xref: /linux/drivers/spi/spi-pxa2xx.c (revision 68763b29e0a6441f57f9ee652bbf8e7bc59183e5)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, 2021 Intel Corporation
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/ioport.h>
19 #include <linux/math64.h>
20 #include <linux/minmax.h>
21 #include <linux/module.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/property.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 
27 #include <linux/spi/spi.h>
28 
29 #include "internals.h"
30 #include "spi-pxa2xx.h"
31 
32 #define TIMOUT_DFLT		1000
33 
34 /*
35  * For testing SSCR1 changes that require SSP restart, basically
36  * everything except the service and interrupt enables, the PXA270 developer
37  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
38  * list, but the PXA255 developer manual says all bits without really meaning
39  * the service and interrupt enables.
40  */
41 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
42 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
43 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
44 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
45 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
46 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
47 
48 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
49 				| QUARK_X1000_SSCR1_EFWR	\
50 				| QUARK_X1000_SSCR1_RFT		\
51 				| QUARK_X1000_SSCR1_TFT		\
52 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53 
54 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
55 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
57 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
58 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
59 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 
61 struct chip_data {
62 	u32 cr1;
63 	u32 dds_rate;
64 	u32 threshold;
65 	u16 lpss_rx_threshold;
66 	u16 lpss_tx_threshold;
67 };
68 
69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
70 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
71 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
72 #define LPSS_CAPS_CS_EN_SHIFT			9
73 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
74 
75 #define LPSS_PRIV_CLOCK_GATE 0x38
76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK	0x3
77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON	0x3
78 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_OFF	0x0
79 
80 struct lpss_config {
81 	/* LPSS offset from drv_data->ioaddr */
82 	unsigned offset;
83 	/* Register offsets from drv_data->lpss_base or -1 */
84 	int reg_general;
85 	int reg_ssp;
86 	int reg_cs_ctrl;
87 	int reg_capabilities;
88 	/* FIFO thresholds */
89 	u32 rx_threshold;
90 	u32 tx_threshold_lo;
91 	u32 tx_threshold_hi;
92 	/* Chip select control */
93 	unsigned cs_sel_shift;
94 	unsigned cs_sel_mask;
95 	/* Quirks */
96 	unsigned cs_clk_stays_gated : 1;
97 };
98 
99 /* Keep these sorted with enum pxa_ssp_type */
100 static const struct lpss_config lpss_platforms[] = {
101 	{	/* LPSS_LPT_SSP */
102 		.offset = 0x800,
103 		.reg_general = 0x08,
104 		.reg_ssp = 0x0c,
105 		.reg_cs_ctrl = 0x18,
106 		.reg_capabilities = -1,
107 		.rx_threshold = 64,
108 		.tx_threshold_lo = 160,
109 		.tx_threshold_hi = 224,
110 	},
111 	{	/* LPSS_BYT_SSP */
112 		.offset = 0x400,
113 		.reg_general = 0x08,
114 		.reg_ssp = 0x0c,
115 		.reg_cs_ctrl = 0x18,
116 		.reg_capabilities = -1,
117 		.rx_threshold = 64,
118 		.tx_threshold_lo = 160,
119 		.tx_threshold_hi = 224,
120 	},
121 	{	/* LPSS_BSW_SSP */
122 		.offset = 0x400,
123 		.reg_general = 0x08,
124 		.reg_ssp = 0x0c,
125 		.reg_cs_ctrl = 0x18,
126 		.reg_capabilities = -1,
127 		.rx_threshold = 64,
128 		.tx_threshold_lo = 160,
129 		.tx_threshold_hi = 224,
130 		.cs_sel_shift = 2,
131 		.cs_sel_mask = 1 << 2,
132 	},
133 	{	/* LPSS_SPT_SSP */
134 		.offset = 0x200,
135 		.reg_general = -1,
136 		.reg_ssp = 0x20,
137 		.reg_cs_ctrl = 0x24,
138 		.reg_capabilities = -1,
139 		.rx_threshold = 1,
140 		.tx_threshold_lo = 32,
141 		.tx_threshold_hi = 56,
142 	},
143 	{	/* LPSS_BXT_SSP */
144 		.offset = 0x200,
145 		.reg_general = -1,
146 		.reg_ssp = 0x20,
147 		.reg_cs_ctrl = 0x24,
148 		.reg_capabilities = 0xfc,
149 		.rx_threshold = 1,
150 		.tx_threshold_lo = 16,
151 		.tx_threshold_hi = 48,
152 		.cs_sel_shift = 8,
153 		.cs_sel_mask = 3 << 8,
154 		.cs_clk_stays_gated = true,
155 	},
156 	{	/* LPSS_CNL_SSP */
157 		.offset = 0x200,
158 		.reg_general = -1,
159 		.reg_ssp = 0x20,
160 		.reg_cs_ctrl = 0x24,
161 		.reg_capabilities = 0xfc,
162 		.rx_threshold = 1,
163 		.tx_threshold_lo = 32,
164 		.tx_threshold_hi = 56,
165 		.cs_sel_shift = 8,
166 		.cs_sel_mask = 3 << 8,
167 		.cs_clk_stays_gated = true,
168 	},
169 };
170 
171 static inline const struct lpss_config
lpss_get_config(const struct driver_data * drv_data)172 *lpss_get_config(const struct driver_data *drv_data)
173 {
174 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
175 }
176 
is_lpss_ssp(const struct driver_data * drv_data)177 static bool is_lpss_ssp(const struct driver_data *drv_data)
178 {
179 	switch (drv_data->ssp_type) {
180 	case LPSS_LPT_SSP:
181 	case LPSS_BYT_SSP:
182 	case LPSS_BSW_SSP:
183 	case LPSS_SPT_SSP:
184 	case LPSS_BXT_SSP:
185 	case LPSS_CNL_SSP:
186 		return true;
187 	default:
188 		return false;
189 	}
190 }
191 
is_quark_x1000_ssp(const struct driver_data * drv_data)192 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
193 {
194 	return drv_data->ssp_type == QUARK_X1000_SSP;
195 }
196 
is_mmp2_ssp(const struct driver_data * drv_data)197 static bool is_mmp2_ssp(const struct driver_data *drv_data)
198 {
199 	return drv_data->ssp_type == MMP2_SSP;
200 }
201 
is_mrfld_ssp(const struct driver_data * drv_data)202 static bool is_mrfld_ssp(const struct driver_data *drv_data)
203 {
204 	return drv_data->ssp_type == MRFLD_SSP;
205 }
206 
pxa2xx_spi_update(const struct driver_data * drv_data,u32 reg,u32 mask,u32 value)207 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
