1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/falloc.h>
19 #include <linux/uio.h>
20 #include <linux/fs.h>
21 #include <linux/filelock.h>
22 #include <linux/splice.h>
23 #include <linux/task_io_accounting_ops.h>
24
fuse_send_open(struct fuse_mount * fm,u64 nodeid,unsigned int open_flags,int opcode,struct fuse_open_out * outargp)25 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid,
26 unsigned int open_flags, int opcode,
27 struct fuse_open_out *outargp)
28 {
29 struct fuse_open_in inarg;
30 FUSE_ARGS(args);
31
32 memset(&inarg, 0, sizeof(inarg));
33 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
34 if (!fm->fc->atomic_o_trunc)
35 inarg.flags &= ~O_TRUNC;
36
37 if (fm->fc->handle_killpriv_v2 &&
38 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) {
39 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID;
40 }
41
42 args.opcode = opcode;
43 args.nodeid = nodeid;
44 args.in_numargs = 1;
45 args.in_args[0].size = sizeof(inarg);
46 args.in_args[0].value = &inarg;
47 args.out_numargs = 1;
48 args.out_args[0].size = sizeof(*outargp);
49 args.out_args[0].value = outargp;
50
51 return fuse_simple_request(fm, &args);
52 }
53
fuse_file_alloc(struct fuse_mount * fm,bool release)54 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm, bool release)
55 {
56 struct fuse_file *ff;
57
58 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
59 if (unlikely(!ff))
60 return NULL;
61
62 ff->fm = fm;
63 if (release) {
64 ff->args = kzalloc(sizeof(*ff->args), GFP_KERNEL_ACCOUNT);
65 if (!ff->args) {
66 kfree(ff);
67 return NULL;
68 }
69 }
70
71 INIT_LIST_HEAD(&ff->write_entry);
72 refcount_set(&ff->count, 1);
73 RB_CLEAR_NODE(&ff->polled_node);
74 init_waitqueue_head(&ff->poll_wait);
75
76 ff->kh = atomic64_inc_return(&fm->fc->khctr);
77
78 return ff;
79 }
80
fuse_file_free(struct fuse_file * ff)81 void fuse_file_free(struct fuse_file *ff)
82 {
83 kfree(ff->args);
84 kfree(ff);
85 }
86
fuse_file_get(struct fuse_file * ff)87 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
88 {
89 refcount_inc(&ff->count);
90 return ff;
91 }
92
fuse_release_end(struct fuse_mount * fm,struct fuse_args * args,int error)93 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args,
94 int error)
95 {
96 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
97
98 iput(ra->inode);
99 kfree(ra);
100 }
101
fuse_file_put(struct fuse_file * ff,bool sync)102 static void fuse_file_put(struct fuse_file *ff, bool sync)
103 {
104 if (refcount_dec_and_test(&ff->count)) {
105 struct fuse_release_args *ra = &ff->args->release_args;
106 struct fuse_args *args = (ra ? &ra->args : NULL);
107
108 if (ra && ra->inode)
109 fuse_file_io_release(ff, ra->inode);
110
111 if (!args) {
112 /* Do nothing when server does not implement 'open' */
113 } else if (sync) {
114 fuse_simple_request(ff->fm, args);
115 fuse_release_end(ff->fm, args, 0);
116 } else {
117 args->end = fuse_release_end;
118 if (fuse_simple_background(ff->fm, args,
119 GFP_KERNEL | __GFP_NOFAIL))
120 fuse_release_end(ff->fm, args, -ENOTCONN);
121 }
122 kfree(ff);
123 }
124 }
125
fuse_file_open(struct fuse_mount * fm,u64 nodeid,unsigned int open_flags,bool isdir)126 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid,
127 unsigned int open_flags, bool isdir)
128 {
129 struct fuse_conn *fc = fm->fc;
130 struct fuse_file *ff;
131 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
132 bool open = isdir ? !fc->no_opendir : !fc->no_open;
133
134 ff = fuse_file_alloc(fm, open);
135 if (!ff)
136 return ERR_PTR(-ENOMEM);
137
138 ff->fh = 0;
139 /* Default for no-open */
140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
141 if (open) {
142 /* Store outarg for fuse_finish_open() */
143 struct fuse_open_out *outargp = &ff->args->open_outarg;
144 int err;
145
146 err = fuse_send_open(fm, nodeid, open_flags, opcode, outargp);
147 if (!err) {
148 ff->fh = outargp->fh;
149 ff->open_flags = outargp->open_flags;
150 } else if (err != -ENOSYS) {
151 fuse_file_free(ff);
152 return ERR_PTR(err);
153 } else {
154 /* No release needed */
155 kfree(ff->args);
156 ff->args = NULL;
157 if (isdir)
158 fc->no_opendir = 1;
159 else
160 fc->no_open = 1;
161 }
162 }
163
164 if (isdir)
165 ff->open_flags &= ~FOPEN_DIRECT_IO;
166
167 ff->nodeid = nodeid;
168
169 return ff;
170 }
171
fuse_do_open(struct fuse_mount * fm,u64 nodeid,struct file * file,bool isdir)172 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file,
173 bool isdir)
174 {
175 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir);
176
177 if (!IS_ERR(ff))
178 file->private_data = ff;
179
180 return PTR_ERR_OR_ZERO(ff);
181 }
182 EXPORT_SYMBOL_GPL(fuse_do_open);
183
fuse_link_write_file(struct file * file)184 static void fuse_link_write_file(struct file *file)
185 {
186 struct inode *inode = file_inode(file);
187 struct fuse_inode *fi = get_fuse_inode(inode);
188 struct fuse_file *ff = file->private_data;
189 /*
190 * file may be written through mmap, so chain it onto the
191 * inodes's write_file list
192 */
193 spin_lock(&fi->lock);
194 if (list_empty(&ff->write_entry))
195 list_add(&ff->write_entry, &fi->write_files);
196 spin_unlock(&fi->lock);
197 }
198
fuse_finish_open(struct inode * inode,struct file * file)199 int fuse_finish_open(struct inode *inode, struct file *file)
200 {
201 struct fuse_file *ff = file->private_data;
202 struct fuse_conn *fc = get_fuse_conn(inode);
203 int err;
204
205 err = fuse_file_io_open(file, inode);
206 if (err)
207 return err;
208
209 if (ff->open_flags & FOPEN_STREAM)
210 stream_open(inode, file);
211 else if (ff->open_flags & FOPEN_NONSEEKABLE)
212 nonseekable_open(inode, file);
213
214 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
215 fuse_link_write_file(file);
216
217 return 0;
218 }
219
fuse_truncate_update_attr(struct inode * inode,struct file * file)220 static void fuse_truncate_update_attr(struct inode *inode, struct file *file)
221 {
222 struct fuse_conn *fc = get_fuse_conn(inode);
223 struct fuse_inode *fi = get_fuse_inode(inode);
224
225 spin_lock(&fi->lock);
226 fi->attr_version = atomic64_inc_return(&fc->attr_version);
227 i_size_write(inode, 0);
228 spin_unlock(&fi->lock);
229 file_update_time(file);
230 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
231 }
232
fuse_open(struct inode * inode,struct file * file)233 static int fuse_open(struct inode *inode, struct file *file)
234 {
235 struct fuse_mount *fm = get_fuse_mount(inode);
236 struct fuse_inode *fi = get_fuse_inode(inode);
237 struct fuse_conn *fc = fm->fc;
238 struct fuse_file *ff;
239 int err;
240 bool is_truncate = (file->f_flags & O_TRUNC) && fc->atomic_o_trunc;
241 bool is_wb_truncate = is_truncate && fc->writeback_cache;
242 bool dax_truncate = is_truncate && FUSE_IS_DAX(inode);
243
244 if (fuse_is_bad(inode))
245 return -EIO;
246
247 err = generic_file_open(inode, file);
248 if (err)
249 return err;
250
251 if (is_wb_truncate || dax_truncate)
252 inode_lock(inode);
253
254 if (dax_truncate) {
255 filemap_invalidate_lock(inode->i_mapping);
256 err = fuse_dax_break_layouts(inode, 0, 0);
257 if (err)
258 goto out_inode_unlock;
259 }
260
261 if (is_wb_truncate || dax_truncate)
262 fuse_set_nowrite(inode);
263
264 err = fuse_do_open(fm, get_node_id(inode), file, false);
265 if (!err) {
266 ff = file->private_data;
267 err = fuse_finish_open(inode, file);
268 if (err)
269 fuse_sync_release(fi, ff, file->f_flags);
270 else if (is_truncate)
271 fuse_truncate_update_attr(inode, file);
272 }
273
274 if (is_wb_truncate || dax_truncate)
275 fuse_release_nowrite(inode);
276 if (!err) {
277 if (is_truncate)
278 truncate_pagecache(inode, 0);
279 else if (!(ff->open_flags & FOPEN_KEEP_CACHE))
280 invalidate_inode_pages2(inode->i_mapping);
281 }
282 if (dax_truncate)
283 filemap_invalidate_unlock(inode->i_mapping);
284 out_inode_unlock:
285 if (is_wb_truncate || dax_truncate)
286 inode_unlock(inode);
287
288 return err;
289 }
290
fuse_prepare_release(struct fuse_inode * fi,struct fuse_file * ff,unsigned int flags,int opcode,bool sync)291 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
292 unsigned int flags, int opcode, bool sync)
293 {
294 struct fuse_conn *fc = ff->fm->fc;
295 struct fuse_release_args *ra = &ff->args->release_args;
296
297 if (fuse_file_passthrough(ff))
298 fuse_passthrough_release(ff, fuse_inode_backing(fi));
299
300 /* Inode is NULL on error path of fuse_create_open() */
301 if (likely(fi)) {
302 spin_lock(&fi->lock);
303 list_del(&ff->write_entry);
304 spin_unlock(&fi->lock);
305 }
306 spin_lock(&fc->lock);
307 if (!RB_EMPTY_NODE(&ff->polled_node))
308 rb_erase(&ff->polled_node, &fc->polled_files);
309 spin_unlock(&fc->lock);
310
311 wake_up_interruptible_all(&ff->poll_wait);
312
313 if (!ra)
314 return;
315
316 /* ff->args was used for open outarg */
317 memset(ff->args, 0, sizeof(*ff->args));
318 ra->inarg.fh = ff->fh;
319 ra->inarg.flags = flags;
320 ra->args.in_numargs = 1;
321 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
322 ra->args.in_args[0].value = &ra->inarg;
323 ra->args.opcode = opcode;
324 ra->args.nodeid = ff->nodeid;
325 ra->args.force = true;
326 ra->args.nocreds = true;
327
328 /*
329 * Hold inode until release is finished.
330 * From fuse_sync_release() the refcount is 1 and everything's
331 * synchronous, so we are fine with not doing igrab() here.
332 */
333 ra->inode = sync ? NULL : igrab(&fi->inode);
334 }
335
fuse_file_release(struct inode * inode,struct fuse_file * ff,unsigned int open_flags,fl_owner_t id,bool isdir)336 void fuse_file_release(struct inode *inode, struct fuse_file *ff,
337 unsigned int open_flags, fl_owner_t id, bool isdir)
338 {
339 struct fuse_inode *fi = get_fuse_inode(inode);
340 struct fuse_release_args *ra = &ff->args->release_args;
341 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
342
343 fuse_prepare_release(fi, ff, open_flags, opcode, false);
344
345 if (ra && ff->flock) {
346 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
347 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id);
348 }
349
350 /*
351 * Normally this will send the RELEASE request, however if
352 * some asynchronous READ or WRITE requests are outstanding,
353 * the sending will be delayed.
354 *
355 * Make the release synchronous if this is a fuseblk mount,
356 * synchronous RELEASE is allowed (and desirable) in this case
357 * because the server can be trusted not to screw up.
358 */
359 fuse_file_put(ff, ff->fm->fc->destroy);
360 }
361
fuse_release_common(struct file * file,bool isdir)362 void fuse_release_common(struct file *file, bool isdir)
363 {
364 fuse_file_release(file_inode(file), file->private_data, file->f_flags,
365 (fl_owner_t) file, isdir);
366 }
367
fuse_release(struct inode * inode,struct file * file)368 static int fuse_release(struct inode *inode, struct file *file)
369 {
370 struct fuse_conn *fc = get_fuse_conn(inode);
371
372 /*
373 * Dirty pages might remain despite write_inode_now() call from
374 * fuse_flush() due to writes racing with the close.
375 */
376 if (fc->writeback_cache)
377 write_inode_now(inode, 1);
378
379 fuse_release_common(file, false);
380
381 /* return value is ignored by VFS */
382 return 0;
383 }
384
fuse_sync_release(struct fuse_inode * fi,struct fuse_file * ff,unsigned int flags)385 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff,
386 unsigned int flags)
387 {
388 WARN_ON(refcount_read(&ff->count) > 1);
389 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE, true);
390 fuse_file_put(ff, true);
391 }
392 EXPORT_SYMBOL_GPL(fuse_sync_release);
393
394 /*
395 * Scramble the ID space with XTEA, so that the value of the files_struct
396 * pointer is not exposed to userspace.
397 */
fuse_lock_owner_id(struct fuse_conn * fc,fl_owner_t id)398 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
399 {
400 u32 *k = fc->scramble_key;
401 u64 v = (unsigned long) id;
402 u32 v0 = v;
403 u32 v1 = v >> 32;
404 u32 sum = 0;
405 int i;
406
407 for (i = 0; i < 32; i++) {
408 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
409 sum += 0x9E3779B9;
410 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
411 }
412
413 return (u64) v0 + ((u64) v1 << 32);
414 }
415
416 struct fuse_writepage_args {
417 struct fuse_io_args ia;
418 struct rb_node writepages_entry;
419 struct list_head queue_entry;
420 struct fuse_writepage_args *next;
421 struct inode *inode;
422 struct fuse_sync_bucket *bucket;
423 };
424
fuse_find_writeback(struct fuse_inode * fi,pgoff_t idx_from,pgoff_t idx_to)425 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
426 pgoff_t idx_from, pgoff_t idx_to)
427 {
428 struct rb_node *n;
429
430 n = fi->writepages.rb_node;
431
432 while (n) {
433 struct fuse_writepage_args *wpa;
434 pgoff_t curr_index;
435
436 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
437 WARN_ON(get_fuse_inode(wpa->inode) != fi);
438 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
439 if (idx_from >= curr_index + wpa->ia.ap.num_folios)
440 n = n->rb_right;
441 else if (idx_to < curr_index)
442 n = n->rb_left;
443 else
444 return wpa;
445 }
446 return NULL;
447 }
448
449 /*
450 * Check if any page in a range is under writeback
451 */
fuse_range_is_writeback(struct inode * inode,pgoff_t idx_from,pgoff_t idx_to)452 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
453 pgoff_t idx_to)
454 {
455 struct fuse_inode *fi = get_fuse_inode(inode);
456 bool found;
457
458 if (RB_EMPTY_ROOT(&fi->writepages))
459 return false;
460
461 spin_lock(&fi->lock);
462 found = fuse_find_writeback(fi, idx_from, idx_to);
463 spin_unlock(&fi->lock);
464
465 return found;
466 }
467
fuse_page_is_writeback(struct inode * inode,pgoff_t index)468 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
469 {
470 return fuse_range_is_writeback(inode, index, index);
471 }
472
473 /*
474 * Wait for page writeback to be completed.
