1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale LBC and UPM routines.
4 *
5 * Copyright © 2007-2008 MontaVista Software, Inc.
6 * Copyright © 2010 Freescale Semiconductor
7 *
8 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
9 * Author: Jack Lan <Jack.Lan@freescale.com>
10 * Author: Roy Zang <tie-fei.zang@freescale.com>
11 */
12
13 #include <linux/init.h>
14 #include <linux/export.h>
15 #include <linux/kernel.h>
16 #include <linux/compiler.h>
17 #include <linux/spinlock.h>
18 #include <linux/types.h>
19 #include <linux/io.h>
20 #include <linux/of.h>
21 #include <linux/of_address.h>
22 #include <linux/of_irq.h>
23 #include <linux/slab.h>
24 #include <linux/sched.h>
25 #include <linux/platform_device.h>
26 #include <linux/interrupt.h>
27 #include <linux/mod_devicetable.h>
28 #include <linux/syscore_ops.h>
29 #include <asm/fsl_lbc.h>
30
31 static DEFINE_SPINLOCK(fsl_lbc_lock);
32 struct fsl_lbc_ctrl *fsl_lbc_ctrl_dev;
33 EXPORT_SYMBOL(fsl_lbc_ctrl_dev);
34
35 /**
36 * fsl_lbc_addr - convert the base address
37 * @addr_base: base address of the memory bank
38 *
39 * This function converts a base address of lbc into the right format for the
40 * BR register. If the SOC has eLBC then it returns 32bit physical address
41 * else it converts a 34bit local bus physical address to correct format of
42 * 32bit address for BR register (Example: MPC8641).
43 */
fsl_lbc_addr(phys_addr_t addr_base)44 u32 fsl_lbc_addr(phys_addr_t addr_base)
45 {
46 struct device_node *np = fsl_lbc_ctrl_dev->dev->of_node;
47 u32 addr = addr_base & 0xffff8000;
48
49 if (of_device_is_compatible(np, "fsl,elbc"))
50 return addr;
51
52 return addr | ((addr_base & 0x300000000ull) >> 19);
53 }
54 EXPORT_SYMBOL(fsl_lbc_addr);
55
56 /**
57 * fsl_lbc_find - find Localbus bank
58 * @addr_base: base address of the memory bank
59 *
60 * This function walks LBC banks comparing "Base address" field of the BR
61 * registers with the supplied addr_base argument. When bases match this
62 * function returns bank number (starting with 0), otherwise it returns
63 * appropriate errno value.
64 */
fsl_lbc_find(phys_addr_t addr_base)65 int fsl_lbc_find(phys_addr_t addr_base)
66 {
67 int i;
68 struct fsl_lbc_regs __iomem *lbc;
69
70 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
71 return -ENODEV;
72
73 lbc = fsl_lbc_ctrl_dev->regs;
74 for (i = 0; i < ARRAY_SIZE(lbc->bank); i++) {
75 u32 br = in_be32(&lbc->bank[i].br);
76 u32 or = in_be32(&lbc->bank[i].or);
77
78 if (br & BR_V && (br & or & BR_BA) == fsl_lbc_addr(addr_base))
79 return i;
80 }
81
82 return -ENOENT;
83 }
84 EXPORT_SYMBOL(fsl_lbc_find);
85
86 /**
87 * fsl_upm_find - find pre-programmed UPM via base address
88 * @addr_base: base address of the memory bank controlled by the UPM
89 * @upm: pointer to the allocated fsl_upm structure
90 *
91 * This function fills fsl_upm structure so you can use it with the rest of
92 * UPM API. On success this function returns 0, otherwise it returns
93 * appropriate errno value.
