xref: /linux/tools/testing/selftests/kvm/aarch64/set_id_regs.c (revision c34e9ab9a612ee8b18273398ef75c207b01f516d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * set_id_regs - Test for setting ID register from usersapce.
4  *
5  * Copyright (c) 2023 Google LLC.
6  *
7  *
8  * Test that KVM supports setting ID registers from userspace and handles the
9  * feature set correctly.
10  */
11 
12 #include <stdint.h>
13 #include "kvm_util.h"
14 #include "processor.h"
15 #include "test_util.h"
16 #include <linux/bitfield.h>
17 
18 enum ftr_type {
19 	FTR_EXACT,			/* Use a predefined safe value */
20 	FTR_LOWER_SAFE,			/* Smaller value is safe */
21 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
22 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
23 	FTR_END,			/* Mark the last ftr bits */
24 };
25 
26 #define FTR_SIGNED	true	/* Value should be treated as signed */
27 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
28 
29 struct reg_ftr_bits {
30 	char *name;
31 	bool sign;
32 	enum ftr_type type;
33 	uint8_t shift;
34 	uint64_t mask;
35 	/*
36 	 * For FTR_EXACT, safe_val is used as the exact safe value.
37 	 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
38 	 */
39 	int64_t safe_val;
40 };
41 
42 struct test_feature_reg {
43 	uint32_t reg;
44 	const struct reg_ftr_bits *ftr_bits;
45 };
46 
47 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL)	\
48 	{								\
49 		.name = #NAME,						\
50 		.sign = SIGNED,						\
51 		.type = TYPE,						\
52 		.shift = SHIFT,						\
53 		.mask = MASK,						\
54 		.safe_val = SAFE_VAL,					\
55 	}
56 
57 #define REG_FTR_BITS(type, reg, field, safe_val) \
58 	__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
59 		       reg##_##field##_MASK, safe_val)
60 
61 #define S_REG_FTR_BITS(type, reg, field, safe_val) \
62 	__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
63 		       reg##_##field##_MASK, safe_val)
64 
65 #define REG_FTR_END					\
66 	{						\
67 		.type = FTR_END,			\
68 	}
69 
70 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
71 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0),
72 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0),
73 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
74 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
75 	REG_FTR_END,
76 };
77 
78 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
79 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
80 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
81 	REG_FTR_END,
82 };
83 
84 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
85 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
86 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
87 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
88 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
89 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
90 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
91 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
92 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
93 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
94 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0),
95 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
96 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
97 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
98 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
99 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
100 	REG_FTR_END,
101 };
102 
103 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
104 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
105 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
106 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
107 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
108 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
109 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
110 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
111 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
112 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
113 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
114 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
115 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
116 	REG_FTR_END,
117 };
118 
119 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
120 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
121 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
122 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
123 	REG_FTR_END,
124 };
125 
126 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
127 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
128 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
129 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
130 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
131 	REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0),
132 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 0),
133 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 0),
134 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 0),
135 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 0),
136 	REG_FTR_END,
137 };
138 
139 static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = {
140 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0),
141 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI),
142 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0),
143 	REG_FTR_END,
144 };
145 
146 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
147 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
148 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
149 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
150 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
151 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
152 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
153 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
154 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
155 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ASIDBITS, 0),
156 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
157 	REG_FTR_END,
158 };
159 
160 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
161 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
162 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
163 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
164 	REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
165 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
166 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
167 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
168 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
169 	REG_FTR_END,
170 };
171 
172 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