475 *
476 * Since fuse doesn't rely on the VM writeback tracking, this has to
477 * use some other means.
478 */
fuse_wait_on_page_writeback(struct inode * inode,pgoff_t index)479 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
480 {
481 struct fuse_inode *fi = get_fuse_inode(inode);
482
483 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
484 }
485
fuse_folio_is_writeback(struct inode * inode,struct folio * folio)486 static inline bool fuse_folio_is_writeback(struct inode *inode,
487 struct folio *folio)
488 {
489 pgoff_t last = folio_next_index(folio) - 1;
490 return fuse_range_is_writeback(inode, folio_index(folio), last);
491 }
492
fuse_wait_on_folio_writeback(struct inode * inode,struct folio * folio)493 static void fuse_wait_on_folio_writeback(struct inode *inode,
494 struct folio *folio)
495 {
496 struct fuse_inode *fi = get_fuse_inode(inode);
497
498 wait_event(fi->page_waitq, !fuse_folio_is_writeback(inode, folio));
499 }
500
501 /*
502 * Wait for all pending writepages on the inode to finish.
503 *
504 * This is currently done by blocking further writes with FUSE_NOWRITE
505 * and waiting for all sent writes to complete.
506 *
507 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
508 * could conflict with truncation.
509 */
fuse_sync_writes(struct inode * inode)510 static void fuse_sync_writes(struct inode *inode)
511 {
512 fuse_set_nowrite(inode);
513 fuse_release_nowrite(inode);
514 }
515
fuse_flush(struct file * file,fl_owner_t id)516 static int fuse_flush(struct file *file, fl_owner_t id)
517 {
518 struct inode *inode = file_inode(file);
519 struct fuse_mount *fm = get_fuse_mount(inode);
520 struct fuse_file *ff = file->private_data;
521 struct fuse_flush_in inarg;
522 FUSE_ARGS(args);
523 int err;
524
525 if (fuse_is_bad(inode))
526 return -EIO;
527
528 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache)
529 return 0;
530
531 err = write_inode_now(inode, 1);
532 if (err)
533 return err;
534
535 inode_lock(inode);
536 fuse_sync_writes(inode);
537 inode_unlock(inode);
538
539 err = filemap_check_errors(file->f_mapping);
540 if (err)
541 return err;
542
543 err = 0;
544 if (fm->fc->no_flush)
545 goto inval_attr_out;
546
547 memset(&inarg, 0, sizeof(inarg));
548 inarg.fh = ff->fh;
549 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id);
550 args.opcode = FUSE_FLUSH;
551 args.nodeid = get_node_id(inode);
552 args.in_numargs = 1;
553 args.in_args[0].size = sizeof(inarg);
554 args.in_args[0].value = &inarg;
555 args.force = true;
556
557 err = fuse_simple_request(fm, &args);
558 if (err == -ENOSYS) {
559 fm->fc->no_flush = 1;
560 err = 0;
561 }
562
563 inval_attr_out:
564 /*
565 * In memory i_blocks is not maintained by fuse, if writeback cache is
566 * enabled, i_blocks from cached attr may not be accurate.
567 */
568 if (!err && fm->fc->writeback_cache)
569 fuse_invalidate_attr_mask(inode, STATX_BLOCKS);
570 return err;
571 }
572
fuse_fsync_common(struct file * file,loff_t start,loff_t end,int datasync,int opcode)573 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
574 int datasync, int opcode)
575 {
576 struct inode *inode = file->f_mapping->host;
577 struct fuse_mount *fm = get_fuse_mount(inode);
578 struct fuse_file *ff = file->private_data;
579 FUSE_ARGS(args);
580 struct fuse_fsync_in inarg;
581
582 memset(&inarg, 0, sizeof(inarg));
583 inarg.fh = ff->fh;
584 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
585 args.opcode = opcode;
586 args.nodeid = get_node_id(inode);
587 args.in_numargs = 1;
588 args.in_args[0].size = sizeof(inarg);
589 args.in_args[0].value = &inarg;
590 return fuse_simple_request(fm, &args);
591 }
592
fuse_fsync(struct file * file,loff_t start,loff_t end,int datasync)593 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
594 int datasync)
595 {
596 struct inode *inode = file->f_mapping->host;
597 struct fuse_conn *fc = get_fuse_conn(inode);
598 int err;
599
600 if (fuse_is_bad(inode))
601 return -EIO;
602
603 inode_lock(inode);
604
605 /*
606 * Start writeback against all dirty pages of the inode, then
607 * wait for all outstanding writes, before sending the FSYNC
608 * request.
609 */
610 err = file_write_and_wait_range(file, start, end);
611 if (err)
612 goto out;
613
614 fuse_sync_writes(inode);
615
616 /*
617 * Due to implementation of fuse writeback
618 * file_write_and_wait_range() does not catch errors.
619 * We have to do this directly after fuse_sync_writes()
620 */
621 err = file_check_and_advance_wb_err(file);
622 if (err)
623 goto out;
624
625 err = sync_inode_metadata(inode, 1);
626 if (err)
627 goto out;
628
629 if (fc->no_fsync)
630 goto out;
631
632 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
633 if (err == -ENOSYS) {
634 fc->no_fsync = 1;
635 err = 0;
636 }
637 out:
638 inode_unlock(inode);
639
640 return err;
641 }
642
fuse_read_args_fill(struct fuse_io_args * ia,struct file * file,loff_t pos,size_t count,int opcode)643 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
644 size_t count, int opcode)
645 {
646 struct fuse_file *ff = file->private_data;
647 struct fuse_args *args = &ia->ap.args;
648
649 ia->read.in.fh = ff->fh;
650 ia->read.in.offset = pos;
651 ia->read.in.size = count;
652 ia->read.in.flags = file->f_flags;
653 args->opcode = opcode;
654 args->nodeid = ff->nodeid;
655 args->in_numargs = 1;
656 args->in_args[0].size = sizeof(ia->read.in);
657 args->in_args[0].value = &ia->read.in;
658 args->out_argvar = true;
659 args->out_numargs = 1;
660 args->out_args[0].size = count;
661 }
662
fuse_release_user_pages(struct fuse_args_pages * ap,ssize_t nres,bool should_dirty)663 static void fuse_release_user_pages(struct fuse_args_pages *ap, ssize_t nres,
664 bool should_dirty)
665 {
666 unsigned int i;
667
668 for (i = 0; i < ap->num_folios; i++) {
669 if (should_dirty)
670 folio_mark_dirty_lock(ap->folios[i]);
671 if (ap->args.is_pinned)
672 unpin_folio(ap->folios[i]);
673 }
674
675 if (nres > 0 && ap->args.invalidate_vmap)
676 invalidate_kernel_vmap_range(ap->args.vmap_base, nres);
677 }
678
fuse_io_release(struct kref * kref)679 static void fuse_io_release(struct kref *kref)
680 {
681 kfree(container_of(kref, struct fuse_io_priv, refcnt));
682 }
683
fuse_get_res_by_io(struct fuse_io_priv * io)684 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
685 {
686 if (io->err)
687 return io->err;
688
689 if (io->bytes >= 0 && io->write)
690 return -EIO;
691
692 return io->bytes < 0 ? io->size : io->bytes;
693 }
694
695 /*
696 * In case of short read, the caller sets 'pos' to the position of
697 * actual end of fuse request in IO request. Otherwise, if bytes_requested
698 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
699 *
700 * An example:
701 * User requested DIO read of 64K. It was split into two 32K fuse requests,
702 * both submitted asynchronously. The first of them was ACKed by userspace as
703 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
704 * second request was ACKed as short, e.g. only 1K was read, resulting in
705 * pos == 33K.
706 *
707 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
708 * will be equal to the length of the longest contiguous fragment of
709 * transferred data starting from the beginning of IO request.
710 */
fuse_aio_complete(struct fuse_io_priv * io,int err,ssize_t pos)711 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
712 {
713 int left;
714
715 spin_lock(&io->lock);
716 if (err)
717 io->err = io->err ? : err;
718 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
719 io->bytes = pos;
720
721 left = --io->reqs;
722 if (!left && io->blocking)
723 complete(io->done);
724 spin_unlock(&io->lock);
725
726 if (!left && !io->blocking) {
727 ssize_t res = fuse_get_res_by_io(io);
728
729 if (res >= 0) {
730 struct inode *inode = file_inode(io->iocb->ki_filp);
731 struct fuse_conn *fc = get_fuse_conn(inode);
732 struct fuse_inode *fi = get_fuse_inode(inode);
733
734 spin_lock(&fi->lock);
735 fi->attr_version = atomic64_inc_return(&fc->attr_version);
736 spin_unlock(&fi->lock);
737 }
738
739 io->iocb->ki_complete(io->iocb, res);
740 }
741
742 kref_put(&io->refcnt, fuse_io_release);
743 }
744
fuse_io_alloc(struct fuse_io_priv * io,unsigned int nfolios)745 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
746 unsigned int nfolios)
747 {
748 struct fuse_io_args *ia;
749
750 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
751 if (ia) {
752 ia->io = io;
753 ia->ap.folios = fuse_folios_alloc(nfolios, GFP_KERNEL,
754 &ia->ap.descs);
755 if (!ia->ap.folios) {
756 kfree(ia);
757 ia = NULL;
758 }
759 }
760 return ia;
761 }
762
fuse_io_free(struct fuse_io_args * ia)763 static void fuse_io_free(struct fuse_io_args *ia)
764 {
765 kfree(ia->ap.folios);
766 kfree(ia);
767 }
768
fuse_aio_complete_req(struct fuse_mount * fm,struct fuse_args * args,int err)769 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args,
770 int err)
771 {
772 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
773 struct fuse_io_priv *io = ia->io;
774 ssize_t pos = -1;
775 size_t nres;
776
777 if (err) {
778 /* Nothing */
779 } else if (io->write) {
780 if (ia->write.out.size > ia->write.in.size) {
781 err = -EIO;
782 } else {
783 nres = ia->write.out.size;
784 if (ia->write.in.size != ia->write.out.size)
785 pos = ia->write.in.offset - io->offset +
786 ia->write.out.size;
787 }
788 } else {
789 u32 outsize = args->out_args[0].size;
790
791 nres = outsize;
792 if (ia->read.in.size != outsize)
793 pos = ia->read.in.offset - io->offset + outsize;
794 }
795
796 fuse_release_user_pages(&ia->ap, err ?: nres, io->should_dirty);
797
798 fuse_aio_complete(io, err, pos);
799 fuse_io_free(ia);
800 }
801
fuse_async_req_send(struct fuse_mount * fm,struct fuse_io_args * ia,size_t num_bytes)802 static ssize_t fuse_async_req_send(struct fuse_mount *fm,
803 struct fuse_io_args *ia, size_t num_bytes)
804 {
805 ssize_t err;
806 struct fuse_io_priv *io = ia->io;
807
808 spin_lock(&io->lock);
809 kref_get(&io->refcnt);
810 io->size += num_bytes;
811 io->reqs++;
812 spin_unlock(&io->lock);
813
814 ia->ap.args.end = fuse_aio_complete_req;
815 ia->ap.args.may_block = io->should_dirty;
816 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL);
817 if (err)
818 fuse_aio_complete_req(fm, &ia->ap.args, err);
819
820 return num_bytes;
821 }
822
fuse_send_read(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)823 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
824 fl_owner_t owner)
825 {
826 struct file *file = ia->io->iocb->ki_filp;
827 struct fuse_file *ff = file->private_data;
828 struct fuse_mount *fm = ff->fm;
829
830 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
831 if (owner != NULL) {
832 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
833 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner);
834 }
835
836 if (ia->io->async)
837 return fuse_async_req_send(fm, ia, count);
838
839 return fuse_simple_request(fm, &ia->ap.args);
840 }
841
fuse_read_update_size(struct inode * inode,loff_t size,u64 attr_ver)842 static void fuse_read_update_size(struct inode *inode, loff_t size,
843 u64 attr_ver)
844 {
845 struct fuse_conn *fc = get_fuse_conn(inode);
846 struct fuse_inode *fi = get_fuse_inode(inode);
847
848 spin_lock(&fi->lock);
849 if (attr_ver >= fi->attr_version && size < inode->i_size &&
850 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
851 fi->attr_version = atomic64_inc_return(&fc->attr_version);
852 i_size_write(inode, size);
853 }
854 spin_unlock(&fi->lock);
855 }
856
fuse_short_read(struct inode * inode,u64 attr_ver,size_t num_read,struct fuse_args_pages * ap)857 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
858 struct fuse_args_pages *ap)
859 {
860 struct fuse_conn *fc = get_fuse_conn(inode);
861
862 /*
863 * If writeback_cache is enabled, a short read means there's a hole in
864 * the file. Some data after the hole is in page cache, but has not
865 * reached the client fs yet. So the hole is not present there.
866 */
867 if (!fc->writeback_cache) {
868 loff_t pos = folio_pos(ap->folios[0]) + num_read;
869 fuse_read_update_size(inode, pos, attr_ver);
870 }
871 }
872
fuse_do_readfolio(struct file * file,struct folio * folio)873 static int fuse_do_readfolio(struct file *file, struct folio *folio)
874 {
875 struct inode *inode = folio->mapping->host;
876 struct fuse_mount *fm = get_fuse_mount(inode);
877 loff_t pos = folio_pos(folio);
878 struct fuse_folio_desc desc = { .length = PAGE_SIZE };
879 struct fuse_io_args ia = {
880 .ap.args.page_zeroing = true,
881 .ap.args.out_pages = true,
882 .ap.num_folios = 1,
883 .ap.folios = &folio,
884 .ap.descs = &desc,
885 };
886 ssize_t res;
887 u64 attr_ver;
888
889 /*
890 * With the temporary pages that are used to complete writeback, we can
891 * have writeback that extends beyond the lifetime of the folio. So
892 * make sure we read a properly synced folio.
