1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 *
5 * Copyright (c) 2003 Intracom S.A.
6 * by Pantelis Antoniou <panto@intracom.gr>
7 *
8 * 2005 (c) MontaVista Software, Inc.
9 * Vitaly Bordug <vbordug@ru.mvista.com>
10 *
11 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
12 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 */
14
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/string.h>
19 #include <linux/ptrace.h>
20 #include <linux/errno.h>
21 #include <linux/ioport.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/ethtool.h>
30 #include <linux/bitops.h>
31 #include <linux/fs.h>
32 #include <linux/platform_device.h>
33 #include <linux/phy.h>
34 #include <linux/phylink.h>
35 #include <linux/property.h>
36 #include <linux/of.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/pgtable.h>
40 #include <linux/rtnetlink.h>
41
42 #include <linux/vmalloc.h>
43 #include <asm/irq.h>
44 #include <linux/uaccess.h>
45
46 #include "fs_enet.h"
47
48 /*************************************************/
49
50 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
51 MODULE_DESCRIPTION("Freescale Ethernet Driver");
52 MODULE_LICENSE("GPL");
53
54 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
55 module_param(fs_enet_debug, int, 0);
56 MODULE_PARM_DESC(fs_enet_debug,
57 "Freescale bitmapped debugging message enable value");
58
59 #define RX_RING_SIZE 32
60 #define TX_RING_SIZE 64
61
62 #ifdef CONFIG_NET_POLL_CONTROLLER
63 static void fs_enet_netpoll(struct net_device *dev);
64 #endif
65
fs_set_multicast_list(struct net_device * dev)66 static void fs_set_multicast_list(struct net_device *dev)
67 {
68 struct fs_enet_private *fep = netdev_priv(dev);
69
70 (*fep->ops->set_multicast_list)(dev);
71 }
72
fs_eth_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)73 static int fs_eth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
74 {
75 struct fs_enet_private *fep = netdev_priv(dev);
76
77 return phylink_mii_ioctl(fep->phylink, ifr, cmd);
78 }
79
skb_align(struct sk_buff * skb,int align)80 static void skb_align(struct sk_buff *skb, int align)
81 {
82 int off = ((unsigned long)skb->data) & (align - 1);
83
84 if (off)
85 skb_reserve(skb, align - off);
86 }
87
88 /* NAPI function */
fs_enet_napi(struct napi_struct * napi,int budget)89 static int fs_enet_napi(struct napi_struct *napi, int budget)
90 {
91 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
92 const struct fs_platform_info *fpi = fep->fpi;
93 struct net_device *dev = fep->ndev;
94 int curidx, dirtyidx, received = 0;
95 int do_wake = 0, do_restart = 0;
96 int tx_left = TX_RING_SIZE;
97 struct sk_buff *skb, *skbn;
98 cbd_t __iomem *bdp;
99 u16 pkt_len, sc;
100
101 spin_lock(&fep->tx_lock);
102 bdp = fep->dirty_tx;
103
104 /* clear status bits for napi*/
105 (*fep->ops->napi_clear_event)(dev);
106
107 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
108 dirtyidx = bdp - fep->tx_bd_base;
109
110 if (fep->tx_free == fep->tx_ring)
111 break;
112
113 skb = fep->tx_skbuff[dirtyidx];
114
115 /* Check for errors. */
116 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
117 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
118 if (sc & BD_ENET_TX_HB) /* No heartbeat */
119 dev->stats.tx_heartbeat_errors++;
120 if (sc & BD_ENET_TX_LC) /* Late collision */
121 dev->stats.tx_window_errors++;
122 if (sc & BD_ENET_TX_RL) /* Retrans limit */
123 dev->stats.tx_aborted_errors++;
124 if (sc & BD_ENET_TX_UN) /* Underrun */
125 dev->stats.tx_fifo_errors++;
126 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
127 dev->stats.tx_carrier_errors++;
128
129 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
130 dev->stats.tx_errors++;
131 do_restart = 1;
132 }
133 } else {
134 dev->stats.tx_packets++;
135 }
136
137 if (sc & BD_ENET_TX_READY) {
138 dev_warn(fep->dev,
139 "HEY! Enet xmit interrupt and TX_READY.\n");
140 }
141
142 /* Deferred means some collisions occurred during transmit,
143 * but we eventually sent the packet OK.
