1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * main.c - Multi purpose firmware loading support
4 *
5 * Copyright (c) 2003 Manuel Estrada Sainz
6 *
7 * Please see Documentation/driver-api/firmware/ for more information.
8 *
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/capability.h>
14 #include <linux/device.h>
15 #include <linux/kernel_read_file.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/initrd.h>
19 #include <linux/timer.h>
20 #include <linux/vmalloc.h>
21 #include <linux/interrupt.h>
22 #include <linux/bitops.h>
23 #include <linux/mutex.h>
24 #include <linux/workqueue.h>
25 #include <linux/highmem.h>
26 #include <linux/firmware.h>
27 #include <linux/slab.h>
28 #include <linux/sched.h>
29 #include <linux/file.h>
30 #include <linux/list.h>
31 #include <linux/fs.h>
32 #include <linux/async.h>
33 #include <linux/pm.h>
34 #include <linux/suspend.h>
35 #include <linux/syscore_ops.h>
36 #include <linux/reboot.h>
37 #include <linux/security.h>
38 #include <linux/zstd.h>
39 #include <linux/xz.h>
40
41 #include <generated/utsrelease.h>
42
43 #include "../base.h"
44 #include "firmware.h"
45 #include "fallback.h"
46
47 MODULE_AUTHOR("Manuel Estrada Sainz");
48 MODULE_DESCRIPTION("Multi purpose firmware loading support");
49 MODULE_LICENSE("GPL");
50
51 struct firmware_cache {
52 /* firmware_buf instance will be added into the below list */
53 spinlock_t lock;
54 struct list_head head;
55 int state;
56
57 #ifdef CONFIG_FW_CACHE
58 /*
59 * Names of firmware images which have been cached successfully
60 * will be added into the below list so that device uncache
61 * helper can trace which firmware images have been cached
62 * before.
63 */
64 spinlock_t name_lock;
65 struct list_head fw_names;
66
67 struct delayed_work work;
68
69 struct notifier_block pm_notify;
70 #endif
71 };
72
73 struct fw_cache_entry {
74 struct list_head list;
75 const char *name;
76 };
77
78 struct fw_name_devm {
79 unsigned long magic;
80 const char *name;
81 };
82
to_fw_priv(struct kref * ref)83 static inline struct fw_priv *to_fw_priv(struct kref *ref)
84 {
85 return container_of(ref, struct fw_priv, ref);
86 }
87
88 #define FW_LOADER_NO_CACHE 0
89 #define FW_LOADER_START_CACHE 1
90
91 /* fw_lock could be moved to 'struct fw_sysfs' but since it is just
92 * guarding for corner cases a global lock should be OK */
93 DEFINE_MUTEX(fw_lock);
94
95 struct firmware_cache fw_cache;
96 bool fw_load_abort_all;
97
fw_state_init(struct fw_priv * fw_priv)98 void fw_state_init(struct fw_priv *fw_priv)
99 {
100 struct fw_state *fw_st = &fw_priv->fw_st;
101
102 init_completion(&fw_st->completion);
103 fw_st->status = FW_STATUS_UNKNOWN;
104 }
105
fw_state_wait(struct fw_priv * fw_priv)106 static inline int fw_state_wait(struct fw_priv *fw_priv)
107 {
108 return __fw_state_wait_common(fw_priv, MAX_SCHEDULE_TIMEOUT);
109 }
110
111 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv);
112
__allocate_fw_priv(const char * fw_name,struct firmware_cache * fwc,void * dbuf,size_t size,size_t offset,u32 opt_flags)113 static struct fw_priv *__allocate_fw_priv(const char *fw_name,
114 struct firmware_cache *fwc,
115 void *dbuf,
116 size_t size,
117 size_t offset,
118 u32 opt_flags)
119 {
120 struct fw_priv *fw_priv;
121
122 /* For a partial read, the buffer must be preallocated. */
123 if ((opt_flags & FW_OPT_PARTIAL) && !dbuf)
124 return NULL;
125
126 /* Only partial reads are allowed to use an offset. */
127 if (offset != 0 && !(opt_flags & FW_OPT_PARTIAL))
128 return NULL;
129
130 fw_priv = kzalloc(sizeof(*fw_priv), GFP_ATOMIC);
131 if (!fw_priv)
132 return NULL;
133
134 fw_priv->fw_name = kstrdup_const(fw_name, GFP_ATOMIC);
135 if (!fw_priv->fw_name) {
136 kfree(fw_priv);
137 return NULL;
138 }
139
140 kref_init(&fw_priv->ref);
141 fw_priv->fwc = fwc;
142 fw_priv->data = dbuf;
143 fw_priv->allocated_size = size;
144 fw_priv->offset = offset;
145 fw_priv->opt_flags = opt_flags;
146 fw_state_init(fw_priv);
147 #ifdef CONFIG_FW_LOADER_USER_HELPER
148 INIT_LIST_HEAD(&fw_priv->pending_list);
149 #endif
150
151 pr_debug("%s: fw-%s fw_priv=%p\n", __func__, fw_name, fw_priv);
152
153 return fw_priv;
154 }
155
__lookup_fw_priv(const char * fw_name)156 static struct fw_priv *__lookup_fw_priv(const char *fw_name)
157 {
158 struct fw_priv *tmp;
159 struct firmware_cache *fwc = &fw_cache;
160
161 list_for_each_entry(tmp, &fwc->head, list)
162 if (!strcmp(tmp->fw_name, fw_name))
163 return tmp;
164 return NULL;
165 }
166
167 /* Returns 1 for batching firmware requests with the same name */
alloc_lookup_fw_priv(const char * fw_name,struct firmware_cache * fwc,struct fw_priv ** fw_priv,void * dbuf,size_t size,size_t offset,u32 opt_flags)168 int alloc_lookup_fw_priv(const char *fw_name, struct firmware_cache *fwc,
169 struct fw_priv **fw_priv, void *dbuf, size_t size,
170 size_t offset, u32 opt_flags)
171 {
172 struct fw_priv *tmp;
173
174 spin_lock(&fwc->lock);
175 /*
176 * Do not merge requests that are marked to be non-cached or
177 * are performing partial reads.
