xref: /linux/fs/notify/mark.c (revision a05fc7edd988c176491487ef0ae4dbf5f7a64cd7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Copyright (C) 2008 Red Hat, Inc., Eric Paris <eparis@redhat.com>
4  */
5 
6 /*
7  * fsnotify inode mark locking/lifetime/and refcnting
8  *
9  * REFCNT:
10  * The group->recnt and mark->refcnt tell how many "things" in the kernel
11  * currently are referencing the objects. Both kind of objects typically will
12  * live inside the kernel with a refcnt of 2, one for its creation and one for
13  * the reference a group and a mark hold to each other.
14  * If you are holding the appropriate locks, you can take a reference and the
15  * object itself is guaranteed to survive until the reference is dropped.
16  *
17  * LOCKING:
18  * There are 3 locks involved with fsnotify inode marks and they MUST be taken
19  * in order as follows:
20  *
21  * group->mark_mutex
22  * mark->lock
23  * mark->connector->lock
24  *
25  * group->mark_mutex protects the marks_list anchored inside a given group and
26  * each mark is hooked via the g_list.  It also protects the groups private
27  * data (i.e group limits).
28 
29  * mark->lock protects the marks attributes like its masks and flags.
30  * Furthermore it protects the access to a reference of the group that the mark
31  * is assigned to as well as the access to a reference of the inode/vfsmount
32  * that is being watched by the mark.
33  *
34  * mark->connector->lock protects the list of marks anchored inside an
35  * inode / vfsmount and each mark is hooked via the i_list.
36  *
37  * A list of notification marks relating to inode / mnt is contained in
38  * fsnotify_mark_connector. That structure is alive as long as there are any
39  * marks in the list and is also protected by fsnotify_mark_srcu. A mark gets
40  * detached from fsnotify_mark_connector when last reference to the mark is
41  * dropped.  Thus having mark reference is enough to protect mark->connector
42  * pointer and to make sure fsnotify_mark_connector cannot disappear. Also
43  * because we remove mark from g_list before dropping mark reference associated
44  * with that, any mark found through g_list is guaranteed to have
45  * mark->connector set until we drop group->mark_mutex.
46  *
47  * LIFETIME:
48  * Inode marks survive between when they are added to an inode and when their
49  * refcnt==0. Marks are also protected by fsnotify_mark_srcu.
50  *
51  * The inode mark can be cleared for a number of different reasons including:
52  * - The inode is unlinked for the last time.  (fsnotify_inode_remove)
53  * - The inode is being evicted from cache. (fsnotify_inode_delete)
54  * - The fs the inode is on is unmounted.  (fsnotify_inode_delete/fsnotify_unmount_inodes)
55  * - Something explicitly requests that it be removed.  (fsnotify_destroy_mark)
56  * - The fsnotify_group associated with the mark is going away and all such marks
57  *   need to be cleaned up. (fsnotify_clear_marks_by_group)
58  *
59  * This has the very interesting property of being able to run concurrently with
60  * any (or all) other directions.
61  */
62 
63 #include <linux/fs.h>
64 #include <linux/init.h>
65 #include <linux/kernel.h>
66 #include <linux/kthread.h>
67 #include <linux/module.h>
68 #include <linux/mutex.h>
69 #include <linux/slab.h>
70 #include <linux/spinlock.h>
71 #include <linux/srcu.h>
72 #include <linux/ratelimit.h>
73 
74 #include <linux/atomic.h>
75 
76 #include <linux/fsnotify_backend.h>
77 #include "fsnotify.h"
78 
79 #define FSNOTIFY_REAPER_DELAY	(1)	/* 1 jiffy */
80 
81 struct srcu_struct fsnotify_mark_srcu;
82 static struct kmem_cache *fsnotify_mark_connector_cachep;
83 static struct kmem_cache *fsnotify_inode_mark_connector_cachep;
84 
85 static DEFINE_SPINLOCK(destroy_lock);
86 static LIST_HEAD(destroy_list);
87 static struct fsnotify_mark_connector *connector_destroy_list;
88 
89 static void fsnotify_mark_destroy_workfn(struct work_struct *work);
90 static DECLARE_DELAYED_WORK(reaper_work, fsnotify_mark_destroy_workfn);
91 
92 static void fsnotify_connector_destroy_workfn(struct work_struct *work);
93 static DECLARE_WORK(connector_reaper_work, fsnotify_connector_destroy_workfn);
94 
95 void fsnotify_get_mark(struct fsnotify_mark *mark)
96 {
97 	WARN_ON_ONCE(!refcount_read(&mark->refcnt));
98 	refcount_inc(&mark->refcnt);
99 }
100 
101 static fsnotify_connp_t *fsnotify_object_connp(void *obj,
102 				enum fsnotify_obj_type obj_type)
103 {
104 	switch (obj_type) {
105 	case FSNOTIFY_OBJ_TYPE_INODE:
106 		return &((struct inode *)obj)->i_fsnotify_marks;
107 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
108 		return &real_mount(obj)->mnt_fsnotify_marks;
109 	case FSNOTIFY_OBJ_TYPE_SB:
110 		return fsnotify_sb_marks(obj);
111 	case FSNOTIFY_OBJ_TYPE_MNTNS:
112 		return &((struct mnt_namespace *)obj)->n_fsnotify_marks;
113 	default:
114 		return NULL;
115 	}
116 }
117 
118 static __u32 *fsnotify_conn_mask_p(struct fsnotify_mark_connector *conn)
119 {
120 	if (conn->type == FSNOTIFY_OBJ_TYPE_INODE)
