xref: /linux/sound/pci/rme32.c (revision 2c8d2a510c15c003749e43ac2b8e1bc79a7a00d6)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
4  *
5  *      Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
6  *                              Pilo Chambert <pilo.c@wanadoo.fr>
7  *
8  *      Thanks to :        Anders Torger <torger@ludd.luth.se>,
9  *                         Henk Hesselink <henk@anda.nl>
10  *                         for writing the digi96-driver
11  *                         and RME for all informations.
12  *
13  * ****************************************************************************
14  *
15  * Note #1 "Sek'd models" ................................... martin 2002-12-07
16  *
17  * Identical soundcards by Sek'd were labeled:
18  * RME Digi 32     = Sek'd Prodif 32
19  * RME Digi 32 Pro = Sek'd Prodif 96
20  * RME Digi 32/8   = Sek'd Prodif Gold
21  *
22  * ****************************************************************************
23  *
24  * Note #2 "full duplex mode" ............................... martin 2002-12-07
25  *
26  * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
27  * in this mode. Rec data and play data are using the same buffer therefore. At
28  * first you have got the playing bits in the buffer and then (after playing
29  * them) they were overwitten by the captured sound of the CS8412/14. Both
30  * modes (play/record) are running harmonically hand in hand in the same buffer
31  * and you have only one start bit plus one interrupt bit to control this
32  * paired action.
33  * This is opposite to the latter rme96 where playing and capturing is totally
34  * separated and so their full duplex mode is supported by alsa (using two
35  * start bits and two interrupts for two different buffers).
36  * But due to the wrong sequence of playing and capturing ALSA shows no solved
37  * full duplex support for the rme32 at the moment. That's bad, but I'm not
38  * able to solve it. Are you motivated enough to solve this problem now? Your
39  * patch would be welcome!
40  *
41  * ****************************************************************************
42  *
43  * "The story after the long seeking" -- tiwai
44  *
45  * Ok, the situation regarding the full duplex is now improved a bit.
46  * In the fullduplex mode (given by the module parameter), the hardware buffer
47  * is split to halves for read and write directions at the DMA pointer.
48  * That is, the half above the current DMA pointer is used for write, and
49  * the half below is used for read.  To mangle this strange behavior, an
50  * software intermediate buffer is introduced.  This is, of course, not good
51  * from the viewpoint of the data transfer efficiency.  However, this allows
52  * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
53  *
54  * ****************************************************************************
55  */
56 
57 
58 #include <linux/delay.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/interrupt.h>
62 #include <linux/pci.h>
63 #include <linux/module.h>
64 #include <linux/io.h>
65 
66 #include <sound/core.h>
67 #include <sound/info.h>
68 #include <sound/control.h>
69 #include <sound/pcm.h>
70 #include <sound/pcm_params.h>
71 #include <sound/pcm-indirect.h>
72 #include <sound/asoundef.h>
73 #include <sound/initval.h>
74 
75 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
76 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
77 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable this card */
78 static bool fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};
79 
80 module_param_array(index, int, NULL, 0444);
81 MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
82 module_param_array(id, charp, NULL, 0444);
83 MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
84 module_param_array(enable, bool, NULL, 0444);
85 MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
86 module_param_array(fullduplex, bool, NULL, 0444);
87 MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
88 MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
89 MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
90 MODULE_LICENSE("GPL");
91 
92 /* Defines for RME Digi32 series */
93 #define RME32_SPDIF_NCHANNELS 2
94 
95 /* Playback and capture buffer size */
96 #define RME32_BUFFER_SIZE 0x20000
97 
98 /* IO area size */
99 #define RME32_IO_SIZE 0x30000
100 
101 /* IO area offsets */
102 #define RME32_IO_DATA_BUFFER        0x0
103 #define RME32_IO_CONTROL_REGISTER   0x20000
104 #define RME32_IO_GET_POS            0x20000
105 #define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
106 #define RME32_IO_RESET_POS          0x20100
107 
108 /* Write control register bits */
109 #define RME32_WCR_START     (1 << 0)    /* startbit */
110 #define RME32_WCR_MONO      (1 << 1)    /* 0=stereo, 1=mono
111                                            Setting the whole card to mono
112                                            doesn't seem to be very useful.
113                                            A software-solution can handle
114                                            full-duplex with one direction in
115                                            stereo and the other way in mono.
116                                            So, the hardware should work all
117                                            the time in stereo! */
118 #define RME32_WCR_MODE24    (1 << 2)    /* 0=16bit, 1=32bit */
119 #define RME32_WCR_SEL       (1 << 3)    /* 0=input on output, 1=normal playback/capture */
120 #define RME32_WCR_FREQ_0    (1 << 4)    /* frequency (play) */
121 #define RME32_WCR_FREQ_1    (1 << 5)
122 #define RME32_WCR_INP_0     (1 << 6)    /* input switch */
123 #define RME32_WCR_INP_1     (1 << 7)
124 #define RME32_WCR_RESET     (1 << 8)    /* Reset address */
125 #define RME32_WCR_MUTE      (1 << 9)    /* digital mute for output */
126 #define RME32_WCR_PRO       (1 << 10)   /* 1=professional, 0=consumer */
127 #define RME32_WCR_DS_BM     (1 << 11)	/* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
128 #define RME32_WCR_ADAT      (1 << 12)	/* Adat Mode (only Adat-Version) */
129 #define RME32_WCR_AUTOSYNC  (1 << 13)   /* AutoSync */
130 #define RME32_WCR_PD        (1 << 14)	/* DAC Reset (only PRO-Version) */
131 #define RME32_WCR_EMP       (1 << 15)	/* 1=Emphasis on (only PRO-Version) */
132 
133 #define RME32_WCR_BITPOS_FREQ_0 4
134 #define RME32_WCR_BITPOS_FREQ_1 5
135 #define RME32_WCR_BITPOS_INP_0 6
136 #define RME32_WCR_BITPOS_INP_1 7
137 
138 /* Read control register bits */
139 #define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
140 #define RME32_RCR_LOCK      (1 << 23)   /* 1=locked, 0=not locked */
141 #define RME32_RCR_ERF       (1 << 26)   /* 1=Error, 0=no Error */
142 #define RME32_RCR_FREQ_0    (1 << 27)   /* CS841x frequency (record) */
143 #define RME32_RCR_FREQ_1    (1 << 28)
144 #define RME32_RCR_FREQ_2    (1 << 29)
145 #define RME32_RCR_KMODE     (1 << 30)   /* card mode: 1=PLL, 0=quartz */
146 #define RME32_RCR_IRQ       (1 << 31)   /* interrupt */
147 
148 #define RME32_RCR_BITPOS_F0 27
149 #define RME32_RCR_BITPOS_F1 28
150 #define RME32_RCR_BITPOS_F2 29
151 
152 /* Input types */
153 #define RME32_INPUT_OPTICAL 0
154 #define RME32_INPUT_COAXIAL 1
155 #define RME32_INPUT_INTERNAL 2
156 #define RME32_INPUT_XLR 3
157 
158 /* Clock modes */
159 #define RME32_CLOCKMODE_SLAVE 0
160 #define RME32_CLOCKMODE_MASTER_32 1
161 #define RME32_CLOCKMODE_MASTER_44 2
162 #define RME32_CLOCKMODE_MASTER_48 3
163 
164 /* Block sizes in bytes */
165 #define RME32_BLOCK_SIZE 8192
166 
167 /* Software intermediate buffer (max) size */
168 #define RME32_MID_BUFFER_SIZE (1024*1024)
169 
170 /* Hardware revisions */
171 #define RME32_32_REVISION 192
172 #define RME32_328_REVISION_OLD 100
173 #define RME32_328_REVISION_NEW 101
174 #define RME32_PRO_REVISION_WITH_8412 192
175 #define RME32_PRO_REVISION_WITH_8414 150
176 
177 
178 struct rme32 {
