1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FCC driver for Motorola MPC82xx (PQ2).
4 *
5 * Copyright (c) 2003 Intracom S.A.
6 * by Pantelis Antoniou <panto@intracom.gr>
7 *
8 * 2005 (c) MontaVista Software, Inc.
9 * Vitaly Bordug <vbordug@ru.mvista.com>
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/string.h>
16 #include <linux/ptrace.h>
17 #include <linux/errno.h>
18 #include <linux/ioport.h>
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25 #include <linux/ethtool.h>
26 #include <linux/bitops.h>
27 #include <linux/fs.h>
28 #include <linux/platform_device.h>
29 #include <linux/phy.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/gfp.h>
33 #include <linux/pgtable.h>
34
35 #include <asm/immap_cpm2.h>
36 #include <asm/cpm2.h>
37
38 #include <asm/irq.h>
39 #include <linux/uaccess.h>
40
41 #include "fs_enet.h"
42
43 /*************************************************/
44
45 /* FCC access macros */
46
47 /* write, read, set bits, clear bits */
48 #define W32(_p, _m, _v) out_be32(&(_p)->_m, (_v))
49 #define R32(_p, _m) in_be32(&(_p)->_m)
50 #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v))
51 #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v))
52
53 #define W16(_p, _m, _v) out_be16(&(_p)->_m, (_v))
54 #define R16(_p, _m) in_be16(&(_p)->_m)
55 #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v))
56 #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v))
57
58 #define W8(_p, _m, _v) out_8(&(_p)->_m, (_v))
59 #define R8(_p, _m) in_8(&(_p)->_m)
60 #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v))
61 #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v))
62
63 /*************************************************/
64
65 #define FCC_MAX_MULTICAST_ADDRS 64
66
67 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
68 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff))
69 #define mk_mii_end 0
70
71 #define MAX_CR_CMD_LOOPS 10000
72
fcc_cr_cmd(struct fs_enet_private * fep,u32 op)73 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op)
74 {
75 const struct fs_platform_info *fpi = fep->fpi;
76
77 return cpm_command(fpi->cp_command, op);
78 }
79
do_pd_setup(struct fs_enet_private * fep)80 static int do_pd_setup(struct fs_enet_private *fep)
81 {
82 struct platform_device *ofdev = to_platform_device(fep->dev);
83 struct fs_platform_info *fpi = fep->fpi;
84 int ret = -EINVAL;
85
86 fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
87 if (!fep->interrupt)
88 goto out;
89
90 fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0);
91 if (!fep->fcc.fccp)
92 goto out;
93
94 fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1);
95 if (!fep->fcc.ep)
96 goto out_fccp;
97
98 fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2);
99 if (!fep->fcc.fcccp)
100 goto out_ep;
101
102 fep->fcc.mem = (void __iomem *)cpm2_immr;
103 fpi->dpram_offset = cpm_muram_alloc(128, 32);
104 if (IS_ERR_VALUE(fpi->dpram_offset)) {
105 ret = fpi->dpram_offset;
106 goto out_fcccp;
107 }
108
109 return 0;
110
111 out_fcccp:
112 iounmap(fep->fcc.fcccp);
113 out_ep:
114 iounmap(fep->fcc.ep);
115 out_fccp:
116 iounmap(fep->fcc.fccp);
117 out:
118 return ret;
119 }
120
121 #define FCC_NAPI_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB)
122 #define FCC_EVENT (FCC_ENET_RXF | FCC_ENET_TXB)
123 #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE)
124
setup_data(struct net_device * dev)125 static int setup_data(struct net_device *dev)
126 {
127 struct fs_enet_private *fep = netdev_priv(dev);
128
129 if (do_pd_setup(fep) != 0)
130 return -EINVAL;
131
132 fep->ev_napi = FCC_NAPI_EVENT_MSK;
133 fep->ev = FCC_EVENT;
134 fep->ev_err = FCC_ERR_EVENT_MSK;
135
136 return 0;
137 }
138
allocate_bd(struct net_device * dev)139 static int allocate_bd(struct net_device *dev)
140 {
141 struct fs_enet_private *fep = netdev_priv(dev);
142 const struct fs_platform_info *fpi = fep->fpi;
143
144 fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev,