173 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
174 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
175 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
176 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
177 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
178 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
179 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
180 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
181 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
182 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
183 	REG_FTR_END,
184 };
185 
186 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
187 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
188 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
189 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
190 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
191 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
192 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
193 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
194 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
195 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
196 	REG_FTR_END,
197 };
198 
199 #define TEST_REG(id, table)			\
200 	{					\
201 		.reg = id,			\
202 		.ftr_bits = &((table)[0]),	\
203 	}
204 
205 static struct test_feature_reg test_regs[] = {
206 	TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
207 	TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
208 	TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
209 	TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
210 	TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
211 	TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
212 	TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1),
213 	TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
214 	TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
215 	TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
216 	TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
217 };
218 
219 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
220 
221 static void guest_code(void)
222 {
223 	GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
224 	GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
225 	GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
226 	GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
227 	GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
228 	GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
229 	GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
230 	GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
231 	GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
232 	GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
233 	GUEST_REG_SYNC(SYS_CTR_EL0);
234 
235 	GUEST_DONE();
236 }
237 
238 /* Return a safe value to a given ftr_bits an ftr value */
239 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
240 {
241 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
242 
243 	if (ftr_bits->sign == FTR_UNSIGNED) {
244 		switch (ftr_bits->type) {
245 		case FTR_EXACT:
246 			ftr = ftr_bits->safe_val;
247 			break;
248 		case FTR_LOWER_SAFE:
249 			if (ftr > ftr_bits->safe_val)
250 				ftr--;
251 			break;
252 		case FTR_HIGHER_SAFE:
253 			if (ftr < ftr_max)
254 				ftr++;
255 			break;
256 		case FTR_HIGHER_OR_ZERO_SAFE:
257 			if (ftr == ftr_max)
258 				ftr = 0;
259 			else if (ftr != 0)
260 				ftr++;
261 			break;
262 		default:
263 			break;
264 		}
265 	} else if (ftr != ftr_max) {
266 		switch (ftr_bits->type) {
267 		case FTR_EXACT:
268 			ftr = ftr_bits->safe_val;
269 			break;
270 		case FTR_LOWER_SAFE:
271 			if (ftr > ftr_bits->safe_val)
272 				ftr--;
273 			break;
274 		case FTR_HIGHER_SAFE:
275 			if (ftr < ftr_max - 1)
276 				ftr++;
277 			break;
278 		case FTR_HIGHER_OR_ZERO_SAFE:
279 			if (ftr != 0 && ftr != ftr_max - 1)
280 				ftr++;
281 			break;
282 		default:
283 			break;
284 		}
285 	}
286 
287 	return ftr;
288 }
289 
290 /* Return an invalid value to a given ftr_bits an ftr value */
291 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
292 {
293 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
294 
295 	if (ftr_bits->sign == FTR_UNSIGNED) {
296 		switch (ftr_bits->type) {
297 		case FTR_EXACT:
298 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
299 			break;
300 		case FTR_LOWER_SAFE:
301 			ftr++;
302 			break;
303 		case FTR_HIGHER_SAFE:
304 			ftr--;
305 			break;
306 		case FTR_HIGHER_OR_ZERO_SAFE:
307 			if (ftr == 0)
308 				ftr = ftr_max;
309 			else
310 				ftr--;
311 			break;
312 		default:
313 			break;
314 		}
315 	} else if (ftr != ftr_max) {
316 		switch (ftr_bits->type) {
317 		case FTR_EXACT:
318 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
319 			break;
320 		case FTR_LOWER_SAFE:
321 			ftr++;
322 			break;
323 		case FTR_HIGHER_SAFE:
324 			ftr--;
325 			break;
326 		case FTR_HIGHER_OR_ZERO_SAFE:
327 			if (ftr == 0)
328 				ftr = ftr_max - 1;
329 			else
330 				ftr--;
331 			break;
332 		default:
333 			break;
334 		}
335 	} else {
336 		ftr = 0;
337 	}
338 
339 	return ftr;
340 }
341 
342 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
343 				     const struct reg_ftr_bits *ftr_bits)
344 {
345 	uint8_t shift = ftr_bits->shift;
346 	uint64_t mask = ftr_bits->mask;
347 	uint64_t val, new_val, ftr;
348 
349 	vcpu_get_reg(vcpu, reg, &val);
350 	ftr = (val & mask) >> shift;
351 
352 	ftr = get_safe_value(ftr_bits, ftr);
353 
354 	ftr <<= shift;
355 	val &= ~mask;
356 	val |= ftr;
357 
358 	vcpu_set_reg(vcpu, reg, val);
359 	vcpu_get_reg(vcpu, reg, &new_val);
360 	TEST_ASSERT_EQ(new_val, val);
361 
362 	return new_val;
363 }
364 
365 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
366 			      const struct reg_ftr_bits *ftr_bits)
367 {
368 	uint8_t shift = ftr_bits->shift;
369 	uint64_t mask = ftr_bits->mask;
370 	uint64_t val, old_val, ftr;
371 	int r;
372 
373 	vcpu_get_reg(vcpu, reg, &val);
374 	ftr = (val & mask) >> shift;
375 
376 	ftr = get_invalid_value(ftr_bits, ftr);
377 
378 	old_val = val;
379 	ftr <<= shift;
380 	val &= ~mask;
381 	val |= ftr;
382 
383 	r = __vcpu_set_reg(vcpu, reg, val);
384 	TEST_ASSERT(r < 0 && errno == EINVAL,
385 		    "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
386 
387 	vcpu_get_reg(vcpu, reg, &val);
388 	TEST_ASSERT_EQ(val, old_val);
389 }
390 
391 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE];
392 
393 #define encoding_to_range_idx(encoding)							\
394 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding),	\
395 				     sys_reg_CRn(encoding), sys_reg_CRm(encoding),	\
396 				     sys_reg_Op2(encoding))
397 
398 
