define CT_DEAD(ct, ctb, reason_code)		ct_dead_capture((ct), (ctb), CT_DEAD_##reason_code)
64 #else
65 #define CT_DEAD(ct, ctb, reason)			\
66 	do {						\
67 		struct guc_ctb *_ctb = (ctb);		\
68 		if (_ctb)				\
69 			_ctb->info.broken = true;	\
70 	} while (0)
71 #endif
72 
73 /* Used when a CT send wants to block and / or receive data */
74 struct g2h_fence {
75 	u32 *response_buffer;
76 	u32 seqno;
77 	u32 response_data;
78 	u16 response_len;
79 	u16 error;
80 	u16 hint;
81 	u16 reason;
82 	bool retry;
83 	bool fail;
84 	bool done;
85 };
86 
g2h_fence_init(struct g2h_fence * g2h_fence,u32 * response_buffer)87 static void g2h_fence_init(struct g2h_fence *g2h_fence, u32 *response_buffer)
88 {
89 	g2h_fence->response_buffer = response_buffer;
90 	g2h_fence->response_data = 0;
91 	g2h_fence->response_len = 0;
92 	g2h_fence->fail = false;
93 	g2h_fence->retry = false;
94 	g2h_fence->done = false;
95 	g2h_fence->seqno = ~0x0;
96 }
97 
g2h_fence_needs_alloc(struct g2h_fence * g2h_fence)98 static bool g2h_fence_needs_alloc(struct g2h_fence *g2h_fence)
99 {
100 	return g2h_fence->seqno == ~0x0;
101 }
102 
103 static struct xe_guc *
ct_to_guc(struct xe_guc_ct * ct)104 ct_to_guc(struct xe_guc_ct *ct)
105 {
106 	return container_of(ct, struct xe_guc, ct);
107 }
108 
109 static struct xe_gt *
ct_to_gt(struct xe_guc_ct * ct)110 ct_to_gt(struct xe_guc_ct *ct)
111 {
112 	return container_of(ct, struct xe_gt, uc.guc.ct);
113 }
114 
115 static struct xe_device *
ct_to_xe(struct xe_guc_ct * ct)116 ct_to_xe(struct xe_guc_ct *ct)
117 {
118 	return gt_to_xe(ct_to_gt(ct));
119 }
120 
121 /**
122  * DOC: GuC CTB Blob
123  *
124  * We allocate single blob to hold both CTB descriptors and buffers:
125  *
126  *      +--------+-----------------------------------------------+------+
127  *      | offset | contents                                      | size |
128  *      +========+===============================================+======+
129  *      | 0x0000 | H2G CTB Descriptor (send)                     |      |
130  *      +--------+-----------------------------------------------+  4K  |
131  *      | 0x0800 | G2H CTB Descriptor (g2h)                      |      |
132  *      +--------+-----------------------------------------------+------+
133  *      | 0x1000 | H2G CT Buffer (send)                          | n*4K |
134  *      |        |                                               |      |
135  *      +--------+-----------------------------------------------+------+
136  *      | 0x1000 | G2H CT Buffer (g2h)                           | m*4K |
137  *      | + n*4K |                                               |      |
138  *      +--------+-----------------------------------------------+------+
139  *
140  * Size of each ``CT Buffer`` must be multiple of 4K.
141  * We don't expect too many messages in flight at any time, unless we are
142  * using the GuC submission. In that case each request requires a minimum
143  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
144  * enough space to avoid backpressure on the driver. We increase the size
145  * of the receive buffer (relative to the send) to ensure a G2H response
146  * CTB has a landing spot.
147  *
148  * In addition to submissions, the G2H buffer needs to be able to hold
149  * enough space for recoverable page fault notifications. The number of
150  * page faults is interrupt driven and can be as much as the number of
151  * compute resources available. However, most of the actual work for these
152  * is in a separate page fault worker thread. Therefore we only need to
153  * make sure the queue has enough space to handle all of the submissions
154  * and responses and an extra buffer for incoming page faults.
155  */
156 
157 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
158 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
159 #define CTB_G2H_BUFFER_SIZE	(SZ_128K)
160 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 2)
161 
162 /**
163  * xe_guc_ct_queue_proc_time_jiffies - Return maximum time to process a full
164  * CT command queue
165  * @ct: the &xe_guc_ct. Unused at this moment but will be used in the future.
166  *
167  * Observation is that a 4KiB buffer full of commands takes a little over a
168  * second to process. Use that to calculate maximum time to process a full CT
169  * command queue.
170  *
171  * Return: Maximum time to process a full CT queue in jiffies.
172  */
xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct * ct)173 long xe_guc_ct_queue_proc_time_jiffies(struct xe_guc_ct *ct)
174 {
175 	BUILD_BUG_ON(!IS_ALIGNED(CTB_H2G_BUFFER_SIZE, SZ_4));
176 	return (CTB_H2G_BUFFER_SIZE / SZ_4K) * HZ;
177 }
178 
guc_ct_size(void)179 static size_t guc_ct_size(void)
180 {
181 	return 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE +
182 		CTB_G2H_BUFFER_SIZE;
183 }
184 
guc_ct_fini(struct drm_device * drm,void * arg)185 static void guc_ct_fini(struct drm_device *drm, void *arg)
186 {
187 	struct xe_guc_ct *ct = arg;
188 
189 	destroy_workqueue(ct->g2h_wq);
190 	xa_destroy(&ct->fence_lookup);
191 }
192 
193 static void receive_g2h(struct xe_guc_ct *ct);
194 static void g2h_worker_func(struct work_struct *w);
195 static void safe_mode_worker_func(struct work_struct *w);
196 
primelockdep(struct xe_guc_ct * ct)197 static void primelockdep(struct xe_guc_ct *ct)
198 {
199 	if (!IS_ENABLED(CONFIG_LOCKDEP))
200 		return;
201 
202 	fs_reclaim_acquire(GFP_KERNEL);
203 	might_lock(&ct->lock);
204 	fs_reclaim_release(GFP_KERNEL);
205 }
206 
xe_guc_ct_init(struct xe_guc_ct * ct)207 int xe_guc_ct_init(struct xe_guc_ct *ct)
208 {
209 	struct xe_device *xe = ct_to_xe(ct);
210 	struct xe_gt *gt = ct_to_gt(ct);
211 	struct xe_tile *tile = gt_to_tile(gt);
212 	struct xe_bo *bo;
213 	int err;
214 
215 	xe_gt_assert(gt, !(guc_ct_size() % PAGE_SIZE));
216 
217 	ct->g2h_wq = alloc_ordered_workqueue("xe-g2h-wq", WQ_MEM_RECLAIM);
218 	if (!ct->g2h_wq)
219 		return -ENOMEM;
220 
221 	spin_lock_init(&ct->fast_lock);
222 	xa_init(&ct->fence_lookup);
223 	INIT_WORK(&ct->g2h_worker, g2h_worker_func);
224 	INIT_DELAYED_WORK(&ct->safe_mode_worker, safe_mode_worker_func);
225 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
226 	spin_lock_init(&ct->dead.lock);
227 	INIT_WORK(&ct->dead.worker, ct_dead_worker_func);
228 #endif
229 	init_waitqueue_head(&ct->wq);
230 	init_waitqueue_head(&ct->g2h_fence_wq);
231 
232 	err = drmm_mutex_init(&xe->drm, &ct->lock);
233 	if (err)
234 		return err;
235 
236 	primelockdep(ct);
237 
238 	bo = xe_managed_bo_create_pin_map(xe, tile, guc_ct_size(),
239 					  XE_BO_FLAG_SYSTEM |
240 					  XE_BO_FLAG_GGTT |
241 					  XE_BO_FLAG_GGTT_INVALIDATE |
242 					  XE_BO_FLAG_PINNED_NORESTORE);
243 	if (IS_ERR(bo))
244 		return PTR_ERR(bo);
245 
246 	ct->bo = bo;
247 
248 	err = drmm_add_action_or_reset(&xe->drm, guc_ct_fini, ct);
249 	if (err)
250 		return err;
251 
252 	xe_gt_assert(gt, ct->state == XE_GUC_CT_STATE_NOT_INITIALIZED);
253 	ct->state = XE_GUC_CT_STATE_DISABLED;
254 	return 0;
255 }
256 ALLOW_ERROR_INJECTION(xe_guc_ct_init, ERRNO); /* See xe_pci_probe() */
257 
258 #define desc_read(xe_, guc_ctb__, field_)			\
259 	xe_map_rd_field(xe_, &guc_ctb__->desc, 0,		\
260 			struct guc_ct_buffer_desc, field_)
261 
262 #define desc_write(xe_, guc_ctb__, field_, val_)		\
263 	xe_map_wr_field(xe_, &guc_ctb__->desc, 0,		\
264 			struct guc_ct_buffer_desc, field_, val_)
265 
guc_ct_ctb_h2g_init(struct xe_device * xe,struct guc_ctb * h2g,struct iosys_map * map)266 static void guc_ct_ctb_h2g_init(struct xe_device *xe, struct guc_ctb *h2g,