893 */
894 fuse_wait_on_folio_writeback(inode, folio);
895
896 attr_ver = fuse_get_attr_version(fm->fc);
897
898 /* Don't overflow end offset */
899 if (pos + (desc.length - 1) == LLONG_MAX)
900 desc.length--;
901
902 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
903 res = fuse_simple_request(fm, &ia.ap.args);
904 if (res < 0)
905 return res;
906 /*
907 * Short read means EOF. If file size is larger, truncate it
908 */
909 if (res < desc.length)
910 fuse_short_read(inode, attr_ver, res, &ia.ap);
911
912 folio_mark_uptodate(folio);
913
914 return 0;
915 }
916
fuse_read_folio(struct file * file,struct folio * folio)917 static int fuse_read_folio(struct file *file, struct folio *folio)
918 {
919 struct inode *inode = folio->mapping->host;
920 int err;
921
922 err = -EIO;
923 if (fuse_is_bad(inode))
924 goto out;
925
926 err = fuse_do_readfolio(file, folio);
927 fuse_invalidate_atime(inode);
928 out:
929 folio_unlock(folio);
930 return err;
931 }
932
fuse_readpages_end(struct fuse_mount * fm,struct fuse_args * args,int err)933 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args,
934 int err)
935 {
936 int i;
937 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
938 struct fuse_args_pages *ap = &ia->ap;
939 size_t count = ia->read.in.size;
940 size_t num_read = args->out_args[0].size;
941 struct address_space *mapping = NULL;
942
943 for (i = 0; mapping == NULL && i < ap->num_folios; i++)
944 mapping = ap->folios[i]->mapping;
945
946 if (mapping) {
947 struct inode *inode = mapping->host;
948
949 /*
950 * Short read means EOF. If file size is larger, truncate it
951 */
952 if (!err && num_read < count)
953 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
954
955 fuse_invalidate_atime(inode);
956 }
957
958 for (i = 0; i < ap->num_folios; i++)
959 folio_end_read(ap->folios[i], !err);
960 if (ia->ff)
961 fuse_file_put(ia->ff, false);
962
963 fuse_io_free(ia);
964 }
965
fuse_send_readpages(struct fuse_io_args * ia,struct file * file)966 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
967 {
968 struct fuse_file *ff = file->private_data;
969 struct fuse_mount *fm = ff->fm;
970 struct fuse_args_pages *ap = &ia->ap;
971 loff_t pos = folio_pos(ap->folios[0]);
972 /* Currently, all folios in FUSE are one page */
973 size_t count = ap->num_folios << PAGE_SHIFT;
974 ssize_t res;
975 int err;
976
977 ap->args.out_pages = true;
978 ap->args.page_zeroing = true;
979 ap->args.page_replace = true;
980
981 /* Don't overflow end offset */
982 if (pos + (count - 1) == LLONG_MAX) {
983 count--;
984 ap->descs[ap->num_folios - 1].length--;
985 }
986 WARN_ON((loff_t) (pos + count) < 0);
987
988 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
989 ia->read.attr_ver = fuse_get_attr_version(fm->fc);
990 if (fm->fc->async_read) {
991 ia->ff = fuse_file_get(ff);
992 ap->args.end = fuse_readpages_end;
993 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL);
994 if (!err)
995 return;
996 } else {
997 res = fuse_simple_request(fm, &ap->args);
998 err = res < 0 ? res : 0;
999 }
1000 fuse_readpages_end(fm, &ap->args, err);
1001 }
1002
fuse_readahead(struct readahead_control * rac)1003 static void fuse_readahead(struct readahead_control *rac)
1004 {
1005 struct inode *inode = rac->mapping->host;
1006 struct fuse_inode *fi = get_fuse_inode(inode);
1007 struct fuse_conn *fc = get_fuse_conn(inode);
1008 unsigned int max_pages, nr_pages;
1009 pgoff_t first = readahead_index(rac);
1010 pgoff_t last = first + readahead_count(rac) - 1;
1011
1012 if (fuse_is_bad(inode))
1013 return;
1014
1015 wait_event(fi->page_waitq, !fuse_range_is_writeback(inode, first, last));
1016
1017 max_pages = min_t(unsigned int, fc->max_pages,
1018 fc->max_read / PAGE_SIZE);
1019
1020 /*
1021 * This is only accurate the first time through, since readahead_folio()
1022 * doesn't update readahead_count() from the previous folio until the
1023 * next call. Grab nr_pages here so we know how many pages we're going
1024 * to have to process. This means that we will exit here with
1025 * readahead_count() == folio_nr_pages(last_folio), but we will have
1026 * consumed all of the folios, and read_pages() will call
1027 * readahead_folio() again which will clean up the rac.
1028 */
1029 nr_pages = readahead_count(rac);
1030
1031 while (nr_pages) {
1032 struct fuse_io_args *ia;
1033 struct fuse_args_pages *ap;
1034 struct folio *folio;
1035 unsigned cur_pages = min(max_pages, nr_pages);
1036
1037 if (fc->num_background >= fc->congestion_threshold &&
1038 rac->ra->async_size >= readahead_count(rac))
1039 /*
1040 * Congested and only async pages left, so skip the
1041 * rest.
1042 */
1043 break;
1044
1045 ia = fuse_io_alloc(NULL, cur_pages);
1046 if (!ia)
1047 return;
1048 ap = &ia->ap;
1049
1050 while (ap->num_folios < cur_pages) {
1051 folio = readahead_folio(rac);
1052 ap->folios[ap->num_folios] = folio;
1053 ap->descs[ap->num_folios].length = folio_size(folio);
1054 ap->num_folios++;
1055 }
1056 fuse_send_readpages(ia, rac->file);
1057 nr_pages -= cur_pages;
1058 }
1059 }
1060
fuse_cache_read_iter(struct kiocb * iocb,struct iov_iter * to)1061 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1062 {
1063 struct inode *inode = iocb->ki_filp->f_mapping->host;
1064 struct fuse_conn *fc = get_fuse_conn(inode);
1065
1066 /*
1067 * In auto invalidate mode, always update attributes on read.
1068 * Otherwise, only update if we attempt to read past EOF (to ensure
1069 * i_size is up to date).
1070 */
1071 if (fc->auto_inval_data ||
1072 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1073 int err;
1074 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE);
1075 if (err)
1076 return err;
1077 }
1078
1079 return generic_file_read_iter(iocb, to);
1080 }
1081
fuse_write_args_fill(struct fuse_io_args * ia,struct fuse_file * ff,loff_t pos,size_t count)1082 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1083 loff_t pos, size_t count)
1084 {
1085 struct fuse_args *args = &ia->ap.args;
1086
1087 ia->write.in.fh = ff->fh;
1088 ia->write.in.offset = pos;
1089 ia->write.in.size = count;
1090 args->opcode = FUSE_WRITE;
1091 args->nodeid = ff->nodeid;
1092 args->in_numargs = 2;
1093 if (ff->fm->fc->minor < 9)
1094 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1095 else
1096 args->in_args[0].size = sizeof(ia->write.in);
1097 args->in_args[0].value = &ia->write.in;
1098 args->in_args[1].size = count;
1099 args->out_numargs = 1;
1100 args->out_args[0].size = sizeof(ia->write.out);
1101 args->out_args[0].value = &ia->write.out;
1102 }
1103
fuse_write_flags(struct kiocb * iocb)1104 static unsigned int fuse_write_flags(struct kiocb *iocb)
1105 {
1106 unsigned int flags = iocb->ki_filp->f_flags;
1107
1108 if (iocb_is_dsync(iocb))
1109 flags |= O_DSYNC;
1110 if (iocb->ki_flags & IOCB_SYNC)
1111 flags |= O_SYNC;
1112
1113 return flags;
1114 }
1115
fuse_send_write(struct fuse_io_args * ia,loff_t pos,size_t count,fl_owner_t owner)1116 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1117 size_t count, fl_owner_t owner)
1118 {
1119 struct kiocb *iocb = ia->io->iocb;
1120 struct file *file = iocb->ki_filp;
1121 struct fuse_file *ff = file->private_data;
1122 struct fuse_mount *fm = ff->fm;
1123 struct fuse_write_in *inarg = &ia->write.in;
1124 ssize_t err;
1125
1126 fuse_write_args_fill(ia, ff, pos, count);
1127 inarg->flags = fuse_write_flags(iocb);
1128 if (owner != NULL) {
1129 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1130 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner);
1131 }
1132
1133 if (ia->io->async)
1134 return fuse_async_req_send(fm, ia, count);
1135
1136 err = fuse_simple_request(fm, &ia->ap.args);
1137 if (!err && ia->write.out.size > count)
1138 err = -EIO;
1139
1140 return err ?: ia->write.out.size;
1141 }
1142
fuse_write_update_attr(struct inode * inode,loff_t pos,ssize_t written)1143 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written)
1144 {
1145 struct fuse_conn *fc = get_fuse_conn(inode);
1146 struct fuse_inode *fi = get_fuse_inode(inode);
1147 bool ret = false;
1148
1149 spin_lock(&fi->lock);
1150 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1151 if (written > 0 && pos > inode->i_size) {
1152 i_size_write(inode, pos);
1153 ret = true;
1154 }
1155 spin_unlock(&fi->lock);
1156
1157 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
1158
1159 return ret;
1160 }
1161
fuse_send_write_pages(struct fuse_io_args * ia,struct kiocb * iocb,struct inode * inode,loff_t pos,size_t count)1162 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1163 struct kiocb *iocb, struct inode *inode,
1164 loff_t pos, size_t count)
1165 {
1166 struct fuse_args_pages *ap = &ia->ap;
1167 struct file *file = iocb->ki_filp;
1168 struct fuse_file *ff = file->private_data;
1169 struct fuse_mount *fm = ff->fm;
1170 unsigned int offset, i;
1171 bool short_write;
1172 int err;
1173
1174 for (i = 0; i < ap->num_folios; i++)
1175 fuse_wait_on_folio_writeback(inode, ap->folios[i]);
1176
1177 fuse_write_args_fill(ia, ff, pos, count);
1178 ia->write.in.flags = fuse_write_flags(iocb);
1179 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID))
1180 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1181
1182 err = fuse_simple_request(fm, &ap->args);
1183 if (!err && ia->write.out.size > count)
1184 err = -EIO;
1185
1186 short_write = ia->write.out.size < count;
1187 offset = ap->descs[0].offset;
1188 count = ia->write.out.size;
1189 for (i = 0; i < ap->num_folios; i++) {
1190 struct folio *folio = ap->folios[i];
1191
1192 if (err) {
1193 folio_clear_uptodate(folio);
1194 } else {
1195 if (count >= folio_size(folio) - offset)
1196 count -= folio_size(folio) - offset;
1197 else {
1198 if (short_write)
1199 folio_clear_uptodate(folio);
1200 count = 0;
1201 }
1202 offset = 0;
1203 }
1204 if (ia->write.folio_locked && (i == ap->num_folios - 1))
1205 folio_unlock(folio);
1206 folio_put(folio);
1207 }
1208
1209 return err;
1210 }
1211
fuse_fill_write_pages(struct fuse_io_args * ia,struct address_space * mapping,struct iov_iter * ii,loff_t pos,unsigned int max_pages)1212 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia,
1213 struct address_space *mapping,
1214 struct iov_iter *ii, loff_t pos,
1215 unsigned int max_pages)
1216 {
1217 struct fuse_args_pages *ap = &ia->ap;
1218 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1219 unsigned offset = pos & (PAGE_SIZE - 1);
1220 unsigned int nr_pages = 0;
1221 size_t count = 0;
1222 int err;
1223
1224 ap->args.in_pages = true;
1225 ap->descs[0].offset = offset;
1226
1227 do {
1228 size_t tmp;
1229 struct folio *folio;
1230 pgoff_t index = pos >> PAGE_SHIFT;
1231 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1232 iov_iter_count(ii));
1233
1234 bytes = min_t(size_t, bytes, fc->max_write - count);
1235
1236 again:
1237 err = -EFAULT;
1238 if (fault_in_iov_iter_readable(ii, bytes))
1239 break;
1240
1241 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1242 mapping_gfp_mask(mapping));
1243 if (IS_ERR(folio)) {
1244 err = PTR_ERR(folio);
1245 break;
1246 }
1247
1248 if (mapping_writably_mapped(mapping))
1249 flush_dcache_folio(folio);
1250
1251 tmp = copy_folio_from_iter_atomic(folio, offset, bytes, ii);
1252 flush_dcache_folio(folio);
1253
1254 if (!tmp) {
1255 folio_unlock(folio);
1256 folio_put(folio);
1257 goto again;
1258 }
1259
1260 err = 0;
1261 ap->folios[ap->num_folios] = folio;
1262 ap->descs[ap->num_folios].length = tmp;
1263 ap->num_folios++;
1264 nr_pages++;
1265
1266 count += tmp;
1267 pos += tmp;
1268 offset += tmp;
1269 if (offset == PAGE_SIZE)
1270 offset = 0;
1271
1272 /* If we copied full page, mark it uptodate */
1273 if (tmp == PAGE_SIZE)
1274 folio_mark_uptodate(folio);
1275
1276 if (folio_test_uptodate(folio)) {
1277 folio_unlock(folio);
1278 } else {
1279 ia->write.folio_locked = true;
1280 break;
1281 }
1282 if (!fc->big_writes)
1283 break;
1284 } while (iov_iter_count(ii) && count < fc->max_write &&
1285 nr_pages < max_pages && offset == 0);
1286
1287 return count > 0 ? count : err;
1288 }
1289
fuse_wr_pages(loff_t pos,size_t len,unsigned int max_pages)1290 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1291 unsigned int max_pages)
1292 {
1293 return min_t(unsigned int,
1294 ((pos + len - 1) >> PAGE_SHIFT) -
1295 (pos >> PAGE_SHIFT) + 1,
1296 max_pages);
1297 }
1298
fuse_perform_write(struct kiocb * iocb,struct iov_iter * ii)1299 static ssize_t fuse_perform_write(struct kiocb *iocb, struct iov_iter *ii)
1300 {
1301 struct address_space *mapping = iocb->ki_filp->f_mapping;
1302 struct inode *inode = mapping->host;
1303 struct fuse_conn *fc = get_fuse_conn(inode);
1304 struct fuse_inode *fi = get_fuse_inode(inode);
1305 loff_t pos = iocb->ki_pos;
1306 int err = 0;
1307 ssize_t res = 0;
1308
1309 if (inode->i_size < pos + iov_iter_count(ii))
1310 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1311
1312 do {
1313 ssize_t count;
1314 struct fuse_io_args ia = {};
1315 struct fuse_args_pages *ap = &ia.ap;
1316 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1317 fc->max_pages);
1318
1319 ap->folios = fuse_folios_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1320 if (!ap->folios) {
1321 err = -ENOMEM;
1322 break;
1323 }
1324
1325 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages);
1326 if (count <= 0) {
1327 err = count;
1328 } else {
1329 err = fuse_send_write_pages(&ia, iocb, inode,
1330 pos, count);
1331 if (!err) {
1332 size_t num_written = ia.write.out.size;
1333
1334 res += num_written;
1335 pos += num_written;
1336
1337 /* break out of the loop on short write */
1338 if (num_written != count)
1339 err = -EIO;
1340 }
1341 }
1342 kfree(ap->folios);
1343 } while (!err && iov_iter_count(ii));
1344
1345 fuse_write_update_attr(inode, pos, res);
1346 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1347
1348 if (!res)
1349 return err;
1350 iocb->ki_pos += res;
1351 return res;
1352 }
1353
fuse_io_past_eof(struct kiocb * iocb,struct iov_iter * iter)1354 static bool fuse_io_past_eof(struct kiocb *iocb, struct iov_iter *iter)
1355 {
1356 struct inode *inode = file_inode(iocb->ki_filp);
1357
1358 return iocb->ki_pos + iov_iter_count(iter) > i_size_read(inode);
1359 }
1360
1361 /*
1362 * @return true if an exclusive lock for direct IO writes is needed
1363 */
fuse_dio_wr_exclusive_lock(struct kiocb * iocb,struct iov_iter * from)1364 static bool fuse_dio_wr_exclusive_lock(struct kiocb *iocb, struct iov_iter *from)
1365 {
1366 struct file *file = iocb->ki_filp;
1367 struct fuse_file *ff = file->private_data;
1368 struct inode *inode = file_inode(iocb->ki_filp);
1369 struct fuse_inode *fi = get_fuse_inode(inode);
1370
1371 /* Server side has to advise that it supports parallel dio writes. */
1372 if (!(ff->open_flags & FOPEN_PARALLEL_DIRECT_WRITES))
1373 return true;
1374
1375 /*
1376 * Append will need to know the eventual EOF - always needs an
1377 * exclusive lock.
