1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Routines having to do with the 'struct sk_buff' memory handlers. 4 * 5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk> 6 * Florian La Roche <rzsfl@rz.uni-sb.de> 7 * 8 * Fixes: 9 * Alan Cox : Fixed the worst of the load 10 * balancer bugs. 11 * Dave Platt : Interrupt stacking fix. 12 * Richard Kooijman : Timestamp fixes. 13 * Alan Cox : Changed buffer format. 14 * Alan Cox : destructor hook for AF_UNIX etc. 15 * Linus Torvalds : Better skb_clone. 16 * Alan Cox : Added skb_copy. 17 * Alan Cox : Added all the changed routines Linus 18 * only put in the headers 19 * Ray VanTassle : Fixed --skb->lock in free 20 * Alan Cox : skb_copy copy arp field 21 * Andi Kleen : slabified it. 22 * Robert Olsson : Removed skb_head_pool 23 * 24 * NOTE: 25 * The __skb_ routines should be called with interrupts 26 * disabled, or you better be *real* sure that the operation is atomic 27 * with respect to whatever list is being frobbed (e.g. via lock_sock() 28 * or via disabling bottom half handlers, etc). 29 */ 30 31 /* 32 * The functions in this file will not compile correctly with gcc 2.4.x 33 */ 34 35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 36 37 #include <linux/module.h> 38 #include <linux/types.h> 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/interrupt.h> 42 #include <linux/in.h> 43 #include <linux/inet.h> 44 #include <linux/slab.h> 45 #include <linux/tcp.h> 46 #include <linux/udp.h> 47 #include <linux/sctp.h> 48 #include <linux/netdevice.h> 49 #ifdef CONFIG_NET_CLS_ACT 50 #include <net/pkt_sched.h> 51 #endif 52 #include <linux/string.h> 53 #include <linux/skbuff.h> 54 #include <linux/skbuff_ref.h> 55 #include <linux/splice.h> 56 #include <linux/cache.h> 57 #include <linux/rtnetlink.h> 58 #include <linux/init.h> 59 #include <linux/scatterlist.h> 60 #include <linux/errqueue.h> 61 #include <linux/prefetch.h> 62 #include <linux/bitfield.h> 63 #include <linux/if_vlan.h> 64 #include <linux/mpls.h> 65 #include <linux/kcov.h> 66 #include <linux/iov_iter.h> 67 #include <linux/crc32.h> 68 69 #include <net/protocol.h> 70 #include <net/dst.h> 71 #include <net/sock.h> 72 #include <net/checksum.h> 73 #include <net/gro.h> 74 #include <net/gso.h> 75 #include <net/hotdata.h> 76 #include <net/ip6_checksum.h> 77 #include <net/xfrm.h> 78 #include <net/mpls.h> 79 #include <net/mptcp.h> 80 #include <net/mctp.h> 81 #include <net/can.h> 82 #include <net/page_pool/helpers.h> 83 #include <net/psp/types.h> 84 #include <net/dropreason.h> 85 #include <net/xdp_sock.h> 86 87 #include <linux/uaccess.h> 88 #include <trace/events/skb.h> 89 #include <linux/highmem.h> 90 #include <linux/capability.h> 91 #include <linux/user_namespace.h> 92 #include <linux/indirect_call_wrapper.h> 93 #include <linux/textsearch.h> 94 95 #include "dev.h" 96 #include "devmem.h" 97 #include "netmem_priv.h" 98 #include "sock_destructor.h" 99 100 #ifdef CONFIG_SKB_EXTENSIONS 101 static struct kmem_cache *skbuff_ext_cache __ro_after_init; 102 #endif 103 104 #define GRO_MAX_HEAD_PAD (GRO_MAX_HEAD + NET_SKB_PAD + NET_IP_ALIGN) 105 #define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(max(MAX_TCP_HEADER, \ 106 GRO_MAX_HEAD_PAD)) 107 108 /* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two. 109 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique 110 * size, and we can differentiate heads from skb_small_head_cache 111 * vs system slabs by looking at their size (skb_end_offset()). 112 */ 113 #define SKB_SMALL_HEAD_CACHE_SIZE \ 114 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \ 115 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \ 116 SKB_SMALL_HEAD_SIZE) 117 118 #define SKB_SMALL_HEAD_HEADROOM \ 119 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) 120 121 /* kcm_write_msgs() relies on casting paged frags to bio_vec to use 122 * iov_iter_bvec(). These static asserts ensure the cast is valid is long as the 123 * netmem is a page. 124 */ 125 static_assert(offsetof(struct bio_vec, bv_page) == 126 offsetof(skb_frag_t, netmem)); 127 static_assert(sizeof_field(struct bio_vec, bv_page) == 128 sizeof_field(skb_frag_t, netmem)); 129 130 static_assert(offsetof(struct bio_vec, bv_len) == offsetof(skb_frag_t, len)); 131 static_assert(sizeof_field(struct bio_vec, bv_len) == 132 sizeof_field(skb_frag_t, len)); 133 134 static_assert(offsetof(struct bio_vec, bv_offset) == 135 offsetof(skb_frag_t, offset)); 136 static_assert(sizeof_field(struct bio_vec, bv_offset) == 137 sizeof_field(skb_frag_t, offset)); 138 139 #undef FN 140 #define FN(reason) [SKB_DROP_REASON_##reason] = #reason, 141 static const char * const drop_reasons[] = { 142 [SKB_CONSUMED] = "CONSUMED", 143 DEFINE_DROP_REASON(FN, FN) 144 }; 145 146 static const struct drop_reason_list drop_reasons_core = { 147 .reasons = drop_reasons, 148 .n_reasons = ARRAY_SIZE(drop_reasons), 149 }; 150 151 const struct drop_reason_list __rcu * 152 drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = { 153 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core), 154 }; 155 EXPORT_SYMBOL(drop_reasons_by_subsys); 156 157 /** 158 * drop_reasons_register_subsys - register another drop reason subsystem 159 * @subsys: the subsystem to register, must not be the core 160 * @list: the list of drop reasons within the subsystem, must point to 161 * a statically initialized list 162 */ 163 void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys, 164 const struct drop_reason_list *list) 165 { 166 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 167 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 168 "invalid subsystem %d\n", subsys)) 169 return; 170 171 /* must point to statically allocated memory, so INIT is OK */ 172 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list); 173 } 174 EXPORT_SYMBOL_GPL(drop_reasons_register_subsys); 175 176 /** 177 * drop_reasons_unregister_subsys - unregister a drop reason subsystem 178 * @subsys: the subsystem to remove, must not be the core 179 * 180 * Note: This will synchronize_rcu() to ensure no users when it returns. 181 */ 182 void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys) 183 { 184 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE || 185 subsys >= ARRAY_SIZE(drop_reasons_by_subsys), 186 "invalid subsystem %d\n", subsys)) 187 return; 188 189 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL); 190 191 synchronize_rcu(); 192 } 193 EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys); 194 195 /** 196 * skb_panic - private function for out-of-line support 197 * @skb: buffer 198 * @sz: size 199 * @addr: address 200 * @msg: skb_over_panic or skb_under_panic 201 * 202 * Out-of-line support for skb_put() and skb_push(). 203 * Called via the wrapper skb_over_panic() or skb_under_panic(). 204 * Keep out of line to prevent kernel bloat. 205 * __builtin_return_address is not used because it is not always reliable. 206 */ 207 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr, 208 const char msg[]) 209 { 210 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n", 211 msg, addr, skb->len, sz, skb->head, skb->data, 212 (unsigned long)skb->tail, (unsigned long)skb->end, 213 skb->dev ? skb->dev->name : "<NULL>"); 214 BUG(); 215 } 216 217 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr) 218 { 219 skb_panic(skb, sz, addr, __func__); 220 } 221 222 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr) 223 { 224 skb_panic(skb, sz, addr, __func__); 225 } 226 227 #define NAPI_SKB_CACHE_SIZE 128 228 #define NAPI_SKB_CACHE_BULK 32 229 #define NAPI_SKB_CACHE_FREE 32 230 231 struct napi_alloc_cache { 232 local_lock_t bh_lock; 233 struct page_frag_cache page; 234 unsigned int skb_count; 235 void *skb_cache[NAPI_SKB_CACHE_SIZE]; 236 }; 237 238 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache); 239 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache) = { 240 .bh_lock = INIT_LOCAL_LOCK(bh_lock), 241 }; 242 243 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 244 { 245 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 246 void *data; 247 248 fragsz = SKB_DATA_ALIGN(fragsz); 249 250 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 251 data = __page_frag_alloc_align(&nc->page, fragsz, 252 GFP_ATOMIC | __GFP_NOWARN, align_mask); 253 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 254 return data; 255 256 } 257 EXPORT_SYMBOL(__napi_alloc_frag_align); 258 259 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask) 260 { 261 void *data; 262 263 if (in_hardirq() || irqs_disabled()) { 264 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache); 265 266 fragsz = SKB_DATA_ALIGN(fragsz); 267 data = __page_frag_alloc_align(nc, fragsz, 268 GFP_ATOMIC | __GFP_NOWARN, 269 align_mask); 270 } else { 271 local_bh_disable(); 272 data = __napi_alloc_frag_align(fragsz, align_mask); 273 local_bh_enable(); 274 } 275 return data; 276 } 277 EXPORT_SYMBOL(__netdev_alloc_frag_align); 278 279 /* Cache kmem_cache_size(net_hotdata.skbuff_cache) to help the compiler 280 * remove dead code (and skbuff_cache_size) when CONFIG_KASAN is unset. 281 */ 282 static u32 skbuff_cache_size __read_mostly; 283 284 static inline struct sk_buff *napi_skb_cache_get(bool alloc) 285 { 286 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 287 struct sk_buff *skb; 288 289 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 290 if (unlikely(!nc->skb_count)) { 291 if (alloc) 292 nc->skb_count = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 293 GFP_ATOMIC | __GFP_NOWARN, 294 NAPI_SKB_CACHE_BULK, 295 nc->skb_cache); 296 if (unlikely(!nc->skb_count)) { 297 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 298 return NULL; 299 } 300 } 301 302 skb = nc->skb_cache[--nc->skb_count]; 303 if (nc->skb_count) 304 prefetch(nc->skb_cache[nc->skb_count - 1]); 305 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 306 kasan_mempool_unpoison_object(skb, skbuff_cache_size); 307 308 return skb; 309 } 310 311 /* 312 * Only clear those fields we need to clear, not those that we will 313 * actually initialise later. Hence, don't put any more fields after 314 * the tail pointer in struct sk_buff! 315 */ 316 static inline void skbuff_clear(struct sk_buff *skb) 317 { 318 /* Replace memset(skb, 0, offsetof(struct sk_buff, tail)) 319 * with two smaller memset(), with a barrier() between them. 320 * This forces the compiler to inline both calls. 321 */ 322 BUILD_BUG_ON(offsetof(struct sk_buff, tail) <= 128); 323 memset(skb, 0, 128); 324 barrier(); 325 memset((void *)skb + 128, 0, offsetof(struct sk_buff, tail) - 128); 326 } 327 328 /** 329 * napi_skb_cache_get_bulk - obtain a number of zeroed skb heads from the cache 330 * @skbs: pointer to an at least @n-sized array to fill with skb pointers 331 * @n: number of entries to provide 332 * 333 * Tries to obtain @n &sk_buff entries from the NAPI percpu cache and writes 334 * the pointers into the provided array @skbs. If there are less entries 335 * available, tries to replenish the cache and bulk-allocates the diff from 336 * the MM layer if needed. 337 * The heads are being zeroed with either memset() or %__GFP_ZERO, so they are 338 * ready for {,__}build_skb_around() and don't have any data buffers attached. 339 * Must be called *only* from the BH context. 340 * 341 * Return: number of successfully allocated skbs (@n if no actual allocation 342 * needed or kmem_cache_alloc_bulk() didn't fail). 343 */ 344 u32 napi_skb_cache_get_bulk(void **skbs, u32 n) 345 { 346 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 347 u32 bulk, total = n; 348 349 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 350 351 if (nc->skb_count >= n) 352 goto get; 353 354 /* No enough cached skbs. Try refilling the cache first */ 355 bulk = min(NAPI_SKB_CACHE_SIZE - nc->skb_count, NAPI_SKB_CACHE_BULK); 356 nc->skb_count += kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 357 GFP_ATOMIC | __GFP_NOWARN, bulk, 358 &nc->skb_cache[nc->skb_count]); 359 if (likely(nc->skb_count >= n)) 360 goto get; 361 362 /* Still not enough. Bulk-allocate the missing part directly, zeroed */ 363 n -= kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, 364 GFP_ATOMIC | __GFP_ZERO | __GFP_NOWARN, 365 n - nc->skb_count, &skbs[nc->skb_count]); 366 if (likely(nc->skb_count >= n)) 367 goto get; 368 369 /* kmem_cache didn't allocate the number we need, limit the output */ 370 total -= n - nc->skb_count; 371 n = nc->skb_count; 372 373 get: 374 for (u32 base = nc->skb_count - n, i = 0; i < n; i++) { 375 skbs[i] = nc->skb_cache[base + i]; 376 377 kasan_mempool_unpoison_object(skbs[i], skbuff_cache_size); 378 skbuff_clear(skbs[i]); 379 } 380 381 nc->skb_count -= n; 382 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 383 384 return total; 385 } 386 EXPORT_SYMBOL_GPL(napi_skb_cache_get_bulk); 387 388 static inline void __finalize_skb_around(struct sk_buff *skb, void *data, 389 unsigned int size) 390 { 391 struct skb_shared_info *shinfo; 392 393 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 394 395 /* Assumes caller memset cleared SKB */ 396 skb->truesize = SKB_TRUESIZE(size); 397 refcount_set(&skb->users, 1); 398 skb->head = data; 399 skb->data = data; 400 skb_reset_tail_pointer(skb); 401 skb_set_end_offset(skb, size); 402 skb->mac_header = (typeof(skb->mac_header))~0U; 403 skb->transport_header = (typeof(skb->transport_header))~0U; 404 skb->alloc_cpu = raw_smp_processor_id(); 405 /* make sure we initialize shinfo sequentially */ 406 shinfo = skb_shinfo(skb); 407 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref)); 408 atomic_set(&shinfo->dataref, 1); 409 410 skb_set_kcov_handle(skb, kcov_common_handle()); 411 } 412 413 static inline void *__slab_build_skb(void *data, unsigned int *size) 414 { 415 void *resized; 416 417 /* Must find the allocation size (and grow it to match). */ 418 *size = ksize(data); 419 /* krealloc() will immediately return "data" when 420 * "ksize(data)" is requested: it is the existing upper 421 * bounds. As a result, GFP_ATOMIC will be ignored. Note 422 * that this "new" pointer needs to be passed back to the 423 * caller for use so the __alloc_size hinting will be 424 * tracked correctly. 425 */ 426 resized = krealloc(data, *size, GFP_ATOMIC); 427 WARN_ON_ONCE(resized != data); 428 return resized; 429 } 430 431 /* build_skb() variant which can operate on slab buffers. 432 * Note that this should be used sparingly as slab buffers 433 * cannot be combined efficiently by GRO! 434 */ 435 struct sk_buff *slab_build_skb(void *data) 436 { 437 struct sk_buff *skb; 438 unsigned int size; 439 440 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 441 GFP_ATOMIC | __GFP_NOWARN); 442 if (unlikely(!skb)) 443 return NULL; 444 445 skbuff_clear(skb); 446 data = __slab_build_skb(data, &size); 447 __finalize_skb_around(skb, data, size); 448 449 return skb; 450 } 451 EXPORT_SYMBOL(slab_build_skb); 452 453 /* Caller must provide SKB that is memset cleared */ 454 static void __build_skb_around(struct sk_buff *skb, void *data, 455 unsigned int frag_size) 456 { 457 unsigned int size = frag_size; 458 459 /* frag_size == 0 is considered deprecated now. Callers 460 * using slab buffer should use slab_build_skb() instead. 461 */ 462 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead")) 463 data = __slab_build_skb(data, &size); 464 465 __finalize_skb_around(skb, data, size); 466 } 467 468 /** 469 * __build_skb - build a network buffer 470 * @data: data buffer provided by caller 471 * @frag_size: size of data (must not be 0) 472 * 473 * Allocate a new &sk_buff. Caller provides space holding head and 474 * skb_shared_info. @data must have been allocated from the page 475 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc() 476 * allocation is deprecated, and callers should use slab_build_skb() 477 * instead.) 478 * The return is the new skb buffer. 479 * On a failure the return is %NULL, and @data is not freed. 480 * Notes : 481 * Before IO, driver allocates only data buffer where NIC put incoming frame 482 * Driver should add room at head (NET_SKB_PAD) and 483 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info)) 484 * After IO, driver calls build_skb(), to allocate sk_buff and populate it 485 * before giving packet to stack. 486 * RX rings only contains data buffers, not full skbs. 487 */ 488 struct sk_buff *__build_skb(void *data, unsigned int frag_size) 489 { 490 struct sk_buff *skb; 491 492 skb = kmem_cache_alloc(net_hotdata.skbuff_cache, 493 GFP_ATOMIC | __GFP_NOWARN); 494 if (unlikely(!skb)) 495 return NULL; 496 497 skbuff_clear(skb); 498 __build_skb_around(skb, data, frag_size); 499 500 return skb; 501 } 502 503 /* build_skb() is wrapper over __build_skb(), that specifically 504 * takes care of skb->head and skb->pfmemalloc 505 */ 506 struct sk_buff *build_skb(void *data, unsigned int frag_size) 507 { 508 struct sk_buff *skb = __build_skb(data, frag_size); 509 510 if (likely(skb && frag_size)) { 511 skb->head_frag = 1; 512 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 513 } 514 return skb; 515 } 516 EXPORT_SYMBOL(build_skb); 517 518 /** 519 * build_skb_around - build a network buffer around provided skb 520 * @skb: sk_buff provide by caller, must be memset cleared 521 * @data: data buffer provided by caller 522 * @frag_size: size of data 523 */ 524 struct sk_buff *build_skb_around(struct sk_buff *skb, 525 void *data, unsigned int frag_size) 526 { 527 if (unlikely(!skb)) 528 return NULL; 529 530 __build_skb_around(skb, data, frag_size); 531 532 if (frag_size) { 533 skb->head_frag = 1; 534 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 535 } 536 return skb; 537 } 538 EXPORT_SYMBOL(build_skb_around); 539 540 /** 541 * __napi_build_skb - build a network buffer 542 * @data: data buffer provided by caller 543 * @frag_size: size of data 544 * 545 * Version of __build_skb() that uses NAPI percpu caches to obtain 546 * skbuff_head instead of inplace allocation. 547 * 548 * Returns a new &sk_buff on success, %NULL on allocation failure. 549 */ 550 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size) 551 { 552 struct sk_buff *skb; 553 554 skb = napi_skb_cache_get(true); 555 if (unlikely(!skb)) 556 return NULL; 557 558 skbuff_clear(skb); 559 __build_skb_around(skb, data, frag_size); 560 561 return skb; 562 } 563 564 /** 565 * napi_build_skb - build a network buffer 566 * @data: data buffer provided by caller 567 * @frag_size: size of data 568 * 569 * Version of __napi_build_skb() that takes care of skb->head_frag 570 * and skb->pfmemalloc when the data is a page or page fragment. 571 * 572 * Returns a new &sk_buff on success, %NULL on allocation failure. 573 */ 574 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size) 575 { 576 struct sk_buff *skb = __napi_build_skb(data, frag_size); 577 578 if (likely(skb) && frag_size) { 579 skb->head_frag = 1; 580 skb_propagate_pfmemalloc(virt_to_head_page(data), skb); 581 } 582 583 return skb; 584 } 585 EXPORT_SYMBOL(napi_build_skb); 586 587 static void *kmalloc_pfmemalloc(size_t obj_size, gfp_t flags, int node) 588 { 589 if (!gfp_pfmemalloc_allowed(flags)) 590 return NULL; 591 if (!obj_size) 592 return kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 593 flags, node); 594 return kmalloc_node_track_caller(obj_size, flags, node); 595 } 596 597 /* 598 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells 599 * the caller if emergency pfmemalloc reserves are being used. If it is and 600 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves 601 * may be used. Otherwise, the packet data may be discarded until enough 602 * memory is free 603 */ 604 static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node, 605 struct sk_buff *skb) 606 { 607 size_t obj_size; 608 void *obj; 609 610 obj_size = SKB_HEAD_ALIGN(*size); 611 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE && 612 !(flags & KMALLOC_NOT_NORMAL_BITS)) { 613 obj = kmem_cache_alloc_node(net_hotdata.skb_small_head_cache, 614 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 615 node); 616 *size = SKB_SMALL_HEAD_CACHE_SIZE; 617 if (likely(obj)) 618 goto out; 619 /* Try again but now we are using pfmemalloc reserves */ 620 if (skb) 621 skb->pfmemalloc = true; 622 return kmalloc_pfmemalloc(0, flags, node); 623 } 624 625 obj_size = kmalloc_size_roundup(obj_size); 626 /* The following cast might truncate high-order bits of obj_size, this 627 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway. 628 */ 629 *size = (unsigned int)obj_size; 630 631 /* 632 * Try a regular allocation, when that fails and we're not entitled 633 * to the reserves, fail. 634 */ 635 obj = kmalloc_node_track_caller(obj_size, 636 flags | __GFP_NOMEMALLOC | __GFP_NOWARN, 637 node); 638 if (likely(obj)) 639 goto out; 640 641 /* Try again but now we are using pfmemalloc reserves */ 642 if (skb) 643 skb->pfmemalloc = true; 644 obj = kmalloc_pfmemalloc(obj_size, flags, node); 645 out: 646 return obj; 647 } 648 649 /* Allocate a new skbuff. We do this ourselves so we can fill in a few 650 * 'private' fields and also do memory statistics to find all the 651 * [BEEP] leaks. 652 * 653 */ 654 655 /** 656 * __alloc_skb - allocate a network buffer 657 * @size: size to allocate 658 * @gfp_mask: allocation mask 659 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache 660 * instead of head cache and allocate a cloned (child) skb. 661 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for 662 * allocations in case the data is required for writeback 663 * @node: numa node to allocate memory on 664 * 665 * Allocate a new &sk_buff. The returned buffer has no headroom and a 666 * tail room of at least size bytes. The object has a reference count 667 * of one. The return is the buffer. On a failure the return is %NULL. 668 * 669 * Buffers may only be allocated from interrupts using a @gfp_mask of 670 * %GFP_ATOMIC. 671 */ 672 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask, 673 int flags, int node) 674 { 675 struct sk_buff *skb = NULL; 676 struct kmem_cache *cache; 677 u8 *data; 678 679 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX)) 680 gfp_mask |= __GFP_MEMALLOC; 681 682 if (flags & SKB_ALLOC_FCLONE) { 683 cache = net_hotdata.skbuff_fclone_cache; 684 goto fallback; 685 } 686 cache = net_hotdata.skbuff_cache; 687 if (unlikely(node != NUMA_NO_NODE && node != numa_mem_id())) 688 goto fallback; 689 690 if (flags & SKB_ALLOC_NAPI) { 691 skb = napi_skb_cache_get(true); 692 if (unlikely(!skb)) 693 return NULL; 694 } else if (!in_hardirq() && !irqs_disabled()) { 695 local_bh_disable(); 696 skb = napi_skb_cache_get(false); 697 local_bh_enable(); 698 } 699 700 if (!skb) { 701 fallback: 702 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node); 703 if (unlikely(!skb)) 704 return NULL; 705 } 706 skbuff_clear(skb); 707 708 /* We do our best to align skb_shared_info on a separate cache 709 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives 710 * aligned memory blocks, unless SLUB/SLAB debug is enabled. 711 * Both skb->head and skb_shared_info are cache line aligned. 712 */ 713 data = kmalloc_reserve(&size, gfp_mask, node, skb); 714 if (unlikely(!data)) 715 goto nodata; 716 /* kmalloc_size_roundup() might give us more room than requested. 717 * Put skb_shared_info exactly at the end of allocated zone, 718 * to allow max possible filling before reallocation. 719 */ 720 __finalize_skb_around(skb, data, size); 721 722 if (flags & SKB_ALLOC_FCLONE) { 723 struct sk_buff_fclones *fclones; 724 725 fclones = container_of(skb, struct sk_buff_fclones, skb1); 726 727 /* skb->fclone is a 2bits field. 728 * Replace expensive RMW (skb->fclone = SKB_FCLONE_ORIG) 729 * with a single OR. 730 */ 731 BUILD_BUG_ON(SKB_FCLONE_UNAVAILABLE != 0); 732 DEBUG_NET_WARN_ON_ONCE(skb->fclone != SKB_FCLONE_UNAVAILABLE); 733 skb->fclone |= SKB_FCLONE_ORIG; 734 735 refcount_set(&fclones->fclone_ref, 1); 736 } 737 738 return skb; 739 740 nodata: 741 kmem_cache_free(cache, skb); 742 return NULL; 743 } 744 EXPORT_SYMBOL(__alloc_skb); 745 746 /** 747 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device 748 * @dev: network device to receive on 749 * @len: length to allocate 750 * @gfp_mask: get_free_pages mask, passed to alloc_skb 751 * 752 * Allocate a new &sk_buff and assign it a usage count of one. The 753 * buffer has NET_SKB_PAD headroom built in. Users should allocate 754 * the headroom they think they need without accounting for the 755 * built in space. The built in space is used for optimisations. 756 * 757 * %NULL is returned if there is no free memory. 758 */ 759 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len, 760 gfp_t gfp_mask) 761 { 762 struct page_frag_cache *nc; 763 struct sk_buff *skb; 764 bool pfmemalloc; 765 void *data; 766 767 len += NET_SKB_PAD; 768 769 /* If requested length is either too small or too big, 770 * we use kmalloc() for skb->head allocation. 771 */ 772 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 773 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 774 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 775 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE); 776 if (!skb) 777 goto skb_fail; 778 goto skb_success; 779 } 780 781 len = SKB_HEAD_ALIGN(len); 782 783 if (sk_memalloc_socks()) 784 gfp_mask |= __GFP_MEMALLOC; 785 786 if (in_hardirq() || irqs_disabled()) { 787 nc = this_cpu_ptr(&netdev_alloc_cache); 788 data = page_frag_alloc(nc, len, gfp_mask); 789 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 790 } else { 791 local_bh_disable(); 792 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 793 794 nc = this_cpu_ptr(&napi_alloc_cache.page); 795 data = page_frag_alloc(nc, len, gfp_mask); 796 pfmemalloc = page_frag_cache_is_pfmemalloc(nc); 797 798 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 799 local_bh_enable(); 800 } 801 802 if (unlikely(!data)) 803 return NULL; 804 805 skb = __build_skb(data, len); 806 if (unlikely(!skb)) { 807 skb_free_frag(data); 808 return NULL; 809 } 810 811 if (pfmemalloc) 812 skb->pfmemalloc = 1; 813 skb->head_frag = 1; 814 815 skb_success: 816 skb_reserve(skb, NET_SKB_PAD); 817 skb->dev = dev; 818 819 skb_fail: 820 return skb; 821 } 822 EXPORT_SYMBOL(__netdev_alloc_skb); 823 824 /** 825 * napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance 826 * @napi: napi instance this buffer was allocated for 827 * @len: length to allocate 828 * 829 * Allocate a new sk_buff for use in NAPI receive. This buffer will 830 * attempt to allocate the head from a special reserved region used 831 * only for NAPI Rx allocation. By doing this we can save several 832 * CPU cycles by avoiding having to disable and re-enable IRQs. 833 * 834 * %NULL is returned if there is no free memory. 