144 */
145 if (sc & BD_ENET_TX_DEF)
146 dev->stats.collisions++;
147
148 /* unmap */
149 if (fep->mapped_as_page[dirtyidx])
150 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
151 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
152 else
153 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
154 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
155
156 /* Free the sk buffer associated with this last transmit. */
157 if (skb) {
158 dev_kfree_skb(skb);
159 fep->tx_skbuff[dirtyidx] = NULL;
160 }
161
162 /* Update pointer to next buffer descriptor to be transmitted.
163 */
164 if ((sc & BD_ENET_TX_WRAP) == 0)
165 bdp++;
166 else
167 bdp = fep->tx_bd_base;
168
169 /* Since we have freed up a buffer, the ring is no longer full.
170 */
171 if (++fep->tx_free == MAX_SKB_FRAGS)
172 do_wake = 1;
173 tx_left--;
174 }
175
176 fep->dirty_tx = bdp;
177
178 if (do_restart)
179 (*fep->ops->tx_restart)(dev);
180
181 spin_unlock(&fep->tx_lock);
182
183 if (do_wake)
184 netif_wake_queue(dev);
185
186 /* First, grab all of the stats for the incoming packet.
187 * These get messed up if we get called due to a busy condition.
188 */
189 bdp = fep->cur_rx;
190
191 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
192 received < budget) {
193 curidx = bdp - fep->rx_bd_base;
194
195 /* Since we have allocated space to hold a complete frame,
196 * the last indicator should be set.
197 */
198 if ((sc & BD_ENET_RX_LAST) == 0)
199 dev_warn(fep->dev, "rcv is not +last\n");
200
201 /* Check for errors. */
202 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
203 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
204 dev->stats.rx_errors++;
205 /* Frame too long or too short. */
206 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
207 dev->stats.rx_length_errors++;
208 /* Frame alignment */
209 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
210 dev->stats.rx_frame_errors++;
211 /* CRC Error */
212 if (sc & BD_ENET_RX_CR)
213 dev->stats.rx_crc_errors++;
214 /* FIFO overrun */
215 if (sc & BD_ENET_RX_OV)
216 dev->stats.rx_crc_errors++;
217
218 skbn = fep->rx_skbuff[curidx];
219 } else {
220 skb = fep->rx_skbuff[curidx];
221
222 /* Process the incoming frame */
223 dev->stats.rx_packets++;
224 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
225 dev->stats.rx_bytes += pkt_len + 4;
226
227 if (pkt_len <= fpi->rx_copybreak) {
228 /* +2 to make IP header L1 cache aligned */
229 skbn = netdev_alloc_skb(dev, pkt_len + 2);
230 if (skbn) {
231 skb_reserve(skbn, 2); /* align IP header */
232 skb_copy_from_linear_data(skb, skbn->data,
233 pkt_len);
234 swap(skb, skbn);
235 dma_sync_single_for_cpu(fep->dev,
236 CBDR_BUFADDR(bdp),
237 L1_CACHE_ALIGN(pkt_len),
238 DMA_FROM_DEVICE);
239 }
240 } else {
241 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
242
243 if (skbn) {
244 dma_addr_t dma;
245
246 skb_align(skbn, ENET_RX_ALIGN);
247
248 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
249 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
250 DMA_FROM_DEVICE);
251
252 dma = dma_map_single(fep->dev, skbn->data,
253 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
254 DMA_FROM_DEVICE);
255 CBDW_BUFADDR(bdp, dma);
256 }
257 }
258
259 if (skbn) {
260 skb_put(skb, pkt_len); /* Make room */
261 skb->protocol = eth_type_trans(skb, dev);
262 received++;
263 netif_receive_skb(skb);
264 } else {
265 dev->stats.rx_dropped++;
266 skbn = skb;
267 }
268 }
269
270 fep->rx_skbuff[curidx] = skbn;
271 CBDW_DATLEN(bdp, 0);
272 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
273
274 /* Update BD pointer to next entry */
275 if ((sc & BD_ENET_RX_WRAP) == 0)
276 bdp++;
277 else
278 bdp = fep->rx_bd_base;
279
280 (*fep->ops->rx_bd_done)(dev);
281 }
282
283 fep->cur_rx = bdp;
284
285 if (received < budget && tx_left) {
286 /* done */
287 napi_complete_done(napi, received);
288 (*fep->ops->napi_enable)(dev);
289
290 return received;
291 }
292
293 return budget;
294 }
295
296 /* The interrupt handler.