145 (fpi->tx_ring + fpi->rx_ring) *
146 sizeof(cbd_t), &fep->ring_mem_addr,
147 GFP_KERNEL);
148 if (fep->ring_base == NULL)
149 return -ENOMEM;
150
151 return 0;
152 }
153
free_bd(struct net_device * dev)154 static void free_bd(struct net_device *dev)
155 {
156 struct fs_enet_private *fep = netdev_priv(dev);
157 const struct fs_platform_info *fpi = fep->fpi;
158
159 if (fep->ring_base)
160 dma_free_coherent(fep->dev,
161 (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
162 (void __force *)fep->ring_base, fep->ring_mem_addr);
163 }
164
cleanup_data(struct net_device * dev)165 static void cleanup_data(struct net_device *dev)
166 {
167 /* nothing */
168 }
169
set_promiscuous_mode(struct net_device * dev)170 static void set_promiscuous_mode(struct net_device *dev)
171 {
172 struct fs_enet_private *fep = netdev_priv(dev);
173 fcc_t __iomem *fccp = fep->fcc.fccp;
174
175 S32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
176 }
177
set_multicast_start(struct net_device * dev)178 static void set_multicast_start(struct net_device *dev)
179 {
180 struct fs_enet_private *fep = netdev_priv(dev);
181 fcc_enet_t __iomem *ep = fep->fcc.ep;
182
183 W32(ep, fen_gaddrh, 0);
184 W32(ep, fen_gaddrl, 0);
185 }
186
set_multicast_one(struct net_device * dev,const u8 * mac)187 static void set_multicast_one(struct net_device *dev, const u8 *mac)
188 {
189 struct fs_enet_private *fep = netdev_priv(dev);
190 fcc_enet_t __iomem *ep = fep->fcc.ep;
191 u16 taddrh, taddrm, taddrl;
192
193 taddrh = ((u16)mac[5] << 8) | mac[4];
194 taddrm = ((u16)mac[3] << 8) | mac[2];
195 taddrl = ((u16)mac[1] << 8) | mac[0];
196
197 W16(ep, fen_taddrh, taddrh);
198 W16(ep, fen_taddrm, taddrm);
199 W16(ep, fen_taddrl, taddrl);
200 fcc_cr_cmd(fep, CPM_CR_SET_GADDR);
201 }
202
set_multicast_finish(struct net_device * dev)203 static void set_multicast_finish(struct net_device *dev)
204 {
205 struct fs_enet_private *fep = netdev_priv(dev);
206 fcc_t __iomem *fccp = fep->fcc.fccp;
207 fcc_enet_t __iomem *ep = fep->fcc.ep;
208
209 /* clear promiscuous always */
210 C32(fccp, fcc_fpsmr, FCC_PSMR_PRO);
211
212 /* if all multi or too many multicasts; just enable all */
213 if ((dev->flags & IFF_ALLMULTI) != 0 ||
214 netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) {
215
216 W32(ep, fen_gaddrh, 0xffffffff);
217 W32(ep, fen_gaddrl, 0xffffffff);
218 }
219
220 /* read back */
221 fep->fcc.gaddrh = R32(ep, fen_gaddrh);
222 fep->fcc.gaddrl = R32(ep, fen_gaddrl);
223 }
224
set_multicast_list(struct net_device * dev)225 static void set_multicast_list(struct net_device *dev)
226 {
227 struct netdev_hw_addr *ha;
228
229 if ((dev->flags & IFF_PROMISC) == 0) {
230 set_multicast_start(dev);
231 netdev_for_each_mc_addr(ha, dev)
232 set_multicast_one(dev, ha->addr);
233 set_multicast_finish(dev);
234 } else
235 set_promiscuous_mode(dev);
236 }
237
restart(struct net_device * dev,phy_interface_t interface,int speed,int duplex)238 static void restart(struct net_device *dev, phy_interface_t interface,
239 int speed, int duplex)
240 {
241 struct fs_enet_private *fep = netdev_priv(dev);
242 const struct fs_platform_info *fpi = fep->fpi;
243 fcc_t __iomem *fccp = fep->fcc.fccp;
244 fcc_c_t __iomem *fcccp = fep->fcc.fcccp;
245 fcc_enet_t __iomem *ep = fep->fcc.ep;
246 dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
247 u16 paddrh, paddrm, paddrl;
248 const unsigned char *mac;
249 int i;
250
251 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
252
253 /* clear everything (slow & steady does it) */
254 for (i = 0; i < sizeof(*ep); i++)
255 out_8((u8 __iomem *)ep + i, 0);
256
257 /* get physical address */
258 rx_bd_base_phys = fep->ring_mem_addr;
259 tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
260
261 /* point to bds */
262 W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys);
263 W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys);
264
265 /* Set maximum bytes per receive buffer.