179 	spinlock_t lock;
180 	int irq;
181 	unsigned long port;
182 	void __iomem *iobase;
183 
184 	u32 wcreg;		/* cached write control register value */
185 	u32 wcreg_spdif;	/* S/PDIF setup */
186 	u32 wcreg_spdif_stream;	/* S/PDIF setup (temporary) */
187 	u32 rcreg;		/* cached read control register value */
188 
189 	u8 rev;			/* card revision number */
190 
191 	struct snd_pcm_substream *playback_substream;
192 	struct snd_pcm_substream *capture_substream;
193 
194 	int playback_frlog;	/* log2 of framesize */
195 	int capture_frlog;
196 
197 	size_t playback_periodsize;	/* in bytes, zero if not used */
198 	size_t capture_periodsize;	/* in bytes, zero if not used */
199 
200 	unsigned int fullduplex_mode;
201 	int running;
202 
203 	struct snd_pcm_indirect playback_pcm;
204 	struct snd_pcm_indirect capture_pcm;
205 
206 	struct snd_card *card;
207 	struct snd_pcm *spdif_pcm;
208 	struct snd_pcm *adat_pcm;
209 	struct pci_dev *pci;
210 	struct snd_kcontrol *spdif_ctl;
211 };
212 
213 static const struct pci_device_id snd_rme32_ids[] = {
214 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32), 0,},
215 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8), 0,},
216 	{PCI_VDEVICE(XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO), 0,},
217 	{0,}
218 };
219 
220 MODULE_DEVICE_TABLE(pci, snd_rme32_ids);
221 
222 #define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
223 #define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)
224 
225 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);
226 
227 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);
228 
229 static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);
230 
231 static void snd_rme32_proc_init(struct rme32 * rme32);
232 
233 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);
234 
235 static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
236 {
237 	return (readl(rme32->iobase + RME32_IO_GET_POS)
238 		& RME32_RCR_AUDIO_ADDR_MASK);
239 }
240 
241 /* silence callback for halfduplex mode */
242 static int snd_rme32_playback_silence(struct snd_pcm_substream *substream,
243 				      int channel, unsigned long pos,
244 				      unsigned long count)
245 {
246 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
247 
248 	memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
249 	return 0;
250 }
251 
252 /* copy callback for halfduplex mode */
253 static int snd_rme32_playback_copy(struct snd_pcm_substream *substream,
254 				   int channel, unsigned long pos,
255 				   struct iov_iter *src, unsigned long count)
256 {
257 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
258 
259 	if (copy_from_iter_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
260 				count, src) != count)
261 		return -EFAULT;
262 	return 0;
263 }
264 
265 /* copy callback for halfduplex mode */
266 static int snd_rme32_capture_copy(struct snd_pcm_substream *substream,
267 				  int channel, unsigned long pos,
268 				  struct iov_iter *dst, unsigned long count)
269 {
270 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
271 
272 	if (copy_to_iter_fromio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
273 				count, dst) != count)
274 		return -EFAULT;
275 	return 0;
276 }
277 
278 /*
279  * SPDIF I/O capabilities (half-duplex mode)
280  */
281 static const struct snd_pcm_hardware snd_rme32_spdif_info = {
282 	.info =		(SNDRV_PCM_INFO_MMAP_IOMEM |
283 			 SNDRV_PCM_INFO_MMAP_VALID |
284 			 SNDRV_PCM_INFO_INTERLEAVED |
285 			 SNDRV_PCM_INFO_PAUSE |
286 			 SNDRV_PCM_INFO_SYNC_START |
287 			 SNDRV_PCM_INFO_SYNC_APPLPTR),
288 	.formats =	(SNDRV_PCM_FMTBIT_S16_LE |
289 			 SNDRV_PCM_FMTBIT_S32_LE),
290 	.rates =	(SNDRV_PCM_RATE_32000 |
291 			 SNDRV_PCM_RATE_44100 |
292 			 SNDRV_PCM_RATE_48000),
293 	.rate_min =	32000,
294 	.rate_max =	48000,
295 	.channels_min =	2,
296 	.channels_max =	2,
297 	.buffer_bytes_max = RME32_BUFFER_SIZE,
298 	.period_bytes_min = RME32_BLOCK_SIZE,
299 	.period_bytes_max = RME32_BLOCK_SIZE,
300 	.periods_min =	RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
301 	.periods_max =	RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
302 	.fifo_size =	0,
303 };
304 
305 /*
306  * ADAT I/O capabilities (half-duplex mode)
307  */
308 static const struct snd_pcm_hardware snd_rme32_adat_info =
309 {
310 	.info =		     (SNDRV_PCM_INFO_MMAP_IOMEM |
311 			      SNDRV_PCM_INFO_MMAP_VALID |
312 			      SNDRV_PCM_INFO_INTERLEAVED |
313 			      SNDRV_PCM_INFO_PAUSE |
314 			      SNDRV_PCM_INFO_SYNC_START |
315 			      SNDRV_PCM_INFO_SYNC_APPLPTR),
316 	.formats=            SNDRV_PCM_FMTBIT_S16_LE,
317 	.rates =             (SNDRV_PCM_RATE_44100 |
318 			      SNDRV_PCM_RATE_48000),
319 	.rate_min =          44100,
320 	.rate_max =          48000,
321 	.channels_min =      8,
322 	.channels_max =	     8,
323 	.buffer_bytes_max =  RME32_BUFFER_SIZE,
324 	.period_bytes_min =  RME32_BLOCK_SIZE,
325 	.period_bytes_max =  RME32_BLOCK_SIZE,
326 	.periods_min =	    RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
327 	.periods_max =	    RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
328 	.fifo_size =	    0,
329 };
330 
331 /*
332  * SPDIF I/O capabilities (full-duplex mode)
333  */
334 static const struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
335 	.info =		(SNDRV_PCM_INFO_MMAP |
336 			 SNDRV_PCM_INFO_MMAP_VALID |
337 			 SNDRV_PCM_INFO_INTERLEAVED |
338 			 SNDRV_PCM_INFO_PAUSE |
339 			 SNDRV_PCM_INFO_SYNC_START |
340 			 SNDRV_PCM_INFO_SYNC_APPLPTR),
341 	.formats =	(SNDRV_PCM_FMTBIT_S16_LE |
342 			 SNDRV_PCM_FMTBIT_S32_LE),
343 	.rates =	(SNDRV_PCM_RATE_32000 |
344 			 SNDRV_PCM_RATE_44100 |
345 			 SNDRV_PCM_RATE_48000),
346 	.rate_min =	32000,
347 	.rate_max =	48000,
348 	.channels_min =	2,
349 	.channels_max =	2,
350 	.buffer_bytes_max = RME32_MID_BUFFER_SIZE,
351 	.period_bytes_min = RME32_BLOCK_SIZE,
352 	.period_bytes_max = RME32_BLOCK_SIZE,
353 	.periods_min =	2,
354 	.periods_max =	RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
355 	.fifo_size =	0,
356 };
357 
358 /*
359  * ADAT I/O capabilities (full-duplex mode)
360  */
361 static const struct snd_pcm_hardware snd_rme32_adat_fd_info =
362 {
363 	.info =		     (SNDRV_PCM_INFO_MMAP |
364 			      SNDRV_PCM_INFO_MMAP_VALID |
365 			      SNDRV_PCM_INFO_INTERLEAVED |
366 			      SNDRV_PCM_INFO_PAUSE |
367 			      SNDRV_PCM_INFO_SYNC_START |
368 			      SNDRV_PCM_INFO_SYNC_APPLPTR),
369 	.formats=            SNDRV_PCM_FMTBIT_S16_LE,
370 	.rates =             (SNDRV_PCM_RATE_44100 |
371 			      SNDRV_PCM_RATE_48000),
372 	.rate_min =          44100,
373 	.rate_max =          48000,
374 	.channels_min =      8,
375 	.channels_max =	     8,
376 	.buffer_bytes_max =  RME32_MID_BUFFER_SIZE,
377 	.period_bytes_min =  RME32_BLOCK_SIZE,
378 	.period_bytes_max =  RME32_BLOCK_SIZE,
379 	.periods_min =	    2,
380 	.periods_max =	    RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
381 	.fifo_size =	    0,
382 };
383 
384 static void snd_rme32_reset_dac(struct rme32 *rme32)
385 {
386         writel(rme32->wcreg | RME32_WCR_PD,
387                rme32->iobase + RME32_IO_CONTROL_REGISTER);
388         writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
389 }
390 
391 static int snd_rme32_playback_getrate(struct rme32 * rme32)
392 {
393 	int rate;
394 
395 	rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
396 	       (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
397 	switch (rate) {
398 	case 1:
399 		rate = 32000;
400 		break;
401 	case 2:
402 		rate = 44100;
403 		break;
404 	case 3:
405 		rate = 48000;
406 		break;
407 	default:
408 		return -1;
409 	}
410 	return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
411 }
412 
413 static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
414 {
415 	int n;
416 
417 	*is_adat = 0;
418 	if (rme32->rcreg & RME32_RCR_LOCK) {
419                 /* ADAT rate */
420                 *is_adat = 1;
421 	}
422 	if (rme32->rcreg & RME32_RCR_ERF) {