178 */
179 if (!(opt_flags & (FW_OPT_NOCACHE | FW_OPT_PARTIAL))) {
180 tmp = __lookup_fw_priv(fw_name);
181 if (tmp) {
182 kref_get(&tmp->ref);
183 spin_unlock(&fwc->lock);
184 *fw_priv = tmp;
185 pr_debug("batched request - sharing the same struct fw_priv and lookup for multiple requests\n");
186 return 1;
187 }
188 }
189
190 tmp = __allocate_fw_priv(fw_name, fwc, dbuf, size, offset, opt_flags);
191 if (tmp) {
192 INIT_LIST_HEAD(&tmp->list);
193 if (!(opt_flags & FW_OPT_NOCACHE))
194 list_add(&tmp->list, &fwc->head);
195 }
196 spin_unlock(&fwc->lock);
197
198 *fw_priv = tmp;
199
200 return tmp ? 0 : -ENOMEM;
201 }
202
__free_fw_priv(struct kref * ref)203 static void __free_fw_priv(struct kref *ref)
204 __releases(&fwc->lock)
205 {
206 struct fw_priv *fw_priv = to_fw_priv(ref);
207 struct firmware_cache *fwc = fw_priv->fwc;
208
209 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
210 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
211 (unsigned int)fw_priv->size);
212
213 list_del(&fw_priv->list);
214 spin_unlock(&fwc->lock);
215
216 if (fw_is_paged_buf(fw_priv))
217 fw_free_paged_buf(fw_priv);
218 else if (!fw_priv->allocated_size)
219 vfree(fw_priv->data);
220
221 kfree_const(fw_priv->fw_name);
222 kfree(fw_priv);
223 }
224
free_fw_priv(struct fw_priv * fw_priv)225 void free_fw_priv(struct fw_priv *fw_priv)
226 {
227 struct firmware_cache *fwc = fw_priv->fwc;
228 spin_lock(&fwc->lock);
229 if (!kref_put(&fw_priv->ref, __free_fw_priv))
230 spin_unlock(&fwc->lock);
231 }
232
233 #ifdef CONFIG_FW_LOADER_PAGED_BUF
fw_is_paged_buf(struct fw_priv * fw_priv)234 bool fw_is_paged_buf(struct fw_priv *fw_priv)
235 {
236 return fw_priv->is_paged_buf;
237 }
238
fw_free_paged_buf(struct fw_priv * fw_priv)239 void fw_free_paged_buf(struct fw_priv *fw_priv)
240 {
241 int i;
242
243 if (!fw_priv->pages)
244 return;
245
246 vunmap(fw_priv->data);
247
248 for (i = 0; i < fw_priv->nr_pages; i++)
249 __free_page(fw_priv->pages[i]);
250 kvfree(fw_priv->pages);
251 fw_priv->pages = NULL;
252 fw_priv->page_array_size = 0;
253 fw_priv->nr_pages = 0;
254 fw_priv->data = NULL;
255 fw_priv->size = 0;
256 }
257
fw_grow_paged_buf(struct fw_priv * fw_priv,int pages_needed)258 int fw_grow_paged_buf(struct fw_priv *fw_priv, int pages_needed)
259 {
260 /* If the array of pages is too small, grow it */
261 if (fw_priv->page_array_size < pages_needed) {
262 int new_array_size = max(pages_needed,
263 fw_priv->page_array_size * 2);
264 struct page **new_pages;
265
266 new_pages = kvmalloc_array(new_array_size, sizeof(void *),
267 GFP_KERNEL);
268 if (!new_pages)
269 return -ENOMEM;
270 memcpy(new_pages, fw_priv->pages,
271 fw_priv->page_array_size * sizeof(void *));
272 memset(&new_pages[fw_priv->page_array_size], 0, sizeof(void *) *
273 (new_array_size - fw_priv->page_array_size));
274 kvfree(fw_priv->pages);
275 fw_priv->pages = new_pages;
276 fw_priv->page_array_size = new_array_size;
277 }
278
279 while (fw_priv->nr_pages < pages_needed) {
280 fw_priv->pages[fw_priv->nr_pages] =
281 alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
282
283 if (!fw_priv->pages[fw_priv->nr_pages])
284 return -ENOMEM;
285 fw_priv->nr_pages++;
286 }
287
288 return 0;
289 }
290
fw_map_paged_buf(struct fw_priv * fw_priv)291 int fw_map_paged_buf(struct fw_priv *fw_priv)
292 {
293 /* one pages buffer should be mapped/unmapped only once */
294 if (!fw_priv->pages)
295 return 0;
296
297 vunmap(fw_priv->data);
298 fw_priv->data = vmap(fw_priv->pages, fw_priv->nr_pages, 0,
299 PAGE_KERNEL_RO);
300 if (!fw_priv->data)
301 return -ENOMEM;
302
303 return 0;
304 }
305 #endif
306
307 /*
308 * ZSTD-compressed firmware support
309 */
310 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
fw_decompress_zstd(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)311 static int fw_decompress_zstd(struct device *dev, struct fw_priv *fw_priv,
312 size_t in_size, const void *in_buffer)
313 {
314 size_t len, out_size, workspace_size;
315 void *workspace, *out_buf;
316 zstd_dctx *ctx;
317 int err;
318
319 if (fw_priv->allocated_size) {
320 out_size = fw_priv->allocated_size;
321 out_buf = fw_priv->data;
322 } else {
323 zstd_frame_header params;
324
325 if (zstd_get_frame_header(¶ms, in_buffer, in_size) ||
326 params.frameContentSize == ZSTD_CONTENTSIZE_UNKNOWN) {
327 dev_dbg(dev, "%s: invalid zstd header\n", __func__);
328 return -EINVAL;
329 }
330 out_size = params.frameContentSize;
331 out_buf = vzalloc(out_size);
332 if (!out_buf)
333 return -ENOMEM;
334 }
335
336 workspace_size = zstd_dctx_workspace_bound();
337 workspace = kvzalloc(workspace_size, GFP_KERNEL);
338 if (!workspace) {
339 err = -ENOMEM;
340 goto error;
341 }
342
343 ctx = zstd_init_dctx(workspace, workspace_size);
344 if (!ctx) {
345 dev_dbg(dev, "%s: failed to initialize context\n", __func__);
346 err = -EINVAL;
347 goto error;
348 }
349
350 len = zstd_decompress_dctx(ctx, out_buf, out_size, in_buffer, in_size);
351 if (zstd_is_error(len)) {
352 dev_dbg(dev, "%s: failed to decompress: %d\n", __func__,
353 zstd_get_error_code(len));
354 err = -EINVAL;
355 goto error;
356 }
357
358 if (!fw_priv->allocated_size)
359 fw_priv->data = out_buf;
360 fw_priv->size = len;
361 err = 0;
362
363 error:
364 kvfree(workspace);
365 if (err && !fw_priv->allocated_size)
366 vfree(out_buf);
367 return err;
368 }
369 #endif /* CONFIG_FW_LOADER_COMPRESS_ZSTD */
370
371 /*
372 * XZ-compressed firmware support
373 */
374 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
375 /* show an error and return the standard error code */
fw_decompress_xz_error(struct device * dev,enum xz_ret xz_ret)376 static int fw_decompress_xz_error(struct device *dev, enum xz_ret xz_ret)
377 {
378 if (xz_ret != XZ_STREAM_END) {
379 dev_warn(dev, "xz decompression failed (xz_ret=%d)\n", xz_ret);
380 return xz_ret == XZ_MEM_ERROR ? -ENOMEM : -EINVAL;
381 }
382 return 0;
383 }
384
385 /* single-shot decompression onto the pre-allocated buffer */
fw_decompress_xz_single(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)386 static int fw_decompress_xz_single(struct device *dev, struct fw_priv *fw_priv,
387 size_t in_size, const void *in_buffer)
388 {
389 struct xz_dec *xz_dec;
390 struct xz_buf xz_buf;
391 enum xz_ret xz_ret;
392
393 xz_dec = xz_dec_init(XZ_SINGLE, (u32)-1);
394 if (!xz_dec)
395 return -ENOMEM;
396
397 xz_buf.in_size = in_size;
398 xz_buf.in = in_buffer;
399 xz_buf.in_pos = 0;
400 xz_buf.out_size = fw_priv->allocated_size;
401 xz_buf.out = fw_priv->data;
402 xz_buf.out_pos = 0;
403
404 xz_ret = xz_dec_run(xz_dec, &xz_buf);
405 xz_dec_end(xz_dec);
406
407 fw_priv->size = xz_buf.out_pos;
408 return fw_decompress_xz_error(dev, xz_ret);
409 }
410
411 /* decompression on paged buffer and map it */
fw_decompress_xz_pages(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)412 static int fw_decompress_xz_pages(struct device *dev, struct fw_priv *fw_priv,
413 size_t in_size, const void *in_buffer)
414 {
415 struct xz_dec *xz_dec;
416 struct xz_buf xz_buf;
417 enum xz_ret xz_ret;
418 struct page *page;
419 int err = 0;
420
421 xz_dec = xz_dec_init(XZ_DYNALLOC, (u32)-1);
422 if (!xz_dec)
423 return -ENOMEM;
424
425 xz_buf.in_size = in_size;
426 xz_buf.in = in_buffer;
427 xz_buf.in_pos = 0;
428
429 fw_priv->is_paged_buf = true;
430 fw_priv->size = 0;
431 do {
432 if (fw_grow_paged_buf(fw_priv, fw_priv->nr_pages + 1)) {
433 err = -ENOMEM;
434 goto out;
435 }
436
437 /* decompress onto the new allocated page */
438 page = fw_priv->pages[fw_priv->nr_pages - 1];
439 xz_buf.out = kmap_local_page(page);
440 xz_buf.out_pos = 0;
441 xz_buf.out_size = PAGE_SIZE;
442 xz_ret = xz_dec_run(xz_dec, &xz_buf);
443 kunmap_local(xz_buf.out);
444 fw_priv->size += xz_buf.out_pos;
445 /* partial decompression means either end or error */
446 if (xz_buf.out_pos != PAGE_SIZE)
447 break;
448 } while (xz_ret == XZ_OK);
449
450 err = fw_decompress_xz_error(dev, xz_ret);
451 if (!err)
452 err = fw_map_paged_buf(fw_priv);
453
454 out:
455 xz_dec_end(xz_dec);
456 return err;
457 }
458
fw_decompress_xz(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer)459 static int fw_decompress_xz(struct device *dev, struct fw_priv *fw_priv,
460 size_t in_size, const void *in_buffer)
461 {
462 /* if the buffer is pre-allocated, we can perform in single-shot mode */
463 if (fw_priv->data)
464 return fw_decompress_xz_single(dev, fw_priv, in_size, in_buffer);
465 else
466 return fw_decompress_xz_pages(dev, fw_priv, in_size, in_buffer);
467 }
468 #endif /* CONFIG_FW_LOADER_COMPRESS_XZ */
469
470 /* direct firmware loading support */
471 static char fw_path_para[256];
472 static const char * const fw_path[] = {
473 fw_path_para,
474 "/lib/firmware/updates/" UTS_RELEASE,
475 "/lib/firmware/updates",
476 "/lib/firmware/" UTS_RELEASE,
477 "/lib/firmware"
478 };
479
480 /*
481 * Typical usage is that passing 'firmware_class.path=$CUSTOMIZED_PATH'
482 * from kernel command line because firmware_class is generally built in
483 * kernel instead of module.