208 {
209 	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
210 		pxa2xx_spi_write(drv_data, reg, value & mask);
211 }
212 
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data * drv_data)213 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
214 {
215 	switch (drv_data->ssp_type) {
216 	case QUARK_X1000_SSP:
217 		return QUARK_X1000_SSCR1_CHANGE_MASK;
218 	case CE4100_SSP:
219 		return CE4100_SSCR1_CHANGE_MASK;
220 	default:
221 		return SSCR1_CHANGE_MASK;
222 	}
223 }
224 
225 static u32
pxa2xx_spi_get_rx_default_thre(const struct driver_data * drv_data)226 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
227 {
228 	switch (drv_data->ssp_type) {
229 	case QUARK_X1000_SSP:
230 		return RX_THRESH_QUARK_X1000_DFLT;
231 	case CE4100_SSP:
232 		return RX_THRESH_CE4100_DFLT;
233 	default:
234 		return RX_THRESH_DFLT;
235 	}
236 }
237 
pxa2xx_spi_txfifo_full(const struct driver_data * drv_data)238 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
239 {
240 	u32 mask;
241 
242 	switch (drv_data->ssp_type) {
243 	case QUARK_X1000_SSP:
244 		mask = QUARK_X1000_SSSR_TFL_MASK;
245 		break;
246 	case CE4100_SSP:
247 		mask = CE4100_SSSR_TFL_MASK;
248 		break;
249 	default:
250 		mask = SSSR_TFL_MASK;
251 		break;
252 	}
253 
254 	return read_SSSR_bits(drv_data, mask) == mask;
255 }
256 
pxa2xx_spi_clear_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg)257 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
258 				     u32 *sccr1_reg)
259 {
260 	u32 mask;
261 
262 	switch (drv_data->ssp_type) {
263 	case QUARK_X1000_SSP:
264 		mask = QUARK_X1000_SSCR1_RFT;
265 		break;
266 	case CE4100_SSP:
267 		mask = CE4100_SSCR1_RFT;
268 		break;
269 	default:
270 		mask = SSCR1_RFT;
271 		break;
272 	}
273 	*sccr1_reg &= ~mask;
274 }
275 
pxa2xx_spi_set_rx_thre(const struct driver_data * drv_data,u32 * sccr1_reg,u32 threshold)276 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
277 				   u32 *sccr1_reg, u32 threshold)
278 {
279 	switch (drv_data->ssp_type) {
280 	case QUARK_X1000_SSP:
281 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
282 		break;
283 	case CE4100_SSP:
284 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
285 		break;
286 	default:
287 		*sccr1_reg |= SSCR1_RxTresh(threshold);
288 		break;
289 	}
290 }
291 
pxa2xx_configure_sscr0(const struct driver_data * drv_data,u32 clk_div,u8 bits)292 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
293 				  u32 clk_div, u8 bits)
294 {
295 	switch (drv_data->ssp_type) {
296 	case QUARK_X1000_SSP:
297 		return clk_div
298 			| QUARK_X1000_SSCR0_Motorola
299 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
300 	default:
301 		return clk_div
302 			| SSCR0_Motorola
303 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
304 			| (bits > 16 ? SSCR0_EDSS : 0);
305 	}
306 }
307 
308 /*
309  * Read and write LPSS SSP private registers. Caller must first check that
310  * is_lpss_ssp() returns true before these can be called.
311  */
__lpss_ssp_read_priv(struct driver_data * drv_data,unsigned offset)312 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
313 {
314 	WARN_ON(!drv_data->lpss_base);
315 	return readl(drv_data->lpss_base + offset);
316 }
317 
__lpss_ssp_write_priv(struct driver_data * drv_data,unsigned offset,u32 value)318 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
319 				  unsigned offset, u32 value)
320 {
321 	WARN_ON(!drv_data->lpss_base);
322 	writel(value, drv_data->lpss_base + offset);
323 }
324 
__lpss_ssp_update_priv(struct driver_data * drv_data,unsigned int offset,u32 mask,u32 value)325 static bool __lpss_ssp_update_priv(struct driver_data *drv_data, unsigned int offset,
326 				   u32 mask, u32 value)
327 {
328 	u32 new, curr;
329 
330 	curr = __lpss_ssp_read_priv(drv_data, offset);
331 	new = (curr & ~mask) | (value & mask);
332 	if (new == curr)
333 		return false;
334 
335 	__lpss_ssp_write_priv(drv_data, offset, new);
336 	return true;
337 }
338 
339 /*
340  * lpss_ssp_setup - perform LPSS SSP specific setup
341  * @drv_data: pointer to the driver private data
342  *
343  * Perform LPSS SSP specific setup. This function must be called first if
344  * one is going to use LPSS SSP private registers.
345  */
lpss_ssp_setup(struct driver_data * drv_data)346 static void lpss_ssp_setup(struct driver_data *drv_data)
347 {
348 	const struct lpss_config *config;
349 	u32 value;
350 
351 	config = lpss_get_config(drv_data);
352 	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
353 
354 	/* Enable software chip select control */
355 	value = LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
356 	__lpss_ssp_update_priv(drv_data, config->reg_cs_ctrl, value, value);
357 
358 	/* Enable multiblock DMA transfers */
359 	if (drv_data->controller_info->enable_dma) {
360 		__lpss_ssp_update_priv(drv_data, config->reg_ssp, BIT(0), BIT(0));
361 
362 		if (config->reg_general >= 0) {
363 			value = LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
364 			__lpss_ssp_update_priv(drv_data, config->reg_general, value, value);
365 		}
366 	}
367 }
368 
lpss_ssp_select_cs(struct spi_device * spi,const struct lpss_config * config)369 static void lpss_ssp_select_cs(struct spi_device *spi,
370 			       const struct lpss_config *config)
371 {
372 	struct driver_data *drv_data =
373 		spi_controller_get_devdata(spi->controller);
374 	u32 cs;
375 
376 	cs = spi_get_chipselect(spi, 0) << config->cs_sel_shift;
377 	if (!__lpss_ssp_update_priv(drv_data, config->reg_cs_ctrl, config->cs_sel_mask, cs))
378 		return;
379 
380 	/*
381 	 * When switching another chip select output active the output must be
382 	 * selected first and wait 2 ssp_clk cycles before changing state to
383 	 * active. Otherwise a short glitch will occur on the previous chip
384 	 * select since output select is latched but state control is not.