297 * This is called from the MPC core interrupt.
298 */
299 static irqreturn_t
fs_enet_interrupt(int irq,void * dev_id)300 fs_enet_interrupt(int irq, void *dev_id)
301 {
302 struct net_device *dev = dev_id;
303 u32 int_events, int_clr_events;
304 struct fs_enet_private *fep;
305 int nr, napi_ok, handled;
306
307 fep = netdev_priv(dev);
308
309 nr = 0;
310 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
311 nr++;
312
313 int_clr_events = int_events;
314 int_clr_events &= ~fep->ev_napi;
315
316 (*fep->ops->clear_int_events)(dev, int_clr_events);
317
318 if (int_events & fep->ev_err)
319 (*fep->ops->ev_error)(dev, int_events);
320
321 if (int_events & fep->ev) {
322 napi_ok = napi_schedule_prep(&fep->napi);
323
324 (*fep->ops->napi_disable)(dev);
325 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
326
327 /* NOTE: it is possible for FCCs in NAPI mode
328 * to submit a spurious interrupt while in poll
329 */
330 if (napi_ok)
331 __napi_schedule(&fep->napi);
332 }
333 }
334
335 handled = nr > 0;
336 return IRQ_RETVAL(handled);
337 }
338
fs_init_bds(struct net_device * dev)339 void fs_init_bds(struct net_device *dev)
340 {
341 struct fs_enet_private *fep = netdev_priv(dev);
342 struct sk_buff *skb;
343 cbd_t __iomem *bdp;
344 int i;
345
346 fs_cleanup_bds(dev);
347
348 fep->dirty_tx = fep->tx_bd_base;
349 fep->cur_tx = fep->tx_bd_base;
350 fep->tx_free = fep->tx_ring;
351 fep->cur_rx = fep->rx_bd_base;
352
353 /* Initialize the receive buffer descriptors */
354 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
355 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
356 if (!skb)
357 break;
358
359 skb_align(skb, ENET_RX_ALIGN);
360 fep->rx_skbuff[i] = skb;
361 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skb->data,
362 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
363 DMA_FROM_DEVICE));
364 CBDW_DATLEN(bdp, 0); /* zero */
365 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
366 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
367 }
368
369 /* if we failed, fillup remainder */
370 for (; i < fep->rx_ring; i++, bdp++) {
371 fep->rx_skbuff[i] = NULL;
372 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
373 }
374
375 /* ...and the same for transmit. */
376 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
377 fep->tx_skbuff[i] = NULL;
378 CBDW_BUFADDR(bdp, 0);
379 CBDW_DATLEN(bdp, 0);
380 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
381 }
382 }
383
fs_cleanup_bds(struct net_device * dev)384 void fs_cleanup_bds(struct net_device *dev)
385 {
386 struct fs_enet_private *fep = netdev_priv(dev);
387 struct sk_buff *skb;
388 cbd_t __iomem *bdp;
389 int i;
390
391 /* Reset SKB transmit buffers. */
392 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
393 skb = fep->tx_skbuff[i];
394 if (!skb)
395 continue;
396
397 /* unmap */
398 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
399 skb->len, DMA_TO_DEVICE);
400
401 fep->tx_skbuff[i] = NULL;
402 dev_kfree_skb(skb);
403 }
404
405 /* Reset SKB receive buffers */
406 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
407 skb = fep->rx_skbuff[i];
408 if (!skb)
409 continue;
410
411 /* unmap */
412 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
413 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
414 DMA_FROM_DEVICE);
415
416 fep->rx_skbuff[i] = NULL;
417
418 dev_kfree_skb(skb);
419 }
420 }
421
422 #ifdef CONFIG_FS_ENET_MPC5121_FEC
423 /* MPC5121 FEC requires 4-byte alignment for TX data buffer! */
tx_skb_align_workaround(struct net_device * dev,struct sk_buff * skb)424 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
425 struct sk_buff *skb)
426 {
427 struct sk_buff *new_skb;
428
429 if (skb_linearize(skb))
430 return NULL;
431
432 /* Alloc new skb */
433 new_skb = netdev_alloc_skb(dev, skb->len + 4);
434 if (!new_skb)
435 return NULL;
436
437 /* Make sure new skb is properly aligned */
438 skb_align(new_skb, 4);
439
440 /* Copy data to new skb ... */
441 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
442 skb_put(new_skb, skb->len);
443
444 /* ... and free an old one */