484 */
485 module_param_string(path, fw_path_para, sizeof(fw_path_para), 0644);
486 MODULE_PARM_DESC(path, "customized firmware image search path with a higher priority than default path");
487
488 static int
fw_get_filesystem_firmware(struct device * device,struct fw_priv * fw_priv,const char * suffix,int (* decompress)(struct device * dev,struct fw_priv * fw_priv,size_t in_size,const void * in_buffer))489 fw_get_filesystem_firmware(struct device *device, struct fw_priv *fw_priv,
490 const char *suffix,
491 int (*decompress)(struct device *dev,
492 struct fw_priv *fw_priv,
493 size_t in_size,
494 const void *in_buffer))
495 {
496 size_t size;
497 int i, len, maxlen = 0;
498 int rc = -ENOENT;
499 char *path, *nt = NULL;
500 size_t msize = INT_MAX;
501 void *buffer = NULL;
502
503 /* Already populated data member means we're loading into a buffer */
504 if (!decompress && fw_priv->data) {
505 buffer = fw_priv->data;
506 msize = fw_priv->allocated_size;
507 }
508
509 path = __getname();
510 if (!path)
511 return -ENOMEM;
512
513 wait_for_initramfs();
514 for (i = 0; i < ARRAY_SIZE(fw_path); i++) {
515 size_t file_size = 0;
516 size_t *file_size_ptr = NULL;
517
518 /* skip the unset customized path */
519 if (!fw_path[i][0])
520 continue;
521
522 /* strip off \n from customized path */
523 maxlen = strlen(fw_path[i]);
524 if (i == 0) {
525 nt = strchr(fw_path[i], '\n');
526 if (nt)
527 maxlen = nt - fw_path[i];
528 }
529
530 len = snprintf(path, PATH_MAX, "%.*s/%s%s",
531 maxlen, fw_path[i],
532 fw_priv->fw_name, suffix);
533 if (len >= PATH_MAX) {
534 rc = -ENAMETOOLONG;
535 break;
536 }
537
538 fw_priv->size = 0;
539
540 /*
541 * The total file size is only examined when doing a partial
542 * read; the "full read" case needs to fail if the whole
543 * firmware was not completely loaded.
544 */
545 if ((fw_priv->opt_flags & FW_OPT_PARTIAL) && buffer)
546 file_size_ptr = &file_size;
547
548 /* load firmware files from the mount namespace of init */
549 rc = kernel_read_file_from_path_initns(path, fw_priv->offset,
550 &buffer, msize,
551 file_size_ptr,
552 READING_FIRMWARE);
553 if (rc < 0) {
554 if (!(fw_priv->opt_flags & FW_OPT_NO_WARN)) {
555 if (rc != -ENOENT)
556 dev_warn(device,
557 "loading %s failed with error %d\n",
558 path, rc);
559 else
560 dev_dbg(device,
561 "loading %s failed for no such file or directory.\n",
562 path);
563 }
564 continue;
565 }
566 size = rc;
567 rc = 0;
568
569 dev_dbg(device, "Loading firmware from %s\n", path);
570 if (decompress) {
571 dev_dbg(device, "f/w decompressing %s\n",
572 fw_priv->fw_name);
573 rc = decompress(device, fw_priv, size, buffer);
574 /* discard the superfluous original content */
575 vfree(buffer);
576 buffer = NULL;
577 if (rc) {
578 fw_free_paged_buf(fw_priv);
579 continue;
580 }
581 } else {
582 dev_dbg(device, "direct-loading %s\n",
583 fw_priv->fw_name);
584 if (!fw_priv->data)
585 fw_priv->data = buffer;
586 fw_priv->size = size;
587 }
588 fw_state_done(fw_priv);
589 break;
590 }
591 __putname(path);
592
593 return rc;
594 }
595
596 /* firmware holds the ownership of pages */
firmware_free_data(const struct firmware * fw)597 static void firmware_free_data(const struct firmware *fw)
598 {
599 /* Loaded directly? */
600 if (!fw->priv) {
601 vfree(fw->data);
602 return;
603 }
604 free_fw_priv(fw->priv);
605 }
606
607 /* store the pages buffer info firmware from buf */
fw_set_page_data(struct fw_priv * fw_priv,struct firmware * fw)608 static void fw_set_page_data(struct fw_priv *fw_priv, struct firmware *fw)
609 {
610 fw->priv = fw_priv;
611 fw->size = fw_priv->size;
612 fw->data = fw_priv->data;
613
614 pr_debug("%s: fw-%s fw_priv=%p data=%p size=%u\n",
615 __func__, fw_priv->fw_name, fw_priv, fw_priv->data,
616 (unsigned int)fw_priv->size);
617 }
618
619 #ifdef CONFIG_FW_CACHE
fw_name_devm_release(struct device * dev,void * res)620 static void fw_name_devm_release(struct device *dev, void *res)
621 {
622 struct fw_name_devm *fwn = res;
623
624 if (fwn->magic == (unsigned long)&fw_cache)
625 pr_debug("%s: fw_name-%s devm-%p released\n",
626 __func__, fwn->name, res);
627 kfree_const(fwn->name);
628 }
629
fw_devm_match(struct device * dev,void * res,void * match_data)630 static int fw_devm_match(struct device *dev, void *res,
631 void *match_data)
632 {
633 struct fw_name_devm *fwn = res;
634
635 return (fwn->magic == (unsigned long)&fw_cache) &&
636 !strcmp(fwn->name, match_data);
637 }
638
fw_find_devm_name(struct device * dev,const char * name)639 static struct fw_name_devm *fw_find_devm_name(struct device *dev,
640 const char *name)
641 {
642 struct fw_name_devm *fwn;
643
644 fwn = devres_find(dev, fw_name_devm_release,
645 fw_devm_match, (void *)name);
646 return fwn;
647 }
648
fw_cache_is_setup(struct device * dev,const char * name)649 static bool fw_cache_is_setup(struct device *dev, const char *name)
650 {
651 struct fw_name_devm *fwn;
652
653 fwn = fw_find_devm_name(dev, name);
654 if (fwn)
655 return true;
656
657 return false;
658 }
659
660 /* add firmware name into devres list */
fw_add_devm_name(struct device * dev,const char * name)661 static int fw_add_devm_name(struct device *dev, const char *name)
662 {
663 struct fw_name_devm *fwn;
664
665 if (fw_cache_is_setup(dev, name))
666 return 0;
667
668 fwn = devres_alloc(fw_name_devm_release, sizeof(struct fw_name_devm),
669 GFP_KERNEL);
670 if (!fwn)
671 return -ENOMEM;
672 fwn->name = kstrdup_const(name, GFP_KERNEL);
673 if (!fwn->name) {
674 devres_free(fwn);
675 return -ENOMEM;
676 }
677
678 fwn->magic = (unsigned long)&fw_cache;
679 devres_add(dev, fwn);
680
681 return 0;
682 }
683 #else
fw_cache_is_setup(struct device * dev,const char * name)684 static bool fw_cache_is_setup(struct device *dev, const char *name)
685 {
686 return false;
687 }
688
fw_add_devm_name(struct device * dev,const char * name)689 static int fw_add_devm_name(struct device *dev, const char *name)
690 {
691 return 0;
692 }
693 #endif
694
assign_fw(struct firmware * fw,struct device * device)695 int assign_fw(struct firmware *fw, struct device *device)
696 {
697 struct fw_priv *fw_priv = fw->priv;
698 int ret;
699
700 mutex_lock(&fw_lock);
701 if (!fw_priv->size || fw_state_is_aborted(fw_priv)) {
702 mutex_unlock(&fw_lock);
703 return -ENOENT;
704 }
705
706 /*
707 * add firmware name into devres list so that we can auto cache
708 * and uncache firmware for device.