94 */
fsl_upm_find(phys_addr_t addr_base,struct fsl_upm * upm)95 int fsl_upm_find(phys_addr_t addr_base, struct fsl_upm *upm)
96 {
97 int bank;
98 u32 br;
99 struct fsl_lbc_regs __iomem *lbc;
100
101 bank = fsl_lbc_find(addr_base);
102 if (bank < 0)
103 return bank;
104
105 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
106 return -ENODEV;
107
108 lbc = fsl_lbc_ctrl_dev->regs;
109 br = in_be32(&lbc->bank[bank].br);
110
111 switch (br & BR_MSEL) {
112 case BR_MS_UPMA:
113 upm->mxmr = &lbc->mamr;
114 break;
115 case BR_MS_UPMB:
116 upm->mxmr = &lbc->mbmr;
117 break;
118 case BR_MS_UPMC:
119 upm->mxmr = &lbc->mcmr;
120 break;
121 default:
122 return -EINVAL;
123 }
124
125 switch (br & BR_PS) {
126 case BR_PS_8:
127 upm->width = 8;
128 break;
129 case BR_PS_16:
130 upm->width = 16;
131 break;
132 case BR_PS_32:
133 upm->width = 32;
134 break;
135 default:
136 return -EINVAL;
137 }
138
139 return 0;
140 }
141 EXPORT_SYMBOL(fsl_upm_find);
142
143 /**
144 * fsl_upm_run_pattern - actually run an UPM pattern
145 * @upm: pointer to the fsl_upm structure obtained via fsl_upm_find
146 * @io_base: remapped pointer to where memory access should happen
147 * @mar: MAR register content during pattern execution
148 *
149 * This function triggers dummy write to the memory specified by the io_base,
150 * thus UPM pattern actually executed. Note that mar usage depends on the
151 * pre-programmed AMX bits in the UPM RAM.
152 */
fsl_upm_run_pattern(struct fsl_upm * upm,void __iomem * io_base,u32 mar)153 int fsl_upm_run_pattern(struct fsl_upm *upm, void __iomem *io_base, u32 mar)
154 {
155 int ret = 0;
156 unsigned long flags;
157
158 if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs)
159 return -ENODEV;
160
161 spin_lock_irqsave(&fsl_lbc_lock, flags);
162
163 out_be32(&fsl_lbc_ctrl_dev->regs->mar, mar);
164
165 switch (upm->width) {
166 case 8:
167 out_8(io_base, 0x0);
168 break;
169 case 16:
170 out_be16(io_base, 0x0);
171 break;
172 case 32:
173 out_be32(io_base, 0x0);
174 break;
175 default:
176 ret = -EINVAL;
177 break;
178 }
179
180 spin_unlock_irqrestore(&fsl_lbc_lock, flags);
181
182 return ret;
183 }
184 EXPORT_SYMBOL(fsl_upm_run_pattern);
185
fsl_lbc_ctrl_init(struct fsl_lbc_ctrl * ctrl,struct device_node * node)186 static int fsl_lbc_ctrl_init(struct fsl_lbc_ctrl *ctrl,
187 struct device_node *node)
188 {
189 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
190
191 /* clear event registers */
192 setbits32(&lbc->ltesr, LTESR_CLEAR);
193 out_be32(&lbc->lteatr, 0);
194 out_be32(&lbc->ltear, 0);
195 out_be32(&lbc->lteccr, LTECCR_CLEAR);
196 out_be32(&lbc->ltedr, LTEDR_ENABLE);
197
198 /* Set the monitor timeout value to the maximum for erratum A001 */
199 if (of_device_is_compatible(node, "fsl,elbc"))
200 clrsetbits_be32(&lbc->lbcr, LBCR_BMT, LBCR_BMTPS);
201
202 return 0;
203 }
204
205 /*
206 * NOTE: This interrupt is used to report localbus events of various kinds,
207 * such as transaction errors on the chipselects.