423 		return -1;
424 	}
425 
426         /* S/PDIF rate */
427 	n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
428 		(((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
429 		(((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);
430 
431 	if (RME32_PRO_WITH_8414(rme32))
432 		switch (n) {	/* supporting the CS8414 */
433 		case 0:
434 		case 1:
435 		case 2:
436 			return -1;
437 		case 3:
438 			return 96000;
439 		case 4:
440 			return 88200;
441 		case 5:
442 			return 48000;
443 		case 6:
444 			return 44100;
445 		case 7:
446 			return 32000;
447 		default:
448 			return -1;
449 		}
450 	else
451 		switch (n) {	/* supporting the CS8412 */
452 		case 0:
453 			return -1;
454 		case 1:
455 			return 48000;
456 		case 2:
457 			return 44100;
458 		case 3:
459 			return 32000;
460 		case 4:
461 			return 48000;
462 		case 5:
463 			return 44100;
464 		case 6:
465 			return 44056;
466 		case 7:
467 			return 32000;
468 		default:
469 			break;
470 		}
471 	return -1;
472 }
473 
474 static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
475 {
476         int ds;
477 
478         ds = rme32->wcreg & RME32_WCR_DS_BM;
479 	switch (rate) {
480 	case 32000:
481 		rme32->wcreg &= ~RME32_WCR_DS_BM;
482 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
483 			~RME32_WCR_FREQ_1;
484 		break;
485 	case 44100:
486 		rme32->wcreg &= ~RME32_WCR_DS_BM;
487 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
488 			~RME32_WCR_FREQ_0;
489 		break;
490 	case 48000:
491 		rme32->wcreg &= ~RME32_WCR_DS_BM;
492 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
493 			RME32_WCR_FREQ_1;
494 		break;
495 	case 64000:
496 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
497 			return -EINVAL;
498 		rme32->wcreg |= RME32_WCR_DS_BM;
499 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
500 			~RME32_WCR_FREQ_1;
501 		break;
502 	case 88200:
503 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
504 			return -EINVAL;
505 		rme32->wcreg |= RME32_WCR_DS_BM;
506 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) &
507 			~RME32_WCR_FREQ_0;
508 		break;
509 	case 96000:
510 		if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
511 			return -EINVAL;
512 		rme32->wcreg |= RME32_WCR_DS_BM;
513 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
514 			RME32_WCR_FREQ_1;
515 		break;
516 	default:
517 		return -EINVAL;
518 	}
519         if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
520             (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
521         {
522                 /* change to/from double-speed: reset the DAC (if available) */
523                 snd_rme32_reset_dac(rme32);
524         } else {
525                 writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
526 	}
527 	return 0;
528 }
529 
530 static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
531 {
532 	switch (mode) {
533 	case RME32_CLOCKMODE_SLAVE:
534 		/* AutoSync */
535 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) &
536 			~RME32_WCR_FREQ_1;
537 		break;
538 	case RME32_CLOCKMODE_MASTER_32:
539 		/* Internal 32.0kHz */
540 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) &
541 			~RME32_WCR_FREQ_1;
542 		break;
543 	case RME32_CLOCKMODE_MASTER_44:
544 		/* Internal 44.1kHz */
545 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) |
546 			RME32_WCR_FREQ_1;
547 		break;
548 	case RME32_CLOCKMODE_MASTER_48:
549 		/* Internal 48.0kHz */
550 		rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) |
551 			RME32_WCR_FREQ_1;
552 		break;
553 	default:
554 		return -EINVAL;
555 	}
556 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
557 	return 0;
558 }
559 
560 static int snd_rme32_getclockmode(struct rme32 * rme32)
561 {
562 	return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
563 	    (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
564 }
565 
566 static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
567 {
568 	switch (type) {
569 	case RME32_INPUT_OPTICAL:
570 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) &
571 			~RME32_WCR_INP_1;
572 		break;
573 	case RME32_INPUT_COAXIAL:
574 		rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) &
575 			~RME32_WCR_INP_1;
576 		break;
577 	case RME32_INPUT_INTERNAL:
578 		rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) |
579 			RME32_WCR_INP_1;
580 		break;
581 	case RME32_INPUT_XLR:
582 		rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) |
583 			RME32_WCR_INP_1;
584 		break;
585 	default:
586 		return -EINVAL;
587 	}
588 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
589 	return 0;
590 }
591 
592 static int snd_rme32_getinputtype(struct rme32 * rme32)
593 {
594 	return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
595 	    (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
596 }
597 
598 static void
599 snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
600 {
601 	int frlog;
602 
603 	if (n_channels == 2) {
604 		frlog = 1;
605 	} else {
606 		/* assume 8 channels */
607 		frlog = 3;
608 	}
609 	if (is_playback) {
610 		frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
611 		rme32->playback_frlog = frlog;
612 	} else {
613 		frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
614 		rme32->capture_frlog = frlog;
615 	}
616 }
617 
618 static int snd_rme32_setformat(struct rme32 *rme32, snd_pcm_format_t format)
619 {
620 	switch (format) {
621 	case SNDRV_PCM_FORMAT_S16_LE:
622 		rme32->wcreg &= ~RME32_WCR_MODE24;
623 		break;
624 	case SNDRV_PCM_FORMAT_S32_LE:
625 		rme32->wcreg |= RME32_WCR_MODE24;
626 		break;
627 	default:
628 		return -EINVAL;
629 	}
630 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
631 	return 0;
632 }
633 
634 static int
635 snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
636 			     struct snd_pcm_hw_params *params)
637 {
638 	int err, rate, dummy;
639 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
640 	struct snd_pcm_runtime *runtime = substream->runtime;
641 
642 	if (!rme32->fullduplex_mode) {
643 		runtime->dma_area = (void __force *)(rme32->iobase +
644 						     RME32_IO_DATA_BUFFER);
645 		runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
646 		runtime->dma_bytes = RME32_BUFFER_SIZE;
647 	}
648 
649 	spin_lock_irq(&rme32->lock);
650 	rate = 0;
651 	if (rme32->rcreg & RME32_RCR_KMODE)
652 		rate = snd_rme32_capture_getrate(rme32, &dummy);
653 	if (rate > 0) {
654 		/* AutoSync */
655 		if ((int)params_rate(params) != rate) {
656 			spin_unlock_irq(&rme32->lock);
657 			return -EIO;
658 		}
659 	} else {
660 		err = snd_rme32_playback_setrate(rme32, params_rate(params));
661 		if (err < 0) {
662 			spin_unlock_irq(&rme32->lock);
663 			return err;
664 		}
665 	}
666 	err = snd_rme32_setformat(rme32, params_format(params));
667 	if (err < 0) {
668 		spin_unlock_irq(&rme32->lock);
669 		return err;
670 	}
671 
672 	snd_rme32_setframelog(rme32, params_channels(params), 1);
673 	if (rme32->capture_periodsize != 0) {
674 		if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
675 			spin_unlock_irq(&rme32->lock);
676 			return -EBUSY;
677 		}
678 	}
679 	rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
680 	/* S/PDIF setup */
681 	if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
682 		rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
683 		rme32->wcreg |= rme32->wcreg_spdif_stream;
684 		writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
685 	}
686 	spin_unlock_irq(&rme32->lock);
687 
688 	return 0;
689 }
690 
691 static int
692 snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
693 			    struct snd_pcm_hw_params *params)
694 {
695 	int err, isadat, rate;
696 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
697 	struct snd_pcm_runtime *runtime = substream->runtime;
698 
699 	if (!rme32->fullduplex_mode) {
700 		runtime->dma_area = (void __force *)rme32->iobase +
701 					RME32_IO_DATA_BUFFER;
