1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/node.h>
27 #include <linux/kmsan.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/mempolicy.h>
31 #include <linux/ctype.h>
32 #include <linux/stackdepot.h>
33 #include <linux/debugobjects.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kfence.h>
36 #include <linux/memory.h>
37 #include <linux/math64.h>
38 #include <linux/fault-inject.h>
39 #include <linux/kmemleak.h>
40 #include <linux/stacktrace.h>
41 #include <linux/prefetch.h>
42 #include <linux/memcontrol.h>
43 #include <linux/random.h>
44 #include <kunit/test.h>
45 #include <kunit/test-bug.h>
46 #include <linux/sort.h>
47 #include <linux/irq_work.h>
48 #include <linux/kprobes.h>
49 #include <linux/debugfs.h>
50 #include <trace/events/kmem.h>
51
52 #include "internal.h"
53
54 /*
55 * Lock order:
56 * 1. slab_mutex (Global Mutex)
57 * 2. node->list_lock (Spinlock)
58 * 3. kmem_cache->cpu_slab->lock (Local lock)
59 * 4. slab_lock(slab) (Only on some arches)
60 * 5. object_map_lock (Only for debugging)
61 *
62 * slab_mutex
63 *
64 * The role of the slab_mutex is to protect the list of all the slabs
65 * and to synchronize major metadata changes to slab cache structures.
66 * Also synchronizes memory hotplug callbacks.
67 *
68 * slab_lock
69 *
70 * The slab_lock is a wrapper around the page lock, thus it is a bit
71 * spinlock.
72 *
73 * The slab_lock is only used on arches that do not have the ability
74 * to do a cmpxchg_double. It only protects:
75 *
76 * A. slab->freelist -> List of free objects in a slab
77 * B. slab->inuse -> Number of objects in use
78 * C. slab->objects -> Number of objects in slab
79 * D. slab->frozen -> frozen state
80 *
81 * Frozen slabs
82 *
83 * If a slab is frozen then it is exempt from list management. It is
84 * the cpu slab which is actively allocated from by the processor that
85 * froze it and it is not on any list. The processor that froze the
86 * slab is the one who can perform list operations on the slab. Other
87 * processors may put objects onto the freelist but the processor that
88 * froze the slab is the only one that can retrieve the objects from the
89 * slab's freelist.
90 *
91 * CPU partial slabs
92 *
93 * The partially empty slabs cached on the CPU partial list are used
94 * for performance reasons, which speeds up the allocation process.
95 * These slabs are not frozen, but are also exempt from list management,
96 * by clearing the SL_partial flag when moving out of the node
97 * partial list. Please see __slab_free() for more details.
98 *
99 * To sum up, the current scheme is:
100 * - node partial slab: SL_partial && !frozen
101 * - cpu partial slab: !SL_partial && !frozen
102 * - cpu slab: !SL_partial && frozen
103 * - full slab: !SL_partial && !frozen
104 *
105 * list_lock
106 *
107 * The list_lock protects the partial and full list on each node and
108 * the partial slab counter. If taken then no new slabs may be added or
109 * removed from the lists nor make the number of partial slabs be modified.
110 * (Note that the total number of slabs is an atomic value that may be
111 * modified without taking the list lock).
112 *
113 * The list_lock is a centralized lock and thus we avoid taking it as
114 * much as possible. As long as SLUB does not have to handle partial
115 * slabs, operations can continue without any centralized lock. F.e.
116 * allocating a long series of objects that fill up slabs does not require
117 * the list lock.
118 *
119 * For debug caches, all allocations are forced to go through a list_lock
120 * protected region to serialize against concurrent validation.
121 *
122 * cpu_slab->lock local lock
123 *
124 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
125 * except the stat counters. This is a percpu structure manipulated only by
126 * the local cpu, so the lock protects against being preempted or interrupted
127 * by an irq. Fast path operations rely on lockless operations instead.
128 *
129 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
130 * which means the lockless fastpath cannot be used as it might interfere with
131 * an in-progress slow path operations. In this case the local lock is always
132 * taken but it still utilizes the freelist for the common operations.
133 *
134 * lockless fastpaths
135 *
136 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
137 * are fully lockless when satisfied from the percpu slab (and when
138 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
139 * They also don't disable preemption or migration or irqs. They rely on
140 * the transaction id (tid) field to detect being preempted or moved to
141 * another cpu.
142 *
143 * irq, preemption, migration considerations
144 *
145 * Interrupts are disabled as part of list_lock or local_lock operations, or
146 * around the slab_lock operation, in order to make the slab allocator safe
147 * to use in the context of an irq.
148 *
149 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
150 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
151 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
152 * doesn't have to be revalidated in each section protected by the local lock.
153 *
154 * SLUB assigns one slab for allocation to each processor.
155 * Allocations only occur from these slabs called cpu slabs.
156 *
157 * Slabs with free elements are kept on a partial list and during regular
158 * operations no list for full slabs is used. If an object in a full slab is
159 * freed then the slab will show up again on the partial lists.
160 * We track full slabs for debugging purposes though because otherwise we
161 * cannot scan all objects.
162 *
163 * Slabs are freed when they become empty. Teardown and setup is
164 * minimal so we rely on the page allocators per cpu caches for
165 * fast frees and allocs.
166 *
167 * slab->frozen The slab is frozen and exempt from list processing.
168 * This means that the slab is dedicated to a purpose
169 * such as satisfying allocations for a specific
170 * processor. Objects may be freed in the slab while
171 * it is frozen but slab_free will then skip the usual
172 * list operations. It is up to the processor holding
173 * the slab to integrate the slab into the slab lists
174 * when the slab is no longer needed.
175 *
176 * One use of this flag is to mark slabs that are
177 * used for allocations. Then such a slab becomes a cpu
178 * slab. The cpu slab may be equipped with an additional
179 * freelist that allows lockless access to
180 * free objects in addition to the regular freelist
181 * that requires the slab lock.
182 *
183 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
184 * options set. This moves slab handling out of
185 * the fast path and disables lockless freelists.
186 */
187
188 /**
189 * enum slab_flags - How the slab flags bits are used.
190 * @SL_locked: Is locked with slab_lock()
191 * @SL_partial: On the per-node partial list
192 * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
193 *
194 * The slab flags share space with the page flags but some bits have
195 * different interpretations. The high bits are used for information
196 * like zone/node/section.
197 */
198 enum slab_flags {
199 SL_locked = PG_locked,
200 SL_partial = PG_workingset, /* Historical reasons for this bit */
201 SL_pfmemalloc = PG_active, /* Historical reasons for this bit */
202 };
203
204 /*
205 * We could simply use migrate_disable()/enable() but as long as it's a
206 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
207 */
208 #ifndef CONFIG_PREEMPT_RT
209 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
210 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
211 #define USE_LOCKLESS_FAST_PATH() (true)
212 #else
213 #define slub_get_cpu_ptr(var) \
214 ({ \
215 migrate_disable(); \
216 this_cpu_ptr(var); \
217 })
218 #define slub_put_cpu_ptr(var) \
219 do { \
220 (void)(var); \
221 migrate_enable(); \
222 } while (0)
223 #define USE_LOCKLESS_FAST_PATH() (false)
224 #endif
225
226 #ifndef CONFIG_SLUB_TINY
227 #define __fastpath_inline __always_inline
228 #else
229 #define __fastpath_inline
230 #endif
231
232 #ifdef CONFIG_SLUB_DEBUG
233 #ifdef CONFIG_SLUB_DEBUG_ON
234 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
235 #else
236 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
237 #endif
238 #endif /* CONFIG_SLUB_DEBUG */
239
240 #ifdef CONFIG_NUMA
241 static DEFINE_STATIC_KEY_FALSE(strict_numa);
242 #endif
243
244 /* Structure holding parameters for get_partial() call chain */
245 struct partial_context {
246 gfp_t flags;
247 unsigned int orig_size;
248 void *object;
249 };
250
kmem_cache_debug(struct kmem_cache * s)251 static inline bool kmem_cache_debug(struct kmem_cache *s)
252 {
253 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
254 }
255
fixup_red_left(struct kmem_cache * s,void * p)256 void *fixup_red_left(struct kmem_cache *s, void *p)
257 {
258 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
259 p += s->red_left_pad;
260
261 return p;
262 }
263
kmem_cache_has_cpu_partial(struct kmem_cache * s)264 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
265 {
266 #ifdef CONFIG_SLUB_CPU_PARTIAL
267 return !kmem_cache_debug(s);
268 #else
269 return false;
270 #endif
271 }
272
273 /*
274 * Issues still to be resolved:
275 *
276 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
277 *
278 * - Variable sizing of the per node arrays
279 */
280
281 /* Enable to log cmpxchg failures */
282 #undef SLUB_DEBUG_CMPXCHG
283
284 #ifndef CONFIG_SLUB_TINY
285 /*
286 * Minimum number of partial slabs. These will be left on the partial
287 * lists even if they are empty. kmem_cache_shrink may reclaim them.