267 				struct iosys_map *map)
268 {
269 	h2g->info.size = CTB_H2G_BUFFER_SIZE / sizeof(u32);
270 	h2g->info.resv_space = 0;
271 	h2g->info.tail = 0;
272 	h2g->info.head = 0;
273 	h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
274 				     h2g->info.size) -
275 			  h2g->info.resv_space;
276 	h2g->info.broken = false;
277 
278 	h2g->desc = *map;
279 	xe_map_memset(xe, &h2g->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
280 
281 	h2g->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2);
282 }
283 
guc_ct_ctb_g2h_init(struct xe_device * xe,struct guc_ctb * g2h,struct iosys_map * map)284 static void guc_ct_ctb_g2h_init(struct xe_device *xe, struct guc_ctb *g2h,
285 				struct iosys_map *map)
286 {
287 	g2h->info.size = CTB_G2H_BUFFER_SIZE / sizeof(u32);
288 	g2h->info.resv_space = G2H_ROOM_BUFFER_SIZE / sizeof(u32);
289 	g2h->info.head = 0;
290 	g2h->info.tail = 0;
291 	g2h->info.space = CIRC_SPACE(g2h->info.tail, g2h->info.head,
292 				     g2h->info.size) -
293 			  g2h->info.resv_space;
294 	g2h->info.broken = false;
295 
296 	g2h->desc = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE);
297 	xe_map_memset(xe, &g2h->desc, 0, 0, sizeof(struct guc_ct_buffer_desc));
298 
299 	g2h->cmds = IOSYS_MAP_INIT_OFFSET(map, CTB_DESC_SIZE * 2 +
300 					    CTB_H2G_BUFFER_SIZE);
301 }
302 
guc_ct_ctb_h2g_register(struct xe_guc_ct * ct)303 static int guc_ct_ctb_h2g_register(struct xe_guc_ct *ct)
304 {
305 	struct xe_guc *guc = ct_to_guc(ct);
306 	u32 desc_addr, ctb_addr, size;
307 	int err;
308 
309 	desc_addr = xe_bo_ggtt_addr(ct->bo);
310 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2;
311 	size = ct->ctbs.h2g.info.size * sizeof(u32);
312 
313 	err = xe_guc_self_cfg64(guc,
314 				GUC_KLV_SELF_CFG_H2G_CTB_DESCRIPTOR_ADDR_KEY,
315 				desc_addr);
316 	if (err)
317 		return err;
318 
319 	err = xe_guc_self_cfg64(guc,
320 				GUC_KLV_SELF_CFG_H2G_CTB_ADDR_KEY,
321 				ctb_addr);
322 	if (err)
323 		return err;
324 
325 	return xe_guc_self_cfg32(guc,
326 				 GUC_KLV_SELF_CFG_H2G_CTB_SIZE_KEY,
327 				 size);
328 }
329 
guc_ct_ctb_g2h_register(struct xe_guc_ct * ct)330 static int guc_ct_ctb_g2h_register(struct xe_guc_ct *ct)
331 {
332 	struct xe_guc *guc = ct_to_guc(ct);
333 	u32 desc_addr, ctb_addr, size;
334 	int err;
335 
336 	desc_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE;
337 	ctb_addr = xe_bo_ggtt_addr(ct->bo) + CTB_DESC_SIZE * 2 +
338 		CTB_H2G_BUFFER_SIZE;
339 	size = ct->ctbs.g2h.info.size * sizeof(u32);
340 
341 	err = xe_guc_self_cfg64(guc,
342 				GUC_KLV_SELF_CFG_G2H_CTB_DESCRIPTOR_ADDR_KEY,
343 				desc_addr);
344 	if (err)
345 		return err;
346 
347 	err = xe_guc_self_cfg64(guc,
348 				GUC_KLV_SELF_CFG_G2H_CTB_ADDR_KEY,
349 				ctb_addr);
350 	if (err)
351 		return err;
352 
353 	return xe_guc_self_cfg32(guc,
354 				 GUC_KLV_SELF_CFG_G2H_CTB_SIZE_KEY,
355 				 size);
356 }
357 
guc_ct_control_toggle(struct xe_guc_ct * ct,bool enable)358 static int guc_ct_control_toggle(struct xe_guc_ct *ct, bool enable)
359 {
360 	u32 request[HOST2GUC_CONTROL_CTB_REQUEST_MSG_LEN] = {
361 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
362 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
363 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
364 			   GUC_ACTION_HOST2GUC_CONTROL_CTB),
365 		FIELD_PREP(HOST2GUC_CONTROL_CTB_REQUEST_MSG_1_CONTROL,
366 			   enable ? GUC_CTB_CONTROL_ENABLE :
367 			   GUC_CTB_CONTROL_DISABLE),
368 	};
369 	int ret = xe_guc_mmio_send(ct_to_guc(ct), request, ARRAY_SIZE(request));
370 
371 	return ret > 0 ? -EPROTO : ret;
372 }
373 
xe_guc_ct_set_state(struct xe_guc_ct * ct,enum xe_guc_ct_state state)374 static void xe_guc_ct_set_state(struct xe_guc_ct *ct,
375 				enum xe_guc_ct_state state)
376 {
377 	mutex_lock(&ct->lock);		/* Serialise dequeue_one_g2h() */
378 	spin_lock_irq(&ct->fast_lock);	/* Serialise CT fast-path */
379 
380 	xe_gt_assert(ct_to_gt(ct), ct->g2h_outstanding == 0 ||
381 		     state == XE_GUC_CT_STATE_STOPPED);
382 
383 	if (ct->g2h_outstanding)
384 		xe_pm_runtime_put(ct_to_xe(ct));
385 	ct->g2h_outstanding = 0;
386 	ct->state = state;
387 
388 	spin_unlock_irq(&ct->fast_lock);
389 
390 	/*
391 	 * Lockdep doesn't like this under the fast lock and he destroy only
392 	 * needs to be serialized with the send path which ct lock provides.
393 	 */
394 	xa_destroy(&ct->fence_lookup);
395 
396 	mutex_unlock(&ct->lock);
397 }
398 
ct_needs_safe_mode(struct xe_guc_ct * ct)399 static bool ct_needs_safe_mode(struct xe_guc_ct *ct)
400 {
401 	return !pci_dev_msi_enabled(to_pci_dev(ct_to_xe(ct)->drm.dev));
402 }
403 
ct_restart_safe_mode_worker(struct xe_guc_ct * ct)404 static bool ct_restart_safe_mode_worker(struct xe_guc_ct *ct)
405 {
406 	if (!ct_needs_safe_mode(ct))
407 		return false;
408 
409 	queue_delayed_work(ct->g2h_wq, &ct->safe_mode_worker, HZ / 10);
410 	return true;
411 }
412 
safe_mode_worker_func(struct work_struct * w)413 static void safe_mode_worker_func(struct work_struct *w)
414 {
415 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, safe_mode_worker.work);
416 
417 	receive_g2h(ct);
418 
419 	if (!ct_restart_safe_mode_worker(ct))
420 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode canceled\n");
421 }
422 
ct_enter_safe_mode(struct xe_guc_ct * ct)423 static void ct_enter_safe_mode(struct xe_guc_ct *ct)
424 {
425 	if (ct_restart_safe_mode_worker(ct))
426 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode enabled\n");
427 }
428 
ct_exit_safe_mode(struct xe_guc_ct * ct)429 static void ct_exit_safe_mode(struct xe_guc_ct *ct)
430 {
431 	if (cancel_delayed_work_sync(&ct->safe_mode_worker))
432 		xe_gt_dbg(ct_to_gt(ct), "GuC CT safe-mode disabled\n");
433 }
434 
xe_guc_ct_enable(struct xe_guc_ct * ct)435 int xe_guc_ct_enable(struct xe_guc_ct *ct)
436 {
437 	struct xe_device *xe = ct_to_xe(ct);
438 	struct xe_gt *gt = ct_to_gt(ct);
439 	int err;
440 
441 	xe_gt_assert(gt, !xe_guc_ct_enabled(ct));
442 
443 	xe_map_memset(xe, &ct->bo->vmap, 0, 0, ct->bo->size);
444 	guc_ct_ctb_h2g_init(xe, &ct->ctbs.h2g, &ct->bo->vmap);
445 	guc_ct_ctb_g2h_init(xe, &ct->ctbs.g2h, &ct->bo->vmap);
446 
447 	err = guc_ct_ctb_h2g_register(ct);
448 	if (err)
449 		goto err_out;
450 
451 	err = guc_ct_ctb_g2h_register(ct);
452 	if (err)
453 		goto err_out;
454 
455 	err = guc_ct_control_toggle(ct, true);
456 	if (err)
457 		goto err_out;
458 
459 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_ENABLED);
460 
461 	smp_mb();
462 	wake_up_all(&ct->wq);
463 	xe_gt_dbg(gt, "GuC CT communication channel enabled\n");
464 
465 	if (ct_needs_safe_mode(ct))
466 		ct_enter_safe_mode(ct);
467 
468 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
469 	/*
470 	 * The CT has now been reset so the dumper can be re-armed
471 	 * after any existing dead state has been dumped.
472 	 */
473 	spin_lock_irq(&ct->dead.lock);
474 	if (ct->dead.reason) {
475 		ct->dead.reason |= (1 << CT_DEAD_STATE_REARM);
476 		queue_work(system_unbound_wq, &ct->dead.worker);
477 	}
478 	spin_unlock_irq(&ct->dead.lock);
479 #endif
480 
481 	return 0;
482 
483 err_out:
484 	xe_gt_err(gt, "Failed to enable GuC CT (%pe)\n", ERR_PTR(err));
485 	CT_DEAD(ct, NULL, SETUP);
486 
487 	return err;
488 }
489 
stop_g2h_handler(struct xe_guc_ct * ct)490 static void stop_g2h_handler(struct xe_guc_ct *ct)
491 {
492 	cancel_work_sync(&ct->g2h_worker);
493 }
494 
495 /**
496  * xe_guc_ct_disable - Set GuC to disabled state
497  * @ct: the &xe_guc_ct
498  *
499  * Set GuC CT to disabled state and stop g2h handler. No outstanding g2h expected
500  * in this transition.