702 		runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
703 		runtime->dma_bytes = RME32_BUFFER_SIZE;
704 	}
705 
706 	spin_lock_irq(&rme32->lock);
707 	/* enable AutoSync for record-preparing */
708 	rme32->wcreg |= RME32_WCR_AUTOSYNC;
709 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
710 
711 	err = snd_rme32_setformat(rme32, params_format(params));
712 	if (err < 0) {
713 		spin_unlock_irq(&rme32->lock);
714 		return err;
715 	}
716 	err = snd_rme32_playback_setrate(rme32, params_rate(params));
717 	if (err < 0) {
718 		spin_unlock_irq(&rme32->lock);
719 		return err;
720 	}
721 	rate = snd_rme32_capture_getrate(rme32, &isadat);
722 	if (rate > 0) {
723                 if ((int)params_rate(params) != rate) {
724 			spin_unlock_irq(&rme32->lock);
725                         return -EIO;
726                 }
727                 if ((isadat && runtime->hw.channels_min == 2) ||
728                     (!isadat && runtime->hw.channels_min == 8)) {
729 			spin_unlock_irq(&rme32->lock);
730                         return -EIO;
731                 }
732 	}
733 	/* AutoSync off for recording */
734 	rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
735 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
736 
737 	snd_rme32_setframelog(rme32, params_channels(params), 0);
738 	if (rme32->playback_periodsize != 0) {
739 		if (params_period_size(params) << rme32->capture_frlog !=
740 		    rme32->playback_periodsize) {
741 			spin_unlock_irq(&rme32->lock);
742 			return -EBUSY;
743 		}
744 	}
745 	rme32->capture_periodsize =
746 	    params_period_size(params) << rme32->capture_frlog;
747 	spin_unlock_irq(&rme32->lock);
748 
749 	return 0;
750 }
751 
752 static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
753 {
754 	if (!from_pause) {
755 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
756 	}
757 
758 	rme32->wcreg |= RME32_WCR_START;
759 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
760 }
761 
762 static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
763 {
764 	/*
765 	 * Check if there is an unconfirmed IRQ, if so confirm it, or else
766 	 * the hardware will not stop generating interrupts
767 	 */
768 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
769 	if (rme32->rcreg & RME32_RCR_IRQ) {
770 		writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
771 	}
772 	rme32->wcreg &= ~RME32_WCR_START;
773 	if (rme32->wcreg & RME32_WCR_SEL)
774 		rme32->wcreg |= RME32_WCR_MUTE;
775 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
776 	if (! to_pause)
777 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
778 }
779 
780 static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
781 {
782 	struct rme32 *rme32 = (struct rme32 *) dev_id;
783 
784 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
785 	if (!(rme32->rcreg & RME32_RCR_IRQ)) {
786 		return IRQ_NONE;
787 	} else {
788 		if (rme32->capture_substream) {
789 			snd_pcm_period_elapsed(rme32->capture_substream);
790 		}
791 		if (rme32->playback_substream) {
792 			snd_pcm_period_elapsed(rme32->playback_substream);
793 		}
794 		writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
795 	}
796 	return IRQ_HANDLED;
797 }
798 
799 static const unsigned int period_bytes[] = { RME32_BLOCK_SIZE };
800 
801 static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
802 	.count = ARRAY_SIZE(period_bytes),
803 	.list = period_bytes,
804 	.mask = 0
805 };
806 
807 static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
808 {
809 	if (! rme32->fullduplex_mode) {
810 		snd_pcm_hw_constraint_single(runtime,
811 					     SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
812 					     RME32_BUFFER_SIZE);
813 		snd_pcm_hw_constraint_list(runtime, 0,
814 					   SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
815 					   &hw_constraints_period_bytes);
816 	}
817 }
818 
819 static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
820 {
821 	int rate, dummy;
822 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
823 	struct snd_pcm_runtime *runtime = substream->runtime;
824 
825 	snd_pcm_set_sync(substream);
826 
827 	spin_lock_irq(&rme32->lock);
828 	if (rme32->playback_substream != NULL) {
829 		spin_unlock_irq(&rme32->lock);
830 		return -EBUSY;
831 	}
832 	rme32->wcreg &= ~RME32_WCR_ADAT;
833 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
834 	rme32->playback_substream = substream;
835 	spin_unlock_irq(&rme32->lock);
836 
837 	if (rme32->fullduplex_mode)
838 		runtime->hw = snd_rme32_spdif_fd_info;
839 	else
840 		runtime->hw = snd_rme32_spdif_info;
841 	if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
842 		runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
843 		runtime->hw.rate_max = 96000;
844 	}
845 	rate = 0;
846 	if (rme32->rcreg & RME32_RCR_KMODE)
847 		rate = snd_rme32_capture_getrate(rme32, &dummy);
848 	if (rate > 0) {
849 		/* AutoSync */
850 		runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
851 		runtime->hw.rate_min = rate;
852 		runtime->hw.rate_max = rate;
853 	}
854 
855 	snd_rme32_set_buffer_constraint(rme32, runtime);
856 
857 	rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
858 	rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
859 	snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
860 		       SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
861 	return 0;
862 }
863 
864 static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
865 {
866 	int isadat, rate;
867 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
868 	struct snd_pcm_runtime *runtime = substream->runtime;
869 
870 	snd_pcm_set_sync(substream);
871 
872 	spin_lock_irq(&rme32->lock);
873         if (rme32->capture_substream != NULL) {
874 		spin_unlock_irq(&rme32->lock);
875                 return -EBUSY;
876         }
877 	rme32->capture_substream = substream;
878 	spin_unlock_irq(&rme32->lock);
879 
880 	if (rme32->fullduplex_mode)
881 		runtime->hw = snd_rme32_spdif_fd_info;
882 	else
883 		runtime->hw = snd_rme32_spdif_info;
884 	if (RME32_PRO_WITH_8414(rme32)) {
885 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
886 		runtime->hw.rate_max = 96000;
887 	}
888 	rate = snd_rme32_capture_getrate(rme32, &isadat);
889 	if (rate > 0) {
890 		if (isadat) {
891 			return -EIO;
892 		}
893 		runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
894 		runtime->hw.rate_min = rate;
895 		runtime->hw.rate_max = rate;
896 	}
897 
898 	snd_rme32_set_buffer_constraint(rme32, runtime);
899 
900 	return 0;
901 }
902 
903 static int
904 snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
905 {
906 	int rate, dummy;
907 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
908 	struct snd_pcm_runtime *runtime = substream->runtime;
909 
910 	snd_pcm_set_sync(substream);
911 
912 	spin_lock_irq(&rme32->lock);
913         if (rme32->playback_substream != NULL) {
914 		spin_unlock_irq(&rme32->lock);
915                 return -EBUSY;
916         }
917 	rme32->wcreg |= RME32_WCR_ADAT;
918 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
919 	rme32->playback_substream = substream;
920 	spin_unlock_irq(&rme32->lock);
921 
922 	if (rme32->fullduplex_mode)
923 		runtime->hw = snd_rme32_adat_fd_info;
924 	else
925 		runtime->hw = snd_rme32_adat_info;
926 	rate = 0;
927 	if (rme32->rcreg & RME32_RCR_KMODE)
928 		rate = snd_rme32_capture_getrate(rme32, &dummy);
929 	if (rate > 0) {
930                 /* AutoSync */
931                 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
932                 runtime->hw.rate_min = rate;
933                 runtime->hw.rate_max = rate;
934 	}
935 
936 	snd_rme32_set_buffer_constraint(rme32, runtime);
937 	return 0;
938 }
939 
940 static int
941 snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
942 {
943 	int isadat, rate;
944 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
945 	struct snd_pcm_runtime *runtime = substream->runtime;
946 
947 	if (rme32->fullduplex_mode)
948 		runtime->hw = snd_rme32_adat_fd_info;