835 */ 836 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int len) 837 { 838 gfp_t gfp_mask = GFP_ATOMIC | __GFP_NOWARN; 839 struct napi_alloc_cache *nc; 840 struct sk_buff *skb; 841 bool pfmemalloc; 842 void *data; 843 844 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 845 len += NET_SKB_PAD + NET_IP_ALIGN; 846 847 /* If requested length is either too small or too big, 848 * we use kmalloc() for skb->head allocation. 849 */ 850 if (len <= SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE) || 851 len > SKB_WITH_OVERHEAD(PAGE_SIZE) || 852 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) { 853 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI, 854 NUMA_NO_NODE); 855 if (!skb) 856 goto skb_fail; 857 goto skb_success; 858 } 859 860 len = SKB_HEAD_ALIGN(len); 861 862 if (sk_memalloc_socks()) 863 gfp_mask |= __GFP_MEMALLOC; 864 865 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 866 nc = this_cpu_ptr(&napi_alloc_cache); 867 868 data = page_frag_alloc(&nc->page, len, gfp_mask); 869 pfmemalloc = page_frag_cache_is_pfmemalloc(&nc->page); 870 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 871 872 if (unlikely(!data)) 873 return NULL; 874 875 skb = __napi_build_skb(data, len); 876 if (unlikely(!skb)) { 877 skb_free_frag(data); 878 return NULL; 879 } 880 881 if (pfmemalloc) 882 skb->pfmemalloc = 1; 883 skb->head_frag = 1; 884 885 skb_success: 886 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); 887 skb->dev = napi->dev; 888 889 skb_fail: 890 return skb; 891 } 892 EXPORT_SYMBOL(napi_alloc_skb); 893 894 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem, 895 int off, int size, unsigned int truesize) 896 { 897 DEBUG_NET_WARN_ON_ONCE(size > truesize); 898 899 skb_fill_netmem_desc(skb, i, netmem, off, size); 900 skb->len += size; 901 skb->data_len += size; 902 skb->truesize += truesize; 903 } 904 EXPORT_SYMBOL(skb_add_rx_frag_netmem); 905 906 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 907 unsigned int truesize) 908 { 909 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 910 911 DEBUG_NET_WARN_ON_ONCE(size > truesize); 912 913 skb_frag_size_add(frag, size); 914 skb->len += size; 915 skb->data_len += size; 916 skb->truesize += truesize; 917 } 918 EXPORT_SYMBOL(skb_coalesce_rx_frag); 919 920 static void skb_drop_list(struct sk_buff **listp) 921 { 922 kfree_skb_list(*listp); 923 *listp = NULL; 924 } 925 926 static inline void skb_drop_fraglist(struct sk_buff *skb) 927 { 928 skb_drop_list(&skb_shinfo(skb)->frag_list); 929 } 930 931 static void skb_clone_fraglist(struct sk_buff *skb) 932 { 933 struct sk_buff *list; 934 935 skb_walk_frags(skb, list) 936 skb_get(list); 937 } 938 939 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb, 940 unsigned int headroom) 941 { 942 #if IS_ENABLED(CONFIG_PAGE_POOL) 943 u32 size, truesize, len, max_head_size, off; 944 struct sk_buff *skb = *pskb, *nskb; 945 int err, i, head_off; 946 void *data; 947 948 /* XDP does not support fraglist so we need to linearize 949 * the skb. 950 */ 951 if (skb_has_frag_list(skb)) 952 return -EOPNOTSUPP; 953 954 max_head_size = SKB_WITH_OVERHEAD(PAGE_SIZE - headroom); 955 if (skb->len > max_head_size + MAX_SKB_FRAGS * PAGE_SIZE) 956 return -ENOMEM; 957 958 size = min_t(u32, skb->len, max_head_size); 959 truesize = SKB_HEAD_ALIGN(size) + headroom; 960 data = page_pool_dev_alloc_va(pool, &truesize); 961 if (!data) 962 return -ENOMEM; 963 964 nskb = napi_build_skb(data, truesize); 965 if (!nskb) { 966 page_pool_free_va(pool, data, true); 967 return -ENOMEM; 968 } 969 970 skb_reserve(nskb, headroom); 971 skb_copy_header(nskb, skb); 972 skb_mark_for_recycle(nskb); 973 974 err = skb_copy_bits(skb, 0, nskb->data, size); 975 if (err) { 976 consume_skb(nskb); 977 return err; 978 } 979 skb_put(nskb, size); 980 981 head_off = skb_headroom(nskb) - skb_headroom(skb); 982 skb_headers_offset_update(nskb, head_off); 983 984 off = size; 985 len = skb->len - off; 986 for (i = 0; i < MAX_SKB_FRAGS && off < skb->len; i++) { 987 struct page *page; 988 u32 page_off; 989 990 size = min_t(u32, len, PAGE_SIZE); 991 truesize = size; 992 993 page = page_pool_dev_alloc(pool, &page_off, &truesize); 994 if (!page) { 995 consume_skb(nskb); 996 return -ENOMEM; 997 } 998 999 skb_add_rx_frag(nskb, i, page, page_off, size, truesize); 1000 err = skb_copy_bits(skb, off, page_address(page) + page_off, 1001 size); 1002 if (err) { 1003 consume_skb(nskb); 1004 return err; 1005 } 1006 1007 len -= size; 1008 off += size; 1009 } 1010 1011 consume_skb(skb); 1012 *pskb = nskb; 1013 1014 return 0; 1015 #else 1016 return -EOPNOTSUPP; 1017 #endif 1018 } 1019 EXPORT_SYMBOL(skb_pp_cow_data); 1020 1021 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb, 1022 const struct bpf_prog *prog) 1023 { 1024 if (!prog->aux->xdp_has_frags) 1025 return -EINVAL; 1026 1027 return skb_pp_cow_data(pool, pskb, XDP_PACKET_HEADROOM); 1028 } 1029 EXPORT_SYMBOL(skb_cow_data_for_xdp); 1030 1031 #if IS_ENABLED(CONFIG_PAGE_POOL) 1032 bool napi_pp_put_page(netmem_ref netmem) 1033 { 1034 netmem = netmem_compound_head(netmem); 1035 1036 if (unlikely(!netmem_is_pp(netmem))) 1037 return false; 1038 1039 page_pool_put_full_netmem(netmem_get_pp(netmem), netmem, false); 1040 1041 return true; 1042 } 1043 EXPORT_SYMBOL(napi_pp_put_page); 1044 #endif 1045 1046 static bool skb_pp_recycle(struct sk_buff *skb, void *data) 1047 { 1048 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 1049 return false; 1050 return napi_pp_put_page(page_to_netmem(virt_to_page(data))); 1051 } 1052 1053 /** 1054 * skb_pp_frag_ref() - Increase fragment references of a page pool aware skb 1055 * @skb: page pool aware skb 1056 * 1057 * Increase the fragment reference count (pp_ref_count) of a skb. This is 1058 * intended to gain fragment references only for page pool aware skbs, 1059 * i.e. when skb->pp_recycle is true, and not for fragments in a 1060 * non-pp-recycling skb. It has a fallback to increase references on normal 1061 * pages, as page pool aware skbs may also have normal page fragments. 1062 */ 1063 static int skb_pp_frag_ref(struct sk_buff *skb) 1064 { 1065 struct skb_shared_info *shinfo; 1066 netmem_ref head_netmem; 1067 int i; 1068 1069 if (!skb->pp_recycle) 1070 return -EINVAL; 1071 1072 shinfo = skb_shinfo(skb); 1073 1074 for (i = 0; i < shinfo->nr_frags; i++) { 1075 head_netmem = netmem_compound_head(shinfo->frags[i].netmem); 1076 if (likely(netmem_is_pp(head_netmem))) 1077 page_pool_ref_netmem(head_netmem); 1078 else 1079 page_ref_inc(netmem_to_page(head_netmem)); 1080 } 1081 return 0; 1082 } 1083 1084 static void skb_kfree_head(void *head, unsigned int end_offset) 1085 { 1086 if (end_offset == SKB_SMALL_HEAD_HEADROOM) 1087 kmem_cache_free(net_hotdata.skb_small_head_cache, head); 1088 else 1089 kfree(head); 1090 } 1091 1092 static void skb_free_head(struct sk_buff *skb) 1093 { 1094 unsigned char *head = skb->head; 1095 1096 if (skb->head_frag) { 1097 if (skb_pp_recycle(skb, head)) 1098 return; 1099 skb_free_frag(head); 1100 } else { 1101 skb_kfree_head(head, skb_end_offset(skb)); 1102 } 1103 } 1104 1105 static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason) 1106 { 1107 struct skb_shared_info *shinfo = skb_shinfo(skb); 1108 int i; 1109 1110 if (!skb_data_unref(skb, shinfo)) 1111 goto exit; 1112 1113 if (skb_zcopy(skb)) { 1114 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS; 1115 1116 skb_zcopy_clear(skb, true); 1117 if (skip_unref) 1118 goto free_head; 1119 } 1120 1121 for (i = 0; i < shinfo->nr_frags; i++) 1122 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle); 1123 1124 free_head: 1125 if (shinfo->frag_list) 1126 kfree_skb_list_reason(shinfo->frag_list, reason); 1127 1128 skb_free_head(skb); 1129 exit: 1130 /* When we clone an SKB we copy the reycling bit. The pp_recycle 1131 * bit is only set on the head though, so in order to avoid races 1132 * while trying to recycle fragments on __skb_frag_unref() we need 1133 * to make one SKB responsible for triggering the recycle path. 1134 * So disable the recycling bit if an SKB is cloned and we have 1135 * additional references to the fragmented part of the SKB. 1136 * Eventually the last SKB will have the recycling bit set and it's 1137 * dataref set to 0, which will trigger the recycling 1138 */ 1139 skb->pp_recycle = 0; 1140 } 1141 1142 /* 1143 * Free an skbuff by memory without cleaning the state. 1144 */ 1145 static void kfree_skbmem(struct sk_buff *skb) 1146 { 1147 struct sk_buff_fclones *fclones; 1148 1149 switch (skb->fclone) { 1150 case SKB_FCLONE_UNAVAILABLE: 1151 kmem_cache_free(net_hotdata.skbuff_cache, skb); 1152 return; 1153 1154 case SKB_FCLONE_ORIG: 1155 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1156 1157 /* We usually free the clone (TX completion) before original skb 1158 * This test would have no chance to be true for the clone, 1159 * while here, branch prediction will be good. 1160 */ 1161 if (refcount_read(&fclones->fclone_ref) == 1) 1162 goto fastpath; 1163 break; 1164 1165 default: /* SKB_FCLONE_CLONE */ 1166 fclones = container_of(skb, struct sk_buff_fclones, skb2); 1167 break; 1168 } 1169 if (!refcount_dec_and_test(&fclones->fclone_ref)) 1170 return; 1171 fastpath: 1172 kmem_cache_free(net_hotdata.skbuff_fclone_cache, fclones); 1173 } 1174 1175 void skb_release_head_state(struct sk_buff *skb) 1176 { 1177 skb_dst_drop(skb); 1178 if (skb->destructor) { 1179 DEBUG_NET_WARN_ON_ONCE(in_hardirq()); 1180 #ifdef CONFIG_INET 1181 INDIRECT_CALL_4(skb->destructor, 1182 tcp_wfree, __sock_wfree, sock_wfree, 1183 xsk_destruct_skb, 1184 skb); 1185 #else 1186 INDIRECT_CALL_2(skb->destructor, 1187 sock_wfree, xsk_destruct_skb, 1188 skb); 1189 1190 #endif 1191 skb->destructor = NULL; 1192 skb->sk = NULL; 1193 } 1194 nf_reset_ct(skb); 1195 skb_ext_reset(skb); 1196 } 1197 1198 /* Free everything but the sk_buff shell. */ 1199 static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason) 1200 { 1201 skb_release_head_state(skb); 1202 if (likely(skb->head)) 1203 skb_release_data(skb, reason); 1204 } 1205 1206 /** 1207 * __kfree_skb - private function 1208 * @skb: buffer 1209 * 1210 * Free an sk_buff. Release anything attached to the buffer. 1211 * Clean the state. This is an internal helper function. Users should 1212 * always call kfree_skb 1213 */ 1214 1215 void __kfree_skb(struct sk_buff *skb) 1216 { 1217 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED); 1218 kfree_skbmem(skb); 1219 } 1220 EXPORT_SYMBOL(__kfree_skb); 1221 1222 static __always_inline 1223 bool __sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, 1224 enum skb_drop_reason reason) 1225 { 1226 if (unlikely(!skb_unref(skb))) 1227 return false; 1228 1229 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET || 1230 u32_get_bits(reason, 1231 SKB_DROP_REASON_SUBSYS_MASK) >= 1232 SKB_DROP_REASON_SUBSYS_NUM); 1233 1234 if (reason == SKB_CONSUMED) 1235 trace_consume_skb(skb, __builtin_return_address(0)); 1236 else 1237 trace_kfree_skb(skb, __builtin_return_address(0), reason, sk); 1238 return true; 1239 } 1240 1241 /** 1242 * sk_skb_reason_drop - free an sk_buff with special reason 1243 * @sk: the socket to receive @skb, or NULL if not applicable 1244 * @skb: buffer to free 1245 * @reason: reason why this skb is dropped 1246 * 1247 * Drop a reference to the buffer and free it if the usage count has hit 1248 * zero. Meanwhile, pass the receiving socket and drop reason to 1249 * 'kfree_skb' tracepoint. 1250 */ 1251 void __fix_address 1252 sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb, enum skb_drop_reason reason) 1253 { 1254 if (__sk_skb_reason_drop(sk, skb, reason)) 1255 __kfree_skb(skb); 1256 } 1257 EXPORT_SYMBOL(sk_skb_reason_drop); 1258 1259 #define KFREE_SKB_BULK_SIZE 16 1260 1261 struct skb_free_array { 1262 unsigned int skb_count; 1263 void *skb_array[KFREE_SKB_BULK_SIZE]; 1264 }; 1265 1266 static void kfree_skb_add_bulk(struct sk_buff *skb, 1267 struct skb_free_array *sa, 1268 enum skb_drop_reason reason) 1269 { 1270 /* if SKB is a clone, don't handle this case */ 1271 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) { 1272 __kfree_skb(skb); 1273 return; 1274 } 1275 1276 skb_release_all(skb, reason); 1277 sa->skb_array[sa->skb_count++] = skb; 1278 1279 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) { 1280 kmem_cache_free_bulk(net_hotdata.skbuff_cache, KFREE_SKB_BULK_SIZE, 1281 sa->skb_array); 1282 sa->skb_count = 0; 1283 } 1284 } 1285 1286 void __fix_address 1287 kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason) 1288 { 1289 struct skb_free_array sa; 1290 1291 sa.skb_count = 0; 1292 1293 while (segs) { 1294 struct sk_buff *next = segs->next; 1295 1296 if (__sk_skb_reason_drop(NULL, segs, reason)) { 1297 skb_poison_list(segs); 1298 kfree_skb_add_bulk(segs, &sa, reason); 1299 } 1300 1301 segs = next; 1302 } 1303 1304 if (sa.skb_count) 1305 kmem_cache_free_bulk(net_hotdata.skbuff_cache, sa.skb_count, sa.skb_array); 1306 } 1307 EXPORT_SYMBOL(kfree_skb_list_reason); 1308 1309 /* Dump skb information and contents. 1310 * 1311 * Must only be called from net_ratelimit()-ed paths. 1312 * 1313 * Dumps whole packets if full_pkt, only headers otherwise. 1314 */ 1315 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt) 1316 { 1317 struct skb_shared_info *sh = skb_shinfo(skb); 1318 struct net_device *dev = skb->dev; 1319 struct sock *sk = skb->sk; 1320 struct sk_buff *list_skb; 1321 bool has_mac, has_trans; 1322 int headroom, tailroom; 1323 int i, len, seg_len; 1324 1325 if (full_pkt) 1326 len = skb->len; 1327 else 1328 len = min_t(int, skb->len, MAX_HEADER + 128); 1329 1330 headroom = skb_headroom(skb); 1331 tailroom = skb_tailroom(skb); 1332 1333 has_mac = skb_mac_header_was_set(skb); 1334 has_trans = skb_transport_header_was_set(skb); 1335 1336 printk("%sskb len=%u data_len=%u headroom=%u headlen=%u tailroom=%u\n" 1337 "end-tail=%u mac=(%d,%d) mac_len=%u net=(%d,%d) trans=%d\n" 1338 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n" 1339 "csum(0x%x start=%u offset=%u ip_summed=%u complete_sw=%u valid=%u level=%u)\n" 1340 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n" 1341 "priority=0x%x mark=0x%x alloc_cpu=%u vlan_all=0x%x\n" 1342 "encapsulation=%d inner(proto=0x%04x, mac=%u, net=%u, trans=%u)\n", 1343 level, skb->len, skb->data_len, headroom, skb_headlen(skb), 1344 tailroom, skb->end - skb->tail, 1345 has_mac ? skb->mac_header : -1, 1346 has_mac ? skb_mac_header_len(skb) : -1, 1347 skb->mac_len, 1348 skb->network_header, 1349 has_trans ? skb_network_header_len(skb) : -1, 1350 has_trans ? skb->transport_header : -1, 1351 sh->tx_flags, sh->nr_frags, 1352 sh->gso_size, sh->gso_type, sh->gso_segs, 1353 skb->csum, skb->csum_start, skb->csum_offset, skb->ip_summed, 1354 skb->csum_complete_sw, skb->csum_valid, skb->csum_level, 1355 skb->hash, skb->sw_hash, skb->l4_hash, 1356 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif, 1357 skb->priority, skb->mark, skb->alloc_cpu, skb->vlan_all, 1358 skb->encapsulation, skb->inner_protocol, skb->inner_mac_header, 1359 skb->inner_network_header, skb->inner_transport_header); 1360 1361 if (dev) 1362 printk("%sdev name=%s feat=%pNF\n", 1363 level, dev->name, &dev->features); 1364 if (sk) 1365 printk("%ssk family=%hu type=%u proto=%u\n", 1366 level, sk->sk_family, sk->sk_type, sk->sk_protocol); 1367 1368 if (full_pkt && headroom) 1369 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET, 1370 16, 1, skb->head, headroom, false); 1371 1372 seg_len = min_t(int, skb_headlen(skb), len); 1373 if (seg_len) 1374 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET, 1375 16, 1, skb->data, seg_len, false); 1376 len -= seg_len; 1377 1378 if (full_pkt && tailroom) 1379 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET, 1380 16, 1, skb_tail_pointer(skb), tailroom, false); 1381 1382 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) { 1383 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1384 u32 p_off, p_len, copied; 1385 struct page *p; 1386 u8 *vaddr; 1387 1388 if (skb_frag_is_net_iov(frag)) { 1389 printk("%sskb frag %d: not readable\n", level, i); 1390 len -= skb_frag_size(frag); 1391 if (!len) 1392 break; 1393 continue; 1394 } 1395 1396 skb_frag_foreach_page(frag, skb_frag_off(frag), 1397 skb_frag_size(frag), p, p_off, p_len, 1398 copied) { 1399 seg_len = min_t(int, p_len, len); 1400 vaddr = kmap_atomic(p); 1401 print_hex_dump(level, "skb frag: ", 1402 DUMP_PREFIX_OFFSET, 1403 16, 1, vaddr + p_off, seg_len, false); 1404 kunmap_atomic(vaddr); 1405 len -= seg_len; 1406 if (!len) 1407 break; 1408 } 1409 } 1410 1411 if (full_pkt && skb_has_frag_list(skb)) { 1412 printk("skb fraglist:\n"); 1413 skb_walk_frags(skb, list_skb) 1414 skb_dump(level, list_skb, true); 1415 } 1416 } 1417 EXPORT_SYMBOL(skb_dump); 1418 1419 /** 1420 * skb_tx_error - report an sk_buff xmit error 1421 * @skb: buffer that triggered an error 1422 * 1423 * Report xmit error if a device callback is tracking this skb. 1424 * skb must be freed afterwards. 1425 */ 1426 void skb_tx_error(struct sk_buff *skb) 1427 { 1428 if (skb) { 1429 skb_zcopy_downgrade_managed(skb); 1430 skb_zcopy_clear(skb, true); 1431 } 1432 } 1433 EXPORT_SYMBOL(skb_tx_error); 1434 1435 #ifdef CONFIG_TRACEPOINTS 1436 /** 1437 * consume_skb - free an skbuff 1438 * @skb: buffer to free 1439 * 1440 * Drop a ref to the buffer and free it if the usage count has hit zero 1441 * Functions identically to kfree_skb, but kfree_skb assumes that the frame 1442 * is being dropped after a failure and notes that 1443 */ 1444 void consume_skb(struct sk_buff *skb) 1445 { 1446 if (!skb_unref(skb)) 1447 return; 1448 1449 trace_consume_skb(skb, __builtin_return_address(0)); 1450 __kfree_skb(skb); 1451 } 1452 EXPORT_SYMBOL(consume_skb); 1453 #endif 1454 1455 /** 1456 * __consume_stateless_skb - free an skbuff, assuming it is stateless 1457 * @skb: buffer to free 1458 * 1459 * Alike consume_skb(), but this variant assumes that this is the last 1460 * skb reference and all the head states have been already dropped 1461 */ 1462 void __consume_stateless_skb(struct sk_buff *skb) 1463 { 1464 trace_consume_skb(skb, __builtin_return_address(0)); 1465 skb_release_data(skb, SKB_CONSUMED); 1466 kfree_skbmem(skb); 1467 } 1468 1469 static void napi_skb_cache_put(struct sk_buff *skb) 1470 { 1471 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache); 1472 1473 if (!kasan_mempool_poison_object(skb)) 1474 return; 1475 1476 local_lock_nested_bh(&napi_alloc_cache.bh_lock); 1477 nc->skb_cache[nc->skb_count++] = skb; 1478 1479 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) { 1480 u32 i, remaining = NAPI_SKB_CACHE_SIZE - NAPI_SKB_CACHE_FREE; 1481 1482 for (i = remaining; i < NAPI_SKB_CACHE_SIZE; i++) 1483 kasan_mempool_unpoison_object(nc->skb_cache[i], 1484 skbuff_cache_size); 1485 1486 kmem_cache_free_bulk(net_hotdata.skbuff_cache, 1487 NAPI_SKB_CACHE_FREE, 1488 nc->skb_cache + remaining); 1489 nc->skb_count = remaining; 1490 } 1491 local_unlock_nested_bh(&napi_alloc_cache.bh_lock); 1492 } 1493 1494 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason) 1495 { 1496 skb_release_all(skb, reason); 1497 napi_skb_cache_put(skb); 1498 } 1499 1500 void napi_skb_free_stolen_head(struct sk_buff *skb) 1501 { 1502 if (unlikely(skb->slow_gro)) { 1503 nf_reset_ct(skb); 1504 skb_dst_drop(skb); 1505 skb_ext_put(skb); 1506 skb_orphan(skb); 1507 skb->slow_gro = 0; 1508 } 1509 napi_skb_cache_put(skb); 1510 } 1511 1512 /** 1513 * napi_consume_skb() - consume skb in NAPI context, try to feed skb cache 1514 * @skb: buffer to free 1515 * @budget: NAPI budget 1516 * 1517 * Non-zero @budget must come from the @budget argument passed by the core 1518 * to a NAPI poll function. Note that core may pass budget of 0 to NAPI poll 1519 * for example when polling for netpoll / netconsole. 1520 * 1521 * Passing @budget of 0 is safe from any context, it turns this function 1522 * into dev_consume_skb_any(). 1523 */ 1524 void napi_consume_skb(struct sk_buff *skb, int budget) 1525 { 1526 if (unlikely(!budget || !skb)) { 1527 dev_consume_skb_any(skb); 1528 return; 1529 } 1530 1531 DEBUG_NET_WARN_ON_ONCE(!in_softirq()); 1532 1533 if (skb->alloc_cpu != smp_processor_id() && !skb_shared(skb)) { 1534 skb_release_head_state(skb); 1535 return skb_attempt_defer_free(skb); 1536 } 1537 1538 if (!skb_unref(skb)) 1539 return; 1540 1541 /* if reaching here SKB is ready to free */ 1542 trace_consume_skb(skb, __builtin_return_address(0)); 1543 1544 /* if SKB is a clone, don't handle this case */ 1545 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 1546 __kfree_skb(skb); 1547 return; 1548 } 1549 1550 skb_release_all(skb, SKB_CONSUMED); 1551 napi_skb_cache_put(skb); 1552 } 1553 EXPORT_SYMBOL(napi_consume_skb); 1554 1555 /* Make sure a field is contained by headers group */ 1556 #define CHECK_SKB_FIELD(field) \ 1557 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \ 1558 offsetof(struct sk_buff, headers.field)); \ 1559 1560 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old) 1561 { 1562 new->tstamp = old->tstamp; 1563 /* We do not copy old->sk */ 1564 new->dev = old->dev; 1565 memcpy(new->cb, old->cb, sizeof(old->cb)); 1566 skb_dst_copy(new, old); 1567 __skb_ext_copy(new, old); 1568 __nf_copy(new, old, false); 1569 1570 /* Note : this field could be in the headers group. 1571 * It is not yet because we do not want to have a 16 bit hole 1572 */ 1573 new->queue_mapping = old->queue_mapping; 1574 1575 memcpy(&new->headers, &old->headers, sizeof(new->headers)); 1576 CHECK_SKB_FIELD(protocol); 1577 CHECK_SKB_FIELD(csum); 1578 CHECK_SKB_FIELD(hash); 1579 CHECK_SKB_FIELD(priority); 1580 CHECK_SKB_FIELD(skb_iif); 1581 CHECK_SKB_FIELD(vlan_proto); 1582 CHECK_SKB_FIELD(vlan_tci); 1583 CHECK_SKB_FIELD(transport_header); 1584 CHECK_SKB_FIELD(network_header); 1585 CHECK_SKB_FIELD(mac_header); 1586 CHECK_SKB_FIELD(inner_protocol); 1587 CHECK_SKB_FIELD(inner_transport_header); 1588 CHECK_SKB_FIELD(inner_network_header); 1589 CHECK_SKB_FIELD(inner_mac_header); 1590 CHECK_SKB_FIELD(mark); 1591 #ifdef CONFIG_NETWORK_SECMARK 1592 CHECK_SKB_FIELD(secmark); 1593 #endif 1594 #ifdef CONFIG_NET_RX_BUSY_POLL 1595 CHECK_SKB_FIELD(napi_id); 1596 #endif 1597 CHECK_SKB_FIELD(alloc_cpu); 1598 #ifdef CONFIG_XPS 1599 CHECK_SKB_FIELD(sender_cpu); 1600 #endif 1601 #ifdef CONFIG_NET_SCHED 1602 CHECK_SKB_FIELD(tc_index); 1603 #endif 1604 1605 } 1606 1607 /* 1608 * You should not add any new code to this function. Add it to 1609 * __copy_skb_header above instead. 1610 */ 1611 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb) 1612 { 1613 #define C(x) n->x = skb->x 1614 1615 n->next = n->prev = NULL; 1616 n->sk = NULL; 1617 __copy_skb_header(n, skb); 1618 1619 C(len); 1620 C(data_len); 1621 C(mac_len); 1622 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len; 1623 n->cloned = 1; 1624 n->nohdr = 0; 1625 n->peeked = 0; 1626 C(pfmemalloc); 1627 C(pp_recycle); 1628 n->destructor = NULL; 1629 C(tail); 1630 C(end); 1631 C(head); 1632 C(head_frag); 1633 C(data); 1634 C(truesize); 1635 refcount_set(&n->users, 1); 1636 1637 atomic_inc(&(skb_shinfo(skb)->dataref)); 1638 skb->cloned = 1; 1639 1640 return n; 1641 #undef C 1642 } 1643 1644 /** 1645 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg 1646 * @first: first sk_buff of the msg 1647 */ 1648 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first) 1649 { 1650 struct sk_buff *n; 1651 1652 n = alloc_skb(0, GFP_ATOMIC); 1653 if (!n) 1654 return NULL; 1655 1656 n->len = first->len; 1657 n->data_len = first->len; 1658 n->truesize = first->truesize; 1659 1660 skb_shinfo(n)->frag_list = first; 1661 1662 __copy_skb_header(n, first); 1663 n->destructor = NULL; 1664 1665 return n; 1666 } 1667 EXPORT_SYMBOL_GPL(alloc_skb_for_msg); 1668 1669 /** 1670 * skb_morph - morph one skb into another 1671 * @dst: the skb to receive the contents 1672 * @src: the skb to supply the contents 1673 * 1674 * This is identical to skb_clone except that the target skb is 1675 * supplied by the user. 1676 * 1677 * The target skb is returned upon exit. 1678 */ 1679 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src) 1680 { 1681 skb_release_all(dst, SKB_CONSUMED); 1682 return __skb_clone(dst, src); 1683 } 1684 EXPORT_SYMBOL_GPL(skb_morph); 1685 1686 int mm_account_pinned_pages(struct mmpin *mmp, size_t size) 1687 { 1688 unsigned long max_pg, num_pg, new_pg, old_pg, rlim; 1689 struct user_struct *user; 1690 1691 if (capable(CAP_IPC_LOCK) || !size) 1692 return 0; 1693 1694 rlim = rlimit(RLIMIT_MEMLOCK); 1695 if (rlim == RLIM_INFINITY) 1696 return 0; 1697 1698 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */ 1699 max_pg = rlim >> PAGE_SHIFT; 1700 user = mmp->user ? : current_user(); 1701 1702 old_pg = atomic_long_read(&user->locked_vm); 1703 do { 1704 new_pg = old_pg + num_pg; 1705 if (new_pg > max_pg) 1706 return -ENOBUFS; 1707 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg)); 1708 1709 if (!mmp->user) { 1710 mmp->user = get_uid(user); 1711 mmp->num_pg = num_pg; 1712 } else { 1713 mmp->num_pg += num_pg; 1714 } 1715 1716 return 0; 1717 } 1718 EXPORT_SYMBOL_GPL(mm_account_pinned_pages); 1719 1720 void mm_unaccount_pinned_pages(struct mmpin *mmp) 1721 { 1722 if (mmp->user) { 1723 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm); 1724 free_uid(mmp->user); 1725 } 1726 } 1727 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages); 1728 1729 static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size, 1730 bool devmem) 1731 { 1732 struct ubuf_info_msgzc *uarg; 1733 struct sk_buff *skb; 1734 1735 WARN_ON_ONCE(!in_task()); 1736 1737 skb = sock_omalloc(sk, 0, GFP_KERNEL); 1738 if (!skb) 1739 return NULL; 1740 1741 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb)); 1742 uarg = (void *)skb->cb; 1743 uarg->mmp.user = NULL; 1744 1745 if (likely(!devmem) && mm_account_pinned_pages(&uarg->mmp, size)) { 1746 kfree_skb(skb); 1747 return NULL; 1748 } 1749 1750 uarg->ubuf.ops = &msg_zerocopy_ubuf_ops; 1751 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1; 1752 uarg->len = 1; 1753 uarg->bytelen = size; 1754 uarg->zerocopy = 1; 1755 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN; 1756 refcount_set(&uarg->ubuf.refcnt, 1); 1757 sock_hold(sk); 1758 1759 return &uarg->ubuf; 1760 } 1761 1762 static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg) 1763 { 1764 return container_of((void *)uarg, struct sk_buff, cb); 1765 } 1766 1767 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 1768 struct ubuf_info *uarg, bool devmem) 1769 { 1770 if (uarg) { 1771 struct ubuf_info_msgzc *uarg_zc; 1772 const u32 byte_limit = 1 << 19; /* limit to a few TSO */ 1773 u32 bytelen, next; 1774 1775 /* there might be non MSG_ZEROCOPY users */ 1776 if (uarg->ops != &msg_zerocopy_ubuf_ops) 1777 return NULL; 1778 1779 /* realloc only when socket is locked (TCP, UDP cork), 1780 * so uarg->len and sk_zckey access is serialized 1781 */ 1782 if (!sock_owned_by_user(sk)) { 1783 