266 * It must be a multiple of 32.
267 */
268 W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE);
269
270 W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
271 W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24);
272
273 /* Allocate space in the reserved FCC area of DPRAM for the
274 * internal buffers. No one uses this space (yet), so we
275 * can do this. Later, we will add resource management for
276 * this area.
277 */
278
279 W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset);
280 W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32);
281
282 W16(ep, fen_padptr, fpi->dpram_offset + 64);
283
284 /* fill with special symbol... */
285 memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32);
286
287 W32(ep, fen_genfcc.fcc_rbptr, 0);
288 W32(ep, fen_genfcc.fcc_tbptr, 0);
289 W32(ep, fen_genfcc.fcc_rcrc, 0);
290 W32(ep, fen_genfcc.fcc_tcrc, 0);
291 W16(ep, fen_genfcc.fcc_res1, 0);
292 W32(ep, fen_genfcc.fcc_res2, 0);
293
294 /* no CAM */
295 W32(ep, fen_camptr, 0);
296
297 /* Set CRC preset and mask */
298 W32(ep, fen_cmask, 0xdebb20e3);
299 W32(ep, fen_cpres, 0xffffffff);
300
301 W32(ep, fen_crcec, 0); /* CRC Error counter */
302 W32(ep, fen_alec, 0); /* alignment error counter */
303 W32(ep, fen_disfc, 0); /* discard frame counter */
304 W16(ep, fen_retlim, 15); /* Retry limit threshold */
305 W16(ep, fen_pper, 0); /* Normal persistence */
306
307 /* set group address */
308 W32(ep, fen_gaddrh, fep->fcc.gaddrh);
309 W32(ep, fen_gaddrl, fep->fcc.gaddrh);
310
311 /* Clear hash filter tables */
312 W32(ep, fen_iaddrh, 0);
313 W32(ep, fen_iaddrl, 0);
314
315 /* Clear the Out-of-sequence TxBD */
316 W16(ep, fen_tfcstat, 0);
317 W16(ep, fen_tfclen, 0);
318 W32(ep, fen_tfcptr, 0);
319
320 W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */
321 W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */
322
323 /* set address */
324 mac = dev->dev_addr;
325 paddrh = ((u16)mac[5] << 8) | mac[4];
326 paddrm = ((u16)mac[3] << 8) | mac[2];
327 paddrl = ((u16)mac[1] << 8) | mac[0];
328
329 W16(ep, fen_paddrh, paddrh);
330 W16(ep, fen_paddrm, paddrm);
331 W16(ep, fen_paddrl, paddrl);
332
333 W16(ep, fen_taddrh, 0);
334 W16(ep, fen_taddrm, 0);
335 W16(ep, fen_taddrl, 0);
336
337 W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */
338 W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */
339
340 /* Clear stat counters, in case we ever enable RMON */
341 W32(ep, fen_octc, 0);
342 W32(ep, fen_colc, 0);
343 W32(ep, fen_broc, 0);
344 W32(ep, fen_mulc, 0);
345 W32(ep, fen_uspc, 0);
346 W32(ep, fen_frgc, 0);
347 W32(ep, fen_ospc, 0);
348 W32(ep, fen_jbrc, 0);
349 W32(ep, fen_p64c, 0);
350 W32(ep, fen_p65c, 0);
351 W32(ep, fen_p128c, 0);
352 W32(ep, fen_p256c, 0);
353 W32(ep, fen_p512c, 0);
354 W32(ep, fen_p1024c, 0);
355
356 W16(ep, fen_rfthr, 0); /* Suggested by manual */
357 W16(ep, fen_rfcnt, 0);
358 W16(ep, fen_cftype, 0);
359
360 fs_init_bds(dev);
361
362 /* adjust to speed (for RMII mode) */
363 if (interface == PHY_INTERFACE_MODE_RMII) {
364 if (speed == SPEED_100)
365 C8(fcccp, fcc_gfemr, 0x20);
366 else
367 S8(fcccp, fcc_gfemr, 0x20);
368 }
369
370 fcc_cr_cmd(fep, CPM_CR_INIT_TRX);
371
372 /* clear events */
373 W16(fccp, fcc_fcce, 0xffff);
374
375 /* Enable interrupts we wish to service */
376 W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB);
377
378 /* Set GFMR to enable Ethernet operating mode */
379 W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET);
380
381 /* set sync/delimiters */
382 W16(fccp, fcc_fdsr, 0xd555);
383
384 W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC);
385
386 if (interface == PHY_INTERFACE_MODE_RMII)