949 	else
950 		runtime->hw = snd_rme32_adat_info;
951 	rate = snd_rme32_capture_getrate(rme32, &isadat);
952 	if (rate > 0) {
953 		if (!isadat) {
954 			return -EIO;
955 		}
956                 runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
957                 runtime->hw.rate_min = rate;
958                 runtime->hw.rate_max = rate;
959         }
960 
961 	snd_pcm_set_sync(substream);
962 
963 	spin_lock_irq(&rme32->lock);
964 	if (rme32->capture_substream != NULL) {
965 		spin_unlock_irq(&rme32->lock);
966 		return -EBUSY;
967         }
968 	rme32->capture_substream = substream;
969 	spin_unlock_irq(&rme32->lock);
970 
971 	snd_rme32_set_buffer_constraint(rme32, runtime);
972 	return 0;
973 }
974 
975 static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
976 {
977 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
978 	int spdif = 0;
979 
980 	spin_lock_irq(&rme32->lock);
981 	rme32->playback_substream = NULL;
982 	rme32->playback_periodsize = 0;
983 	spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
984 	spin_unlock_irq(&rme32->lock);
985 	if (spdif) {
986 		rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
987 		snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
988 			       SNDRV_CTL_EVENT_MASK_INFO,
989 			       &rme32->spdif_ctl->id);
990 	}
991 	return 0;
992 }
993 
994 static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
995 {
996 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
997 
998 	spin_lock_irq(&rme32->lock);
999 	rme32->capture_substream = NULL;
1000 	rme32->capture_periodsize = 0;
1001 	spin_unlock_irq(&rme32->lock);
1002 	return 0;
1003 }
1004 
1005 static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
1006 {
1007 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1008 
1009 	spin_lock_irq(&rme32->lock);
1010 	if (rme32->fullduplex_mode) {
1011 		memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
1012 		rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1013 		rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1014 	} else {
1015 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
1016 	}
1017 	if (rme32->wcreg & RME32_WCR_SEL)
1018 		rme32->wcreg &= ~RME32_WCR_MUTE;
1019 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1020 	spin_unlock_irq(&rme32->lock);
1021 	return 0;
1022 }
1023 
1024 static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
1025 {
1026 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1027 
1028 	spin_lock_irq(&rme32->lock);
1029 	if (rme32->fullduplex_mode) {
1030 		memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
1031 		rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
1032 		rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
1033 		rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
1034 	} else {
1035 		writel(0, rme32->iobase + RME32_IO_RESET_POS);
1036 	}
1037 	spin_unlock_irq(&rme32->lock);
1038 	return 0;
1039 }
1040 
1041 static int
1042 snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1043 {
1044 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1045 	struct snd_pcm_substream *s;
1046 
1047 	spin_lock(&rme32->lock);
1048 	snd_pcm_group_for_each_entry(s, substream) {
1049 		if (s != rme32->playback_substream &&
1050 		    s != rme32->capture_substream)
1051 			continue;
1052 		switch (cmd) {
1053 		case SNDRV_PCM_TRIGGER_START:
1054 			rme32->running |= (1 << s->stream);
1055 			if (rme32->fullduplex_mode) {
1056 				/* remember the current DMA position */
1057 				if (s == rme32->playback_substream) {
1058 					rme32->playback_pcm.hw_io =
1059 					rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1060 				} else {
1061 					rme32->capture_pcm.hw_io =
1062 					rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
1063 				}
1064 			}
1065 			break;
1066 		case SNDRV_PCM_TRIGGER_STOP:
1067 			rme32->running &= ~(1 << s->stream);
1068 			break;
1069 		}
1070 		snd_pcm_trigger_done(s, substream);
1071 	}
1072 
1073 	switch (cmd) {
1074 	case SNDRV_PCM_TRIGGER_START:
1075 		if (rme32->running && ! RME32_ISWORKING(rme32))
1076 			snd_rme32_pcm_start(rme32, 0);
1077 		break;
1078 	case SNDRV_PCM_TRIGGER_STOP:
1079 		if (! rme32->running && RME32_ISWORKING(rme32))
1080 			snd_rme32_pcm_stop(rme32, 0);
1081 		break;
1082 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1083 		if (rme32->running && RME32_ISWORKING(rme32))
1084 			snd_rme32_pcm_stop(rme32, 1);
1085 		break;
1086 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1087 		if (rme32->running && ! RME32_ISWORKING(rme32))
1088 			snd_rme32_pcm_start(rme32, 1);
1089 		break;
1090 	}
1091 	spin_unlock(&rme32->lock);
1092 	return 0;
1093 }
1094 
1095 /* pointer callback for halfduplex mode */
1096 static snd_pcm_uframes_t
1097 snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
1098 {
1099 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1100 	return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
1101 }
1102 
1103 static snd_pcm_uframes_t
1104 snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
1105 {
1106 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1107 	return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
1108 }
1109 
1110 
1111 /* ack and pointer callbacks for fullduplex mode */
1112 static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
1113 				    struct snd_pcm_indirect *rec, size_t bytes)
1114 {
1115 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1116 	memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1117 		    substream->runtime->dma_area + rec->sw_data, bytes);
1118 }
1119 
1120 static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
1121 {
1122 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1123 	struct snd_pcm_indirect *rec, *cprec;
1124 
1125 	rec = &rme32->playback_pcm;
1126 	cprec = &rme32->capture_pcm;
1127 	spin_lock(&rme32->lock);
1128 	rec->hw_queue_size = RME32_BUFFER_SIZE;
1129 	if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
1130 		rec->hw_queue_size -= cprec->hw_ready;
1131 	spin_unlock(&rme32->lock);
1132 	return snd_pcm_indirect_playback_transfer(substream, rec,
1133 						  snd_rme32_pb_trans_copy);
1134 }
1135 
1136 static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
1137 				    struct snd_pcm_indirect *rec, size_t bytes)
1138 {
1139 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1140 	memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
1141 		      rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
1142 		      bytes);
1143 }
1144 
1145 static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
1146 {
1147 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1148 	return snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
1149 						 snd_rme32_cp_trans_copy);
1150 }
1151 
1152 static snd_pcm_uframes_t
1153 snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
1154 {
1155 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1156 	return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
1157 						 snd_rme32_pcm_byteptr(rme32));
1158 }
1159 
1160 static snd_pcm_uframes_t
1161 snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
1162 {
1163 	struct rme32 *rme32 = snd_pcm_substream_chip(substream);
1164 	return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
1165 						snd_rme32_pcm_byteptr(rme32));
1166 }
1167 
1168 /* for halfduplex mode */
1169 static const struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
1170 	.open =		snd_rme32_playback_spdif_open,
1171 	.close =	snd_rme32_playback_close,
1172 	.hw_params =	snd_rme32_playback_hw_params,
1173 	.prepare =	snd_rme32_playback_prepare,
1174 	.trigger =	snd_rme32_pcm_trigger,
1175 	.pointer =	snd_rme32_playback_pointer,
1176 	.copy =		snd_rme32_playback_copy,
1177 	.fill_silence =	snd_rme32_playback_silence,
1178 	.mmap =		snd_pcm_lib_mmap_iomem,
1179 };
1180 
1181 static const struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
1182 	.open =		snd_rme32_capture_spdif_open,