709 *
710 * device may has been deleted already, but the problem
711 * should be fixed in devres or driver core.
712 */
713 /* don't cache firmware handled without uevent */
714 if (device && (fw_priv->opt_flags & FW_OPT_UEVENT) &&
715 !(fw_priv->opt_flags & FW_OPT_NOCACHE)) {
716 ret = fw_add_devm_name(device, fw_priv->fw_name);
717 if (ret) {
718 mutex_unlock(&fw_lock);
719 return ret;
720 }
721 }
722
723 /*
724 * After caching firmware image is started, let it piggyback
725 * on request firmware.
726 */
727 if (!(fw_priv->opt_flags & FW_OPT_NOCACHE) &&
728 fw_priv->fwc->state == FW_LOADER_START_CACHE)
729 fw_cache_piggyback_on_request(fw_priv);
730
731 /* pass the pages buffer to driver at the last minute */
732 fw_set_page_data(fw_priv, fw);
733 mutex_unlock(&fw_lock);
734 return 0;
735 }
736
737 /* prepare firmware and firmware_buf structs;
738 * return 0 if a firmware is already assigned, 1 if need to load one,
739 * or a negative error code
740 */
741 static int
_request_firmware_prepare(struct firmware ** firmware_p,const char * name,struct device * device,void * dbuf,size_t size,size_t offset,u32 opt_flags)742 _request_firmware_prepare(struct firmware **firmware_p, const char *name,
743 struct device *device, void *dbuf, size_t size,
744 size_t offset, u32 opt_flags)
745 {
746 struct firmware *firmware;
747 struct fw_priv *fw_priv;
748 int ret;
749
750 *firmware_p = firmware = kzalloc(sizeof(*firmware), GFP_KERNEL);
751 if (!firmware) {
752 dev_err(device, "%s: kmalloc(struct firmware) failed\n",
753 __func__);
754 return -ENOMEM;
755 }
756
757 if (firmware_request_builtin_buf(firmware, name, dbuf, size)) {
758 dev_dbg(device, "using built-in %s\n", name);
759 return 0; /* assigned */
760 }
761
762 ret = alloc_lookup_fw_priv(name, &fw_cache, &fw_priv, dbuf, size,
763 offset, opt_flags);
764
765 /*
766 * bind with 'priv' now to avoid warning in failure path
767 * of requesting firmware.
768 */
769 firmware->priv = fw_priv;
770
771 if (ret > 0) {
772 ret = fw_state_wait(fw_priv);
773 if (!ret) {
774 fw_set_page_data(fw_priv, firmware);
775 return 0; /* assigned */
776 }
777 }
778
779 if (ret < 0)
780 return ret;
781 return 1; /* need to load */
782 }
783
784 /*
785 * Batched requests need only one wake, we need to do this step last due to the
786 * fallback mechanism. The buf is protected with kref_get(), and it won't be
787 * released until the last user calls release_firmware().
788 *
789 * Failed batched requests are possible as well, in such cases we just share
790 * the struct fw_priv and won't release it until all requests are woken
791 * and have gone through this same path.
792 */
fw_abort_batch_reqs(struct firmware * fw)793 static void fw_abort_batch_reqs(struct firmware *fw)
794 {
795 struct fw_priv *fw_priv;
796
797 /* Loaded directly? */
798 if (!fw || !fw->priv)
799 return;
800
801 fw_priv = fw->priv;
802 mutex_lock(&fw_lock);
803 if (!fw_state_is_aborted(fw_priv))
804 fw_state_aborted(fw_priv);
805 mutex_unlock(&fw_lock);
806 }
807
808 #if defined(CONFIG_FW_LOADER_DEBUG)
809 #include <crypto/sha2.h>
810
fw_log_firmware_info(const struct firmware * fw,const char * name,struct device * device)811 static void fw_log_firmware_info(const struct firmware *fw, const char *name, struct device *device)
812 {
813 u8 digest[SHA256_DIGEST_SIZE];
814
815 sha256(fw->data, fw->size, digest);
816 dev_dbg(device, "Loaded FW: %s, sha256: %*phN\n",
817 name, SHA256_DIGEST_SIZE, digest);
818 }
819 #else
fw_log_firmware_info(const struct firmware * fw,const char * name,struct device * device)820 static void fw_log_firmware_info(const struct firmware *fw, const char *name,
821 struct device *device)
822 {}
823 #endif
824
825 /* called from request_firmware() and request_firmware_work_func() */
826 static int
_request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset,u32 opt_flags)827 _request_firmware(const struct firmware **firmware_p, const char *name,
828 struct device *device, void *buf, size_t size,
829 size_t offset, u32 opt_flags)
830 {
831 struct firmware *fw = NULL;
832 struct cred *kern_cred = NULL;
833 const struct cred *old_cred;
834 bool nondirect = false;
835 int ret;
836
837 if (!firmware_p)
838 return -EINVAL;
839
840 if (!name || name[0] == '\0') {
841 ret = -EINVAL;
842 goto out;
843 }
844
845
846 /*
847 * Reject firmware file names with ".." path components.
848 * There are drivers that construct firmware file names from
849 * device-supplied strings, and we don't want some device to be
850 * able to tell us "I would like to be sent my firmware from
851 * ../../../etc/shadow, please".
852 *
853 * This intentionally only looks at the firmware name, not at
854 * the firmware base directory or at symlink contents.
855 */
856 if (name_contains_dotdot(name)) {
857 dev_warn(device,
858 "Firmware load for '%s' refused, path contains '..' component\n",
859 name);
860 ret = -EINVAL;
861 goto out;
862 }
863
864 ret = _request_firmware_prepare(&fw, name, device, buf, size,
865 offset, opt_flags);
866 if (ret <= 0) /* error or already assigned */
867 goto out;
868
869 /*
870 * We are about to try to access the firmware file. Because we may have been
871 * called by a driver when serving an unrelated request from userland, we use
872 * the kernel credentials to read the file.