288 */
289 #define MIN_PARTIAL 5
290
291 /*
292 * Maximum number of desirable partial slabs.
293 * The existence of more partial slabs makes kmem_cache_shrink
294 * sort the partial list by the number of objects in use.
295 */
296 #define MAX_PARTIAL 10
297 #else
298 #define MIN_PARTIAL 0
299 #define MAX_PARTIAL 0
300 #endif
301
302 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
303 SLAB_POISON | SLAB_STORE_USER)
304
305 /*
306 * These debug flags cannot use CMPXCHG because there might be consistency
307 * issues when checking or reading debug information
308 */
309 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
310 SLAB_TRACE)
311
312
313 /*
314 * Debugging flags that require metadata to be stored in the slab. These get
315 * disabled when slab_debug=O is used and a cache's min order increases with
316 * metadata.
317 */
318 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
319
320 #define OO_SHIFT 16
321 #define OO_MASK ((1 << OO_SHIFT) - 1)
322 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
323
324 /* Internal SLUB flags */
325 /* Poison object */
326 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
327 /* Use cmpxchg_double */
328
329 #ifdef system_has_freelist_aba
330 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
331 #else
332 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
333 #endif
334
335 /*
336 * Tracking user of a slab.
337 */
338 #define TRACK_ADDRS_COUNT 16
339 struct track {
340 unsigned long addr; /* Called from address */
341 #ifdef CONFIG_STACKDEPOT
342 depot_stack_handle_t handle;
343 #endif
344 int cpu; /* Was running on cpu */
345 int pid; /* Pid context */
346 unsigned long when; /* When did the operation occur */
347 };
348
349 enum track_item { TRACK_ALLOC, TRACK_FREE };
350
351 #ifdef SLAB_SUPPORTS_SYSFS
352 static int sysfs_slab_add(struct kmem_cache *);
353 static int sysfs_slab_alias(struct kmem_cache *, const char *);
354 #else
sysfs_slab_add(struct kmem_cache * s)355 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)356 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
357 { return 0; }
358 #endif
359
360 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
361 static void debugfs_slab_add(struct kmem_cache *);
362 #else
debugfs_slab_add(struct kmem_cache * s)363 static inline void debugfs_slab_add(struct kmem_cache *s) { }
364 #endif
365
366 enum stat_item {
367 ALLOC_PCS, /* Allocation from percpu sheaf */
368 ALLOC_FASTPATH, /* Allocation from cpu slab */
369 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
370 FREE_PCS, /* Free to percpu sheaf */
371 FREE_RCU_SHEAF, /* Free to rcu_free sheaf */
372 FREE_RCU_SHEAF_FAIL, /* Failed to free to a rcu_free sheaf */
373 FREE_FASTPATH, /* Free to cpu slab */
374 FREE_SLOWPATH, /* Freeing not to cpu slab */
375 FREE_FROZEN, /* Freeing to frozen slab */
376 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
377 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
378 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
379 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
380 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
381 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
382 FREE_SLAB, /* Slab freed to the page allocator */
383 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
384 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
385 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
386 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
387 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
388 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
389 DEACTIVATE_BYPASS, /* Implicit deactivation */
390 ORDER_FALLBACK, /* Number of times fallback was necessary */
391 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
392 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
393 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
394 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
395 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
396 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
397 SHEAF_FLUSH, /* Objects flushed from a sheaf */
398 SHEAF_REFILL, /* Objects refilled to a sheaf */
399 SHEAF_ALLOC, /* Allocation of an empty sheaf */
400 SHEAF_FREE, /* Freeing of an empty sheaf */
401 BARN_GET, /* Got full sheaf from barn */
402 BARN_GET_FAIL, /* Failed to get full sheaf from barn */
403 BARN_PUT, /* Put full sheaf to barn */
404 BARN_PUT_FAIL, /* Failed to put full sheaf to barn */
405 SHEAF_PREFILL_FAST, /* Sheaf prefill grabbed the spare sheaf */
406 SHEAF_PREFILL_SLOW, /* Sheaf prefill found no spare sheaf */
407 SHEAF_PREFILL_OVERSIZE, /* Allocation of oversize sheaf for prefill */
408 SHEAF_RETURN_FAST, /* Sheaf return reattached spare sheaf */
409 SHEAF_RETURN_SLOW, /* Sheaf return could not reattach spare */
410 NR_SLUB_STAT_ITEMS
411 };
412
413 struct freelist_tid {
414 union {
415 struct {
416 void *freelist; /* Pointer to next available object */
417 unsigned long tid; /* Globally unique transaction id */
418 };
419 freelist_full_t freelist_tid;
420 };
421 };
422
423 /*
424 * When changing the layout, make sure freelist and tid are still compatible
425 * with this_cpu_cmpxchg_double() alignment requirements.
426 */
427 struct kmem_cache_cpu {
428 struct freelist_tid;
429 struct slab *slab; /* The slab from which we are allocating */
430 #ifdef CONFIG_SLUB_CPU_PARTIAL
431 struct slab *partial; /* Partially allocated slabs */
432 #endif
433 local_trylock_t lock; /* Protects the fields above */
434 #ifdef CONFIG_SLUB_STATS
435 unsigned int stat[NR_SLUB_STAT_ITEMS];
436 #endif
437 };
438
stat(const struct kmem_cache * s,enum stat_item si)439 static inline void stat(const struct kmem_cache *s, enum stat_item si)
440 {
441 #ifdef CONFIG_SLUB_STATS
442 /*
443 * The rmw is racy on a preemptible kernel but this is acceptable, so
444 * avoid this_cpu_add()'s irq-disable overhead.
445 */
446 raw_cpu_inc(s->cpu_slab->stat[si]);
447 #endif
448 }
449
450 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)451 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
452 {
453 #ifdef CONFIG_SLUB_STATS
454 raw_cpu_add(s->cpu_slab->stat[si], v);
455 #endif
456 }
457
458 #define MAX_FULL_SHEAVES 10
459 #define MAX_EMPTY_SHEAVES 10
460
461 struct node_barn {
462 spinlock_t lock;
463 struct list_head sheaves_full;
464 struct list_head sheaves_empty;
465 unsigned int nr_full;
466 unsigned int nr_empty;
467 };
468
469 struct slab_sheaf {
470 union {
471 struct rcu_head rcu_head;
472 struct list_head barn_list;
473 /* only used for prefilled sheafs */
474 struct {
475 unsigned int capacity;
476 bool pfmemalloc;
477 };
478 };
479 struct kmem_cache *cache;
480 unsigned int size;
481 int node; /* only used for rcu_sheaf */
482 void *objects[];
483 };
484
485 struct slub_percpu_sheaves {
486 local_trylock_t lock;
487 struct slab_sheaf *main; /* never NULL when unlocked */
488 struct slab_sheaf *spare; /* empty or full, may be NULL */
489 struct slab_sheaf *rcu_free; /* for batching kfree_rcu() */
490 };
491
492 /*
493 * The slab lists for all objects.