445 dev_kfree_skb_any(skb);
446
447 return new_skb;
448 }
449 #endif
450
451 static netdev_tx_t
fs_enet_start_xmit(struct sk_buff * skb,struct net_device * dev)452 fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
453 {
454 struct fs_enet_private *fep = netdev_priv(dev);
455 int curidx, nr_frags, len;
456 cbd_t __iomem *bdp;
457 skb_frag_t *frag;
458 u16 sc;
459 #ifdef CONFIG_FS_ENET_MPC5121_FEC
460 int i, is_aligned = 1;
461
462 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
463 is_aligned = 0;
464 } else {
465 nr_frags = skb_shinfo(skb)->nr_frags;
466 frag = skb_shinfo(skb)->frags;
467 for (i = 0; i < nr_frags; i++, frag++) {
468 if (!IS_ALIGNED(skb_frag_off(frag), 4)) {
469 is_aligned = 0;
470 break;
471 }
472 }
473 }
474
475 if (!is_aligned) {
476 skb = tx_skb_align_workaround(dev, skb);
477 if (!skb) {
478 /* We have lost packet due to memory allocation error
479 * in tx_skb_align_workaround(). Hopefully original
480 * skb is still valid, so try transmit it later.
481 */
482 return NETDEV_TX_BUSY;
483 }
484 }
485 #endif
486
487 spin_lock(&fep->tx_lock);
488
489 /* Fill in a Tx ring entry */
490 bdp = fep->cur_tx;
491
492 nr_frags = skb_shinfo(skb)->nr_frags;
493 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
494 netif_stop_queue(dev);
495 spin_unlock(&fep->tx_lock);
496
497 /* Ooops. All transmit buffers are full. Bail out.
498 * This should not happen, since the tx queue should be stopped.
499 */
500 dev_warn(fep->dev, "tx queue full!.\n");
501 return NETDEV_TX_BUSY;
502 }
503
504 curidx = bdp - fep->tx_bd_base;
505
506 len = skb->len;
507 dev->stats.tx_bytes += len;
508 if (nr_frags)
509 len -= skb->data_len;
510
511 fep->tx_free -= nr_frags + 1;
512 /* Push the data cache so the CPM does not get stale memory data.
513 */
514 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
515 skb->data, len, DMA_TO_DEVICE));
516 CBDW_DATLEN(bdp, len);
517
518 fep->mapped_as_page[curidx] = 0;
519 frag = skb_shinfo(skb)->frags;
520 while (nr_frags) {
521 CBDC_SC(bdp,
522 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
523 BD_ENET_TX_TC);
524 CBDS_SC(bdp, BD_ENET_TX_READY);
525
526 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0) {
527 bdp++;
528 curidx++;
529 } else {
530 bdp = fep->tx_bd_base;
531 curidx = 0;
532 }
533
534 len = skb_frag_size(frag);
535 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
536 DMA_TO_DEVICE));
537 CBDW_DATLEN(bdp, len);
538
539 fep->tx_skbuff[curidx] = NULL;
540 fep->mapped_as_page[curidx] = 1;
541
542 frag++;
543 nr_frags--;
544 }
545
546 /* Trigger transmission start */
547 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
548 BD_ENET_TX_LAST | BD_ENET_TX_TC;
549
550 /* note that while FEC does not have this bit
551 * it marks it as available for software use
552 * yay for hw reuse :)
553 */
554 if (skb->len <= 60)
555 sc |= BD_ENET_TX_PAD;
556
557 CBDC_SC(bdp, BD_ENET_TX_STATS);
558 CBDS_SC(bdp, sc);
559
560 /* Save skb pointer. */
561 fep->tx_skbuff[curidx] = skb;
562
563 /* If this was the last BD in the ring, start at the beginning again. */
564 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
565 bdp++;
566 else
567 bdp = fep->tx_bd_base;
568
569 fep->cur_tx = bdp;
570
571 if (fep->tx_free < MAX_SKB_FRAGS)
572 netif_stop_queue(dev);
573
574 skb_tx_timestamp(skb);
575
576 (*fep->ops->tx_kickstart)(dev);
577
578 spin_unlock(&fep->tx_lock);
579
580 return NETDEV_TX_OK;
581 }
582
fs_timeout_work(struct work_struct * work)583 static void fs_timeout_work(struct work_struct *work)
584 {
585 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
586 timeout_work);
587 struct net_device *dev = fep->ndev;
588 unsigned long flags;
589 int wake = 0;
590
591 dev->stats.tx_errors++;
592
593 /* In the event a timeout was detected, but the netdev is brought down
594 * shortly after, it no longer makes sense to try to recover from the
595 * timeout. netif_running() will return false when called from the
596 * .ndo_close() callback. Calling the following recovery code while
597 * called from .ndo_close() could deadlock on rtnl.