1183 	.close =	snd_rme32_capture_close,
1184 	.hw_params =	snd_rme32_capture_hw_params,
1185 	.prepare =	snd_rme32_capture_prepare,
1186 	.trigger =	snd_rme32_pcm_trigger,
1187 	.pointer =	snd_rme32_capture_pointer,
1188 	.copy =		snd_rme32_capture_copy,
1189 	.mmap =		snd_pcm_lib_mmap_iomem,
1190 };
1191 
1192 static const struct snd_pcm_ops snd_rme32_playback_adat_ops = {
1193 	.open =		snd_rme32_playback_adat_open,
1194 	.close =	snd_rme32_playback_close,
1195 	.hw_params =	snd_rme32_playback_hw_params,
1196 	.prepare =	snd_rme32_playback_prepare,
1197 	.trigger =	snd_rme32_pcm_trigger,
1198 	.pointer =	snd_rme32_playback_pointer,
1199 	.copy =		snd_rme32_playback_copy,
1200 	.fill_silence =	snd_rme32_playback_silence,
1201 	.mmap =		snd_pcm_lib_mmap_iomem,
1202 };
1203 
1204 static const struct snd_pcm_ops snd_rme32_capture_adat_ops = {
1205 	.open =		snd_rme32_capture_adat_open,
1206 	.close =	snd_rme32_capture_close,
1207 	.hw_params =	snd_rme32_capture_hw_params,
1208 	.prepare =	snd_rme32_capture_prepare,
1209 	.trigger =	snd_rme32_pcm_trigger,
1210 	.pointer =	snd_rme32_capture_pointer,
1211 	.copy =		snd_rme32_capture_copy,
1212 	.mmap =		snd_pcm_lib_mmap_iomem,
1213 };
1214 
1215 /* for fullduplex mode */
1216 static const struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
1217 	.open =		snd_rme32_playback_spdif_open,
1218 	.close =	snd_rme32_playback_close,
1219 	.hw_params =	snd_rme32_playback_hw_params,
1220 	.prepare =	snd_rme32_playback_prepare,
1221 	.trigger =	snd_rme32_pcm_trigger,
1222 	.pointer =	snd_rme32_playback_fd_pointer,
1223 	.ack =		snd_rme32_playback_fd_ack,
1224 };
1225 
1226 static const struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
1227 	.open =		snd_rme32_capture_spdif_open,
1228 	.close =	snd_rme32_capture_close,
1229 	.hw_params =	snd_rme32_capture_hw_params,
1230 	.prepare =	snd_rme32_capture_prepare,
1231 	.trigger =	snd_rme32_pcm_trigger,
1232 	.pointer =	snd_rme32_capture_fd_pointer,
1233 	.ack =		snd_rme32_capture_fd_ack,
1234 };
1235 
1236 static const struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
1237 	.open =		snd_rme32_playback_adat_open,
1238 	.close =	snd_rme32_playback_close,
1239 	.hw_params =	snd_rme32_playback_hw_params,
1240 	.prepare =	snd_rme32_playback_prepare,
1241 	.trigger =	snd_rme32_pcm_trigger,
1242 	.pointer =	snd_rme32_playback_fd_pointer,
1243 	.ack =		snd_rme32_playback_fd_ack,
1244 };
1245 
1246 static const struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
1247 	.open =		snd_rme32_capture_adat_open,
1248 	.close =	snd_rme32_capture_close,
1249 	.hw_params =	snd_rme32_capture_hw_params,
1250 	.prepare =	snd_rme32_capture_prepare,
1251 	.trigger =	snd_rme32_pcm_trigger,
1252 	.pointer =	snd_rme32_capture_fd_pointer,
1253 	.ack =		snd_rme32_capture_fd_ack,
1254 };
1255 
1256 static void snd_rme32_free(struct rme32 *rme32)
1257 {
1258 	if (rme32->irq >= 0)
1259 		snd_rme32_pcm_stop(rme32, 0);
1260 }
1261 
1262 static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
1263 {
1264 	struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1265 	rme32->spdif_pcm = NULL;
1266 }
1267 
1268 static void
1269 snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
1270 {
1271 	struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
1272 	rme32->adat_pcm = NULL;
1273 }
1274 
1275 static int snd_rme32_create(struct rme32 *rme32)
1276 {
1277 	struct pci_dev *pci = rme32->pci;
1278 	int err;
1279 
1280 	rme32->irq = -1;
1281 	spin_lock_init(&rme32->lock);
1282 
1283 	err = pcim_enable_device(pci);
1284 	if (err < 0)
1285 		return err;
1286 
1287 	err = pci_request_regions(pci, "RME32");
1288 	if (err < 0)
1289 		return err;
1290 	rme32->port = pci_resource_start(rme32->pci, 0);
1291 
1292 	rme32->iobase = devm_ioremap(&pci->dev, rme32->port, RME32_IO_SIZE);
1293 	if (!rme32->iobase) {
1294 		dev_err(rme32->card->dev,
1295 			"unable to remap memory region 0x%lx-0x%lx\n",
1296 			rme32->port, rme32->port + RME32_IO_SIZE - 1);
1297 		return -ENOMEM;
1298 	}
1299 
1300 	if (devm_request_irq(&pci->dev, pci->irq, snd_rme32_interrupt,
1301 			     IRQF_SHARED, KBUILD_MODNAME, rme32)) {
1302 		dev_err(rme32->card->dev, "unable to grab IRQ %d\n", pci->irq);
1303 		return -EBUSY;
1304 	}
1305 	rme32->irq = pci->irq;
1306 	rme32->card->sync_irq = rme32->irq;
1307 
1308 	/* read the card's revision number */
1309 	pci_read_config_byte(pci, 8, &rme32->rev);
1310 
1311 	/* set up ALSA pcm device for S/PDIF */
1312 	err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm);
1313 	if (err < 0)
1314 		return err;
1315 	rme32->spdif_pcm->private_data = rme32;
1316 	rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
1317 	strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
1318 	if (rme32->fullduplex_mode) {
1319 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1320 				&snd_rme32_playback_spdif_fd_ops);
1321 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1322 				&snd_rme32_capture_spdif_fd_ops);
1323 		snd_pcm_set_managed_buffer_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1324 					       NULL, 0, RME32_MID_BUFFER_SIZE);
1325 		rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1326 	} else {
1327 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1328 				&snd_rme32_playback_spdif_ops);
1329 		snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
1330 				&snd_rme32_capture_spdif_ops);
1331 		rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1332 	}
1333 
1334 	/* set up ALSA pcm device for ADAT */
1335 	if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
1336 	    (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
1337 		/* ADAT is not available on DIGI32 and DIGI32 Pro */
1338 		rme32->adat_pcm = NULL;
1339 	}
1340 	else {
1341 		err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
1342 				  1, 1, &rme32->adat_pcm);
1343 		if (err < 0)
1344 			return err;
1345 		rme32->adat_pcm->private_data = rme32;
1346 		rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
1347 		strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
1348 		if (rme32->fullduplex_mode) {
1349 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1350 					&snd_rme32_playback_adat_fd_ops);
1351 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1352 					&snd_rme32_capture_adat_fd_ops);
1353 			snd_pcm_set_managed_buffer_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
1354 						       NULL,
1355 						       0, RME32_MID_BUFFER_SIZE);
1356 			rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
1357 		} else {
1358 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK,
1359 					&snd_rme32_playback_adat_ops);
1360 			snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE,
1361 					&snd_rme32_capture_adat_ops);
1362 			rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
1363 		}
1364 	}
1365 
1366 
1367 	rme32->playback_periodsize = 0;
1368 	rme32->capture_periodsize = 0;
1369 
1370 	/* make sure playback/capture is stopped, if by some reason active */
1371 	snd_rme32_pcm_stop(rme32, 0);
1372 
1373         /* reset DAC */
1374         snd_rme32_reset_dac(rme32);
1375 
1376 	/* reset buffer pointer */
1377 	writel(0, rme32->iobase + RME32_IO_RESET_POS);
1378 
1379 	/* set default values in registers */
1380 	rme32->wcreg = RME32_WCR_SEL |	 /* normal playback */
1381 		RME32_WCR_INP_0 | /* input select */
1382 		RME32_WCR_MUTE;	 /* muting on */
1383 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1384 
1385 
1386 	/* init switch interface */
1387 	err = snd_rme32_create_switches(rme32->card, rme32);
1388 	if (err < 0)
1389 		return err;
1390 
1391 	/* init proc interface */
1392 	snd_rme32_proc_init(rme32);
1393 
1394 	rme32->capture_substream = NULL;
1395 	rme32->playback_substream = NULL;
1396 
1397 	return 0;
1398 }
1399 
1400 /*
1401  * proc interface
1402  */
1403 
1404 static void
1405 snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
1406 {