494 */
495 struct kmem_cache_node {
496 spinlock_t list_lock;
497 unsigned long nr_partial;
498 struct list_head partial;
499 #ifdef CONFIG_SLUB_DEBUG
500 atomic_long_t nr_slabs;
501 atomic_long_t total_objects;
502 struct list_head full;
503 #endif
504 struct node_barn *barn;
505 };
506
get_node(struct kmem_cache * s,int node)507 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
508 {
509 return s->node[node];
510 }
511
512 /*
513 * Get the barn of the current cpu's closest memory node. It may not exist on
514 * systems with memoryless nodes but without CONFIG_HAVE_MEMORYLESS_NODES
515 */
get_barn(struct kmem_cache * s)516 static inline struct node_barn *get_barn(struct kmem_cache *s)
517 {
518 struct kmem_cache_node *n = get_node(s, numa_mem_id());
519
520 if (!n)
521 return NULL;
522
523 return n->barn;
524 }
525
526 /*
527 * Iterator over all nodes. The body will be executed for each node that has
528 * a kmem_cache_node structure allocated (which is true for all online nodes)
529 */
530 #define for_each_kmem_cache_node(__s, __node, __n) \
531 for (__node = 0; __node < nr_node_ids; __node++) \
532 if ((__n = get_node(__s, __node)))
533
534 /*
535 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
536 * Corresponds to node_state[N_MEMORY], but can temporarily
537 * differ during memory hotplug/hotremove operations.
538 * Protected by slab_mutex.
539 */
540 static nodemask_t slab_nodes;
541
542 /*
543 * Workqueue used for flush_cpu_slab().
544 */
545 static struct workqueue_struct *flushwq;
546
547 struct slub_flush_work {
548 struct work_struct work;
549 struct kmem_cache *s;
550 bool skip;
551 };
552
553 static DEFINE_MUTEX(flush_lock);
554 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
555
556 /********************************************************************
557 * Core slab cache functions
558 *******************************************************************/
559
560 /*
561 * Returns freelist pointer (ptr). With hardening, this is obfuscated
562 * with an XOR of the address where the pointer is held and a per-cache
563 * random number.
564 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)565 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
566 void *ptr, unsigned long ptr_addr)
567 {
568 unsigned long encoded;
569
570 #ifdef CONFIG_SLAB_FREELIST_HARDENED
571 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
572 #else
573 encoded = (unsigned long)ptr;
574 #endif
575 return (freeptr_t){.v = encoded};
576 }
577
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)578 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
579 freeptr_t ptr, unsigned long ptr_addr)
580 {
581 void *decoded;
582
583 #ifdef CONFIG_SLAB_FREELIST_HARDENED
584 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
585 #else
586 decoded = (void *)ptr.v;
587 #endif
588 return decoded;
589 }
590
get_freepointer(struct kmem_cache * s,void * object)591 static inline void *get_freepointer(struct kmem_cache *s, void *object)
592 {
593 unsigned long ptr_addr;
594 freeptr_t p;
595
596 object = kasan_reset_tag(object);
597 ptr_addr = (unsigned long)object + s->offset;
598 p = *(freeptr_t *)(ptr_addr);
599 return freelist_ptr_decode(s, p, ptr_addr);
600 }
601
prefetch_freepointer(const struct kmem_cache * s,void * object)602 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
603 {
604 prefetchw(object + s->offset);
605 }
606
607 /*
608 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
609 * pointer value in the case the current thread loses the race for the next
610 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
611 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
612 * KMSAN will still check all arguments of cmpxchg because of imperfect
613 * handling of inline assembly.
614 * To work around this problem, we apply __no_kmsan_checks to ensure that
615 * get_freepointer_safe() returns initialized memory.
616 */
617 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)618 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
619 {
620 unsigned long freepointer_addr;
621 freeptr_t p;
622
623 if (!debug_pagealloc_enabled_static())
624 return get_freepointer(s, object);
625
626 object = kasan_reset_tag(object);
627 freepointer_addr = (unsigned long)object + s->offset;
628 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
629 return freelist_ptr_decode(s, p, freepointer_addr);
630 }
631
set_freepointer(struct kmem_cache * s,void * object,void * fp)632 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
633 {
634 unsigned long freeptr_addr = (unsigned long)object + s->offset;
635
636 #ifdef CONFIG_SLAB_FREELIST_HARDENED
637 BUG_ON(object == fp); /* naive detection of double free or corruption */
638 #endif
639
640 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
641 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
642 }
643
644 /*
645 * See comment in calculate_sizes().
646 */
freeptr_outside_object(struct kmem_cache * s)647 static inline bool freeptr_outside_object(struct kmem_cache *s)
648 {
649 return s->offset >= s->inuse;
650 }
651
652 /*
653 * Return offset of the end of info block which is inuse + free pointer if
654 * not overlapping with object.
655 */
get_info_end(struct kmem_cache * s)656 static inline unsigned int get_info_end(struct kmem_cache *s)
657 {
658 if (freeptr_outside_object(s))
659 return s->inuse + sizeof(void *);
660 else
661 return s->inuse;
662 }
663
664 /* Loop over all objects in a slab */
665 #define for_each_object(__p, __s, __addr, __objects) \
666 for (__p = fixup_red_left(__s, __addr); \
667 __p < (__addr) + (__objects) * (__s)->size; \
668 __p += (__s)->size)
669
order_objects(unsigned int order,unsigned int size)670 static inline unsigned int order_objects(unsigned int order, unsigned int size)
671 {
672 return ((unsigned int)PAGE_SIZE << order) / size;
673 }
674
oo_make(unsigned int order,unsigned int size)675 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
676 unsigned int size)
677 {
678 struct kmem_cache_order_objects x = {
679 (order << OO_SHIFT) + order_objects(order, size)
680 };
681
682 return x;
683 }
684
oo_order(struct kmem_cache_order_objects x)685 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
686 {
687 return x.x >> OO_SHIFT;
688 }
689
oo_objects(struct kmem_cache_order_objects x)690 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
691 {
692 return x.x & OO_MASK;
693 }
694
695 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)696 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
697 {
698 unsigned int nr_slabs;
699
700 s->cpu_partial = nr_objects;
701
702 /*
703 * We take the number of objects but actually limit the number of
704 * slabs on the per cpu partial list, in order to limit excessive
705 * growth of the list. For simplicity we assume that the slabs will
706 * be half-full.
707 */
708 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
709 s->cpu_partial_slabs = nr_slabs;
710 }
711
slub_get_cpu_partial(struct kmem_cache * s)712 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
713 {
714 return s->cpu_partial_slabs;
715 }
716 #else
717 #ifdef SLAB_SUPPORTS_SYSFS
718 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)719 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
720 {
721 }
722 #endif
723
slub_get_cpu_partial(struct kmem_cache * s)724 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
725 {
726 return 0;
727 }
728 #endif /* CONFIG_SLUB_CPU_PARTIAL */
729
730 /*
731 * If network-based swap is enabled, slub must keep track of whether memory
732 * were allocated from pfmemalloc reserves.