598 */
599 if (!netif_running(dev))
600 return;
601
602 rtnl_lock();
603 phylink_stop(fep->phylink);
604 phylink_start(fep->phylink);
605 rtnl_unlock();
606
607 spin_lock_irqsave(&fep->lock, flags);
608 wake = fep->tx_free >= MAX_SKB_FRAGS &&
609 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
610 spin_unlock_irqrestore(&fep->lock, flags);
611
612 if (wake)
613 netif_wake_queue(dev);
614 }
615
fs_timeout(struct net_device * dev,unsigned int txqueue)616 static void fs_timeout(struct net_device *dev, unsigned int txqueue)
617 {
618 struct fs_enet_private *fep = netdev_priv(dev);
619
620 schedule_work(&fep->timeout_work);
621 }
622
fs_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)623 static void fs_mac_link_up(struct phylink_config *config,
624 struct phy_device *phy,
625 unsigned int mode, phy_interface_t interface,
626 int speed, int duplex,
627 bool tx_pause, bool rx_pause)
628 {
629 struct net_device *ndev = to_net_dev(config->dev);
630 struct fs_enet_private *fep = netdev_priv(ndev);
631 unsigned long flags;
632
633 spin_lock_irqsave(&fep->lock, flags);
634 fep->ops->restart(ndev, interface, speed, duplex);
635 spin_unlock_irqrestore(&fep->lock, flags);
636 }
637
fs_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)638 static void fs_mac_link_down(struct phylink_config *config,
639 unsigned int mode, phy_interface_t interface)
640 {
641 struct net_device *ndev = to_net_dev(config->dev);
642 struct fs_enet_private *fep = netdev_priv(ndev);
643 unsigned long flags;
644
645 spin_lock_irqsave(&fep->lock, flags);
646 fep->ops->stop(ndev);
647 spin_unlock_irqrestore(&fep->lock, flags);
648 }
649
fs_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)650 static void fs_mac_config(struct phylink_config *config, unsigned int mode,
651 const struct phylink_link_state *state)
652 {
653 /* Nothing to do */
654 }
655
fs_enet_open(struct net_device * dev)656 static int fs_enet_open(struct net_device *dev)
657 {
658 struct fs_enet_private *fep = netdev_priv(dev);
659 int r;
660 int err;
661
662 /* to initialize the fep->cur_rx,...
663 * not doing this, will cause a crash in fs_enet_napi
664 */
665 fs_init_bds(fep->ndev);
666
667 napi_enable(&fep->napi);
668
669 /* Install our interrupt handler. */
670 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
671 "fs_enet-mac", dev);
672 if (r != 0) {
673 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
674 napi_disable(&fep->napi);
675 return -EINVAL;
676 }
677
678 err = phylink_of_phy_connect(fep->phylink, fep->dev->of_node, 0);
679 if (err) {
680 free_irq(fep->interrupt, dev);
681 napi_disable(&fep->napi);
682 return err;
683 }
684 phylink_start(fep->phylink);
685
686 netif_start_queue(dev);
687
688 return 0;
689 }
690
fs_enet_close(struct net_device * dev)691 static int fs_enet_close(struct net_device *dev)
692 {
693 struct fs_enet_private *fep = netdev_priv(dev);
694 unsigned long flags;
695
696 netif_stop_queue(dev);
697 napi_disable(&fep->napi);
698 cancel_work(&fep->timeout_work);
699 phylink_stop(fep->phylink);
700
701 spin_lock_irqsave(&fep->lock, flags);
702 spin_lock(&fep->tx_lock);
703 (*fep->ops->stop)(dev);
704 spin_unlock(&fep->tx_lock);
705 spin_unlock_irqrestore(&fep->lock, flags);
706 phylink_disconnect_phy(fep->phylink);
707
708 /* release any irqs */
709 free_irq(fep->interrupt, dev);