1378 */
1379 if (iocb->ki_flags & IOCB_APPEND)
1380 return true;
1381
1382 /* shared locks are not allowed with parallel page cache IO */
1383 if (test_bit(FUSE_I_CACHE_IO_MODE, &fi->state))
1384 return true;
1385
1386 /* Parallel dio beyond EOF is not supported, at least for now. */
1387 if (fuse_io_past_eof(iocb, from))
1388 return true;
1389
1390 return false;
1391 }
1392
fuse_dio_lock(struct kiocb * iocb,struct iov_iter * from,bool * exclusive)1393 static void fuse_dio_lock(struct kiocb *iocb, struct iov_iter *from,
1394 bool *exclusive)
1395 {
1396 struct inode *inode = file_inode(iocb->ki_filp);
1397 struct fuse_inode *fi = get_fuse_inode(inode);
1398
1399 *exclusive = fuse_dio_wr_exclusive_lock(iocb, from);
1400 if (*exclusive) {
1401 inode_lock(inode);
1402 } else {
1403 inode_lock_shared(inode);
1404 /*
1405 * New parallal dio allowed only if inode is not in caching
1406 * mode and denies new opens in caching mode. This check
1407 * should be performed only after taking shared inode lock.
1408 * Previous past eof check was without inode lock and might
1409 * have raced, so check it again.
1410 */
1411 if (fuse_io_past_eof(iocb, from) ||
1412 fuse_inode_uncached_io_start(fi, NULL) != 0) {
1413 inode_unlock_shared(inode);
1414 inode_lock(inode);
1415 *exclusive = true;
1416 }
1417 }
1418 }
1419
fuse_dio_unlock(struct kiocb * iocb,bool exclusive)1420 static void fuse_dio_unlock(struct kiocb *iocb, bool exclusive)
1421 {
1422 struct inode *inode = file_inode(iocb->ki_filp);
1423 struct fuse_inode *fi = get_fuse_inode(inode);
1424
1425 if (exclusive) {
1426 inode_unlock(inode);
1427 } else {
1428 /* Allow opens in caching mode after last parallel dio end */
1429 fuse_inode_uncached_io_end(fi);
1430 inode_unlock_shared(inode);
1431 }
1432 }
1433
fuse_cache_write_iter(struct kiocb * iocb,struct iov_iter * from)1434 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1435 {
1436 struct file *file = iocb->ki_filp;
1437 struct mnt_idmap *idmap = file_mnt_idmap(file);
1438 struct address_space *mapping = file->f_mapping;
1439 ssize_t written = 0;
1440 struct inode *inode = mapping->host;
1441 ssize_t err, count;
1442 struct fuse_conn *fc = get_fuse_conn(inode);
1443
1444 if (fc->writeback_cache) {
1445 /* Update size (EOF optimization) and mode (SUID clearing) */
1446 err = fuse_update_attributes(mapping->host, file,
1447 STATX_SIZE | STATX_MODE);
1448 if (err)
1449 return err;
1450
1451 if (fc->handle_killpriv_v2 &&
1452 setattr_should_drop_suidgid(idmap,
1453 file_inode(file))) {
1454 goto writethrough;
1455 }
1456
1457 return generic_file_write_iter(iocb, from);
1458 }
1459
1460 writethrough:
1461 inode_lock(inode);
1462
1463 err = count = generic_write_checks(iocb, from);
1464 if (err <= 0)
1465 goto out;
1466
1467 task_io_account_write(count);
1468
1469 err = kiocb_modified(iocb);
1470 if (err)
1471 goto out;
1472
1473 if (iocb->ki_flags & IOCB_DIRECT) {
1474 written = generic_file_direct_write(iocb, from);
1475 if (written < 0 || !iov_iter_count(from))
1476 goto out;
1477 written = direct_write_fallback(iocb, from, written,
1478 fuse_perform_write(iocb, from));
1479 } else {
1480 written = fuse_perform_write(iocb, from);
1481 }
1482 out:
1483 inode_unlock(inode);
1484 if (written > 0)
1485 written = generic_write_sync(iocb, written);
1486
1487 return written ? written : err;
1488 }
1489
fuse_get_user_addr(const struct iov_iter * ii)1490 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1491 {
1492 return (unsigned long)iter_iov(ii)->iov_base + ii->iov_offset;
1493 }
1494
fuse_get_frag_size(const struct iov_iter * ii,size_t max_size)1495 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1496 size_t max_size)
1497 {
1498 return min(iov_iter_single_seg_count(ii), max_size);
1499 }
1500
fuse_get_user_pages(struct fuse_args_pages * ap,struct iov_iter * ii,size_t * nbytesp,int write,unsigned int max_pages,bool use_pages_for_kvec_io)1501 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1502 size_t *nbytesp, int write,
1503 unsigned int max_pages,
1504 bool use_pages_for_kvec_io)
1505 {
1506 bool flush_or_invalidate = false;
1507 unsigned int nr_pages = 0;
1508 size_t nbytes = 0; /* # bytes already packed in req */
1509 ssize_t ret = 0;
1510
1511 /* Special case for kernel I/O: can copy directly into the buffer.
1512 * However if the implementation of fuse_conn requires pages instead of
1513 * pointer (e.g., virtio-fs), use iov_iter_extract_pages() instead.
1514 */
1515 if (iov_iter_is_kvec(ii)) {
1516 void *user_addr = (void *)fuse_get_user_addr(ii);
1517
1518 if (!use_pages_for_kvec_io) {
1519 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1520
1521 if (write)
1522 ap->args.in_args[1].value = user_addr;
1523 else
1524 ap->args.out_args[0].value = user_addr;
1525
1526 iov_iter_advance(ii, frag_size);
1527 *nbytesp = frag_size;
1528 return 0;
1529 }
1530
1531 if (is_vmalloc_addr(user_addr)) {
1532 ap->args.vmap_base = user_addr;
1533 flush_or_invalidate = true;
1534 }
1535 }
1536
1537 /*
1538 * Until there is support for iov_iter_extract_folios(), we have to
1539 * manually extract pages using iov_iter_extract_pages() and then
1540 * copy that to a folios array.
1541 */
1542 struct page **pages = kzalloc(max_pages * sizeof(struct page *),
1543 GFP_KERNEL);
1544 if (!pages) {
1545 ret = -ENOMEM;
1546 goto out;
1547 }
1548
1549 while (nbytes < *nbytesp && nr_pages < max_pages) {
1550 unsigned nfolios, i;
1551 size_t start;
1552
1553 ret = iov_iter_extract_pages(ii, &pages,
1554 *nbytesp - nbytes,
1555 max_pages - nr_pages,
1556 0, &start);
1557 if (ret < 0)
1558 break;
1559
1560 nbytes += ret;
1561
1562 nfolios = DIV_ROUND_UP(ret + start, PAGE_SIZE);
1563
1564 for (i = 0; i < nfolios; i++) {
1565 struct folio *folio = page_folio(pages[i]);
1566 unsigned int offset = start +
1567 (folio_page_idx(folio, pages[i]) << PAGE_SHIFT);
1568 unsigned int len = min_t(unsigned int, ret, PAGE_SIZE - start);
1569
1570 ap->descs[ap->num_folios].offset = offset;
1571 ap->descs[ap->num_folios].length = len;
1572 ap->folios[ap->num_folios] = folio;
1573 start = 0;
1574 ret -= len;
1575 ap->num_folios++;
1576 }
1577
1578 nr_pages += nfolios;
1579 }
1580 kfree(pages);
1581
1582 if (write && flush_or_invalidate)
1583 flush_kernel_vmap_range(ap->args.vmap_base, nbytes);
1584
1585 ap->args.invalidate_vmap = !write && flush_or_invalidate;
1586 ap->args.is_pinned = iov_iter_extract_will_pin(ii);
1587 ap->args.user_pages = true;
1588 if (write)
1589 ap->args.in_pages = true;
1590 else
1591 ap->args.out_pages = true;
1592
1593 out:
1594 *nbytesp = nbytes;
1595
1596 return ret < 0 ? ret : 0;
1597 }
1598
fuse_direct_io(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos,int flags)1599 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1600 loff_t *ppos, int flags)
1601 {
1602 int write = flags & FUSE_DIO_WRITE;
1603 int cuse = flags & FUSE_DIO_CUSE;
1604 struct file *file = io->iocb->ki_filp;
1605 struct address_space *mapping = file->f_mapping;
1606 struct inode *inode = mapping->host;
1607 struct fuse_file *ff = file->private_data;
1608 struct fuse_conn *fc = ff->fm->fc;
1609 size_t nmax = write ? fc->max_write : fc->max_read;
1610 loff_t pos = *ppos;
1611 size_t count = iov_iter_count(iter);
1612 pgoff_t idx_from = pos >> PAGE_SHIFT;
1613 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1614 ssize_t res = 0;
1615 int err = 0;
1616 struct fuse_io_args *ia;
1617 unsigned int max_pages;
1618 bool fopen_direct_io = ff->open_flags & FOPEN_DIRECT_IO;
1619
1620 max_pages = iov_iter_npages(iter, fc->max_pages);
1621 ia = fuse_io_alloc(io, max_pages);
1622 if (!ia)
1623 return -ENOMEM;
1624
1625 if (fopen_direct_io && fc->direct_io_allow_mmap) {
1626 res = filemap_write_and_wait_range(mapping, pos, pos + count - 1);
1627 if (res) {
1628 fuse_io_free(ia);
1629 return res;
1630 }
1631 }
1632 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1633 if (!write)
1634 inode_lock(inode);
1635 fuse_sync_writes(inode);
1636 if (!write)
1637 inode_unlock(inode);
1638 }
1639
1640 if (fopen_direct_io && write) {
1641 res = invalidate_inode_pages2_range(mapping, idx_from, idx_to);
1642 if (res) {
1643 fuse_io_free(ia);
1644 return res;
1645 }
1646 }
1647
1648 io->should_dirty = !write && user_backed_iter(iter);
1649 while (count) {
1650 ssize_t nres;
1651 fl_owner_t owner = current->files;
1652 size_t nbytes = min(count, nmax);
1653
1654 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1655 max_pages, fc->use_pages_for_kvec_io);
1656 if (err && !nbytes)
1657 break;
1658
1659 if (write) {
1660 if (!capable(CAP_FSETID))
1661 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID;
1662
1663 nres = fuse_send_write(ia, pos, nbytes, owner);
1664 } else {
1665 nres = fuse_send_read(ia, pos, nbytes, owner);
1666 }
1667
1668 if (!io->async || nres < 0) {
1669 fuse_release_user_pages(&ia->ap, nres, io->should_dirty);
1670 fuse_io_free(ia);
1671 }
1672 ia = NULL;
1673 if (nres < 0) {
1674 iov_iter_revert(iter, nbytes);
1675 err = nres;
1676 break;
1677 }
1678 WARN_ON(nres > nbytes);
1679
1680 count -= nres;
1681 res += nres;
1682 pos += nres;
1683 if (nres != nbytes) {
1684 iov_iter_revert(iter, nbytes - nres);
1685 break;
1686 }
1687 if (count) {
1688 max_pages = iov_iter_npages(iter, fc->max_pages);
1689 ia = fuse_io_alloc(io, max_pages);
1690 if (!ia)
1691 break;
1692 }
1693 }
1694 if (ia)
1695 fuse_io_free(ia);
1696 if (res > 0)
1697 *ppos = pos;
1698
1699 return res > 0 ? res : err;
1700 }
1701 EXPORT_SYMBOL_GPL(fuse_direct_io);
1702
__fuse_direct_read(struct fuse_io_priv * io,struct iov_iter * iter,loff_t * ppos)1703 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1704 struct iov_iter *iter,
1705 loff_t *ppos)
1706 {
1707 ssize_t res;
1708 struct inode *inode = file_inode(io->iocb->ki_filp);
1709
1710 res = fuse_direct_io(io, iter, ppos, 0);
1711
1712 fuse_invalidate_atime(inode);
1713
1714 return res;
1715 }
1716
1717 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1718
fuse_direct_read_iter(struct kiocb * iocb,struct iov_iter * to)1719 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1720 {
1721 ssize_t res;
1722
1723 if (!is_sync_kiocb(iocb)) {
1724 res = fuse_direct_IO(iocb, to);
1725 } else {
1726 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1727
1728 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1729 }
1730
1731 return res;
1732 }
1733
fuse_direct_write_iter(struct kiocb * iocb,struct iov_iter * from)1734 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1735 {
1736 struct inode *inode = file_inode(iocb->ki_filp);
1737 ssize_t res;
1738 bool exclusive;
1739
1740 fuse_dio_lock(iocb, from, &exclusive);
1741 res = generic_write_checks(iocb, from);
1742 if (res > 0) {
1743 task_io_account_write(res);
1744 if (!is_sync_kiocb(iocb)) {
1745 res = fuse_direct_IO(iocb, from);
1746 } else {
1747 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1748
1749 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1750 FUSE_DIO_WRITE);
1751 fuse_write_update_attr(inode, iocb->ki_pos, res);
1752 }
1753 }
1754 fuse_dio_unlock(iocb, exclusive);
1755
1756 return res;
1757 }
1758
fuse_file_read_iter(struct kiocb * iocb,struct iov_iter * to)1759 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1760 {