WARN_ON_ONCE(1); 1784 return NULL; 1785 } 1786 1787 uarg_zc = uarg_to_msgzc(uarg); 1788 bytelen = uarg_zc->bytelen + size; 1789 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) { 1790 /* TCP can create new skb to attach new uarg */ 1791 if (sk->sk_type == SOCK_STREAM) 1792 goto new_alloc; 1793 return NULL; 1794 } 1795 1796 next = (u32)atomic_read(&sk->sk_zckey); 1797 if ((u32)(uarg_zc->id + uarg_zc->len) == next) { 1798 if (likely(!devmem) && 1799 mm_account_pinned_pages(&uarg_zc->mmp, size)) 1800 return NULL; 1801 uarg_zc->len++; 1802 uarg_zc->bytelen = bytelen; 1803 atomic_set(&sk->sk_zckey, ++next); 1804 1805 /* no extra ref when appending to datagram (MSG_MORE) */ 1806 if (sk->sk_type == SOCK_STREAM) 1807 net_zcopy_get(uarg); 1808 1809 return uarg; 1810 } 1811 } 1812 1813 new_alloc: 1814 return msg_zerocopy_alloc(sk, size, devmem); 1815 } 1816 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc); 1817 1818 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len) 1819 { 1820 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb); 1821 u32 old_lo, old_hi; 1822 u64 sum_len; 1823 1824 old_lo = serr->ee.ee_info; 1825 old_hi = serr->ee.ee_data; 1826 sum_len = old_hi - old_lo + 1ULL + len; 1827 1828 if (sum_len >= (1ULL << 32)) 1829 return false; 1830 1831 if (lo != old_hi + 1) 1832 return false; 1833 1834 serr->ee.ee_data += len; 1835 return true; 1836 } 1837 1838 static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg) 1839 { 1840 struct sk_buff *tail, *skb = skb_from_uarg(uarg); 1841 struct sock_exterr_skb *serr; 1842 struct sock *sk = skb->sk; 1843 struct sk_buff_head *q; 1844 unsigned long flags; 1845 bool is_zerocopy; 1846 u32 lo, hi; 1847 u16 len; 1848 1849 mm_unaccount_pinned_pages(&uarg->mmp); 1850 1851 /* if !len, there was only 1 call, and it was aborted 1852 * so do not queue a completion notification 1853 */ 1854 if (!uarg->len || sock_flag(sk, SOCK_DEAD)) 1855 goto release; 1856 1857 len = uarg->len; 1858 lo = uarg->id; 1859 hi = uarg->id + len - 1; 1860 is_zerocopy = uarg->zerocopy; 1861 1862 serr = SKB_EXT_ERR(skb); 1863 memset(serr, 0, sizeof(*serr)); 1864 serr->ee.ee_errno = 0; 1865 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY; 1866 serr->ee.ee_data = hi; 1867 serr->ee.ee_info = lo; 1868 if (!is_zerocopy) 1869 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED; 1870 1871 q = &sk->sk_error_queue; 1872 spin_lock_irqsave(&q->lock, flags); 1873 tail = skb_peek_tail(q); 1874 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY || 1875 !skb_zerocopy_notify_extend(tail, lo, len)) { 1876 __skb_queue_tail(q, skb); 1877 skb = NULL; 1878 } 1879 spin_unlock_irqrestore(&q->lock, flags); 1880 1881 sk_error_report(sk); 1882 1883 release: 1884 consume_skb(skb); 1885 sock_put(sk); 1886 } 1887 1888 static void msg_zerocopy_complete(struct sk_buff *skb, struct ubuf_info *uarg, 1889 bool success) 1890 { 1891 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg); 1892 1893 uarg_zc->zerocopy = uarg_zc->zerocopy & success; 1894 1895 if (refcount_dec_and_test(&uarg->refcnt)) 1896 __msg_zerocopy_callback(uarg_zc); 1897 } 1898 1899 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1900 { 1901 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk; 1902 1903 atomic_dec(&sk->sk_zckey); 1904 uarg_to_msgzc(uarg)->len--; 1905 1906 if (have_uref) 1907 msg_zerocopy_complete(NULL, uarg, true); 1908 } 1909 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort); 1910 1911 const struct ubuf_info_ops msg_zerocopy_ubuf_ops = { 1912 .complete = msg_zerocopy_complete, 1913 }; 1914 EXPORT_SYMBOL_GPL(msg_zerocopy_ubuf_ops); 1915 1916 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 1917 struct msghdr *msg, int len, 1918 struct ubuf_info *uarg, 1919 struct net_devmem_dmabuf_binding *binding) 1920 { 1921 int err, orig_len = skb->len; 1922 1923 if (uarg->ops->link_skb) { 1924 err = uarg->ops->link_skb(skb, uarg); 1925 if (err) 1926 return err; 1927 } else { 1928 struct ubuf_info *orig_uarg = skb_zcopy(skb); 1929 1930 /* An skb can only point to one uarg. This edge case happens 1931 * when TCP appends to an skb, but zerocopy_realloc triggered 1932 * a new alloc. 1933 */ 1934 if (orig_uarg && uarg != orig_uarg) 1935 return -EEXIST; 1936 } 1937 1938 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len, 1939 binding); 1940 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) { 1941 struct sock *save_sk = skb->sk; 1942 1943 /* Streams do not free skb on error. Reset to prev state. */ 1944 iov_iter_revert(&msg->msg_iter, skb->len - orig_len); 1945 skb->sk = sk; 1946 ___pskb_trim(skb, orig_len); 1947 skb->sk = save_sk; 1948 return err; 1949 } 1950 1951 skb_zcopy_set(skb, uarg, NULL); 1952 return skb->len - orig_len; 1953 } 1954 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream); 1955 1956 void __skb_zcopy_downgrade_managed(struct sk_buff *skb) 1957 { 1958 int i; 1959 1960 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS; 1961 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1962 skb_frag_ref(skb, i); 1963 } 1964 EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed); 1965 1966 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig, 1967 gfp_t gfp_mask) 1968 { 1969 if (skb_zcopy(orig)) { 1970 if (skb_zcopy(nskb)) { 1971 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */ 1972 if (!gfp_mask) { 1973 WARN_ON_ONCE(1); 1974 return -ENOMEM; 1975 } 1976 if (skb_uarg(nskb) == skb_uarg(orig)) 1977 return 0; 1978 if (skb_copy_ubufs(nskb, GFP_ATOMIC)) 1979 return -EIO; 1980 } 1981 skb_zcopy_set(nskb, skb_uarg(orig), NULL); 1982 } 1983 return 0; 1984 } 1985 1986 /** 1987 * skb_copy_ubufs - copy userspace skb frags buffers to kernel 1988 * @skb: the skb to modify 1989 * @gfp_mask: allocation priority 1990 * 1991 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE. 1992 * It will copy all frags into kernel and drop the reference 1993 * to userspace pages. 1994 * 1995 * If this function is called from an interrupt gfp_mask() must be 1996 * %GFP_ATOMIC. 1997 * 1998 * Returns 0 on success or a negative error code on failure 1999 * to allocate kernel memory to copy to. 2000 */ 2001 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask) 2002 { 2003 int num_frags = skb_shinfo(skb)->nr_frags; 2004 struct page *page, *head = NULL; 2005 int i, order, psize, new_frags; 2006 u32 d_off; 2007 2008 if (skb_shared(skb) || skb_unclone(skb, gfp_mask)) 2009 return -EINVAL; 2010 2011 if (!skb_frags_readable(skb)) 2012 return -EFAULT; 2013 2014 if (!num_frags) 2015 goto release; 2016 2017 /* We might have to allocate high order pages, so compute what minimum 2018 * page order is needed. 2019 */ 2020 order = 0; 2021 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb)) 2022 order++; 2023 psize = (PAGE_SIZE << order); 2024 2025 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order); 2026 for (i = 0; i < new_frags; i++) { 2027 page = alloc_pages(gfp_mask | __GFP_COMP, order); 2028 if (!page) { 2029 while (head) { 2030 struct page *next = (struct page *)page_private(head); 2031 put_page(head); 2032 head = next; 2033 } 2034 return -ENOMEM; 2035 } 2036 set_page_private(page, (unsigned long)head); 2037 head = page; 2038 } 2039 2040 page = head; 2041 d_off = 0; 2042 for (i = 0; i < num_frags; i++) { 2043 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 2044 u32 p_off, p_len, copied; 2045 struct page *p; 2046 u8 *vaddr; 2047 2048 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f), 2049 p, p_off, p_len, copied) { 2050 u32 copy, done = 0; 2051 vaddr = kmap_atomic(p); 2052 2053 while (done < p_len) { 2054 if (d_off == psize) { 2055 d_off = 0; 2056 page = (struct page *)page_private(page); 2057 } 2058 copy = min_t(u32, psize - d_off, p_len - done); 2059 memcpy(page_address(page) + d_off, 2060 vaddr + p_off + done, copy); 2061 done += copy; 2062 d_off += copy; 2063 } 2064 kunmap_atomic(vaddr); 2065 } 2066 } 2067 2068 /* skb frags release userspace buffers */ 2069 for (i = 0; i < num_frags; i++) 2070 skb_frag_unref(skb, i); 2071 2072 /* skb frags point to kernel buffers */ 2073 for (i = 0; i < new_frags - 1; i++) { 2074 __skb_fill_netmem_desc(skb, i, page_to_netmem(head), 0, psize); 2075 head = (struct page *)page_private(head); 2076 } 2077 __skb_fill_netmem_desc(skb, new_frags - 1, page_to_netmem(head), 0, 2078 d_off); 2079 skb_shinfo(skb)->nr_frags = new_frags; 2080 2081 release: 2082 skb_zcopy_clear(skb, false); 2083 return 0; 2084 } 2085 EXPORT_SYMBOL_GPL(skb_copy_ubufs); 2086 2087 /** 2088 * skb_clone - duplicate an sk_buff 2089 * @skb: buffer to clone 2090 * @gfp_mask: allocation priority 2091 * 2092 * Duplicate an &sk_buff. The new one is not owned by a socket. Both 2093 * copies share the same packet data but not structure. The new 2094 * buffer has a reference count of 1. If the allocation fails the 2095 * function returns %NULL otherwise the new buffer is returned. 2096 * 2097 * If this function is called from an interrupt gfp_mask() must be 2098 * %GFP_ATOMIC. 2099 */ 2100 2101 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask) 2102 { 2103 struct sk_buff_fclones *fclones = container_of(skb, 2104 struct sk_buff_fclones, 2105 skb1); 2106 struct sk_buff *n; 2107 2108 if (skb_orphan_frags(skb, gfp_mask)) 2109 return NULL; 2110 2111 if (skb->fclone == SKB_FCLONE_ORIG && 2112 refcount_read(&fclones->fclone_ref) == 1) { 2113 n = &fclones->skb2; 2114 refcount_set(&fclones->fclone_ref, 2); 2115 n->fclone = SKB_FCLONE_CLONE; 2116 } else { 2117 if (skb_pfmemalloc(skb)) 2118 gfp_mask |= __GFP_MEMALLOC; 2119 2120 n = kmem_cache_alloc(net_hotdata.skbuff_cache, gfp_mask); 2121 if (!n) 2122 return NULL; 2123 2124 n->fclone = SKB_FCLONE_UNAVAILABLE; 2125 } 2126 2127 return __skb_clone(n, skb); 2128 } 2129 EXPORT_SYMBOL(skb_clone); 2130 2131 void skb_headers_offset_update(struct sk_buff *skb, int off) 2132 { 2133 /* Only adjust this if it actually is csum_start rather than csum */ 2134 if (skb->ip_summed == CHECKSUM_PARTIAL) 2135 skb->csum_start += off; 2136 /* {transport,network,mac}_header and tail are relative to skb->head */ 2137 skb->transport_header += off; 2138 skb->network_header += off; 2139 if (skb_mac_header_was_set(skb)) 2140 skb->mac_header += off; 2141 skb->inner_transport_header += off; 2142 skb->inner_network_header += off; 2143 skb->inner_mac_header += off; 2144 } 2145 EXPORT_SYMBOL(skb_headers_offset_update); 2146 2147 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old) 2148 { 2149 __copy_skb_header(new, old); 2150 2151 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size; 2152 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs; 2153 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type; 2154 } 2155 EXPORT_SYMBOL(skb_copy_header); 2156 2157 static inline int skb_alloc_rx_flag(const struct sk_buff *skb) 2158 { 2159 if (skb_pfmemalloc(skb)) 2160 return SKB_ALLOC_RX; 2161 return 0; 2162 } 2163 2164 /** 2165 * skb_copy - create private copy of an sk_buff 2166 * @skb: buffer to copy 2167 * @gfp_mask: allocation priority 2168 * 2169 * Make a copy of both an &sk_buff and its data. This is used when the 2170 * caller wishes to modify the data and needs a private copy of the 2171 * data to alter. Returns %NULL on failure or the pointer to the buffer 2172 * on success. The returned buffer has a reference count of 1. 2173 * 2174 * As by-product this function converts non-linear &sk_buff to linear 2175 * one, so that &sk_buff becomes completely private and caller is allowed 2176 * to modify all the data of returned buffer. This means that this 2177 * function is not recommended for use in circumstances when only 2178 * header is going to be modified. Use pskb_copy() instead. 2179 */ 2180 2181 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask) 2182 { 2183 struct sk_buff *n; 2184 unsigned int size; 2185 int headerlen; 2186 2187 if (!skb_frags_readable(skb)) 2188 return NULL; 2189 2190 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2191 return NULL; 2192 2193 headerlen = skb_headroom(skb); 2194 size = skb_end_offset(skb) + skb->data_len; 2195 n = __alloc_skb(size, gfp_mask, 2196 skb_alloc_rx_flag(skb), NUMA_NO_NODE); 2197 if (!n) 2198 return NULL; 2199 2200 /* Set the data pointer */ 2201 skb_reserve(n, headerlen); 2202 /* Set the tail pointer and length */ 2203 skb_put(n, skb->len); 2204 2205 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len)); 2206 2207 skb_copy_header(n, skb); 2208 return n; 2209 } 2210 EXPORT_SYMBOL(skb_copy); 2211 2212 /** 2213 * __pskb_copy_fclone - create copy of an sk_buff with private head. 2214 * @skb: buffer to copy 2215 * @headroom: headroom of new skb 2216 * @gfp_mask: allocation priority 2217 * @fclone: if true allocate the copy of the skb from the fclone 2218 * cache instead of the head cache; it is recommended to set this 2219 * to true for the cases where the copy will likely be cloned 2220 * 2221 * Make a copy of both an &sk_buff and part of its data, located 2222 * in header. Fragmented data remain shared. This is used when 2223 * the caller wishes to modify only header of &sk_buff and needs 2224 * private copy of the header to alter. Returns %NULL on failure 2225 * or the pointer to the buffer on success. 2226 * The returned buffer has a reference count of 1. 2227 */ 2228 2229 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 2230 gfp_t gfp_mask, bool fclone) 2231 { 2232 unsigned int size = skb_headlen(skb) + headroom; 2233 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0); 2234 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE); 2235 2236 if (!n) 2237 goto out; 2238 2239 /* Set the data pointer */ 2240 skb_reserve(n, headroom); 2241 /* Set the tail pointer and length */ 2242 skb_put(n, skb_headlen(skb)); 2243 /* Copy the bytes */ 2244 skb_copy_from_linear_data(skb, n->data, n->len); 2245 2246 n->truesize += skb->data_len; 2247 n->data_len = skb->data_len; 2248 n->len = skb->len; 2249 2250 if (skb_shinfo(skb)->nr_frags) { 2251 int i; 2252 2253 if (skb_orphan_frags(skb, gfp_mask) || 2254 skb_zerocopy_clone(n, skb, gfp_mask)) { 2255 kfree_skb(n); 2256 n = NULL; 2257 goto out; 2258 } 2259 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2260 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i]; 2261 skb_frag_ref(skb, i); 2262 } 2263 skb_shinfo(n)->nr_frags = i; 2264 } 2265 2266 if (skb_has_frag_list(skb)) { 2267 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list; 2268 skb_clone_fraglist(n); 2269 } 2270 2271 skb_copy_header(n, skb); 2272 out: 2273 return n; 2274 } 2275 EXPORT_SYMBOL(__pskb_copy_fclone); 2276 2277 /** 2278 * pskb_expand_head - reallocate header of &sk_buff 2279 * @skb: buffer to reallocate 2280 * @nhead: room to add at head 2281 * @ntail: room to add at tail 2282 * @gfp_mask: allocation priority 2283 * 2284 * Expands (or creates identical copy, if @nhead and @ntail are zero) 2285 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have 2286 * reference count of 1. Returns zero in the case of success or error, 2287 * if expansion failed. In the last case, &sk_buff is not changed. 2288 * 2289 * All the pointers pointing into skb header may change and must be 2290 * reloaded after call to this function. 2291 * 2292 * Note: If you skb_push() the start of the buffer after reallocating the 2293 * header, call skb_postpush_data_move() first to move the metadata out of 2294 * the way before writing to &sk_buff->data. 2295 */ 2296 2297 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, 2298 gfp_t gfp_mask) 2299 { 2300 unsigned int osize = skb_end_offset(skb); 2301 unsigned int size = osize + nhead + ntail; 2302 long off; 2303 u8 *data; 2304 int i; 2305 2306 BUG_ON(nhead < 0); 2307 2308 BUG_ON(skb_shared(skb)); 2309 2310 skb_zcopy_downgrade_managed(skb); 2311 2312 if (skb_pfmemalloc(skb)) 2313 gfp_mask |= __GFP_MEMALLOC; 2314 2315 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 2316 if (!data) 2317 goto nodata; 2318 size = SKB_WITH_OVERHEAD(size); 2319 2320 /* Copy only real data... and, alas, header. This should be 2321 * optimized for the cases when header is void. 2322 */ 2323 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head); 2324 2325 memcpy((struct skb_shared_info *)(data + size), 2326 skb_shinfo(skb), 2327 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags])); 2328 2329 /* 2330 * if shinfo is shared we must drop the old head gracefully, but if it 2331 * is not we can just drop the old head and let the existing refcount 2332 * be since all we did is relocate the values 2333 */ 2334 if (skb_cloned(skb)) { 2335 if (skb_orphan_frags(skb, gfp_mask)) 2336 goto nofrags; 2337 if (skb_zcopy(skb)) 2338 refcount_inc(&skb_uarg(skb)->refcnt); 2339 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 2340 skb_frag_ref(skb, i); 2341 2342 if (skb_has_frag_list(skb)) 2343 skb_clone_fraglist(skb); 2344 2345 skb_release_data(skb, SKB_CONSUMED); 2346 } else { 2347 skb_free_head(skb); 2348 } 2349 off = (data + nhead) - skb->head; 2350 2351 skb->head = data; 2352 skb->head_frag = 0; 2353 skb->data += off; 2354 2355 skb_set_end_offset(skb, size); 2356 #ifdef NET_SKBUFF_DATA_USES_OFFSET 2357 off = nhead; 2358 #endif 2359 skb->tail += off; 2360 skb_headers_offset_update(skb, nhead); 2361 skb->cloned = 0; 2362 skb->hdr_len = 0; 2363 skb->nohdr = 0; 2364 atomic_set(&skb_shinfo(skb)->dataref, 1); 2365 2366 /* It is not generally safe to change skb->truesize. 2367 * For the moment, we really care of rx path, or 2368 * when skb is orphaned (not attached to a socket). 2369 */ 2370 if (!skb->sk || skb->destructor == sock_edemux) 2371 skb->truesize += size - osize; 2372 2373 return 0; 2374 2375 nofrags: 2376 skb_kfree_head(data, size); 2377 nodata: 2378 return -ENOMEM; 2379 } 2380 EXPORT_SYMBOL(pskb_expand_head); 2381 2382 /* Make private copy of skb with writable head and some headroom */ 2383 2384 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom) 2385 { 2386 struct sk_buff *skb2; 2387 int delta = headroom - skb_headroom(skb); 2388 2389 if (delta <= 0) 2390 skb2 = pskb_copy(skb, GFP_ATOMIC); 2391 else { 2392 skb2 = skb_clone(skb, GFP_ATOMIC); 2393 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0, 2394 GFP_ATOMIC)) { 2395 kfree_skb(skb2); 2396 skb2 = NULL; 2397 } 2398 } 2399 return skb2; 2400 } 2401 EXPORT_SYMBOL(skb_realloc_headroom); 2402 2403 /* Note: We plan to rework this in linux-6.4 */ 2404 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri) 2405 { 2406 unsigned int saved_end_offset, saved_truesize; 2407 struct skb_shared_info *shinfo; 2408 int res; 2409 2410 saved_end_offset = skb_end_offset(skb); 2411 saved_truesize = skb->truesize; 2412 2413 res = pskb_expand_head(skb, 0, 0, pri); 2414 if (res) 2415 return res; 2416 2417 skb->truesize = saved_truesize; 2418 2419 if (likely(skb_end_offset(skb) == saved_end_offset)) 2420 return 0; 2421 2422 /* We can not change skb->end if the original or new value 2423 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head(). 2424 */ 2425 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM || 2426 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) { 2427 /* We think this path should not be taken. 2428 * Add a temporary trace to warn us just in case. 2429 */ 2430 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n", 2431 saved_end_offset, skb_end_offset(skb)); 2432 WARN_ON_ONCE(1); 2433 return 0; 2434 } 2435 2436 shinfo = skb_shinfo(skb); 2437 2438 /* We are about to change back skb->end, 2439 * we need to move skb_shinfo() to its new location. 2440 */ 2441 memmove(skb->head + saved_end_offset, 2442 shinfo, 2443 offsetof(struct skb_shared_info, frags[shinfo->nr_frags])); 2444 2445 skb_set_end_offset(skb, saved_end_offset); 2446 2447 return 0; 2448 } 2449 2450 /** 2451 * skb_expand_head - reallocate header of &sk_buff 2452 * @skb: buffer to reallocate 2453 * @headroom: needed headroom 2454 * 2455 * Unlike skb_realloc_headroom, this one does not allocate a new skb 2456 * if possible; copies skb->sk to new skb as needed 2457 * and frees original skb in case of failures. 2458 * 2459 * It expect increased headroom and generates warning otherwise. 2460 */ 2461 2462 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom) 2463 { 2464 int delta = headroom - skb_headroom(skb); 2465 int osize = skb_end_offset(skb); 2466 struct sock *sk = skb->sk; 2467 2468 if (WARN_ONCE(delta <= 0, 2469 "%s is expecting an increase in the headroom", __func__)) 2470 return skb; 2471 2472 delta = SKB_DATA_ALIGN(delta); 2473 /* pskb_expand_head() might crash, if skb is shared. */ 2474 if (skb_shared(skb) || !is_skb_wmem(skb)) { 2475 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC); 2476 2477 if (unlikely(!nskb)) 2478 goto fail; 2479 2480 if (sk) 2481 skb_set_owner_w(nskb, sk); 2482 consume_skb(skb); 2483 skb = nskb; 2484 } 2485 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC)) 2486 goto fail; 2487 2488 if (sk && is_skb_wmem(skb)) { 2489 delta = skb_end_offset(skb) - osize; 2490 refcount_add(delta, &sk->sk_wmem_alloc); 2491 skb->truesize += delta; 2492 } 2493 return skb; 2494 2495 fail: 2496 kfree_skb(skb); 2497 return NULL; 2498 } 2499 EXPORT_SYMBOL(skb_expand_head); 2500 2501 /** 2502 * skb_copy_expand - copy and expand sk_buff 2503 * @skb: buffer to copy 2504 * @newheadroom: new free bytes at head 2505 * @newtailroom: new free bytes at tail 2506 * @gfp_mask: allocation priority 2507 * 2508 * Make a copy of both an &sk_buff and its data and while doing so 2509 * allocate additional space. 2510 * 2511 * This is used when the caller wishes to modify the data and needs a 2512 * private copy of the data to alter as well as more space for new fields. 2513 * Returns %NULL on failure or the pointer to the buffer 2514 * on success. The returned buffer has a reference count of 1. 2515 * 2516 * You must pass %GFP_ATOMIC as the allocation priority if this function 2517 * is called from an interrupt. 2518 */ 2519 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 2520 int newheadroom, int newtailroom, 2521 gfp_t gfp_mask) 2522 { 2523 /* 2524 * Allocate the copy buffer 2525 */ 2526 int head_copy_len, head_copy_off; 2527 struct sk_buff *n; 2528 int oldheadroom; 2529 2530 if (!skb_frags_readable(skb)) 2531 return NULL; 2532 2533 if (WARN_ON_ONCE(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)) 2534 return NULL; 2535 2536 oldheadroom = skb_headroom(skb); 2537 n = __alloc_skb(newheadroom + skb->len + newtailroom, 2538 gfp_mask, skb_alloc_rx_flag(skb), 2539 NUMA_NO_NODE); 2540 if (!n) 2541 return NULL; 2542 2543 skb_reserve(n, newheadroom); 2544 2545 /* Set the tail pointer and length */ 2546 skb_put(n, skb->len); 2547 2548 head_copy_len = oldheadroom; 2549 head_copy_off = 0; 2550 if (newheadroom <= head_copy_len) 2551 head_copy_len = newheadroom; 2552 else 2553 head_copy_off = newheadroom - head_copy_len; 2554 2555 /* Copy the linear header and data. */ 2556 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off, 2557 skb->len + head_copy_len)); 2558 2559 skb_copy_header(n, skb); 2560 2561 skb_headers_offset_update(n, newheadroom - oldheadroom); 2562 2563 return n; 2564 } 2565 EXPORT_SYMBOL(skb_copy_expand); 2566 2567 /** 2568 * __skb_pad - zero pad the tail of an skb 2569 * @skb: buffer to pad 2570 * @pad: space to pad 2571 * @free_on_error: free buffer on error 2572 * 2573 * Ensure that a buffer is followed by a padding area that is zero 2574 * filled. Used by network drivers which may DMA or transfer data 2575 * beyond the buffer end onto the wire. 2576 * 2577 * May return error in out of memory cases. The skb is freed on error 2578 * if @free_on_error is true. 2579 */ 2580 2581 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error) 2582 { 2583 int err; 2584 int ntail; 2585 2586 /* If the skbuff is non linear tailroom is always zero.. */ 2587 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) { 2588 memset(skb->data+skb->len, 0, pad); 2589 return 0; 2590 } 2591 2592 ntail = skb->data_len + pad - (skb->end - skb->tail); 2593 if (likely(skb_cloned(skb) || ntail > 0)) { 2594 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC); 2595 if (unlikely(err)) 2596 goto free_skb; 2597 } 2598 2599 /* FIXME: The use of this function with non-linear skb's really needs 2600 * to be audited. 2601 */ 2602 err = skb_linearize(skb); 2603 if (unlikely(err)) 2604 goto free_skb; 2605 2606 memset(skb->data + skb->len, 0, pad); 2607 return 0; 2608 2609 free_skb: 2610 if (free_on_error) 2611 kfree_skb(skb); 2612 return err; 2613 } 2614 EXPORT_SYMBOL(__skb_pad); 2615 2616 /** 2617 * pskb_put - add data to the tail of a potentially fragmented buffer 2618 * @skb: start of the buffer to use 2619 * @tail: tail fragment of the buffer to use 2620 * @len: amount of data to add 2621 * 2622 * This function extends the used data area of the potentially 2623 * fragmented buffer. @tail must be the last fragment of @skb -- or 2624 * @skb itself. If this would exceed the total buffer size the kernel 2625 * will panic. A pointer to the first byte of the extra data is 2626 * returned. 2627 */ 2628 2629 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len) 2630 { 2631 if (tail != skb) { 2632 skb->data_len += len; 2633 skb->len += len; 2634 } 2635 return skb_put(tail, len); 2636 } 2637 EXPORT_SYMBOL_GPL(pskb_put); 2638 2639 /** 2640 * skb_put - add data to a buffer 2641 * @skb: buffer to use 2642 * @len: amount of data to add 2643 * 2644 * This function extends the used data area of the buffer. If this would 2645 * exceed the total buffer size the kernel will panic. A pointer to the 2646 * first byte of the extra data is returned. 2647 */ 2648 void *skb_put(struct sk_buff *skb, unsigned int len) 2649 { 2650 void *tmp = skb_tail_pointer(skb); 2651 SKB_LINEAR_ASSERT(skb); 2652 skb->tail += len; 2653 skb->len += len; 2654 if (unlikely(skb->tail > skb->end)) 2655 skb_over_panic(skb, len, __builtin_return_address(0)); 2656 return tmp; 2657 } 2658 EXPORT_SYMBOL(skb_put); 2659 2660 /** 2661 * skb_push - add data to the start of a buffer 2662 * @skb: buffer to use 2663 * @len: amount of data to add 2664 * 2665 * This function extends the used data area of the buffer at the buffer 2666 * start. If this would exceed the total buffer headroom the kernel will 2667 * panic. A pointer to the first byte of the extra data is returned. 2668 */ 2669 void *skb_push(struct sk_buff *skb, unsigned int len) 2670 { 2671 skb->data -= len; 2672 skb->len += len; 2673 if (unlikely(skb->data < skb->head)) 2674 skb_under_panic(skb, len, __builtin_return_address(0)); 2675 return skb->data; 2676 } 2677 EXPORT_SYMBOL(skb_push); 2678 2679 /** 2680 * skb_pull - remove data from the start of a buffer 2681 * @skb: buffer to use 2682 * @len: amount of data to remove 2683 * 2684 * This function removes data from the start of a buffer, returning 2685 * the memory to the headroom. A pointer to the next data in the buffer 2686 * is returned. Once the data has been pulled future pushes will overwrite 2687 * the old data. 2688 */ 2689 void *skb_pull(struct sk_buff *skb, unsigned int len) 2690 { 2691 return skb_pull_inline(skb, len); 2692 } 2693 EXPORT_SYMBOL(skb_pull); 2694 2695 /** 2696 * skb_pull_data - remove data from the start of a buffer returning its 2697 * original position. 