710
711 return 0;
712 }
713
fs_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)714 static void fs_get_drvinfo(struct net_device *dev,
715 struct ethtool_drvinfo *info)
716 {
717 strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
718 }
719
fs_get_regs_len(struct net_device * dev)720 static int fs_get_regs_len(struct net_device *dev)
721 {
722 struct fs_enet_private *fep = netdev_priv(dev);
723
724 return (*fep->ops->get_regs_len)(dev);
725 }
726
fs_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)727 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
728 void *p)
729 {
730 struct fs_enet_private *fep = netdev_priv(dev);
731 unsigned long flags;
732 int r, len;
733
734 len = regs->len;
735
736 spin_lock_irqsave(&fep->lock, flags);
737 r = (*fep->ops->get_regs)(dev, p, &len);
738 spin_unlock_irqrestore(&fep->lock, flags);
739
740 if (r == 0)
741 regs->version = 0;
742 }
743
fs_get_msglevel(struct net_device * dev)744 static u32 fs_get_msglevel(struct net_device *dev)
745 {
746 struct fs_enet_private *fep = netdev_priv(dev);
747
748 return fep->msg_enable;
749 }
750
fs_set_msglevel(struct net_device * dev,u32 value)751 static void fs_set_msglevel(struct net_device *dev, u32 value)
752 {
753 struct fs_enet_private *fep = netdev_priv(dev);
754
755 fep->msg_enable = value;
756 }
757
fs_get_tunable(struct net_device * dev,const struct ethtool_tunable * tuna,void * data)758 static int fs_get_tunable(struct net_device *dev,
759 const struct ethtool_tunable *tuna, void *data)
760 {
761 struct fs_enet_private *fep = netdev_priv(dev);
762 struct fs_platform_info *fpi = fep->fpi;
763 int ret = 0;
764
765 switch (tuna->id) {
766 case ETHTOOL_RX_COPYBREAK:
767 *(u32 *)data = fpi->rx_copybreak;
768 break;
769 default:
770 ret = -EINVAL;
771 break;
772 }
773
774 return ret;
775 }
776
fs_set_tunable(struct net_device * dev,const struct ethtool_tunable * tuna,const void * data)777 static int fs_set_tunable(struct net_device *dev,
778 const struct ethtool_tunable *tuna, const void *data)
779 {
780 struct fs_enet_private *fep = netdev_priv(dev);
781 struct fs_platform_info *fpi = fep->fpi;
782 int ret = 0;
783
784 switch (tuna->id) {
785 case ETHTOOL_RX_COPYBREAK:
786 fpi->rx_copybreak = *(u32 *)data;
787 break;
788 default:
789 ret = -EINVAL;
790 break;
791 }
792
793 return ret;
794 }
795
fs_ethtool_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)796 static int fs_ethtool_set_link_ksettings(struct net_device *dev,
797 const struct ethtool_link_ksettings *cmd)
798 {
799 struct fs_enet_private *fep = netdev_priv(dev);
800
801 return phylink_ethtool_ksettings_set(fep->phylink, cmd);
802 }
803
fs_ethtool_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)804 static int fs_ethtool_get_link_ksettings(struct net_device *dev,
805 struct ethtool_link_ksettings *cmd)
806 {
807 struct fs_enet_private *fep = netdev_priv(dev);
808
809 return phylink_ethtool_ksettings_get(fep->phylink, cmd);
810 }
811
812 static const struct ethtool_ops fs_ethtool_ops = {
813 .get_drvinfo = fs_get_drvinfo,
814 .get_regs_len = fs_get_regs_len,
815 .nway_reset = phy_ethtool_nway_reset,
816 .get_link = ethtool_op_get_link,
817 .get_msglevel = fs_get_msglevel,
818 .set_msglevel = fs_set_msglevel,
819 .get_regs = fs_get_regs,
820 .get_ts_info = ethtool_op_get_ts_info,