1761 struct file *file = iocb->ki_filp;
1762 struct fuse_file *ff = file->private_data;
1763 struct inode *inode = file_inode(file);
1764
1765 if (fuse_is_bad(inode))
1766 return -EIO;
1767
1768 if (FUSE_IS_DAX(inode))
1769 return fuse_dax_read_iter(iocb, to);
1770
1771 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1772 if (ff->open_flags & FOPEN_DIRECT_IO)
1773 return fuse_direct_read_iter(iocb, to);
1774 else if (fuse_file_passthrough(ff))
1775 return fuse_passthrough_read_iter(iocb, to);
1776 else
1777 return fuse_cache_read_iter(iocb, to);
1778 }
1779
fuse_file_write_iter(struct kiocb * iocb,struct iov_iter * from)1780 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1781 {
1782 struct file *file = iocb->ki_filp;
1783 struct fuse_file *ff = file->private_data;
1784 struct inode *inode = file_inode(file);
1785
1786 if (fuse_is_bad(inode))
1787 return -EIO;
1788
1789 if (FUSE_IS_DAX(inode))
1790 return fuse_dax_write_iter(iocb, from);
1791
1792 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1793 if (ff->open_flags & FOPEN_DIRECT_IO)
1794 return fuse_direct_write_iter(iocb, from);
1795 else if (fuse_file_passthrough(ff))
1796 return fuse_passthrough_write_iter(iocb, from);
1797 else
1798 return fuse_cache_write_iter(iocb, from);
1799 }
1800
fuse_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)1801 static ssize_t fuse_splice_read(struct file *in, loff_t *ppos,
1802 struct pipe_inode_info *pipe, size_t len,
1803 unsigned int flags)
1804 {
1805 struct fuse_file *ff = in->private_data;
1806
1807 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1808 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1809 return fuse_passthrough_splice_read(in, ppos, pipe, len, flags);
1810 else
1811 return filemap_splice_read(in, ppos, pipe, len, flags);
1812 }
1813
fuse_splice_write(struct pipe_inode_info * pipe,struct file * out,loff_t * ppos,size_t len,unsigned int flags)1814 static ssize_t fuse_splice_write(struct pipe_inode_info *pipe, struct file *out,
1815 loff_t *ppos, size_t len, unsigned int flags)
1816 {
1817 struct fuse_file *ff = out->private_data;
1818
1819 /* FOPEN_DIRECT_IO overrides FOPEN_PASSTHROUGH */
1820 if (fuse_file_passthrough(ff) && !(ff->open_flags & FOPEN_DIRECT_IO))
1821 return fuse_passthrough_splice_write(pipe, out, ppos, len, flags);
1822 else
1823 return iter_file_splice_write(pipe, out, ppos, len, flags);
1824 }
1825
fuse_writepage_free(struct fuse_writepage_args * wpa)1826 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1827 {
1828 struct fuse_args_pages *ap = &wpa->ia.ap;
1829 int i;
1830
1831 if (wpa->bucket)
1832 fuse_sync_bucket_dec(wpa->bucket);
1833
1834 for (i = 0; i < ap->num_folios; i++)
1835 folio_put(ap->folios[i]);
1836
1837 fuse_file_put(wpa->ia.ff, false);
1838
1839 kfree(ap->folios);
1840 kfree(wpa);
1841 }
1842
fuse_writepage_finish_stat(struct inode * inode,struct folio * folio)1843 static void fuse_writepage_finish_stat(struct inode *inode, struct folio *folio)
1844 {
1845 struct backing_dev_info *bdi = inode_to_bdi(inode);
1846
1847 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1848 node_stat_sub_folio(folio, NR_WRITEBACK_TEMP);
1849 wb_writeout_inc(&bdi->wb);
1850 }
1851
fuse_writepage_finish(struct fuse_writepage_args * wpa)1852 static void fuse_writepage_finish(struct fuse_writepage_args *wpa)
1853 {
1854 struct fuse_args_pages *ap = &wpa->ia.ap;
1855 struct inode *inode = wpa->inode;
1856 struct fuse_inode *fi = get_fuse_inode(inode);
1857 int i;
1858
1859 for (i = 0; i < ap->num_folios; i++)
1860 fuse_writepage_finish_stat(inode, ap->folios[i]);
1861
1862 wake_up(&fi->page_waitq);
1863 }
1864
1865 /* Called under fi->lock, may release and reacquire it */
fuse_send_writepage(struct fuse_mount * fm,struct fuse_writepage_args * wpa,loff_t size)1866 static void fuse_send_writepage(struct fuse_mount *fm,
1867 struct fuse_writepage_args *wpa, loff_t size)
1868 __releases(fi->lock)
1869 __acquires(fi->lock)
1870 {
1871 struct fuse_writepage_args *aux, *next;
1872 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1873 struct fuse_write_in *inarg = &wpa->ia.write.in;
1874 struct fuse_args *args = &wpa->ia.ap.args;
1875 /* Currently, all folios in FUSE are one page */
1876 __u64 data_size = wpa->ia.ap.num_folios * PAGE_SIZE;
1877 int err;
1878
1879 fi->writectr++;
1880 if (inarg->offset + data_size <= size) {
1881 inarg->size = data_size;
1882 } else if (inarg->offset < size) {
1883 inarg->size = size - inarg->offset;
1884 } else {
1885 /* Got truncated off completely */
1886 goto out_free;
1887 }
1888
1889 args->in_args[1].size = inarg->size;
1890 args->force = true;
1891 args->nocreds = true;
1892
1893 err = fuse_simple_background(fm, args, GFP_ATOMIC);
1894 if (err == -ENOMEM) {
1895 spin_unlock(&fi->lock);
1896 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL);
1897 spin_lock(&fi->lock);
1898 }
1899
1900 /* Fails on broken connection only */
1901 if (unlikely(err))
1902 goto out_free;
1903
1904 return;
1905
1906 out_free:
1907 fi->writectr--;
1908 rb_erase(&wpa->writepages_entry, &fi->writepages);
1909 fuse_writepage_finish(wpa);
1910 spin_unlock(&fi->lock);
1911
1912 /* After rb_erase() aux request list is private */
1913 for (aux = wpa->next; aux; aux = next) {
1914 next = aux->next;
1915 aux->next = NULL;
1916 fuse_writepage_finish_stat(aux->inode,
1917 aux->ia.ap.folios[0]);
1918 fuse_writepage_free(aux);
1919 }
1920
1921 fuse_writepage_free(wpa);
1922 spin_lock(&fi->lock);
1923 }
1924
1925 /*
1926 * If fi->writectr is positive (no truncate or fsync going on) send
1927 * all queued writepage requests.
1928 *
1929 * Called with fi->lock
1930 */
fuse_flush_writepages(struct inode * inode)1931 void fuse_flush_writepages(struct inode *inode)
1932 __releases(fi->lock)
1933 __acquires(fi->lock)
1934 {
1935 struct fuse_mount *fm = get_fuse_mount(inode);
1936 struct fuse_inode *fi = get_fuse_inode(inode);
1937 loff_t crop = i_size_read(inode);
1938 struct fuse_writepage_args *wpa;
1939
1940 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1941 wpa = list_entry(fi->queued_writes.next,
1942 struct fuse_writepage_args, queue_entry);
1943 list_del_init(&wpa->queue_entry);
1944 fuse_send_writepage(fm, wpa, crop);
1945 }
1946 }
1947
fuse_insert_writeback(struct rb_root * root,struct fuse_writepage_args * wpa)1948 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1949 struct fuse_writepage_args *wpa)
1950 {
1951 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1952 pgoff_t idx_to = idx_from + wpa->ia.ap.num_folios - 1;
1953 struct rb_node **p = &root->rb_node;
1954 struct rb_node *parent = NULL;
1955
1956 WARN_ON(!wpa->ia.ap.num_folios);
1957 while (*p) {
1958 struct fuse_writepage_args *curr;
1959 pgoff_t curr_index;
1960
1961 parent = *p;
1962 curr = rb_entry(parent, struct fuse_writepage_args,
1963 writepages_entry);
1964 WARN_ON(curr->inode != wpa->inode);
1965 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1966
1967 if (idx_from >= curr_index + curr->ia.ap.num_folios)
1968 p = &(*p)->rb_right;
1969 else if (idx_to < curr_index)
1970 p = &(*p)->rb_left;
1971 else
1972 return curr;
1973 }
1974
1975 rb_link_node(&wpa->writepages_entry, parent, p);
1976 rb_insert_color(&wpa->writepages_entry, root);
1977 return NULL;
1978 }
1979
tree_insert(struct rb_root * root,struct fuse_writepage_args * wpa)1980 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1981 {
1982 WARN_ON(fuse_insert_writeback(root, wpa));
1983 }
1984
fuse_writepage_end(struct fuse_mount * fm,struct fuse_args * args,int error)1985 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args,
1986 int error)
1987 {
1988 struct fuse_writepage_args *wpa =
1989 container_of(args, typeof(*wpa), ia.ap.args);
1990 struct inode *inode = wpa->inode;
1991 struct fuse_inode *fi = get_fuse_inode(inode);
1992 struct fuse_conn *fc = get_fuse_conn(inode);
1993
1994 mapping_set_error(inode->i_mapping, error);
1995 /*
1996 * A writeback finished and this might have updated mtime/ctime on
1997 * server making local mtime/ctime stale. Hence invalidate attrs.
1998 * Do this only if writeback_cache is not enabled. If writeback_cache
1999 * is enabled, we trust local ctime/mtime.
2000 */
2001 if (!fc->writeback_cache)
2002 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY);
2003 spin_lock(&fi->lock);
2004 rb_erase(&wpa->writepages_entry, &fi->writepages);
2005 while (wpa->next) {
2006 struct fuse_mount *fm = get_fuse_mount(inode);
2007 struct fuse_write_in *inarg = &wpa->ia.write.in;
2008 struct fuse_writepage_args *next = wpa->next;
2009
2010 wpa->next = next->next;
2011 next->next = NULL;
2012 tree_insert(&fi->writepages, next);
2013
2014 /*
2015 * Skip fuse_flush_writepages() to make it easy to crop requests
2016 * based on primary request size.
2017 *
2018 * 1st case (trivial): there are no concurrent activities using
2019 * fuse_set/release_nowrite. Then we're on safe side because
2020 * fuse_flush_writepages() would call fuse_send_writepage()
2021 * anyway.
2022 *
2023 * 2nd case: someone called fuse_set_nowrite and it is waiting
2024 * now for completion of all in-flight requests. This happens
2025 * rarely and no more than once per page, so this should be
2026 * okay.
2027 *
2028 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
2029 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
2030 * that fuse_set_nowrite returned implies that all in-flight
2031 * requests were completed along with all of their secondary
2032 * requests. Further primary requests are blocked by negative
2033 * writectr. Hence there cannot be any in-flight requests and
2034 * no invocations of fuse_writepage_end() while we're in
2035 * fuse_set_nowrite..fuse_release_nowrite section.
2036 */
2037 fuse_send_writepage(fm, next, inarg->offset + inarg->size);
2038 }
2039 fi->writectr--;
2040 fuse_writepage_finish(wpa);
2041 spin_unlock(&fi->lock);
2042 fuse_writepage_free(wpa);
2043 }
2044
__fuse_write_file_get(struct fuse_inode * fi)2045 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi)
2046 {
2047 struct fuse_file *ff;
2048
2049 spin_lock(&fi->lock);
2050 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file,
2051 write_entry);
2052 if (ff)
2053 fuse_file_get(ff);
2054 spin_unlock(&fi->lock);
2055
2056 return ff;
2057 }
2058
fuse_write_file_get(struct fuse_inode * fi)2059 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi)
2060 {
2061 struct fuse_file *ff = __fuse_write_file_get(fi);
2062 WARN_ON(!ff);
2063 return ff;
2064 }
2065
fuse_write_inode(struct inode * inode,struct writeback_control * wbc)2066 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
2067 {
2068 struct fuse_inode *fi = get_fuse_inode(inode);
2069 struct fuse_file *ff;
2070 int err;
2071
2072 /*
2073 * Inode is always written before the last reference is dropped and
2074 * hence this should not be reached from reclaim.
2075 *
2076 * Writing back the inode from reclaim can deadlock if the request
2077 * processing itself needs an allocation. Allocations triggering
2078 * reclaim while serving a request can't be prevented, because it can
2079 * involve any number of unrelated userspace processes.