385 	 */
386 	ndelay(1000000000 / (drv_data->controller->max_speed_hz / 2));
387 }
388 
lpss_ssp_cs_control(struct spi_device * spi,bool enable)389 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
390 {
391 	struct driver_data *drv_data =
392 		spi_controller_get_devdata(spi->controller);
393 	const struct lpss_config *config;
394 	u32 mask;
395 
396 	config = lpss_get_config(drv_data);
397 
398 	if (enable)
399 		lpss_ssp_select_cs(spi, config);
400 
401 	mask = LPSS_CS_CONTROL_CS_HIGH;
402 	__lpss_ssp_update_priv(drv_data, config->reg_cs_ctrl, mask, enable ? 0 : mask);
403 	if (config->cs_clk_stays_gated) {
404 		/*
405 		 * Changing CS alone when dynamic clock gating is on won't
406 		 * actually flip CS at that time. This ruins SPI transfers
407 		 * that specify delays, or have no data. Toggle the clock mode
408 		 * to force on briefly to poke the CS pin to move.
409 		 */
410 		mask = LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK;
411 		if (__lpss_ssp_update_priv(drv_data, LPSS_PRIV_CLOCK_GATE, mask,
412 					   LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON))
413 			__lpss_ssp_update_priv(drv_data, LPSS_PRIV_CLOCK_GATE, mask,
414 					       LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_OFF);
415 	}
416 }
417 
cs_assert(struct spi_device * spi)418 static void cs_assert(struct spi_device *spi)
419 {
420 	struct driver_data *drv_data =
421 		spi_controller_get_devdata(spi->controller);
422 
423 	if (drv_data->ssp_type == CE4100_SSP) {
424 		pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
425 		return;
426 	}
427 
428 	if (is_lpss_ssp(drv_data))
429 		lpss_ssp_cs_control(spi, true);
430 }
431 
cs_deassert(struct spi_device * spi)432 static void cs_deassert(struct spi_device *spi)
433 {
434 	struct driver_data *drv_data =
435 		spi_controller_get_devdata(spi->controller);
436 	unsigned long timeout;
437 
438 	if (drv_data->ssp_type == CE4100_SSP)
439 		return;
440 
441 	/* Wait until SSP becomes idle before deasserting the CS */
442 	timeout = jiffies + msecs_to_jiffies(10);
443 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
444 	       !time_after(jiffies, timeout))
445 		cpu_relax();
446 
447 	if (is_lpss_ssp(drv_data))
448 		lpss_ssp_cs_control(spi, false);
449 }
450 
pxa2xx_spi_set_cs(struct spi_device * spi,bool level)451 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
452 {
453 	if (level)
454 		cs_deassert(spi);
455 	else
456 		cs_assert(spi);
457 }
458 
pxa2xx_spi_flush(struct driver_data * drv_data)459 int pxa2xx_spi_flush(struct driver_data *drv_data)
460 {
461 	unsigned long limit = loops_per_jiffy << 1;
462 
463 	do {
464 		while (read_SSSR_bits(drv_data, SSSR_RNE))
465 			pxa2xx_spi_read(drv_data, SSDR);
466 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
467 	write_SSSR_CS(drv_data, SSSR_ROR);
468 
469 	return limit;
470 }
471 
pxa2xx_spi_off(struct driver_data * drv_data)472 static void pxa2xx_spi_off(struct driver_data *drv_data)
473 {
474 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
475 	if (is_mmp2_ssp(drv_data))
476 		return;
477 
478 	pxa_ssp_disable(drv_data->ssp);
479 }
480 
null_writer(struct driver_data * drv_data)481 static int null_writer(struct driver_data *drv_data)
482 {
483 	u8 n_bytes = drv_data->n_bytes;
484 
485 	if (pxa2xx_spi_txfifo_full(drv_data)
486 		|| (drv_data->tx == drv_data->tx_end))
487 		return 0;
488 
489 	pxa2xx_spi_write(drv_data, SSDR, 0);
490 	drv_data->tx += n_bytes;
491 
492 	return 1;
493 }
494 
null_reader(struct driver_data * drv_data)495 static int null_reader(struct driver_data *drv_data)
496 {
497 	u8 n_bytes = drv_data->n_bytes;
498 
499 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
500 		pxa2xx_spi_read(drv_data, SSDR);
501 		drv_data->rx += n_bytes;
502 	}
503 
504 	return drv_data->rx == drv_data->rx_end;
505 }
506 
u8_writer(struct driver_data * drv_data)507 static int u8_writer(struct driver_data *drv_data)
508 {
509 	if (pxa2xx_spi_txfifo_full(drv_data)
510 		|| (drv_data->tx == drv_data->tx_end))
511 		return 0;
512 
513 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
514 	++drv_data->tx;
515 
516 	return 1;
517 }
518 
u8_reader(struct driver_data * drv_data)519 static int u8_reader(struct driver_data *drv_data)
520 {
521 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
522 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
523 		++drv_data->rx;
524 	}
525 
526 	return drv_data->rx == drv_data->rx_end;
527 }
528 
u16_writer(struct driver_data * drv_data)529 static int u16_writer(struct driver_data *drv_data)
530 {
531 	if (pxa2xx_spi_txfifo_full(drv_data)
532 		|| (drv_data->tx == drv_data->tx_end))
533 		return 0;
534 
535 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
536 	drv_data->tx += 2;
537 
538 	return 1;
539 }
540 
u16_reader(struct driver_data * drv_data)541 static int u16_reader(struct driver_data *drv_data)
542 {
543 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
544 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
545 		drv_data->rx += 2;
546 	}
547 
548 	return drv_data->rx == drv_data->rx_end;
549 }
550 
u32_writer(struct driver_data * drv_data)551 static int u32_writer(struct driver_data *drv_data)
552 {
553 	if (pxa2xx_spi_txfifo_full(drv_data)
554 		|| (drv_data->tx == drv_data->tx_end))
555 		return 0;
556 
557 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
558 	drv_data->tx += 4;
559 
560 	return 1;
561 }
562 
u32_reader(struct driver_data * drv_data)563 static int u32_reader(struct driver_data *drv_data)
564 {
565 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
566 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
567 		drv_data->rx += 4;
568 	}
569 
570 	return drv_data->rx == drv_data->rx_end;
571 }
572 
reset_sccr1(struct driver_data * drv_data)573 static void reset_sccr1(struct driver_data *drv_data)
574 {
575 	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