733 */
slab_test_pfmemalloc(const struct slab * slab)734 static inline bool slab_test_pfmemalloc(const struct slab *slab)
735 {
736 return test_bit(SL_pfmemalloc, &slab->flags.f);
737 }
738
slab_set_pfmemalloc(struct slab * slab)739 static inline void slab_set_pfmemalloc(struct slab *slab)
740 {
741 set_bit(SL_pfmemalloc, &slab->flags.f);
742 }
743
__slab_clear_pfmemalloc(struct slab * slab)744 static inline void __slab_clear_pfmemalloc(struct slab *slab)
745 {
746 __clear_bit(SL_pfmemalloc, &slab->flags.f);
747 }
748
749 /*
750 * Per slab locking using the pagelock
751 */
slab_lock(struct slab * slab)752 static __always_inline void slab_lock(struct slab *slab)
753 {
754 bit_spin_lock(SL_locked, &slab->flags.f);
755 }
756
slab_unlock(struct slab * slab)757 static __always_inline void slab_unlock(struct slab *slab)
758 {
759 bit_spin_unlock(SL_locked, &slab->flags.f);
760 }
761
762 static inline bool
__update_freelist_fast(struct slab * slab,struct freelist_counters * old,struct freelist_counters * new)763 __update_freelist_fast(struct slab *slab, struct freelist_counters *old,
764 struct freelist_counters *new)
765 {
766 #ifdef system_has_freelist_aba
767 return try_cmpxchg_freelist(&slab->freelist_counters,
768 &old->freelist_counters,
769 new->freelist_counters);
770 #else
771 return false;
772 #endif
773 }
774
775 static inline bool
__update_freelist_slow(struct slab * slab,struct freelist_counters * old,struct freelist_counters * new)776 __update_freelist_slow(struct slab *slab, struct freelist_counters *old,
777 struct freelist_counters *new)
778 {
779 bool ret = false;
780
781 slab_lock(slab);
782 if (slab->freelist == old->freelist &&
783 slab->counters == old->counters) {
784 slab->freelist = new->freelist;
785 slab->counters = new->counters;
786 ret = true;
787 }
788 slab_unlock(slab);
789
790 return ret;
791 }
792
793 /*
794 * Interrupts must be disabled (for the fallback code to work right), typically
795 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
796 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
797 * allocation/ free operation in hardirq context. Therefore nothing can
798 * interrupt the operation.
799 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,struct freelist_counters * old,struct freelist_counters * new,const char * n)800 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
801 struct freelist_counters *old, struct freelist_counters *new, const char *n)
802 {
803 bool ret;
804
805 if (USE_LOCKLESS_FAST_PATH())
806 lockdep_assert_irqs_disabled();
807
808 if (s->flags & __CMPXCHG_DOUBLE)
809 ret = __update_freelist_fast(slab, old, new);
810 else
811 ret = __update_freelist_slow(slab, old, new);
812
813 if (likely(ret))
814 return true;
815
816 cpu_relax();
817 stat(s, CMPXCHG_DOUBLE_FAIL);
818
819 #ifdef SLUB_DEBUG_CMPXCHG
820 pr_info("%s %s: cmpxchg double redo ", n, s->name);
821 #endif
822
823 return false;
824 }
825
slab_update_freelist(struct kmem_cache * s,struct slab * slab,struct freelist_counters * old,struct freelist_counters * new,const char * n)826 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
827 struct freelist_counters *old, struct freelist_counters *new, const char *n)
828 {
829 bool ret;
830
831 if (s->flags & __CMPXCHG_DOUBLE) {
832 ret = __update_freelist_fast(slab, old, new);
833 } else {
834 unsigned long flags;
835
836 local_irq_save(flags);
837 ret = __update_freelist_slow(slab, old, new);
838 local_irq_restore(flags);
839 }
840 if (likely(ret))
841 return true;
842
843 cpu_relax();
844 stat(s, CMPXCHG_DOUBLE_FAIL);
845
846 #ifdef SLUB_DEBUG_CMPXCHG
847 pr_info("%s %s: cmpxchg double redo ", n, s->name);
848 #endif
849
850 return false;
851 }
852
853 /*
854 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
855 * family will round up the real request size to these fixed ones, so
856 * there could be an extra area than what is requested. Save the original
857 * request size in the meta data area, for better debug and sanity check.
858 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)859 static inline void set_orig_size(struct kmem_cache *s,
860 void *object, unsigned int orig_size)
861 {
862 void *p = kasan_reset_tag(object);
863
864 if (!slub_debug_orig_size(s))
865 return;
866
867 p += get_info_end(s);
868 p += sizeof(struct track) * 2;
869
870 *(unsigned int *)p = orig_size;
871 }
872
get_orig_size(struct kmem_cache * s,void * object)873 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
874 {
875 void *p = kasan_reset_tag(object);
876
877 if (is_kfence_address(object))
878 return kfence_ksize(object);
879
880 if (!slub_debug_orig_size(s))
881 return s->object_size;
882
883 p += get_info_end(s);
884 p += sizeof(struct track) * 2;
885
886 return *(unsigned int *)p;
887 }
888
889 #ifdef CONFIG_SLUB_DEBUG
890
891 /*
892 * For debugging context when we want to check if the struct slab pointer
893 * appears to be valid.
894 */
validate_slab_ptr(struct slab * slab)895 static inline bool validate_slab_ptr(struct slab *slab)
896 {
897 return PageSlab(slab_page(slab));
898 }
899
900 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
901 static DEFINE_SPINLOCK(object_map_lock);
902
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)903 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
904 struct slab *slab)
905 {
906 void *addr = slab_address(slab);
907 void *p;
908
909 bitmap_zero(obj_map, slab->objects);
910
911 for (p = slab->freelist; p; p = get_freepointer(s, p))
912 set_bit(__obj_to_index(s, addr, p), obj_map);
913 }
914
915 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)916 static bool slab_add_kunit_errors(void)
917 {
918 struct kunit_resource *resource;
919
920 if (!kunit_get_current_test())
921 return false;
922
923 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
924 if (!resource)
925 return false;
926
927 (*(int *)resource->data)++;
928 kunit_put_resource(resource);
929 return true;
930 }
931
slab_in_kunit_test(void)932 bool slab_in_kunit_test(void)
933 {
934 struct kunit_resource *resource;
935
936 if (!kunit_get_current_test())
937 return false;
938
939 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
940 if (!resource)
941 return false;
942
943 kunit_put_resource(resource);
944 return true;
945 }
946 #else
slab_add_kunit_errors(void)947 static inline bool slab_add_kunit_errors(void) { return false; }
948 #endif
949
size_from_object(struct kmem_cache * s)950 static inline unsigned int size_from_object(struct kmem_cache *s)
951 {
952 if (s->flags & SLAB_RED_ZONE)
953 return s->size - s->red_left_pad;
954
955 return s->size;
956 }
957
restore_red_left(struct kmem_cache * s,void * p)958 static inline void *restore_red_left(struct kmem_cache *s, void *p)
959 {
960 if (s->flags & SLAB_RED_ZONE)
961 p -= s->red_left_pad;
962
963 return p;
964 }
965
966 /*
967 * Debug settings:
968 */
969 #if defined(CONFIG_SLUB_DEBUG_ON)
970 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
971 #else
972 static slab_flags_t slub_debug;
973 #endif
974
975 static const char *slub_debug_string __ro_after_init;
976 static int disable_higher_order_debug;
977
978 /*
979 * slub is about to manipulate internal object metadata. This memory lies
980 * outside the range of the allocated object, so accessing it would normally
981 * be reported by kasan as a bounds error. metadata_access_enable() is used
982 * to tell kasan that these accesses are OK.