121 		return &fsnotify_conn_inode(conn)->i_fsnotify_mask;
122 	else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT)
123 		return &fsnotify_conn_mount(conn)->mnt_fsnotify_mask;
124 	else if (conn->type == FSNOTIFY_OBJ_TYPE_SB)
125 		return &fsnotify_conn_sb(conn)->s_fsnotify_mask;
126 	else if (conn->type == FSNOTIFY_OBJ_TYPE_MNTNS)
127 		return &fsnotify_conn_mntns(conn)->n_fsnotify_mask;
128 	return NULL;
129 }
130 
131 __u32 fsnotify_conn_mask(struct fsnotify_mark_connector *conn)
132 {
133 	if (WARN_ON(!fsnotify_valid_obj_type(conn->type)))
134 		return 0;
135 
136 	return READ_ONCE(*fsnotify_conn_mask_p(conn));
137 }
138 
139 static void fsnotify_get_sb_watched_objects(struct super_block *sb)
140 {
141 	atomic_long_inc(fsnotify_sb_watched_objects(sb));
142 }
143 
144 static void fsnotify_put_sb_watched_objects(struct super_block *sb)
145 {
146 	atomic_long_t *watched_objects = fsnotify_sb_watched_objects(sb);
147 
148 	/* the superblock can go away after this decrement */
149 	if (atomic_long_dec_and_test(watched_objects))
150 		wake_up_var(watched_objects);
151 }
152 
153 static void fsnotify_get_inode_ref(struct inode *inode)
154 {
155 	ihold(inode);
156 	fsnotify_get_sb_watched_objects(inode->i_sb);
157 }
158 
159 static void fsnotify_put_inode_ref(struct inode *inode)
160 {
161 	/* read ->i_sb before the inode can go away */
162 	struct super_block *sb = inode->i_sb;
163 
164 	iput(inode);
165 	fsnotify_put_sb_watched_objects(sb);
166 }
167 
168 /*
169  * Grab or drop watched objects reference depending on whether the connector
170  * is attached and has any marks attached.
171  */
172 static void fsnotify_update_sb_watchers(struct super_block *sb,
173 					struct fsnotify_mark_connector *conn)
174 {
175 	struct fsnotify_sb_info *sbinfo = fsnotify_sb_info(sb);
176 	bool is_watched = conn->flags & FSNOTIFY_CONN_FLAG_IS_WATCHED;
177 	struct fsnotify_mark *first_mark = NULL;
178 	unsigned int highest_prio = 0;
179 
180 	if (conn->obj)
181 		first_mark = hlist_entry_safe(conn->list.first,
182 					      struct fsnotify_mark, obj_list);
183 	if (first_mark)
184 		highest_prio = first_mark->group->priority;
185 	if (WARN_ON(highest_prio >= __FSNOTIFY_PRIO_NUM))
186 		highest_prio = 0;
187 
188 	/*
189 	 * If the highest priority of group watching this object is prio,
190 	 * then watched object has a reference on counters [0..prio].
191 	 * Update priority >= 1 watched objects counters.
192 	 */
193 	for (unsigned int p = conn->prio + 1; p <= highest_prio; p++)
194 		atomic_long_inc(&sbinfo->watched_objects[p]);
195 	for (unsigned int p = conn->prio; p > highest_prio; p--)
196 		atomic_long_dec(&sbinfo->watched_objects[p]);
197 	conn->prio = highest_prio;
198 
199 	/* Update priority >= 0 (a.k.a total) watched objects counter */
200 	BUILD_BUG_ON(FSNOTIFY_PRIO_NORMAL != 0);
201 	if (first_mark && !is_watched) {
202 		conn->flags |= FSNOTIFY_CONN_FLAG_IS_WATCHED;
203 		fsnotify_get_sb_watched_objects(sb);
204 	} else if (!first_mark && is_watched) {
205 		conn->flags &= ~FSNOTIFY_CONN_FLAG_IS_WATCHED;
206 		fsnotify_put_sb_watched_objects(sb);
207 	}
208 }
209 
210 /*
211  * Grab or drop inode reference for the connector if needed.
212  *
213  * When it's time to drop the reference, we only clear the HAS_IREF flag and
214  * return the inode object. fsnotify_drop_object() will be resonsible for doing
215  * iput() outside of spinlocks. This happens when last mark that wanted iref is
216  * detached.
217  */
218 static struct inode *fsnotify_update_iref(struct fsnotify_mark_connector *conn,
219 					  bool want_iref)
220 {
221 	bool has_iref = conn->flags & FSNOTIFY_CONN_FLAG_HAS_IREF;
222 	struct inode *inode = NULL;
223 
224 	if (conn->type != FSNOTIFY_OBJ_TYPE_INODE ||
225 	    want_iref == has_iref)
226 		return NULL;
227 
228 	if (want_iref) {
229 		/* Pin inode if any mark wants inode refcount held */
230 		fsnotify_get_inode_ref(fsnotify_conn_inode(conn));
231 		conn->flags |= FSNOTIFY_CONN_FLAG_HAS_IREF;
232 	} else {
233 		/* Unpin inode after detach of last mark that wanted iref */
234 		inode = fsnotify_conn_inode(conn);
235 		conn->flags &= ~FSNOTIFY_CONN_FLAG_HAS_IREF;
236 	}
237 
238 	return inode;
239 }
240 
241 static void *__fsnotify_recalc_mask(struct fsnotify_mark_connector *conn)
242 {
243 	u32 new_mask = 0;
244 	bool want_iref = false;
245 	struct fsnotify_mark *mark;
246 
247 	assert_spin_locked(&conn->lock);
248 	/* We can get detached connector here when inode is getting unlinked. */
249 	if (!fsnotify_valid_obj_type(conn->type))
250 		return NULL;
251 	hlist_for_each_entry(mark, &conn->list, obj_list) {
252 		if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED))
253 			continue;
254 		new_mask |= fsnotify_calc_mask(mark);
255 		if (conn->type == FSNOTIFY_OBJ_TYPE_INODE &&
256 		    !(mark->flags & FSNOTIFY_MARK_FLAG_NO_IREF))
257 			want_iref = true;
258 	}
259 	/*
260 	 * We use WRITE_ONCE() to prevent silly compiler optimizations from
261 	 * confusing readers not holding conn->lock with partial updates.