576 	struct chip_data *chip;
577 
578 	if (drv_data->controller->cur_msg) {
579 		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
580 		threshold = chip->threshold;
581 	} else {
582 		threshold = 0;
583 	}
584 
585 	switch (drv_data->ssp_type) {
586 	case QUARK_X1000_SSP:
587 		mask |= QUARK_X1000_SSCR1_RFT;
588 		break;
589 	case CE4100_SSP:
590 		mask |= CE4100_SSCR1_RFT;
591 		break;
592 	default:
593 		mask |= SSCR1_RFT;
594 		break;
595 	}
596 
597 	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
598 }
599 
int_stop_and_reset(struct driver_data * drv_data)600 static void int_stop_and_reset(struct driver_data *drv_data)
601 {
602 	/* Clear and disable interrupts */
603 	write_SSSR_CS(drv_data, drv_data->clear_sr);
604 	reset_sccr1(drv_data);
605 	if (pxa25x_ssp_comp(drv_data))
606 		return;
607 
608 	pxa2xx_spi_write(drv_data, SSTO, 0);
609 }
610 
int_error_stop(struct driver_data * drv_data,const char * msg,int err)611 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
612 {
613 	int_stop_and_reset(drv_data);
614 	pxa2xx_spi_flush(drv_data);
615 	pxa2xx_spi_off(drv_data);
616 
617 	dev_err(drv_data->ssp->dev, "%s\n", msg);
618 
619 	drv_data->controller->cur_msg->status = err;
620 	spi_finalize_current_transfer(drv_data->controller);
621 }
622 
int_transfer_complete(struct driver_data * drv_data)623 static void int_transfer_complete(struct driver_data *drv_data)
624 {
625 	int_stop_and_reset(drv_data);
626 
627 	spi_finalize_current_transfer(drv_data->controller);
628 }
629 
interrupt_transfer(struct driver_data * drv_data)630 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
631 {
632 	u32 irq_status;
633 
634 	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
635 	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
636 		irq_status &= ~SSSR_TFS;
637 
638 	if (irq_status & SSSR_ROR) {
639 		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
640 		return IRQ_HANDLED;
641 	}
642 
643 	if (irq_status & SSSR_TUR) {
644 		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
645 		return IRQ_HANDLED;
646 	}
647 
648 	if (irq_status & SSSR_TINT) {
649 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
650 		if (drv_data->read(drv_data)) {
651 			int_transfer_complete(drv_data);
652 			return IRQ_HANDLED;
653 		}
654 	}
655 
656 	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
657 	do {
658 		if (drv_data->read(drv_data)) {
659 			int_transfer_complete(drv_data);
660 			return IRQ_HANDLED;
661 		}
662 	} while (drv_data->write(drv_data));
663 
664 	if (drv_data->read(drv_data)) {
665 		int_transfer_complete(drv_data);
666 		return IRQ_HANDLED;
667 	}
668 
669 	if (drv_data->tx == drv_data->tx_end) {
670 		u32 bytes_left;
671 		u32 sccr1_reg;
672 
673 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
674 		sccr1_reg &= ~SSCR1_TIE;
675 
676 		/*
677 		 * PXA25x_SSP has no timeout, set up Rx threshold for
678 		 * the remaining Rx bytes.
679 		 */
680 		if (pxa25x_ssp_comp(drv_data)) {
681 			u32 rx_thre;
682 
683 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
684 
685 			bytes_left = drv_data->rx_end - drv_data->rx;
686 			switch (drv_data->n_bytes) {
687 			case 4:
688 				bytes_left >>= 2;
689 				break;
690 			case 2:
691 				bytes_left >>= 1;
692 				break;
693 			}
694 
695 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
696 			if (rx_thre > bytes_left)
697 				rx_thre = bytes_left;
698 
699 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
700 		}
701 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
702 	}
703 
704 	/* We did something */
705 	return IRQ_HANDLED;
706 }
707 
handle_bad_msg(struct driver_data * drv_data)708 static void handle_bad_msg(struct driver_data *drv_data)
709 {
710 	int_stop_and_reset(drv_data);
711 	pxa2xx_spi_off(drv_data);
712 
713 	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
714 }
715 
ssp_int(int irq,void * dev_id)716 static irqreturn_t ssp_int(int irq, void *dev_id)
717 {
718 	struct driver_data *drv_data = dev_id;
719 	u32 sccr1_reg;
720 	u32 mask = drv_data->mask_sr;
721 	u32 status;
722 
723 	/*
724 	 * The IRQ might be shared with other peripherals so we must first
725 	 * check that are we RPM suspended or not. If we are we assume that
726 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
727 	 * interrupt is enabled).
728 	 */
729 	if (pm_runtime_suspended(drv_data->ssp->dev))
730 		return IRQ_NONE;
731 
732 	/*
733 	 * If the device is not yet in RPM suspended state and we get an
734 	 * interrupt that is meant for another device, check if status bits
735 	 * are all set to one. That means that the device is already
736 	 * powered off.
737 	 */
738 	status = pxa2xx_spi_read(drv_data, SSSR);
739 	if (status == ~0)
740 		return IRQ_NONE;
741 
742 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
743 
744 	/* Ignore possible writes if we don't need to write */
745 	if (!(sccr1_reg & SSCR1_TIE))
746 		mask &= ~SSSR_TFS;
747 
748 	/* Ignore RX timeout interrupt if it is disabled */
749 	if (!(sccr1_reg & SSCR1_TINTE))
750 		mask &= ~SSSR_TINT;
751 
752 	if (!(status & mask))
753 		return IRQ_NONE;
754 
755 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
756 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
757 
758 	if (!drv_data->controller->cur_msg) {
759 		handle_bad_msg(drv_data);
760 		/* Never fail */
761 		return IRQ_HANDLED;
762 	}
763 
764 	return drv_data->transfer_handler(drv_data);
765 }
766 
767 /*
768  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
769  * input frequency by fractions of 2^24. It also has a divider by 5.
770  *
771  * There are formulas to get baud rate value for given input frequency and
772  * divider parameters, such as DDS_CLK_RATE and SCR:
773  *
774  * Fsys = 200MHz
775  *
776  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
777  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
778  *
779  * DDS_CLK_RATE either 2^n or 2^n / 5.