1407 	int n;
1408 	struct rme32 *rme32 = (struct rme32 *) entry->private_data;
1409 
1410 	rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
1411 
1412 	snd_iprintf(buffer, rme32->card->longname);
1413 	snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);
1414 
1415 	snd_iprintf(buffer, "\nGeneral settings\n");
1416 	if (rme32->fullduplex_mode)
1417 		snd_iprintf(buffer, "  Full-duplex mode\n");
1418 	else
1419 		snd_iprintf(buffer, "  Half-duplex mode\n");
1420 	if (RME32_PRO_WITH_8414(rme32)) {
1421 		snd_iprintf(buffer, "  receiver: CS8414\n");
1422 	} else {
1423 		snd_iprintf(buffer, "  receiver: CS8412\n");
1424 	}
1425 	if (rme32->wcreg & RME32_WCR_MODE24) {
1426 		snd_iprintf(buffer, "  format: 24 bit");
1427 	} else {
1428 		snd_iprintf(buffer, "  format: 16 bit");
1429 	}
1430 	if (rme32->wcreg & RME32_WCR_MONO) {
1431 		snd_iprintf(buffer, ", Mono\n");
1432 	} else {
1433 		snd_iprintf(buffer, ", Stereo\n");
1434 	}
1435 
1436 	snd_iprintf(buffer, "\nInput settings\n");
1437 	switch (snd_rme32_getinputtype(rme32)) {
1438 	case RME32_INPUT_OPTICAL:
1439 		snd_iprintf(buffer, "  input: optical");
1440 		break;
1441 	case RME32_INPUT_COAXIAL:
1442 		snd_iprintf(buffer, "  input: coaxial");
1443 		break;
1444 	case RME32_INPUT_INTERNAL:
1445 		snd_iprintf(buffer, "  input: internal");
1446 		break;
1447 	case RME32_INPUT_XLR:
1448 		snd_iprintf(buffer, "  input: XLR");
1449 		break;
1450 	}
1451 	if (snd_rme32_capture_getrate(rme32, &n) < 0) {
1452 		snd_iprintf(buffer, "\n  sample rate: no valid signal\n");
1453 	} else {
1454 		if (n) {
1455 			snd_iprintf(buffer, " (8 channels)\n");
1456 		} else {
1457 			snd_iprintf(buffer, " (2 channels)\n");
1458 		}
1459 		snd_iprintf(buffer, "  sample rate: %d Hz\n",
1460 			    snd_rme32_capture_getrate(rme32, &n));
1461 	}
1462 
1463 	snd_iprintf(buffer, "\nOutput settings\n");
1464 	if (rme32->wcreg & RME32_WCR_SEL) {
1465 		snd_iprintf(buffer, "  output signal: normal playback");
1466 	} else {
1467 		snd_iprintf(buffer, "  output signal: same as input");
1468 	}
1469 	if (rme32->wcreg & RME32_WCR_MUTE) {
1470 		snd_iprintf(buffer, " (muted)\n");
1471 	} else {
1472 		snd_iprintf(buffer, "\n");
1473 	}
1474 
1475 	/* master output frequency */
1476 	if (!
1477 	    ((!(rme32->wcreg & RME32_WCR_FREQ_0))
1478 	     && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
1479 		snd_iprintf(buffer, "  sample rate: %d Hz\n",
1480 			    snd_rme32_playback_getrate(rme32));
1481 	}
1482 	if (rme32->rcreg & RME32_RCR_KMODE) {
1483 		snd_iprintf(buffer, "  sample clock source: AutoSync\n");
1484 	} else {
1485 		snd_iprintf(buffer, "  sample clock source: Internal\n");
1486 	}
1487 	if (rme32->wcreg & RME32_WCR_PRO) {
1488 		snd_iprintf(buffer, "  format: AES/EBU (professional)\n");
1489 	} else {
1490 		snd_iprintf(buffer, "  format: IEC958 (consumer)\n");
1491 	}
1492 	if (rme32->wcreg & RME32_WCR_EMP) {
1493 		snd_iprintf(buffer, "  emphasis: on\n");
1494 	} else {
1495 		snd_iprintf(buffer, "  emphasis: off\n");
1496 	}
1497 }
1498 
1499 static void snd_rme32_proc_init(struct rme32 *rme32)
1500 {
1501 	snd_card_ro_proc_new(rme32->card, "rme32", rme32, snd_rme32_proc_read);
1502 }
1503 
1504 /*
1505  * control interface
1506  */
1507 
1508 #define snd_rme32_info_loopback_control		snd_ctl_boolean_mono_info
1509 
1510 static int
1511 snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
1512 			       struct snd_ctl_elem_value *ucontrol)
1513 {
1514 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1515 
1516 	spin_lock_irq(&rme32->lock);
1517 	ucontrol->value.integer.value[0] =
1518 	    rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
1519 	spin_unlock_irq(&rme32->lock);
1520 	return 0;
1521 }
1522 static int
1523 snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
1524 			       struct snd_ctl_elem_value *ucontrol)
1525 {
1526 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1527 	unsigned int val;
1528 	int change;
1529 
1530 	val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
1531 	spin_lock_irq(&rme32->lock);
1532 	val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
1533 	change = val != rme32->wcreg;
1534 	if (ucontrol->value.integer.value[0])
1535 		val &= ~RME32_WCR_MUTE;
1536 	else
1537 		val |= RME32_WCR_MUTE;
1538 	rme32->wcreg = val;
1539 	writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1540 	spin_unlock_irq(&rme32->lock);
1541 	return change;
1542 }
1543 
1544 static int
1545 snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
1546 				 struct snd_ctl_elem_info *uinfo)
1547 {
1548 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1549 	static const char * const texts[4] = {
1550 		"Optical", "Coaxial", "Internal", "XLR"
1551 	};
1552 	int num_items;
1553 
1554 	switch (rme32->pci->device) {
1555 	case PCI_DEVICE_ID_RME_DIGI32:
1556 	case PCI_DEVICE_ID_RME_DIGI32_8:
1557 		num_items = 3;
1558 		break;
1559 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1560 		num_items = 4;
1561 		break;
1562 	default:
1563 		snd_BUG();
1564 		return -EINVAL;
1565 	}
1566 	return snd_ctl_enum_info(uinfo, 1, num_items, texts);
1567 }
1568 static int
1569 snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
1570 				struct snd_ctl_elem_value *ucontrol)
1571 {
1572 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1573 	unsigned int items = 3;
1574 
1575 	spin_lock_irq(&rme32->lock);
1576 	ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);
1577 
1578 	switch (rme32->pci->device) {
1579 	case PCI_DEVICE_ID_RME_DIGI32:
1580 	case PCI_DEVICE_ID_RME_DIGI32_8:
1581 		items = 3;
1582 		break;
1583 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1584 		items = 4;
1585 		break;
1586 	default:
1587 		snd_BUG();
1588 		break;
1589 	}
1590 	if (ucontrol->value.enumerated.item[0] >= items) {
1591 		ucontrol->value.enumerated.item[0] = items - 1;
1592 	}
1593 
1594 	spin_unlock_irq(&rme32->lock);
1595 	return 0;
1596 }
1597 static int
1598 snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
1599 				struct snd_ctl_elem_value *ucontrol)
1600 {
1601 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1602 	unsigned int val;
1603 	int change, items = 3;
1604 
1605 	switch (rme32->pci->device) {
1606 	case PCI_DEVICE_ID_RME_DIGI32:
1607 	case PCI_DEVICE_ID_RME_DIGI32_8:
1608 		items = 3;
1609 		break;
1610 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1611 		items = 4;
1612 		break;
1613 	default:
1614 		snd_BUG();
1615 		break;
1616 	}
1617 	val = ucontrol->value.enumerated.item[0] % items;
1618 
1619 	spin_lock_irq(&rme32->lock);
1620 	change = val != (unsigned int)snd_rme32_getinputtype(rme32);
1621 	snd_rme32_setinputtype(rme32, val);
1622 	spin_unlock_irq(&rme32->lock);
1623 	return change;
1624 }
1625 
1626 static int
1627 snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
1628 				 struct snd_ctl_elem_info *uinfo)
1629 {
1630 	static const char * const texts[4] = { "AutoSync",
1631 				  "Internal 32.0kHz",
1632 				  "Internal 44.1kHz",
1633 				  "Internal 48.0kHz" };
1634 
1635 	return snd_ctl_enum_info(uinfo, 1, 4, texts);
1636 }
1637 static int
1638 snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
1639 				struct snd_ctl_elem_value *ucontrol)
1640 {
1641 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1642 
1643 	spin_lock_irq(&rme32->lock);
1644 	ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
1645 	spin_unlock_irq(&rme32->lock);
1646 	return 0;
1647 }
1648 static int
1649 snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
1650 				struct snd_ctl_elem_value *ucontrol)
1651 {
1652 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1653 	unsigned int val;
1654 	int change;
1655 
1656 	val = ucontrol->value.enumerated.item[0] % 3;
1657 	spin_lock_irq(&rme32->lock);
1658 	change = val != (unsigned int)snd_rme32_getclockmode(rme32);
1659 	snd_rme32_setclockmode(rme32, val);
1660 	spin_unlock_irq(&rme32->lock);
1661 	return change;
1662 }
1663 