387 S32(fccp, fcc_fpsmr, FCC_PSMR_RMII);
388
389 /* adjust to duplex mode */
390 if (duplex == DUPLEX_FULL)
391 S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
392 else
393 C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB);
394
395 /* Restore multicast and promiscuous settings */
396 set_multicast_list(dev);
397
398 S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
399 }
400
stop(struct net_device * dev)401 static void stop(struct net_device *dev)
402 {
403 struct fs_enet_private *fep = netdev_priv(dev);
404 fcc_t __iomem *fccp = fep->fcc.fccp;
405
406 /* stop ethernet */
407 C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT);
408
409 /* clear events */
410 W16(fccp, fcc_fcce, 0xffff);
411
412 /* clear interrupt mask */
413 W16(fccp, fcc_fccm, 0);
414
415 fs_cleanup_bds(dev);
416 }
417
napi_clear_event_fs(struct net_device * dev)418 static void napi_clear_event_fs(struct net_device *dev)
419 {
420 struct fs_enet_private *fep = netdev_priv(dev);
421 fcc_t __iomem *fccp = fep->fcc.fccp;
422
423 W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK);
424 }
425
napi_enable_fs(struct net_device * dev)426 static void napi_enable_fs(struct net_device *dev)
427 {
428 struct fs_enet_private *fep = netdev_priv(dev);
429 fcc_t __iomem *fccp = fep->fcc.fccp;
430
431 S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
432 }
433
napi_disable_fs(struct net_device * dev)434 static void napi_disable_fs(struct net_device *dev)
435 {
436 struct fs_enet_private *fep = netdev_priv(dev);
437 fcc_t __iomem *fccp = fep->fcc.fccp;
438
439 C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK);
440 }
441
rx_bd_done(struct net_device * dev)442 static void rx_bd_done(struct net_device *dev)
443 {
444 /* nothing */
445 }
446
tx_kickstart(struct net_device * dev)447 static void tx_kickstart(struct net_device *dev)
448 {
449 struct fs_enet_private *fep = netdev_priv(dev);
450 fcc_t __iomem *fccp = fep->fcc.fccp;
451
452 S16(fccp, fcc_ftodr, 0x8000);
453 }
454
get_int_events(struct net_device * dev)455 static u32 get_int_events(struct net_device *dev)
456 {
457 struct fs_enet_private *fep = netdev_priv(dev);
458 fcc_t __iomem *fccp = fep->fcc.fccp;
459
460 return (u32)R16(fccp, fcc_fcce);
461 }
462
clear_int_events(struct net_device * dev,u32 int_events)463 static void clear_int_events(struct net_device *dev, u32 int_events)
464 {
465 struct fs_enet_private *fep = netdev_priv(dev);
466 fcc_t __iomem *fccp = fep->fcc.fccp;
467
468 W16(fccp, fcc_fcce, int_events & 0xffff);
469 }
470
ev_error(struct net_device * dev,u32 int_events)471 static void ev_error(struct net_device *dev, u32 int_events)
472 {
473 struct fs_enet_private *fep = netdev_priv(dev);
474
475 dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events);
476 }
477
get_regs(struct net_device * dev,void * p,int * sizep)478 static int get_regs(struct net_device *dev, void *p, int *sizep)
479 {
480 struct fs_enet_private *fep = netdev_priv(dev);
481
482 if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1)
483 return -EINVAL;
484
485 memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t));
486 p = (char *)p + sizeof(fcc_t);
487
488 memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t));
489 p = (char *)p + sizeof(fcc_enet_t);
490
491 memcpy_fromio(p, fep->fcc.fcccp, 1);
492 return 0;
493 }
494
get_regs_len(struct net_device * dev)495 static int get_regs_len(struct net_device *dev)
496 {
497 return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1;
498 }
499
500 /* Some transmit errors cause the transmitter to shut
501 * down. We now issue a restart transmit.