2698 * @skb: buffer to use 2699 * @len: amount of data to remove 2700 * 2701 * This function removes data from the start of a buffer, returning 2702 * the memory to the headroom. A pointer to the original data in the buffer 2703 * is returned after checking if there is enough data to pull. Once the 2704 * data has been pulled future pushes will overwrite the old data. 2705 */ 2706 void *skb_pull_data(struct sk_buff *skb, size_t len) 2707 { 2708 void *data = skb->data; 2709 2710 if (skb->len < len) 2711 return NULL; 2712 2713 skb_pull(skb, len); 2714 2715 return data; 2716 } 2717 EXPORT_SYMBOL(skb_pull_data); 2718 2719 /** 2720 * skb_trim - remove end from a buffer 2721 * @skb: buffer to alter 2722 * @len: new length 2723 * 2724 * Cut the length of a buffer down by removing data from the tail. If 2725 * the buffer is already under the length specified it is not modified. 2726 * The skb must be linear. 2727 */ 2728 void skb_trim(struct sk_buff *skb, unsigned int len) 2729 { 2730 if (skb->len > len) 2731 __skb_trim(skb, len); 2732 } 2733 EXPORT_SYMBOL(skb_trim); 2734 2735 /* Trims skb to length len. It can change skb pointers. 2736 */ 2737 2738 int ___pskb_trim(struct sk_buff *skb, unsigned int len) 2739 { 2740 struct sk_buff **fragp; 2741 struct sk_buff *frag; 2742 int offset = skb_headlen(skb); 2743 int nfrags = skb_shinfo(skb)->nr_frags; 2744 int i; 2745 int err; 2746 2747 if (skb_cloned(skb) && 2748 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))) 2749 return err; 2750 2751 i = 0; 2752 if (offset >= len) 2753 goto drop_pages; 2754 2755 for (; i < nfrags; i++) { 2756 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]); 2757 2758 if (end < len) { 2759 offset = end; 2760 continue; 2761 } 2762 2763 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset); 2764 2765 drop_pages: 2766 skb_shinfo(skb)->nr_frags = i; 2767 2768 for (; i < nfrags; i++) 2769 skb_frag_unref(skb, i); 2770 2771 if (skb_has_frag_list(skb)) 2772 skb_drop_fraglist(skb); 2773 goto done; 2774 } 2775 2776 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp); 2777 fragp = &frag->next) { 2778 int end = offset + frag->len; 2779 2780 if (skb_shared(frag)) { 2781 struct sk_buff *nfrag; 2782 2783 nfrag = skb_clone(frag, GFP_ATOMIC); 2784 if (unlikely(!nfrag)) 2785 return -ENOMEM; 2786 2787 nfrag->next = frag->next; 2788 consume_skb(frag); 2789 frag = nfrag; 2790 *fragp = frag; 2791 } 2792 2793 if (end < len) { 2794 offset = end; 2795 continue; 2796 } 2797 2798 if (end > len && 2799 unlikely((err = pskb_trim(frag, len - offset)))) 2800 return err; 2801 2802 if (frag->next) 2803 skb_drop_list(&frag->next); 2804 break; 2805 } 2806 2807 done: 2808 if (len > skb_headlen(skb)) { 2809 skb->data_len -= skb->len - len; 2810 skb->len = len; 2811 } else { 2812 skb->len = len; 2813 skb->data_len = 0; 2814 skb_set_tail_pointer(skb, len); 2815 } 2816 2817 if (!skb->sk || skb->destructor == sock_edemux) 2818 skb_condense(skb); 2819 return 0; 2820 } 2821 EXPORT_SYMBOL(___pskb_trim); 2822 2823 /* Note : use pskb_trim_rcsum() instead of calling this directly 2824 */ 2825 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len) 2826 { 2827 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2828 int delta = skb->len - len; 2829 2830 skb->csum = csum_block_sub(skb->csum, 2831 skb_checksum(skb, len, delta, 0), 2832 len); 2833 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 2834 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len; 2835 int offset = skb_checksum_start_offset(skb) + skb->csum_offset; 2836 2837 if (offset + sizeof(__sum16) > hdlen) 2838 return -EINVAL; 2839 } 2840 return __pskb_trim(skb, len); 2841 } 2842 EXPORT_SYMBOL(pskb_trim_rcsum_slow); 2843 2844 /** 2845 * __pskb_pull_tail - advance tail of skb header 2846 * @skb: buffer to reallocate 2847 * @delta: number of bytes to advance tail 2848 * 2849 * The function makes a sense only on a fragmented &sk_buff, 2850 * it expands header moving its tail forward and copying necessary 2851 * data from fragmented part. 2852 * 2853 * &sk_buff MUST have reference count of 1. 2854 * 2855 * Returns %NULL (and &sk_buff does not change) if pull failed 2856 * or value of new tail of skb in the case of success. 2857 * 2858 * All the pointers pointing into skb header may change and must be 2859 * reloaded after call to this function. 2860 */ 2861 2862 /* Moves tail of skb head forward, copying data from fragmented part, 2863 * when it is necessary. 2864 * 1. It may fail due to malloc failure. 2865 * 2. It may change skb pointers. 2866 * 2867 * It is pretty complicated. Luckily, it is called only in exceptional cases. 2868 */ 2869 void *__pskb_pull_tail(struct sk_buff *skb, int delta) 2870 { 2871 /* If skb has not enough free space at tail, get new one 2872 * plus 128 bytes for future expansions. If we have enough 2873 * room at tail, reallocate without expansion only if skb is cloned. 2874 */ 2875 int i, k, eat = (skb->tail + delta) - skb->end; 2876 2877 if (!skb_frags_readable(skb)) 2878 return NULL; 2879 2880 if (eat > 0 || skb_cloned(skb)) { 2881 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0, 2882 GFP_ATOMIC)) 2883 return NULL; 2884 } 2885 2886 BUG_ON(skb_copy_bits(skb, skb_headlen(skb), 2887 skb_tail_pointer(skb), delta)); 2888 2889 /* Optimization: no fragments, no reasons to preestimate 2890 * size of pulled pages. Superb. 2891 */ 2892 if (!skb_has_frag_list(skb)) 2893 goto pull_pages; 2894 2895 /* Estimate size of pulled pages. */ 2896 eat = delta; 2897 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2898 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2899 2900 if (size >= eat) 2901 goto pull_pages; 2902 eat -= size; 2903 } 2904 2905 /* If we need update frag list, we are in troubles. 2906 * Certainly, it is possible to add an offset to skb data, 2907 * but taking into account that pulling is expected to 2908 * be very rare operation, it is worth to fight against 2909 * further bloating skb head and crucify ourselves here instead. 2910 * Pure masohism, indeed. 8)8) 2911 */ 2912 if (eat) { 2913 struct sk_buff *list = skb_shinfo(skb)->frag_list; 2914 struct sk_buff *clone = NULL; 2915 struct sk_buff *insp = NULL; 2916 2917 do { 2918 if (list->len <= eat) { 2919 /* Eaten as whole. */ 2920 eat -= list->len; 2921 list = list->next; 2922 insp = list; 2923 } else { 2924 /* Eaten partially. */ 2925 if (skb_is_gso(skb) && !list->head_frag && 2926 skb_headlen(list)) 2927 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY; 2928 2929 if (skb_shared(list)) { 2930 /* Sucks! We need to fork list. :-( */ 2931 clone = skb_clone(list, GFP_ATOMIC); 2932 if (!clone) 2933 return NULL; 2934 insp = list->next; 2935 list = clone; 2936 } else { 2937 /* This may be pulled without 2938 * problems. */ 2939 insp = list; 2940 } 2941 if (!pskb_pull(list, eat)) { 2942 kfree_skb(clone); 2943 return NULL; 2944 } 2945 break; 2946 } 2947 } while (eat); 2948 2949 /* Free pulled out fragments. */ 2950 while ((list = skb_shinfo(skb)->frag_list) != insp) { 2951 skb_shinfo(skb)->frag_list = list->next; 2952 consume_skb(list); 2953 } 2954 /* And insert new clone at head. */ 2955 if (clone) { 2956 clone->next = list; 2957 skb_shinfo(skb)->frag_list = clone; 2958 } 2959 } 2960 /* Success! Now we may commit changes to skb data. */ 2961 2962 pull_pages: 2963 eat = delta; 2964 k = 0; 2965 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2966 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 2967 2968 if (size <= eat) { 2969 skb_frag_unref(skb, i); 2970 eat -= size; 2971 } else { 2972 skb_frag_t *frag = &skb_shinfo(skb)->frags[k]; 2973 2974 *frag = skb_shinfo(skb)->frags[i]; 2975 if (eat) { 2976 skb_frag_off_add(frag, eat); 2977 skb_frag_size_sub(frag, eat); 2978 if (!i) 2979 goto end; 2980 eat = 0; 2981 } 2982 k++; 2983 } 2984 } 2985 skb_shinfo(skb)->nr_frags = k; 2986 2987 end: 2988 skb->tail += delta; 2989 skb->data_len -= delta; 2990 2991 if (!skb->data_len) 2992 skb_zcopy_clear(skb, false); 2993 2994 return skb_tail_pointer(skb); 2995 } 2996 EXPORT_SYMBOL(__pskb_pull_tail); 2997 2998 /** 2999 * skb_copy_bits - copy bits from skb to kernel buffer 3000 * @skb: source skb 3001 * @offset: offset in source 3002 * @to: destination buffer 3003 * @len: number of bytes to copy 3004 * 3005 * Copy the specified number of bytes from the source skb to the 3006 * destination buffer. 3007 * 3008 * CAUTION ! : 3009 * If its prototype is ever changed, 3010 * check arch/{*}/net/{*}.S files, 3011 * since it is called from BPF assembly code. 3012 */ 3013 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len) 3014 { 3015 int start = skb_headlen(skb); 3016 struct sk_buff *frag_iter; 3017 int i, copy; 3018 3019 if (offset > (int)skb->len - len) 3020 goto fault; 3021 3022 /* Copy header. */ 3023 if ((copy = start - offset) > 0) { 3024 if (copy > len) 3025 copy = len; 3026 skb_copy_from_linear_data_offset(skb, offset, to, copy); 3027 if ((len -= copy) == 0) 3028 return 0; 3029 offset += copy; 3030 to += copy; 3031 } 3032 3033 if (!skb_frags_readable(skb)) 3034 goto fault; 3035 3036 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3037 int end; 3038 skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 3039 3040 WARN_ON(start > offset + len); 3041 3042 end = start + skb_frag_size(f); 3043 if ((copy = end - offset) > 0) { 3044 u32 p_off, p_len, copied; 3045 struct page *p; 3046 u8 *vaddr; 3047 3048 if (copy > len) 3049 copy = len; 3050 3051 skb_frag_foreach_page(f, 3052 skb_frag_off(f) + offset - start, 3053 copy, p, p_off, p_len, copied) { 3054 vaddr = kmap_atomic(p); 3055 memcpy(to + copied, vaddr + p_off, p_len); 3056 kunmap_atomic(vaddr); 3057 } 3058 3059 if ((len -= copy) == 0) 3060 return 0; 3061 offset += copy; 3062 to += copy; 3063 } 3064 start = end; 3065 } 3066 3067 skb_walk_frags(skb, frag_iter) { 3068 int end; 3069 3070 WARN_ON(start > offset + len); 3071 3072 end = start + frag_iter->len; 3073 if ((copy = end - offset) > 0) { 3074 if (copy > len) 3075 copy = len; 3076 if (skb_copy_bits(frag_iter, offset - start, to, copy)) 3077 goto fault; 3078 if ((len -= copy) == 0) 3079 return 0; 3080 offset += copy; 3081 to += copy; 3082 } 3083 start = end; 3084 } 3085 3086 if (!len) 3087 return 0; 3088 3089 fault: 3090 return -EFAULT; 3091 } 3092 EXPORT_SYMBOL(skb_copy_bits); 3093 3094 /* 3095 * Callback from splice_to_pipe(), if we need to release some pages 3096 * at the end of the spd in case we error'ed out in filling the pipe. 3097 */ 3098 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i) 3099 { 3100 put_page(spd->pages[i]); 3101 } 3102 3103 static struct page *linear_to_page(struct page *page, unsigned int *len, 3104 unsigned int *offset, 3105 struct sock *sk) 3106 { 3107 struct page_frag *pfrag = sk_page_frag(sk); 3108 3109 if (!sk_page_frag_refill(sk, pfrag)) 3110 return NULL; 3111 3112 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset); 3113 3114 memcpy(page_address(pfrag->page) + pfrag->offset, 3115 page_address(page) + *offset, *len); 3116 *offset = pfrag->offset; 3117 pfrag->offset += *len; 3118 3119 return pfrag->page; 3120 } 3121 3122 static bool spd_can_coalesce(const struct splice_pipe_desc *spd, 3123 struct page *page, 3124 unsigned int offset) 3125 { 3126 return spd->nr_pages && 3127 spd->pages[spd->nr_pages - 1] == page && 3128 (spd->partial[spd->nr_pages - 1].offset + 3129 spd->partial[spd->nr_pages - 1].len == offset); 3130 } 3131 3132 /* 3133 * Fill page/offset/length into spd, if it can hold more pages. 3134 */ 3135 static bool spd_fill_page(struct splice_pipe_desc *spd, struct page *page, 3136 unsigned int *len, unsigned int offset, bool linear, 3137 struct sock *sk) 3138 { 3139 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS)) 3140 return true; 3141 3142 if (linear) { 3143 page = linear_to_page(page, len, &offset, sk); 3144 if (!page) 3145 return true; 3146 } 3147 if (spd_can_coalesce(spd, page, offset)) { 3148 spd->partial[spd->nr_pages - 1].len += *len; 3149 return false; 3150 } 3151 get_page(page); 3152 spd->pages[spd->nr_pages] = page; 3153 spd->partial[spd->nr_pages].len = *len; 3154 spd->partial[spd->nr_pages].offset = offset; 3155 spd->nr_pages++; 3156 3157 return false; 3158 } 3159 3160 static bool __splice_segment(struct page *page, unsigned int poff, 3161 unsigned int plen, unsigned int *off, 3162 unsigned int *len, 3163 struct splice_pipe_desc *spd, bool linear, 3164 struct sock *sk) 3165 { 3166 if (!*len) 3167 return true; 3168 3169 /* skip this segment if already processed */ 3170 if (*off >= plen) { 3171 *off -= plen; 3172 return false; 3173 } 3174 3175 /* ignore any bits we already processed */ 3176 poff += *off; 3177 plen -= *off; 3178 *off = 0; 3179 3180 do { 3181 unsigned int flen = min(*len, plen); 3182 3183 if (spd_fill_page(spd, page, &flen, poff, linear, sk)) 3184 return true; 3185 poff += flen; 3186 plen -= flen; 3187 *len -= flen; 3188 if (!*len) 3189 return true; 3190 } while (plen); 3191 3192 return false; 3193 } 3194 3195 /* 3196 * Map linear and fragment data from the skb to spd. It reports true if the 3197 * pipe is full or if we already spliced the requested length. 3198 */ 3199 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe, 3200 unsigned int *offset, unsigned int *len, 3201 struct splice_pipe_desc *spd, struct sock *sk) 3202 { 3203 struct sk_buff *iter; 3204 int seg; 3205 3206 /* map the linear part : 3207 * If skb->head_frag is set, this 'linear' part is backed by a 3208 * fragment, and if the head is not shared with any clones then 3209 * we can avoid a copy since we own the head portion of this page. 3210 */ 3211 if (__splice_segment(virt_to_page(skb->data), 3212 (unsigned long) skb->data & (PAGE_SIZE - 1), 3213 skb_headlen(skb), 3214 offset, len, spd, 3215 skb_head_is_locked(skb), 3216 sk)) 3217 return true; 3218 3219 /* 3220 * then map the fragments 3221 */ 3222 if (!skb_frags_readable(skb)) 3223 return false; 3224 3225 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) { 3226 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg]; 3227 3228 if (WARN_ON_ONCE(!skb_frag_page(f))) 3229 return false; 3230 3231 if (__splice_segment(skb_frag_page(f), 3232 skb_frag_off(f), skb_frag_size(f), 3233 offset, len, spd, false, sk)) 3234 return true; 3235 } 3236 3237 skb_walk_frags(skb, iter) { 3238 if (*offset >= iter->len) { 3239 *offset -= iter->len; 3240 continue; 3241 } 3242 /* __skb_splice_bits() only fails if the output has no room 3243 * left, so no point in going over the frag_list for the error 3244 * case. 3245 */ 3246 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk)) 3247 return true; 3248 } 3249 3250 return false; 3251 } 3252 3253 /* 3254 * Map data from the skb to a pipe. Should handle both the linear part, 3255 * the fragments, and the frag list. 3256 */ 3257 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3258 struct pipe_inode_info *pipe, unsigned int tlen, 3259 unsigned int flags) 3260 { 3261 struct partial_page partial[MAX_SKB_FRAGS]; 3262 struct page *pages[MAX_SKB_FRAGS]; 3263 struct splice_pipe_desc spd = { 3264 .pages = pages, 3265 .partial = partial, 3266 .nr_pages_max = MAX_SKB_FRAGS, 3267 .ops = &nosteal_pipe_buf_ops, 3268 .spd_release = sock_spd_release, 3269 }; 3270 int ret = 0; 3271 3272 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk); 3273 3274 if (spd.nr_pages) 3275 ret = splice_to_pipe(pipe, &spd); 3276 3277 return ret; 3278 } 3279 EXPORT_SYMBOL_GPL(skb_splice_bits); 3280 3281 static int sendmsg_locked(struct sock *sk, struct msghdr *msg) 3282 { 3283 struct socket *sock = sk->sk_socket; 3284 size_t size = msg_data_left(msg); 3285 3286 if (!sock) 3287 return -EINVAL; 3288 3289 if (!sock->ops->sendmsg_locked) 3290 return sock_no_sendmsg_locked(sk, msg, size); 3291 3292 return sock->ops->sendmsg_locked(sk, msg, size); 3293 } 3294 3295 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg) 3296 { 3297 struct socket *sock = sk->sk_socket; 3298 3299 if (!sock) 3300 return -EINVAL; 3301 return sock_sendmsg(sock, msg); 3302 } 3303 3304 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg); 3305 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, 3306 int len, sendmsg_func sendmsg, int flags) 3307 { 3308 int more_hint = sk_is_tcp(sk) ? MSG_MORE : 0; 3309 unsigned int orig_len = len; 3310 struct sk_buff *head = skb; 3311 unsigned short fragidx; 3312 int slen, ret; 3313 3314 do_frag_list: 3315 3316 /* Deal with head data */ 3317 while (offset < skb_headlen(skb) && len) { 3318 struct kvec kv; 3319 struct msghdr msg; 3320 3321 slen = min_t(int, len, skb_headlen(skb) - offset); 3322 kv.iov_base = skb->data + offset; 3323 kv.iov_len = slen; 3324 memset(&msg, 0, sizeof(msg)); 3325 msg.msg_flags = MSG_DONTWAIT | flags; 3326 if (slen < len) 3327 msg.msg_flags |= more_hint; 3328 3329 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen); 3330 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3331 sendmsg_unlocked, sk, &msg); 3332 if (ret <= 0) 3333 goto error; 3334 3335 offset += ret; 3336 len -= ret; 3337 } 3338 3339 /* All the data was skb head? */ 3340 if (!len) 3341 goto out; 3342 3343 /* Make offset relative to start of frags */ 3344 offset -= skb_headlen(skb); 3345 3346 /* Find where we are in frag list */ 3347 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3348 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3349 3350 if (offset < skb_frag_size(frag)) 3351 break; 3352 3353 offset -= skb_frag_size(frag); 3354 } 3355 3356 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) { 3357 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx]; 3358 3359 slen = min_t(size_t, len, skb_frag_size(frag) - offset); 3360 3361 while (slen) { 3362 struct bio_vec bvec; 3363 struct msghdr msg = { 3364 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | 3365 flags, 3366 }; 3367 3368 if (slen < len) 3369 msg.msg_flags |= more_hint; 3370 bvec_set_page(&bvec, skb_frag_page(frag), slen, 3371 skb_frag_off(frag) + offset); 3372 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, 3373 slen); 3374 3375 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked, 3376 sendmsg_unlocked, sk, &msg); 3377 if (ret <= 0) 3378 goto error; 3379 3380 len -= ret; 3381 offset += ret; 3382 slen -= ret; 3383 } 3384 3385 offset = 0; 3386 } 3387 3388 if (len) { 3389 /* Process any frag lists */ 3390 3391 if (skb == head) { 3392 if (skb_has_frag_list(skb)) { 3393 skb = skb_shinfo(skb)->frag_list; 3394 goto do_frag_list; 3395 } 3396 } else if (skb->next) { 3397 skb = skb->next; 3398 goto do_frag_list; 3399 } 3400 } 3401 3402 out: 3403 return orig_len - len; 3404 3405 error: 3406 return orig_len == len ? ret : orig_len - len; 3407 } 3408 3409 /* Send skb data on a socket. Socket must be locked. */ 3410 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3411 int len) 3412 { 3413 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, 0); 3414 } 3415 EXPORT_SYMBOL_GPL(skb_send_sock_locked); 3416 3417 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb, 3418 int offset, int len, int flags) 3419 { 3420 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked, flags); 3421 } 3422 EXPORT_SYMBOL_GPL(skb_send_sock_locked_with_flags); 3423 3424 /* Send skb data on a socket. Socket must be unlocked. */ 3425 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len) 3426 { 3427 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked, 0); 3428 } 3429 3430 /** 3431 * skb_store_bits - store bits from kernel buffer to skb 3432 * @skb: destination buffer 3433 * @offset: offset in destination 3434 * @from: source buffer 3435 * @len: number of bytes to copy 3436 * 3437 * Copy the specified number of bytes from the source buffer to the 3438 * destination skb. This function handles all the messy bits of 3439 * traversing fragment lists and such. 3440 */ 3441 3442 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len) 3443 { 3444 int start = skb_headlen(skb); 3445 struct sk_buff *frag_iter; 3446 int i, copy; 3447 3448 if (offset > (int)skb->len - len) 3449 goto fault; 3450 3451 if ((copy = start - offset) > 0) { 3452 if (copy > len) 3453 copy = len; 3454 skb_copy_to_linear_data_offset(skb, offset, from, copy); 3455 if ((len -= copy) == 0) 3456 return 0; 3457 offset += copy; 3458 from += copy; 3459 } 3460 3461 if (!skb_frags_readable(skb)) 3462 goto fault; 3463 3464 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3465 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3466 int end; 3467 3468 WARN_ON(start > offset + len); 3469 3470 end = start + skb_frag_size(frag); 3471 if ((copy = end - offset) > 0) { 3472 u32 p_off, p_len, copied; 3473 struct page *p; 3474 u8 *vaddr; 3475 3476 if (copy > len) 3477 copy = len; 3478 3479 skb_frag_foreach_page(frag, 3480 skb_frag_off(frag) + offset - start, 3481 copy, p, p_off, p_len, copied) { 3482 vaddr = kmap_atomic(p); 3483 memcpy(vaddr + p_off, from + copied, p_len); 3484 kunmap_atomic(vaddr); 3485 } 3486 3487 if ((len -= copy) == 0) 3488 return 0; 3489 offset += copy; 3490 from += copy; 3491 } 3492 start = end; 3493 } 3494 3495 skb_walk_frags(skb, frag_iter) { 3496 int end; 3497 3498 WARN_ON(start > offset + len); 3499 3500 end = start + frag_iter->len; 3501 if ((copy = end - offset) > 0) { 3502 if (copy > len) 3503 copy = len; 3504 if (skb_store_bits(frag_iter, offset - start, 3505 from, copy)) 3506 goto fault; 3507 if ((len -= copy) == 0) 3508 return 0; 3509 offset += copy; 3510 from += copy; 3511 } 3512 start = end; 3513 } 3514 if (!len) 3515 return 0; 3516 3517 fault: 3518 return -EFAULT; 3519 } 3520 EXPORT_SYMBOL(skb_store_bits); 3521 3522 /* Checksum skb data. */ 3523 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len, __wsum csum) 3524 { 3525 int start = skb_headlen(skb); 3526 int i, copy = start - offset; 3527 struct sk_buff *frag_iter; 3528 int pos = 0; 3529 3530 /* Checksum header. */ 3531 if (copy > 0) { 3532 if (copy > len) 3533 copy = len; 3534 csum = csum_partial(skb->data + offset, copy, csum); 3535 if ((len -= copy) == 0) 3536 return csum; 3537 offset += copy; 3538 pos = copy; 3539 } 3540 3541 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3542 return 0; 3543 3544 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3545 int end; 3546 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3547 3548 WARN_ON(start > offset + len); 3549 3550 end = start + skb_frag_size(frag); 3551 if ((copy = end - offset) > 0) { 3552 u32 p_off, p_len, copied; 3553 struct page *p; 3554 __wsum csum2; 3555 u8 *vaddr; 3556 3557 if (copy > len) 3558 copy = len; 3559 3560 skb_frag_foreach_page(frag, 3561 skb_frag_off(frag) + offset - start, 3562 copy, p, p_off, p_len, copied) { 3563 vaddr = kmap_atomic(p); 3564 csum2 = csum_partial(vaddr + p_off, p_len, 0); 3565 kunmap_atomic(vaddr); 3566 csum = csum_block_add(csum, csum2, pos); 3567 pos += p_len; 3568 } 3569 3570 if (!(len -= copy)) 3571 return csum; 3572 offset += copy; 3573 } 3574 start = end; 3575 } 3576 3577 skb_walk_frags(skb, frag_iter) { 3578 int end; 3579 3580 WARN_ON(start > offset + len); 3581 3582 end = start + frag_iter->len; 3583 if ((copy = end - offset) > 0) { 3584 __wsum csum2; 3585 if (copy > len) 3586 copy = len; 3587 csum2 = skb_checksum(frag_iter, offset - start, copy, 3588 0); 3589 csum = csum_block_add(csum, csum2, pos); 3590 if ((len -= copy) == 0) 3591 return csum; 3592 offset += copy; 3593 pos += copy; 3594 } 3595 start = end; 3596 } 3597 BUG_ON(len); 3598 3599 return csum; 3600 } 3601 EXPORT_SYMBOL(skb_checksum); 3602 3603 /* Both of above in one bottle. */ 3604 3605 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, 3606 u8 *to, int len) 3607 { 3608 int start = skb_headlen(skb); 3609 int i, copy = start - offset; 3610 struct sk_buff *frag_iter; 3611 int pos = 0; 3612 __wsum csum = 0; 3613 3614 /* Copy header. */ 3615 if (copy > 0) { 3616 if (copy > len) 3617 copy = len; 3618 csum = csum_partial_copy_nocheck(skb->data + offset, to, 3619 copy); 3620 if ((len -= copy) == 0) 3621 return csum; 3622 offset += copy; 3623 to += copy; 3624 pos = copy; 3625 } 3626 3627 if (!skb_frags_readable(skb)) 3628 return 0; 3629 3630 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3631 int end; 3632 3633 WARN_ON(start > offset + len); 3634 3635 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 3636 if ((copy = end - offset) > 0) { 3637 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3638 u32 p_off, p_len, copied; 3639 struct page *p; 3640 __wsum csum2; 3641 u8 *vaddr; 3642 3643 if (copy > len) 3644 copy = len; 3645 3646 skb_frag_foreach_page(frag, 3647 skb_frag_off(frag) + offset - start, 3648 copy, p, p_off, p_len, copied) { 3649 vaddr = kmap_atomic(p); 3650 csum2 = csum_partial_copy_nocheck(vaddr + p_off, 3651 to + copied, 3652 p_len); 3653 kunmap_atomic(vaddr); 3654 csum = csum_block_add(csum, csum2, pos); 3655 pos += p_len; 3656 } 3657 3658 if (!