208 */
209
fsl_lbc_ctrl_irq(int irqno,void * data)210 static irqreturn_t fsl_lbc_ctrl_irq(int irqno, void *data)
211 {
212 struct fsl_lbc_ctrl *ctrl = data;
213 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
214 u32 status;
215 unsigned long flags;
216
217 spin_lock_irqsave(&fsl_lbc_lock, flags);
218 status = in_be32(&lbc->ltesr);
219 if (!status) {
220 spin_unlock_irqrestore(&fsl_lbc_lock, flags);
221 return IRQ_NONE;
222 }
223
224 out_be32(&lbc->ltesr, LTESR_CLEAR);
225 out_be32(&lbc->lteatr, 0);
226 out_be32(&lbc->ltear, 0);
227 ctrl->irq_status = status;
228
229 if (status & LTESR_BM)
230 dev_err(ctrl->dev, "Local bus monitor time-out: "
231 "LTESR 0x%08X\n", status);
232 if (status & LTESR_WP)
233 dev_err(ctrl->dev, "Write protect error: "
234 "LTESR 0x%08X\n", status);
235 if (status & LTESR_ATMW)
236 dev_err(ctrl->dev, "Atomic write error: "
237 "LTESR 0x%08X\n", status);
238 if (status & LTESR_ATMR)
239 dev_err(ctrl->dev, "Atomic read error: "
240 "LTESR 0x%08X\n", status);
241 if (status & LTESR_CS)
242 dev_err(ctrl->dev, "Chip select error: "
243 "LTESR 0x%08X\n", status);
244 if (status & LTESR_FCT) {
245 dev_err(ctrl->dev, "FCM command time-out: "
246 "LTESR 0x%08X\n", status);
247 smp_wmb();
248 wake_up(&ctrl->irq_wait);
249 }
250 if (status & LTESR_PAR) {
251 dev_err(ctrl->dev, "Parity or Uncorrectable ECC error: "
252 "LTESR 0x%08X\n", status);
253 smp_wmb();
254 wake_up(&ctrl->irq_wait);
255 }
256 if (status & LTESR_CC) {
257 smp_wmb();
258 wake_up(&ctrl->irq_wait);
259 }
260 if (status & ~LTESR_MASK)
261 dev_err(ctrl->dev, "Unknown error: "
262 "LTESR 0x%08X\n", status);
263 spin_unlock_irqrestore(&fsl_lbc_lock, flags);
264 return IRQ_HANDLED;
265 }
266
267 /*
268 * fsl_lbc_ctrl_probe
269 *
270 * called by device layer when it finds a device matching
271 * one our driver can handled. This code allocates all of
272 * the resources needed for the controller only. The
273 * resources for the NAND banks themselves are allocated
274 * in the chip probe function.
275 */
276
fsl_lbc_ctrl_probe(struct platform_device * dev)277 static int fsl_lbc_ctrl_probe(struct platform_device *dev)
278 {
279 int ret;
280
281 if (!dev->dev.of_node) {
282 dev_err(&dev->dev, "Device OF-Node is NULL");
283 return -EFAULT;
284 }
285
286 fsl_lbc_ctrl_dev = kzalloc(sizeof(*fsl_lbc_ctrl_dev), GFP_KERNEL);
287 if (!fsl_lbc_ctrl_dev)
288 return -ENOMEM;
289
290 dev_set_drvdata(&dev->dev, fsl_lbc_ctrl_dev);
291
292 spin_lock_init(&fsl_lbc_ctrl_dev->lock);
293 init_waitqueue_head(&fsl_lbc_ctrl_dev->irq_wait);
294
295 fsl_lbc_ctrl_dev->regs = of_iomap(dev->dev.of_node, 0);
296 if (!fsl_lbc_ctrl_dev->regs) {
297 dev_err(&dev->dev, "failed to get memory region\n");
298 ret = -ENODEV;
299 goto err;
300 }
301
302 fsl_lbc_ctrl_dev->irq[0] = irq_of_parse_and_map(dev->dev.of_node, 0);
303 if (!fsl_lbc_ctrl_dev->irq[0]) {
304 dev_err(&dev->dev, "failed to get irq resource\n");
305 ret = -ENODEV;
306 goto err;
307 }
308
309 fsl_lbc_ctrl_dev->dev = &dev->dev;
310