873 */
874 kern_cred = prepare_kernel_cred(&init_task);
875 if (!kern_cred) {
876 ret = -ENOMEM;
877 goto out;
878 }
879 old_cred = override_creds(kern_cred);
880
881 ret = fw_get_filesystem_firmware(device, fw->priv, "", NULL);
882
883 /* Only full reads can support decompression, platform, and sysfs. */
884 if (!(opt_flags & FW_OPT_PARTIAL))
885 nondirect = true;
886
887 #ifdef CONFIG_FW_LOADER_COMPRESS_ZSTD
888 if (ret == -ENOENT && nondirect)
889 ret = fw_get_filesystem_firmware(device, fw->priv, ".zst",
890 fw_decompress_zstd);
891 #endif
892 #ifdef CONFIG_FW_LOADER_COMPRESS_XZ
893 if (ret == -ENOENT && nondirect)
894 ret = fw_get_filesystem_firmware(device, fw->priv, ".xz",
895 fw_decompress_xz);
896 #endif
897 if (ret == -ENOENT && nondirect)
898 ret = firmware_fallback_platform(fw->priv);
899
900 if (ret) {
901 if (!(opt_flags & FW_OPT_NO_WARN))
902 dev_warn(device,
903 "Direct firmware load for %s failed with error %d\n",
904 name, ret);
905 if (nondirect)
906 ret = firmware_fallback_sysfs(fw, name, device,
907 opt_flags, ret);
908 } else
909 ret = assign_fw(fw, device);
910
911 revert_creds(old_cred);
912 put_cred(kern_cred);
913
914 out:
915 if (ret < 0) {
916 fw_abort_batch_reqs(fw);
917 release_firmware(fw);
918 fw = NULL;
919 } else {
920 fw_log_firmware_info(fw, name, device);
921 }
922
923 *firmware_p = fw;
924 return ret;
925 }
926
927 /**
928 * request_firmware() - send firmware request and wait for it
929 * @firmware_p: pointer to firmware image
930 * @name: name of firmware file
931 * @device: device for which firmware is being loaded
932 *
933 * @firmware_p will be used to return a firmware image by the name
934 * of @name for device @device.
935 *
936 * Should be called from user context where sleeping is allowed.
937 *
938 * @name will be used as $FIRMWARE in the uevent environment and
939 * should be distinctive enough not to be confused with any other
940 * firmware image for this or any other device.
941 * It must not contain any ".." path components - "foo/bar..bin" is
942 * allowed, but "foo/../bar.bin" is not.
943 *
944 * Caller must hold the reference count of @device.
945 *
946 * The function can be called safely inside device's suspend and
947 * resume callback.
948 **/
949 int
request_firmware(const struct firmware ** firmware_p,const char * name,struct device * device)950 request_firmware(const struct firmware **firmware_p, const char *name,
951 struct device *device)
952 {
953 int ret;
954
955 /* Need to pin this module until return */
956 __module_get(THIS_MODULE);
957 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
958 FW_OPT_UEVENT);
959 module_put(THIS_MODULE);
960 return ret;
961 }
962 EXPORT_SYMBOL(request_firmware);
963
964 /**
965 * firmware_request_nowarn() - request for an optional fw module
966 * @firmware: pointer to firmware image
967 * @name: name of firmware file
968 * @device: device for which firmware is being loaded
969 *
970 * This function is similar in behaviour to request_firmware(), except it
971 * doesn't produce warning messages when the file is not found. The sysfs
972 * fallback mechanism is enabled if direct filesystem lookup fails. However,
973 * failures to find the firmware file with it are still suppressed. It is
974 * therefore up to the driver to check for the return value of this call and to
975 * decide when to inform the users of errors.
976 **/
firmware_request_nowarn(const struct firmware ** firmware,const char * name,struct device * device)977 int firmware_request_nowarn(const struct firmware **firmware, const char *name,
978 struct device *device)
979 {
980 int ret;
981
982 /* Need to pin this module until return */
983 __module_get(THIS_MODULE);
984 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
985 FW_OPT_UEVENT | FW_OPT_NO_WARN);
986 module_put(THIS_MODULE);
987 return ret;
988 }
989 EXPORT_SYMBOL_GPL(firmware_request_nowarn);
990
991 /**
992 * request_firmware_direct() - load firmware directly without usermode helper
993 * @firmware_p: pointer to firmware image
994 * @name: name of firmware file
995 * @device: device for which firmware is being loaded
996 *
997 * This function works pretty much like request_firmware(), but this doesn't
998 * fall back to usermode helper even if the firmware couldn't be loaded
999 * directly from fs. Hence it's useful for loading optional firmwares, which
1000 * aren't always present, without extra long timeouts of udev.
1001 **/
request_firmware_direct(const struct firmware ** firmware_p,const char * name,struct device * device)1002 int request_firmware_direct(const struct firmware **firmware_p,
1003 const char *name, struct device *device)
1004 {
1005 int ret;
1006
1007 __module_get(THIS_MODULE);
1008 ret = _request_firmware(firmware_p, name, device, NULL, 0, 0,
1009 FW_OPT_UEVENT | FW_OPT_NO_WARN |
1010 FW_OPT_NOFALLBACK_SYSFS);
1011 module_put(THIS_MODULE);
1012 return ret;
1013 }
1014 EXPORT_SYMBOL_GPL(request_firmware_direct);
1015
1016 /**
1017 * firmware_request_platform() - request firmware with platform-fw fallback
1018 * @firmware: pointer to firmware image
1019 * @name: name of firmware file
1020 * @device: device for which firmware is being loaded
1021 *
1022 * This function is similar in behaviour to request_firmware, except that if
1023 * direct filesystem lookup fails, it will fallback to looking for a copy of the
1024 * requested firmware embedded in the platform's main (e.g. UEFI) firmware.
1025 **/
firmware_request_platform(const struct firmware ** firmware,const char * name,struct device * device)1026 int firmware_request_platform(const struct firmware **firmware,
1027 const char *name, struct device *device)
1028 {
1029 int ret;
1030
1031 /* Need to pin this module until return */
1032 __module_get(THIS_MODULE);
1033 ret = _request_firmware(firmware, name, device, NULL, 0, 0,
1034 FW_OPT_UEVENT | FW_OPT_FALLBACK_PLATFORM);
1035 module_put(THIS_MODULE);
1036 return ret;
1037 }
1038 EXPORT_SYMBOL_GPL(firmware_request_platform);
1039
1040 /**
1041 * firmware_request_cache() - cache firmware for suspend so resume can use it
1042 * @device: device for which firmware should be cached for
1043 * @name: name of firmware file
1044 *
1045 * There are some devices with an optimization that enables the device to not
1046 * require loading firmware on system reboot. This optimization may still
1047 * require the firmware present on resume from suspend. This routine can be
1048 * used to ensure the firmware is present on resume from suspend in these
1049 * situations. This helper is not compatible with drivers which use
1050 * request_firmware_into_buf() or request_firmware_nowait() with no uevent set.
1051 **/
firmware_request_cache(struct device * device,const char * name)1052 int firmware_request_cache(struct device *device, const char *name)
1053 {
1054 int ret;
1055
1056 mutex_lock(&fw_lock);
1057 ret = fw_add_devm_name(device, name);
1058 mutex_unlock(&fw_lock);
1059
1060 return ret;
1061 }
1062 EXPORT_SYMBOL_GPL(firmware_request_cache);
1063
1064 /**
1065 * request_firmware_into_buf() - load firmware into a previously allocated buffer
1066 * @firmware_p: pointer to firmware image
1067 * @name: name of firmware file
1068 * @device: device for which firmware is being loaded and DMA region allocated
1069 * @buf: address of buffer to load firmware into
1070 * @size: size of buffer
1071 *
1072 * This function works pretty much like request_firmware(), but it doesn't
1073 * allocate a buffer to hold the firmware data. Instead, the firmware
1074 * is loaded directly into the buffer pointed to by @buf and the @firmware_p
1075 * data member is pointed at @buf.