501  */
xe_guc_ct_disable(struct xe_guc_ct * ct)502 void xe_guc_ct_disable(struct xe_guc_ct *ct)
503 {
504 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_DISABLED);
505 	ct_exit_safe_mode(ct);
506 	stop_g2h_handler(ct);
507 }
508 
509 /**
510  * xe_guc_ct_stop - Set GuC to stopped state
511  * @ct: the &xe_guc_ct
512  *
513  * Set GuC CT to stopped state, stop g2h handler, and clear any outstanding g2h
514  */
xe_guc_ct_stop(struct xe_guc_ct * ct)515 void xe_guc_ct_stop(struct xe_guc_ct *ct)
516 {
517 	if (!xe_guc_ct_initialized(ct))
518 		return;
519 
520 	xe_guc_ct_set_state(ct, XE_GUC_CT_STATE_STOPPED);
521 	stop_g2h_handler(ct);
522 }
523 
h2g_has_room(struct xe_guc_ct * ct,u32 cmd_len)524 static bool h2g_has_room(struct xe_guc_ct *ct, u32 cmd_len)
525 {
526 	struct guc_ctb *h2g = &ct->ctbs.h2g;
527 
528 	lockdep_assert_held(&ct->lock);
529 
530 	if (cmd_len > h2g->info.space) {
531 		h2g->info.head = desc_read(ct_to_xe(ct), h2g, head);
532 
533 		if (h2g->info.head > h2g->info.size) {
534 			struct xe_device *xe = ct_to_xe(ct);
535 			u32 desc_status = desc_read(xe, h2g, status);
536 
537 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
538 
539 			xe_gt_err(ct_to_gt(ct), "CT: invalid head offset %u >= %u)\n",
540 				  h2g->info.head, h2g->info.size);
541 			CT_DEAD(ct, h2g, H2G_HAS_ROOM);
542 			return false;
543 		}
544 
545 		h2g->info.space = CIRC_SPACE(h2g->info.tail, h2g->info.head,
546 					     h2g->info.size) -
547 				  h2g->info.resv_space;
548 		if (cmd_len > h2g->info.space)
549 			return false;
550 	}
551 
552 	return true;
553 }
554 
g2h_has_room(struct xe_guc_ct * ct,u32 g2h_len)555 static bool g2h_has_room(struct xe_guc_ct *ct, u32 g2h_len)
556 {
557 	if (!g2h_len)
558 		return true;
559 
560 	lockdep_assert_held(&ct->fast_lock);
561 
562 	return ct->ctbs.g2h.info.space > g2h_len;
563 }
564 
has_room(struct xe_guc_ct * ct,u32 cmd_len,u32 g2h_len)565 static int has_room(struct xe_guc_ct *ct, u32 cmd_len, u32 g2h_len)
566 {
567 	lockdep_assert_held(&ct->lock);
568 
569 	if (!g2h_has_room(ct, g2h_len) || !h2g_has_room(ct, cmd_len))
570 		return -EBUSY;
571 
572 	return 0;
573 }
574 
h2g_reserve_space(struct xe_guc_ct * ct,u32 cmd_len)575 static void h2g_reserve_space(struct xe_guc_ct *ct, u32 cmd_len)
576 {
577 	lockdep_assert_held(&ct->lock);
578 	ct->ctbs.h2g.info.space -= cmd_len;
579 }
580 
__g2h_reserve_space(struct xe_guc_ct * ct,u32 g2h_len,u32 num_g2h)581 static void __g2h_reserve_space(struct xe_guc_ct *ct, u32 g2h_len, u32 num_g2h)
582 {
583 	xe_gt_assert(ct_to_gt(ct), g2h_len <= ct->ctbs.g2h.info.space);
584 	xe_gt_assert(ct_to_gt(ct), (!g2h_len && !num_g2h) ||
585 		     (g2h_len && num_g2h));
586 
587 	if (g2h_len) {
588 		lockdep_assert_held(&ct->fast_lock);
589 
590 		if (!ct->g2h_outstanding)
591 			xe_pm_runtime_get_noresume(ct_to_xe(ct));
592 
593 		ct->ctbs.g2h.info.space -= g2h_len;
594 		ct->g2h_outstanding += num_g2h;
595 	}
596 }
597 
__g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)598 static void __g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
599 {
600 	bool bad = false;
601 
602 	lockdep_assert_held(&ct->fast_lock);
603 
604 	bad = ct->ctbs.g2h.info.space + g2h_len >
605 		     ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space;
606 	bad |= !ct->g2h_outstanding;
607 
608 	if (bad) {
609 		xe_gt_err(ct_to_gt(ct), "Invalid G2H release: %d + %d vs %d - %d -> %d vs %d, outstanding = %d!\n",
610 			  ct->ctbs.g2h.info.space, g2h_len,
611 			  ct->ctbs.g2h.info.size, ct->ctbs.g2h.info.resv_space,
612 			  ct->ctbs.g2h.info.space + g2h_len,
613 			  ct->ctbs.g2h.info.size - ct->ctbs.g2h.info.resv_space,
614 			  ct->g2h_outstanding);
615 		CT_DEAD(ct, &ct->ctbs.g2h, G2H_RELEASE);
616 		return;
617 	}
618 
619 	ct->ctbs.g2h.info.space += g2h_len;
620 	if (!--ct->g2h_outstanding)
621 		xe_pm_runtime_put(ct_to_xe(ct));
622 }
623 
g2h_release_space(struct xe_guc_ct * ct,u32 g2h_len)624 static void g2h_release_space(struct xe_guc_ct *ct, u32 g2h_len)
625 {
626 	spin_lock_irq(&ct->fast_lock);
627 	__g2h_release_space(ct, g2h_len);
628 	spin_unlock_irq(&ct->fast_lock);
629 }
630 
631 #define H2G_CT_HEADERS (GUC_CTB_HDR_LEN + 1) /* one DW CTB header and one DW HxG header */
632 
h2g_write(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 ct_fence_value,bool want_response)633 static int h2g_write(struct xe_guc_ct *ct, const u32 *action, u32 len,
634 		     u32 ct_fence_value, bool want_response)
635 {
636 	struct xe_device *xe = ct_to_xe(ct);
637 	struct xe_gt *gt = ct_to_gt(ct);
638 	struct guc_ctb *h2g = &ct->ctbs.h2g;
639 	u32 cmd[H2G_CT_HEADERS];
640 	u32 tail = h2g->info.tail;
641 	u32 full_len;
642 	struct iosys_map map = IOSYS_MAP_INIT_OFFSET(&h2g->cmds,
643 							 tail * sizeof(u32));
644 	u32 desc_status;
645 
646 	full_len = len + GUC_CTB_HDR_LEN;
647 
648 	lockdep_assert_held(&ct->lock);
649 	xe_gt_assert(gt, full_len <= GUC_CTB_MSG_MAX_LEN);
650 
651 	desc_status = desc_read(xe, h2g, status);
652 	if (desc_status) {
653 		xe_gt_err(gt, "CT write: non-zero status: %u\n", desc_status);
654 		goto corrupted;
655 	}
656 
657 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
658 		u32 desc_tail = desc_read(xe, h2g, tail);
659 		u32 desc_head = desc_read(xe, h2g, head);
660 
661 		if (tail != desc_tail) {
662 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_MISMATCH);
663 			xe_gt_err(gt, "CT write: tail was modified %u != %u\n", desc_tail, tail);
664 			goto corrupted;
665 		}
666 
667 		if (tail > h2g->info.size) {
668 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
669 			xe_gt_err(gt, "CT write: tail out of range: %u vs %u\n",
670 				  tail, h2g->info.size);
671 			goto corrupted;
672 		}
673 
674 		if (desc_head >= h2g->info.size) {
675 			desc_write(xe, h2g, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
676 			xe_gt_err(gt, "CT write: invalid head offset %u >= %u)\n",
677 				  desc_head, h2g->info.size);
678 			goto corrupted;
679 		}
680 	}
681 
682 	/* Command will wrap, zero fill (NOPs), return and check credits again */
683 	if (tail + full_len > h2g->info.size) {
684 		xe_map_memset(xe, &map, 0, 0,
685 			      (h2g->info.size - tail) * sizeof(u32));
686 		h2g_reserve_space(ct, (h2g->info.size - tail));
687 		h2g->info.tail = 0;
688 		desc_write(xe, h2g, tail, h2g->info.tail);
689 
690 		return -EAGAIN;
691 	}
692 
693 	/*
694 	 * dw0: CT header (including fence)
695 	 * dw1: HXG header (including action code)
696 	 * dw2+: action data
697 	 */
698 	cmd[0] = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
699 		FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
700 		FIELD_PREP(GUC_CTB_MSG_0_FENCE, ct_fence_value);
701 	if (want_response) {
702 		cmd[1] =
703 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
704 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
705 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
706 	} else {
707 		cmd[1] =
708 			FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_FAST_REQUEST) |
709 			FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
710 				   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
711 	}
712 
713 	/* H2G header in cmd[1] replaces action[0] so: */
714 	--len;
715 	++action;
716 
717 	/* Write H2G ensuring visible before descriptor update */
718 	xe_map_memcpy_to(xe, &map, 0, cmd, H2G_CT_HEADERS * sizeof(u32));
719 	xe_map_memcpy_to(xe, &map, H2G_CT_HEADERS * sizeof(u32), action, len * sizeof(u32));
720 	xe_device_wmb(xe);
721 
722 	/* Update local copies */
723 	h2g->info.tail = (tail + full_len) % h2g->info.size;
724 	h2g_reserve_space(ct, full_len);
725 
726 	/* Update descriptor */
727 	desc_write(xe, h2g, tail, h2g->info.tail);
728 
729 	trace_xe_guc_ctb_h2g(xe, gt->info.id, *(action - 1), full_len,
730 			     desc_read(xe, h2g, head), h2g->info.tail);
731 
732 	return 0;
733 
734 corrupted:
735 	CT_DEAD(ct, &ct->ctbs.h2g, H2G_WRITE);
736 	return -EPIPE;
737 }
738 
739 /*
740  * The CT protocol accepts a 16 bits fence. This field is fully owned by the
741  * driver, the GuC will just copy it to the reply message. Since we need to
742  * be able to distinguish between replies to REQUEST and FAST_REQUEST messages,
743  * we use one bit of the seqno as an indicator for that and a rolling counter
744  * for the remaining 15 bits.