262 	 */
263 	WRITE_ONCE(*fsnotify_conn_mask_p(conn), new_mask);
264 
265 	return fsnotify_update_iref(conn, want_iref);
266 }
267 
268 static bool fsnotify_conn_watches_children(
269 					struct fsnotify_mark_connector *conn)
270 {
271 	if (conn->type != FSNOTIFY_OBJ_TYPE_INODE)
272 		return false;
273 
274 	return fsnotify_inode_watches_children(fsnotify_conn_inode(conn));
275 }
276 
277 static void fsnotify_conn_set_children_dentry_flags(
278 					struct fsnotify_mark_connector *conn)
279 {
280 	if (conn->type != FSNOTIFY_OBJ_TYPE_INODE)
281 		return;
282 
283 	fsnotify_set_children_dentry_flags(fsnotify_conn_inode(conn));
284 }
285 
286 /*
287  * Calculate mask of events for a list of marks. The caller must make sure
288  * connector and connector->obj cannot disappear under us.  Callers achieve
289  * this by holding a mark->lock or mark->group->mark_mutex for a mark on this
290  * list.
291  */
292 void fsnotify_recalc_mask(struct fsnotify_mark_connector *conn)
293 {
294 	bool update_children;
295 
296 	if (!conn)
297 		return;
298 
299 	spin_lock(&conn->lock);
300 	update_children = !fsnotify_conn_watches_children(conn);
301 	__fsnotify_recalc_mask(conn);
302 	update_children &= fsnotify_conn_watches_children(conn);
303 	spin_unlock(&conn->lock);
304 	/*
305 	 * Set children's PARENT_WATCHED flags only if parent started watching.
306 	 * When parent stops watching, we clear false positive PARENT_WATCHED
307 	 * flags lazily in __fsnotify_parent().
308 	 */
309 	if (update_children)
310 		fsnotify_conn_set_children_dentry_flags(conn);
311 }
312 
313 /* Free all connectors queued for freeing once SRCU period ends */
314 static void fsnotify_connector_destroy_workfn(struct work_struct *work)
315 {
316 	struct fsnotify_mark_connector *conn, *free;
317 
318 	spin_lock(&destroy_lock);
319 	conn = connector_destroy_list;
320 	connector_destroy_list = NULL;
321 	spin_unlock(&destroy_lock);
322 
323 	synchronize_srcu(&fsnotify_mark_srcu);
324 	while (conn) {
325 		free = conn;
326 		conn = conn->destroy_next;
327 		kfree(free);
328 	}
329 }
330 
331 static void fsnotify_untrack_connector(struct fsnotify_mark_connector *conn);
332 
333 static void *fsnotify_detach_connector_from_object(
334 					struct fsnotify_mark_connector *conn,
335 					unsigned int *type)
336 {
337 	fsnotify_connp_t *connp = fsnotify_object_connp(conn->obj, conn->type);
338 	struct super_block *sb = fsnotify_connector_sb(conn);
339 	struct inode *inode = NULL;
340 
341 	*type = conn->type;
342 	if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED)
343 		return NULL;
344 
345 	if (conn->type == FSNOTIFY_OBJ_TYPE_INODE) {
346 		inode = fsnotify_conn_inode(conn);
347 		inode->i_fsnotify_mask = 0;
348 		fsnotify_untrack_connector(conn);
349 
350 		/* Unpin inode when detaching from connector */
351 		if (!(conn->flags & FSNOTIFY_CONN_FLAG_HAS_IREF))
352 			inode = NULL;
353 	} else if (conn->type == FSNOTIFY_OBJ_TYPE_VFSMOUNT) {
354 		fsnotify_conn_mount(conn)->mnt_fsnotify_mask = 0;
355 	} else if (conn->type == FSNOTIFY_OBJ_TYPE_SB) {
356 		fsnotify_conn_sb(conn)->s_fsnotify_mask = 0;
357 	} else if (conn->type == FSNOTIFY_OBJ_TYPE_MNTNS) {
358 		fsnotify_conn_mntns(conn)->n_fsnotify_mask = 0;
359 	}
360 
361 	rcu_assign_pointer(*connp, NULL);
362 	conn->obj = NULL;
363 	conn->type = FSNOTIFY_OBJ_TYPE_DETACHED;
364 	if (sb)
365 		fsnotify_update_sb_watchers(sb, conn);
366 
367 	return inode;
368 }
369 
370 static void fsnotify_final_mark_destroy(struct fsnotify_mark *mark)
371 {
372 	struct fsnotify_group *group = mark->group;
373 
374 	if (WARN_ON_ONCE(!group))
375 		return;
376 	group->ops->free_mark(mark);
377 	fsnotify_put_group(group);
378 }
379 
380 /* Drop object reference originally held by a connector */
381 static void fsnotify_drop_object(unsigned int type, void *objp)
382 {
383 	if (!objp)
384 		return;
385 	/* Currently only inode references are passed to be dropped */
386 	if (WARN_ON_ONCE(type != FSNOTIFY_OBJ_TYPE_INODE))
387 		return;
388 	fsnotify_put_inode_ref(objp);
389 }
390 
391 void fsnotify_put_mark(struct fsnotify_mark *mark)
392 {
393 	struct fsnotify_mark_connector *conn = READ_ONCE(mark->connector);
394 	void *objp = NULL;
395 	unsigned int type = FSNOTIFY_OBJ_TYPE_DETACHED;
396 	bool free_conn = false;
397 
398 	/* Catch marks that were actually never attached to object */
399 	if (!conn) {
400 		if (refcount_dec_and_test(&mark->refcnt))
401 			fsnotify_final_mark_destroy(mark);
402 		return;
403 	}
404 
405 	/*
406 	 * We have to be careful so that traversals of obj_list under lock can
407 	 * safely grab mark reference.