821 .get_link_ksettings = fs_ethtool_get_link_ksettings,
822 .set_link_ksettings = fs_ethtool_set_link_ksettings,
823 .get_tunable = fs_get_tunable,
824 .set_tunable = fs_set_tunable,
825 };
826
827 #ifdef CONFIG_FS_ENET_HAS_FEC
828 #define IS_FEC(ops) ((ops) == &fs_fec_ops)
829 #else
830 #define IS_FEC(ops) 0
831 #endif
832
833 static const struct net_device_ops fs_enet_netdev_ops = {
834 .ndo_open = fs_enet_open,
835 .ndo_stop = fs_enet_close,
836 .ndo_start_xmit = fs_enet_start_xmit,
837 .ndo_tx_timeout = fs_timeout,
838 .ndo_set_rx_mode = fs_set_multicast_list,
839 .ndo_eth_ioctl = fs_eth_ioctl,
840 .ndo_validate_addr = eth_validate_addr,
841 .ndo_set_mac_address = eth_mac_addr,
842 #ifdef CONFIG_NET_POLL_CONTROLLER
843 .ndo_poll_controller = fs_enet_netpoll,
844 #endif
845 };
846
847 static const struct phylink_mac_ops fs_enet_phylink_mac_ops = {
848 .mac_config = fs_mac_config,
849 .mac_link_down = fs_mac_link_down,
850 .mac_link_up = fs_mac_link_up,
851 };
852
fs_enet_probe(struct platform_device * ofdev)853 static int fs_enet_probe(struct platform_device *ofdev)
854 {
855 int privsize, len, ret = -ENODEV;
856 struct fs_platform_info *fpi;
857 struct fs_enet_private *fep;
858 phy_interface_t phy_mode;
859 const struct fs_ops *ops;
860 struct net_device *ndev;
861 struct phylink *phylink;
862 const u32 *data;
863 struct clk *clk;
864
865 ops = device_get_match_data(&ofdev->dev);
866 if (!ops)
867 return -EINVAL;
868
869 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
870 if (!fpi)
871 return -ENOMEM;
872
873 if (!IS_FEC(ops)) {
874 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
875 if (!data || len != 4)
876 goto out_free_fpi;
877
878 fpi->cp_command = *data;
879 }
880
881 ret = of_get_phy_mode(ofdev->dev.of_node, &phy_mode);
882 if (ret) {
883 /* For compatibility, if the mode isn't specified in DT,
884 * assume MII
885 */
886 phy_mode = PHY_INTERFACE_MODE_MII;
887 }
888
889 fpi->rx_ring = RX_RING_SIZE;
890 fpi->tx_ring = TX_RING_SIZE;
891 fpi->rx_copybreak = 240;
892 fpi->napi_weight = 17;
893
894 /* make clock lookup non-fatal (the driver is shared among platforms),
895 * but require enable to succeed when a clock was specified/found,
896 * keep a reference to the clock upon successful acquisition
897 */
898 clk = devm_clk_get_optional_enabled(&ofdev->dev, "per");
899 if (IS_ERR(clk))
900 goto out_free_fpi;
901
902 privsize = sizeof(*fep) +
903 sizeof(struct sk_buff **) *
904 (fpi->rx_ring + fpi->tx_ring) +
905 sizeof(char) * fpi->tx_ring;
906
907 ndev = alloc_etherdev(privsize);
908 if (!ndev) {
909 ret = -ENOMEM;
910 goto out_free_fpi;
911 }
912
913 SET_NETDEV_DEV(ndev, &ofdev->dev);
914 platform_set_drvdata(ofdev, ndev);
915
916 fep = netdev_priv(ndev);
917 fep->dev = &ofdev->dev;
918 fep->ndev = ndev;
919 fep->fpi = fpi;
920 fep->ops = ops;
921
922 fep->phylink_config.dev = &ndev->dev;
923 fep->phylink_config.type = PHYLINK_NETDEV;
924 fep->phylink_config.mac_capabilities = MAC_10 | MAC_100;
925
926 __set_bit(PHY_INTERFACE_MODE_MII,
927 fep->phylink_config.supported_interfaces);
928
929 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec"))
930 __set_bit(PHY_INTERFACE_MODE_RMII,
931 fep->phylink_config.supported_interfaces);
932
933 phylink = phylink_create(&fep->phylink_config, dev_fwnode(fep->dev),
934 phy_mode, &fs_enet_phylink_mac_ops);