1076 *
1077 * This function doesn't cache firmware either.
1078 */
1079 int
request_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size)1080 request_firmware_into_buf(const struct firmware **firmware_p, const char *name,
1081 struct device *device, void *buf, size_t size)
1082 {
1083 int ret;
1084
1085 if (fw_cache_is_setup(device, name))
1086 return -EOPNOTSUPP;
1087
1088 __module_get(THIS_MODULE);
1089 ret = _request_firmware(firmware_p, name, device, buf, size, 0,
1090 FW_OPT_UEVENT | FW_OPT_NOCACHE);
1091 module_put(THIS_MODULE);
1092 return ret;
1093 }
1094 EXPORT_SYMBOL(request_firmware_into_buf);
1095
1096 /**
1097 * request_partial_firmware_into_buf() - load partial firmware into a previously allocated buffer
1098 * @firmware_p: pointer to firmware image
1099 * @name: name of firmware file
1100 * @device: device for which firmware is being loaded and DMA region allocated
1101 * @buf: address of buffer to load firmware into
1102 * @size: size of buffer
1103 * @offset: offset into file to read
1104 *
1105 * This function works pretty much like request_firmware_into_buf except
1106 * it allows a partial read of the file.
1107 */
1108 int
request_partial_firmware_into_buf(const struct firmware ** firmware_p,const char * name,struct device * device,void * buf,size_t size,size_t offset)1109 request_partial_firmware_into_buf(const struct firmware **firmware_p,
1110 const char *name, struct device *device,
1111 void *buf, size_t size, size_t offset)
1112 {
1113 int ret;
1114
1115 if (fw_cache_is_setup(device, name))
1116 return -EOPNOTSUPP;
1117
1118 __module_get(THIS_MODULE);
1119 ret = _request_firmware(firmware_p, name, device, buf, size, offset,
1120 FW_OPT_UEVENT | FW_OPT_NOCACHE |
1121 FW_OPT_PARTIAL);
1122 module_put(THIS_MODULE);
1123 return ret;
1124 }
1125 EXPORT_SYMBOL(request_partial_firmware_into_buf);
1126
1127 /**
1128 * release_firmware() - release the resource associated with a firmware image
1129 * @fw: firmware resource to release
1130 **/
release_firmware(const struct firmware * fw)1131 void release_firmware(const struct firmware *fw)
1132 {
1133 if (fw) {
1134 if (!firmware_is_builtin(fw))
1135 firmware_free_data(fw);
1136 kfree(fw);
1137 }
1138 }
1139 EXPORT_SYMBOL(release_firmware);
1140
1141 /* Async support */
1142 struct firmware_work {
1143 struct work_struct work;
1144 struct module *module;
1145 const char *name;
1146 struct device *device;
1147 void *context;
1148 void (*cont)(const struct firmware *fw, void *context);
1149 u32 opt_flags;
1150 };
1151
request_firmware_work_func(struct work_struct * work)1152 static void request_firmware_work_func(struct work_struct *work)
1153 {
1154 struct firmware_work *fw_work;
1155 const struct firmware *fw;
1156
1157 fw_work = container_of(work, struct firmware_work, work);
1158
1159 _request_firmware(&fw, fw_work->name, fw_work->device, NULL, 0, 0,
1160 fw_work->opt_flags);
1161 fw_work->cont(fw, fw_work->context);
1162 put_device(fw_work->device); /* taken in request_firmware_nowait() */
1163
1164 module_put(fw_work->module);
1165 kfree_const(fw_work->name);
1166 kfree(fw_work);
1167 }
1168
1169
_request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context),bool nowarn)1170 static int _request_firmware_nowait(
1171 struct module *module, bool uevent,
1172 const char *name, struct device *device, gfp_t gfp, void *context,
1173 void (*cont)(const struct firmware *fw, void *context), bool nowarn)
1174 {
1175 struct firmware_work *fw_work;
1176
1177 fw_work = kzalloc(sizeof(struct firmware_work), gfp);
1178 if (!fw_work)
1179 return -ENOMEM;
1180
1181 fw_work->module = module;
1182 fw_work->name = kstrdup_const(name, gfp);
1183 if (!fw_work->name) {
1184 kfree(fw_work);
1185 return -ENOMEM;
1186 }
1187 fw_work->device = device;
1188 fw_work->context = context;
1189 fw_work->cont = cont;
1190 fw_work->opt_flags = FW_OPT_NOWAIT |
1191 (uevent ? FW_OPT_UEVENT : FW_OPT_USERHELPER) |
1192 (nowarn ? FW_OPT_NO_WARN : 0);
1193
1194 if (!uevent && fw_cache_is_setup(device, name)) {
1195 kfree_const(fw_work->name);
1196 kfree(fw_work);
1197 return -EOPNOTSUPP;
1198 }
1199
1200 if (!try_module_get(module)) {
1201 kfree_const(fw_work->name);
1202 kfree(fw_work);
1203 return -EFAULT;
1204 }
1205
1206 get_device(fw_work->device);
1207 INIT_WORK(&fw_work->work, request_firmware_work_func);
1208 schedule_work(&fw_work->work);
1209 return 0;
1210 }
1211
1212 /**
1213 * request_firmware_nowait() - asynchronous version of request_firmware
1214 * @module: module requesting the firmware
1215 * @uevent: sends uevent to copy the firmware image if this flag
1216 * is non-zero else the firmware copy must be done manually.
1217 * @name: name of firmware file
1218 * @device: device for which firmware is being loaded
1219 * @gfp: allocation flags
1220 * @context: will be passed over to @cont, and
1221 * @fw may be %NULL if firmware request fails.
1222 * @cont: function will be called asynchronously when the firmware
1223 * request is over.
1224 *
1225 * Caller must hold the reference count of @device.
1226 *
1227 * Asynchronous variant of request_firmware() for user contexts:
1228 * - sleep for as small periods as possible since it may
1229 * increase kernel boot time of built-in device drivers
1230 * requesting firmware in their ->probe() methods, if
1231 * @gfp is GFP_KERNEL.
1232 *
1233 * - can't sleep at all if @gfp is GFP_ATOMIC.
1234 **/
request_firmware_nowait(struct module * module,bool uevent,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1235 int request_firmware_nowait(
1236 struct module *module, bool uevent,
1237 const char *name, struct device *device, gfp_t gfp, void *context,
1238 void (*cont)(const struct firmware *fw, void *context))
1239 {
1240 return _request_firmware_nowait(module, uevent, name, device, gfp,
1241 context, cont, false);
1242
1243 }
1244 EXPORT_SYMBOL(request_firmware_nowait);
1245
1246 /**
1247 * firmware_request_nowait_nowarn() - async version of request_firmware_nowarn
1248 * @module: module requesting the firmware
1249 * @name: name of firmware file
1250 * @device: device for which firmware is being loaded
1251 * @gfp: allocation flags
1252 * @context: will be passed over to @cont, and
1253 * @fw may be %NULL if firmware request fails.
1254 * @cont: function will be called asynchronously when the firmware
1255 * request is over.
1256 *
1257 * Similar in function to request_firmware_nowait(), but doesn't print a warning
1258 * when the firmware file could not be found and always sends a uevent to copy
1259 * the firmware image.