502 * Also, to workaround 8260 device erratum CPM37, we must
503 * disable and then re-enable the transmitterfollowing a
504 * Late Collision, Underrun, or Retry Limit error.
505 * In addition, tbptr may point beyond BDs beyond still marked
506 * as ready due to internal pipelining, so we need to look back
507 * through the BDs and adjust tbptr to point to the last BD
508 * marked as ready. This may result in some buffers being
509 * retransmitted.
510 */
tx_restart(struct net_device * dev)511 static void tx_restart(struct net_device *dev)
512 {
513 struct fs_enet_private *fep = netdev_priv(dev);
514 fcc_t __iomem *fccp = fep->fcc.fccp;
515 const struct fs_platform_info *fpi = fep->fpi;
516 fcc_enet_t __iomem *ep = fep->fcc.ep;
517 cbd_t __iomem *curr_tbptr;
518 cbd_t __iomem *recheck_bd;
519 cbd_t __iomem *prev_bd;
520 cbd_t __iomem *last_tx_bd;
521
522 last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1);
523
524 /* get the current bd held in TBPTR and scan back from this point */
525 recheck_bd = curr_tbptr = (cbd_t __iomem *)
526 ((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) +
527 fep->ring_base);
528
529 prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1;
530
531 /* Move through the bds in reverse, look for the earliest buffer
532 * that is not ready. Adjust TBPTR to the following buffer */
533 while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) {
534 /* Go back one buffer */
535 recheck_bd = prev_bd;
536
537 /* update the previous buffer */
538 prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1;
539
540 /* We should never see all bds marked as ready, check anyway */
541 if (recheck_bd == curr_tbptr)
542 break;
543 }
544 /* Now update the TBPTR and dirty flag to the current buffer */
545 W32(ep, fen_genfcc.fcc_tbptr,
546 (uint)(((void __iomem *)recheck_bd - fep->ring_base) +
547 fep->ring_mem_addr));
548 fep->dirty_tx = recheck_bd;
549
550 C32(fccp, fcc_gfmr, FCC_GFMR_ENT);
551 udelay(10);
552 S32(fccp, fcc_gfmr, FCC_GFMR_ENT);
553
554 fcc_cr_cmd(fep, CPM_CR_RESTART_TX);
555 }
556
557 /*************************************************************************/
558
559 const struct fs_ops fs_fcc_ops = {
560 .setup_data = setup_data,
561 .cleanup_data = cleanup_data,
562 .set_multicast_list = set_multicast_list,
563 .restart = restart,
564 .stop = stop,
565 .napi_clear_event = napi_clear_event_fs,
566 .napi_enable = napi_enable_fs,
567 .napi_disable = napi_disable_fs,
568 .rx_bd_done = rx_bd_done,
569 .tx_kickstart = tx_kickstart,
570 .get_int_events = get_int_events,
571 .clear_int_events = clear_int_events,
572 .ev_error = ev_error,
573 .get_regs = get_regs,
574 .get_regs_len = get_regs_len,
575 .tx_restart = tx_restart,
576 .allocate_bd = allocate_bd,
577 .free_bd = free_bd,
578 };
579