780  * SCR is in range 0 .. 255
781  *
782  * Divisor = 5^i * 2^j * 2 * k
783  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
784  *       j = [0, 23]     j = 0 iff i = 1
785  *       k = [1, 256]
786  * Special case: j = 0, i = 1: Divisor = 2 / 5
787  *
788  * Accordingly to the specification the recommended values for DDS_CLK_RATE
789  * are:
790  *	Case 1:		2^n, n = [0, 23]
791  *	Case 2:		2^24 * 2 / 5 (0x666666)
792  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
793  *
794  * In all cases the lowest possible value is better.
795  *
796  * The function calculates parameters for all cases and chooses the one closest
797  * to the asked baud rate.
798  */
quark_x1000_get_clk_div(int rate,u32 * dds)799 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
800 {
801 	unsigned long xtal = 200000000;
802 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
803 						   see (2) */
804 						/* case 3 */
805 	unsigned long fref1 = fref / 2;		/* case 1 */
806 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
807 	unsigned long scale;
808 	unsigned long q, q1, q2;
809 	long r, r1, r2;
810 	u32 mul;
811 
812 	/* Case 1 */
813 
814 	/* Set initial value for DDS_CLK_RATE */
815 	mul = (1 << 24) >> 1;
816 
817 	/* Calculate initial quot */
818 	q1 = DIV_ROUND_UP(fref1, rate);
819 
820 	/* Scale q1 if it's too big */
821 	if (q1 > 256) {
822 		/* Scale q1 to range [1, 512] */
823 		scale = fls_long(q1 - 1);
824 		if (scale > 9) {
825 			q1 >>= scale - 9;
826 			mul >>= scale - 9;
827 		}
828 
829 		/* Round the result if we have a remainder */
830 		q1 += q1 & 1;
831 	}
832 
833 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
834 	scale = __ffs(q1);
835 	q1 >>= scale;
836 	mul >>= scale;
837 
838 	/* Get the remainder */
839 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
840 
841 	/* Case 2 */
842 
843 	q2 = DIV_ROUND_UP(fref2, rate);
844 	r2 = abs(fref2 / q2 - rate);
845 
846 	/*
847 	 * Choose the best between two: less remainder we have the better. We
848 	 * can't go case 2 if q2 is greater than 256 since SCR register can
849 	 * hold only values 0 .. 255.
850 	 */
851 	if (r2 >= r1 || q2 > 256) {
852 		/* case 1 is better */
853 		r = r1;
854 		q = q1;
855 	} else {
856 		/* case 2 is better */
857 		r = r2;
858 		q = q2;
859 		mul = (1 << 24) * 2 / 5;
860 	}
861 
862 	/* Check case 3 only if the divisor is big enough */
863 	if (fref / rate >= 80) {
864 		u64 fssp;
865 		u32 m;
866 
867 		/* Calculate initial quot */
868 		q1 = DIV_ROUND_UP(fref, rate);
869 		m = (1 << 24) / q1;
870 
871 		/* Get the remainder */
872 		fssp = (u64)fref * m;
873 		do_div(fssp, 1 << 24);
874 		r1 = abs(fssp - rate);
875 
876 		/* Choose this one if it suits better */
877 		if (r1 < r) {
878 			/* case 3 is better */
879 			q = 1;
880 			mul = m;
881 		}
882 	}
883 
884 	*dds = mul;
885 	return q - 1;
886 }
887 
ssp_get_clk_div(struct driver_data * drv_data,int rate)888 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
889 {
890 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
891 	const struct ssp_device *ssp = drv_data->ssp;
892 
893 	rate = min_t(int, ssp_clk, rate);
894 
895 	/*
896 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
897 	 * that the SSP transmission rate can be greater than the device rate.
898 	 */
899 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
900 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
901 	else
902 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
903 }
904 
pxa2xx_ssp_get_clk_div(struct driver_data * drv_data,int rate)905 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
906 					   int rate)
907 {
908 	struct chip_data *chip =
909 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
910 	unsigned int clk_div;
911 
912 	switch (drv_data->ssp_type) {
913 	case QUARK_X1000_SSP:
914 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
915 		break;
916 	default:
917 		clk_div = ssp_get_clk_div(drv_data, rate);
918 		break;
919 	}
920 	return clk_div << 8;
921 }
922 
pxa2xx_spi_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * xfer)923 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
924 			       struct spi_device *spi,
925 			       struct spi_transfer *xfer)
926 {
927 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
928 
929 	return drv_data->controller_info->enable_dma &&
930 	       xfer->len <= MAX_DMA_LEN &&
931 	       xfer->len >= drv_data->controller_info->dma_burst_size;
932 }
933 
pxa2xx_spi_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)934 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
935 				   struct spi_device *spi,
936 				   struct spi_transfer *transfer)
937 {
938 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
939 	struct chip_data *chip = spi_get_ctldata(spi);
940 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
941 	u32 dma_thresh;
942 	u32 clk_div;
943 	u8 bits;
944 	u32 speed;
945 	u32 cr0;
946 	u32 cr1;
947 	int err;
948 	int dma_mapped;
949 
950 	/* Check if we can DMA this transfer */
951 	if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) {
952 		/* Warn ... we force this to PIO mode */
953 		dev_warn_ratelimited(&spi->dev,
954 				     "DMA disabled for transfer length %u greater than %d\n",
955 				     transfer->len, MAX_DMA_LEN);
956 	}
957 
958 	/* Setup the transfer state based on the type of transfer */
959 	if (pxa2xx_spi_flush(drv_data) == 0) {
960 		dev_err(&spi->dev, "Flush failed\n");
961 		return -EIO;
962 	}
963 	drv_data->tx = (void *)transfer->tx_buf;
964 	drv_data->tx_end = drv_data->tx + transfer->len;
965 	drv_data->rx = transfer->rx_buf;
966 	drv_data->rx_end = drv_data->rx + transfer->len;
967 
968 	/* Change speed and bit per word on a per transfer */
969 	bits = transfer->bits_per_word;
970 	speed = transfer->speed_hz;
971 
972 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
973 
974 	if (bits <= 8) {
975 		drv_data->n_bytes = 1;
976 		drv_data->read = drv_data->rx ? u8_reader : null_reader;
977 		drv_data->write = drv_data->tx ? u8_writer : null_writer;
978 	} else if (bits <= 16) {
979 		drv_data->n_bytes = 2;
980 		drv_data->read = drv_data->rx ? u16_reader : null_reader;
981 		drv_data->write = drv_data->tx ? u16_writer : null_writer;
982 	} else if (bits <= 32) {
983 		drv_data->n_bytes = 4;
984 		drv_data->read = drv_data->rx ? u32_reader : null_reader;