408 	 */
409 	if (!refcount_dec_and_lock(&mark->refcnt, &conn->lock))
410 		return;
411 
412 	hlist_del_init_rcu(&mark->obj_list);
413 	if (hlist_empty(&conn->list)) {
414 		objp = fsnotify_detach_connector_from_object(conn, &type);
415 		free_conn = true;
416 	} else {
417 		struct super_block *sb = fsnotify_connector_sb(conn);
418 
419 		/* Update watched objects after detaching mark */
420 		if (sb)
421 			fsnotify_update_sb_watchers(sb, conn);
422 		objp = __fsnotify_recalc_mask(conn);
423 		type = conn->type;
424 	}
425 	WRITE_ONCE(mark->connector, NULL);
426 	spin_unlock(&conn->lock);
427 
428 	fsnotify_drop_object(type, objp);
429 
430 	if (free_conn) {
431 		spin_lock(&destroy_lock);
432 		conn->destroy_next = connector_destroy_list;
433 		connector_destroy_list = conn;
434 		spin_unlock(&destroy_lock);
435 		queue_work(system_dfl_wq, &connector_reaper_work);
436 	}
437 	/*
438 	 * Note that we didn't update flags telling whether inode cares about
439 	 * what's happening with children. We update these flags from
440 	 * __fsnotify_parent() lazily when next event happens on one of our
441 	 * children.
442 	 */
443 	spin_lock(&destroy_lock);
444 	list_add(&mark->g_list, &destroy_list);
445 	spin_unlock(&destroy_lock);
446 	queue_delayed_work(system_dfl_wq, &reaper_work,
447 			   FSNOTIFY_REAPER_DELAY);
448 }
449 EXPORT_SYMBOL_GPL(fsnotify_put_mark);
450 
451 /*
452  * Get mark reference when we found the mark via lockless traversal of object
453  * list. Mark can be already removed from the list by now and on its way to be
454  * destroyed once SRCU period ends.
455  *
456  * Also pin the group so it doesn't disappear under us.
457  */
458 static bool fsnotify_get_mark_safe(struct fsnotify_mark *mark)
459 {
460 	if (!mark)
461 		return true;
462 
463 	if (refcount_inc_not_zero(&mark->refcnt)) {
464 		spin_lock(&mark->lock);
465 		if (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) {
466 			/* mark is attached, group is still alive then */
467 			atomic_inc(&mark->group->user_waits);
468 			spin_unlock(&mark->lock);
469 			return true;
470 		}
471 		spin_unlock(&mark->lock);
472 		fsnotify_put_mark(mark);
473 	}
474 	return false;
475 }
476 
477 /*
478  * Puts marks and wakes up group destruction if necessary.
479  *
480  * Pairs with fsnotify_get_mark_safe()
481  */
482 static void fsnotify_put_mark_wake(struct fsnotify_mark *mark)
483 {
484 	if (mark) {
485 		struct fsnotify_group *group = mark->group;
486 
487 		fsnotify_put_mark(mark);
488 		/*
489 		 * We abuse notification_waitq on group shutdown for waiting for
490 		 * all marks pinned when waiting for userspace.
491 		 */
492 		if (atomic_dec_and_test(&group->user_waits) && group->shutdown)
493 			wake_up(&group->notification_waitq);
494 	}
495 }
496 
497 bool fsnotify_prepare_user_wait(struct fsnotify_iter_info *iter_info)
498 	__releases(&fsnotify_mark_srcu)
499 {
500 	int type;
501 
502 	fsnotify_foreach_iter_type(type) {
503 		/* This can fail if mark is being removed */
504 		if (!fsnotify_get_mark_safe(iter_info->marks[type])) {
505 			__release(&fsnotify_mark_srcu);
506 			goto fail;
507 		}
508 	}
509 
510 	/*
511 	 * Now that both marks are pinned by refcount in the inode / vfsmount
512 	 * lists, we can drop SRCU lock, and safely resume the list iteration
513 	 * once userspace returns.
514 	 */
515 	srcu_read_unlock(&fsnotify_mark_srcu, iter_info->srcu_idx);
516 
517 	return true;
518 
519 fail:
520 	for (type--; type >= 0; type--)
521 		fsnotify_put_mark_wake(iter_info->marks[type]);
522 	return false;
523 }
524 
525 void fsnotify_finish_user_wait(struct fsnotify_iter_info *iter_info)
526 	__acquires(&fsnotify_mark_srcu)
527 {
528 	int type;
529 
530 	iter_info->srcu_idx = srcu_read_lock(&fsnotify_mark_srcu);
531 	fsnotify_foreach_iter_type(type)
532 		fsnotify_put_mark_wake(iter_info->marks[type]);
533 }
534 
535 /*
536  * Mark mark as detached, remove it from group list. Mark still stays in object
537  * list until its last reference is dropped. Note that we rely on mark being
538  * removed from group list before corresponding reference to it is dropped. In
539  * particular we rely on mark->connector being valid while we hold
540  * group->mark_mutex if we found the mark through g_list.
541  *
542  * Must be called with group->mark_mutex held. The caller must either hold
543  * reference to the mark or be protected by fsnotify_mark_srcu.