983 */
metadata_access_enable(void)984 static inline void metadata_access_enable(void)
985 {
986 kasan_disable_current();
987 kmsan_disable_current();
988 }
989
metadata_access_disable(void)990 static inline void metadata_access_disable(void)
991 {
992 kmsan_enable_current();
993 kasan_enable_current();
994 }
995
996 /*
997 * Object debugging
998 */
999
1000 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)1001 static inline int check_valid_pointer(struct kmem_cache *s,
1002 struct slab *slab, void *object)
1003 {
1004 void *base;
1005
1006 if (!object)
1007 return 1;
1008
1009 base = slab_address(slab);
1010 object = kasan_reset_tag(object);
1011 object = restore_red_left(s, object);
1012 if (object < base || object >= base + slab->objects * s->size ||
1013 (object - base) % s->size) {
1014 return 0;
1015 }
1016
1017 return 1;
1018 }
1019
print_section(char * level,char * text,u8 * addr,unsigned int length)1020 static void print_section(char *level, char *text, u8 *addr,
1021 unsigned int length)
1022 {
1023 metadata_access_enable();
1024 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
1025 16, 1, kasan_reset_tag((void *)addr), length, 1);
1026 metadata_access_disable();
1027 }
1028
get_track(struct kmem_cache * s,void * object,enum track_item alloc)1029 static struct track *get_track(struct kmem_cache *s, void *object,
1030 enum track_item alloc)
1031 {
1032 struct track *p;
1033
1034 p = object + get_info_end(s);
1035
1036 return kasan_reset_tag(p + alloc);
1037 }
1038
1039 #ifdef CONFIG_STACKDEPOT
set_track_prepare(gfp_t gfp_flags)1040 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1041 {
1042 depot_stack_handle_t handle;
1043 unsigned long entries[TRACK_ADDRS_COUNT];
1044 unsigned int nr_entries;
1045
1046 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
1047 handle = stack_depot_save(entries, nr_entries, gfp_flags);
1048
1049 return handle;
1050 }
1051 #else
set_track_prepare(gfp_t gfp_flags)1052 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
1053 {
1054 return 0;
1055 }
1056 #endif
1057
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)1058 static void set_track_update(struct kmem_cache *s, void *object,
1059 enum track_item alloc, unsigned long addr,
1060 depot_stack_handle_t handle)
1061 {
1062 struct track *p = get_track(s, object, alloc);
1063
1064 #ifdef CONFIG_STACKDEPOT
1065 p->handle = handle;
1066 #endif
1067 p->addr = addr;
1068 p->cpu = smp_processor_id();
1069 p->pid = current->pid;
1070 p->when = jiffies;
1071 }
1072
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)1073 static __always_inline void set_track(struct kmem_cache *s, void *object,
1074 enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1075 {
1076 depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1077
1078 set_track_update(s, object, alloc, addr, handle);
1079 }
1080
init_tracking(struct kmem_cache * s,void * object)1081 static void init_tracking(struct kmem_cache *s, void *object)
1082 {
1083 struct track *p;
1084
1085 if (!(s->flags & SLAB_STORE_USER))
1086 return;
1087
1088 p = get_track(s, object, TRACK_ALLOC);
1089 memset(p, 0, 2*sizeof(struct track));
1090 }
1091
print_track(const char * s,struct track * t,unsigned long pr_time)1092 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1093 {
1094 depot_stack_handle_t handle __maybe_unused;
1095
1096 if (!t->addr)
1097 return;
1098
1099 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1100 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1101 #ifdef CONFIG_STACKDEPOT
1102 handle = READ_ONCE(t->handle);
1103 if (handle)
1104 stack_depot_print(handle);
1105 else
1106 pr_err("object allocation/free stack trace missing\n");
1107 #endif
1108 }
1109
print_tracking(struct kmem_cache * s,void * object)1110 void print_tracking(struct kmem_cache *s, void *object)
1111 {
1112 unsigned long pr_time = jiffies;
1113 if (!(s->flags & SLAB_STORE_USER))
1114 return;
1115
1116 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1117 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1118 }
1119
print_slab_info(const struct slab * slab)1120 static void print_slab_info(const struct slab *slab)
1121 {
1122 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1123 slab, slab->objects, slab->inuse, slab->freelist,
1124 &slab->flags.f);
1125 }
1126
skip_orig_size_check(struct kmem_cache * s,const void * object)1127 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1128 {
1129 set_orig_size(s, (void *)object, s->object_size);
1130 }
1131
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1132 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1133 {
1134 struct va_format vaf;
1135 va_list args;
1136
1137 va_copy(args, argsp);
1138 vaf.fmt = fmt;
1139 vaf.va = &args;
1140 pr_err("=============================================================================\n");
1141 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1142 pr_err("-----------------------------------------------------------------------------\n\n");
1143 va_end(args);
1144 }
1145
slab_bug(struct kmem_cache * s,const char * fmt,...)1146 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1147 {
1148 va_list args;
1149
1150 va_start(args, fmt);
1151 __slab_bug(s, fmt, args);
1152 va_end(args);
1153 }
1154
1155 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1156 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1157 {
1158 struct va_format vaf;
1159 va_list args;
1160
1161 if (slab_add_kunit_errors())
1162 return;
1163
1164 va_start(args, fmt);
1165 vaf.fmt = fmt;
1166 vaf.va = &args;
1167 pr_err("FIX %s: %pV\n", s->name, &vaf);
1168 va_end(args);
1169 }
1170
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1171 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1172 {
1173 unsigned int off; /* Offset of last byte */
1174 u8 *addr = slab_address(slab);
1175
1176 print_tracking(s, p);
1177
1178 print_slab_info(slab);
1179
1180 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1181 p, p - addr, get_freepointer(s, p));
1182
1183 if (s->flags & SLAB_RED_ZONE)
1184 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1185 s->red_left_pad);
1186 else if (p > addr + 16)
1187 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1188
1189 print_section(KERN_ERR, "Object ", p,
1190 min_t(unsigned int, s->object_size, PAGE_SIZE));
1191 if (s->flags & SLAB_RED_ZONE)
1192 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1193 s->inuse - s->object_size);
1194
1195 off = get_info_end(s);
1196
1197 if (s->flags & SLAB_STORE_USER)
1198 off += 2 * sizeof(struct track);
1199
1200 if (slub_debug_orig_size(s))
1201 off += sizeof(unsigned int);
1202
1203 off += kasan_metadata_size(s, false);
1204
1205 if (off != size_from_object(s))
1206 /* Beginning of the filler is the free pointer */
1207 print_section(KERN_ERR, "Padding ", p + off,
1208 size_from_object(s) - off);
1209 }
1210
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1211 static void object_err(struct kmem_cache *s, struct slab *slab,
1212 u8 *object, const char *reason)
1213 {
1214 if (slab_add_kunit_errors())
1215 return;
1216
1217 slab_bug(s, reason);
1218 if (!object || !check_valid_pointer(s, slab, object)) {
1219 print_slab_info(slab);
1220 pr_err("Invalid pointer 0x%p\n", object);
1221 } else {
1222 print_trailer(s, slab, object);
1223 }
1224 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1225
1226 WARN_ON(1);
1227 }
1228
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1229 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1230 void **freelist, void *nextfree)
1231 {
1232 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1233 !check_valid_pointer(s, slab, nextfree) && freelist) {
1234 object_err(s, slab, *freelist, "Freechain corrupt");
1235 *freelist = NULL;
1236 slab_fix(s, "Isolate corrupted freechain");
1237 return true;
1238 }
1239
1240 return false;
1241 }
1242
__slab_err(struct slab * slab)1243 static void __slab_err(struct slab *slab)
1244 {
1245 if (slab_in_kunit_test())
1246 return;
1247
1248 print_slab_info(slab);
1249 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1250
1251 WARN_ON(1);
1252 }
1253
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1254 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1255 const char *fmt, ...)
1256 {
1257 va_list args;
1258
1259 if (slab_add_kunit_errors())
1260 return;
1261
1262 va_start(args, fmt);
1263 __slab_bug(s, fmt, args);
1264 va_end(args);
1265
1266 __slab_err(slab);
1267 }
1268
init_object(struct kmem_cache * s,void * object,u8 val)1269 static void init_object(struct kmem_cache *s, void *object, u8 val)
1270 {
1271 u8 *p = kasan_reset_tag(object);
1272 unsigned int poison_size = s->object_size;
1273
1274 if (s->flags & SLAB_RED_ZONE) {
1275 /*
1276 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1277 * the shadow makes it possible to distinguish uninit-value
1278 * from use-after-free.