1664 static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
1665 {
1666 	u32 val = 0;
1667 	val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
1668 	if (val & RME32_WCR_PRO)
1669 		val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1670 	else
1671 		val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
1672 	return val;
1673 }
1674 
1675 static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
1676 {
1677 	aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
1678 	if (val & RME32_WCR_PRO)
1679 		aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
1680 	else
1681 		aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
1682 }
1683 
1684 static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
1685 					struct snd_ctl_elem_info *uinfo)
1686 {
1687 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1688 	uinfo->count = 1;
1689 	return 0;
1690 }
1691 
1692 static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
1693 				       struct snd_ctl_elem_value *ucontrol)
1694 {
1695 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1696 
1697 	snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1698 				 rme32->wcreg_spdif);
1699 	return 0;
1700 }
1701 
1702 static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
1703 				       struct snd_ctl_elem_value *ucontrol)
1704 {
1705 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1706 	int change;
1707 	u32 val;
1708 
1709 	val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1710 	spin_lock_irq(&rme32->lock);
1711 	change = val != rme32->wcreg_spdif;
1712 	rme32->wcreg_spdif = val;
1713 	spin_unlock_irq(&rme32->lock);
1714 	return change;
1715 }
1716 
1717 static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
1718 					       struct snd_ctl_elem_info *uinfo)
1719 {
1720 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1721 	uinfo->count = 1;
1722 	return 0;
1723 }
1724 
1725 static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
1726 					      struct snd_ctl_elem_value *
1727 					      ucontrol)
1728 {
1729 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1730 
1731 	snd_rme32_convert_to_aes(&ucontrol->value.iec958,
1732 				 rme32->wcreg_spdif_stream);
1733 	return 0;
1734 }
1735 
1736 static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
1737 					      struct snd_ctl_elem_value *
1738 					      ucontrol)
1739 {
1740 	struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
1741 	int change;
1742 	u32 val;
1743 
1744 	val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
1745 	spin_lock_irq(&rme32->lock);
1746 	change = val != rme32->wcreg_spdif_stream;
1747 	rme32->wcreg_spdif_stream = val;
1748 	rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
1749 	rme32->wcreg |= val;
1750 	writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
1751 	spin_unlock_irq(&rme32->lock);
1752 	return change;
1753 }
1754 
1755 static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
1756 					     struct snd_ctl_elem_info *uinfo)
1757 {
1758 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1759 	uinfo->count = 1;
1760 	return 0;
1761 }
1762 
1763 static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
1764 					    struct snd_ctl_elem_value *
1765 					    ucontrol)
1766 {
1767 	ucontrol->value.iec958.status[0] = kcontrol->private_value;
1768 	return 0;
1769 }
1770 
1771 static const struct snd_kcontrol_new snd_rme32_controls[] = {
1772 	{
1773 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1774 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1775 		.info =	snd_rme32_control_spdif_info,
1776 		.get =	snd_rme32_control_spdif_get,
1777 		.put =	snd_rme32_control_spdif_put
1778 	},
1779 	{
1780 		.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1781 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1782 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
1783 		.info =	snd_rme32_control_spdif_stream_info,
1784 		.get =	snd_rme32_control_spdif_stream_get,
1785 		.put =	snd_rme32_control_spdif_stream_put
1786 	},
1787 	{
1788 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1789 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1790 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
1791 		.info =	snd_rme32_control_spdif_mask_info,
1792 		.get =	snd_rme32_control_spdif_mask_get,
1793 		.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
1794 	},
1795 	{
1796 		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1797 		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1798 		.name =	SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
1799 		.info =	snd_rme32_control_spdif_mask_info,
1800 		.get =	snd_rme32_control_spdif_mask_get,
1801 		.private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
1802 	},
1803 	{
1804 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1805 		.name =	"Input Connector",
1806 		.info =	snd_rme32_info_inputtype_control,
1807 		.get =	snd_rme32_get_inputtype_control,
1808 		.put =	snd_rme32_put_inputtype_control
1809 	},
1810 	{
1811 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1812 		.name =	"Loopback Input",
1813 		.info =	snd_rme32_info_loopback_control,
1814 		.get =	snd_rme32_get_loopback_control,
1815 		.put =	snd_rme32_put_loopback_control
1816 	},
1817 	{
1818 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1819 		.name =	"Sample Clock Source",
1820 		.info =	snd_rme32_info_clockmode_control,
1821 		.get =	snd_rme32_get_clockmode_control,
1822 		.put =	snd_rme32_put_clockmode_control
1823 	}
1824 };
1825 
1826 static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
1827 {
1828 	int idx, err;
1829 	struct snd_kcontrol *kctl;
1830 
1831 	for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
1832 		kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32);
1833 		err = snd_ctl_add(card, kctl);
1834 		if (err < 0)
1835 			return err;
1836 		if (idx == 1)	/* IEC958 (S/PDIF) Stream */
1837 			rme32->spdif_ctl = kctl;
1838 	}
1839 
1840 	return 0;
1841 }
1842 
1843 /*
1844  * Card initialisation
1845  */
1846 
1847 static void snd_rme32_card_free(struct snd_card *card)
1848 {
1849 	snd_rme32_free(card->private_data);
1850 }
1851 
1852 static int
1853 __snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1854 {
1855 	static int dev;
1856 	struct rme32 *rme32;
1857 	struct snd_card *card;
1858 	int err;
1859 
1860 	if (dev >= SNDRV_CARDS) {
1861 		return -ENODEV;
1862 	}
1863 	if (!enable[dev]) {
1864 		dev++;
1865 		return -ENOENT;
1866 	}
1867 
1868 	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
1869 				sizeof(*rme32), &card);
1870 	if (err < 0)
1871 		return err;
1872 	card->private_free = snd_rme32_card_free;
1873 	rme32 = (struct rme32 *) card->private_data;
1874 	rme32->card = card;
1875 	rme32->pci = pci;
1876         if (fullduplex[dev])
1877 		rme32->fullduplex_mode = 1;
1878 	err = snd_rme32_create(rme32);
1879 	if (err < 0)
1880 		return err;
1881 
1882 	strcpy(card->driver, "Digi32");
1883 	switch (rme32->pci->device) {
1884 	case PCI_DEVICE_ID_RME_DIGI32:
1885 		strcpy(card->shortname, "RME Digi32");
1886 		break;
1887 	case PCI_DEVICE_ID_RME_DIGI32_8:
1888 		strcpy(card->shortname, "RME Digi32/8");
1889 		break;
1890 	case PCI_DEVICE_ID_RME_DIGI32_PRO:
1891 		strcpy(card->shortname, "RME Digi32 PRO");
1892 		break;
1893 	}
1894 	sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
1895 		card->shortname, rme32->rev, rme32->port, rme32->irq);
1896 
1897 	err = snd_card_register(card);
1898 	if (err < 0)
1899 		return err;
1900 	pci_set_drvdata(pci, card);
1901 	dev++;
1902 	return 0;
1903 }
1904 
1905 static int
1906 snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
1907 {
1908 	return snd_card_free_on_error(&pci->dev, __snd_rme32_probe(pci, pci_id));
1909 }
1910 
1911 static struct pci_driver rme32_driver = {
1912 	.name =		KBUILD_MODNAME,
1913 	.id_table =	snd_rme32_ids,
1914 	.probe =	snd_rme32_probe,
1915 };
1916 
1917 module_pci_driver(rme32_driver);
1918