544  */
545 void fsnotify_detach_mark(struct fsnotify_mark *mark)
546 {
547 	fsnotify_group_assert_locked(mark->group);
548 	WARN_ON_ONCE(!srcu_read_lock_held(&fsnotify_mark_srcu) &&
549 		     refcount_read(&mark->refcnt) < 1 +
550 			!!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED));
551 
552 	spin_lock(&mark->lock);
553 	/* something else already called this function on this mark */
554 	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
555 		spin_unlock(&mark->lock);
556 		return;
557 	}
558 	mark->flags &= ~FSNOTIFY_MARK_FLAG_ATTACHED;
559 	list_del_init(&mark->g_list);
560 	spin_unlock(&mark->lock);
561 
562 	/* Drop mark reference acquired in fsnotify_add_mark_locked() */
563 	fsnotify_put_mark(mark);
564 }
565 
566 /*
567  * Free fsnotify mark. The mark is actually only marked as being freed.  The
568  * freeing is actually happening only once last reference to the mark is
569  * dropped from a workqueue which first waits for srcu period end.
570  *
571  * Caller must have a reference to the mark or be protected by
572  * fsnotify_mark_srcu.
573  */
574 void fsnotify_free_mark(struct fsnotify_mark *mark)
575 {
576 	struct fsnotify_group *group = mark->group;
577 
578 	spin_lock(&mark->lock);
579 	/* something else already called this function on this mark */
580 	if (!(mark->flags & FSNOTIFY_MARK_FLAG_ALIVE)) {
581 		spin_unlock(&mark->lock);
582 		return;
583 	}
584 	mark->flags &= ~FSNOTIFY_MARK_FLAG_ALIVE;
585 	spin_unlock(&mark->lock);
586 
587 	/*
588 	 * Some groups like to know that marks are being freed.  This is a
589 	 * callback to the group function to let it know that this mark
590 	 * is being freed.
591 	 */
592 	if (group->ops->freeing_mark)
593 		group->ops->freeing_mark(mark, group);
594 }
595 
596 void fsnotify_destroy_mark(struct fsnotify_mark *mark,
597 			   struct fsnotify_group *group)
598 {
599 	fsnotify_group_lock(group);
600 	fsnotify_detach_mark(mark);
601 	fsnotify_group_unlock(group);
602 	fsnotify_free_mark(mark);
603 }
604 EXPORT_SYMBOL_GPL(fsnotify_destroy_mark);
605 
606 /*
607  * Sorting function for lists of fsnotify marks.
608  *
609  * Fanotify supports different notification classes (reflected as priority of
610  * notification group). Events shall be passed to notification groups in
611  * decreasing priority order. To achieve this marks in notification lists for
612  * inodes and vfsmounts are sorted so that priorities of corresponding groups
613  * are descending.
614  *
615  * Furthermore correct handling of the ignore mask requires processing inode
616  * and vfsmount marks of each group together. Using the group address as
617  * further sort criterion provides a unique sorting order and thus we can
618  * merge inode and vfsmount lists of marks in linear time and find groups
619  * present in both lists.
620  *
621  * A return value of 1 signifies that b has priority over a.
622  * A return value of 0 signifies that the two marks have to be handled together.
623  * A return value of -1 signifies that a has priority over b.
624  */
625 int fsnotify_compare_groups(struct fsnotify_group *a, struct fsnotify_group *b)
626 {
627 	if (a == b)
628 		return 0;
629 	if (!a)
630 		return 1;
631 	if (!b)
632 		return -1;
633 	if (a->priority < b->priority)
634 		return 1;
635 	if (a->priority > b->priority)
636 		return -1;
637 	if (a < b)
638 		return 1;
639 	return -1;
640 }
641 
642 static int fsnotify_attach_info_to_sb(struct super_block *sb)
643 {
644 	struct fsnotify_sb_info *sbinfo;
645 
646 	/* sb info is freed on fsnotify_sb_delete() */
647 	sbinfo = kzalloc(sizeof(*sbinfo), GFP_KERNEL);
648 	if (!sbinfo)
649 		return -ENOMEM;
650 
651 	INIT_LIST_HEAD(&sbinfo->inode_conn_list);
652 	spin_lock_init(&sbinfo->list_lock);
653 	/*
654 	 * cmpxchg() provides the barrier so that callers of fsnotify_sb_info()
655 	 * will observe an initialized structure
656 	 */
657 	if (cmpxchg(&sb->s_fsnotify_info, NULL, sbinfo)) {
658 		/* Someone else created sbinfo for us */
659 		kfree(sbinfo);
660 	}
661 	return 0;
662 }
663 
664 struct fsnotify_inode_mark_connector {
665 	struct fsnotify_mark_connector common;
666 	struct list_head conns_list;
667 };
668 
669 static struct inode *fsnotify_get_living_inode(struct fsnotify_sb_info *sbinfo)
670 {
671 	struct fsnotify_inode_mark_connector *iconn;
672 	struct inode *inode;
673 
674 	spin_lock(&sbinfo->list_lock);
675 	/* Find the first non-evicting inode */
676 	list_for_each_entry(iconn, &sbinfo->inode_conn_list, conns_list) {
677 		/* All connectors on the list are still attached to an inode */
678 		inode = iconn->common.obj;
679 		/*
680 		 * For connectors without FSNOTIFY_CONN_FLAG_HAS_IREF
681 		 * (evictable marks) corresponding inode may well have 0
682 		 * refcount and can be undergoing eviction. OTOH list_lock
683 		 * protects us from the connector getting detached and inode
684 		 * freed. So we can poke around the inode safely.
685 		 */
686 		spin_lock(&inode->i_lock);
687 		if (likely(
688 		    !(inode_state_read(inode) & (I_FREEING | I_WILL_FREE)))) {
689 			__iget(inode);
690 			spin_unlock(&inode->i_lock);
691 			spin_unlock(&sbinfo->list_lock);
692 			return inode;
693 		}
694 		spin_unlock(&inode->i_lock);
695 	}
696 	spin_unlock(&sbinfo->list_lock);
697 
698 	return NULL;
699 }
700 
701 /**
702  * fsnotify_unmount_inodes - an sb is unmounting. Handle any watched inodes.