1260 */
firmware_request_nowait_nowarn(struct module * module,const char * name,struct device * device,gfp_t gfp,void * context,void (* cont)(const struct firmware * fw,void * context))1261 int firmware_request_nowait_nowarn(
1262 struct module *module, const char *name,
1263 struct device *device, gfp_t gfp, void *context,
1264 void (*cont)(const struct firmware *fw, void *context))
1265 {
1266 return _request_firmware_nowait(module, FW_ACTION_UEVENT, name, device,
1267 gfp, context, cont, true);
1268 }
1269 EXPORT_SYMBOL_GPL(firmware_request_nowait_nowarn);
1270
1271 #ifdef CONFIG_FW_CACHE
1272 static ASYNC_DOMAIN_EXCLUSIVE(fw_cache_domain);
1273
1274 /**
1275 * cache_firmware() - cache one firmware image in kernel memory space
1276 * @fw_name: the firmware image name
1277 *
1278 * Cache firmware in kernel memory so that drivers can use it when
1279 * system isn't ready for them to request firmware image from userspace.
1280 * Once it returns successfully, driver can use request_firmware or its
1281 * nowait version to get the cached firmware without any interacting
1282 * with userspace
1283 *
1284 * Return 0 if the firmware image has been cached successfully
1285 * Return !0 otherwise
1286 *
1287 */
cache_firmware(const char * fw_name)1288 static int cache_firmware(const char *fw_name)
1289 {
1290 int ret;
1291 const struct firmware *fw;
1292
1293 pr_debug("%s: %s\n", __func__, fw_name);
1294
1295 ret = request_firmware(&fw, fw_name, NULL);
1296 if (!ret)
1297 kfree(fw);
1298
1299 pr_debug("%s: %s ret=%d\n", __func__, fw_name, ret);
1300
1301 return ret;
1302 }
1303
lookup_fw_priv(const char * fw_name)1304 static struct fw_priv *lookup_fw_priv(const char *fw_name)
1305 {
1306 struct fw_priv *tmp;
1307 struct firmware_cache *fwc = &fw_cache;
1308
1309 spin_lock(&fwc->lock);
1310 tmp = __lookup_fw_priv(fw_name);
1311 spin_unlock(&fwc->lock);
1312
1313 return tmp;
1314 }
1315
1316 /**
1317 * uncache_firmware() - remove one cached firmware image
1318 * @fw_name: the firmware image name
1319 *
1320 * Uncache one firmware image which has been cached successfully
1321 * before.
1322 *
1323 * Return 0 if the firmware cache has been removed successfully
1324 * Return !0 otherwise
1325 *
1326 */
uncache_firmware(const char * fw_name)1327 static int uncache_firmware(const char *fw_name)
1328 {
1329 struct fw_priv *fw_priv;
1330 struct firmware fw;
1331
1332 pr_debug("%s: %s\n", __func__, fw_name);
1333
1334 if (firmware_request_builtin(&fw, fw_name))
1335 return 0;
1336
1337 fw_priv = lookup_fw_priv(fw_name);
1338 if (fw_priv) {
1339 free_fw_priv(fw_priv);
1340 return 0;
1341 }
1342
1343 return -EINVAL;
1344 }
1345
alloc_fw_cache_entry(const char * name)1346 static struct fw_cache_entry *alloc_fw_cache_entry(const char *name)
1347 {
1348 struct fw_cache_entry *fce;
1349
1350 fce = kzalloc(sizeof(*fce), GFP_ATOMIC);
1351 if (!fce)
1352 goto exit;
1353
1354 fce->name = kstrdup_const(name, GFP_ATOMIC);
1355 if (!fce->name) {
1356 kfree(fce);
1357 fce = NULL;
1358 goto exit;
1359 }
1360 exit:
1361 return fce;
1362 }
1363
__fw_entry_found(const char * name)1364 static int __fw_entry_found(const char *name)
1365 {
1366 struct firmware_cache *fwc = &fw_cache;
1367 struct fw_cache_entry *fce;
1368
1369 list_for_each_entry(fce, &fwc->fw_names, list) {
1370 if (!strcmp(fce->name, name))
1371 return 1;
1372 }
1373 return 0;
1374 }
1375
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1376 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1377 {
1378 const char *name = fw_priv->fw_name;
1379 struct firmware_cache *fwc = fw_priv->fwc;
1380 struct fw_cache_entry *fce;
1381
1382 spin_lock(&fwc->name_lock);
1383 if (__fw_entry_found(name))
1384 goto found;
1385
1386 fce = alloc_fw_cache_entry(name);
1387 if (fce) {
1388 list_add(&fce->list, &fwc->fw_names);
1389 kref_get(&fw_priv->ref);
1390 pr_debug("%s: fw: %s\n", __func__, name);
1391 }
1392 found:
1393 spin_unlock(&fwc->name_lock);
1394 }
1395
free_fw_cache_entry(struct fw_cache_entry * fce)1396 static void free_fw_cache_entry(struct fw_cache_entry *fce)
1397 {
1398 kfree_const(fce->name);
1399 kfree(fce);
1400 }
1401
__async_dev_cache_fw_image(void * fw_entry,async_cookie_t cookie)1402 static void __async_dev_cache_fw_image(void *fw_entry,
1403 async_cookie_t cookie)
1404 {
1405 struct fw_cache_entry *fce = fw_entry;
1406 struct firmware_cache *fwc = &fw_cache;
1407 int ret;
1408
1409 ret = cache_firmware(fce->name);
1410 if (ret) {
1411 spin_lock(&fwc->name_lock);
1412 list_del(&fce->list);
1413 spin_unlock(&fwc->name_lock);
1414
1415 free_fw_cache_entry(fce);
1416 }
1417 }
1418
1419 /* called with dev->devres_lock held */
dev_create_fw_entry(struct device * dev,void * res,void * data)1420 static void dev_create_fw_entry(struct device *dev, void *res,
1421 void *data)
1422 {
1423 struct fw_name_devm *fwn = res;
1424 const char *fw_name = fwn->name;
1425 struct list_head *head = data;
1426 struct fw_cache_entry *fce;
1427
1428 fce = alloc_fw_cache_entry(fw_name);
1429 if (fce)
1430 list_add(&fce->list, head);
1431 }
1432
devm_name_match(struct device * dev,void * res,void * match_data)1433 static int devm_name_match(struct device *dev, void *res,
1434 void *match_data)
1435 {
1436 struct fw_name_devm *fwn = res;
1437 return (fwn->magic == (unsigned long)match_data);
1438 }
1439
dev_cache_fw_image(struct device * dev,void * data)1440 static void dev_cache_fw_image(struct device *dev, void *data)
1441 {
1442 LIST_HEAD(todo);
1443 struct fw_cache_entry *fce;
1444 struct fw_cache_entry *fce_next;
1445 struct firmware_cache *fwc = &fw_cache;
1446
1447 devres_for_each_res(dev, fw_name_devm_release,
1448 devm_name_match, &fw_cache,
1449 dev_create_fw_entry, &todo);
1450
1451 list_for_each_entry_safe(fce, fce_next, &todo, list) {
1452 list_del(&fce->list);
1453
1454 spin_lock(&fwc->name_lock);
1455 /* only one cache entry for one firmware */
1456 if (!__fw_entry_found(fce->name)) {
1457 list_add(&fce->list, &fwc->fw_names);
1458 } else {
1459 free_fw_cache_entry(fce);
1460 fce = NULL;
1461 }
1462 spin_unlock(&fwc->name_lock);
1463
1464 if (fce)
1465 async_schedule_domain(__async_dev_cache_fw_image,
1466 (void *)fce,
1467 &fw_cache_domain);
1468 }
1469 }
1470
__device_uncache_fw_images(void)1471 static void __device_uncache_fw_images(void)
1472 {
1473 struct firmware_cache *fwc = &fw_cache;
1474 struct fw_cache_entry *fce;
1475
1476 spin_lock(&fwc->name_lock);
1477 while (!list_empty(&fwc->fw_names)) {
1478 fce = list_entry(fwc->fw_names.next,
1479 struct fw_cache_entry, list);
1480 list_del(&fce->list);
1481 spin_unlock(&fwc->name_lock);
1482
1483 uncache_firmware(fce->name);
1484 free_fw_cache_entry(fce);
1485
1486 spin_lock(&fwc->name_lock);
1487 }
1488 spin_unlock(&fwc->name_lock);
1489 }
1490
1491 /**
1492 * device_cache_fw_images() - cache devices' firmware
1493 *
1494 * If one device called request_firmware or its nowait version
1495 * successfully before, the firmware names are recored into the
1496 * device's devres link list, so device_cache_fw_images can call
1497 * cache_firmware() to cache these firmwares for the device,
1498 * then the device driver can load its firmwares easily at
1499 * time when system is not ready to complete loading firmware.