745  */
746 #define CT_SEQNO_MASK GENMASK(14, 0)
747 #define CT_SEQNO_UNTRACKED BIT(15)
next_ct_seqno(struct xe_guc_ct * ct,bool is_g2h_fence)748 static u16 next_ct_seqno(struct xe_guc_ct *ct, bool is_g2h_fence)
749 {
750 	u32 seqno = ct->fence_seqno++ & CT_SEQNO_MASK;
751 
752 	if (!is_g2h_fence)
753 		seqno |= CT_SEQNO_UNTRACKED;
754 
755 	return seqno;
756 }
757 
__guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)758 static int __guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action,
759 				u32 len, u32 g2h_len, u32 num_g2h,
760 				struct g2h_fence *g2h_fence)
761 {
762 	struct xe_gt *gt __maybe_unused = ct_to_gt(ct);
763 	u16 seqno;
764 	int ret;
765 
766 	xe_gt_assert(gt, xe_guc_ct_initialized(ct));
767 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
768 	xe_gt_assert(gt, !num_g2h || !g2h_fence);
769 	xe_gt_assert(gt, !g2h_len || num_g2h);
770 	xe_gt_assert(gt, g2h_len || !num_g2h);
771 	lockdep_assert_held(&ct->lock);
772 
773 	if (unlikely(ct->ctbs.h2g.info.broken)) {
774 		ret = -EPIPE;
775 		goto out;
776 	}
777 
778 	if (ct->state == XE_GUC_CT_STATE_DISABLED) {
779 		ret = -ENODEV;
780 		goto out;
781 	}
782 
783 	if (ct->state == XE_GUC_CT_STATE_STOPPED) {
784 		ret = -ECANCELED;
785 		goto out;
786 	}
787 
788 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
789 
790 	if (g2h_fence) {
791 		g2h_len = GUC_CTB_HXG_MSG_MAX_LEN;
792 		num_g2h = 1;
793 
794 		if (g2h_fence_needs_alloc(g2h_fence)) {
795 			g2h_fence->seqno = next_ct_seqno(ct, true);
796 			ret = xa_err(xa_store(&ct->fence_lookup,
797 					      g2h_fence->seqno, g2h_fence,
798 					      GFP_ATOMIC));
799 			if (ret)
800 				goto out;
801 		}
802 
803 		seqno = g2h_fence->seqno;
804 	} else {
805 		seqno = next_ct_seqno(ct, false);
806 	}
807 
808 	if (g2h_len)
809 		spin_lock_irq(&ct->fast_lock);
810 retry:
811 	ret = has_room(ct, len + GUC_CTB_HDR_LEN, g2h_len);
812 	if (unlikely(ret))
813 		goto out_unlock;
814 
815 	ret = h2g_write(ct, action, len, seqno, !!g2h_fence);
816 	if (unlikely(ret)) {
817 		if (ret == -EAGAIN)
818 			goto retry;
819 		goto out_unlock;
820 	}
821 
822 	__g2h_reserve_space(ct, g2h_len, num_g2h);
823 	xe_guc_notify(ct_to_guc(ct));
824 out_unlock:
825 	if (g2h_len)
826 		spin_unlock_irq(&ct->fast_lock);
827 out:
828 	return ret;
829 }
830 
kick_reset(struct xe_guc_ct * ct)831 static void kick_reset(struct xe_guc_ct *ct)
832 {
833 	xe_gt_reset_async(ct_to_gt(ct));
834 }
835 
836 static int dequeue_one_g2h(struct xe_guc_ct *ct);
837 
guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)838 static int guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
839 			      u32 g2h_len, u32 num_g2h,
840 			      struct g2h_fence *g2h_fence)
841 {
842 	struct xe_device *xe = ct_to_xe(ct);
843 	struct xe_gt *gt = ct_to_gt(ct);
844 	unsigned int sleep_period_ms = 1;
845 	int ret;
846 
847 	xe_gt_assert(gt, !g2h_len || !g2h_fence);
848 	lockdep_assert_held(&ct->lock);
849 	xe_device_assert_mem_access(ct_to_xe(ct));
850 
851 try_again:
852 	ret = __guc_ct_send_locked(ct, action, len, g2h_len, num_g2h,
853 				   g2h_fence);
854 
855 	/*
856 	 * We wait to try to restore credits for about 1 second before bailing.
857 	 * In the case of H2G credits we have no choice but just to wait for the
858 	 * GuC to consume H2Gs in the channel so we use a wait / sleep loop. In
859 	 * the case of G2H we process any G2H in the channel, hopefully freeing
860 	 * credits as we consume the G2H messages.
861 	 */
862 	if (unlikely(ret == -EBUSY &&
863 		     !h2g_has_room(ct, len + GUC_CTB_HDR_LEN))) {
864 		struct guc_ctb *h2g = &ct->ctbs.h2g;
865 
866 		if (sleep_period_ms == 1024)
867 			goto broken;
868 
869 		trace_xe_guc_ct_h2g_flow_control(xe, h2g->info.head, h2g->info.tail,
870 						 h2g->info.size,
871 						 h2g->info.space,
872 						 len + GUC_CTB_HDR_LEN);
873 		msleep(sleep_period_ms);
874 		sleep_period_ms <<= 1;
875 
876 		goto try_again;
877 	} else if (unlikely(ret == -EBUSY)) {
878 		struct xe_device *xe = ct_to_xe(ct);
879 		struct guc_ctb *g2h = &ct->ctbs.g2h;
880 
881 		trace_xe_guc_ct_g2h_flow_control(xe, g2h->info.head,
882 						 desc_read(xe, g2h, tail),
883 						 g2h->info.size,
884 						 g2h->info.space,
885 						 g2h_fence ?
886 						 GUC_CTB_HXG_MSG_MAX_LEN :
887 						 g2h_len);
888 
889 #define g2h_avail(ct)	\
890 	(desc_read(ct_to_xe(ct), (&ct->ctbs.g2h), tail) != ct->ctbs.g2h.info.head)
891 		if (!wait_event_timeout(ct->wq, !ct->g2h_outstanding ||
892 					g2h_avail(ct), HZ))
893 			goto broken;
894 #undef g2h_avail
895 
896 		ret = dequeue_one_g2h(ct);
897 		if (ret < 0) {
898 			if (ret != -ECANCELED)
899 				xe_gt_err(ct_to_gt(ct), "CTB receive failed (%pe)",
900 					  ERR_PTR(ret));
901 			goto broken;
902 		}
903 
904 		goto try_again;
905 	}
906 
907 	return ret;
908 
909 broken:
910 	xe_gt_err(gt, "No forward process on H2G, reset required\n");
911 	CT_DEAD(ct, &ct->ctbs.h2g, DEADLOCK);
912 
913 	return -EDEADLK;
914 }
915 
guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h,struct g2h_fence * g2h_fence)916 static int guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
917 		       u32 g2h_len, u32 num_g2h, struct g2h_fence *g2h_fence)
918 {
919 	int ret;
920 
921 	xe_gt_assert(ct_to_gt(ct), !g2h_len || !g2h_fence);
922 
923 	mutex_lock(&ct->lock);
924 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, g2h_fence);
925 	mutex_unlock(&ct->lock);
926 
927 	return ret;
928 }
929 
xe_guc_ct_send(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)930 int xe_guc_ct_send(struct xe_guc_ct *ct, const u32 *action, u32 len,
931 		   u32 g2h_len, u32 num_g2h)
932 {
933 	int ret;
934 
935 	ret = guc_ct_send(ct, action, len, g2h_len, num_g2h, NULL);
936 	if (ret == -EDEADLK)
937 		kick_reset(ct);
938 
939 	return ret;
940 }
941 
xe_guc_ct_send_locked(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 g2h_len,u32 num_g2h)942 int xe_guc_ct_send_locked(struct xe_guc_ct *ct, const u32 *action, u32 len,
943 			  u32 g2h_len, u32 num_g2h)
944 {
945 	int ret;
946 
947 	ret = guc_ct_send_locked(ct, action, len, g2h_len, num_g2h, NULL);
948 	if (ret == -EDEADLK)
949 		kick_reset(ct);
950 
951 	return ret;
952 }
953 
xe_guc_ct_send_g2h_handler(struct xe_guc_ct * ct,const u32 * action,u32 len)954 int xe_guc_ct_send_g2h_handler(struct xe_guc_ct *ct, const u32 *action, u32 len)
955 {
956 	int ret;
957 
958 	lockdep_assert_held(&ct->lock);
959 
960 	ret = guc_ct_send_locked(ct, action, len, 0, 0, NULL);
961 	if (ret == -EDEADLK)
962 		kick_reset(ct);
963 
964 	return ret;
965 }
966 
967 /*
968  * Check if a GT reset is in progress or will occur and if GT reset brought the
969  * CT back up. Randomly picking 5 seconds for an upper limit to do a GT a reset.
970  */
retry_failure(struct xe_guc_ct * ct,int ret)971 static bool retry_failure(struct xe_guc_ct *ct, int ret)
972 {
973 	if (!(ret == -EDEADLK || ret == -EPIPE || ret == -ENODEV))
974 		return false;
975 
976 #define ct_alive(ct)	\
977 	(xe_guc_ct_enabled(ct) && !ct->ctbs.h2g.info.broken && \
978 	 !ct->ctbs.g2h.info.broken)
979 	if (!wait_event_interruptible_timeout(ct->wq, ct_alive(ct), HZ * 5))
980 		return false;
981 #undef ct_alive
982 
983 	return true;
984 }
985 
guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer,bool no_fail)986 static int guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
987 			    u32 *response_buffer, bool no_fail)
988 {
989 	struct xe_gt *gt = ct_to_gt(ct);
990 	struct g2h_fence g2h_fence;
991 	int ret = 0;
992 
993 	/*
994 	 * We use a fence to implement blocking sends / receiving response data.
995 	 * The seqno of the fence is sent in the H2G, returned in the G2H, and
996 	 * an xarray is used as storage media with the seqno being to key.
997 	 * Fields in the fence hold success, failure, retry status and the
998 	 * response data. Safe to allocate on the stack as the xarray is the
999 	 * only reference and it cannot be present after this function exits.