703  * @sbinfo: fsnotify info for superblock being unmounted.
704  *
705  * Walk all inode connectors for the superblock and free all associated marks.
706  */
707 void fsnotify_unmount_inodes(struct fsnotify_sb_info *sbinfo)
708 {
709 	struct inode *inode;
710 
711 	while ((inode = fsnotify_get_living_inode(sbinfo))) {
712 		fsnotify_inode(inode, FS_UNMOUNT);
713 		fsnotify_clear_marks_by_inode(inode);
714 		iput(inode);
715 		cond_resched();
716 	}
717 }
718 
719 static void fsnotify_init_connector(struct fsnotify_mark_connector *conn,
720 				    void *obj, unsigned int obj_type)
721 {
722 	spin_lock_init(&conn->lock);
723 	INIT_HLIST_HEAD(&conn->list);
724 	conn->flags = 0;
725 	conn->prio = 0;
726 	conn->type = obj_type;
727 	conn->obj = obj;
728 }
729 
730 static struct fsnotify_mark_connector *
731 fsnotify_alloc_inode_connector(struct inode *inode)
732 {
733 	struct fsnotify_inode_mark_connector *iconn;
734 	struct fsnotify_sb_info *sbinfo = fsnotify_sb_info(inode->i_sb);
735 
736 	iconn = kmem_cache_alloc(fsnotify_inode_mark_connector_cachep,
737 				 GFP_KERNEL);
738 	if (!iconn)
739 		return NULL;
740 
741 	fsnotify_init_connector(&iconn->common, inode, FSNOTIFY_OBJ_TYPE_INODE);
742 	spin_lock(&sbinfo->list_lock);
743 	list_add(&iconn->conns_list, &sbinfo->inode_conn_list);
744 	spin_unlock(&sbinfo->list_lock);
745 
746 	return &iconn->common;
747 }
748 
749 static void fsnotify_untrack_connector(struct fsnotify_mark_connector *conn)
750 {
751 	struct fsnotify_inode_mark_connector *iconn;
752 	struct fsnotify_sb_info *sbinfo;
753 
754 	if (conn->type != FSNOTIFY_OBJ_TYPE_INODE)
755 		return;
756 
757 	iconn = container_of(conn, struct fsnotify_inode_mark_connector, common);
758 	sbinfo = fsnotify_sb_info(fsnotify_conn_inode(conn)->i_sb);
759 	spin_lock(&sbinfo->list_lock);
760 	list_del(&iconn->conns_list);
761 	spin_unlock(&sbinfo->list_lock);
762 }
763 
764 static int fsnotify_attach_connector_to_object(fsnotify_connp_t *connp,
765 					       void *obj, unsigned int obj_type)
766 {
767 	struct fsnotify_mark_connector *conn;
768 
769 	if (obj_type == FSNOTIFY_OBJ_TYPE_INODE) {
770 		struct inode *inode = obj;
771 
772 		conn = fsnotify_alloc_inode_connector(inode);
773 	} else {
774 		conn = kmem_cache_alloc(fsnotify_mark_connector_cachep,
775 					GFP_KERNEL);
776 		if (conn)
777 			fsnotify_init_connector(conn, obj, obj_type);
778 	}
779 	if (!conn)
780 		return -ENOMEM;
781 
782 	/*
783 	 * cmpxchg() provides the barrier so that readers of *connp can see
784 	 * only initialized structure
785 	 */
786 	if (cmpxchg(connp, NULL, conn)) {
787 		/* Someone else created list structure for us */
788 		fsnotify_untrack_connector(conn);
789 		kfree(conn);
790 	}
791 	return 0;
792 }
793 
794 /*
795  * Get mark connector, make sure it is alive and return with its lock held.
796  * This is for users that get connector pointer from inode or mount. Users that
797  * hold reference to a mark on the list may directly lock connector->lock as
798  * they are sure list cannot go away under them.
799  */
800 static struct fsnotify_mark_connector *fsnotify_grab_connector(
801 						fsnotify_connp_t *connp)
802 {
803 	struct fsnotify_mark_connector *conn;
804 	int idx;
805 
806 	idx = srcu_read_lock(&fsnotify_mark_srcu);
807 	conn = srcu_dereference(*connp, &fsnotify_mark_srcu);
808 	if (!conn)
809 		goto out;
810 	spin_lock(&conn->lock);
811 	if (conn->type == FSNOTIFY_OBJ_TYPE_DETACHED) {
812 		spin_unlock(&conn->lock);
813 		srcu_read_unlock(&fsnotify_mark_srcu, idx);
814 		return NULL;
815 	}
816 out:
817 	srcu_read_unlock(&fsnotify_mark_srcu, idx);
818 	return conn;
819 }
820 
821 /*
822  * Add mark into proper place in given list of marks. These marks may be used
823  * for the fsnotify backend to determine which event types should be delivered
824  * to which group and for which inodes. These marks are ordered according to
825  * priority, highest number first, and then by the group's location in memory.
826  */
827 static int fsnotify_add_mark_list(struct fsnotify_mark *mark, void *obj,
828 				  unsigned int obj_type, int add_flags)
829 {
830 	struct super_block *sb = fsnotify_object_sb(obj, obj_type);
831 	struct fsnotify_mark *lmark, *last = NULL;
832 	struct fsnotify_mark_connector *conn;
833 	fsnotify_connp_t *connp;
834 	int cmp;
835 	int err = 0;
836 
837 	if (WARN_ON(!fsnotify_valid_obj_type(obj_type)))
838 		return -EINVAL;
839 
840 	/*
841 	 * Attach the sb info before attaching a connector to any object on sb.