2080 */
2081 WARN_ON(wbc->for_reclaim);
2082
2083 ff = __fuse_write_file_get(fi);
2084 err = fuse_flush_times(inode, ff);
2085 if (ff)
2086 fuse_file_put(ff, false);
2087
2088 return err;
2089 }
2090
fuse_writepage_args_alloc(void)2091 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
2092 {
2093 struct fuse_writepage_args *wpa;
2094 struct fuse_args_pages *ap;
2095
2096 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
2097 if (wpa) {
2098 ap = &wpa->ia.ap;
2099 ap->num_folios = 0;
2100 ap->folios = fuse_folios_alloc(1, GFP_NOFS, &ap->descs);
2101 if (!ap->folios) {
2102 kfree(wpa);
2103 wpa = NULL;
2104 }
2105 }
2106 return wpa;
2107
2108 }
2109
fuse_writepage_add_to_bucket(struct fuse_conn * fc,struct fuse_writepage_args * wpa)2110 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc,
2111 struct fuse_writepage_args *wpa)
2112 {
2113 if (!fc->sync_fs)
2114 return;
2115
2116 rcu_read_lock();
2117 /* Prevent resurrection of dead bucket in unlikely race with syncfs */
2118 do {
2119 wpa->bucket = rcu_dereference(fc->curr_bucket);
2120 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count)));
2121 rcu_read_unlock();
2122 }
2123
fuse_writepage_args_page_fill(struct fuse_writepage_args * wpa,struct folio * folio,struct folio * tmp_folio,uint32_t folio_index)2124 static void fuse_writepage_args_page_fill(struct fuse_writepage_args *wpa, struct folio *folio,
2125 struct folio *tmp_folio, uint32_t folio_index)
2126 {
2127 struct inode *inode = folio->mapping->host;
2128 struct fuse_args_pages *ap = &wpa->ia.ap;
2129
2130 folio_copy(tmp_folio, folio);
2131
2132 ap->folios[folio_index] = tmp_folio;
2133 ap->descs[folio_index].offset = 0;
2134 ap->descs[folio_index].length = PAGE_SIZE;
2135
2136 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2137 node_stat_add_folio(tmp_folio, NR_WRITEBACK_TEMP);
2138 }
2139
fuse_writepage_args_setup(struct folio * folio,struct fuse_file * ff)2140 static struct fuse_writepage_args *fuse_writepage_args_setup(struct folio *folio,
2141 struct fuse_file *ff)
2142 {
2143 struct inode *inode = folio->mapping->host;
2144 struct fuse_conn *fc = get_fuse_conn(inode);
2145 struct fuse_writepage_args *wpa;
2146 struct fuse_args_pages *ap;
2147
2148 wpa = fuse_writepage_args_alloc();
2149 if (!wpa)
2150 return NULL;
2151
2152 fuse_writepage_add_to_bucket(fc, wpa);
2153 fuse_write_args_fill(&wpa->ia, ff, folio_pos(folio), 0);
2154 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2155 wpa->inode = inode;
2156 wpa->ia.ff = ff;
2157
2158 ap = &wpa->ia.ap;
2159 ap->args.in_pages = true;
2160 ap->args.end = fuse_writepage_end;
2161
2162 return wpa;
2163 }
2164
fuse_writepage_locked(struct folio * folio)2165 static int fuse_writepage_locked(struct folio *folio)
2166 {
2167 struct address_space *mapping = folio->mapping;
2168 struct inode *inode = mapping->host;
2169 struct fuse_inode *fi = get_fuse_inode(inode);
2170 struct fuse_writepage_args *wpa;
2171 struct fuse_args_pages *ap;
2172 struct folio *tmp_folio;
2173 struct fuse_file *ff;
2174 int error = -ENOMEM;
2175
2176 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0);
2177 if (!tmp_folio)
2178 goto err;
2179
2180 error = -EIO;
2181 ff = fuse_write_file_get(fi);
2182 if (!ff)
2183 goto err_nofile;
2184
2185 wpa = fuse_writepage_args_setup(folio, ff);
2186 error = -ENOMEM;
2187 if (!wpa)
2188 goto err_writepage_args;
2189
2190 ap = &wpa->ia.ap;
2191 ap->num_folios = 1;
2192
2193 folio_start_writeback(folio);
2194 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, 0);
2195
2196 spin_lock(&fi->lock);
2197 tree_insert(&fi->writepages, wpa);
2198 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2199 fuse_flush_writepages(inode);
2200 spin_unlock(&fi->lock);
2201
2202 folio_end_writeback(folio);
2203
2204 return 0;
2205
2206 err_writepage_args:
2207 fuse_file_put(ff, false);
2208 err_nofile:
2209 folio_put(tmp_folio);
2210 err:
2211 mapping_set_error(folio->mapping, error);
2212 return error;
2213 }
2214
2215 struct fuse_fill_wb_data {
2216 struct fuse_writepage_args *wpa;
2217 struct fuse_file *ff;
2218 struct inode *inode;
2219 struct folio **orig_folios;
2220 unsigned int max_folios;
2221 };
2222
fuse_pages_realloc(struct fuse_fill_wb_data * data)2223 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
2224 {
2225 struct fuse_args_pages *ap = &data->wpa->ia.ap;
2226 struct fuse_conn *fc = get_fuse_conn(data->inode);
2227 struct folio **folios;
2228 struct fuse_folio_desc *descs;
2229 unsigned int nfolios = min_t(unsigned int,
2230 max_t(unsigned int, data->max_folios * 2,
2231 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
2232 fc->max_pages);
2233 WARN_ON(nfolios <= data->max_folios);
2234
2235 folios = fuse_folios_alloc(nfolios, GFP_NOFS, &descs);
2236 if (!folios)
2237 return false;
2238
2239 memcpy(folios, ap->folios, sizeof(struct folio *) * ap->num_folios);
2240 memcpy(descs, ap->descs, sizeof(struct fuse_folio_desc) * ap->num_folios);
2241 kfree(ap->folios);
2242 ap->folios = folios;
2243 ap->descs = descs;
2244 data->max_folios = nfolios;
2245
2246 return true;
2247 }
2248
fuse_writepages_send(struct fuse_fill_wb_data * data)2249 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
2250 {
2251 struct fuse_writepage_args *wpa = data->wpa;
2252 struct inode *inode = data->inode;
2253 struct fuse_inode *fi = get_fuse_inode(inode);
2254 int num_folios = wpa->ia.ap.num_folios;
2255 int i;
2256
2257 spin_lock(&fi->lock);
2258 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
2259 fuse_flush_writepages(inode);
2260 spin_unlock(&fi->lock);
2261
2262 for (i = 0; i < num_folios; i++)
2263 folio_end_writeback(data->orig_folios[i]);
2264 }
2265
2266 /*
2267 * Check under fi->lock if the page is under writeback, and insert it onto the
2268 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
2269 * one already added for a page at this offset. If there's none, then insert
2270 * this new request onto the auxiliary list, otherwise reuse the existing one by
2271 * swapping the new temp page with the old one.
2272 */
fuse_writepage_add(struct fuse_writepage_args * new_wpa,struct folio * folio)2273 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
2274 struct folio *folio)
2275 {
2276 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
2277 struct fuse_writepage_args *tmp;
2278 struct fuse_writepage_args *old_wpa;
2279 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
2280
2281 WARN_ON(new_ap->num_folios != 0);
2282 new_ap->num_folios = 1;
2283
2284 spin_lock(&fi->lock);
2285 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
2286 if (!old_wpa) {
2287 spin_unlock(&fi->lock);
2288 return true;
2289 }
2290
2291 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
2292 pgoff_t curr_index;
2293
2294 WARN_ON(tmp->inode != new_wpa->inode);
2295 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
2296 if (curr_index == folio->index) {
2297 WARN_ON(tmp->ia.ap.num_folios != 1);
2298 swap(tmp->ia.ap.folios[0], new_ap->folios[0]);
2299 break;
2300 }
2301 }
2302
2303 if (!tmp) {
2304 new_wpa->next = old_wpa->next;
2305 old_wpa->next = new_wpa;
2306 }
2307
2308 spin_unlock(&fi->lock);
2309
2310 if (tmp) {
2311 fuse_writepage_finish_stat(new_wpa->inode,
2312 folio);
2313 fuse_writepage_free(new_wpa);
2314 }
2315
2316 return false;
2317 }
2318
fuse_writepage_need_send(struct fuse_conn * fc,struct folio * folio,struct fuse_args_pages * ap,struct fuse_fill_wb_data * data)2319 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct folio *folio,
2320 struct fuse_args_pages *ap,
2321 struct fuse_fill_wb_data *data)
2322 {
2323 WARN_ON(!ap->num_folios);
2324
2325 /*
2326 * Being under writeback is unlikely but possible. For example direct
2327 * read to an mmaped fuse file will set the page dirty twice; once when
2328 * the pages are faulted with get_user_pages(), and then after the read
2329 * completed.
2330 */
2331 if (fuse_folio_is_writeback(data->inode, folio))
2332 return true;
2333
2334 /* Reached max pages */
2335 if (ap->num_folios == fc->max_pages)
2336 return true;
2337
2338 /* Reached max write bytes */
2339 if ((ap->num_folios + 1) * PAGE_SIZE > fc->max_write)
2340 return true;
2341
2342 /* Discontinuity */
2343 if (data->orig_folios[ap->num_folios - 1]->index + 1 != folio_index(folio))
2344 return true;
2345
2346 /* Need to grow the pages array? If so, did the expansion fail? */
2347 if (ap->num_folios == data->max_folios && !fuse_pages_realloc(data))
2348 return true;
2349
2350 return false;
2351 }
2352
fuse_writepages_fill(struct folio * folio,struct writeback_control * wbc,void * _data)2353 static int fuse_writepages_fill(struct folio *folio,
2354 struct writeback_control *wbc, void *_data)
2355 {
2356 struct fuse_fill_wb_data *data = _data;
2357 struct fuse_writepage_args *wpa = data->wpa;
2358 struct fuse_args_pages *ap = &wpa->ia.ap;
2359 struct inode *inode = data->inode;
2360 struct fuse_inode *fi = get_fuse_inode(inode);
2361 struct fuse_conn *fc = get_fuse_conn(inode);
2362 struct folio *tmp_folio;
2363 int err;
2364
2365 if (!data->ff) {
2366 err = -EIO;
2367 data->ff = fuse_write_file_get(fi);
2368 if (!data->ff)
2369 goto out_unlock;
2370 }
2371
2372 if (wpa && fuse_writepage_need_send(fc, folio, ap, data)) {
2373 fuse_writepages_send(data);
2374 data->wpa = NULL;
2375 }
2376
2377 err = -ENOMEM;
2378 tmp_folio = folio_alloc(GFP_NOFS | __GFP_HIGHMEM, 0);
2379 if (!tmp_folio)
2380 goto out_unlock;
2381
2382 /*
2383 * The page must not be redirtied until the writeout is completed
2384 * (i.e. userspace has sent a reply to the write request). Otherwise
2385 * there could be more than one temporary page instance for each real
2386 * page.
2387 *
2388 * This is ensured by holding the page lock in page_mkwrite() while
2389 * checking fuse_page_is_writeback(). We already hold the page lock
2390 * since clear_page_dirty_for_io() and keep it held until we add the
2391 * request to the fi->writepages list and increment ap->num_folios.
2392 * After this fuse_page_is_writeback() will indicate that the page is
2393 * under writeback, so we can release the page lock.
2394 */
2395 if (data->wpa == NULL) {
2396 err = -ENOMEM;
2397 wpa = fuse_writepage_args_setup(folio, data->ff);
2398 if (!wpa) {
2399 folio_put(tmp_folio);
2400 goto out_unlock;
2401 }
2402 fuse_file_get(wpa->ia.ff);
2403 data->max_folios = 1;
2404 ap = &wpa->ia.ap;
2405 }
2406 folio_start_writeback(folio);
2407
2408 fuse_writepage_args_page_fill(wpa, folio, tmp_folio, ap->num_folios);
2409 data->orig_folios[ap->num_folios] = folio;
2410
2411 err = 0;
2412 if (data->wpa) {
2413 /*
2414 * Protected by fi->lock against concurrent access by
2415 * fuse_page_is_writeback().
2416 */
2417 spin_lock(&fi->lock);
2418 ap->num_folios++;
2419 spin_unlock(&fi->lock);
2420 } else if (fuse_writepage_add(wpa, folio)) {
2421 data->wpa = wpa;
2422 } else {
2423 folio_end_writeback(folio);
2424 }
2425 out_unlock:
2426 folio_unlock(folio);
2427
2428 return err;
2429 }
2430
fuse_writepages(struct address_space * mapping,struct writeback_control * wbc)2431 static int fuse_writepages(struct address_space *mapping,
2432 struct writeback_control *wbc)
2433 {
2434 struct inode *inode = mapping->host;
2435 struct fuse_conn *fc = get_fuse_conn(inode);
2436 struct fuse_fill_wb_data data;
2437 int err;
2438
2439 err = -EIO;
2440 if (fuse_is_bad(inode))
2441 goto out;
2442
2443 if (wbc->sync_mode == WB_SYNC_NONE &&
2444 fc->num_background >= fc->congestion_threshold)
2445 return 0;
2446
2447 data.inode = inode;
2448 data.wpa = NULL;
2449 data.ff = NULL;
2450
2451 err = -ENOMEM;
2452 data.orig_folios = kcalloc(fc->max_pages,
2453 sizeof(struct folio *),
2454 GFP_NOFS);
2455 if (!data.orig_folios)
2456 goto out;
2457
2458 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2459 if (data.wpa) {
2460 WARN_ON(!data.wpa->ia.ap.num_folios);
2461 fuse_writepages_send(&data);
2462 }
2463 if (data.ff)
2464 fuse_file_put(data.ff, false);
2465
2466 kfree(data.orig_folios);
2467 out:
2468 return err;
2469 }
2470
2471 /*
2472 * It's worthy to make sure that space is reserved on disk for the write,
2473 * but how to implement it without killing performance need more thinking.
2474 */
fuse_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)2475 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2476 loff_t pos, unsigned len, struct folio **foliop, void **fsdata)
2477 {
2478 pgoff_t index = pos >> PAGE_SHIFT;
2479 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2480 struct folio *folio;
2481 loff_t fsize;
2482 int err = -ENOMEM;
2483
2484 WARN_ON(!fc->writeback_cache);
2485
2486 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2487 mapping_gfp_mask(mapping));
2488 if (IS_ERR(folio))
2489 goto error;
2490
2491 fuse_wait_on_page_writeback(mapping->host, folio->index);
2492
2493 if (folio_test_uptodate(folio) || len >= folio_size(folio))
2494 goto success;
2495 /*
2496 * Check if the start of this folio comes after the end of file,
2497 * in which case the readpage can be optimized away.
2498 */
2499 fsize = i_size_read(mapping->host);
2500 if (fsize <= folio_pos(folio)) {
2501 size_t off = offset_in_folio(folio, pos);
2502 if (off)
2503 folio_zero_segment(folio, 0, off);
2504 goto success;
2505 }
2506 err = fuse_do_readfolio(file, folio);
2507 if (err)
2508 goto cleanup;
2509 success:
2510 *foliop = folio;
2511 return 0;
2512
2513 cleanup:
2514 folio_unlock(folio);
2515 folio_put(folio);
2516 error:
2517 return err;
2518 }
2519
fuse_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)2520 static int fuse_write_end(struct file *file, struct address_space *mapping,
2521 loff_t pos, unsigned len, unsigned copied,
2522 struct folio *folio, void *fsdata)
2523 {
2524 struct inode *inode = folio->mapping->host;
2525
2526 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2527 if (!copied)
2528 goto unlock;
2529
2530 pos += copied;
2531 if (!folio_test_uptodate(folio)) {
2532 /* Zero any unwritten bytes at the end of the page */
2533 size_t endoff = pos & ~PAGE_MASK;
2534 if (endoff)
2535 folio_zero_segment(folio, endoff, PAGE_SIZE);
2536 folio_mark_uptodate(folio);
2537 }
2538
2539 if (pos > inode->i_size)
2540 i_size_write(inode, pos);
2541
2542 folio_mark_dirty(folio);
2543
2544 unlock:
2545 folio_unlock(folio);
2546 folio_put(folio);
2547
2548 return copied;
2549 }
2550
fuse_launder_folio(struct folio * folio)2551 static int fuse_launder_folio(struct folio *folio)
2552 {
2553 int err = 0;
2554 if (folio_clear_dirty_for_io(folio)) {
2555 struct inode *inode = folio->mapping->host;
2556
2557 /* Serialize with pending writeback for the same page */
2558 fuse_wait_on_page_writeback(inode, folio->index);
2559 err = fuse_writepage_locked(folio);
2560 if (!err)
2561 fuse_wait_on_page_writeback(inode, folio->index);
2562 }
2563 return err;
2564 }
2565
2566 /*
2567 * Write back dirty data/metadata now (there may not be any suitable
2568 * open files later for data)
2569 */
fuse_vma_close(struct vm_area_struct * vma)2570 static void fuse_vma_close(struct vm_area_struct *vma)
2571 {
2572 int err;
2573
2574 err = write_inode_now(vma->vm_file->f_mapping->host, 1);
2575 mapping_set_error(vma->vm_file->f_mapping, err);
2576 }
2577
2578 /*
2579 * Wait for writeback against this page to complete before allowing it
2580 * to be marked dirty again, and hence written back again, possibly
2581 * before the previous writepage completed.