1279 */
1280 memset_no_sanitize_memory(p - s->red_left_pad, val,
1281 s->red_left_pad);
1282
1283 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1284 /*
1285 * Redzone the extra allocated space by kmalloc than
1286 * requested, and the poison size will be limited to
1287 * the original request size accordingly.
1288 */
1289 poison_size = get_orig_size(s, object);
1290 }
1291 }
1292
1293 if (s->flags & __OBJECT_POISON) {
1294 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1295 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1296 }
1297
1298 if (s->flags & SLAB_RED_ZONE)
1299 memset_no_sanitize_memory(p + poison_size, val,
1300 s->inuse - poison_size);
1301 }
1302
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1303 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1304 void *from, void *to)
1305 {
1306 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1307 memset(from, data, to - from);
1308 }
1309
1310 #ifdef CONFIG_KMSAN
1311 #define pad_check_attributes noinline __no_kmsan_checks
1312 #else
1313 #define pad_check_attributes
1314 #endif
1315
1316 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1317 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1318 u8 *object, const char *what, u8 *start, unsigned int value,
1319 unsigned int bytes, bool slab_obj_print)
1320 {
1321 u8 *fault;
1322 u8 *end;
1323 u8 *addr = slab_address(slab);
1324
1325 metadata_access_enable();
1326 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1327 metadata_access_disable();
1328 if (!fault)
1329 return 1;
1330
1331 end = start + bytes;
1332 while (end > fault && end[-1] == value)
1333 end--;
1334
1335 if (slab_add_kunit_errors())
1336 goto skip_bug_print;
1337
1338 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1339 what, fault, end - 1, fault - addr, fault[0], value);
1340
1341 if (slab_obj_print)
1342 object_err(s, slab, object, "Object corrupt");
1343
1344 skip_bug_print:
1345 restore_bytes(s, what, value, fault, end);
1346 return 0;
1347 }
1348
1349 /*
1350 * Object layout:
1351 *
1352 * object address
1353 * Bytes of the object to be managed.
1354 * If the freepointer may overlay the object then the free
1355 * pointer is at the middle of the object.
1356 *
1357 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1358 * 0xa5 (POISON_END)
1359 *
1360 * object + s->object_size
1361 * Padding to reach word boundary. This is also used for Redzoning.
1362 * Padding is extended by another word if Redzoning is enabled and
1363 * object_size == inuse.
1364 *
1365 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1366 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1367 *
1368 * object + s->inuse
1369 * Meta data starts here.
1370 *
1371 * A. Free pointer (if we cannot overwrite object on free)
1372 * B. Tracking data for SLAB_STORE_USER
1373 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1374 * D. Padding to reach required alignment boundary or at minimum
1375 * one word if debugging is on to be able to detect writes
1376 * before the word boundary.
1377 *
1378 * Padding is done using 0x5a (POISON_INUSE)
1379 *
1380 * object + s->size
1381 * Nothing is used beyond s->size.
1382 *
1383 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1384 * ignored. And therefore no slab options that rely on these boundaries
1385 * may be used with merged slabcaches.
1386 */
1387
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1388 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1389 {
1390 unsigned long off = get_info_end(s); /* The end of info */
1391
1392 if (s->flags & SLAB_STORE_USER) {
1393 /* We also have user information there */
1394 off += 2 * sizeof(struct track);
1395
1396 if (s->flags & SLAB_KMALLOC)
1397 off += sizeof(unsigned int);
1398 }
1399
1400 off += kasan_metadata_size(s, false);
1401
1402 if (size_from_object(s) == off)
1403 return 1;
1404
1405 return check_bytes_and_report(s, slab, p, "Object padding",
1406 p + off, POISON_INUSE, size_from_object(s) - off, true);
1407 }
1408
1409 /* Check the pad bytes at the end of a slab page */
1410 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1411 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1412 {
1413 u8 *start;
1414 u8 *fault;
1415 u8 *end;
1416 u8 *pad;
1417 int length;
1418 int remainder;
1419
1420 if (!(s->flags & SLAB_POISON))
1421 return;
1422
1423 start = slab_address(slab);
1424 length = slab_size(slab);
1425 end = start + length;
1426 remainder = length % s->size;
1427 if (!remainder)
1428 return;
1429
1430 pad = end - remainder;
1431 metadata_access_enable();
1432 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1433 metadata_access_disable();
1434 if (!fault)
1435 return;
1436 while (end > fault && end[-1] == POISON_INUSE)
1437 end--;
1438
1439 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1440 fault, end - 1, fault - start);
1441 print_section(KERN_ERR, "Padding ", pad, remainder);
1442 __slab_err(slab);
1443
1444 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1445 }
1446
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1447 static int check_object(struct kmem_cache *s, struct slab *slab,
1448 void *object, u8 val)
1449 {
1450 u8 *p = object;
1451 u8 *endobject = object + s->object_size;
1452 unsigned int orig_size, kasan_meta_size;
1453 int ret = 1;
1454
1455 if (s->flags & SLAB_RED_ZONE) {
1456 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1457 object - s->red_left_pad, val, s->red_left_pad, ret))
1458 ret = 0;
1459
1460 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1461 endobject, val, s->inuse - s->object_size, ret))
1462 ret = 0;
1463
1464 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1465 orig_size = get_orig_size(s, object);
1466
1467 if (s->object_size > orig_size &&
1468 !check_bytes_and_report(s, slab, object,
1469 "kmalloc Redzone", p + orig_size,
1470 val, s->object_size - orig_size, ret)) {
1471 ret = 0;
1472 }
1473 }
1474 } else {
1475 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1476 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1477 endobject, POISON_INUSE,
1478 s->inuse - s->object_size, ret))
1479 ret = 0;
1480 }
1481 }
1482
1483 if (s->flags & SLAB_POISON) {
1484 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1485 /*
1486 * KASAN can save its free meta data inside of the
1487 * object at offset 0. Thus, skip checking the part of
1488 * the redzone that overlaps with the meta data.
1489 */
1490 kasan_meta_size = kasan_metadata_size(s, true);
1491 if (kasan_meta_size < s->object_size - 1 &&
1492 !check_bytes_and_report(s, slab, p, "Poison",
1493 p + kasan_meta_size, POISON_FREE,
1494 s->object_size - kasan_meta_size - 1, ret))
1495 ret = 0;
1496 if (kasan_meta_size < s->object_size &&
1497 !check_bytes_and_report(s, slab, p, "End Poison",
1498 p + s->object_size - 1, POISON_END, 1, ret))
1499 ret = 0;
1500 }
1501 /*
1502 * check_pad_bytes cleans up on its own.
1503 */
1504 if (!check_pad_bytes(s, slab, p))
1505 ret = 0;
1506 }
1507
1508 /*
1509 * Cannot check freepointer while object is allocated if
1510 * object and freepointer overlap.
1511 */
1512 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1513 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1514 object_err(s, slab, p, "Freepointer corrupt");
1515 /*
1516 * No choice but to zap it and thus lose the remainder
1517 * of the free objects in this slab. May cause
1518 * another error because the object count is now wrong.