842 	 * The sb info will remain attached as long as sb lives.
843 	 */
844 	if (sb && !fsnotify_sb_info(sb)) {
845 		err = fsnotify_attach_info_to_sb(sb);
846 		if (err)
847 			return err;
848 	}
849 
850 	connp = fsnotify_object_connp(obj, obj_type);
851 restart:
852 	spin_lock(&mark->lock);
853 	conn = fsnotify_grab_connector(connp);
854 	if (!conn) {
855 		spin_unlock(&mark->lock);
856 		err = fsnotify_attach_connector_to_object(connp, obj, obj_type);
857 		if (err)
858 			return err;
859 		goto restart;
860 	}
861 
862 	/* is mark the first mark? */
863 	if (hlist_empty(&conn->list)) {
864 		hlist_add_head_rcu(&mark->obj_list, &conn->list);
865 		goto added;
866 	}
867 
868 	/* should mark be in the middle of the current list? */
869 	hlist_for_each_entry(lmark, &conn->list, obj_list) {
870 		last = lmark;
871 
872 		if ((lmark->group == mark->group) &&
873 		    (lmark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) &&
874 		    !(mark->group->flags & FSNOTIFY_GROUP_DUPS)) {
875 			err = -EEXIST;
876 			goto out_err;
877 		}
878 
879 		cmp = fsnotify_compare_groups(lmark->group, mark->group);
880 		if (cmp >= 0) {
881 			hlist_add_before_rcu(&mark->obj_list, &lmark->obj_list);
882 			goto added;
883 		}
884 	}
885 
886 	BUG_ON(last == NULL);
887 	/* mark should be the last entry.  last is the current last entry */
888 	hlist_add_behind_rcu(&mark->obj_list, &last->obj_list);
889 added:
890 	if (sb)
891 		fsnotify_update_sb_watchers(sb, conn);
892 	/*
893 	 * Since connector is attached to object using cmpxchg() we are
894 	 * guaranteed that connector initialization is fully visible by anyone
895 	 * seeing mark->connector set.
896 	 */
897 	WRITE_ONCE(mark->connector, conn);
898 out_err:
899 	spin_unlock(&conn->lock);
900 	spin_unlock(&mark->lock);
901 	return err;
902 }
903 
904 /*
905  * Attach an initialized mark to a given group and fs object.
906  * These marks may be used for the fsnotify backend to determine which
907  * event types should be delivered to which group.
908  */
909 int fsnotify_add_mark_locked(struct fsnotify_mark *mark,
910 			     void *obj, unsigned int obj_type,
911 			     int add_flags)
912 {
913 	struct fsnotify_group *group = mark->group;
914 	int ret = 0;
915 
916 	fsnotify_group_assert_locked(group);
917 
918 	/*
919 	 * LOCKING ORDER!!!!
920 	 * group->mark_mutex
921 	 * mark->lock
922 	 * mark->connector->lock
923 	 */
924 	spin_lock(&mark->lock);
925 	mark->flags |= FSNOTIFY_MARK_FLAG_ALIVE | FSNOTIFY_MARK_FLAG_ATTACHED;
926 
927 	list_add(&mark->g_list, &group->marks_list);
928 	fsnotify_get_mark(mark); /* for g_list */
929 	spin_unlock(&mark->lock);
930 
931 	ret = fsnotify_add_mark_list(mark, obj, obj_type, add_flags);
932 	if (ret)
933 		goto err;
934 
935 	fsnotify_recalc_mask(mark->connector);
936 
937 	return ret;
938 err:
939 	spin_lock(&mark->lock);
940 	mark->flags &= ~(FSNOTIFY_MARK_FLAG_ALIVE |
941 			 FSNOTIFY_MARK_FLAG_ATTACHED);
942 	list_del_init(&mark->g_list);
943 	spin_unlock(&mark->lock);
944 
945 	fsnotify_put_mark(mark);
946 	return ret;
947 }
948 
949 int fsnotify_add_mark(struct fsnotify_mark *mark, void *obj,
950 		      unsigned int obj_type, int add_flags)
951 {
952 	int ret;
953 	struct fsnotify_group *group = mark->group;
954 
955 	fsnotify_group_lock(group);
956 	ret = fsnotify_add_mark_locked(mark, obj, obj_type, add_flags);
957 	fsnotify_group_unlock(group);
958 	return ret;
959 }
960 EXPORT_SYMBOL_GPL(fsnotify_add_mark);
961 
962 /*
963  * Given a list of marks, find the mark associated with given group. If found
964  * take a reference to that mark and return it, else return NULL.
965  */
966 struct fsnotify_mark *fsnotify_find_mark(void *obj, unsigned int obj_type,
967 					 struct fsnotify_group *group)
968 {
969 	fsnotify_connp_t *connp = fsnotify_object_connp(obj, obj_type);
970 	struct fsnotify_mark_connector *conn;
971 	struct fsnotify_mark *mark;
972 
973 	if (!connp)
974 		return NULL;
975 
976 	conn = fsnotify_grab_connector(connp);
977 	if (!conn)
978 		return NULL;
979 
980 	hlist_for_each_entry(mark, &conn->list, obj_list) {
981 		if (mark->group == group &&
982 		    (mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED)) {
983 			fsnotify_get_mark(mark);
984 			spin_unlock(&conn->lock);
985 			return mark;
986 		}
987 	}
988 	spin_unlock(&conn->lock);
989 	return NULL;
990 }
991 EXPORT_SYMBOL_GPL(fsnotify_find_mark);
992 
993 /* Clear any marks in a group with given type mask */
994 void fsnotify_clear_marks_by_group(struct fsnotify_group *group,
995 				   unsigned int obj_type)
996 {
997 	struct fsnotify_mark *lmark, *mark;
998 	LIST_HEAD(to_free);
999 	struct list_head *head = &to_free;
1000 
1001 	/* Skip selection step if we want to clear all marks. */
1002 	if (obj_type == FSNOTIFY_OBJ_TYPE_ANY) {
1003 		head = &group->marks_list;
1004 		goto clear;
1005 	}
1006 	/*
1007 	 * We have to be really careful here. Anytime we drop mark_mutex, e.g.