1000 	 */
1001 retry:
1002 	g2h_fence_init(&g2h_fence, response_buffer);
1003 retry_same_fence:
1004 	ret = guc_ct_send(ct, action, len, 0, 0, &g2h_fence);
1005 	if (unlikely(ret == -ENOMEM)) {
1006 		/* Retry allocation /w GFP_KERNEL */
1007 		ret = xa_err(xa_store(&ct->fence_lookup, g2h_fence.seqno,
1008 				      &g2h_fence, GFP_KERNEL));
1009 		if (ret)
1010 			return ret;
1011 
1012 		goto retry_same_fence;
1013 	} else if (unlikely(ret)) {
1014 		if (ret == -EDEADLK)
1015 			kick_reset(ct);
1016 
1017 		if (no_fail && retry_failure(ct, ret))
1018 			goto retry_same_fence;
1019 
1020 		if (!g2h_fence_needs_alloc(&g2h_fence))
1021 			xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1022 
1023 		return ret;
1024 	}
1025 
1026 	ret = wait_event_timeout(ct->g2h_fence_wq, g2h_fence.done, HZ);
1027 	if (!ret) {
1028 		LNL_FLUSH_WORK(&ct->g2h_worker);
1029 		if (g2h_fence.done) {
1030 			xe_gt_warn(gt, "G2H fence %u, action %04x, done\n",
1031 				   g2h_fence.seqno, action[0]);
1032 			ret = 1;
1033 		}
1034 	}
1035 
1036 	/*
1037 	 * Ensure we serialize with completion side to prevent UAF with fence going out of scope on
1038 	 * the stack, since we have no clue if it will fire after the timeout before we can erase
1039 	 * from the xa. Also we have some dependent loads and stores below for which we need the
1040 	 * correct ordering, and we lack the needed barriers.
1041 	 */
1042 	mutex_lock(&ct->lock);
1043 	if (!ret) {
1044 		xe_gt_err(gt, "Timed out wait for G2H, fence %u, action %04x, done %s",
1045 			  g2h_fence.seqno, action[0], str_yes_no(g2h_fence.done));
1046 		xa_erase(&ct->fence_lookup, g2h_fence.seqno);
1047 		mutex_unlock(&ct->lock);
1048 		return -ETIME;
1049 	}
1050 
1051 	if (g2h_fence.retry) {
1052 		xe_gt_dbg(gt, "H2G action %#x retrying: reason %#x\n",
1053 			  action[0], g2h_fence.reason);
1054 		mutex_unlock(&ct->lock);
1055 		goto retry;
1056 	}
1057 	if (g2h_fence.fail) {
1058 		xe_gt_err(gt, "H2G request %#x failed: error %#x hint %#x\n",
1059 			  action[0], g2h_fence.error, g2h_fence.hint);
1060 		ret = -EIO;
1061 	}
1062 
1063 	if (ret > 0)
1064 		ret = response_buffer ? g2h_fence.response_len : g2h_fence.response_data;
1065 
1066 	mutex_unlock(&ct->lock);
1067 
1068 	return ret;
1069 }
1070 
1071 /**
1072  * xe_guc_ct_send_recv - Send and receive HXG to the GuC
1073  * @ct: the &xe_guc_ct
1074  * @action: the dword array with `HXG Request`_ message (can't be NULL)
1075  * @len: length of the `HXG Request`_ message (in dwords, can't be 0)
1076  * @response_buffer: placeholder for the `HXG Response`_ message (can be NULL)
1077  *
1078  * Send a `HXG Request`_ message to the GuC over CT communication channel and
1079  * blocks until GuC replies with a `HXG Response`_ message.
1080  *
1081  * For non-blocking communication with GuC use xe_guc_ct_send().
1082  *
1083  * Note: The size of &response_buffer must be at least GUC_CTB_MAX_DWORDS_.
1084  *
1085  * Return: response length (in dwords) if &response_buffer was not NULL, or
1086  *         DATA0 from `HXG Response`_ if &response_buffer was NULL, or
1087  *         a negative error code on failure.
1088  */
xe_guc_ct_send_recv(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1089 int xe_guc_ct_send_recv(struct xe_guc_ct *ct, const u32 *action, u32 len,
1090 			u32 *response_buffer)
1091 {
1092 	KUNIT_STATIC_STUB_REDIRECT(xe_guc_ct_send_recv, ct, action, len, response_buffer);
1093 	return guc_ct_send_recv(ct, action, len, response_buffer, false);
1094 }
1095 ALLOW_ERROR_INJECTION(xe_guc_ct_send_recv, ERRNO);
1096 
xe_guc_ct_send_recv_no_fail(struct xe_guc_ct * ct,const u32 * action,u32 len,u32 * response_buffer)1097 int xe_guc_ct_send_recv_no_fail(struct xe_guc_ct *ct, const u32 *action,
1098 				u32 len, u32 *response_buffer)
1099 {
1100 	return guc_ct_send_recv(ct, action, len, response_buffer, true);
1101 }
1102 
msg_to_hxg(u32 * msg)1103 static u32 *msg_to_hxg(u32 *msg)
1104 {
1105 	return msg + GUC_CTB_MSG_MIN_LEN;
1106 }
1107 
msg_len_to_hxg_len(u32 len)1108 static u32 msg_len_to_hxg_len(u32 len)
1109 {
1110 	return len - GUC_CTB_MSG_MIN_LEN;
1111 }
1112 
parse_g2h_event(struct xe_guc_ct * ct,u32 * msg,u32 len)1113 static int parse_g2h_event(struct xe_guc_ct *ct, u32 *msg, u32 len)
1114 {
1115 	u32 *hxg = msg_to_hxg(msg);
1116 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1117 
1118 	lockdep_assert_held(&ct->lock);
1119 
1120 	switch (action) {
1121 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1122 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1123 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1124 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1125 		g2h_release_space(ct, len);
1126 	}
1127 
1128 	return 0;
1129 }
1130 
guc_crash_process_msg(struct xe_guc_ct * ct,u32 action)1131 static int guc_crash_process_msg(struct xe_guc_ct *ct, u32 action)
1132 {
1133 	struct xe_gt *gt = ct_to_gt(ct);
1134 
1135 	if (action == XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED)
1136 		xe_gt_err(gt, "GuC Crash dump notification\n");
1137 	else if (action == XE_GUC_ACTION_NOTIFY_EXCEPTION)
1138 		xe_gt_err(gt, "GuC Exception notification\n");
1139 	else
1140 		xe_gt_err(gt, "Unknown GuC crash notification: 0x%04X\n", action);
1141 
1142 	CT_DEAD(ct, NULL, CRASH);
1143 
1144 	kick_reset(ct);
1145 
1146 	return 0;
1147 }
1148 
parse_g2h_response(struct xe_guc_ct * ct,u32 * msg,u32 len)1149 static int parse_g2h_response(struct xe_guc_ct *ct, u32 *msg, u32 len)
1150 {
1151 	struct xe_gt *gt =  ct_to_gt(ct);
1152 	u32 *hxg = msg_to_hxg(msg);
1153 	u32 hxg_len = msg_len_to_hxg_len(len);
1154 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, msg[0]);
1155 	u32 type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1156 	struct g2h_fence *g2h_fence;
1157 
1158 	lockdep_assert_held(&ct->lock);
1159 
1160 	/*
1161 	 * Fences for FAST_REQUEST messages are not tracked in ct->fence_lookup.
1162 	 * Those messages should never fail, so if we do get an error back it
1163 	 * means we're likely doing an illegal operation and the GuC is
1164 	 * rejecting it. We have no way to inform the code that submitted the
1165 	 * H2G that the message was rejected, so we need to escalate the
1166 	 * failure to trigger a reset.