2582 *
2583 * Block here, instead of in ->writepage(), so that the userspace fs
2584 * can only block processes actually operating on the filesystem.
2585 *
2586 * Otherwise unprivileged userspace fs would be able to block
2587 * unrelated:
2588 *
2589 * - page migration
2590 * - sync(2)
2591 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2592 */
fuse_page_mkwrite(struct vm_fault * vmf)2593 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2594 {
2595 struct folio *folio = page_folio(vmf->page);
2596 struct inode *inode = file_inode(vmf->vma->vm_file);
2597
2598 file_update_time(vmf->vma->vm_file);
2599 folio_lock(folio);
2600 if (folio->mapping != inode->i_mapping) {
2601 folio_unlock(folio);
2602 return VM_FAULT_NOPAGE;
2603 }
2604
2605 fuse_wait_on_folio_writeback(inode, folio);
2606 return VM_FAULT_LOCKED;
2607 }
2608
2609 static const struct vm_operations_struct fuse_file_vm_ops = {
2610 .close = fuse_vma_close,
2611 .fault = filemap_fault,
2612 .map_pages = filemap_map_pages,
2613 .page_mkwrite = fuse_page_mkwrite,
2614 };
2615
fuse_file_mmap(struct file * file,struct vm_area_struct * vma)2616 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2617 {
2618 struct fuse_file *ff = file->private_data;
2619 struct fuse_conn *fc = ff->fm->fc;
2620 struct inode *inode = file_inode(file);
2621 int rc;
2622
2623 /* DAX mmap is superior to direct_io mmap */
2624 if (FUSE_IS_DAX(inode))
2625 return fuse_dax_mmap(file, vma);
2626
2627 /*
2628 * If inode is in passthrough io mode, because it has some file open
2629 * in passthrough mode, either mmap to backing file or fail mmap,
2630 * because mixing cached mmap and passthrough io mode is not allowed.
2631 */
2632 if (fuse_file_passthrough(ff))
2633 return fuse_passthrough_mmap(file, vma);
2634 else if (fuse_inode_backing(get_fuse_inode(inode)))
2635 return -ENODEV;
2636
2637 /*
2638 * FOPEN_DIRECT_IO handling is special compared to O_DIRECT,
2639 * as does not allow MAP_SHARED mmap without FUSE_DIRECT_IO_ALLOW_MMAP.
2640 */
2641 if (ff->open_flags & FOPEN_DIRECT_IO) {
2642 /*
2643 * Can't provide the coherency needed for MAP_SHARED
2644 * if FUSE_DIRECT_IO_ALLOW_MMAP isn't set.
2645 */
2646 if ((vma->vm_flags & VM_MAYSHARE) && !fc->direct_io_allow_mmap)
2647 return -ENODEV;
2648
2649 invalidate_inode_pages2(file->f_mapping);
2650
2651 if (!(vma->vm_flags & VM_MAYSHARE)) {
2652 /* MAP_PRIVATE */
2653 return generic_file_mmap(file, vma);
2654 }
2655
2656 /*
2657 * First mmap of direct_io file enters caching inode io mode.
2658 * Also waits for parallel dio writers to go into serial mode
2659 * (exclusive instead of shared lock).
2660 * After first mmap, the inode stays in caching io mode until
2661 * the direct_io file release.
2662 */
2663 rc = fuse_file_cached_io_open(inode, ff);
2664 if (rc)
2665 return rc;
2666 }
2667
2668 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2669 fuse_link_write_file(file);
2670
2671 file_accessed(file);
2672 vma->vm_ops = &fuse_file_vm_ops;
2673 return 0;
2674 }
2675
convert_fuse_file_lock(struct fuse_conn * fc,const struct fuse_file_lock * ffl,struct file_lock * fl)2676 static int convert_fuse_file_lock(struct fuse_conn *fc,
2677 const struct fuse_file_lock *ffl,
2678 struct file_lock *fl)
2679 {
2680 switch (ffl->type) {
2681 case F_UNLCK:
2682 break;
2683
2684 case F_RDLCK:
2685 case F_WRLCK:
2686 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2687 ffl->end < ffl->start)
2688 return -EIO;
2689
2690 fl->fl_start = ffl->start;
2691 fl->fl_end = ffl->end;
2692
2693 /*
2694 * Convert pid into init's pid namespace. The locks API will
2695 * translate it into the caller's pid namespace.
2696 */
2697 rcu_read_lock();
2698 fl->c.flc_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2699 rcu_read_unlock();
2700 break;
2701
2702 default:
2703 return -EIO;
2704 }
2705 fl->c.flc_type = ffl->type;
2706 return 0;
2707 }
2708
fuse_lk_fill(struct fuse_args * args,struct file * file,const struct file_lock * fl,int opcode,pid_t pid,int flock,struct fuse_lk_in * inarg)2709 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2710 const struct file_lock *fl, int opcode, pid_t pid,
2711 int flock, struct fuse_lk_in *inarg)
2712 {
2713 struct inode *inode = file_inode(file);
2714 struct fuse_conn *fc = get_fuse_conn(inode);
2715 struct fuse_file *ff = file->private_data;
2716
2717 memset(inarg, 0, sizeof(*inarg));
2718 inarg->fh = ff->fh;
2719 inarg->owner = fuse_lock_owner_id(fc, fl->c.flc_owner);
2720 inarg->lk.start = fl->fl_start;
2721 inarg->lk.end = fl->fl_end;
2722 inarg->lk.type = fl->c.flc_type;
2723 inarg->lk.pid = pid;
2724 if (flock)
2725 inarg->lk_flags |= FUSE_LK_FLOCK;
2726 args->opcode = opcode;
2727 args->nodeid = get_node_id(inode);
2728 args->in_numargs = 1;
2729 args->in_args[0].size = sizeof(*inarg);
2730 args->in_args[0].value = inarg;
2731 }
2732
fuse_getlk(struct file * file,struct file_lock * fl)2733 static int fuse_getlk(struct file *file, struct file_lock *fl)
2734 {
2735 struct inode *inode = file_inode(file);
2736 struct fuse_mount *fm = get_fuse_mount(inode);
2737 FUSE_ARGS(args);
2738 struct fuse_lk_in inarg;
2739 struct fuse_lk_out outarg;
2740 int err;
2741
2742 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2743 args.out_numargs = 1;
2744 args.out_args[0].size = sizeof(outarg);
2745 args.out_args[0].value = &outarg;
2746 err = fuse_simple_request(fm, &args);
2747 if (!err)
2748 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl);
2749
2750 return err;
2751 }
2752
fuse_setlk(struct file * file,struct file_lock * fl,int flock)2753 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2754 {
2755 struct inode *inode = file_inode(file);
2756 struct fuse_mount *fm = get_fuse_mount(inode);
2757 FUSE_ARGS(args);
2758 struct fuse_lk_in inarg;
2759 int opcode = (fl->c.flc_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2760 struct pid *pid = fl->c.flc_type != F_UNLCK ? task_tgid(current) : NULL;
2761 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns);
2762 int err;
2763
2764 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2765 /* NLM needs asynchronous locks, which we don't support yet */
2766 return -ENOLCK;
2767 }
2768
2769 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2770 err = fuse_simple_request(fm, &args);
2771
2772 /* locking is restartable */
2773 if (err == -EINTR)
2774 err = -ERESTARTSYS;
2775
2776 return err;
2777 }
2778
fuse_file_lock(struct file * file,int cmd,struct file_lock * fl)2779 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2780 {
2781 struct inode *inode = file_inode(file);
2782 struct fuse_conn *fc = get_fuse_conn(inode);
2783 int err;
2784
2785 if (cmd == F_CANCELLK) {
2786 err = 0;
2787 } else if (cmd == F_GETLK) {
2788 if (fc->no_lock) {
2789 posix_test_lock(file, fl);
2790 err = 0;
2791 } else
2792 err = fuse_getlk(file, fl);
2793 } else {
2794 if (fc->no_lock)
2795 err = posix_lock_file(file, fl, NULL);
2796 else
2797 err = fuse_setlk(file, fl, 0);
2798 }
2799 return err;
2800 }
2801
fuse_file_flock(struct file * file,int cmd,struct file_lock * fl)2802 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2803 {
2804 struct inode *inode = file_inode(file);
2805 struct fuse_conn *fc = get_fuse_conn(inode);
2806 int err;
2807
2808 if (fc->no_flock) {
2809 err = locks_lock_file_wait(file, fl);
2810 } else {
2811 struct fuse_file *ff = file->private_data;
2812
2813 /* emulate flock with POSIX locks */
2814 ff->flock = true;
2815 err = fuse_setlk(file, fl, 1);
2816 }
2817
2818 return err;
2819 }
2820
fuse_bmap(struct address_space * mapping,sector_t block)2821 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2822 {
2823 struct inode *inode = mapping->host;
2824 struct fuse_mount *fm = get_fuse_mount(inode);
2825 FUSE_ARGS(args);
2826 struct fuse_bmap_in inarg;
2827 struct fuse_bmap_out outarg;
2828 int err;
2829
2830 if (!inode->i_sb->s_bdev || fm->fc->no_bmap)
2831 return 0;
2832
2833 memset(&inarg, 0, sizeof(inarg));
2834 inarg.block = block;
2835 inarg.blocksize = inode->i_sb->s_blocksize;
2836 args.opcode = FUSE_BMAP;
2837 args.nodeid = get_node_id(inode);
2838 args.in_numargs = 1;
2839 args.in_args[0].size = sizeof(inarg);
2840 args.in_args[0].value = &inarg;
2841 args.out_numargs = 1;
2842 args.out_args[0].size = sizeof(outarg);
2843 args.out_args[0].value = &outarg;
2844 err = fuse_simple_request(fm, &args);
2845 if (err == -ENOSYS)
2846 fm->fc->no_bmap = 1;
2847
2848 return err ? 0 : outarg.block;
2849 }
2850
fuse_lseek(struct file * file,loff_t offset,int whence)2851 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2852 {
2853 struct inode *inode = file->f_mapping->host;
2854 struct fuse_mount *fm = get_fuse_mount(inode);
2855 struct fuse_file *ff = file->private_data;
2856 FUSE_ARGS(args);
2857 struct fuse_lseek_in inarg = {
2858 .fh = ff->fh,
2859 .offset = offset,
2860 .whence = whence
2861 };
2862 struct fuse_lseek_out outarg;
2863 int err;
2864
2865 if (fm->fc->no_lseek)
2866 goto fallback;
2867
2868 args.opcode = FUSE_LSEEK;
2869 args.nodeid = ff->nodeid;
2870 args.in_numargs = 1;
2871 args.in_args[0].size = sizeof(inarg);
2872 args.in_args[0].value = &inarg;
2873 args.out_numargs = 1;
2874 args.out_args[0].size = sizeof(outarg);
2875 args.out_args[0].value = &outarg;
2876 err = fuse_simple_request(fm, &args);
2877 if (err) {
2878 if (err == -ENOSYS) {
2879 fm->fc->no_lseek = 1;
2880 goto fallback;
2881 }
2882 return err;
2883 }
2884
2885 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2886
2887 fallback:
2888 err = fuse_update_attributes(inode, file, STATX_SIZE);
2889 if (!err)
2890 return generic_file_llseek(file, offset, whence);
2891 else
2892 return err;
2893 }
2894
fuse_file_llseek(struct file * file,loff_t offset,int whence)2895 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2896 {
2897 loff_t retval;
2898 struct inode *inode = file_inode(file);
2899
2900 switch (whence) {
2901 case SEEK_SET:
2902 case SEEK_CUR:
2903 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2904 retval = generic_file_llseek(file, offset, whence);
2905 break;
2906 case SEEK_END:
2907 inode_lock(inode);
2908 retval = fuse_update_attributes(inode, file, STATX_SIZE);
2909 if (!retval)
2910 retval = generic_file_llseek(file, offset, whence);
2911 inode_unlock(inode);
2912 break;
2913 case SEEK_HOLE:
2914 case SEEK_DATA:
2915 inode_lock(inode);
2916 retval = fuse_lseek(file, offset, whence);
2917 inode_unlock(inode);
2918 break;
2919 default:
2920 retval = -EINVAL;
2921 }
2922
2923 return retval;
2924 }
2925
2926 /*
2927 * All files which have been polled are linked to RB tree
2928 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2929 * find the matching one.
2930 */
fuse_find_polled_node(struct fuse_conn * fc,u64 kh,struct rb_node ** parent_out)2931 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2932 struct rb_node **parent_out)
2933 {
2934 struct rb_node **link = &fc->polled_files.rb_node;
2935 struct rb_node *last = NULL;
2936
2937 while (*link) {
2938 struct fuse_file *ff;
2939
2940 last = *link;
2941 ff = rb_entry(last, struct fuse_file, polled_node);
2942
2943 if (kh < ff->kh)
2944 link = &last->rb_left;
2945 else if (kh > ff->kh)
2946 link = &last->rb_right;
2947 else
2948 return link;
2949 }
2950
2951 if (parent_out)
2952 *parent_out = last;
2953 return link;
2954 }
2955
2956 /*
2957 * The file is about to be polled. Make sure it's on the polled_files
2958 * RB tree. Note that files once added to the polled_files tree are
2959 * not removed before the file is released. This is because a file
2960 * polled once is likely to be polled again.
2961 */
fuse_register_polled_file(struct fuse_conn * fc,struct fuse_file * ff)2962 static void fuse_register_polled_file(struct fuse_conn *fc,
2963 struct fuse_file *ff)
2964 {
2965 spin_lock(&fc->lock);
2966 if (RB_EMPTY_NODE(&ff->polled_node)) {
2967 struct rb_node **link, *parent;
2968
2969 link = fuse_find_polled_node(fc, ff->kh, &parent);
2970 BUG_ON(*link);
2971 rb_link_node(&ff->polled_node, parent, link);
2972 rb_insert_color(&ff->polled_node, &fc->polled_files);
2973 }
2974 spin_unlock(&fc->lock);
2975 }
2976
fuse_file_poll(struct file * file,poll_table * wait)2977 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2978 {
2979 struct fuse_file *ff = file->private_data;
2980 struct fuse_mount *fm = ff->fm;
2981 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2982 struct fuse_poll_out outarg;
2983 FUSE_ARGS(args);
2984 int err;
2985
2986 if (fm->fc->no_poll)
2987 return DEFAULT_POLLMASK;
2988
2989 poll_wait(file, &ff->poll_wait, wait);
2990 inarg.events = mangle_poll(poll_requested_events(wait));
2991
2992 /*
2993 * Ask for notification iff there's someone waiting for it.
2994 * The client may ignore the flag and always notify.