985 		drv_data->write = drv_data->tx ? u32_writer : null_writer;
986 	}
987 
988 	dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT);
989 	dma_mapped = spi_xfer_is_dma_mapped(controller, spi, transfer);
990 	if (dma_mapped) {
991 		/* Ensure we have the correct interrupt handler */
992 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
993 
994 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
995 		if (err)
996 			return err;
997 
998 		/* Clear status and start DMA engine */
999 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1000 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1001 
1002 		pxa2xx_spi_dma_start(drv_data);
1003 	} else {
1004 		/* Ensure we have the correct interrupt handler	*/
1005 		drv_data->transfer_handler = interrupt_transfer;
1006 
1007 		/* Clear status  */
1008 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1009 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1010 	}
1011 
1012 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1013 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1014 	if (!pxa25x_ssp_comp(drv_data))
1015 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1016 			controller->max_speed_hz
1017 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1018 			dma_mapped ? "DMA" : "PIO");
1019 	else
1020 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1021 			controller->max_speed_hz / 2
1022 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1023 			dma_mapped ? "DMA" : "PIO");
1024 
1025 	if (is_lpss_ssp(drv_data)) {
1026 		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1027 		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1028 	}
1029 
1030 	if (is_mrfld_ssp(drv_data)) {
1031 		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1032 		u32 thresh = 0;
1033 
1034 		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1035 		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1036 
1037 		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1038 	}
1039 
1040 	if (is_quark_x1000_ssp(drv_data))
1041 		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1042 
1043 	/* Stop the SSP */
1044 	if (!is_mmp2_ssp(drv_data))
1045 		pxa_ssp_disable(drv_data->ssp);
1046 
1047 	if (!pxa25x_ssp_comp(drv_data))
1048 		pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT);
1049 
1050 	/* First set CR1 without interrupt and service enables */
1051 	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1052 
1053 	/* See if we need to reload the configuration registers */
1054 	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1055 
1056 	/* Restart the SSP */
1057 	pxa_ssp_enable(drv_data->ssp);
1058 
1059 	if (is_mmp2_ssp(drv_data)) {
1060 		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1061 
1062 		if (tx_level) {
1063 			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1064 			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1065 			if (tx_level > transfer->len)
1066 				tx_level = transfer->len;
1067 			drv_data->tx += tx_level;
1068 		}
1069 	}
1070 
1071 	if (spi_controller_is_target(controller)) {
1072 		while (drv_data->write(drv_data))
1073 			;
1074 		if (drv_data->gpiod_ready) {
1075 			gpiod_set_value(drv_data->gpiod_ready, 1);
1076 			udelay(1);
1077 			gpiod_set_value(drv_data->gpiod_ready, 0);
1078 		}
1079 	}
1080 
1081 	/*
1082 	 * Release the data by enabling service requests and interrupts,
1083 	 * without changing any mode bits.
1084 	 */
1085 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1086 
1087 	return 1;
1088 }
1089 
pxa2xx_spi_target_abort(struct spi_controller * controller)1090 static int pxa2xx_spi_target_abort(struct spi_controller *controller)
1091 {
1092 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1093 
1094 	int_error_stop(drv_data, "transfer aborted", -EINTR);
1095 
1096 	return 0;
1097 }
1098 
pxa2xx_spi_handle_err(struct spi_controller * controller,struct spi_message * msg)1099 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1100 				 struct spi_message *msg)
1101 {
1102 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1103 
1104 	int_stop_and_reset(drv_data);
1105 
1106 	/* Disable the SSP */
1107 	pxa2xx_spi_off(drv_data);
1108 
1109 	/*
1110 	 * Stop the DMA if running. Note DMA callback handler may have unset
1111 	 * the dma_running already, which is fine as stopping is not needed
1112 	 * then but we shouldn't rely this flag for anything else than
1113 	 * stopping. For instance to differentiate between PIO and DMA
1114 	 * transfers.
1115 	 */
1116 	if (atomic_read(&drv_data->dma_running))
1117 		pxa2xx_spi_dma_stop(drv_data);
1118 }
1119 
pxa2xx_spi_unprepare_transfer(struct spi_controller * controller)1120 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1121 {
1122 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1123 
1124 	/* Disable the SSP now */
1125 	pxa2xx_spi_off(drv_data);
1126 
1127 	return 0;
1128 }
1129 
setup(struct spi_device * spi)1130 static int setup(struct spi_device *spi)
1131 {
1132 	struct chip_data *chip;
1133 	const struct lpss_config *config;
1134 	struct driver_data *drv_data =
1135 		spi_controller_get_devdata(spi->controller);
1136 	uint tx_thres, tx_hi_thres, rx_thres;
1137 
1138 	switch (drv_data->ssp_type) {
1139 	case QUARK_X1000_SSP:
1140 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1141 		tx_hi_thres = 0;
1142 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1143 		break;
1144 	case MRFLD_SSP:
1145 		tx_thres = TX_THRESH_MRFLD_DFLT;
1146 		tx_hi_thres = 0;
1147 		rx_thres = RX_THRESH_MRFLD_DFLT;
1148 		break;
1149 	case CE4100_SSP:
1150 		tx_thres = TX_THRESH_CE4100_DFLT;
1151 		tx_hi_thres = 0;
1152 		rx_thres = RX_THRESH_CE4100_DFLT;
1153 		break;
1154 	case LPSS_LPT_SSP:
1155 	case LPSS_BYT_SSP:
1156 	case LPSS_BSW_SSP:
1157 	case LPSS_SPT_SSP:
1158 	case LPSS_BXT_SSP:
1159 	case LPSS_CNL_SSP:
1160 		config = lpss_get_config(drv_data);
1161 		tx_thres = config->tx_threshold_lo;
1162 		tx_hi_thres = config->tx_threshold_hi;
1163 		rx_thres = config->rx_threshold;
1164 		break;
1165 	default:
1166 		tx_hi_thres = 0;
1167 		if (spi_controller_is_target(drv_data->controller)) {
1168 			tx_thres = 1;
1169 			rx_thres = 2;
1170 		} else {
1171 			tx_thres = TX_THRESH_DFLT;
1172 			rx_thres = RX_THRESH_DFLT;
1173 		}
1174 		break;
1175 	}
1176 
1177 	if (drv_data->ssp_type == CE4100_SSP) {