1519 */
1520 set_freepointer(s, p, NULL);
1521 ret = 0;
1522 }
1523
1524 return ret;
1525 }
1526
1527 /*
1528 * Checks if the slab state looks sane. Assumes the struct slab pointer
1529 * was either obtained in a way that ensures it's valid, or validated
1530 * by validate_slab_ptr()
1531 */
check_slab(struct kmem_cache * s,struct slab * slab)1532 static int check_slab(struct kmem_cache *s, struct slab *slab)
1533 {
1534 int maxobj;
1535
1536 maxobj = order_objects(slab_order(slab), s->size);
1537 if (slab->objects > maxobj) {
1538 slab_err(s, slab, "objects %u > max %u",
1539 slab->objects, maxobj);
1540 return 0;
1541 }
1542 if (slab->inuse > slab->objects) {
1543 slab_err(s, slab, "inuse %u > max %u",
1544 slab->inuse, slab->objects);
1545 return 0;
1546 }
1547 if (slab->frozen) {
1548 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1549 return 0;
1550 }
1551
1552 /* Slab_pad_check fixes things up after itself */
1553 slab_pad_check(s, slab);
1554 return 1;
1555 }
1556
1557 /*
1558 * Determine if a certain object in a slab is on the freelist. Must hold the
1559 * slab lock to guarantee that the chains are in a consistent state.
1560 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1561 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1562 {
1563 int nr = 0;
1564 void *fp;
1565 void *object = NULL;
1566 int max_objects;
1567
1568 fp = slab->freelist;
1569 while (fp && nr <= slab->objects) {
1570 if (fp == search)
1571 return true;
1572 if (!check_valid_pointer(s, slab, fp)) {
1573 if (object) {
1574 object_err(s, slab, object,
1575 "Freechain corrupt");
1576 set_freepointer(s, object, NULL);
1577 break;
1578 } else {
1579 slab_err(s, slab, "Freepointer corrupt");
1580 slab->freelist = NULL;
1581 slab->inuse = slab->objects;
1582 slab_fix(s, "Freelist cleared");
1583 return false;
1584 }
1585 }
1586 object = fp;
1587 fp = get_freepointer(s, object);
1588 nr++;
1589 }
1590
1591 if (nr > slab->objects) {
1592 slab_err(s, slab, "Freelist cycle detected");
1593 slab->freelist = NULL;
1594 slab->inuse = slab->objects;
1595 slab_fix(s, "Freelist cleared");
1596 return false;
1597 }
1598
1599 max_objects = order_objects(slab_order(slab), s->size);
1600 if (max_objects > MAX_OBJS_PER_PAGE)
1601 max_objects = MAX_OBJS_PER_PAGE;
1602
1603 if (slab->objects != max_objects) {
1604 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1605 slab->objects, max_objects);
1606 slab->objects = max_objects;
1607 slab_fix(s, "Number of objects adjusted");
1608 }
1609 if (slab->inuse != slab->objects - nr) {
1610 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1611 slab->inuse, slab->objects - nr);
1612 slab->inuse = slab->objects - nr;
1613 slab_fix(s, "Object count adjusted");
1614 }
1615 return search == NULL;
1616 }
1617
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1618 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1619 int alloc)
1620 {
1621 if (s->flags & SLAB_TRACE) {
1622 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1623 s->name,
1624 alloc ? "alloc" : "free",
1625 object, slab->inuse,
1626 slab->freelist);
1627
1628 if (!alloc)
1629 print_section(KERN_INFO, "Object ", (void *)object,
1630 s->object_size);
1631
1632 dump_stack();
1633 }
1634 }
1635
1636 /*
1637 * Tracking of fully allocated slabs for debugging purposes.
1638 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1639 static void add_full(struct kmem_cache *s,
1640 struct kmem_cache_node *n, struct slab *slab)
1641 {
1642 if (!(s->flags & SLAB_STORE_USER))
1643 return;
1644
1645 lockdep_assert_held(&n->list_lock);
1646 list_add(&slab->slab_list, &n->full);
1647 }
1648
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1649 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1650 {
1651 if (!(s->flags & SLAB_STORE_USER))
1652 return;
1653
1654 lockdep_assert_held(&n->list_lock);
1655 list_del(&slab->slab_list);
1656 }
1657
node_nr_slabs(struct kmem_cache_node * n)1658 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1659 {
1660 return atomic_long_read(&n->nr_slabs);
1661 }
1662
inc_slabs_node(struct kmem_cache * s,int node,int objects)1663 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1664 {
1665 struct kmem_cache_node *n = get_node(s, node);
1666
1667 atomic_long_inc(&n->nr_slabs);
1668 atomic_long_add(objects, &n->total_objects);
1669 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1670 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1671 {
1672 struct kmem_cache_node *n = get_node(s, node);
1673
1674 atomic_long_dec(&n->nr_slabs);
1675 atomic_long_sub(objects, &n->total_objects);
1676 }
1677
1678 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1679 static void setup_object_debug(struct kmem_cache *s, void *object)
1680 {
1681 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1682 return;
1683
1684 init_object(s, object, SLUB_RED_INACTIVE);
1685 init_tracking(s, object);
1686 }
1687
1688 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1689 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1690 {
1691 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1692 return;
1693
1694 metadata_access_enable();
1695 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1696 metadata_access_disable();
1697 }
1698
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1699 static inline int alloc_consistency_checks(struct kmem_cache *s,
1700 struct slab *slab, void *object)
1701 {
1702 if (!check_slab(s, slab))
1703 return 0;
1704
1705 if (!check_valid_pointer(s, slab, object)) {
1706 object_err(s, slab, object, "Freelist Pointer check fails");
1707 return 0;
1708 }
1709
1710 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1711 return 0;
1712
1713 return 1;
1714 }
1715
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1716 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1717 struct slab *slab, void *object, int orig_size)
1718 {
1719 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1720 if (!alloc_consistency_checks(s, slab, object))
1721 goto bad;
1722 }
1723
1724 /* Success. Perform special debug activities for allocs */
1725 trace(s, slab, object, 1);
1726 set_orig_size(s, object, orig_size);
1727 init_object(s, object, SLUB_RED_ACTIVE);
1728 return true;
1729
1730 bad:
1731 /*
1732 * Let's do the best we can to avoid issues in the future. Marking all
1733 * objects as used avoids touching the remaining objects.
1734 */
1735 slab_fix(s, "Marking all objects used");
1736 slab->inuse = slab->objects;
1737 slab->freelist = NULL;
1738 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1739
1740 return false;
1741 }
1742
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1743 static inline int free_consistency_checks(struct kmem_cache *s,
1744 struct slab *slab, void *object, unsigned long addr)
1745 {
1746 if (!check_valid_pointer(s, slab, object)) {
1747 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1748 return 0;
1749 }
1750
1751 if (on_freelist(s, slab, object)) {
1752 object_err(s, slab, object, "Object already free");
1753 return 0;
1754 }
1755
1756 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1757 return 0;
1758
1759 if (unlikely(s != slab->slab_cache)) {
1760 if (!slab->slab_cache) {
1761 slab_err(NULL, slab, "No slab cache for object 0x%p",
1762 object);
1763 } else {
1764 object_err(s, slab, object,
1765 "page slab pointer corrupt.");
1766 }
1767 return 0;
1768 }
1769 return 1;
1770 }
1771
1772 /*
1773 * Parse a block of slab_debug options. Blocks are delimited by ';'
1774 *
1775 * @str: start of block
1776 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1777 * @slabs: return start of list of slabs, or NULL when there's no list
1778 * @init: assume this is initial parsing and not per-kmem-create parsing
1779 *
1780 * returns the start of next block if there's any, or NULL
1781 */
1782 static const char *
parse_slub_debug_flags(const char * str,slab_flags_t * flags,const char ** slabs,bool init)1783 parse_slub_debug_flags(const char *str, slab_flags_t *flags, const char **slabs, bool init)
1784 {
1785 bool higher_order_disable = false;
1786
1787 /* Skip any completely empty blocks */
1788 while (*str && *str == ';')
1789 str++;
1790
1791 if (*str == ',') {
1792 /*
1793 * No options but restriction on slabs. This means full
1794 * debugging for slabs matching a pattern.