(len -= copy)) 3659 return csum; 3660 offset += copy; 3661 to += copy; 3662 } 3663 start = end; 3664 } 3665 3666 skb_walk_frags(skb, frag_iter) { 3667 __wsum csum2; 3668 int end; 3669 3670 WARN_ON(start > offset + len); 3671 3672 end = start + frag_iter->len; 3673 if ((copy = end - offset) > 0) { 3674 if (copy > len) 3675 copy = len; 3676 csum2 = skb_copy_and_csum_bits(frag_iter, 3677 offset - start, 3678 to, copy); 3679 csum = csum_block_add(csum, csum2, pos); 3680 if ((len -= copy) == 0) 3681 return csum; 3682 offset += copy; 3683 to += copy; 3684 pos += copy; 3685 } 3686 start = end; 3687 } 3688 BUG_ON(len); 3689 return csum; 3690 } 3691 EXPORT_SYMBOL(skb_copy_and_csum_bits); 3692 3693 #ifdef CONFIG_NET_CRC32C 3694 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc) 3695 { 3696 int start = skb_headlen(skb); 3697 int i, copy = start - offset; 3698 struct sk_buff *frag_iter; 3699 3700 if (copy > 0) { 3701 copy = min(copy, len); 3702 crc = crc32c(crc, skb->data + offset, copy); 3703 len -= copy; 3704 if (len == 0) 3705 return crc; 3706 offset += copy; 3707 } 3708 3709 if (WARN_ON_ONCE(!skb_frags_readable(skb))) 3710 return 0; 3711 3712 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3713 int end; 3714 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3715 3716 WARN_ON(start > offset + len); 3717 3718 end = start + skb_frag_size(frag); 3719 copy = end - offset; 3720 if (copy > 0) { 3721 u32 p_off, p_len, copied; 3722 struct page *p; 3723 u8 *vaddr; 3724 3725 copy = min(copy, len); 3726 skb_frag_foreach_page(frag, 3727 skb_frag_off(frag) + offset - start, 3728 copy, p, p_off, p_len, copied) { 3729 vaddr = kmap_atomic(p); 3730 crc = crc32c(crc, vaddr + p_off, p_len); 3731 kunmap_atomic(vaddr); 3732 } 3733 len -= copy; 3734 if (len == 0) 3735 return crc; 3736 offset += copy; 3737 } 3738 start = end; 3739 } 3740 3741 skb_walk_frags(skb, frag_iter) { 3742 int end; 3743 3744 WARN_ON(start > offset + len); 3745 3746 end = start + frag_iter->len; 3747 copy = end - offset; 3748 if (copy > 0) { 3749 copy = min(copy, len); 3750 crc = skb_crc32c(frag_iter, offset - start, copy, crc); 3751 len -= copy; 3752 if (len == 0) 3753 return crc; 3754 offset += copy; 3755 } 3756 start = end; 3757 } 3758 BUG_ON(len); 3759 3760 return crc; 3761 } 3762 EXPORT_SYMBOL(skb_crc32c); 3763 #endif /* CONFIG_NET_CRC32C */ 3764 3765 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len) 3766 { 3767 __sum16 sum; 3768 3769 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum)); 3770 /* See comments in __skb_checksum_complete(). */ 3771 if (likely(!sum)) { 3772 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3773 !skb->csum_complete_sw) 3774 netdev_rx_csum_fault(skb->dev, skb); 3775 } 3776 if (!skb_shared(skb)) 3777 skb->csum_valid = !sum; 3778 return sum; 3779 } 3780 EXPORT_SYMBOL(__skb_checksum_complete_head); 3781 3782 /* This function assumes skb->csum already holds pseudo header's checksum, 3783 * which has been changed from the hardware checksum, for example, by 3784 * __skb_checksum_validate_complete(). And, the original skb->csum must 3785 * have been validated unsuccessfully for CHECKSUM_COMPLETE case. 3786 * 3787 * It returns non-zero if the recomputed checksum is still invalid, otherwise 3788 * zero. The new checksum is stored back into skb->csum unless the skb is 3789 * shared. 3790 */ 3791 __sum16 __skb_checksum_complete(struct sk_buff *skb) 3792 { 3793 __wsum csum; 3794 __sum16 sum; 3795 3796 csum = skb_checksum(skb, 0, skb->len, 0); 3797 3798 sum = csum_fold(csum_add(skb->csum, csum)); 3799 /* This check is inverted, because we already knew the hardware 3800 * checksum is invalid before calling this function. So, if the 3801 * re-computed checksum is valid instead, then we have a mismatch 3802 * between the original skb->csum and skb_checksum(). This means either 3803 * the original hardware checksum is incorrect or we screw up skb->csum 3804 * when moving skb->data around. 3805 */ 3806 if (likely(!sum)) { 3807 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 3808 !skb->csum_complete_sw) 3809 netdev_rx_csum_fault(skb->dev, skb); 3810 } 3811 3812 if (!skb_shared(skb)) { 3813 /* Save full packet checksum */ 3814 skb->csum = csum; 3815 skb->ip_summed = CHECKSUM_COMPLETE; 3816 skb->csum_complete_sw = 1; 3817 skb->csum_valid = !sum; 3818 } 3819 3820 return sum; 3821 } 3822 EXPORT_SYMBOL(__skb_checksum_complete); 3823 3824 /** 3825 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy() 3826 * @from: source buffer 3827 * 3828 * Calculates the amount of linear headroom needed in the 'to' skb passed 3829 * into skb_zerocopy(). 3830 */ 3831 unsigned int 3832 skb_zerocopy_headlen(const struct sk_buff *from) 3833 { 3834 unsigned int hlen = 0; 3835 3836 if (!from->head_frag || 3837 skb_headlen(from) < L1_CACHE_BYTES || 3838 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) { 3839 hlen = skb_headlen(from); 3840 if (!hlen) 3841 hlen = from->len; 3842 } 3843 3844 if (skb_has_frag_list(from)) 3845 hlen = from->len; 3846 3847 return hlen; 3848 } 3849 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen); 3850 3851 /** 3852 * skb_zerocopy - Zero copy skb to skb 3853 * @to: destination buffer 3854 * @from: source buffer 3855 * @len: number of bytes to copy from source buffer 3856 * @hlen: size of linear headroom in destination buffer 3857 * 3858 * Copies up to `len` bytes from `from` to `to` by creating references 3859 * to the frags in the source buffer. 3860 * 3861 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the 3862 * headroom in the `to` buffer. 3863 * 3864 * Return value: 3865 * 0: everything is OK 3866 * -ENOMEM: couldn't orphan frags of @from due to lack of memory 3867 * -EFAULT: skb_copy_bits() found some problem with skb geometry 3868 */ 3869 int 3870 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen) 3871 { 3872 int i, j = 0; 3873 int plen = 0; /* length of skb->head fragment */ 3874 int ret; 3875 struct page *page; 3876 unsigned int offset; 3877 3878 BUG_ON(!from->head_frag && !hlen); 3879 3880 /* dont bother with small payloads */ 3881 if (len <= skb_tailroom(to)) 3882 return skb_copy_bits(from, 0, skb_put(to, len), len); 3883 3884 if (hlen) { 3885 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen); 3886 if (unlikely(ret)) 3887 return ret; 3888 len -= hlen; 3889 } else { 3890 plen = min_t(int, skb_headlen(from), len); 3891 if (plen) { 3892 page = virt_to_head_page(from->head); 3893 offset = from->data - (unsigned char *)page_address(page); 3894 __skb_fill_netmem_desc(to, 0, page_to_netmem(page), 3895 offset, plen); 3896 get_page(page); 3897 j = 1; 3898 len -= plen; 3899 } 3900 } 3901 3902 skb_len_add(to, len + plen); 3903 3904 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) { 3905 skb_tx_error(from); 3906 return -ENOMEM; 3907 } 3908 skb_zerocopy_clone(to, from, GFP_ATOMIC); 3909 3910 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) { 3911 int size; 3912 3913 if (!len) 3914 break; 3915 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i]; 3916 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]), 3917 len); 3918 skb_frag_size_set(&skb_shinfo(to)->frags[j], size); 3919 len -= size; 3920 skb_frag_ref(to, j); 3921 j++; 3922 } 3923 skb_shinfo(to)->nr_frags = j; 3924 3925 return 0; 3926 } 3927 EXPORT_SYMBOL_GPL(skb_zerocopy); 3928 3929 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to) 3930 { 3931 __wsum csum; 3932 long csstart; 3933 3934 if (skb->ip_summed == CHECKSUM_PARTIAL) 3935 csstart = skb_checksum_start_offset(skb); 3936 else 3937 csstart = skb_headlen(skb); 3938 3939 BUG_ON(csstart > skb_headlen(skb)); 3940 3941 skb_copy_from_linear_data(skb, to, csstart); 3942 3943 csum = 0; 3944 if (csstart != skb->len) 3945 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart, 3946 skb->len - csstart); 3947 3948 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3949 long csstuff = csstart + skb->csum_offset; 3950 3951 *((__sum16 *)(to + csstuff)) = csum_fold(csum); 3952 } 3953 } 3954 EXPORT_SYMBOL(skb_copy_and_csum_dev); 3955 3956 /** 3957 * skb_dequeue - remove from the head of the queue 3958 * @list: list to dequeue from 3959 * 3960 * Remove the head of the list. The list lock is taken so the function 3961 * may be used safely with other locking list functions. The head item is 3962 * returned or %NULL if the list is empty. 3963 */ 3964 3965 struct sk_buff *skb_dequeue(struct sk_buff_head *list) 3966 { 3967 unsigned long flags; 3968 struct sk_buff *result; 3969 3970 spin_lock_irqsave(&list->lock, flags); 3971 result = __skb_dequeue(list); 3972 spin_unlock_irqrestore(&list->lock, flags); 3973 return result; 3974 } 3975 EXPORT_SYMBOL(skb_dequeue); 3976 3977 /** 3978 * skb_dequeue_tail - remove from the tail of the queue 3979 * @list: list to dequeue from 3980 * 3981 * Remove the tail of the list. The list lock is taken so the function 3982 * may be used safely with other locking list functions. The tail item is 3983 * returned or %NULL if the list is empty. 3984 */ 3985 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list) 3986 { 3987 unsigned long flags; 3988 struct sk_buff *result; 3989 3990 spin_lock_irqsave(&list->lock, flags); 3991 result = __skb_dequeue_tail(list); 3992 spin_unlock_irqrestore(&list->lock, flags); 3993 return result; 3994 } 3995 EXPORT_SYMBOL(skb_dequeue_tail); 3996 3997 /** 3998 * skb_queue_purge_reason - empty a list 3999 * @list: list to empty 4000 * @reason: drop reason 4001 * 4002 * Delete all buffers on an &sk_buff list. Each buffer is removed from 4003 * the list and one reference dropped. This function takes the list 4004 * lock and is atomic with respect to other list locking functions. 4005 */ 4006 void skb_queue_purge_reason(struct sk_buff_head *list, 4007 enum skb_drop_reason reason) 4008 { 4009 struct sk_buff_head tmp; 4010 unsigned long flags; 4011 4012 if (skb_queue_empty_lockless(list)) 4013 return; 4014 4015 __skb_queue_head_init(&tmp); 4016 4017 spin_lock_irqsave(&list->lock, flags); 4018 skb_queue_splice_init(list, &tmp); 4019 spin_unlock_irqrestore(&list->lock, flags); 4020 4021 __skb_queue_purge_reason(&tmp, reason); 4022 } 4023 EXPORT_SYMBOL(skb_queue_purge_reason); 4024 4025 /** 4026 * skb_rbtree_purge - empty a skb rbtree 4027 * @root: root of the rbtree to empty 4028 * Return value: the sum of truesizes of all purged skbs. 4029 * 4030 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from 4031 * the list and one reference dropped. This function does not take 4032 * any lock. Synchronization should be handled by the caller (e.g., TCP 4033 * out-of-order queue is protected by the socket lock). 4034 */ 4035 unsigned int skb_rbtree_purge(struct rb_root *root) 4036 { 4037 struct rb_node *p = rb_first(root); 4038 unsigned int sum = 0; 4039 4040 while (p) { 4041 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode); 4042 4043 p = rb_next(p); 4044 rb_erase(&skb->rbnode, root); 4045 sum += skb->truesize; 4046 kfree_skb(skb); 4047 } 4048 return sum; 4049 } 4050 4051 void skb_errqueue_purge(struct sk_buff_head *list) 4052 { 4053 struct sk_buff *skb, *next; 4054 struct sk_buff_head kill; 4055 unsigned long flags; 4056 4057 __skb_queue_head_init(&kill); 4058 4059 spin_lock_irqsave(&list->lock, flags); 4060 skb_queue_walk_safe(list, skb, next) { 4061 if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY || 4062 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING) 4063 continue; 4064 __skb_unlink(skb, list); 4065 __skb_queue_tail(&kill, skb); 4066 } 4067 spin_unlock_irqrestore(&list->lock, flags); 4068 __skb_queue_purge(&kill); 4069 } 4070 EXPORT_SYMBOL(skb_errqueue_purge); 4071 4072 /** 4073 * skb_queue_head - queue a buffer at the list head 4074 * @list: list to use 4075 * @newsk: buffer to queue 4076 * 4077 * Queue a buffer at the start of the list. This function takes the 4078 * list lock and can be used safely with other locking &sk_buff functions 4079 * safely. 4080 * 4081 * A buffer cannot be placed on two lists at the same time. 4082 */ 4083 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) 4084 { 4085 unsigned long flags; 4086 4087 spin_lock_irqsave(&list->lock, flags); 4088 __skb_queue_head(list, newsk); 4089 spin_unlock_irqrestore(&list->lock, flags); 4090 } 4091 EXPORT_SYMBOL(skb_queue_head); 4092 4093 /** 4094 * skb_queue_tail - queue a buffer at the list tail 4095 * @list: list to use 4096 * @newsk: buffer to queue 4097 * 4098 * Queue a buffer at the tail of the list. This function takes the 4099 * list lock and can be used safely with other locking &sk_buff functions 4100 * safely. 4101 * 4102 * A buffer cannot be placed on two lists at the same time. 4103 */ 4104 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk) 4105 { 4106 unsigned long flags; 4107 4108 spin_lock_irqsave(&list->lock, flags); 4109 __skb_queue_tail(list, newsk); 4110 spin_unlock_irqrestore(&list->lock, flags); 4111 } 4112 EXPORT_SYMBOL(skb_queue_tail); 4113 4114 /** 4115 * skb_unlink - remove a buffer from a list 4116 * @skb: buffer to remove 4117 * @list: list to use 4118 * 4119 * Remove a packet from a list. The list locks are taken and this 4120 * function is atomic with respect to other list locked calls 4121 * 4122 * You must know what list the SKB is on. 4123 */ 4124 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 4125 { 4126 unsigned long flags; 4127 4128 spin_lock_irqsave(&list->lock, flags); 4129 __skb_unlink(skb, list); 4130 spin_unlock_irqrestore(&list->lock, flags); 4131 } 4132 EXPORT_SYMBOL(skb_unlink); 4133 4134 /** 4135 * skb_append - append a buffer 4136 * @old: buffer to insert after 4137 * @newsk: buffer to insert 4138 * @list: list to use 4139 * 4140 * Place a packet after a given packet in a list. The list locks are taken 4141 * and this function is atomic with respect to other list locked calls. 4142 * A buffer cannot be placed on two lists at the same time. 4143 */ 4144 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 4145 { 4146 unsigned long flags; 4147 4148 spin_lock_irqsave(&list->lock, flags); 4149 __skb_queue_after(list, old, newsk); 4150 spin_unlock_irqrestore(&list->lock, flags); 4151 } 4152 EXPORT_SYMBOL(skb_append); 4153 4154 static inline void skb_split_inside_header(struct sk_buff *skb, 4155 struct sk_buff* skb1, 4156 const u32 len, const int pos) 4157 { 4158 int i; 4159 4160 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len), 4161 pos - len); 4162 /* And move data appendix as is. */ 4163 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 4164 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i]; 4165 4166 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags; 4167 skb1->unreadable = skb->unreadable; 4168 skb_shinfo(skb)->nr_frags = 0; 4169 skb1->data_len = skb->data_len; 4170 skb1->len += skb1->data_len; 4171 skb->data_len = 0; 4172 skb->len = len; 4173 skb_set_tail_pointer(skb, len); 4174 } 4175 4176 static inline void skb_split_no_header(struct sk_buff *skb, 4177 struct sk_buff* skb1, 4178 const u32 len, int pos) 4179 { 4180 int i, k = 0; 4181 const int nfrags = skb_shinfo(skb)->nr_frags; 4182 4183 skb_shinfo(skb)->nr_frags = 0; 4184 skb1->len = skb1->data_len = skb->len - len; 4185 skb->len = len; 4186 skb->data_len = len - pos; 4187 4188 for (i = 0; i < nfrags; i++) { 4189 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]); 4190 4191 if (pos + size > len) { 4192 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i]; 4193 4194 if (pos < len) { 4195 /* Split frag. 4196 * We have two variants in this case: 4197 * 1. Move all the frag to the second 4198 * part, if it is possible. F.e. 4199 * this approach is mandatory for TUX, 4200 * where splitting is expensive. 4201 * 2. Split is accurately. We make this. 4202 */ 4203 skb_frag_ref(skb, i); 4204 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos); 4205 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos); 4206 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos); 4207 skb_shinfo(skb)->nr_frags++; 4208 } 4209 k++; 4210 } else 4211 skb_shinfo(skb)->nr_frags++; 4212 pos += size; 4213 } 4214 skb_shinfo(skb1)->nr_frags = k; 4215 4216 skb1->unreadable = skb->unreadable; 4217 } 4218 4219 /** 4220 * skb_split - Split fragmented skb to two parts at length len. 4221 * @skb: the buffer to split 4222 * @skb1: the buffer to receive the second part 4223 * @len: new length for skb 4224 */ 4225 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len) 4226 { 4227 int pos = skb_headlen(skb); 4228 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY; 4229 4230 skb_zcopy_downgrade_managed(skb); 4231 4232 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags; 4233 skb_zerocopy_clone(skb1, skb, 0); 4234 if (len < pos) /* Split line is inside header. */ 4235 skb_split_inside_header(skb, skb1, len, pos); 4236 else /* Second chunk has no header, nothing to copy. */ 4237 skb_split_no_header(skb, skb1, len, pos); 4238 } 4239 EXPORT_SYMBOL(skb_split); 4240 4241 /* Shifting from/to a cloned skb is a no-go. 4242 * 4243 * Caller cannot keep skb_shinfo related pointers past calling here! 4244 */ 4245 static int skb_prepare_for_shift(struct sk_buff *skb) 4246 { 4247 return skb_unclone_keeptruesize(skb, GFP_ATOMIC); 4248 } 4249 4250 /** 4251 * skb_shift - Shifts paged data partially from skb to another 4252 * @tgt: buffer into which tail data gets added 4253 * @skb: buffer from which the paged data comes from 4254 * @shiftlen: shift up to this many bytes 4255 * 4256 * Attempts to shift up to shiftlen worth of bytes, which may be less than 4257 * the length of the skb, from skb to tgt. Returns number bytes shifted. 4258 * It's up to caller to free skb if everything was shifted. 4259 * 4260 * If @tgt runs out of frags, the whole operation is aborted. 4261 * 4262 * Skb cannot include anything else but paged data while tgt is allowed 4263 * to have non-paged data as well. 4264 * 4265 * TODO: full sized shift could be optimized but that would need 4266 * specialized skb free'er to handle frags without up-to-date nr_frags. 4267 */ 4268 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen) 4269 { 4270 int from, to, merge, todo; 4271 skb_frag_t *fragfrom, *fragto; 4272 4273 BUG_ON(shiftlen > skb->len); 4274 4275 if (skb_headlen(skb)) 4276 return 0; 4277 if (skb_zcopy(tgt) || skb_zcopy(skb)) 4278 return 0; 4279 4280 DEBUG_NET_WARN_ON_ONCE(tgt->pp_recycle != skb->pp_recycle); 4281 DEBUG_NET_WARN_ON_ONCE(skb_cmp_decrypted(tgt, skb)); 4282 4283 todo = shiftlen; 4284 from = 0; 4285 to = skb_shinfo(tgt)->nr_frags; 4286 fragfrom = &skb_shinfo(skb)->frags[from]; 4287 4288 /* Actual merge is delayed until the point when we know we can 4289 * commit all, so that we don't have to undo partial changes 4290 */ 4291 if (!skb_can_coalesce(tgt, to, skb_frag_page(fragfrom), 4292 skb_frag_off(fragfrom))) { 4293 merge = -1; 4294 } else { 4295 merge = to - 1; 4296 4297 todo -= skb_frag_size(fragfrom); 4298 if (todo < 0) { 4299 if (skb_prepare_for_shift(skb) || 4300 skb_prepare_for_shift(tgt)) 4301 return 0; 4302 4303 /* All previous frag pointers might be stale! */ 4304 fragfrom = &skb_shinfo(skb)->frags[from]; 4305 fragto = &skb_shinfo(tgt)->frags[merge]; 4306 4307 skb_frag_size_add(fragto, shiftlen); 4308 skb_frag_size_sub(fragfrom, shiftlen); 4309 skb_frag_off_add(fragfrom, shiftlen); 4310 4311 goto onlymerged; 4312 } 4313 4314 from++; 4315 } 4316 4317 /* Skip full, not-fitting skb to avoid expensive operations */ 4318 if ((shiftlen == skb->len) && 4319 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to)) 4320 return 0; 4321 4322 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt)) 4323 return 0; 4324 4325 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) { 4326 if (to == MAX_SKB_FRAGS) 4327 return 0; 4328 4329 fragfrom = &skb_shinfo(skb)->frags[from]; 4330 fragto = &skb_shinfo(tgt)->frags[to]; 4331 4332 if (todo >= skb_frag_size(fragfrom)) { 4333 *fragto = *fragfrom; 4334 todo -= skb_frag_size(fragfrom); 4335 from++; 4336 to++; 4337 4338 } else { 4339 __skb_frag_ref(fragfrom); 4340 skb_frag_page_copy(fragto, fragfrom); 4341 skb_frag_off_copy(fragto, fragfrom); 4342 skb_frag_size_set(fragto, todo); 4343 4344 skb_frag_off_add(fragfrom, todo); 4345 skb_frag_size_sub(fragfrom, todo); 4346 todo = 0; 4347 4348 to++; 4349 break; 4350 } 4351 } 4352 4353 /* Ready to "commit" this state change to tgt */ 4354 skb_shinfo(tgt)->nr_frags = to; 4355 4356 if (merge >= 0) { 4357 fragfrom = &skb_shinfo(skb)->frags[0]; 4358 fragto = &skb_shinfo(tgt)->frags[merge]; 4359 4360 skb_frag_size_add(fragto, skb_frag_size(fragfrom)); 4361 __skb_frag_unref(fragfrom, skb->pp_recycle); 4362 } 4363 4364 /* Reposition in the original skb */ 4365 to = 0; 4366 while (from < skb_shinfo(skb)->nr_frags) 4367 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++]; 4368 skb_shinfo(skb)->nr_frags = to; 4369 4370 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags); 4371 4372 onlymerged: 4373 /* Most likely the tgt won't ever need its checksum anymore, skb on 4374 * the other hand might need it if it needs to be resent 4375 */ 4376 tgt->ip_summed = CHECKSUM_PARTIAL; 4377 skb->ip_summed = CHECKSUM_PARTIAL; 4378 4379 skb_len_add(skb, -shiftlen); 4380 skb_len_add(tgt, shiftlen); 4381 4382 return shiftlen; 4383 } 4384 4385 /** 4386 * skb_prepare_seq_read - Prepare a sequential read of skb data 4387 * @skb: the buffer to read 4388 * @from: lower offset of data to be read 4389 * @to: upper offset of data to be read 4390 * @st: state variable 4391 * 4392 * Initializes the specified state variable. Must be called before 4393 * invoking skb_seq_read() for the first time. 4394 */ 4395 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 4396 unsigned int to, struct skb_seq_state *st) 4397 { 4398 st->lower_offset = from; 4399 st->upper_offset = to; 4400 st->root_skb = st->cur_skb = skb; 4401 st->frag_idx = st->stepped_offset = 0; 4402 st->frag_data = NULL; 4403 st->frag_off = 0; 4404 } 4405 EXPORT_SYMBOL(skb_prepare_seq_read); 4406 4407 /** 4408 * skb_seq_read - Sequentially read skb data 4409 * @consumed: number of bytes consumed by the caller so far 4410 * @data: destination pointer for data to be returned 4411 * @st: state variable 4412 * 4413 * Reads a block of skb data at @consumed relative to the 4414 * lower offset specified to skb_prepare_seq_read(). Assigns 4415 * the head of the data block to @data and returns the length 4416 * of the block or 0 if the end of the skb data or the upper 4417 * offset has been reached. 4418 * 4419 * The caller is not required to consume all of the data 4420 * returned, i.e. @consumed is typically set to the number 4421 * of bytes already consumed and the next call to 4422 * skb_seq_read() will return the remaining part of the block. 4423 * 4424 * Note 1: The size of each block of data returned can be arbitrary, 4425 * this limitation is the cost for zerocopy sequential 4426 * reads of potentially non linear data. 4427 * 4428 * Note 2: Fragment lists within fragments are not implemented 4429 * at the moment, state->root_skb could be replaced with 4430 * a stack for this purpose. 4431 */ 4432 unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 4433 struct skb_seq_state *st) 4434 { 4435 unsigned int block_limit, abs_offset = consumed + st->lower_offset; 4436 skb_frag_t *frag; 4437 4438 if (unlikely(abs_offset >= st->upper_offset)) { 4439 if (st->frag_data) { 4440 kunmap_atomic(st->frag_data); 4441 st->frag_data = NULL; 4442 } 4443 return 0; 4444 } 4445 4446 next_skb: 4447 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset; 4448 4449 if (abs_offset < block_limit && !st->frag_data) { 4450 *data = st->cur_skb->data + (abs_offset - st->stepped_offset); 4451 return block_limit - abs_offset; 4452 } 4453 4454 if (!skb_frags_readable(st->cur_skb)) 4455 return 0; 4456 4457 if (st->frag_idx == 0 && !st->frag_data) 4458 st->stepped_offset += skb_headlen(st->cur_skb); 4459 4460 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) { 4461 unsigned int pg_idx, pg_off, pg_sz; 4462 4463 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx]; 4464 4465 pg_idx = 0; 4466 pg_off = skb_frag_off(frag); 4467 pg_sz = skb_frag_size(frag); 4468 4469 if (skb_frag_must_loop(skb_frag_page(frag))) { 4470 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT; 4471 pg_off = offset_in_page(pg_off + st->frag_off); 4472 pg_sz = min_t(unsigned int, pg_sz - st->frag_off, 4473 PAGE_SIZE - pg_off); 4474 } 4475 4476 block_limit = pg_sz + st->stepped_offset; 4477 if (abs_offset < block_limit) { 4478 if (!st->frag_data) 4479 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx); 4480 4481 *data = (u8 *)st->frag_data + pg_off + 4482 (abs_offset - st->stepped_offset); 4483 4484 return block_limit - abs_offset; 4485 } 4486 4487 if (st->frag_data) { 4488 kunmap_atomic(st->frag_data); 4489 st->frag_data = NULL; 4490 } 4491 4492 st->stepped_offset += pg_sz; 4493 st->frag_off += pg_sz; 4494 if (st->frag_off == skb_frag_size(frag)) { 4495 st->frag_off = 0; 4496 st->frag_idx++; 4497 } 4498 } 4499 4500 if (st->frag_data) { 4501 kunmap_atomic(st->frag_data); 4502 st->frag_data = NULL; 4503 } 4504 4505 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) { 4506 st->cur_skb = skb_shinfo(st->root_skb)->frag_list; 4507 st->frag_idx = 0; 4508 goto next_skb; 4509 } else if (st->cur_skb->next) { 4510 st->cur_skb = st->cur_skb->next; 4511 st->frag_idx = 0; 4512 goto next_skb; 4513 } 4514 4515 return 0; 4516 } 4517 EXPORT_SYMBOL(skb_seq_read); 4518 4519 /** 4520 * skb_abort_seq_read - Abort a sequential read of skb data 4521 * @st: state variable 4522 * 4523 * Must be called if skb_seq_read() was not called until it 4524 * returned 0. 4525 */ 4526 void skb_abort_seq_read(struct skb_seq_state *st) 4527 { 4528 if (st->frag_data) 4529 kunmap_atomic(st->frag_data); 4530 } 4531 EXPORT_SYMBOL(skb_abort_seq_read); 4532 4533 /** 4534 * skb_copy_seq_read() - copy from a skb_seq_state to a buffer 4535 * @st: source skb_seq_state 4536 * @offset: offset in source 4537 * @to: destination buffer 4538 * @len: number of bytes to copy 4539 * 4540 * Copy @len bytes from @offset bytes into the source @st to the destination 4541 * buffer @to. `offset` should increase (or be unchanged) with each subsequent 4542 * call to this function. If offset needs to decrease from the previous use `st` 4543 * should be reset first. 4544 * 4545 * Return: 0 on success or -EINVAL if the copy ended early 4546 */ 4547 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len) 4548 { 4549 const u8 *data; 4550 u32 sqlen; 4551 4552 for (;;) { 4553 sqlen = skb_seq_read(offset, &data, st); 4554 if (sqlen == 0) 4555 return -EINVAL; 4556 if (sqlen >= len) { 4557 memcpy(to, data, len); 4558 return 0; 4559 } 4560 memcpy(to, data, sqlen); 4561 to += sqlen; 4562 offset += sqlen; 4563 len -= sqlen; 4564 } 4565 } 4566 EXPORT_SYMBOL(skb_copy_seq_read); 4567 4568 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb)) 4569 4570 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text, 4571 struct ts_config *conf, 4572 struct ts_state *state) 4573 { 4574 return skb_seq_read(offset, text, TS_SKB_CB(state)); 4575 } 4576 4577 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state) 4578 { 4579 skb_abort_seq_read(TS_SKB_CB(state)); 4580 } 4581 4582 /** 4583 * skb_find_text - Find a text pattern in skb data 4584 * @skb: the buffer to look in 4585 * @from: search offset 4586 * @to: search limit 4587 * @config: textsearch configuration 4588 * 4589 * Finds a pattern in the skb data according to the specified 4590 * textsearch configuration. Use textsearch_next() to retrieve 4591 * subsequent occurrences of the pattern. Returns the offset 4592 * to the first occurrence or UINT_MAX if no match was found. 