1178 		if (spi_get_chipselect(spi, 0) > 4) {
1179 			dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n");
1180 			return -EINVAL;
1181 		}
1182 	}
1183 
1184 	/* Only allocate on the first setup */
1185 	chip = spi_get_ctldata(spi);
1186 	if (!chip) {
1187 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1188 		if (!chip)
1189 			return -ENOMEM;
1190 	}
1191 
1192 	chip->cr1 = 0;
1193 	if (spi_controller_is_target(drv_data->controller)) {
1194 		chip->cr1 |= SSCR1_SCFR;
1195 		chip->cr1 |= SSCR1_SCLKDIR;
1196 		chip->cr1 |= SSCR1_SFRMDIR;
1197 		chip->cr1 |= SSCR1_SPH;
1198 	}
1199 
1200 	if (is_lpss_ssp(drv_data)) {
1201 		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1202 		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1203 					  SSITF_TxHiThresh(tx_hi_thres);
1204 	}
1205 
1206 	if (is_mrfld_ssp(drv_data)) {
1207 		chip->lpss_rx_threshold = rx_thres;
1208 		chip->lpss_tx_threshold = tx_thres;
1209 	}
1210 
1211 	switch (drv_data->ssp_type) {
1212 	case QUARK_X1000_SSP:
1213 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1214 				   & QUARK_X1000_SSCR1_RFT)
1215 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1216 				   & QUARK_X1000_SSCR1_TFT);
1217 		break;
1218 	case CE4100_SSP:
1219 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1220 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1221 		break;
1222 	default:
1223 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1224 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1225 		break;
1226 	}
1227 
1228 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1229 	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1230 		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1231 
1232 	if (spi->mode & SPI_LOOP)
1233 		chip->cr1 |= SSCR1_LBM;
1234 
1235 	spi_set_ctldata(spi, chip);
1236 
1237 	return 0;
1238 }
1239 
cleanup(struct spi_device * spi)1240 static void cleanup(struct spi_device *spi)
1241 {
1242 	struct chip_data *chip = spi_get_ctldata(spi);
1243 
1244 	kfree(chip);
1245 }
1246 
pxa2xx_spi_fw_translate_cs(struct spi_controller * controller,unsigned int cs)1247 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1248 				      unsigned int cs)
1249 {
1250 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1251 
1252 	switch (drv_data->ssp_type) {
1253 	/*
1254 	 * For some of Intel Atoms the ACPI DeviceSelection used by the Windows
1255 	 * driver starts from 1 instead of 0 so translate it here to match what
1256 	 * Linux expects.
1257 	 */
1258 	case LPSS_BYT_SSP:
1259 	case LPSS_BSW_SSP:
1260 		return cs - 1;
1261 
1262 	default:
1263 		return cs;
1264 	}
1265 }
1266 
pxa2xx_spi_max_dma_transfer_size(struct spi_device * spi)1267 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1268 {
1269 	return MAX_DMA_LEN;
1270 }
1271 
pxa2xx_spi_probe(struct device * dev,struct ssp_device * ssp,struct pxa2xx_spi_controller * platform_info)1272 int pxa2xx_spi_probe(struct device *dev, struct ssp_device *ssp,
1273 		     struct pxa2xx_spi_controller *platform_info)
1274 {
1275 	struct spi_controller *controller;
1276 	struct driver_data *drv_data;
1277 	const struct lpss_config *config;
1278 	int status;
1279 	u32 tmp;
1280 
1281 	if (platform_info->is_target)
1282 		controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
1283 	else
1284 		controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
1285 	if (!controller)
1286 		return dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n");
1287 
1288 	drv_data = spi_controller_get_devdata(controller);
1289 	drv_data->controller = controller;
1290 	drv_data->controller_info = platform_info;
1291 	drv_data->ssp = ssp;
1292 
1293 	device_set_node(&controller->dev, dev_fwnode(dev));
1294 
1295 	/* The spi->mode bits understood by this driver: */
1296 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1297 
1298 	controller->bus_num = ssp->port_id;
1299 	controller->dma_alignment = DMA_ALIGNMENT;
1300 	controller->cleanup = cleanup;
1301 	controller->setup = setup;
1302 	controller->set_cs = pxa2xx_spi_set_cs;
1303 	controller->transfer_one = pxa2xx_spi_transfer_one;
1304 	controller->target_abort = pxa2xx_spi_target_abort;
1305 	controller->handle_err = pxa2xx_spi_handle_err;
1306 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1307 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1308 	controller->auto_runtime_pm = true;
1309 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1310 
1311 	drv_data->ssp_type = ssp->type;
1312 
1313 	if (pxa25x_ssp_comp(drv_data)) {
1314 		switch (drv_data->ssp_type) {
1315 		case QUARK_X1000_SSP:
1316 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1317 			break;
1318 		default:
1319 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1320 			break;
1321 		}
1322 
1323 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1324 		drv_data->dma_cr1 = 0;
1325 		drv_data->clear_sr = SSSR_ROR;
1326 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1327 	} else {
1328 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1329 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1330 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1331 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1332 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1333 						| SSSR_ROR | SSSR_TUR;
1334 	}
1335 
1336 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1337 			drv_data);
1338 	if (status < 0)
1339 		return dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq);
1340 
1341 	/* Setup DMA if requested */
1342 	if (platform_info->enable_dma) {
1343 		status = pxa2xx_spi_dma_setup(drv_data);
1344 		if (status) {
1345 			dev_warn(dev, "no DMA channels available, using PIO\n");
1346 			platform_info->enable_dma = false;
1347 		} else {
1348 			controller->can_dma = pxa2xx_spi_can_dma;
1349 			controller->max_dma_len = MAX_DMA_LEN;
1350 			controller->max_transfer_size =
1351 				pxa2xx_spi_max_dma_transfer_size;
1352 
1353 			dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size);
1354 		}
1355 	}
1356 
1357 	/* Enable SOC clock */
1358 	status = clk_prepare_enable(ssp->clk);
1359 	if (status)
1360 		goto out_error_dma_irq_alloc;
1361 
1362 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1363 	/*
1364 	 * Set minimum speed for all other platforms than Intel Quark which is
1365 	 * able do under 1 Hz transfers.