399 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only)
400 {
401 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
402 	struct reg_mask_range range = {
403 		.addr = (__u64)masks,
404 	};
405 	int ret;
406 
407 	/* KVM should return error when reserved field is not zero */
408 	range.reserved[0] = 1;
409 	ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
410 	TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
411 
412 	/* Get writable masks for feature ID registers */
413 	memset(range.reserved, 0, sizeof(range.reserved));
414 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
415 
416 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
417 		const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
418 		uint32_t reg_id = test_regs[i].reg;
419 		uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
420 		int idx;
421 
422 		/* Get the index to masks array for the idreg */
423 		idx = encoding_to_range_idx(reg_id);
424 
425 		for (int j = 0;  ftr_bits[j].type != FTR_END; j++) {
426 			/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
427 			if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
428 				ksft_test_result_skip("%s on AARCH64 only system\n",
429 						      ftr_bits[j].name);
430 				continue;
431 			}
432 
433 			/* Make sure the feature field is writable */
434 			TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
435 
436 			test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
437 
438 			test_reg_vals[idx] = test_reg_set_success(vcpu, reg,
439 								  &ftr_bits[j]);
440 
441 			ksft_test_result_pass("%s\n", ftr_bits[j].name);
442 		}
443 	}
444 }
445 
446 #define MPAM_IDREG_TEST	6
447 static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu)
448 {
449 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
450 	struct reg_mask_range range = {
451 		.addr = (__u64)masks,
452 	};
453 	uint64_t val;
454 	int idx, err;
455 
456 	/*
457 	 * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero,
458 	 * check that if it can be set to 1, (i.e. it is supported by the
459 	 * hardware), that it can't be set to other values.
460 	 */
461 
462 	/* Get writable masks for feature ID registers */
463 	memset(range.reserved, 0, sizeof(range.reserved));
464 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
465 
466 	/* Writeable? Nothing to test! */
467 	idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1);
468 	if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) {
469 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n");
470 		return;
471 	}
472 
473 	/* Get the id register value */
474 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val);
475 
476 	/* Try to set MPAM=0. This should always be possible. */
477 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
478 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0);
479 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
480 	if (err)
481 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n");
482 	else
483 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n");
484 
485 	/* Try to set MPAM=1 */
486 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
487 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1);
488 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
489 	if (err)
490 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n");
491 	else
492 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n");
493 
494 	/* Try to set MPAM=2 */
495 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
496 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2);
497 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
498 	if (err)
499 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n");
500 	else
501 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n");
502 
503 	/* And again for ID_AA64PFR1_EL1.MPAM_frac */
504 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
505 	if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) {
506 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n");
507 		return;
508 	}
509 
510 	/* Get the id register value */
511 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), &val);
512 
513 	/* Try to set MPAM_frac=0. This should always be possible. */
514 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
515 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0);
516 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
517 	if (err)
518 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n");
519 	else
520 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n");
521 
522 	/* Try to set MPAM_frac=1 */
523 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
524 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1);
525 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
526 	if (err)
527 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n");
528 	else
529 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n");
530 
531 	/* Try to set MPAM_frac=2 */
532 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
533 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2);
534 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
535 	if (err)
536 		ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n");
537 	else
538 		ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n");
539 }
540 
541 static void test_guest_reg_read(struct kvm_vcpu *vcpu)
542 {
543 	bool done = false;
544 	struct ucall uc;
545 
546 	while (!done) {
547 		vcpu_run(vcpu);
548 
549 		switch (get_ucall(vcpu, &uc)) {
550 		case UCALL_ABORT:
551 			REPORT_GUEST_ASSERT(uc);
552 			break;
553 		case UCALL_SYNC:
554 			/* Make sure the written values are seen by guest */
555 			TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])],
556 				       uc.args[3]);
557 			break;
558 		case UCALL_DONE:
559 			done = true;
560 			break;
561 		default:
562 			TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
563 		}
564 	}
565 }
566 
567 /* Politely lifted from arch/arm64/include/asm/cache.h */
568 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */
569 #define CLIDR_CTYPE_SHIFT(level)	(3 * (level - 1))
570 #define CLIDR_CTYPE_MASK(level)		(7 << CLIDR_CTYPE_SHIFT(level))
571 #define CLIDR_CTYPE(clidr, level)	\
572 	(((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level))
573 
574 static void test_clidr(struct kvm_vcpu *vcpu)
575 {
576 	uint64_t clidr;
577 	int level;
578 
579 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), &clidr);
580 
581 	/* find the first empty level in the cache hierarchy */
582 	for (level = 1; level < 7; level++) {
583 		if (!CLIDR_CTYPE(clidr, level))
584 			break;
585 	}
586 
587 	/*
588 	 * If you have a mind-boggling 7 levels of cache, congratulations, you
589 	 * get to fix this.