2995 */
2996 if (waitqueue_active(&ff->poll_wait)) {
2997 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2998 fuse_register_polled_file(fm->fc, ff);
2999 }
3000
3001 args.opcode = FUSE_POLL;
3002 args.nodeid = ff->nodeid;
3003 args.in_numargs = 1;
3004 args.in_args[0].size = sizeof(inarg);
3005 args.in_args[0].value = &inarg;
3006 args.out_numargs = 1;
3007 args.out_args[0].size = sizeof(outarg);
3008 args.out_args[0].value = &outarg;
3009 err = fuse_simple_request(fm, &args);
3010
3011 if (!err)
3012 return demangle_poll(outarg.revents);
3013 if (err == -ENOSYS) {
3014 fm->fc->no_poll = 1;
3015 return DEFAULT_POLLMASK;
3016 }
3017 return EPOLLERR;
3018 }
3019 EXPORT_SYMBOL_GPL(fuse_file_poll);
3020
3021 /*
3022 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3023 * wakes up the poll waiters.
3024 */
fuse_notify_poll_wakeup(struct fuse_conn * fc,struct fuse_notify_poll_wakeup_out * outarg)3025 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3026 struct fuse_notify_poll_wakeup_out *outarg)
3027 {
3028 u64 kh = outarg->kh;
3029 struct rb_node **link;
3030
3031 spin_lock(&fc->lock);
3032
3033 link = fuse_find_polled_node(fc, kh, NULL);
3034 if (*link) {
3035 struct fuse_file *ff;
3036
3037 ff = rb_entry(*link, struct fuse_file, polled_node);
3038 wake_up_interruptible_sync(&ff->poll_wait);
3039 }
3040
3041 spin_unlock(&fc->lock);
3042 return 0;
3043 }
3044
fuse_do_truncate(struct file * file)3045 static void fuse_do_truncate(struct file *file)
3046 {
3047 struct inode *inode = file->f_mapping->host;
3048 struct iattr attr;
3049
3050 attr.ia_valid = ATTR_SIZE;
3051 attr.ia_size = i_size_read(inode);
3052
3053 attr.ia_file = file;
3054 attr.ia_valid |= ATTR_FILE;
3055
3056 fuse_do_setattr(file_mnt_idmap(file), file_dentry(file), &attr, file);
3057 }
3058
fuse_round_up(struct fuse_conn * fc,loff_t off)3059 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3060 {
3061 return round_up(off, fc->max_pages << PAGE_SHIFT);
3062 }
3063
3064 static ssize_t
fuse_direct_IO(struct kiocb * iocb,struct iov_iter * iter)3065 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3066 {
3067 DECLARE_COMPLETION_ONSTACK(wait);
3068 ssize_t ret = 0;
3069 struct file *file = iocb->ki_filp;
3070 struct fuse_file *ff = file->private_data;
3071 loff_t pos = 0;
3072 struct inode *inode;
3073 loff_t i_size;
3074 size_t count = iov_iter_count(iter), shortened = 0;
3075 loff_t offset = iocb->ki_pos;
3076 struct fuse_io_priv *io;
3077
3078 pos = offset;
3079 inode = file->f_mapping->host;
3080 i_size = i_size_read(inode);
3081
3082 if ((iov_iter_rw(iter) == READ) && (offset >= i_size))
3083 return 0;
3084
3085 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3086 if (!io)
3087 return -ENOMEM;
3088 spin_lock_init(&io->lock);
3089 kref_init(&io->refcnt);
3090 io->reqs = 1;
3091 io->bytes = -1;
3092 io->size = 0;
3093 io->offset = offset;
3094 io->write = (iov_iter_rw(iter) == WRITE);
3095 io->err = 0;
3096 /*
3097 * By default, we want to optimize all I/Os with async request
3098 * submission to the client filesystem if supported.
3099 */
3100 io->async = ff->fm->fc->async_dio;
3101 io->iocb = iocb;
3102 io->blocking = is_sync_kiocb(iocb);
3103
3104 /* optimization for short read */
3105 if (io->async && !io->write && offset + count > i_size) {
3106 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset));
3107 shortened = count - iov_iter_count(iter);
3108 count -= shortened;
3109 }
3110
3111 /*
3112 * We cannot asynchronously extend the size of a file.
3113 * In such case the aio will behave exactly like sync io.
3114 */
3115 if ((offset + count > i_size) && io->write)
3116 io->blocking = true;
3117
3118 if (io->async && io->blocking) {
3119 /*
3120 * Additional reference to keep io around after
3121 * calling fuse_aio_complete()
3122 */
3123 kref_get(&io->refcnt);
3124 io->done = &wait;
3125 }
3126
3127 if (iov_iter_rw(iter) == WRITE) {
3128 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3129 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3130 } else {
3131 ret = __fuse_direct_read(io, iter, &pos);
3132 }
3133 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened);
3134
3135 if (io->async) {
3136 bool blocking = io->blocking;
3137
3138 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3139
3140 /* we have a non-extending, async request, so return */
3141 if (!blocking)
3142 return -EIOCBQUEUED;
3143
3144 wait_for_completion(&wait);
3145 ret = fuse_get_res_by_io(io);
3146 }
3147
3148 kref_put(&io->refcnt, fuse_io_release);
3149
3150 if (iov_iter_rw(iter) == WRITE) {
3151 fuse_write_update_attr(inode, pos, ret);
3152 /* For extending writes we already hold exclusive lock */
3153 if (ret < 0 && offset + count > i_size)
3154 fuse_do_truncate(file);
3155 }
3156
3157 return ret;
3158 }
3159
fuse_writeback_range(struct inode * inode,loff_t start,loff_t end)3160 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3161 {
3162 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX);
3163
3164 if (!err)
3165 fuse_sync_writes(inode);
3166
3167 return err;
3168 }
3169
fuse_file_fallocate(struct file * file,int mode,loff_t offset,loff_t length)3170 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3171 loff_t length)
3172 {
3173 struct fuse_file *ff = file->private_data;
3174 struct inode *inode = file_inode(file);
3175 struct fuse_inode *fi = get_fuse_inode(inode);
3176 struct fuse_mount *fm = ff->fm;
3177 FUSE_ARGS(args);
3178 struct fuse_fallocate_in inarg = {
3179 .fh = ff->fh,
3180 .offset = offset,
3181 .length = length,
3182 .mode = mode
3183 };
3184 int err;
3185 bool block_faults = FUSE_IS_DAX(inode) &&
3186 (!(mode & FALLOC_FL_KEEP_SIZE) ||
3187 (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)));
3188
3189 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3190 FALLOC_FL_ZERO_RANGE))
3191 return -EOPNOTSUPP;
3192
3193 if (fm->fc->no_fallocate)
3194 return -EOPNOTSUPP;
3195
3196 inode_lock(inode);
3197 if (block_faults) {
3198 filemap_invalidate_lock(inode->i_mapping);
3199 err = fuse_dax_break_layouts(inode, 0, 0);
3200 if (err)
3201 goto out;
3202 }
3203
3204 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) {
3205 loff_t endbyte = offset + length - 1;
3206
3207 err = fuse_writeback_range(inode, offset, endbyte);
3208 if (err)
3209 goto out;
3210 }
3211
3212 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3213 offset + length > i_size_read(inode)) {
3214 err = inode_newsize_ok(inode, offset + length);
3215 if (err)
3216 goto out;
3217 }
3218
3219 err = file_modified(file);
3220 if (err)
3221 goto out;
3222
3223 if (!(mode & FALLOC_FL_KEEP_SIZE))
3224 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3225
3226 args.opcode = FUSE_FALLOCATE;
3227 args.nodeid = ff->nodeid;
3228 args.in_numargs = 1;
3229 args.in_args[0].size = sizeof(inarg);
3230 args.in_args[0].value = &inarg;
3231 err = fuse_simple_request(fm, &args);
3232 if (err == -ENOSYS) {
3233 fm->fc->no_fallocate = 1;
3234 err = -EOPNOTSUPP;
3235 }
3236 if (err)
3237 goto out;
3238
3239 /* we could have extended the file */
3240 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3241 if (fuse_write_update_attr(inode, offset + length, length))
3242 file_update_time(file);
3243 }
3244
3245 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE))
3246 truncate_pagecache_range(inode, offset, offset + length - 1);
3247
3248 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE);
3249
3250 out:
3251 if (!(mode & FALLOC_FL_KEEP_SIZE))
3252 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3253
3254 if (block_faults)
3255 filemap_invalidate_unlock(inode->i_mapping);
3256
3257 inode_unlock(inode);
3258
3259 fuse_flush_time_update(inode);
3260
3261 return err;
3262 }
3263
__fuse_copy_file_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,size_t len,unsigned int flags)3264 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3265 struct file *file_out, loff_t pos_out,
3266 size_t len, unsigned int flags)
3267 {
3268 struct fuse_file *ff_in = file_in->private_data;
3269 struct fuse_file *ff_out = file_out->private_data;
3270 struct inode *inode_in = file_inode(file_in);
3271 struct inode *inode_out = file_inode(file_out);
3272 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3273 struct fuse_mount *fm = ff_in->fm;
3274 struct fuse_conn *fc = fm->fc;
3275 FUSE_ARGS(args);
3276 struct fuse_copy_file_range_in inarg = {
3277 .fh_in = ff_in->fh,
3278 .off_in = pos_in,
3279 .nodeid_out = ff_out->nodeid,
3280 .fh_out = ff_out->fh,
3281 .off_out = pos_out,
3282 .len = len,
3283 .flags = flags
3284 };
3285 struct fuse_write_out outarg;
3286 ssize_t err;
3287 /* mark unstable when write-back is not used, and file_out gets
3288 * extended */
3289 bool is_unstable = (!fc->writeback_cache) &&
3290 ((pos_out + len) > inode_out->i_size);
3291
3292 if (fc->no_copy_file_range)
3293 return -EOPNOTSUPP;
3294
3295 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3296 return -EXDEV;
3297
3298 inode_lock(inode_in);
3299 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3300 inode_unlock(inode_in);
3301 if (err)
3302 return err;
3303
3304 inode_lock(inode_out);
3305
3306 err = file_modified(file_out);
3307 if (err)
3308 goto out;
3309
3310 /*
3311 * Write out dirty pages in the destination file before sending the COPY
3312 * request to userspace. After the request is completed, truncate off
3313 * pages (including partial ones) from the cache that have been copied,
3314 * since these contain stale data at that point.
3315 *
3316 * This should be mostly correct, but if the COPY writes to partial
3317 * pages (at the start or end) and the parts not covered by the COPY are
3318 * written through a memory map after calling fuse_writeback_range(),
3319 * then these partial page modifications will be lost on truncation.
3320 *
3321 * It is unlikely that someone would rely on such mixed style
3322 * modifications. Yet this does give less guarantees than if the
3323 * copying was performed with write(2).
3324 *
3325 * To fix this a mapping->invalidate_lock could be used to prevent new
3326 * faults while the copy is ongoing.
3327 */
3328 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3329 if (err)
3330 goto out;
3331
3332 if (is_unstable)
3333 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3334
3335 args.opcode = FUSE_COPY_FILE_RANGE;
3336 args.nodeid = ff_in->nodeid;
3337 args.in_numargs = 1;
3338 args.in_args[0].size = sizeof(inarg);
3339 args.in_args[0].value = &inarg;
3340 args.out_numargs = 1;
3341 args.out_args[0].size = sizeof(outarg);
3342 args.out_args[0].value = &outarg;
3343 err = fuse_simple_request(fm, &args);
3344 if (err == -ENOSYS) {
3345 fc->no_copy_file_range = 1;
3346 err = -EOPNOTSUPP;
3347 }
3348 if (err)
3349 goto out;
3350
3351 truncate_inode_pages_range(inode_out->i_mapping,
3352 ALIGN_DOWN(pos_out, PAGE_SIZE),
3353 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3354
3355 file_update_time(file_out);
3356 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size);
3357
3358 err = outarg.size;
3359 out:
3360 if (is_unstable)
3361 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3362
3363 inode_unlock(inode_out);
3364 file_accessed(file_in);
3365
3366 fuse_flush_time_update(inode_out);
3367
3368 return err;
3369 }
3370
fuse_copy_file_range(struct file * src_file,loff_t src_off,struct file * dst_file,loff_t dst_off,size_t len,unsigned int flags)3371 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3372 struct file *dst_file, loff_t dst_off,
3373 size_t len, unsigned int flags)
3374 {
3375 ssize_t ret;
3376
3377 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3378 len, flags);
3379
3380 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3381 ret = splice_copy_file_range(src_file, src_off, dst_file,
3382 dst_off, len);
3383 return ret;
3384 }
3385
3386 static const struct file_operations fuse_file_operations = {
3387 .llseek = fuse_file_llseek,
3388 .read_iter = fuse_file_read_iter,
3389 .write_iter = fuse_file_write_iter,
3390 .mmap = fuse_file_mmap,
3391 .open = fuse_open,
3392 .flush = fuse_flush,
3393 .release = fuse_release,
3394 .fsync = fuse_fsync,
3395 .lock = fuse_file_lock,
3396 .get_unmapped_area = thp_get_unmapped_area,
3397 .flock = fuse_file_flock,
3398 .splice_read = fuse_splice_read,
3399 .splice_write = fuse_splice_write,
3400 .unlocked_ioctl = fuse_file_ioctl,
3401 .compat_ioctl = fuse_file_compat_ioctl,
3402 .poll = fuse_file_poll,
3403 .fallocate = fuse_file_fallocate,
3404 .copy_file_range = fuse_copy_file_range,
3405 };
3406
3407 static const struct address_space_operations fuse_file_aops = {
3408 .read_folio = fuse_read_folio,
3409 .readahead = fuse_readahead,
3410 .writepages = fuse_writepages,
3411 .launder_folio = fuse_launder_folio,
3412 .dirty_folio = filemap_dirty_folio,
3413 .migrate_folio = filemap_migrate_folio,
3414 .bmap = fuse_bmap,
3415 .direct_IO = fuse_direct_IO,
3416 .write_begin = fuse_write_begin,
3417 .write_end = fuse_write_end,
3418 };
3419
fuse_init_file_inode(struct inode * inode,unsigned int flags)3420 void fuse_init_file_inode(struct inode *inode, unsigned int flags)
3421 {
3422 struct fuse_inode *fi = get_fuse_inode(inode);
3423
3424 inode->i_fop = &fuse_file_operations;
3425 inode->i_data.a_ops = &fuse_file_aops;
3426
3427 INIT_LIST_HEAD(&fi->write_files);
3428 INIT_LIST_HEAD(&fi->queued_writes);
3429 fi->writectr = 0;
3430 fi->iocachectr = 0;
3431 init_waitqueue_head(&fi->page_waitq);
3432 init_waitqueue_head(&fi->direct_io_waitq);
3433 fi->writepages = RB_ROOT;
3434
3435 if (IS_ENABLED(CONFIG_FUSE_DAX))
3436 fuse_dax_inode_init(inode, flags);
3437 }
3438