1167 	 */
1168 	if (fence & CT_SEQNO_UNTRACKED) {
1169 		if (type == GUC_HXG_TYPE_RESPONSE_FAILURE)
1170 			xe_gt_err(gt, "FAST_REQ H2G fence 0x%x failed! e=0x%x, h=%u\n",
1171 				  fence,
1172 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]),
1173 				  FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]));
1174 		else
1175 			xe_gt_err(gt, "unexpected response %u for FAST_REQ H2G fence 0x%x!\n",
1176 				  type, fence);
1177 		CT_DEAD(ct, NULL, PARSE_G2H_RESPONSE);
1178 
1179 		return -EPROTO;
1180 	}
1181 
1182 	g2h_fence = xa_erase(&ct->fence_lookup, fence);
1183 	if (unlikely(!g2h_fence)) {
1184 		/* Don't tear down channel, as send could've timed out */
1185 		/* CT_DEAD(ct, NULL, PARSE_G2H_UNKNOWN); */
1186 		xe_gt_warn(gt, "G2H fence (%u) not found!\n", fence);
1187 		g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1188 		return 0;
1189 	}
1190 
1191 	xe_gt_assert(gt, fence == g2h_fence->seqno);
1192 
1193 	if (type == GUC_HXG_TYPE_RESPONSE_FAILURE) {
1194 		g2h_fence->fail = true;
1195 		g2h_fence->error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, hxg[0]);
1196 		g2h_fence->hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, hxg[0]);
1197 	} else if (type == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
1198 		g2h_fence->retry = true;
1199 		g2h_fence->reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, hxg[0]);
1200 	} else if (g2h_fence->response_buffer) {
1201 		g2h_fence->response_len = hxg_len;
1202 		memcpy(g2h_fence->response_buffer, hxg, hxg_len * sizeof(u32));
1203 	} else {
1204 		g2h_fence->response_data = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, hxg[0]);
1205 	}
1206 
1207 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
1208 
1209 	g2h_fence->done = true;
1210 	smp_mb();
1211 
1212 	wake_up_all(&ct->g2h_fence_wq);
1213 
1214 	return 0;
1215 }
1216 
parse_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1217 static int parse_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1218 {
1219 	struct xe_gt *gt = ct_to_gt(ct);
1220 	u32 *hxg = msg_to_hxg(msg);
1221 	u32 origin, type;
1222 	int ret;
1223 
1224 	lockdep_assert_held(&ct->lock);
1225 
1226 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1227 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1228 		xe_gt_err(gt, "G2H channel broken on read, origin=%u, reset required\n",
1229 			  origin);
1230 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_ORIGIN);
1231 
1232 		return -EPROTO;
1233 	}
1234 
1235 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1236 	switch (type) {
1237 	case GUC_HXG_TYPE_EVENT:
1238 		ret = parse_g2h_event(ct, msg, len);
1239 		break;
1240 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1241 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1242 	case GUC_HXG_TYPE_NO_RESPONSE_RETRY:
1243 		ret = parse_g2h_response(ct, msg, len);
1244 		break;
1245 	default:
1246 		xe_gt_err(gt, "G2H channel broken on read, type=%u, reset required\n",
1247 			  type);
1248 		CT_DEAD(ct, &ct->ctbs.g2h, PARSE_G2H_TYPE);
1249 
1250 		ret = -EOPNOTSUPP;
1251 	}
1252 
1253 	return ret;
1254 }
1255 
process_g2h_msg(struct xe_guc_ct * ct,u32 * msg,u32 len)1256 static int process_g2h_msg(struct xe_guc_ct *ct, u32 *msg, u32 len)
1257 {
1258 	struct xe_guc *guc = ct_to_guc(ct);
1259 	struct xe_gt *gt = ct_to_gt(ct);
1260 	u32 hxg_len = msg_len_to_hxg_len(len);
1261 	u32 *hxg = msg_to_hxg(msg);
1262 	u32 action, adj_len;
1263 	u32 *payload;
1264 	int ret = 0;
1265 
1266 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1267 		return 0;
1268 
1269 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1270 	payload = hxg + GUC_HXG_EVENT_MSG_MIN_LEN;
1271 	adj_len = hxg_len - GUC_HXG_EVENT_MSG_MIN_LEN;
1272 
1273 	switch (action) {
1274 	case XE_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1275 		ret = xe_guc_sched_done_handler(guc, payload, adj_len);
1276 		break;
1277 	case XE_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1278 		ret = xe_guc_deregister_done_handler(guc, payload, adj_len);
1279 		break;
1280 	case XE_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
1281 		ret = xe_guc_exec_queue_reset_handler(guc, payload, adj_len);
1282 		break;
1283 	case XE_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
1284 		ret = xe_guc_exec_queue_reset_failure_handler(guc, payload,
1285 							      adj_len);
1286 		break;
1287 	case XE_GUC_ACTION_SCHED_ENGINE_MODE_DONE:
1288 		/* Selftest only at the moment */
1289 		break;
1290 	case XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION:
1291 		ret = xe_guc_error_capture_handler(guc, payload, adj_len);
1292 		break;
1293 	case XE_GUC_ACTION_NOTIFY_FLUSH_LOG_BUFFER_TO_FILE:
1294 		/* FIXME: Handle this */
1295 		break;
1296 	case XE_GUC_ACTION_NOTIFY_MEMORY_CAT_ERROR:
1297 		ret = xe_guc_exec_queue_memory_cat_error_handler(guc, payload,
1298 								 adj_len);
1299 		break;
1300 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1301 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1302 		break;
1303 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1304 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1305 							   adj_len);
1306 		break;
1307 	case XE_GUC_ACTION_ACCESS_COUNTER_NOTIFY:
1308 		ret = xe_guc_access_counter_notify_handler(guc, payload,
1309 							   adj_len);
1310 		break;
1311 	case XE_GUC_ACTION_GUC2PF_RELAY_FROM_VF:
1312 		ret = xe_guc_relay_process_guc2pf(&guc->relay, hxg, hxg_len);
1313 		break;
1314 	case XE_GUC_ACTION_GUC2VF_RELAY_FROM_PF:
1315 		ret = xe_guc_relay_process_guc2vf(&guc->relay, hxg, hxg_len);
1316 		break;
1317 	case GUC_ACTION_GUC2PF_VF_STATE_NOTIFY:
1318 		ret = xe_gt_sriov_pf_control_process_guc2pf(gt, hxg, hxg_len);
1319 		break;
1320 	case GUC_ACTION_GUC2PF_ADVERSE_EVENT:
1321 		ret = xe_gt_sriov_pf_monitor_process_guc2pf(gt, hxg, hxg_len);
1322 		break;
1323 	case XE_GUC_ACTION_NOTIFY_CRASH_DUMP_POSTED:
1324 	case XE_GUC_ACTION_NOTIFY_EXCEPTION:
1325 		ret = guc_crash_process_msg(ct, action);
1326 		break;
1327 	default:
1328 		xe_gt_err(gt, "unexpected G2H action 0x%04x\n", action);
1329 	}
1330 
1331 	if (ret) {
1332 		xe_gt_err(gt, "G2H action %#04x failed (%pe) len %u msg %*ph\n",
1333 			  action, ERR_PTR(ret), hxg_len, (int)sizeof(u32) * hxg_len, hxg);
1334 		CT_DEAD(ct, NULL, PROCESS_FAILED);
1335 	}
1336 
1337 	return 0;
1338 }
1339 
g2h_read(struct xe_guc_ct * ct,u32 * msg,bool fast_path)1340 static int g2h_read(struct xe_guc_ct *ct, u32 *msg, bool fast_path)
1341 {
1342 	struct xe_device *xe = ct_to_xe(ct);
1343 	struct xe_gt *gt = ct_to_gt(ct);
1344 	struct guc_ctb *g2h = &ct->ctbs.g2h;
1345 	u32 tail, head, len, desc_status;
1346 	s32 avail;
1347 	u32 action;
1348 	u32 *hxg;
1349 
1350 	xe_gt_assert(gt, xe_guc_ct_initialized(ct));
1351 	lockdep_assert_held(&ct->fast_lock);
1352 
1353 	if (ct->state == XE_GUC_CT_STATE_DISABLED)
1354 		return -ENODEV;
1355 
1356 	if (ct->state == XE_GUC_CT_STATE_STOPPED)
1357 		return -ECANCELED;
1358 
1359 	if (g2h->info.broken)
1360 		return -EPIPE;
1361 
1362 	xe_gt_assert(gt, xe_guc_ct_enabled(ct));
1363 
1364 	desc_status = desc_read(xe, g2h, status);
1365 	if (desc_status) {
1366 		if (desc_status & GUC_CTB_STATUS_DISABLED) {
1367 			/*
1368 			 * Potentially valid if a CLIENT_RESET request resulted in
1369 			 * contexts/engines being reset. But should never happen as
1370 			 * no contexts should be active when CLIENT_RESET is sent.
1371 			 */
1372 			xe_gt_err(gt, "CT read: unexpected G2H after GuC has stopped!\n");
1373 			desc_status &= ~GUC_CTB_STATUS_DISABLED;
1374 		}
1375 
1376 		if (desc_status) {
1377 			xe_gt_err(gt, "CT read: non-zero status: %u\n", desc_status);
1378 			goto corrupted;
1379 		}
1380 	}
1381 
1382 	if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
1383 		u32 desc_tail = desc_read(xe, g2h, tail);
1384 		/*
1385 		u32 desc_head = desc_read(xe, g2h, head);
1386 
1387 		 * info.head and desc_head are updated back-to-back at the end of
1388 		 * this function and nowhere else. Hence, they cannot be different
1389 		 * unless two g2h_read calls are running concurrently. Which is not
1390 		 * possible because it is guarded by ct->fast_lock. And yet, some
1391 		 * discrete platforms are regularly hitting this error :(.
1392 		 *
1393 		 * desc_head rolling backwards shouldn't cause any noticeable
1394 		 * problems - just a delay in GuC being allowed to proceed past that
1395 		 * point in the queue. So for now, just disable the error until it
1396 		 * can be root caused.