1366 	 */
1367 	if (!pxa25x_ssp_comp(drv_data))
1368 		controller->min_speed_hz =
1369 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1370 	else if (!is_quark_x1000_ssp(drv_data))
1371 		controller->min_speed_hz =
1372 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1373 
1374 	pxa_ssp_disable(ssp);
1375 
1376 	/* Load default SSP configuration */
1377 	switch (drv_data->ssp_type) {
1378 	case QUARK_X1000_SSP:
1379 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1380 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1381 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1382 
1383 		/* Using the Motorola SPI protocol and use 8 bit frame */
1384 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1385 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1386 		break;
1387 	case CE4100_SSP:
1388 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1389 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1390 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1391 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1392 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1393 		break;
1394 	default:
1395 
1396 		if (spi_controller_is_target(controller)) {
1397 			tmp = SSCR1_SCFR |
1398 			      SSCR1_SCLKDIR |
1399 			      SSCR1_SFRMDIR |
1400 			      SSCR1_RxTresh(2) |
1401 			      SSCR1_TxTresh(1) |
1402 			      SSCR1_SPH;
1403 		} else {
1404 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1405 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1406 		}
1407 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1408 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1409 		if (!spi_controller_is_target(controller))
1410 			tmp |= SSCR0_SCR(2);
1411 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1412 		break;
1413 	}
1414 
1415 	if (!pxa25x_ssp_comp(drv_data))
1416 		pxa2xx_spi_write(drv_data, SSTO, 0);
1417 
1418 	if (!is_quark_x1000_ssp(drv_data))
1419 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1420 
1421 	if (is_lpss_ssp(drv_data)) {
1422 		lpss_ssp_setup(drv_data);
1423 		config = lpss_get_config(drv_data);
1424 		if (config->reg_capabilities >= 0) {
1425 			tmp = __lpss_ssp_read_priv(drv_data,
1426 						   config->reg_capabilities);
1427 			tmp &= LPSS_CAPS_CS_EN_MASK;
1428 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1429 			platform_info->num_chipselect = ffz(tmp);
1430 		}
1431 	}
1432 	controller->num_chipselect = platform_info->num_chipselect;
1433 	controller->use_gpio_descriptors = true;
1434 
1435 	if (platform_info->is_target) {
1436 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1437 						"ready", GPIOD_OUT_LOW);
1438 		if (IS_ERR(drv_data->gpiod_ready)) {
1439 			status = PTR_ERR(drv_data->gpiod_ready);
1440 			goto out_error_clock_enabled;
1441 		}
1442 	}
1443 
1444 	/* Register with the SPI framework */
1445 	dev_set_drvdata(dev, drv_data);
1446 	status = spi_register_controller(controller);
1447 	if (status) {
1448 		dev_err_probe(dev, status, "problem registering SPI controller\n");
1449 		goto out_error_clock_enabled;
1450 	}
1451 
1452 	return status;
1453 
1454 out_error_clock_enabled:
1455 	clk_disable_unprepare(ssp->clk);
1456 
1457 out_error_dma_irq_alloc:
1458 	pxa2xx_spi_dma_release(drv_data);
1459 	free_irq(ssp->irq, drv_data);
1460 
1461 	return status;
1462 }
1463 EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_probe, "SPI_PXA2xx");
1464 
pxa2xx_spi_remove(struct device * dev)1465 void pxa2xx_spi_remove(struct device *dev)
1466 {
1467 	struct driver_data *drv_data = dev_get_drvdata(dev);
1468 	struct ssp_device *ssp = drv_data->ssp;
1469 
1470 	spi_unregister_controller(drv_data->controller);
1471 
1472 	/* Disable the SSP at the peripheral and SOC level */
1473 	pxa_ssp_disable(ssp);
1474 	clk_disable_unprepare(ssp->clk);
1475 
1476 	/* Release DMA */
1477 	if (drv_data->controller_info->enable_dma)
1478 		pxa2xx_spi_dma_release(drv_data);
1479 
1480 	/* Release IRQ */
1481 	free_irq(ssp->irq, drv_data);
1482 }
1483 EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_remove, "SPI_PXA2xx");
1484 
pxa2xx_spi_suspend(struct device * dev)1485 static int pxa2xx_spi_suspend(struct device *dev)
1486 {
1487 	struct driver_data *drv_data = dev_get_drvdata(dev);
1488 	struct ssp_device *ssp = drv_data->ssp;
1489 	int status;
1490 
1491 	status = spi_controller_suspend(drv_data->controller);
1492 	if (status)
1493 		return status;
1494 
1495 	pxa_ssp_disable(ssp);
1496 
1497 	if (!pm_runtime_suspended(dev))
1498 		clk_disable_unprepare(ssp->clk);
1499 
1500 	return 0;
1501 }
1502 
pxa2xx_spi_resume(struct device * dev)1503 static int pxa2xx_spi_resume(struct device *dev)
1504 {
1505 	struct driver_data *drv_data = dev_get_drvdata(dev);
1506 	struct ssp_device *ssp = drv_data->ssp;
1507 	int status;
1508 
1509 	/* Enable the SSP clock */
1510 	if (!pm_runtime_suspended(dev)) {
1511 		status = clk_prepare_enable(ssp->clk);
1512 		if (status)
1513 			return status;
1514 	}
1515 
1516 	/* Start the queue running */
1517 	return spi_controller_resume(drv_data->controller);
1518 }
1519 
pxa2xx_spi_runtime_suspend(struct device * dev)1520 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1521 {
1522 	struct driver_data *drv_data = dev_get_drvdata(dev);
1523 
1524 	clk_disable_unprepare(drv_data->ssp->clk);
1525 	return 0;
1526 }
1527 
pxa2xx_spi_runtime_resume(struct device * dev)1528 static int pxa2xx_spi_runtime_resume(struct device *dev)
1529 {
1530 	struct driver_data *drv_data = dev_get_drvdata(dev);
1531 
1532 	return clk_prepare_enable(drv_data->ssp->clk);
1533 }
1534 
1535 EXPORT_NS_GPL_DEV_PM_OPS(pxa2xx_spi_pm_ops, SPI_PXA2xx) = {
1536 	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1537 	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1538 };
1539 
1540 MODULE_AUTHOR("Stephen Street");
1541 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller core driver");
1542 MODULE_LICENSE("GPL");
1543