4593 */ 4594 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 4595 unsigned int to, struct ts_config *config) 4596 { 4597 unsigned int patlen = config->ops->get_pattern_len(config); 4598 struct ts_state state; 4599 unsigned int ret; 4600 4601 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb)); 4602 4603 config->get_next_block = skb_ts_get_next_block; 4604 config->finish = skb_ts_finish; 4605 4606 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state)); 4607 4608 ret = textsearch_find(config, &state); 4609 return (ret + patlen <= to - from ? ret : UINT_MAX); 4610 } 4611 EXPORT_SYMBOL(skb_find_text); 4612 4613 int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 4614 int offset, size_t size, size_t max_frags) 4615 { 4616 int i = skb_shinfo(skb)->nr_frags; 4617 4618 if (skb_can_coalesce(skb, i, page, offset)) { 4619 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size); 4620 } else if (i < max_frags) { 4621 skb_zcopy_downgrade_managed(skb); 4622 get_page(page); 4623 skb_fill_page_desc_noacc(skb, i, page, offset, size); 4624 } else { 4625 return -EMSGSIZE; 4626 } 4627 4628 return 0; 4629 } 4630 EXPORT_SYMBOL_GPL(skb_append_pagefrags); 4631 4632 /** 4633 * skb_pull_rcsum - pull skb and update receive checksum 4634 * @skb: buffer to update 4635 * @len: length of data pulled 4636 * 4637 * This function performs an skb_pull on the packet and updates 4638 * the CHECKSUM_COMPLETE checksum. It should be used on 4639 * receive path processing instead of skb_pull unless you know 4640 * that the checksum difference is zero (e.g., a valid IP header) 4641 * or you are setting ip_summed to CHECKSUM_NONE. 4642 */ 4643 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len) 4644 { 4645 unsigned char *data = skb->data; 4646 4647 BUG_ON(len > skb->len); 4648 __skb_pull(skb, len); 4649 skb_postpull_rcsum(skb, data, len); 4650 return skb->data; 4651 } 4652 EXPORT_SYMBOL_GPL(skb_pull_rcsum); 4653 4654 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb) 4655 { 4656 skb_frag_t head_frag; 4657 struct page *page; 4658 4659 page = virt_to_head_page(frag_skb->head); 4660 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data - 4661 (unsigned char *)page_address(page), 4662 skb_headlen(frag_skb)); 4663 return head_frag; 4664 } 4665 4666 struct sk_buff *skb_segment_list(struct sk_buff *skb, 4667 netdev_features_t features, 4668 unsigned int offset) 4669 { 4670 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list; 4671 unsigned int tnl_hlen = skb_tnl_header_len(skb); 4672 unsigned int delta_len = 0; 4673 struct sk_buff *tail = NULL; 4674 struct sk_buff *nskb, *tmp; 4675 int len_diff, err; 4676 4677 /* Only skb_gro_receive_list generated skbs arrive here */ 4678 DEBUG_NET_WARN_ON_ONCE(!(skb_shinfo(skb)->gso_type & SKB_GSO_FRAGLIST)); 4679 4680 skb_push(skb, -skb_network_offset(skb) + offset); 4681 4682 /* Ensure the head is writeable before touching the shared info */ 4683 err = skb_unclone(skb, GFP_ATOMIC); 4684 if (err) 4685 goto err_linearize; 4686 4687 skb_shinfo(skb)->frag_list = NULL; 4688 4689 while (list_skb) { 4690 nskb = list_skb; 4691 list_skb = list_skb->next; 4692 4693 DEBUG_NET_WARN_ON_ONCE(nskb->sk); 4694 4695 err = 0; 4696 if (skb_shared(nskb)) { 4697 tmp = skb_clone(nskb, GFP_ATOMIC); 4698 if (tmp) { 4699 consume_skb(nskb); 4700 nskb = tmp; 4701 err = skb_unclone(nskb, GFP_ATOMIC); 4702 } else { 4703 err = -ENOMEM; 4704 } 4705 } 4706 4707 if (!tail) 4708 skb->next = nskb; 4709 else 4710 tail->next = nskb; 4711 4712 if (unlikely(err)) { 4713 nskb->next = list_skb; 4714 goto err_linearize; 4715 } 4716 4717 tail = nskb; 4718 4719 delta_len += nskb->len; 4720 4721 skb_push(nskb, -skb_network_offset(nskb) + offset); 4722 4723 skb_release_head_state(nskb); 4724 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb); 4725 __copy_skb_header(nskb, skb); 4726 4727 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb)); 4728 nskb->transport_header += len_diff; 4729 skb_copy_from_linear_data_offset(skb, -tnl_hlen, 4730 nskb->data - tnl_hlen, 4731 offset + tnl_hlen); 4732 4733 if (skb_needs_linearize(nskb, features) && 4734 __skb_linearize(nskb)) 4735 goto err_linearize; 4736 } 4737 4738 skb->data_len = skb->data_len - delta_len; 4739 skb->len = skb->len - delta_len; 4740 4741 skb_gso_reset(skb); 4742 4743 skb->prev = tail; 4744 4745 if (skb_needs_linearize(skb, features) && 4746 __skb_linearize(skb)) 4747 goto err_linearize; 4748 4749 skb_get(skb); 4750 4751 return skb; 4752 4753 err_linearize: 4754 kfree_skb_list(skb->next); 4755 skb->next = NULL; 4756 return ERR_PTR(-ENOMEM); 4757 } 4758 EXPORT_SYMBOL_GPL(skb_segment_list); 4759 4760 /** 4761 * skb_segment - Perform protocol segmentation on skb. 4762 * @head_skb: buffer to segment 4763 * @features: features for the output path (see dev->features) 4764 * 4765 * This function performs segmentation on the given skb. It returns 4766 * a pointer to the first in a list of new skbs for the segments. 4767 * In case of error it returns ERR_PTR(err). 4768 */ 4769 struct sk_buff *skb_segment(struct sk_buff *head_skb, 4770 netdev_features_t features) 4771 { 4772 struct sk_buff *segs = NULL; 4773 struct sk_buff *tail = NULL; 4774 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list; 4775 unsigned int mss = skb_shinfo(head_skb)->gso_size; 4776 unsigned int doffset = head_skb->data - skb_mac_header(head_skb); 4777 unsigned int offset = doffset; 4778 unsigned int tnl_hlen = skb_tnl_header_len(head_skb); 4779 unsigned int partial_segs = 0; 4780 unsigned int headroom; 4781 unsigned int len = head_skb->len; 4782 struct sk_buff *frag_skb; 4783 skb_frag_t *frag; 4784 __be16 proto; 4785 bool csum, sg; 4786 int err = -ENOMEM; 4787 int i = 0; 4788 int nfrags, pos; 4789 4790 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) && 4791 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) { 4792 struct sk_buff *check_skb; 4793 4794 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) { 4795 if (skb_headlen(check_skb) && !check_skb->head_frag) { 4796 /* gso_size is untrusted, and we have a frag_list with 4797 * a linear non head_frag item. 4798 * 4799 * If head_skb's headlen does not fit requested gso_size, 4800 * it means that the frag_list members do NOT terminate 4801 * on exact gso_size boundaries. Hence we cannot perform 4802 * skb_frag_t page sharing. Therefore we must fallback to 4803 * copying the frag_list skbs; we do so by disabling SG. 4804 */ 4805 features &= ~NETIF_F_SG; 4806 break; 4807 } 4808 } 4809 } 4810 4811 __skb_push(head_skb, doffset); 4812 proto = skb_network_protocol(head_skb, NULL); 4813 if (unlikely(!proto)) 4814 return ERR_PTR(-EINVAL); 4815 4816 sg = !!(features & NETIF_F_SG); 4817 csum = !!can_checksum_protocol(features, proto); 4818 4819 if (sg && csum && (mss != GSO_BY_FRAGS)) { 4820 if (!(features & NETIF_F_GSO_PARTIAL)) { 4821 struct sk_buff *iter; 4822 unsigned int frag_len; 4823 4824 if (!list_skb || 4825 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type)) 4826 goto normal; 4827 4828 /* If we get here then all the required 4829 * GSO features except frag_list are supported. 4830 * Try to split the SKB to multiple GSO SKBs 4831 * with no frag_list. 4832 * Currently we can do that only when the buffers don't 4833 * have a linear part and all the buffers except 4834 * the last are of the same length. 4835 */ 4836 frag_len = list_skb->len; 4837 skb_walk_frags(head_skb, iter) { 4838 if (frag_len != iter->len && iter->next) 4839 goto normal; 4840 if (skb_headlen(iter) && !iter->head_frag) 4841 goto normal; 4842 4843 len -= iter->len; 4844 } 4845 4846 if (len != frag_len) 4847 goto normal; 4848 } 4849 4850 /* GSO partial only requires that we trim off any excess that 4851 * doesn't fit into an MSS sized block, so take care of that 4852 * now. 4853 * Cap len to not accidentally hit GSO_BY_FRAGS. 4854 */ 4855 partial_segs = min(len, GSO_BY_FRAGS - 1) / mss; 4856 if (partial_segs > 1) 4857 mss *= partial_segs; 4858 else 4859 partial_segs = 0; 4860 } 4861 4862 normal: 4863 headroom = skb_headroom(head_skb); 4864 pos = skb_headlen(head_skb); 4865 4866 if (skb_orphan_frags(head_skb, GFP_ATOMIC)) 4867 return ERR_PTR(-ENOMEM); 4868 4869 nfrags = skb_shinfo(head_skb)->nr_frags; 4870 frag = skb_shinfo(head_skb)->frags; 4871 frag_skb = head_skb; 4872 4873 do { 4874 struct sk_buff *nskb; 4875 skb_frag_t *nskb_frag; 4876 int hsize; 4877 int size; 4878 4879 if (unlikely(mss == GSO_BY_FRAGS)) { 4880 len = list_skb->len; 4881 } else { 4882 len = head_skb->len - offset; 4883 if (len > mss) 4884 len = mss; 4885 } 4886 4887 hsize = skb_headlen(head_skb) - offset; 4888 4889 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) && 4890 (skb_headlen(list_skb) == len || sg)) { 4891 BUG_ON(skb_headlen(list_skb) > len); 4892 4893 nskb = skb_clone(list_skb, GFP_ATOMIC); 4894 if (unlikely(!nskb)) 4895 goto err; 4896 4897 i = 0; 4898 nfrags = skb_shinfo(list_skb)->nr_frags; 4899 frag = skb_shinfo(list_skb)->frags; 4900 frag_skb = list_skb; 4901 pos += skb_headlen(list_skb); 4902 4903 while (pos < offset + len) { 4904 BUG_ON(i >= nfrags); 4905 4906 size = skb_frag_size(frag); 4907 if (pos + size > offset + len) 4908 break; 4909 4910 i++; 4911 pos += size; 4912 frag++; 4913 } 4914 4915 list_skb = list_skb->next; 4916 4917 if (unlikely(pskb_trim(nskb, len))) { 4918 kfree_skb(nskb); 4919 goto err; 4920 } 4921 4922 hsize = skb_end_offset(nskb); 4923 if (skb_cow_head(nskb, doffset + headroom)) { 4924 kfree_skb(nskb); 4925 goto err; 4926 } 4927 4928 nskb->truesize += skb_end_offset(nskb) - hsize; 4929 skb_release_head_state(nskb); 4930 __skb_push(nskb, doffset); 4931 } else { 4932 if (hsize < 0) 4933 hsize = 0; 4934 if (hsize > len || !sg) 4935 hsize = len; 4936 4937 nskb = __alloc_skb(hsize + doffset + headroom, 4938 GFP_ATOMIC, skb_alloc_rx_flag(head_skb), 4939 NUMA_NO_NODE); 4940 4941 if (unlikely(!nskb)) 4942 goto err; 4943 4944 skb_reserve(nskb, headroom); 4945 __skb_put(nskb, doffset); 4946 } 4947 4948 if (segs) 4949 tail->next = nskb; 4950 else 4951 segs = nskb; 4952 tail = nskb; 4953 4954 __copy_skb_header(nskb, head_skb); 4955 4956 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom); 4957 skb_reset_mac_len(nskb); 4958 4959 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen, 4960 nskb->data - tnl_hlen, 4961 doffset + tnl_hlen); 4962 4963 if (nskb->len == len + doffset) 4964 goto perform_csum_check; 4965 4966 if (!sg) { 4967 if (!csum) { 4968 if (!nskb->remcsum_offload) 4969 nskb->ip_summed = CHECKSUM_NONE; 4970 SKB_GSO_CB(nskb)->csum = 4971 skb_copy_and_csum_bits(head_skb, offset, 4972 skb_put(nskb, 4973 len), 4974 len); 4975 SKB_GSO_CB(nskb)->csum_start = 4976 skb_headroom(nskb) + doffset; 4977 } else { 4978 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len)) 4979 goto err; 4980 } 4981 continue; 4982 } 4983 4984 nskb_frag = skb_shinfo(nskb)->frags; 4985 4986 skb_copy_from_linear_data_offset(head_skb, offset, 4987 skb_put(nskb, hsize), hsize); 4988 4989 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags & 4990 SKBFL_SHARED_FRAG; 4991 4992 if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC)) 4993 goto err; 4994 4995 while (pos < offset + len) { 4996 if (i >= nfrags) { 4997 if (skb_orphan_frags(list_skb, GFP_ATOMIC) || 4998 skb_zerocopy_clone(nskb, list_skb, 4999 GFP_ATOMIC)) 5000 goto err; 5001 5002 i = 0; 5003 nfrags = skb_shinfo(list_skb)->nr_frags; 5004 frag = skb_shinfo(list_skb)->frags; 5005 frag_skb = list_skb; 5006 if (!skb_headlen(list_skb)) { 5007 BUG_ON(!nfrags); 5008 } else { 5009 BUG_ON(!list_skb->head_frag); 5010 5011 /* to make room for head_frag. */ 5012 i--; 5013 frag--; 5014 } 5015 5016 list_skb = list_skb->next; 5017 } 5018 5019 if (unlikely(skb_shinfo(nskb)->nr_frags >= 5020 MAX_SKB_FRAGS)) { 5021 net_warn_ratelimited( 5022 "skb_segment: too many frags: %u %u\n", 5023 pos, mss); 5024 err = -EINVAL; 5025 goto err; 5026 } 5027 5028 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag; 5029 __skb_frag_ref(nskb_frag); 5030 size = skb_frag_size(nskb_frag); 5031 5032 if (pos < offset) { 5033 skb_frag_off_add(nskb_frag, offset - pos); 5034 skb_frag_size_sub(nskb_frag, offset - pos); 5035 } 5036 5037 skb_shinfo(nskb)->nr_frags++; 5038 5039 if (pos + size <= offset + len) { 5040 i++; 5041 frag++; 5042 pos += size; 5043 } else { 5044 skb_frag_size_sub(nskb_frag, pos + size - (offset + len)); 5045 goto skip_fraglist; 5046 } 5047 5048 nskb_frag++; 5049 } 5050 5051 skip_fraglist: 5052 nskb->data_len = len - hsize; 5053 nskb->len += nskb->data_len; 5054 nskb->truesize += nskb->data_len; 5055 5056 perform_csum_check: 5057 if (!csum) { 5058 if (skb_has_shared_frag(nskb) && 5059 __skb_linearize(nskb)) 5060 goto err; 5061 5062 if (!nskb->remcsum_offload) 5063 nskb->ip_summed = CHECKSUM_NONE; 5064 SKB_GSO_CB(nskb)->csum = 5065 skb_checksum(nskb, doffset, 5066 nskb->len - doffset, 0); 5067 SKB_GSO_CB(nskb)->csum_start = 5068 skb_headroom(nskb) + doffset; 5069 } 5070 } while ((offset += len) < head_skb->len); 5071 5072 /* Some callers want to get the end of the list. 5073 * Put it in segs->prev to avoid walking the list. 5074 * (see validate_xmit_skb_list() for example) 5075 */ 5076 segs->prev = tail; 5077 5078 if (partial_segs) { 5079 struct sk_buff *iter; 5080 int type = skb_shinfo(head_skb)->gso_type; 5081 unsigned short gso_size = skb_shinfo(head_skb)->gso_size; 5082 5083 /* Update type to add partial and then remove dodgy if set */ 5084 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL; 5085 type &= ~SKB_GSO_DODGY; 5086 5087 /* Update GSO info and prepare to start updating headers on 5088 * our way back down the stack of protocols. 5089 */ 5090 for (iter = segs; iter; iter = iter->next) { 5091 skb_shinfo(iter)->gso_size = gso_size; 5092 skb_shinfo(iter)->gso_segs = partial_segs; 5093 skb_shinfo(iter)->gso_type = type; 5094 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset; 5095 } 5096 5097 if (tail->len - doffset <= gso_size) 5098 skb_shinfo(tail)->gso_size = 0; 5099 else if (tail != segs) 5100 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size); 5101 } 5102 5103 /* Following permits correct backpressure, for protocols 5104 * using skb_set_owner_w(). 5105 * Idea is to tranfert ownership from head_skb to last segment. 5106 */ 5107 if (head_skb->destructor == sock_wfree) { 5108 swap(tail->truesize, head_skb->truesize); 5109 swap(tail->destructor, head_skb->destructor); 5110 swap(tail->sk, head_skb->sk); 5111 } 5112 return segs; 5113 5114 err: 5115 kfree_skb_list(segs); 5116 return ERR_PTR(err); 5117 } 5118 EXPORT_SYMBOL_GPL(skb_segment); 5119 5120 #ifdef CONFIG_SKB_EXTENSIONS 5121 #define SKB_EXT_ALIGN_VALUE 8 5122 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE) 5123 5124 static const u8 skb_ext_type_len[] = { 5125 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 5126 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info), 5127 #endif 5128 #ifdef CONFIG_XFRM 5129 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path), 5130 #endif 5131 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 5132 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext), 5133 #endif 5134 #if IS_ENABLED(CONFIG_MPTCP) 5135 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext), 5136 #endif 5137 #if IS_ENABLED(CONFIG_MCTP_FLOWS) 5138 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow), 5139 #endif 5140 #if IS_ENABLED(CONFIG_INET_PSP) 5141 [SKB_EXT_PSP] = SKB_EXT_CHUNKSIZEOF(struct psp_skb_ext), 5142 #endif 5143 #if IS_ENABLED(CONFIG_CAN) 5144 [SKB_EXT_CAN] = SKB_EXT_CHUNKSIZEOF(struct can_skb_ext), 5145 #endif 5146 }; 5147 5148 static __always_inline unsigned int skb_ext_total_length(void) 5149 { 5150 unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext); 5151 int i; 5152 5153 for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++) 5154 l += skb_ext_type_len[i]; 5155 5156 return l; 5157 } 5158 5159 static void skb_extensions_init(void) 5160 { 5161 BUILD_BUG_ON(SKB_EXT_NUM > 8); 5162 #if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL) 5163 BUILD_BUG_ON(skb_ext_total_length() > 255); 5164 #endif 5165 5166 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache", 5167 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(), 5168 0, 5169 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5170 NULL); 5171 } 5172 #else 5173 static void skb_extensions_init(void) {} 5174 #endif 5175 5176 /* The SKB kmem_cache slab is critical for network performance. Never 5177 * merge/alias the slab with similar sized objects. This avoids fragmentation 5178 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs. 5179 */ 5180 #ifndef CONFIG_SLUB_TINY 5181 #define FLAG_SKB_NO_MERGE SLAB_NO_MERGE 5182 #else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */ 5183 #define FLAG_SKB_NO_MERGE 0 5184 #endif 5185 5186 void __init skb_init(void) 5187 { 5188 net_hotdata.skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache", 5189 sizeof(struct sk_buff), 5190 0, 5191 SLAB_HWCACHE_ALIGN|SLAB_PANIC| 5192 FLAG_SKB_NO_MERGE, 5193 offsetof(struct sk_buff, cb), 5194 sizeof_field(struct sk_buff, cb), 5195 NULL); 5196 skbuff_cache_size = kmem_cache_size(net_hotdata.skbuff_cache); 5197 5198 net_hotdata.skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache", 5199 sizeof(struct sk_buff_fclones), 5200 0, 5201 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 5202 NULL); 5203 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes. 5204 * struct skb_shared_info is located at the end of skb->head, 5205 * and should not be copied to/from user. 5206 */ 5207 net_hotdata.skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head", 5208 SKB_SMALL_HEAD_CACHE_SIZE, 5209 0, 5210 SLAB_HWCACHE_ALIGN | SLAB_PANIC, 5211 0, 5212 SKB_SMALL_HEAD_HEADROOM, 5213 NULL); 5214 skb_extensions_init(); 5215 } 5216 5217 static int 5218 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len, 5219 unsigned int recursion_level) 5220 { 5221 int start = skb_headlen(skb); 5222 int i, copy = start - offset; 5223 struct sk_buff *frag_iter; 5224 int elt = 0; 5225 5226 if (unlikely(recursion_level >= 24)) 5227 return -EMSGSIZE; 5228 5229 if (copy > 0) { 5230 if (copy > len) 5231 copy = len; 5232 sg_set_buf(sg, skb->data + offset, copy); 5233 elt++; 5234 if ((len -= copy) == 0) 5235 return elt; 5236 offset += copy; 5237 } 5238 5239 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 5240 int end; 5241 5242 WARN_ON(start > offset + len); 5243 5244 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]); 5245 if ((copy = end - offset) > 0) { 5246 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 5247 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5248 return -EMSGSIZE; 5249 5250 if (copy > len) 5251 copy = len; 5252 sg_set_page(&sg[elt], skb_frag_page(frag), copy, 5253 skb_frag_off(frag) + offset - start); 5254 elt++; 5255 if (!(len -= copy)) 5256 return elt; 5257 offset += copy; 5258 } 5259 start = end; 5260 } 5261 5262 skb_walk_frags(skb, frag_iter) { 5263 int end, ret; 5264 5265 WARN_ON(start > offset + len); 5266 5267 end = start + frag_iter->len; 5268 if ((copy = end - offset) > 0) { 5269 if (unlikely(elt && sg_is_last(&sg[elt - 1]))) 5270 return -EMSGSIZE; 5271 5272 if (copy > len) 5273 copy = len; 5274 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start, 5275 copy, recursion_level + 1); 5276 if (unlikely(ret < 0)) 5277 return ret; 5278 elt += ret; 5279 if ((len -= copy) == 0) 5280 return elt; 5281 offset += copy; 5282 } 5283 start = end; 5284 } 5285 BUG_ON(len); 5286 return elt; 5287 } 5288 5289 /** 5290 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer 5291 * @skb: Socket buffer containing the buffers to be mapped 5292 * @sg: The scatter-gather list to map into 5293 * @offset: The offset into the buffer's contents to start mapping 5294 * @len: Length of buffer space to be mapped 5295 * 5296 * Fill the specified scatter-gather list with mappings/pointers into a 5297 * region of the buffer space attached to a socket buffer. Returns either 5298 * the number of scatterlist items used, or -EMSGSIZE if the contents 5299 * could not fit. 5300 */ 5301 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len) 5302 { 5303 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0); 5304 5305 if (nsg <= 0) 5306 return nsg; 5307 5308 sg_mark_end(&sg[nsg - 1]); 5309 5310 return nsg; 5311 } 5312 EXPORT_SYMBOL_GPL(skb_to_sgvec); 5313 5314 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given 5315 * sglist without mark the sg which contain last skb data as the end. 5316 * So the caller can mannipulate sg list as will when padding new data after 5317 * the first call without calling sg_unmark_end to expend sg list. 5318 * 5319 * Scenario to use skb_to_sgvec_nomark: 5320 * 1. sg_init_table 5321 * 2. skb_to_sgvec_nomark(payload1) 5322 * 3. skb_to_sgvec_nomark(payload2) 5323 * 5324 * This is equivalent to: 5325 * 1. sg_init_table 5326 * 2. skb_to_sgvec(payload1) 5327 * 3. sg_unmark_end 5328 * 4. skb_to_sgvec(payload2) 5329 * 5330 * When mapping multiple payload conditionally, skb_to_sgvec_nomark 5331 * is more preferable. 5332 */ 5333 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 5334 int offset, int len) 5335 { 5336 return __skb_to_sgvec(skb, sg, offset, len, 0); 5337 } 5338 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark); 5339 5340 5341 5342 /** 5343 * skb_cow_data - Check that a socket buffer's data buffers are writable 5344 * @skb: The socket buffer to check. 5345 * @tailbits: Amount of trailing space to be added 5346 * @trailer: Returned pointer to the skb where the @tailbits space begins 5347 * 5348 * Make sure that the data buffers attached to a socket buffer are 5349 * writable. If they are not, private copies are made of the data buffers 5350 * and the socket buffer is set to use these instead. 5351 * 5352 * If @tailbits is given, make sure that there is space to write @tailbits 5353 * bytes of data beyond current end of socket buffer. @trailer will be 5354 * set to point to the skb in which this space begins. 5355 * 5356 * The number of scatterlist elements required to completely map the 5357 * COW'd and extended socket buffer will be returned. 5358 */ 5359 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer) 5360 { 5361 int copyflag; 5362 int elt; 5363 struct sk_buff *skb1, **skb_p; 5364 5365 /* If skb is cloned or its head is paged, reallocate 5366 * head pulling out all the pages (pages are considered not writable 5367 * at the moment even if they are anonymous). 5368 */ 5369 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) && 5370 !__pskb_pull_tail(skb, __skb_pagelen(skb))) 5371 return -ENOMEM; 5372 5373 /* Easy case. Most of packets will go this way. */ 5374 if (!skb_has_frag_list(skb)) { 5375 /* A little of trouble, not enough of space for trailer. 5376 * This should not happen, when stack is tuned to generate 5377 * good frames. OK, on miss we reallocate and reserve even more 5378 * space, 128 bytes is fair. */ 5379 5380 if (skb_tailroom(skb) < tailbits && 5381 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC)) 5382 return -ENOMEM; 5383 5384 /* Voila! */ 5385 *trailer = skb; 5386 return 1; 5387 } 5388 5389 /* Misery. We are in troubles, going to mincer fragments... */ 5390 5391 elt = 1; 5392 skb_p = &skb_shinfo(skb)->frag_list; 5393 copyflag = 0; 5394 5395 while ((skb1 = *skb_p) != NULL) { 5396 int ntail = 0; 5397 5398 /* The fragment is partially pulled by someone, 5399 * this can happen on input. Copy it and everything 5400 * after it. */ 5401 5402 if (skb_shared(skb1)) 5403 copyflag = 1; 5404 5405 /* If the skb is the last, worry about trailer. */ 5406 5407 if (skb1->next == NULL && tailbits) { 5408 if (skb_shinfo(skb1)->nr_frags || 5409 skb_has_frag_list(skb1) || 5410 skb_tailroom(skb1) < tailbits) 5411 ntail = tailbits + 128; 5412 } 5413 5414 if (copyflag || 5415 skb_cloned(skb1) || 5416 ntail || 5417 skb_shinfo(skb1)->nr_frags || 5418 skb_has_frag_list(skb1)) { 5419 struct sk_buff *skb2; 5420 5421 /* Fuck, we are miserable poor guys... */ 5422 if (ntail == 0) 5423 skb2 = skb_copy(skb1, GFP_ATOMIC); 5424 else 5425 skb2 = skb_copy_expand(skb1, 5426 skb_headroom(skb1), 5427 ntail, 5428 GFP_ATOMIC); 5429 if (unlikely(skb2 == NULL)) 5430 return -ENOMEM; 5431 5432 if (skb1->sk) 5433 skb_set_owner_w(skb2, skb1->sk); 5434 5435 /* Looking around. Are we still alive? 5436 * OK, link new skb, drop old one */ 5437 5438 skb2->next = skb1->next; 5439 *skb_p = skb2; 5440 kfree_skb(skb1); 5441 skb1 = skb2; 5442 } 5443 elt++; 5444 *trailer = skb1; 5445 skb_p = &skb1->next; 5446 } 5447 5448 return elt; 5449 } 5450 EXPORT_SYMBOL_GPL(skb_cow_data); 5451 5452 static void sock_rmem_free(struct sk_buff *skb) 5453 { 5454 struct sock *sk = skb->sk; 5455 5456 atomic_sub(skb->truesize, &sk->sk_rmem_alloc); 5457 } 5458 5459 static void skb_set_err_queue(struct sk_buff *skb) 5460 { 5461 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING. 5462 * So, it is safe to (mis)use it to mark skbs on the error queue. 5463 */ 5464 skb->pkt_type = PACKET_OUTGOING; 5465 BUILD_BUG_ON(PACKET_OUTGOING == 0); 5466 } 5467 5468 /* 5469 * Note: We dont mem charge error packets (no sk_forward_alloc changes) 5470 */ 5471 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb) 5472 { 5473 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >= 5474 (unsigned int)READ_ONCE(sk->sk_rcvbuf)) 5475 return -ENOMEM; 5476 5477 skb_orphan(skb); 5478 skb->sk = sk; 5479 skb->destructor = sock_rmem_free; 5480 atomic_add(skb->truesize, &sk->sk_rmem_alloc); 5481 skb_set_err_queue(skb); 5482 5483 /* before exiting rcu section, make sure dst is refcounted */ 5484 skb_dst_force(skb); 5485 5486 skb_queue_tail(&sk->sk_error_queue, skb); 5487 if (!sock_flag(sk, SOCK_DEAD)) 5488 sk_error_report(sk); 5489 return 0; 5490 } 5491 EXPORT_SYMBOL(sock_queue_err_skb); 5492 5493 static bool is_icmp_err_skb(const struct sk_buff *skb) 5494 { 5495 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP || 5496 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6); 5497 } 5498 5499 struct sk_buff *sock_dequeue_err_skb(struct sock *sk) 5500 { 5501 struct sk_buff_head *q = &sk->sk_error_queue; 5502 struct sk_buff *skb, *skb_next = NULL; 5503 bool icmp_next = false; 5504 unsigned long flags; 5505 5506 if (skb_queue_empty_lockless(q)) 5507 return NULL; 5508 5509 spin_lock_irqsave(&q->lock, flags); 5510 skb = __skb_dequeue(q); 5511 if (skb && (skb_next = skb_peek(q))) { 5512 icmp_next = is_icmp_err_skb(skb_next); 5513 if (icmp_next) 5514 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno; 5515 } 5516 spin_unlock_irqrestore(&q->lock, flags); 5517 5518 if (is_icmp_err_skb(skb) && !icmp_next) 5519 sk->sk_err = 0; 5520 5521 if (skb_next) 5522 sk_error_report(sk); 5523 5524 return skb; 5525 } 5526 EXPORT_SYMBOL(sock_dequeue_err_skb); 5527 5528 /** 5529 * skb_clone_sk - create clone of skb, and take reference to socket 5530 * @skb: the skb to clone 5531 * 5532 * This function creates a clone of a buffer that holds a reference on 5533 * sk_refcnt. Buffers created via this function are meant to be 5534 * returned using sock_queue_err_skb, or free via kfree_skb. 5535 * 5536 * When passing buffers allocated with this function to sock_queue_err_skb 5537 * it is necessary to wrap the call with sock_hold/sock_put in order to 5538 * prevent the socket from being released prior to being enqueued on 5539 * the sk_error_queue. 