1397 		 *
1398 		if (g2h->info.head != desc_head) {
1399 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_MISMATCH);
1400 			xe_gt_err(gt, "CT read: head was modified %u != %u\n",
1401 				  desc_head, g2h->info.head);
1402 			goto corrupted;
1403 		}
1404 		 */
1405 
1406 		if (g2h->info.head > g2h->info.size) {
1407 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1408 			xe_gt_err(gt, "CT read: head out of range: %u vs %u\n",
1409 				  g2h->info.head, g2h->info.size);
1410 			goto corrupted;
1411 		}
1412 
1413 		if (desc_tail >= g2h->info.size) {
1414 			desc_write(xe, g2h, status, desc_status | GUC_CTB_STATUS_OVERFLOW);
1415 			xe_gt_err(gt, "CT read: invalid tail offset %u >= %u)\n",
1416 				  desc_tail, g2h->info.size);
1417 			goto corrupted;
1418 		}
1419 	}
1420 
1421 	/* Calculate DW available to read */
1422 	tail = desc_read(xe, g2h, tail);
1423 	avail = tail - g2h->info.head;
1424 	if (unlikely(avail == 0))
1425 		return 0;
1426 
1427 	if (avail < 0)
1428 		avail += g2h->info.size;
1429 
1430 	/* Read header */
1431 	xe_map_memcpy_from(xe, msg, &g2h->cmds, sizeof(u32) * g2h->info.head,
1432 			   sizeof(u32));
1433 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, msg[0]) + GUC_CTB_MSG_MIN_LEN;
1434 	if (len > avail) {
1435 		xe_gt_err(gt, "G2H channel broken on read, avail=%d, len=%d, reset required\n",
1436 			  avail, len);
1437 		goto corrupted;
1438 	}
1439 
1440 	head = (g2h->info.head + 1) % g2h->info.size;
1441 	avail = len - 1;
1442 
1443 	/* Read G2H message */
1444 	if (avail + head > g2h->info.size) {
1445 		u32 avail_til_wrap = g2h->info.size - head;
1446 
1447 		xe_map_memcpy_from(xe, msg + 1,
1448 				   &g2h->cmds, sizeof(u32) * head,
1449 				   avail_til_wrap * sizeof(u32));
1450 		xe_map_memcpy_from(xe, msg + 1 + avail_til_wrap,
1451 				   &g2h->cmds, 0,
1452 				   (avail - avail_til_wrap) * sizeof(u32));
1453 	} else {
1454 		xe_map_memcpy_from(xe, msg + 1,
1455 				   &g2h->cmds, sizeof(u32) * head,
1456 				   avail * sizeof(u32));
1457 	}
1458 
1459 	hxg = msg_to_hxg(msg);
1460 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1461 
1462 	if (fast_path) {
1463 		if (FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT)
1464 			return 0;
1465 
1466 		switch (action) {
1467 		case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1468 		case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1469 			break;	/* Process these in fast-path */
1470 		default:
1471 			return 0;
1472 		}
1473 	}
1474 
1475 	/* Update local / descriptor header */
1476 	g2h->info.head = (head + avail) % g2h->info.size;
1477 	desc_write(xe, g2h, head, g2h->info.head);
1478 
1479 	trace_xe_guc_ctb_g2h(xe, ct_to_gt(ct)->info.id,
1480 			     action, len, g2h->info.head, tail);
1481 
1482 	return len;
1483 
1484 corrupted:
1485 	CT_DEAD(ct, &ct->ctbs.g2h, G2H_READ);
1486 	return -EPROTO;
1487 }
1488 
g2h_fast_path(struct xe_guc_ct * ct,u32 * msg,u32 len)1489 static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
1490 {
1491 	struct xe_gt *gt = ct_to_gt(ct);
1492 	struct xe_guc *guc = ct_to_guc(ct);
1493 	u32 hxg_len = msg_len_to_hxg_len(len);
1494 	u32 *hxg = msg_to_hxg(msg);
1495 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1496 	u32 *payload = hxg + GUC_HXG_MSG_MIN_LEN;
1497 	u32 adj_len = hxg_len - GUC_HXG_MSG_MIN_LEN;
1498 	int ret = 0;
1499 
1500 	switch (action) {
1501 	case XE_GUC_ACTION_REPORT_PAGE_FAULT_REQ_DESC:
1502 		ret = xe_guc_pagefault_handler(guc, payload, adj_len);
1503 		break;
1504 	case XE_GUC_ACTION_TLB_INVALIDATION_DONE:
1505 		__g2h_release_space(ct, len);
1506 		ret = xe_guc_tlb_invalidation_done_handler(guc, payload,
1507 							   adj_len);
1508 		break;
1509 	default:
1510 		xe_gt_warn(gt, "NOT_POSSIBLE");
1511 	}
1512 
1513 	if (ret) {
1514 		xe_gt_err(gt, "G2H action 0x%04x failed (%pe)\n",
1515 			  action, ERR_PTR(ret));
1516 		CT_DEAD(ct, NULL, FAST_G2H);
1517 	}
1518 }
1519 
1520 /**
1521  * xe_guc_ct_fast_path - process critical G2H in the IRQ handler
1522  * @ct: GuC CT object
1523  *
1524  * Anything related to page faults is critical for performance, process these
1525  * critical G2H in the IRQ. This is safe as these handlers either just wake up
1526  * waiters or queue another worker.
1527  */
xe_guc_ct_fast_path(struct xe_guc_ct * ct)1528 void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
1529 {
1530 	struct xe_device *xe = ct_to_xe(ct);
1531 	bool ongoing;
1532 	int len;
1533 
1534 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1535 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1536 		return;
1537 
1538 	spin_lock(&ct->fast_lock);
1539 	do {
1540 		len = g2h_read(ct, ct->fast_msg, true);
1541 		if (len > 0)
1542 			g2h_fast_path(ct, ct->fast_msg, len);
1543 	} while (len > 0);
1544 	spin_unlock(&ct->fast_lock);
1545 
1546 	if (ongoing)
1547 		xe_pm_runtime_put(xe);
1548 }
1549 
1550 /* Returns less than zero on error, 0 on done, 1 on more available */
dequeue_one_g2h(struct xe_guc_ct * ct)1551 static int dequeue_one_g2h(struct xe_guc_ct *ct)
1552 {
1553 	int len;
1554 	int ret;
1555 
1556 	lockdep_assert_held(&ct->lock);
1557 
1558 	spin_lock_irq(&ct->fast_lock);
1559 	len = g2h_read(ct, ct->msg, false);
1560 	spin_unlock_irq(&ct->fast_lock);
1561 	if (len <= 0)
1562 		return len;
1563 
1564 	ret = parse_g2h_msg(ct, ct->msg, len);
1565 	if (unlikely(ret < 0))
1566 		return ret;
1567 
1568 	ret = process_g2h_msg(ct, ct->msg, len);
1569 	if (unlikely(ret < 0))
1570 		return ret;
1571 
1572 	return 1;
1573 }
1574 
receive_g2h(struct xe_guc_ct * ct)1575 static void receive_g2h(struct xe_guc_ct *ct)
1576 {
1577 	bool ongoing;
1578 	int ret;
1579 
1580 	/*
1581 	 * Normal users must always hold mem_access.ref around CT calls. However
1582 	 * during the runtime pm callbacks we rely on CT to talk to the GuC, but
1583 	 * at this stage we can't rely on mem_access.ref and even the
1584 	 * callback_task will be different than current.  For such cases we just
1585 	 * need to ensure we always process the responses from any blocking
1586 	 * ct_send requests or where we otherwise expect some response when
1587 	 * initiated from those callbacks (which will need to wait for the below
1588 	 * dequeue_one_g2h()).  The dequeue_one_g2h() will gracefully fail if
1589 	 * the device has suspended to the point that the CT communication has
1590 	 * been disabled.
1591 	 *
1592 	 * If we are inside the runtime pm callback, we can be the only task
1593 	 * still issuing CT requests (since that requires having the
1594 	 * mem_access.ref).  It seems like it might in theory be possible to
1595 	 * receive unsolicited events from the GuC just as we are
1596 	 * suspending-resuming, but those will currently anyway be lost when
1597 	 * eventually exiting from suspend, hence no need to wake up the device
1598 	 * here. If we ever need something stronger than get_if_ongoing() then
1599 	 * we need to be careful with blocking the pm callbacks from getting CT
1600 	 * responses, if the worker here is blocked on those callbacks
1601 	 * completing, creating a deadlock.
1602 	 */
1603 	ongoing = xe_pm_runtime_get_if_active(ct_to_xe(ct));
1604 	if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
1605 		return;
1606 
1607 	do {
1608 		mutex_lock(&ct->lock);
1609 		ret = dequeue_one_g2h(ct);
1610 		mutex_unlock(&ct->lock);
1611 
1612 		if (unlikely(ret == -EPROTO || ret == -EOPNOTSUPP)) {
1613 			xe_gt_err(ct_to_gt(ct), "CT dequeue failed: %d", ret);
1614 			CT_DEAD(ct, NULL, G2H_RECV);
1615 			kick_reset(ct);
1616 		}
1617 	} while (ret == 1);
1618 
1619 	if (ongoing)
1620 		xe_pm_runtime_put(ct_to_xe(ct));
1621 }
1622 
g2h_worker_func(struct work_struct * w)1623 static void g2h_worker_func(struct work_struct *w)
1624 {
1625 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
1626 
1627 	receive_g2h(ct);
1628 }
1629 
guc_ct_snapshot_alloc(struct xe_guc_ct * ct,bool atomic,bool want_ctb)1630 static struct xe_guc_ct_snapshot *guc_ct_snapshot_alloc(struct xe_guc_ct *ct, bool atomic,
1631 							bool want_ctb)
1632 {
1633 	struct xe_guc_ct_snapshot *snapshot;
1634 
1635 	snapshot = kzalloc(sizeof(*snapshot), atomic ? GFP_ATOMIC : GFP_KERNEL);
1636 	if (!snapshot)
1637 		return NULL;
1638 
1639 	if (ct->bo && want_ctb) {
1640 		snapshot->ctb_size = ct->bo->size;
1641 		snapshot->ctb = kmalloc(snapshot->ctb_size, atomic ? GFP_ATOMIC : GFP_KERNEL);
1642 	}
1643 
1644 	return snapshot;
1645 }
1646 
guc_ctb_snapshot_capture(struct xe_device * xe,struct guc_ctb * ctb,struct guc_ctb_snapshot * snapshot)1647 static void guc_ctb_snapshot_capture(struct xe_device *xe, struct guc_ctb *ctb,
1648 				     struct guc_ctb_snapshot *snapshot)
1649 {
1650 	xe_map_memcpy_from(xe, &snapshot->desc, &ctb->desc, 0,
1651 			   sizeof(struct guc_ct_buffer_desc));
1652 	memcpy(&snapshot->info, &ctb->info, sizeof(struct guc_ctb_info));
1653 }
1654 
guc_ctb_snapshot_print(struct guc_ctb_snapshot * snapshot,struct drm_printer * p)1655 static void guc_ctb_snapshot_print(struct guc_ctb_snapshot *snapshot,
1656 				   struct drm_printer *p)
1657 {
1658 	drm_printf(p, "\tsize: %d\n", snapshot->info.size);
1659 	drm_printf(p, "\tresv_space: %d\n", snapshot->info.resv_space);
1660 	drm_printf(p, "\thead: %d\n", snapshot->info.head);
1661 	drm_printf(p, "\ttail: %d\n", snapshot->info.tail);
1662 	drm_printf(p, "\tspace: %d\n", snapshot->info.space);
1663 	drm_printf(p, "\tbroken: %d\n", snapshot->info.broken);
1664 	drm_printf(p, "\thead (memory): %d\n", snapshot->desc.head);
1665 	drm_printf(p, "\ttail (memory): %d\n", snapshot->desc.tail);
1666 	drm_printf(p, "\tstatus (memory): 0x%x\n", snapshot->desc.status);
1667 }
1668 
guc_ct_snapshot_capture(struct xe_guc_ct * ct,bool atomic,bool want_ctb)1669 static struct xe_guc_ct_snapshot *guc_ct_snapshot_capture(struct xe_guc_ct *ct, bool atomic,
1670 							  bool want_ctb)
1671 {
1672 	struct xe_device *xe = ct_to_xe(ct);
1673 	struct xe_guc_ct_snapshot *snapshot;
1674 
1675 	snapshot = guc_ct_snapshot_alloc(ct, atomic, want_ctb);
1676 	if (!snapshot) {
1677 		xe_gt_err(ct_to_gt(ct), "Skipping CTB snapshot entirely.\n");
1678 		return NULL;
1679 	}
1680 
1681 	if (xe_guc_ct_enabled(ct) || ct->state == XE_GUC_CT_STATE_STOPPED) {
1682 		snapshot->ct_enabled = true;
1683 		snapshot->g2h_outstanding = READ_ONCE(ct->g2h_outstanding);
1684 		guc_ctb_snapshot_capture(xe, &ct->ctbs.h2g, &snapshot->h2g);
1685 		guc_ctb_snapshot_capture(xe, &ct->ctbs.g2h, &snapshot->g2h);
1686 	}
1687 
1688 	if (ct->bo && snapshot->ctb)
1689 		xe_map_memcpy_from(xe, snapshot->ctb, &ct->bo->vmap, 0, snapshot->ctb_size);
1690 
1691 	return snapshot;
1692 }
1693 
1694 /**
1695  * xe_guc_ct_snapshot_capture - Take a quick snapshot of the CT state.