1008 	 * fsnotify_clear_marks_by_inode() can come and free marks. Even in our
1009 	 * to_free list so we have to use mark_mutex even when accessing that
1010 	 * list. And freeing mark requires us to drop mark_mutex. So we can
1011 	 * reliably free only the first mark in the list. That's why we first
1012 	 * move marks to free to to_free list in one go and then free marks in
1013 	 * to_free list one by one.
1014 	 */
1015 	fsnotify_group_lock(group);
1016 	list_for_each_entry_safe(mark, lmark, &group->marks_list, g_list) {
1017 		if (mark->connector->type == obj_type)
1018 			list_move(&mark->g_list, &to_free);
1019 	}
1020 	fsnotify_group_unlock(group);
1021 
1022 clear:
1023 	while (1) {
1024 		fsnotify_group_lock(group);
1025 		if (list_empty(head)) {
1026 			fsnotify_group_unlock(group);
1027 			break;
1028 		}
1029 		mark = list_first_entry(head, struct fsnotify_mark, g_list);
1030 		fsnotify_get_mark(mark);
1031 		fsnotify_detach_mark(mark);
1032 		fsnotify_group_unlock(group);
1033 		fsnotify_free_mark(mark);
1034 		fsnotify_put_mark(mark);
1035 	}
1036 }
1037 
1038 /* Destroy all marks attached to an object via connector */
1039 void fsnotify_destroy_marks(fsnotify_connp_t *connp)
1040 {
1041 	struct fsnotify_mark_connector *conn;
1042 	struct fsnotify_mark *mark, *old_mark = NULL;
1043 	void *objp;
1044 	unsigned int type;
1045 
1046 	conn = fsnotify_grab_connector(connp);
1047 	if (!conn)
1048 		return;
1049 	/*
1050 	 * We have to be careful since we can race with e.g.
1051 	 * fsnotify_clear_marks_by_group() and once we drop the conn->lock, the
1052 	 * list can get modified. However we are holding mark reference and
1053 	 * thus our mark cannot be removed from obj_list so we can continue
1054 	 * iteration after regaining conn->lock.
1055 	 */
1056 	hlist_for_each_entry(mark, &conn->list, obj_list) {
1057 		fsnotify_get_mark(mark);
1058 		spin_unlock(&conn->lock);
1059 		if (old_mark)
1060 			fsnotify_put_mark(old_mark);
1061 		old_mark = mark;
1062 		fsnotify_destroy_mark(mark, mark->group);
1063 		spin_lock(&conn->lock);
1064 	}
1065 	/*
1066 	 * Detach list from object now so that we don't pin inode until all
1067 	 * mark references get dropped. It would lead to strange results such
1068 	 * as delaying inode deletion or blocking unmount.
1069 	 */
1070 	objp = fsnotify_detach_connector_from_object(conn, &type);
1071 	spin_unlock(&conn->lock);
1072 	if (old_mark)
1073 		fsnotify_put_mark(old_mark);
1074 	fsnotify_drop_object(type, objp);
1075 }
1076 
1077 /*
1078  * Nothing fancy, just initialize lists and locks and counters.
1079  */
1080 void fsnotify_init_mark(struct fsnotify_mark *mark,
1081 			struct fsnotify_group *group)
1082 {
1083 	memset(mark, 0, sizeof(*mark));
1084 	spin_lock_init(&mark->lock);
1085 	refcount_set(&mark->refcnt, 1);
1086 	fsnotify_get_group(group);
1087 	mark->group = group;
1088 	WRITE_ONCE(mark->connector, NULL);
1089 }
1090 EXPORT_SYMBOL_GPL(fsnotify_init_mark);
1091 
1092 /*
1093  * Destroy all marks in destroy_list, waits for SRCU period to finish before
1094  * actually freeing marks.
1095  */
1096 static void fsnotify_mark_destroy_workfn(struct work_struct *work)
1097 {
1098 	struct fsnotify_mark *mark, *next;
1099 	struct list_head private_destroy_list;
1100 
1101 	spin_lock(&destroy_lock);
1102 	/* exchange the list head */
1103 	list_replace_init(&destroy_list, &private_destroy_list);
1104 	spin_unlock(&destroy_lock);
1105 
1106 	synchronize_srcu(&fsnotify_mark_srcu);
1107 
1108 	list_for_each_entry_safe(mark, next, &private_destroy_list, g_list) {
1109 		list_del_init(&mark->g_list);
1110 		fsnotify_final_mark_destroy(mark);
1111 	}
1112 }
1113 
1114 /* Wait for all marks queued for destruction to be actually destroyed */
1115 void fsnotify_wait_marks_destroyed(void)
1116 {
1117 	flush_delayed_work(&reaper_work);
1118 }
1119 EXPORT_SYMBOL_GPL(fsnotify_wait_marks_destroyed);
1120 
1121 __init void fsnotify_init_connector_caches(void)
1122 {
1123 	fsnotify_mark_connector_cachep = KMEM_CACHE(fsnotify_mark_connector,
1124 						    SLAB_PANIC);
1125 	fsnotify_inode_mark_connector_cachep = KMEM_CACHE(
1126 					fsnotify_inode_mark_connector,
1127 					SLAB_PANIC);
1128 }
1129