5540 */ 5541 struct sk_buff *skb_clone_sk(struct sk_buff *skb) 5542 { 5543 struct sock *sk = skb->sk; 5544 struct sk_buff *clone; 5545 5546 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt)) 5547 return NULL; 5548 5549 clone = skb_clone(skb, GFP_ATOMIC); 5550 if (!clone) { 5551 sock_put(sk); 5552 return NULL; 5553 } 5554 5555 clone->sk = sk; 5556 clone->destructor = sock_efree; 5557 5558 return clone; 5559 } 5560 EXPORT_SYMBOL(skb_clone_sk); 5561 5562 static void __skb_complete_tx_timestamp(struct sk_buff *skb, 5563 struct sock *sk, 5564 int tstype, 5565 bool opt_stats) 5566 { 5567 struct sock_exterr_skb *serr; 5568 int err; 5569 5570 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb)); 5571 5572 serr = SKB_EXT_ERR(skb); 5573 memset(serr, 0, sizeof(*serr)); 5574 serr->ee.ee_errno = ENOMSG; 5575 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING; 5576 serr->ee.ee_info = tstype; 5577 serr->opt_stats = opt_stats; 5578 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0; 5579 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) { 5580 serr->ee.ee_data = skb_shinfo(skb)->tskey; 5581 if (sk_is_tcp(sk)) 5582 serr->ee.ee_data -= atomic_read(&sk->sk_tskey); 5583 } 5584 5585 err = sock_queue_err_skb(sk, skb); 5586 5587 if (err) 5588 kfree_skb(skb); 5589 } 5590 5591 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly) 5592 { 5593 bool ret; 5594 5595 if (likely(tsonly || READ_ONCE(sock_net(sk)->core.sysctl_tstamp_allow_data))) 5596 return true; 5597 5598 read_lock_bh(&sk->sk_callback_lock); 5599 ret = sk->sk_socket && sk->sk_socket->file && 5600 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW); 5601 read_unlock_bh(&sk->sk_callback_lock); 5602 return ret; 5603 } 5604 5605 void skb_complete_tx_timestamp(struct sk_buff *skb, 5606 struct skb_shared_hwtstamps *hwtstamps) 5607 { 5608 struct sock *sk = skb->sk; 5609 5610 if (!skb_may_tx_timestamp(sk, false)) 5611 goto err; 5612 5613 /* Take a reference to prevent skb_orphan() from freeing the socket, 5614 * but only if the socket refcount is not zero. 5615 */ 5616 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5617 *skb_hwtstamps(skb) = *hwtstamps; 5618 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false); 5619 sock_put(sk); 5620 return; 5621 } 5622 5623 err: 5624 kfree_skb(skb); 5625 } 5626 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp); 5627 5628 static bool skb_tstamp_tx_report_so_timestamping(struct sk_buff *skb, 5629 struct skb_shared_hwtstamps *hwtstamps, 5630 int tstype) 5631 { 5632 switch (tstype) { 5633 case SCM_TSTAMP_SCHED: 5634 return skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP; 5635 case SCM_TSTAMP_SND: 5636 return skb_shinfo(skb)->tx_flags & (hwtstamps ? SKBTX_HW_TSTAMP_NOBPF : 5637 SKBTX_SW_TSTAMP); 5638 case SCM_TSTAMP_ACK: 5639 return TCP_SKB_CB(skb)->txstamp_ack & TSTAMP_ACK_SK; 5640 case SCM_TSTAMP_COMPLETION: 5641 return skb_shinfo(skb)->tx_flags & SKBTX_COMPLETION_TSTAMP; 5642 } 5643 5644 return false; 5645 } 5646 5647 static void skb_tstamp_tx_report_bpf_timestamping(struct sk_buff *skb, 5648 struct skb_shared_hwtstamps *hwtstamps, 5649 struct sock *sk, 5650 int tstype) 5651 { 5652 int op; 5653 5654 switch (tstype) { 5655 case SCM_TSTAMP_SCHED: 5656 op = BPF_SOCK_OPS_TSTAMP_SCHED_CB; 5657 break; 5658 case SCM_TSTAMP_SND: 5659 if (hwtstamps) { 5660 op = BPF_SOCK_OPS_TSTAMP_SND_HW_CB; 5661 *skb_hwtstamps(skb) = *hwtstamps; 5662 } else { 5663 op = BPF_SOCK_OPS_TSTAMP_SND_SW_CB; 5664 } 5665 break; 5666 case SCM_TSTAMP_ACK: 5667 op = BPF_SOCK_OPS_TSTAMP_ACK_CB; 5668 break; 5669 default: 5670 return; 5671 } 5672 5673 bpf_skops_tx_timestamping(sk, skb, op); 5674 } 5675 5676 void __skb_tstamp_tx(struct sk_buff *orig_skb, 5677 const struct sk_buff *ack_skb, 5678 struct skb_shared_hwtstamps *hwtstamps, 5679 struct sock *sk, int tstype) 5680 { 5681 struct sk_buff *skb; 5682 bool tsonly, opt_stats = false; 5683 u32 tsflags; 5684 5685 if (!sk) 5686 return; 5687 5688 if (skb_shinfo(orig_skb)->tx_flags & SKBTX_BPF) 5689 skb_tstamp_tx_report_bpf_timestamping(orig_skb, hwtstamps, 5690 sk, tstype); 5691 5692 if (!skb_tstamp_tx_report_so_timestamping(orig_skb, hwtstamps, tstype)) 5693 return; 5694 5695 tsflags = READ_ONCE(sk->sk_tsflags); 5696 if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) && 5697 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS) 5698 return; 5699 5700 tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY; 5701 if (!skb_may_tx_timestamp(sk, tsonly)) 5702 return; 5703 5704 if (tsonly) { 5705 #ifdef CONFIG_INET 5706 if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) && 5707 sk_is_tcp(sk)) { 5708 skb = tcp_get_timestamping_opt_stats(sk, orig_skb, 5709 ack_skb); 5710 opt_stats = true; 5711 } else 5712 #endif 5713 skb = alloc_skb(0, GFP_ATOMIC); 5714 } else { 5715 skb = skb_clone(orig_skb, GFP_ATOMIC); 5716 5717 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) { 5718 kfree_skb(skb); 5719 return; 5720 } 5721 } 5722 if (!skb) 5723 return; 5724 5725 if (tsonly) { 5726 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags & 5727 SKBTX_ANY_TSTAMP; 5728 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey; 5729 } 5730 5731 if (hwtstamps) 5732 *skb_hwtstamps(skb) = *hwtstamps; 5733 else 5734 __net_timestamp(skb); 5735 5736 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats); 5737 } 5738 EXPORT_SYMBOL_GPL(__skb_tstamp_tx); 5739 5740 void skb_tstamp_tx(struct sk_buff *orig_skb, 5741 struct skb_shared_hwtstamps *hwtstamps) 5742 { 5743 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk, 5744 SCM_TSTAMP_SND); 5745 } 5746 EXPORT_SYMBOL_GPL(skb_tstamp_tx); 5747 5748 #ifdef CONFIG_WIRELESS 5749 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked) 5750 { 5751 struct sock *sk = skb->sk; 5752 struct sock_exterr_skb *serr; 5753 int err = 1; 5754 5755 skb->wifi_acked_valid = 1; 5756 skb->wifi_acked = acked; 5757 5758 serr = SKB_EXT_ERR(skb); 5759 memset(serr, 0, sizeof(*serr)); 5760 serr->ee.ee_errno = ENOMSG; 5761 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS; 5762 5763 /* Take a reference to prevent skb_orphan() from freeing the socket, 5764 * but only if the socket refcount is not zero. 5765 */ 5766 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) { 5767 err = sock_queue_err_skb(sk, skb); 5768 sock_put(sk); 5769 } 5770 if (err) 5771 kfree_skb(skb); 5772 } 5773 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack); 5774 #endif /* CONFIG_WIRELESS */ 5775 5776 /** 5777 * skb_partial_csum_set - set up and verify partial csum values for packet 5778 * @skb: the skb to set 5779 * @start: the number of bytes after skb->data to start checksumming. 5780 * @off: the offset from start to place the checksum. 5781 * 5782 * For untrusted partially-checksummed packets, we need to make sure the values 5783 * for skb->csum_start and skb->csum_offset are valid so we don't oops. 5784 * 5785 * This function checks and sets those values and skb->ip_summed: if this 5786 * returns false you should drop the packet. 5787 */ 5788 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off) 5789 { 5790 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16); 5791 u32 csum_start = skb_headroom(skb) + (u32)start; 5792 5793 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) { 5794 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n", 5795 start, off, skb_headroom(skb), skb_headlen(skb)); 5796 return false; 5797 } 5798 skb->ip_summed = CHECKSUM_PARTIAL; 5799 skb->csum_start = csum_start; 5800 skb->csum_offset = off; 5801 skb->transport_header = csum_start; 5802 return true; 5803 } 5804 EXPORT_SYMBOL_GPL(skb_partial_csum_set); 5805 5806 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len, 5807 unsigned int max) 5808 { 5809 if (skb_headlen(skb) >= len) 5810 return 0; 5811 5812 /* If we need to pullup then pullup to the max, so we 5813 * won't need to do it again. 5814 */ 5815 if (max > skb->len) 5816 max = skb->len; 5817 5818 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL) 5819 return -ENOMEM; 5820 5821 if (skb_headlen(skb) < len) 5822 return -EPROTO; 5823 5824 return 0; 5825 } 5826 5827 #define MAX_TCP_HDR_LEN (15 * 4) 5828 5829 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb, 5830 typeof(IPPROTO_IP) proto, 5831 unsigned int off) 5832 { 5833 int err; 5834 5835 switch (proto) { 5836 case IPPROTO_TCP: 5837 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr), 5838 off + MAX_TCP_HDR_LEN); 5839 if (!err && !skb_partial_csum_set(skb, off, 5840 offsetof(struct tcphdr, 5841 check))) 5842 err = -EPROTO; 5843 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check; 5844 5845 case IPPROTO_UDP: 5846 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr), 5847 off + sizeof(struct udphdr)); 5848 if (!err && !skb_partial_csum_set(skb, off, 5849 offsetof(struct udphdr, 5850 check))) 5851 err = -EPROTO; 5852 return err ? ERR_PTR(err) : &udp_hdr(skb)->check; 5853 } 5854 5855 return ERR_PTR(-EPROTO); 5856 } 5857 5858 /* This value should be large enough to cover a tagged ethernet header plus 5859 * maximally sized IP and TCP or UDP headers. 5860 */ 5861 #define MAX_IP_HDR_LEN 128 5862 5863 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate) 5864 { 5865 unsigned int off; 5866 bool fragment; 5867 __sum16 *csum; 5868 int err; 5869 5870 fragment = false; 5871 5872 err = skb_maybe_pull_tail(skb, 5873 sizeof(struct iphdr), 5874 MAX_IP_HDR_LEN); 5875 if (err < 0) 5876 goto out; 5877 5878 if (ip_is_fragment(ip_hdr(skb))) 5879 fragment = true; 5880 5881 off = ip_hdrlen(skb); 5882 5883 err = -EPROTO; 5884 5885 if (fragment) 5886 goto out; 5887 5888 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off); 5889 if (IS_ERR(csum)) 5890 return PTR_ERR(csum); 5891 5892 if (recalculate) 5893 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 5894 ip_hdr(skb)->daddr, 5895 skb->len - off, 5896 ip_hdr(skb)->protocol, 0); 5897 err = 0; 5898 5899 out: 5900 return err; 5901 } 5902 5903 /* This value should be large enough to cover a tagged ethernet header plus 5904 * an IPv6 header, all options, and a maximal TCP or UDP header. 5905 */ 5906 #define MAX_IPV6_HDR_LEN 256 5907 5908 #define OPT_HDR(type, skb, off) \ 5909 (type *)(skb_network_header(skb) + (off)) 5910 5911 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate) 5912 { 5913 int err; 5914 u8 nexthdr; 5915 unsigned int off; 5916 unsigned int len; 5917 bool fragment; 5918 bool done; 5919 __sum16 *csum; 5920 5921 fragment = false; 5922 done = false; 5923 5924 off = sizeof(struct ipv6hdr); 5925 5926 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN); 5927 if (err < 0) 5928 goto out; 5929 5930 nexthdr = ipv6_hdr(skb)->nexthdr; 5931 5932 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); 5933 while (off <= len && !done) { 5934 switch (nexthdr) { 5935 case IPPROTO_DSTOPTS: 5936 case IPPROTO_HOPOPTS: 5937 case IPPROTO_ROUTING: { 5938 struct ipv6_opt_hdr *hp; 5939 5940 err = skb_maybe_pull_tail(skb, 5941 off + 5942 sizeof(struct ipv6_opt_hdr), 5943 MAX_IPV6_HDR_LEN); 5944 if (err < 0) 5945 goto out; 5946 5947 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off); 5948 nexthdr = hp->nexthdr; 5949 off += ipv6_optlen(hp); 5950 break; 5951 } 5952 case IPPROTO_AH: { 5953 struct ip_auth_hdr *hp; 5954 5955 err = skb_maybe_pull_tail(skb, 5956 off + 5957 sizeof(struct ip_auth_hdr), 5958 MAX_IPV6_HDR_LEN); 5959 if (err < 0) 5960 goto out; 5961 5962 hp = OPT_HDR(struct ip_auth_hdr, skb, off); 5963 nexthdr = hp->nexthdr; 5964 off += ipv6_authlen(hp); 5965 break; 5966 } 5967 case IPPROTO_FRAGMENT: { 5968 struct frag_hdr *hp; 5969 5970 err = skb_maybe_pull_tail(skb, 5971 off + 5972 sizeof(struct frag_hdr), 5973 MAX_IPV6_HDR_LEN); 5974 if (err < 0) 5975 goto out; 5976 5977 hp = OPT_HDR(struct frag_hdr, skb, off); 5978 5979 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF)) 5980 fragment = true; 5981 5982 nexthdr = hp->nexthdr; 5983 off += sizeof(struct frag_hdr); 5984 break; 5985 } 5986 default: 5987 done = true; 5988 break; 5989 } 5990 } 5991 5992 err = -EPROTO; 5993 5994 if (!done || fragment) 5995 goto out; 5996 5997 csum = skb_checksum_setup_ip(skb, nexthdr, off); 5998 if (IS_ERR(csum)) 5999 return PTR_ERR(csum); 6000 6001 if (recalculate) 6002 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 6003 &ipv6_hdr(skb)->daddr, 6004 skb->len - off, nexthdr, 0); 6005 err = 0; 6006 6007 out: 6008 return err; 6009 } 6010 6011 /** 6012 * skb_checksum_setup - set up partial checksum offset 6013 * @skb: the skb to set up 6014 * @recalculate: if true the pseudo-header checksum will be recalculated 6015 */ 6016 int skb_checksum_setup(struct sk_buff *skb, bool recalculate) 6017 { 6018 int err; 6019 6020 switch (skb->protocol) { 6021 case htons(ETH_P_IP): 6022 err = skb_checksum_setup_ipv4(skb, recalculate); 6023 break; 6024 6025 case htons(ETH_P_IPV6): 6026 err = skb_checksum_setup_ipv6(skb, recalculate); 6027 break; 6028 6029 default: 6030 err = -EPROTO; 6031 break; 6032 } 6033 6034 return err; 6035 } 6036 EXPORT_SYMBOL(skb_checksum_setup); 6037 6038 /** 6039 * skb_checksum_maybe_trim - maybe trims the given skb 6040 * @skb: the skb to check 6041 * @transport_len: the data length beyond the network header 6042 * 6043 * Checks whether the given skb has data beyond the given transport length. 6044 * If so, returns a cloned skb trimmed to this transport length. 6045 * Otherwise returns the provided skb. Returns NULL in error cases 6046 * (e.g. transport_len exceeds skb length or out-of-memory). 6047 * 6048 * Caller needs to set the skb transport header and free any returned skb if it 6049 * differs from the provided skb. 6050 */ 6051 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb, 6052 unsigned int transport_len) 6053 { 6054 struct sk_buff *skb_chk; 6055 unsigned int len = skb_transport_offset(skb) + transport_len; 6056 int ret; 6057 6058 if (skb->len < len) 6059 return NULL; 6060 else if (skb->len == len) 6061 return skb; 6062 6063 skb_chk = skb_clone(skb, GFP_ATOMIC); 6064 if (!skb_chk) 6065 return NULL; 6066 6067 ret = pskb_trim_rcsum(skb_chk, len); 6068 if (ret) { 6069 kfree_skb(skb_chk); 6070 return NULL; 6071 } 6072 6073 return skb_chk; 6074 } 6075 6076 /** 6077 * skb_checksum_trimmed - validate checksum of an skb 6078 * @skb: the skb to check 6079 * @transport_len: the data length beyond the network header 6080 * @skb_chkf: checksum function to use 6081 * 6082 * Applies the given checksum function skb_chkf to the provided skb. 6083 * Returns a checked and maybe trimmed skb. Returns NULL on error. 6084 * 6085 * If the skb has data beyond the given transport length, then a 6086 * trimmed & cloned skb is checked and returned. 6087 * 6088 * Caller needs to set the skb transport header and free any returned skb if it 6089 * differs from the provided skb. 6090 */ 6091 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 6092 unsigned int transport_len, 6093 __sum16(*skb_chkf)(struct sk_buff *skb)) 6094 { 6095 struct sk_buff *skb_chk; 6096 unsigned int offset = skb_transport_offset(skb); 6097 __sum16 ret; 6098 6099 skb_chk = skb_checksum_maybe_trim(skb, transport_len); 6100 if (!skb_chk) 6101 goto err; 6102 6103 if (!pskb_may_pull(skb_chk, offset)) 6104 goto err; 6105 6106 skb_pull_rcsum(skb_chk, offset); 6107 ret = skb_chkf(skb_chk); 6108 skb_push_rcsum(skb_chk, offset); 6109 6110 if (ret) 6111 goto err; 6112 6113 return skb_chk; 6114 6115 err: 6116 if (skb_chk && skb_chk != skb) 6117 kfree_skb(skb_chk); 6118 6119 return NULL; 6120 6121 } 6122 EXPORT_SYMBOL(skb_checksum_trimmed); 6123 6124 void __skb_warn_lro_forwarding(const struct sk_buff *skb) 6125 { 6126 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n", 6127 skb->dev->name); 6128 } 6129 EXPORT_SYMBOL(__skb_warn_lro_forwarding); 6130 6131 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen) 6132 { 6133 if (head_stolen) { 6134 skb_release_head_state(skb); 6135 kmem_cache_free(net_hotdata.skbuff_cache, skb); 6136 } else { 6137 __kfree_skb(skb); 6138 } 6139 } 6140 EXPORT_SYMBOL(kfree_skb_partial); 6141 6142 /** 6143 * skb_try_coalesce - try to merge skb to prior one 6144 * @to: prior buffer 6145 * @from: buffer to add 6146 * @fragstolen: pointer to boolean 6147 * @delta_truesize: how much more was allocated than was requested 6148 */ 6149 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 6150 bool *fragstolen, int *delta_truesize) 6151 { 6152 struct skb_shared_info *to_shinfo, *from_shinfo; 6153 int i, delta, len = from->len; 6154 6155 *fragstolen = false; 6156 6157 if (skb_cloned(to)) 6158 return false; 6159 6160 /* In general, avoid mixing page_pool and non-page_pool allocated 6161 * pages within the same SKB. In theory we could take full 6162 * references if @from is cloned and !@to->pp_recycle but its 6163 * tricky (due to potential race with the clone disappearing) and 6164 * rare, so not worth dealing with. 6165 */ 6166 if (to->pp_recycle != from->pp_recycle) 6167 return false; 6168 6169 if (skb_frags_readable(from) != skb_frags_readable(to)) 6170 return false; 6171 6172 if (len <= skb_tailroom(to) && skb_frags_readable(from)) { 6173 if (len) 6174 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len)); 6175 *delta_truesize = 0; 6176 return true; 6177 } 6178 6179 to_shinfo = skb_shinfo(to); 6180 from_shinfo = skb_shinfo(from); 6181 if (to_shinfo->frag_list || from_shinfo->frag_list) 6182 return false; 6183 if (skb_zcopy(to) || skb_zcopy(from)) 6184 return false; 6185 6186 if (skb_headlen(from) != 0) { 6187 struct page *page; 6188 unsigned int offset; 6189 6190 if (to_shinfo->nr_frags + 6191 from_shinfo->nr_frags >= MAX_SKB_FRAGS) 6192 return false; 6193 6194 if (skb_head_is_locked(from)) 6195 return false; 6196 6197 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff)); 6198 6199 page = virt_to_head_page(from->head); 6200 offset = from->data - (unsigned char *)page_address(page); 6201 6202 skb_fill_page_desc(to, to_shinfo->nr_frags, 6203 page, offset, skb_headlen(from)); 6204 *fragstolen = true; 6205 } else { 6206 if (to_shinfo->nr_frags + 6207 from_shinfo->nr_frags > MAX_SKB_FRAGS) 6208 return false; 6209 6210 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from)); 6211 } 6212 6213 WARN_ON_ONCE(delta < len); 6214 6215 memcpy(to_shinfo->frags + to_shinfo->nr_frags, 6216 from_shinfo->frags, 6217 from_shinfo->nr_frags * sizeof(skb_frag_t)); 6218 to_shinfo->nr_frags += from_shinfo->nr_frags; 6219 6220 if (!skb_cloned(from)) 6221 from_shinfo->nr_frags = 0; 6222 6223 /* if the skb is not cloned this does nothing 6224 * since we set nr_frags to 0. 6225 */ 6226 if (skb_pp_frag_ref(from)) { 6227 for (i = 0; i < from_shinfo->nr_frags; i++) 6228 __skb_frag_ref(&from_shinfo->frags[i]); 6229 } 6230 6231 to->truesize += delta; 6232 to->len += len; 6233 to->data_len += len; 6234 6235 *delta_truesize = delta; 6236 return true; 6237 } 6238 EXPORT_SYMBOL(skb_try_coalesce); 6239 6240 /** 6241 * skb_scrub_packet - scrub an skb 6242 * 6243 * @skb: buffer to clean 6244 * @xnet: packet is crossing netns 6245 * 6246 * skb_scrub_packet can be used after encapsulating or decapsulating a packet 6247 * into/from a tunnel. Some information have to be cleared during these 6248 * operations. 6249 * skb_scrub_packet can also be used to clean a skb before injecting it in 6250 * another namespace (@xnet == true). We have to clear all information in the 6251 * skb that could impact namespace isolation. 6252 */ 6253 void skb_scrub_packet(struct sk_buff *skb, bool xnet) 6254 { 6255 skb->pkt_type = PACKET_HOST; 6256 skb->skb_iif = 0; 6257 skb->ignore_df = 0; 6258 skb_dst_drop(skb); 6259 skb_ext_reset(skb); 6260 nf_reset_ct(skb); 6261 nf_reset_trace(skb); 6262 6263 #ifdef CONFIG_NET_SWITCHDEV 6264 skb->offload_fwd_mark = 0; 6265 skb->offload_l3_fwd_mark = 0; 6266 #endif 6267 ipvs_reset(skb); 6268 6269 if (!xnet) 6270 return; 6271 6272 skb->mark = 0; 6273 skb_clear_tstamp(skb); 6274 } 6275 EXPORT_SYMBOL_GPL(skb_scrub_packet); 6276 6277 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb) 6278 { 6279 int mac_len, meta_len; 6280 void *meta; 6281 6282 if (skb_cow(skb, skb_headroom(skb)) < 0) { 6283 kfree_skb(skb); 6284 return NULL; 6285 } 6286 6287 mac_len = skb->data - skb_mac_header(skb); 6288 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) { 6289 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb), 6290 mac_len - VLAN_HLEN - ETH_TLEN); 6291 } 6292 6293 meta_len = skb_metadata_len(skb); 6294 if (meta_len) { 6295 meta = skb_metadata_end(skb) - meta_len; 6296 memmove(meta + VLAN_HLEN, meta, meta_len); 6297 } 6298 6299 skb->mac_header += VLAN_HLEN; 6300 return skb; 6301 } 6302 6303 struct sk_buff *skb_vlan_untag(struct sk_buff *skb) 6304 { 6305 struct vlan_hdr *vhdr; 6306 u16 vlan_tci; 6307 6308 if (unlikely(skb_vlan_tag_present(skb))) { 6309 /* vlan_tci is already set-up so leave this for another time */ 6310 return skb; 6311 } 6312 6313 skb = skb_share_check(skb, GFP_ATOMIC); 6314 if (unlikely(!skb)) 6315 goto err_free; 6316 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */ 6317 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short)))) 6318 goto err_free; 6319 6320 vhdr = (struct vlan_hdr *)skb->data; 6321 vlan_tci = ntohs(vhdr->h_vlan_TCI); 6322 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci); 6323 6324 skb_pull_rcsum(skb, VLAN_HLEN); 6325 vlan_set_encap_proto(skb, vhdr); 6326 6327 skb = skb_reorder_vlan_header(skb); 6328 if (unlikely(!skb)) 6329 goto err_free; 6330 6331 skb_reset_network_header(skb); 6332 if (!skb_transport_header_was_set(skb)) 6333 skb_reset_transport_header(skb); 6334 skb_reset_mac_len(skb); 6335 6336 return skb; 6337 6338 err_free: 6339 kfree_skb(skb); 6340 return NULL; 6341 } 6342 EXPORT_SYMBOL(skb_vlan_untag); 6343 6344 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len) 6345 { 6346 if (!pskb_may_pull(skb, write_len)) 6347 return -ENOMEM; 6348 6349 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len)) 6350 return 0; 6351 6352 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 6353 } 6354 EXPORT_SYMBOL(skb_ensure_writable); 6355 6356 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev) 6357 { 6358 int needed_headroom = dev->needed_headroom; 6359 int needed_tailroom = dev->needed_tailroom; 6360 6361 /* For tail taggers, we need to pad short frames ourselves, to ensure 6362 * that the tail tag does not fail at its role of being at the end of 6363 * the packet, once the conduit interface pads the frame. Account for 6364 * that pad length here, and pad later. 6365 */ 6366 if (unlikely(needed_tailroom && skb->len < ETH_ZLEN)) 6367 needed_tailroom += ETH_ZLEN - skb->len; 6368 /* skb_headroom() returns unsigned int... */ 6369 needed_headroom = max_t(int, needed_headroom - skb_headroom(skb), 0); 6370 needed_tailroom = max_t(int, needed_tailroom - skb_tailroom(skb), 0); 6371 6372 if (likely(!needed_headroom && !needed_tailroom && !skb_cloned(skb))) 6373 /* No reallocation needed, yay! */ 6374 return 0; 6375 6376 return pskb_expand_head(skb, needed_headroom, needed_tailroom, 6377 GFP_ATOMIC); 6378 } 6379 EXPORT_SYMBOL(skb_ensure_writable_head_tail); 6380 6381 /* remove VLAN header from packet and update csum accordingly. 6382 * expects a non skb_vlan_tag_present skb with a vlan tag payload 6383 */ 6384 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci) 6385 { 6386 int offset = skb->data - skb_mac_header(skb); 6387 int err; 6388 6389 if (WARN_ONCE(offset, 6390 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n", 6391 offset)) { 6392 return -EINVAL; 6393 } 6394 6395 err = skb_ensure_writable(skb, VLAN_ETH_HLEN); 6396 if (unlikely(err)) 6397 return err; 6398 6399 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6400 6401 vlan_remove_tag(skb, vlan_tci); 6402 6403 skb->mac_header += VLAN_HLEN; 6404 6405 if (skb_network_offset(skb) < ETH_HLEN) 6406 skb_set_network_header(skb, ETH_HLEN); 6407 6408 skb_reset_mac_len(skb); 6409 6410 return err; 6411 } 6412 EXPORT_SYMBOL(__skb_vlan_pop); 6413 6414 /* Pop a vlan tag either from hwaccel or from payload. 6415 * Expects skb->data at mac header. 6416 */ 6417 int skb_vlan_pop(struct sk_buff *skb) 6418 { 6419 u16 vlan_tci; 6420 __be16 vlan_proto; 6421 int err; 6422 6423 if (likely(skb_vlan_tag_present(skb))) { 6424 __vlan_hwaccel_clear_tag(skb); 6425 } else { 6426 if (unlikely(!eth_type_vlan(skb->protocol))) 6427 return 0; 6428 6429 err = __skb_vlan_pop(skb, &vlan_tci); 6430 if (err) 6431 return err; 6432 } 6433 /* move next vlan tag to hw accel tag */ 6434 if (likely(!eth_type_vlan(skb->protocol))) 6435 return 0; 6436 6437 vlan_proto = skb->protocol; 6438 err = __skb_vlan_pop(skb, &vlan_tci); 6439 if (unlikely(err)) 6440 return err; 6441 6442 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6443 return 0; 6444 } 6445 EXPORT_SYMBOL(skb_vlan_pop); 6446 6447 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present). 6448 * Expects skb->data at mac header. 6449 */ 6450 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci) 6451 { 6452 if (skb_vlan_tag_present(skb)) { 6453 int offset = skb->data - skb_mac_header(skb); 6454 int err; 6455 6456 if (WARN_ONCE(offset, 6457 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n", 6458 offset)) { 6459 return -EINVAL; 6460 } 6461 6462 err = __vlan_insert_tag(skb, skb->vlan_proto, 6463 skb_vlan_tag_get(skb)); 6464 if (err) 6465 return err; 6466 6467 skb->protocol = skb->vlan_proto; 6468 skb->network_header -= VLAN_HLEN; 6469 6470 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN); 6471 } 6472 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci); 6473 return 0; 6474 } 6475 EXPORT_SYMBOL(skb_vlan_push); 6476 6477 /** 6478 * skb_eth_pop() - Drop the Ethernet header at the head of a packet 6479 * 6480 * @skb: Socket buffer to modify 6481 * 6482 * Drop the Ethernet header of @skb. 6483 * 6484 * Expects that skb->data points to the mac header and that no VLAN tags are 6485 * present. 6486 * 6487 * Returns 0 on success, -errno otherwise. 6488 */ 6489 int skb_eth_pop(struct sk_buff *skb) 6490 { 6491 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) || 6492 skb_network_offset(skb) < ETH_HLEN) 6493 return -EPROTO; 6494 6495 skb_pull_rcsum(skb, ETH_HLEN); 6496 skb_reset_mac_header(skb); 6497 skb_reset_mac_len(skb); 6498 6499 return 0; 6500 } 6501 EXPORT_SYMBOL(skb_eth_pop); 6502 6503 /** 6504 * skb_eth_push() - Add a new Ethernet header at the head of a packet 6505 * 6506 * @skb: Socket buffer to modify 6507 * @dst: Destination MAC address of the new header 6508 * @src: Source MAC address of the new header 6509 * 6510 * Prepend @skb with a new Ethernet header. 6511 * 6512 * Expects that skb->data points to the mac header, which must be empty. 6513 * 6514 * Returns 0 on success, -errno otherwise. 