1696  * @ct: GuC CT object.
1697  *
1698  * This can be printed out in a later stage like during dev_coredump
1699  * analysis. This is safe to be called during atomic context.
1700  *
1701  * Returns: a GuC CT snapshot object that must be freed by the caller
1702  * by using `xe_guc_ct_snapshot_free`.
1703  */
xe_guc_ct_snapshot_capture(struct xe_guc_ct * ct)1704 struct xe_guc_ct_snapshot *xe_guc_ct_snapshot_capture(struct xe_guc_ct *ct)
1705 {
1706 	return guc_ct_snapshot_capture(ct, true, true);
1707 }
1708 
1709 /**
1710  * xe_guc_ct_snapshot_print - Print out a given GuC CT snapshot.
1711  * @snapshot: GuC CT snapshot object.
1712  * @p: drm_printer where it will be printed out.
1713  *
1714  * This function prints out a given GuC CT snapshot object.
1715  */
xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot * snapshot,struct drm_printer * p)1716 void xe_guc_ct_snapshot_print(struct xe_guc_ct_snapshot *snapshot,
1717 			      struct drm_printer *p)
1718 {
1719 	if (!snapshot)
1720 		return;
1721 
1722 	if (snapshot->ct_enabled) {
1723 		drm_puts(p, "H2G CTB (all sizes in DW):\n");
1724 		guc_ctb_snapshot_print(&snapshot->h2g, p);
1725 
1726 		drm_puts(p, "G2H CTB (all sizes in DW):\n");
1727 		guc_ctb_snapshot_print(&snapshot->g2h, p);
1728 		drm_printf(p, "\tg2h outstanding: %d\n",
1729 			   snapshot->g2h_outstanding);
1730 
1731 		if (snapshot->ctb) {
1732 			drm_printf(p, "[CTB].length: 0x%zx\n", snapshot->ctb_size);
1733 			xe_print_blob_ascii85(p, "[CTB].data", '\n',
1734 					      snapshot->ctb, 0, snapshot->ctb_size);
1735 		}
1736 	} else {
1737 		drm_puts(p, "CT disabled\n");
1738 	}
1739 }
1740 
1741 /**
1742  * xe_guc_ct_snapshot_free - Free all allocated objects for a given snapshot.
1743  * @snapshot: GuC CT snapshot object.
1744  *
1745  * This function free all the memory that needed to be allocated at capture
1746  * time.
1747  */
xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot * snapshot)1748 void xe_guc_ct_snapshot_free(struct xe_guc_ct_snapshot *snapshot)
1749 {
1750 	if (!snapshot)
1751 		return;
1752 
1753 	kfree(snapshot->ctb);
1754 	kfree(snapshot);
1755 }
1756 
1757 /**
1758  * xe_guc_ct_print - GuC CT Print.
1759  * @ct: GuC CT.
1760  * @p: drm_printer where it will be printed out.
1761  * @want_ctb: Should the full CTB content be dumped (vs just the headers)
1762  *
1763  * This function will quickly capture a snapshot of the CT state
1764  * and immediately print it out.
1765  */
xe_guc_ct_print(struct xe_guc_ct * ct,struct drm_printer * p,bool want_ctb)1766 void xe_guc_ct_print(struct xe_guc_ct *ct, struct drm_printer *p, bool want_ctb)
1767 {
1768 	struct xe_guc_ct_snapshot *snapshot;
1769 
1770 	snapshot = guc_ct_snapshot_capture(ct, false, want_ctb);
1771 	xe_guc_ct_snapshot_print(snapshot, p);
1772 	xe_guc_ct_snapshot_free(snapshot);
1773 }
1774 
1775 #if IS_ENABLED(CONFIG_DRM_XE_DEBUG)
ct_dead_capture(struct xe_guc_ct * ct,struct guc_ctb * ctb,u32 reason_code)1776 static void ct_dead_capture(struct xe_guc_ct *ct, struct guc_ctb *ctb, u32 reason_code)
1777 {
1778 	struct xe_guc_log_snapshot *snapshot_log;
1779 	struct xe_guc_ct_snapshot *snapshot_ct;
1780 	struct xe_guc *guc = ct_to_guc(ct);
1781 	unsigned long flags;
1782 	bool have_capture;
1783 
1784 	if (ctb)
1785 		ctb->info.broken = true;
1786 
1787 	/* Ignore further errors after the first dump until a reset */
1788 	if (ct->dead.reported)
1789 		return;
1790 
1791 	spin_lock_irqsave(&ct->dead.lock, flags);
1792 
1793 	/* And only capture one dump at a time */
1794 	have_capture = ct->dead.reason & (1 << CT_DEAD_STATE_CAPTURE);
1795 	ct->dead.reason |= (1 << reason_code) |
1796 			   (1 << CT_DEAD_STATE_CAPTURE);
1797 
1798 	spin_unlock_irqrestore(&ct->dead.lock, flags);
1799 
1800 	if (have_capture)
1801 		return;
1802 
1803 	snapshot_log = xe_guc_log_snapshot_capture(&guc->log, true);
1804 	snapshot_ct = xe_guc_ct_snapshot_capture((ct));
1805 
1806 	spin_lock_irqsave(&ct->dead.lock, flags);
1807 
1808 	if (ct->dead.snapshot_log || ct->dead.snapshot_ct) {
1809 		xe_gt_err(ct_to_gt(ct), "Got unexpected dead CT capture!\n");
1810 		xe_guc_log_snapshot_free(snapshot_log);
1811 		xe_guc_ct_snapshot_free(snapshot_ct);
1812 	} else {
1813 		ct->dead.snapshot_log = snapshot_log;
1814 		ct->dead.snapshot_ct = snapshot_ct;
1815 	}
1816 
1817 	spin_unlock_irqrestore(&ct->dead.lock, flags);
1818 
1819 	queue_work(system_unbound_wq, &(ct)->dead.worker);
1820 }
1821 
ct_dead_print(struct xe_dead_ct * dead)1822 static void ct_dead_print(struct xe_dead_ct *dead)
1823 {
1824 	struct xe_guc_ct *ct = container_of(dead, struct xe_guc_ct, dead);
1825 	struct xe_device *xe = ct_to_xe(ct);
1826 	struct xe_gt *gt = ct_to_gt(ct);
1827 	static int g_count;
1828 	struct drm_printer ip = xe_gt_info_printer(gt);
1829 	struct drm_printer lp = drm_line_printer(&ip, "Capture", ++g_count);
1830 
1831 	if (!dead->reason) {
1832 		xe_gt_err(gt, "CTB is dead for no reason!?\n");
1833 		return;
1834 	}
1835 
1836 
1837 	/* Can't generate a genuine core dump at this point, so just do the good bits */
1838 	drm_puts(&lp, "**** Xe Device Coredump ****\n");
1839 	drm_printf(&lp, "Reason: CTB is dead - 0x%X\n", dead->reason);
1840 	xe_device_snapshot_print(xe, &lp);
1841 
1842 	drm_printf(&lp, "**** GT #%d ****\n", gt->info.id);
1843 	drm_printf(&lp, "\tTile: %d\n", gt->tile->id);
1844 
1845 	drm_puts(&lp, "**** GuC Log ****\n");
1846 	xe_guc_log_snapshot_print(dead->snapshot_log, &lp);
1847 
1848 	drm_puts(&lp, "**** GuC CT ****\n");
1849 	xe_guc_ct_snapshot_print(dead->snapshot_ct, &lp);
1850 
1851 	drm_puts(&lp, "Done.\n");
1852 }
1853 
ct_dead_worker_func(struct work_struct * w)1854 static void ct_dead_worker_func(struct work_struct *w)
1855 {
1856 	struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, dead.worker);
1857 
1858 	if (!ct->dead.reported) {
1859 		ct->dead.reported = true;
1860 		ct_dead_print(&ct->dead);
1861 	}
1862 
1863 	spin_lock_irq(&ct->dead.lock);
1864 
1865 	xe_guc_log_snapshot_free(ct->dead.snapshot_log);
1866 	ct->dead.snapshot_log = NULL;
1867 	xe_guc_ct_snapshot_free(ct->dead.snapshot_ct);
1868 	ct->dead.snapshot_ct = NULL;
1869 
1870 	if (ct->dead.reason & (1 << CT_DEAD_STATE_REARM)) {
1871 		/* A reset has occurred so re-arm the error reporting */
1872 		ct->dead.reason = 0;
1873 		ct->dead.reported = false;
1874 	}
1875 
1876 	spin_unlock_irq(&ct->dead.lock);
1877 }
1878 #endif
1879