311 ret = fsl_lbc_ctrl_init(fsl_lbc_ctrl_dev, dev->dev.of_node);
312 if (ret < 0)
313 goto err;
314
315 ret = request_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_irq, 0,
316 "fsl-lbc", fsl_lbc_ctrl_dev);
317 if (ret != 0) {
318 dev_err(&dev->dev, "failed to install irq (%d)\n",
319 fsl_lbc_ctrl_dev->irq[0]);
320 ret = fsl_lbc_ctrl_dev->irq[0];
321 goto err;
322 }
323
324 fsl_lbc_ctrl_dev->irq[1] = irq_of_parse_and_map(dev->dev.of_node, 1);
325 if (fsl_lbc_ctrl_dev->irq[1]) {
326 ret = request_irq(fsl_lbc_ctrl_dev->irq[1], fsl_lbc_ctrl_irq,
327 IRQF_SHARED, "fsl-lbc-err", fsl_lbc_ctrl_dev);
328 if (ret) {
329 dev_err(&dev->dev, "failed to install irq (%d)\n",
330 fsl_lbc_ctrl_dev->irq[1]);
331 ret = fsl_lbc_ctrl_dev->irq[1];
332 goto err1;
333 }
334 }
335
336 /* Enable interrupts for any detected events */
337 out_be32(&fsl_lbc_ctrl_dev->regs->lteir, LTEIR_ENABLE);
338
339 return 0;
340
341 err1:
342 free_irq(fsl_lbc_ctrl_dev->irq[0], fsl_lbc_ctrl_dev);
343 err:
344 iounmap(fsl_lbc_ctrl_dev->regs);
345 kfree(fsl_lbc_ctrl_dev);
346 fsl_lbc_ctrl_dev = NULL;
347 return ret;
348 }
349
350 #ifdef CONFIG_SUSPEND
351
352 /* save lbc registers */
fsl_lbc_syscore_suspend(void)353 static int fsl_lbc_syscore_suspend(void)
354 {
355 struct fsl_lbc_ctrl *ctrl;
356 struct fsl_lbc_regs __iomem *lbc;
357
358 ctrl = fsl_lbc_ctrl_dev;
359 if (!ctrl)
360 goto out;
361
362 lbc = ctrl->regs;
363 if (!lbc)
364 goto out;
365
366 ctrl->saved_regs = kmalloc(sizeof(struct fsl_lbc_regs), GFP_KERNEL);
367 if (!ctrl->saved_regs)
368 return -ENOMEM;
369
370 _memcpy_fromio(ctrl->saved_regs, lbc, sizeof(struct fsl_lbc_regs));
371
372 out:
373 return 0;
374 }
375
376 /* restore lbc registers */
fsl_lbc_syscore_resume(void)377 static void fsl_lbc_syscore_resume(void)
378 {
379 struct fsl_lbc_ctrl *ctrl;
380 struct fsl_lbc_regs __iomem *lbc;
381
382 ctrl = fsl_lbc_ctrl_dev;
383 if (!ctrl)
384 goto out;
385
386 lbc = ctrl->regs;
387 if (!lbc)
388 goto out;
389
390 if (ctrl->saved_regs) {
391 _memcpy_toio(lbc, ctrl->saved_regs,
392 sizeof(struct fsl_lbc_regs));
393 kfree(ctrl->saved_regs);
394 ctrl->saved_regs = NULL;
395 }
396
397 out:
398 return;
399 }
400 #endif /* CONFIG_SUSPEND */
401
402 static const struct of_device_id fsl_lbc_match[] = {
403 { .compatible = "fsl,elbc", },
404 { .compatible = "fsl,pq3-localbus", },
405 { .compatible = "fsl,pq2-localbus", },
406 { .compatible = "fsl,pq2pro-localbus", },
407 {},
408 };
409
410 #ifdef CONFIG_SUSPEND
411 static struct syscore_ops lbc_syscore_pm_ops = {
412 .suspend = fsl_lbc_syscore_suspend,
413 .resume = fsl_lbc_syscore_resume,
414 };
415 #endif
416
417 static struct platform_driver fsl_lbc_ctrl_driver = {
418 .driver = {
419 .name = "fsl-lbc",
420 .of_match_table = fsl_lbc_match,
421 },
422 .probe = fsl_lbc_ctrl_probe,
423 };
424
fsl_lbc_init(void)425 static int __init fsl_lbc_init(void)
426 {
427 #ifdef CONFIG_SUSPEND
428 register_syscore_ops(&lbc_syscore_pm_ops);
429 #endif
430 return platform_driver_register(&fsl_lbc_ctrl_driver);
431 }
432 subsys_initcall(fsl_lbc_init);
433