6515 */ 6516 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 6517 const unsigned char *src) 6518 { 6519 struct ethhdr *eth; 6520 int err; 6521 6522 if (skb_network_offset(skb) || skb_vlan_tag_present(skb)) 6523 return -EPROTO; 6524 6525 err = skb_cow_head(skb, sizeof(*eth)); 6526 if (err < 0) 6527 return err; 6528 6529 skb_push(skb, sizeof(*eth)); 6530 skb_reset_mac_header(skb); 6531 skb_reset_mac_len(skb); 6532 6533 eth = eth_hdr(skb); 6534 ether_addr_copy(eth->h_dest, dst); 6535 ether_addr_copy(eth->h_source, src); 6536 eth->h_proto = skb->protocol; 6537 6538 skb_postpush_rcsum(skb, eth, sizeof(*eth)); 6539 6540 return 0; 6541 } 6542 EXPORT_SYMBOL(skb_eth_push); 6543 6544 /* Update the ethertype of hdr and the skb csum value if required. */ 6545 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr, 6546 __be16 ethertype) 6547 { 6548 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6549 __be16 diff[] = { ~hdr->h_proto, ethertype }; 6550 6551 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6552 } 6553 6554 hdr->h_proto = ethertype; 6555 } 6556 6557 /** 6558 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of 6559 * the packet 6560 * 6561 * @skb: buffer 6562 * @mpls_lse: MPLS label stack entry to push 6563 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848) 6564 * @mac_len: length of the MAC header 6565 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is 6566 * ethernet 6567 * 6568 * Expects skb->data at mac header. 6569 * 6570 * Returns 0 on success, -errno otherwise. 6571 */ 6572 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 6573 int mac_len, bool ethernet) 6574 { 6575 struct mpls_shim_hdr *lse; 6576 int err; 6577 6578 if (unlikely(!eth_p_mpls(mpls_proto))) 6579 return -EINVAL; 6580 6581 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */ 6582 if (skb->encapsulation) 6583 return -EINVAL; 6584 6585 err = skb_cow_head(skb, MPLS_HLEN); 6586 if (unlikely(err)) 6587 return err; 6588 6589 if (!skb->inner_protocol) { 6590 skb_set_inner_network_header(skb, skb_network_offset(skb)); 6591 skb_set_inner_protocol(skb, skb->protocol); 6592 } 6593 6594 skb_push(skb, MPLS_HLEN); 6595 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb), 6596 mac_len); 6597 skb_reset_mac_header(skb); 6598 skb_set_network_header(skb, mac_len); 6599 skb_reset_mac_len(skb); 6600 6601 lse = mpls_hdr(skb); 6602 lse->label_stack_entry = mpls_lse; 6603 skb_postpush_rcsum(skb, lse, MPLS_HLEN); 6604 6605 if (ethernet && mac_len >= ETH_HLEN) 6606 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto); 6607 skb->protocol = mpls_proto; 6608 6609 return 0; 6610 } 6611 EXPORT_SYMBOL_GPL(skb_mpls_push); 6612 6613 /** 6614 * skb_mpls_pop() - pop the outermost MPLS header 6615 * 6616 * @skb: buffer 6617 * @next_proto: ethertype of header after popped MPLS header 6618 * @mac_len: length of the MAC header 6619 * @ethernet: flag to indicate if the packet is ethernet 6620 * 6621 * Expects skb->data at mac header. 6622 * 6623 * Returns 0 on success, -errno otherwise. 6624 */ 6625 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 6626 bool ethernet) 6627 { 6628 int err; 6629 6630 if (unlikely(!eth_p_mpls(skb->protocol))) 6631 return 0; 6632 6633 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN); 6634 if (unlikely(err)) 6635 return err; 6636 6637 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN); 6638 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb), 6639 mac_len); 6640 6641 __skb_pull(skb, MPLS_HLEN); 6642 skb_reset_mac_header(skb); 6643 skb_set_network_header(skb, mac_len); 6644 6645 if (ethernet && mac_len >= ETH_HLEN) { 6646 struct ethhdr *hdr; 6647 6648 /* use mpls_hdr() to get ethertype to account for VLANs. */ 6649 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN); 6650 skb_mod_eth_type(skb, hdr, next_proto); 6651 } 6652 skb->protocol = next_proto; 6653 6654 return 0; 6655 } 6656 EXPORT_SYMBOL_GPL(skb_mpls_pop); 6657 6658 /** 6659 * skb_mpls_update_lse() - modify outermost MPLS header and update csum 6660 * 6661 * @skb: buffer 6662 * @mpls_lse: new MPLS label stack entry to update to 6663 * 6664 * Expects skb->data at mac header. 6665 * 6666 * Returns 0 on success, -errno otherwise. 6667 */ 6668 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse) 6669 { 6670 int err; 6671 6672 if (unlikely(!eth_p_mpls(skb->protocol))) 6673 return -EINVAL; 6674 6675 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN); 6676 if (unlikely(err)) 6677 return err; 6678 6679 if (skb->ip_summed == CHECKSUM_COMPLETE) { 6680 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse }; 6681 6682 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum); 6683 } 6684 6685 mpls_hdr(skb)->label_stack_entry = mpls_lse; 6686 6687 return 0; 6688 } 6689 EXPORT_SYMBOL_GPL(skb_mpls_update_lse); 6690 6691 /** 6692 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header 6693 * 6694 * @skb: buffer 6695 * 6696 * Expects skb->data at mac header. 6697 * 6698 * Returns 0 on success, -errno otherwise. 6699 */ 6700 int skb_mpls_dec_ttl(struct sk_buff *skb) 6701 { 6702 u32 lse; 6703 u8 ttl; 6704 6705 if (unlikely(!eth_p_mpls(skb->protocol))) 6706 return -EINVAL; 6707 6708 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN)) 6709 return -ENOMEM; 6710 6711 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry); 6712 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT; 6713 if (!--ttl) 6714 return -EINVAL; 6715 6716 lse &= ~MPLS_LS_TTL_MASK; 6717 lse |= ttl << MPLS_LS_TTL_SHIFT; 6718 6719 return skb_mpls_update_lse(skb, cpu_to_be32(lse)); 6720 } 6721 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl); 6722 6723 /** 6724 * alloc_skb_with_frags - allocate skb with page frags 6725 * 6726 * @header_len: size of linear part 6727 * @data_len: needed length in frags 6728 * @order: max page order desired. 6729 * @errcode: pointer to error code if any 6730 * @gfp_mask: allocation mask 6731 * 6732 * This can be used to allocate a paged skb, given a maximal order for frags. 6733 */ 6734 struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 6735 unsigned long data_len, 6736 int order, 6737 int *errcode, 6738 gfp_t gfp_mask) 6739 { 6740 unsigned long chunk; 6741 struct sk_buff *skb; 6742 struct page *page; 6743 int nr_frags = 0; 6744 6745 *errcode = -EMSGSIZE; 6746 if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order))) 6747 return NULL; 6748 6749 *errcode = -ENOBUFS; 6750 skb = alloc_skb(header_len, gfp_mask); 6751 if (!skb) 6752 return NULL; 6753 6754 while (data_len) { 6755 if (nr_frags == MAX_SKB_FRAGS) 6756 goto failure; 6757 while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order)) 6758 order--; 6759 6760 if (order) { 6761 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) | 6762 __GFP_COMP | 6763 __GFP_NOWARN, 6764 order); 6765 if (!page) { 6766 order--; 6767 continue; 6768 } 6769 } else { 6770 page = alloc_page(gfp_mask); 6771 if (!page) 6772 goto failure; 6773 } 6774 chunk = min_t(unsigned long, data_len, 6775 PAGE_SIZE << order); 6776 skb_fill_page_desc(skb, nr_frags, page, 0, chunk); 6777 nr_frags++; 6778 skb->truesize += (PAGE_SIZE << order); 6779 data_len -= chunk; 6780 } 6781 return skb; 6782 6783 failure: 6784 kfree_skb(skb); 6785 return NULL; 6786 } 6787 EXPORT_SYMBOL(alloc_skb_with_frags); 6788 6789 /* carve out the first off bytes from skb when off < headlen */ 6790 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off, 6791 const int headlen, gfp_t gfp_mask) 6792 { 6793 int i; 6794 unsigned int size = skb_end_offset(skb); 6795 int new_hlen = headlen - off; 6796 u8 *data; 6797 6798 if (skb_pfmemalloc(skb)) 6799 gfp_mask |= __GFP_MEMALLOC; 6800 6801 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6802 if (!data) 6803 return -ENOMEM; 6804 size = SKB_WITH_OVERHEAD(size); 6805 6806 /* Copy real data, and all frags */ 6807 skb_copy_from_linear_data_offset(skb, off, data, new_hlen); 6808 skb->len -= off; 6809 6810 memcpy((struct skb_shared_info *)(data + size), 6811 skb_shinfo(skb), 6812 offsetof(struct skb_shared_info, 6813 frags[skb_shinfo(skb)->nr_frags])); 6814 if (skb_cloned(skb)) { 6815 /* drop the old head gracefully */ 6816 if (skb_orphan_frags(skb, gfp_mask)) { 6817 skb_kfree_head(data, size); 6818 return -ENOMEM; 6819 } 6820 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 6821 skb_frag_ref(skb, i); 6822 if (skb_has_frag_list(skb)) 6823 skb_clone_fraglist(skb); 6824 skb_release_data(skb, SKB_CONSUMED); 6825 } else { 6826 /* we can reuse existing recount- all we did was 6827 * relocate values 6828 */ 6829 skb_free_head(skb); 6830 } 6831 6832 skb->head = data; 6833 skb->data = data; 6834 skb->head_frag = 0; 6835 skb_set_end_offset(skb, size); 6836 skb_set_tail_pointer(skb, skb_headlen(skb)); 6837 skb_headers_offset_update(skb, 0); 6838 skb->cloned = 0; 6839 skb->hdr_len = 0; 6840 skb->nohdr = 0; 6841 atomic_set(&skb_shinfo(skb)->dataref, 1); 6842 6843 return 0; 6844 } 6845 6846 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp); 6847 6848 /* carve out the first eat bytes from skb's frag_list. May recurse into 6849 * pskb_carve() 6850 */ 6851 static int pskb_carve_frag_list(struct skb_shared_info *shinfo, int eat, 6852 gfp_t gfp_mask) 6853 { 6854 struct sk_buff *list = shinfo->frag_list; 6855 struct sk_buff *clone = NULL; 6856 struct sk_buff *insp = NULL; 6857 6858 do { 6859 if (!list) { 6860 pr_err("Not enough bytes to eat. Want %d\n", eat); 6861 return -EFAULT; 6862 } 6863 if (list->len <= eat) { 6864 /* Eaten as whole. */ 6865 eat -= list->len; 6866 list = list->next; 6867 insp = list; 6868 } else { 6869 /* Eaten partially. */ 6870 if (skb_shared(list)) { 6871 clone = skb_clone(list, gfp_mask); 6872 if (!clone) 6873 return -ENOMEM; 6874 insp = list->next; 6875 list = clone; 6876 } else { 6877 /* This may be pulled without problems. */ 6878 insp = list; 6879 } 6880 if (pskb_carve(list, eat, gfp_mask) < 0) { 6881 kfree_skb(clone); 6882 return -ENOMEM; 6883 } 6884 break; 6885 } 6886 } while (eat); 6887 6888 /* Free pulled out fragments. */ 6889 while ((list = shinfo->frag_list) != insp) { 6890 shinfo->frag_list = list->next; 6891 consume_skb(list); 6892 } 6893 /* And insert new clone at head. */ 6894 if (clone) { 6895 clone->next = list; 6896 shinfo->frag_list = clone; 6897 } 6898 return 0; 6899 } 6900 6901 /* carve off first len bytes from skb. Split line (off) is in the 6902 * non-linear part of skb 6903 */ 6904 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off, 6905 int pos, gfp_t gfp_mask) 6906 { 6907 int i, k = 0; 6908 unsigned int size = skb_end_offset(skb); 6909 u8 *data; 6910 const int nfrags = skb_shinfo(skb)->nr_frags; 6911 struct skb_shared_info *shinfo; 6912 6913 if (skb_pfmemalloc(skb)) 6914 gfp_mask |= __GFP_MEMALLOC; 6915 6916 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL); 6917 if (!data) 6918 return -ENOMEM; 6919 size = SKB_WITH_OVERHEAD(size); 6920 6921 memcpy((struct skb_shared_info *)(data + size), 6922 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0])); 6923 if (skb_orphan_frags(skb, gfp_mask)) { 6924 skb_kfree_head(data, size); 6925 return -ENOMEM; 6926 } 6927 shinfo = (struct skb_shared_info *)(data + size); 6928 for (i = 0; i < nfrags; i++) { 6929 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]); 6930 6931 if (pos + fsize > off) { 6932 shinfo->frags[k] = skb_shinfo(skb)->frags[i]; 6933 6934 if (pos < off) { 6935 /* Split frag. 6936 * We have two variants in this case: 6937 * 1. Move all the frag to the second 6938 * part, if it is possible. F.e. 6939 * this approach is mandatory for TUX, 6940 * where splitting is expensive. 6941 * 2. Split is accurately. We make this. 6942 */ 6943 skb_frag_off_add(&shinfo->frags[0], off - pos); 6944 skb_frag_size_sub(&shinfo->frags[0], off - pos); 6945 } 6946 skb_frag_ref(skb, i); 6947 k++; 6948 } 6949 pos += fsize; 6950 } 6951 shinfo->nr_frags = k; 6952 if (skb_has_frag_list(skb)) 6953 skb_clone_fraglist(skb); 6954 6955 /* split line is in frag list */ 6956 if (k == 0 && pskb_carve_frag_list(shinfo, off - pos, gfp_mask)) { 6957 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */ 6958 if (skb_has_frag_list(skb)) 6959 kfree_skb_list(skb_shinfo(skb)->frag_list); 6960 skb_kfree_head(data, size); 6961 return -ENOMEM; 6962 } 6963 skb_release_data(skb, SKB_CONSUMED); 6964 6965 skb->head = data; 6966 skb->head_frag = 0; 6967 skb->data = data; 6968 skb_set_end_offset(skb, size); 6969 skb_reset_tail_pointer(skb); 6970 skb_headers_offset_update(skb, 0); 6971 skb->cloned = 0; 6972 skb->hdr_len = 0; 6973 skb->nohdr = 0; 6974 skb->len -= off; 6975 skb->data_len = skb->len; 6976 atomic_set(&skb_shinfo(skb)->dataref, 1); 6977 return 0; 6978 } 6979 6980 /* remove len bytes from the beginning of the skb */ 6981 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp) 6982 { 6983 int headlen = skb_headlen(skb); 6984 6985 if (len < headlen) 6986 return pskb_carve_inside_header(skb, len, headlen, gfp); 6987 else 6988 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp); 6989 } 6990 6991 /* Extract to_copy bytes starting at off from skb, and return this in 6992 * a new skb 6993 */ 6994 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, 6995 int to_copy, gfp_t gfp) 6996 { 6997 struct sk_buff *clone = skb_clone(skb, gfp); 6998 6999 if (!clone) 7000 return NULL; 7001 7002 if (pskb_carve(clone, off, gfp) < 0 || 7003 pskb_trim(clone, to_copy)) { 7004 kfree_skb(clone); 7005 return NULL; 7006 } 7007 return clone; 7008 } 7009 EXPORT_SYMBOL(pskb_extract); 7010 7011 /** 7012 * skb_condense - try to get rid of fragments/frag_list if possible 7013 * @skb: buffer 7014 * 7015 * Can be used to save memory before skb is added to a busy queue. 7016 * If packet has bytes in frags and enough tail room in skb->head, 7017 * pull all of them, so that we can free the frags right now and adjust 7018 * truesize. 7019 * Notes: 7020 * We do not reallocate skb->head thus can not fail. 7021 * Caller must re-evaluate skb->truesize if needed. 7022 */ 7023 void skb_condense(struct sk_buff *skb) 7024 { 7025 if (skb->data_len) { 7026 if (skb->data_len > skb->end - skb->tail || 7027 skb_cloned(skb) || !skb_frags_readable(skb)) 7028 return; 7029 7030 /* Nice, we can free page frag(s) right now */ 7031 __pskb_pull_tail(skb, skb->data_len); 7032 } 7033 /* At this point, skb->truesize might be over estimated, 7034 * because skb had a fragment, and fragments do not tell 7035 * their truesize. 7036 * When we pulled its content into skb->head, fragment 7037 * was freed, but __pskb_pull_tail() could not possibly 7038 * adjust skb->truesize, not knowing the frag truesize. 7039 */ 7040 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 7041 } 7042 EXPORT_SYMBOL(skb_condense); 7043 7044 #ifdef CONFIG_SKB_EXTENSIONS 7045 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id) 7046 { 7047 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE); 7048 } 7049 7050 /** 7051 * __skb_ext_alloc - allocate a new skb extensions storage 7052 * 7053 * @flags: See kmalloc(). 7054 * 7055 * Returns the newly allocated pointer. The pointer can later attached to a 7056 * skb via __skb_ext_set(). 7057 * Note: caller must handle the skb_ext as an opaque data. 7058 */ 7059 struct skb_ext *__skb_ext_alloc(gfp_t flags) 7060 { 7061 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags); 7062 7063 if (new) { 7064 memset(new->offset, 0, sizeof(new->offset)); 7065 refcount_set(&new->refcnt, 1); 7066 } 7067 7068 return new; 7069 } 7070 7071 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old, 7072 unsigned int old_active) 7073 { 7074 struct skb_ext *new; 7075 7076 if (refcount_read(&old->refcnt) == 1) 7077 return old; 7078 7079 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC); 7080 if (!new) 7081 return NULL; 7082 7083 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE); 7084 refcount_set(&new->refcnt, 1); 7085 7086 #ifdef CONFIG_XFRM 7087 if (old_active & (1 << SKB_EXT_SEC_PATH)) { 7088 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH); 7089 unsigned int i; 7090 7091 for (i = 0; i < sp->len; i++) 7092 xfrm_state_hold(sp->xvec[i]); 7093 } 7094 #endif 7095 #ifdef CONFIG_MCTP_FLOWS 7096 if (old_active & (1 << SKB_EXT_MCTP)) { 7097 struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP); 7098 7099 if (flow->key) 7100 refcount_inc(&flow->key->refs); 7101 } 7102 #endif 7103 __skb_ext_put(old); 7104 return new; 7105 } 7106 7107 /** 7108 * __skb_ext_set - attach the specified extension storage to this skb 7109 * @skb: buffer 7110 * @id: extension id 7111 * @ext: extension storage previously allocated via __skb_ext_alloc() 7112 * 7113 * Existing extensions, if any, are cleared. 7114 * 7115 * Returns the pointer to the extension. 7116 */ 7117 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 7118 struct skb_ext *ext) 7119 { 7120 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext); 7121 7122 skb_ext_put(skb); 7123 newlen = newoff + skb_ext_type_len[id]; 7124 ext->chunks = newlen; 7125 ext->offset[id] = newoff; 7126 skb->extensions = ext; 7127 skb->active_extensions = 1 << id; 7128 return skb_ext_get_ptr(ext, id); 7129 } 7130 EXPORT_SYMBOL_NS_GPL(__skb_ext_set, "NETDEV_INTERNAL"); 7131 7132 /** 7133 * skb_ext_add - allocate space for given extension, COW if needed 7134 * @skb: buffer 7135 * @id: extension to allocate space for 7136 * 7137 * Allocates enough space for the given extension. 7138 * If the extension is already present, a pointer to that extension 7139 * is returned. 7140 * 7141 * If the skb was cloned, COW applies and the returned memory can be 7142 * modified without changing the extension space of clones buffers. 7143 * 7144 * Returns pointer to the extension or NULL on allocation failure. 7145 */ 7146 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id) 7147 { 7148 struct skb_ext *new, *old = NULL; 7149 unsigned int newlen, newoff; 7150 7151 if (skb->active_extensions) { 7152 old = skb->extensions; 7153 7154 new = skb_ext_maybe_cow(old, skb->active_extensions); 7155 if (!new) 7156 return NULL; 7157 7158 if (__skb_ext_exist(new, id)) 7159 goto set_active; 7160 7161 newoff = new->chunks; 7162 } else { 7163 newoff = SKB_EXT_CHUNKSIZEOF(*new); 7164 7165 new = __skb_ext_alloc(GFP_ATOMIC); 7166 if (!new) 7167 return NULL; 7168 } 7169 7170 newlen = newoff + skb_ext_type_len[id]; 7171 new->chunks = newlen; 7172 new->offset[id] = newoff; 7173 set_active: 7174 skb->slow_gro = 1; 7175 skb->extensions = new; 7176 skb->active_extensions |= 1 << id; 7177 return skb_ext_get_ptr(new, id); 7178 } 7179 EXPORT_SYMBOL(skb_ext_add); 7180 7181 #ifdef CONFIG_XFRM 7182 static void skb_ext_put_sp(struct sec_path *sp) 7183 { 7184 unsigned int i; 7185 7186 for (i = 0; i < sp->len; i++) 7187 xfrm_state_put(sp->xvec[i]); 7188 } 7189 #endif 7190 7191 #ifdef CONFIG_MCTP_FLOWS 7192 static void skb_ext_put_mctp(struct mctp_flow *flow) 7193 { 7194 if (flow->key) 7195 mctp_key_unref(flow->key); 7196 } 7197 #endif 7198 7199 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 7200 { 7201 struct skb_ext *ext = skb->extensions; 7202 7203 skb->active_extensions &= ~(1 << id); 7204 if (skb->active_extensions == 0) { 7205 skb->extensions = NULL; 7206 __skb_ext_put(ext); 7207 #ifdef CONFIG_XFRM 7208 } else if (id == SKB_EXT_SEC_PATH && 7209 refcount_read(&ext->refcnt) == 1) { 7210 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH); 7211 7212 skb_ext_put_sp(sp); 7213 sp->len = 0; 7214 #endif 7215 } 7216 } 7217 EXPORT_SYMBOL(__skb_ext_del); 7218 7219 void __skb_ext_put(struct skb_ext *ext) 7220 { 7221 /* If this is last clone, nothing can increment 7222 * it after check passes. Avoids one atomic op. 7223 */ 7224 if (refcount_read(&ext->refcnt) == 1) 7225 goto free_now; 7226 7227 if (!refcount_dec_and_test(&ext->refcnt)) 7228 return; 7229 free_now: 7230 #ifdef CONFIG_XFRM 7231 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH)) 7232 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH)); 7233 #endif 7234 #ifdef CONFIG_MCTP_FLOWS 7235 if (__skb_ext_exist(ext, SKB_EXT_MCTP)) 7236 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP)); 7237 #endif 7238 7239 kmem_cache_free(skbuff_ext_cache, ext); 7240 } 7241 EXPORT_SYMBOL(__skb_ext_put); 7242 #endif /* CONFIG_SKB_EXTENSIONS */ 7243 7244 static void kfree_skb_napi_cache(struct sk_buff *skb) 7245 { 7246 /* if SKB is a clone, don't handle this case */ 7247 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) { 7248 __kfree_skb(skb); 7249 return; 7250 } 7251 7252 local_bh_disable(); 7253 __napi_kfree_skb(skb, SKB_CONSUMED); 7254 local_bh_enable(); 7255 } 7256 7257 /** 7258 * skb_attempt_defer_free - queue skb for remote freeing 7259 * @skb: buffer 7260 * 7261 * Put @skb in a per-cpu list, using the cpu which 7262 * allocated the skb/pages to reduce false sharing 7263 * and memory zone spinlock contention. 7264 */ 7265 void skb_attempt_defer_free(struct sk_buff *skb) 7266 { 7267 struct skb_defer_node *sdn; 7268 unsigned long defer_count; 7269 int cpu = skb->alloc_cpu; 7270 unsigned int defer_max; 7271 bool kick; 7272 7273 if (cpu == raw_smp_processor_id() || 7274 WARN_ON_ONCE(cpu >= nr_cpu_ids) || 7275 !cpu_online(cpu)) { 7276 nodefer: kfree_skb_napi_cache(skb); 7277 return; 7278 } 7279 7280 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb)); 7281 DEBUG_NET_WARN_ON_ONCE(skb->destructor); 7282 DEBUG_NET_WARN_ON_ONCE(skb_nfct(skb)); 7283 7284 sdn = per_cpu_ptr(net_hotdata.skb_defer_nodes, cpu) + numa_node_id(); 7285 7286 defer_max = READ_ONCE(net_hotdata.sysctl_skb_defer_max); 7287 defer_count = atomic_long_inc_return(&sdn->defer_count); 7288 7289 if (defer_count >= defer_max) 7290 goto nodefer; 7291 7292 llist_add(&skb->ll_node, &sdn->defer_list); 7293 7294 /* Send an IPI every time queue reaches half capacity. */ 7295 kick = (defer_count - 1) == (defer_max >> 1); 7296 7297 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU 7298 * if we are unlucky enough (this seems very unlikely). 7299 */ 7300 if (unlikely(kick)) 7301 kick_defer_list_purge(cpu); 7302 } 7303 7304 static void skb_splice_csum_page(struct sk_buff *skb, struct page *page, 7305 size_t offset, size_t len) 7306 { 7307 const char *kaddr; 7308 __wsum csum; 7309 7310 kaddr = kmap_local_page(page); 7311 csum = csum_partial(kaddr + offset, len, 0); 7312 kunmap_local(kaddr); 7313 skb->csum = csum_block_add(skb->csum, csum, skb->len); 7314 } 7315 7316 /** 7317 * skb_splice_from_iter - Splice (or copy) pages to skbuff 7318 * @skb: The buffer to add pages to 7319 * @iter: Iterator representing the pages to be added 7320 * @maxsize: Maximum amount of pages to be added 7321 * 7322 * This is a common helper function for supporting MSG_SPLICE_PAGES. It 7323 * extracts pages from an iterator and adds them to the socket buffer if 7324 * possible, copying them to fragments if not possible (such as if they're slab 7325 * pages). 7326 * 7327 * Returns the amount of data spliced/copied or -EMSGSIZE if there's 7328 * insufficient space in the buffer to transfer anything. 7329 */ 7330 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter, 7331 ssize_t maxsize) 7332 { 7333 size_t frag_limit = READ_ONCE(net_hotdata.sysctl_max_skb_frags); 7334 struct page *pages[8], **ppages = pages; 7335 ssize_t spliced = 0, ret = 0; 7336 unsigned int i; 7337 7338 while (iter->count > 0) { 7339 ssize_t space, nr, len; 7340 size_t off; 7341 7342 ret = -EMSGSIZE; 7343 space = frag_limit - skb_shinfo(skb)->nr_frags; 7344 if (space < 0) 7345 break; 7346 7347 /* We might be able to coalesce without increasing nr_frags */ 7348 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages)); 7349 7350 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off); 7351 if (len <= 0) { 7352 ret = len ?: -EIO; 7353 break; 7354 } 7355 7356 i = 0; 7357 do { 7358 struct page *page = pages[i++]; 7359 size_t part = min_t(size_t, PAGE_SIZE - off, len); 7360 7361 ret = -EIO; 7362 if (WARN_ON_ONCE(!sendpage_ok(page))) 7363 goto out; 7364 7365 ret = skb_append_pagefrags(skb, page, off, part, 7366 frag_limit); 7367 if (ret < 0) { 7368 iov_iter_revert(iter, len); 7369 goto out; 7370 } 7371 7372 if (skb->ip_summed == CHECKSUM_NONE) 7373 skb_splice_csum_page(skb, page, off, part); 7374 7375 off = 0; 7376 spliced += part; 7377 maxsize -= part; 7378 len -= part; 7379 } while (len > 0); 7380 7381 if (maxsize <= 0) 7382 break; 7383 } 7384 7385 out: 7386 skb_len_add(skb, spliced); 7387 return spliced ?: ret; 7388 } 7389 EXPORT_SYMBOL(skb_splice_from_iter); 7390 7391 static __always_inline 7392 size_t memcpy_from_iter_csum(void *iter_from, size_t progress, 7393 size_t len, void *to, void *priv2) 7394 { 7395 __wsum *csum = priv2; 7396 __wsum next = csum_partial_copy_nocheck(iter_from, to + progress, len); 7397 7398 *csum = csum_block_add(*csum, next, progress); 7399 return 0; 7400 } 7401 7402 static __always_inline 7403 size_t copy_from_user_iter_csum(void __user *iter_from, size_t progress, 7404 size_t len, void *to, void *priv2) 7405 { 7406 __wsum next, *csum = priv2; 7407 7408 next = csum_and_copy_from_user(iter_from, to + progress, len); 7409 *csum = csum_block_add(*csum, next, progress); 7410 return next ? 0 : len; 7411 } 7412 7413 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, 7414 __wsum *csum, struct iov_iter *i) 7415 { 7416 size_t copied; 7417 7418 if (WARN_ON_ONCE(!i->data_source)) 7419 return false; 7420 copied = iterate_and_advance2(i, bytes, addr, csum, 7421 copy_from_user_iter_csum, 7422 memcpy_from_iter_csum); 7423 if (likely(copied == bytes)) 7424 return true; 7425 iov_iter_revert(i, copied); 7426 return false; 7427 } 7428 EXPORT_SYMBOL(csum_and_copy_from_iter_full); 7429 7430 void __get_netmem(netmem_ref netmem) 7431 { 7432 struct net_iov *niov = netmem_to_net_iov(netmem); 7433 7434 if (net_is_devmem_iov(niov)) 7435 net_devmem_get_net_iov(netmem_to_net_iov(netmem)); 7436 } 7437 EXPORT_SYMBOL(__get_netmem); 7438 7439 void __put_netmem(netmem_ref netmem) 7440 { 7441 struct net_iov *niov = netmem_to_net_iov(netmem); 7442 7443 if (net_is_devmem_iov(niov)) 7444 net_devmem_put_net_iov(netmem_to_net_iov(netmem)); 7445 } 7446 EXPORT_SYMBOL(__put_netmem); 7447 7448 struct vlan_type_depth __vlan_get_protocol_offset(const struct sk_buff *skb, 7449 __be16 type, 7450 int mac_offset) 7451 { 7452 unsigned int vlan_depth = skb->mac_len, parse_depth = VLAN_MAX_DEPTH; 7453 7454 /* if type is 802.1Q/AD then the header should already be 7455 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at 7456 * ETH_HLEN otherwise 7457 */ 7458 if (vlan_depth) { 7459 if (WARN_ON_ONCE(vlan_depth < VLAN_HLEN)) 7460 return (struct vlan_type_depth) { 0 }; 7461 vlan_depth -= VLAN_HLEN; 7462 } else { 7463 vlan_depth = ETH_HLEN; 7464 } 7465 do { 7466 struct vlan_hdr vhdr, *vh; 7467 7468 vh = skb_header_pointer(skb, mac_offset + vlan_depth, 7469 sizeof(vhdr), &vhdr); 7470 if (unlikely(!vh || !--parse_depth)) 7471 return (struct vlan_type_depth) { 0 }; 7472 7473 type = vh->h_vlan_encapsulated_proto; 7474 vlan_depth += VLAN_HLEN; 7475 } while (eth_type_vlan(type)); 7476 7477 return (struct vlan_type_depth) { 7478 .type = type, 7479 .depth = vlan_depth 7480 }; 7481 } 7482 EXPORT_SYMBOL(__vlan_get_protocol_offset); 7483