935 if (IS_ERR(phylink)) {
936 ret = PTR_ERR(phylink);
937 goto out_free_dev;
938 }
939
940 fep->phylink = phylink;
941
942 ret = fep->ops->setup_data(ndev);
943 if (ret)
944 goto out_phylink;
945
946 fep->rx_skbuff = (struct sk_buff **)&fep[1];
947 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
948 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
949 fpi->tx_ring);
950
951 spin_lock_init(&fep->lock);
952 spin_lock_init(&fep->tx_lock);
953
954 of_get_ethdev_address(ofdev->dev.of_node, ndev);
955
956 ret = fep->ops->allocate_bd(ndev);
957 if (ret)
958 goto out_cleanup_data;
959
960 fep->rx_bd_base = fep->ring_base;
961 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
962
963 fep->tx_ring = fpi->tx_ring;
964 fep->rx_ring = fpi->rx_ring;
965
966 ndev->netdev_ops = &fs_enet_netdev_ops;
967 ndev->watchdog_timeo = 2 * HZ;
968 INIT_WORK(&fep->timeout_work, fs_timeout_work);
969 netif_napi_add_weight(ndev, &fep->napi, fs_enet_napi,
970 fpi->napi_weight);
971
972 ndev->ethtool_ops = &fs_ethtool_ops;
973
974 ndev->features |= NETIF_F_SG;
975
976 ret = register_netdev(ndev);
977 if (ret)
978 goto out_free_bd;
979
980 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
981
982 return 0;
983
984 out_free_bd:
985 fep->ops->free_bd(ndev);
986 out_cleanup_data:
987 fep->ops->cleanup_data(ndev);
988 out_phylink:
989 phylink_destroy(fep->phylink);
990 out_free_dev:
991 free_netdev(ndev);
992 out_free_fpi:
993 kfree(fpi);
994 return ret;
995 }
996
fs_enet_remove(struct platform_device * ofdev)997 static void fs_enet_remove(struct platform_device *ofdev)
998 {
999 struct net_device *ndev = platform_get_drvdata(ofdev);
1000 struct fs_enet_private *fep = netdev_priv(ndev);
1001
1002 unregister_netdev(ndev);
1003
1004 fep->ops->free_bd(ndev);
1005 fep->ops->cleanup_data(ndev);
1006 dev_set_drvdata(fep->dev, NULL);
1007 phylink_destroy(fep->phylink);
1008 free_netdev(ndev);
1009 }
1010
1011 static const struct of_device_id fs_enet_match[] = {
1012 #ifdef CONFIG_FS_ENET_HAS_SCC
1013 {
1014 .compatible = "fsl,cpm1-scc-enet",
1015 .data = (void *)&fs_scc_ops,
1016 },
1017 {
1018 .compatible = "fsl,cpm2-scc-enet",
1019 .data = (void *)&fs_scc_ops,
1020 },
1021 #endif
1022 #ifdef CONFIG_FS_ENET_HAS_FCC
1023 {
1024 .compatible = "fsl,cpm2-fcc-enet",
1025 .data = (void *)&fs_fcc_ops,
1026 },
1027 #endif
1028 #ifdef CONFIG_FS_ENET_HAS_FEC
1029 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1030 {
1031 .compatible = "fsl,mpc5121-fec",
1032 .data = (void *)&fs_fec_ops,
1033 },
1034 {
1035 .compatible = "fsl,mpc5125-fec",
1036 .data = (void *)&fs_fec_ops,
1037 },
1038 #else
1039 {
1040 .compatible = "fsl,pq1-fec-enet",
1041 .data = (void *)&fs_fec_ops,
1042 },
1043 #endif
1044 #endif
1045 {}
1046 };
1047 MODULE_DEVICE_TABLE(of, fs_enet_match);
1048
1049 static struct platform_driver fs_enet_driver = {
1050 .driver = {
1051 .name = "fs_enet",
1052 .of_match_table = fs_enet_match,
1053 },
1054 .probe = fs_enet_probe,
1055 .remove_new = fs_enet_remove,
1056 };
1057
1058 #ifdef CONFIG_NET_POLL_CONTROLLER
fs_enet_netpoll(struct net_device * dev)1059 static void fs_enet_netpoll(struct net_device *dev)
1060 {
1061 disable_irq(dev->irq);
1062 fs_enet_interrupt(dev->irq, dev);
1063 enable_irq(dev->irq);
1064 }
1065 #endif
1066
1067 module_platform_driver(fs_enet_driver);
1068