1500 */
device_cache_fw_images(void)1501 static void device_cache_fw_images(void)
1502 {
1503 struct firmware_cache *fwc = &fw_cache;
1504 DEFINE_WAIT(wait);
1505
1506 pr_debug("%s\n", __func__);
1507
1508 /* cancel uncache work */
1509 cancel_delayed_work_sync(&fwc->work);
1510
1511 fw_fallback_set_cache_timeout();
1512
1513 mutex_lock(&fw_lock);
1514 fwc->state = FW_LOADER_START_CACHE;
1515 dpm_for_each_dev(NULL, dev_cache_fw_image);
1516 mutex_unlock(&fw_lock);
1517
1518 /* wait for completion of caching firmware for all devices */
1519 async_synchronize_full_domain(&fw_cache_domain);
1520
1521 fw_fallback_set_default_timeout();
1522 }
1523
1524 /**
1525 * device_uncache_fw_images() - uncache devices' firmware
1526 *
1527 * uncache all firmwares which have been cached successfully
1528 * by device_uncache_fw_images earlier
1529 */
device_uncache_fw_images(void)1530 static void device_uncache_fw_images(void)
1531 {
1532 pr_debug("%s\n", __func__);
1533 __device_uncache_fw_images();
1534 }
1535
device_uncache_fw_images_work(struct work_struct * work)1536 static void device_uncache_fw_images_work(struct work_struct *work)
1537 {
1538 device_uncache_fw_images();
1539 }
1540
1541 /**
1542 * device_uncache_fw_images_delay() - uncache devices firmwares
1543 * @delay: number of milliseconds to delay uncache device firmwares
1544 *
1545 * uncache all devices's firmwares which has been cached successfully
1546 * by device_cache_fw_images after @delay milliseconds.
1547 */
device_uncache_fw_images_delay(unsigned long delay)1548 static void device_uncache_fw_images_delay(unsigned long delay)
1549 {
1550 queue_delayed_work(system_power_efficient_wq, &fw_cache.work,
1551 msecs_to_jiffies(delay));
1552 }
1553
fw_pm_notify(struct notifier_block * notify_block,unsigned long mode,void * unused)1554 static int fw_pm_notify(struct notifier_block *notify_block,
1555 unsigned long mode, void *unused)
1556 {
1557 switch (mode) {
1558 case PM_HIBERNATION_PREPARE:
1559 case PM_SUSPEND_PREPARE:
1560 case PM_RESTORE_PREPARE:
1561 /*
1562 * Here, kill pending fallback requests will only kill
1563 * non-uevent firmware request to avoid stalling suspend.
1564 */
1565 kill_pending_fw_fallback_reqs(false);
1566 device_cache_fw_images();
1567 break;
1568
1569 case PM_POST_SUSPEND:
1570 case PM_POST_HIBERNATION:
1571 case PM_POST_RESTORE:
1572 /*
1573 * In case that system sleep failed and syscore_suspend is
1574 * not called.
1575 */
1576 mutex_lock(&fw_lock);
1577 fw_cache.state = FW_LOADER_NO_CACHE;
1578 mutex_unlock(&fw_lock);
1579
1580 device_uncache_fw_images_delay(10 * MSEC_PER_SEC);
1581 break;
1582 }
1583
1584 return 0;
1585 }
1586
1587 /* stop caching firmware once syscore_suspend is reached */
fw_suspend(void)1588 static int fw_suspend(void)
1589 {
1590 fw_cache.state = FW_LOADER_NO_CACHE;
1591 return 0;
1592 }
1593
1594 static struct syscore_ops fw_syscore_ops = {
1595 .suspend = fw_suspend,
1596 };
1597
register_fw_pm_ops(void)1598 static int __init register_fw_pm_ops(void)
1599 {
1600 int ret;
1601
1602 spin_lock_init(&fw_cache.name_lock);
1603 INIT_LIST_HEAD(&fw_cache.fw_names);
1604
1605 INIT_DELAYED_WORK(&fw_cache.work,
1606 device_uncache_fw_images_work);
1607
1608 fw_cache.pm_notify.notifier_call = fw_pm_notify;
1609 ret = register_pm_notifier(&fw_cache.pm_notify);
1610 if (ret)
1611 return ret;
1612
1613 register_syscore_ops(&fw_syscore_ops);
1614
1615 return ret;
1616 }
1617
unregister_fw_pm_ops(void)1618 static inline void unregister_fw_pm_ops(void)
1619 {
1620 unregister_syscore_ops(&fw_syscore_ops);
1621 unregister_pm_notifier(&fw_cache.pm_notify);
1622 }
1623 #else
fw_cache_piggyback_on_request(struct fw_priv * fw_priv)1624 static void fw_cache_piggyback_on_request(struct fw_priv *fw_priv)
1625 {
1626 }
register_fw_pm_ops(void)1627 static inline int register_fw_pm_ops(void)
1628 {
1629 return 0;
1630 }
unregister_fw_pm_ops(void)1631 static inline void unregister_fw_pm_ops(void)
1632 {
1633 }
1634 #endif
1635
fw_cache_init(void)1636 static void __init fw_cache_init(void)
1637 {
1638 spin_lock_init(&fw_cache.lock);
1639 INIT_LIST_HEAD(&fw_cache.head);
1640 fw_cache.state = FW_LOADER_NO_CACHE;
1641 }
1642
fw_shutdown_notify(struct notifier_block * unused1,unsigned long unused2,void * unused3)1643 static int fw_shutdown_notify(struct notifier_block *unused1,
1644 unsigned long unused2, void *unused3)
1645 {
1646 /*
1647 * Kill all pending fallback requests to avoid both stalling shutdown,
1648 * and avoid a deadlock with the usermode_lock.
1649 */
1650 kill_pending_fw_fallback_reqs(true);
1651
1652 return NOTIFY_DONE;
1653 }
1654
1655 static struct notifier_block fw_shutdown_nb = {
1656 .notifier_call = fw_shutdown_notify,
1657 };
1658
firmware_class_init(void)1659 static int __init firmware_class_init(void)
1660 {
1661 int ret;
1662
1663 /* No need to unfold these on exit */
1664 fw_cache_init();
1665
1666 ret = register_fw_pm_ops();
1667 if (ret)
1668 return ret;
1669
1670 ret = register_reboot_notifier(&fw_shutdown_nb);
1671 if (ret)
1672 goto out;
1673
1674 return register_sysfs_loader();
1675
1676 out:
1677 unregister_fw_pm_ops();
1678 return ret;
1679 }
1680
firmware_class_exit(void)1681 static void __exit firmware_class_exit(void)
1682 {
1683 unregister_fw_pm_ops();
1684 unregister_reboot_notifier(&fw_shutdown_nb);
1685 unregister_sysfs_loader();
1686 }
1687
1688 fs_initcall(firmware_class_init);
1689 module_exit(firmware_class_exit);
1690