590 	 */
591 	TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy");
592 
593 	/* stick in a unified cache level */
594 	clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level);
595 
596 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr);
597 	test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr;
598 }
599 
600 static void test_ctr(struct kvm_vcpu *vcpu)
601 {
602 	u64 ctr;
603 
604 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), &ctr);
605 	ctr &= ~CTR_EL0_DIC_MASK;
606 	if (ctr & CTR_EL0_IminLine_MASK)
607 		ctr--;
608 
609 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr);
610 	test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr;
611 }
612 
613 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu)
614 {
615 	u64 val;
616 
617 	test_clidr(vcpu);
618 	test_ctr(vcpu);
619 
620 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &val);
621 	val++;
622 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), val);
623 
624 	test_reg_vals[encoding_to_range_idx(SYS_MPIDR_EL1)] = val;
625 	ksft_test_result_pass("%s\n", __func__);
626 }
627 
628 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding)
629 {
630 	size_t idx = encoding_to_range_idx(encoding);
631 	uint64_t observed;
632 
633 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding), &observed);
634 	TEST_ASSERT_EQ(test_reg_vals[idx], observed);
635 }
636 
637 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu)
638 {
639 	/*
640 	 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an
641 	 * architectural reset of the vCPU.
642 	 */
643 	aarch64_vcpu_setup(vcpu, NULL);
644 
645 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++)
646 		test_assert_id_reg_unchanged(vcpu, test_regs[i].reg);
647 
648 	test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1);
649 	test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1);
650 	test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0);
651 
652 	ksft_test_result_pass("%s\n", __func__);
653 }
654 
655 int main(void)
656 {
657 	struct kvm_vcpu *vcpu;
658 	struct kvm_vm *vm;
659 	bool aarch64_only;
660 	uint64_t val, el0;
661 	int test_cnt;
662 
663 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
664 
665 	vm = vm_create_with_one_vcpu(&vcpu, guest_code);
666 
667 	/* Check for AARCH64 only system */
668 	vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val);
669 	el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val);
670 	aarch64_only = (el0 == ID_AA64PFR0_EL1_ELx_64BIT_ONLY);
671 
672 	ksft_print_header();
673 
674 	test_cnt = ARRAY_SIZE(ftr_id_aa64dfr0_el1) + ARRAY_SIZE(ftr_id_dfr0_el1) +
675 		   ARRAY_SIZE(ftr_id_aa64isar0_el1) + ARRAY_SIZE(ftr_id_aa64isar1_el1) +
676 		   ARRAY_SIZE(ftr_id_aa64isar2_el1) + ARRAY_SIZE(ftr_id_aa64pfr0_el1) +
677 		   ARRAY_SIZE(ftr_id_aa64pfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr0_el1) +
678 		   ARRAY_SIZE(ftr_id_aa64mmfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr2_el1) +
679 		   ARRAY_SIZE(ftr_id_aa64zfr0_el1) - ARRAY_SIZE(test_regs) + 2 +
680 		   MPAM_IDREG_TEST;
681 
682 	ksft_set_plan(test_cnt);
683 
684 	test_vm_ftr_id_regs(vcpu, aarch64_only);
685 	test_vcpu_ftr_id_regs(vcpu);
686 	test_user_set_mpam_reg(vcpu);
687 
688 	test_guest_reg_read(vcpu);
689 
690 	test_reset_preserves_id_regs(vcpu);
691 
692 	kvm_vm_free(vm);
693 
694 	ksft_finished();
695 }
696