1795 */
1796 *flags = DEBUG_DEFAULT_FLAGS;
1797 goto check_slabs;
1798 }
1799 *flags = 0;
1800
1801 /* Determine which debug features should be switched on */
1802 for (; *str && *str != ',' && *str != ';'; str++) {
1803 switch (tolower(*str)) {
1804 case '-':
1805 *flags = 0;
1806 break;
1807 case 'f':
1808 *flags |= SLAB_CONSISTENCY_CHECKS;
1809 break;
1810 case 'z':
1811 *flags |= SLAB_RED_ZONE;
1812 break;
1813 case 'p':
1814 *flags |= SLAB_POISON;
1815 break;
1816 case 'u':
1817 *flags |= SLAB_STORE_USER;
1818 break;
1819 case 't':
1820 *flags |= SLAB_TRACE;
1821 break;
1822 case 'a':
1823 *flags |= SLAB_FAILSLAB;
1824 break;
1825 case 'o':
1826 /*
1827 * Avoid enabling debugging on caches if its minimum
1828 * order would increase as a result.
1829 */
1830 higher_order_disable = true;
1831 break;
1832 default:
1833 if (init)
1834 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1835 }
1836 }
1837 check_slabs:
1838 if (*str == ',')
1839 *slabs = ++str;
1840 else
1841 *slabs = NULL;
1842
1843 /* Skip over the slab list */
1844 while (*str && *str != ';')
1845 str++;
1846
1847 /* Skip any completely empty blocks */
1848 while (*str && *str == ';')
1849 str++;
1850
1851 if (init && higher_order_disable)
1852 disable_higher_order_debug = 1;
1853
1854 if (*str)
1855 return str;
1856 else
1857 return NULL;
1858 }
1859
setup_slub_debug(const char * str,const struct kernel_param * kp)1860 static int __init setup_slub_debug(const char *str, const struct kernel_param *kp)
1861 {
1862 slab_flags_t flags;
1863 slab_flags_t global_flags;
1864 const char *saved_str;
1865 const char *slab_list;
1866 bool global_slub_debug_changed = false;
1867 bool slab_list_specified = false;
1868
1869 global_flags = DEBUG_DEFAULT_FLAGS;
1870 if (!str || !*str)
1871 /*
1872 * No options specified. Switch on full debugging.
1873 */
1874 goto out;
1875
1876 saved_str = str;
1877 while (str) {
1878 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1879
1880 if (!slab_list) {
1881 global_flags = flags;
1882 global_slub_debug_changed = true;
1883 } else {
1884 slab_list_specified = true;
1885 if (flags & SLAB_STORE_USER)
1886 stack_depot_request_early_init();
1887 }
1888 }
1889
1890 /*
1891 * For backwards compatibility, a single list of flags with list of
1892 * slabs means debugging is only changed for those slabs, so the global
1893 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1894 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1895 * long as there is no option specifying flags without a slab list.
1896 */
1897 if (slab_list_specified) {
1898 if (!global_slub_debug_changed)
1899 global_flags = slub_debug;
1900 slub_debug_string = saved_str;
1901 }
1902 out:
1903 slub_debug = global_flags;
1904 if (slub_debug & SLAB_STORE_USER)
1905 stack_depot_request_early_init();
1906 if (slub_debug != 0 || slub_debug_string)
1907 static_branch_enable(&slub_debug_enabled);
1908 else
1909 static_branch_disable(&slub_debug_enabled);
1910 if ((static_branch_unlikely(&init_on_alloc) ||
1911 static_branch_unlikely(&init_on_free)) &&
1912 (slub_debug & SLAB_POISON))
1913 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1914 return 0;
1915 }
1916
1917 static const struct kernel_param_ops param_ops_slab_debug __initconst = {
1918 .flags = KERNEL_PARAM_OPS_FL_NOARG,
1919 .set = setup_slub_debug,
1920 };
1921 __core_param_cb(slab_debug, ¶m_ops_slab_debug, NULL, 0);
1922 __core_param_cb(slub_debug, ¶m_ops_slab_debug, NULL, 0);
1923
1924 /*
1925 * kmem_cache_flags - apply debugging options to the cache
1926 * @flags: flags to set
1927 * @name: name of the cache
1928 *
1929 * Debug option(s) are applied to @flags. In addition to the debug
1930 * option(s), if a slab name (or multiple) is specified i.e.
1931 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1932 * then only the select slabs will receive the debug option(s).
1933 */
kmem_cache_flags(slab_flags_t flags,const char * name)1934 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1935 {
1936 const char *iter;
1937 size_t len;
1938 const char *next_block;
1939 slab_flags_t block_flags;
1940 slab_flags_t slub_debug_local = slub_debug;
1941
1942 if (flags & SLAB_NO_USER_FLAGS)
1943 return flags;
1944
1945 /*
1946 * If the slab cache is for debugging (e.g. kmemleak) then
1947 * don't store user (stack trace) information by default,
1948 * but let the user enable it via the command line below.
1949 */
1950 if (flags & SLAB_NOLEAKTRACE)
1951 slub_debug_local &= ~SLAB_STORE_USER;
1952
1953 len = strlen(name);
1954 next_block = slub_debug_string;
1955 /* Go through all blocks of debug options, see if any matches our slab's name */
1956 while (next_block) {
1957 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1958 if (!iter)
1959 continue;
1960 /* Found a block that has a slab list, search it */
1961 while (*iter) {
1962 const char *end, *glob;
1963 size_t cmplen;
1964
1965 end = strchrnul(iter, ',');
1966 if (next_block && next_block < end)
1967 end = next_block - 1;
1968
1969 glob = strnchr(iter, end - iter, '*');
1970 if (glob)
1971 cmplen = glob - iter;
1972 else
1973 cmplen = max_t(size_t, len, (end - iter));
1974
1975 if (!strncmp(name, iter, cmplen)) {
1976 flags |= block_flags;
1977 return flags;
1978 }
1979
1980 if (!*end || *end == ';')
1981 break;
1982 iter = end + 1;
1983 }
1984 }
1985
1986 return flags | slub_debug_local;
1987 }
1988 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1989 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1990 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1991 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1992
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1993 static inline bool alloc_debug_processing(struct kmem_cache *s,
1994 struct slab *slab, void *object, int orig_size) { return true; }
1995
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1996 static inline bool free_debug_processing(struct kmem_cache *s,
1997 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1998 unsigned long addr, depot_stack_handle_t handle) { return true; }
1999
slab_pad_check(struct kmem_cache * s,struct slab * slab)2000 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)2001 static inline int check_object(struct kmem_cache *s, struct slab *slab,
2002 void *object, u8 val) { return 1; }
set_track_prepare(gfp_t gfp_flags)2003 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)2004 static inline void set_track(struct kmem_cache *s, void *object,
2005 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2006 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
2007 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)2008 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
2009 struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)2010 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
2011 {
2012 return flags;
2013 }
2014 #define slub_debug 0
2015
2016 #define disable_higher_order_debug 0
2017
node_nr_slabs(struct kmem_cache_node * n)2018 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
2019 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)2020 static inline void inc_slabs_node(struct kmem_cache *s, int node,
2021 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)2022 static inline void dec_slabs_node(struct kmem_cache *s, int node,
2023 int objects) {}
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)2024 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
2025 void **freelist, void *nextfree)
2026 {
2027 return false;
2028 }
2029 #endif /* CONFIG_SLUB_DEBUG */
2030
2031 /*
2032 * The allocated objcg pointers array is not accounted directly.
2033 * Moreover, it should not come from DMA buffer and is not readily
2034 * reclaimable. So those GFP bits should be masked off.
2035 */
2036 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2037 __GFP_ACCOUNT | __GFP_NOFAIL)
2038
2039 #ifdef CONFIG_SLAB_OBJ_EXT
2040
2041 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
2042
mark_objexts_empty(struct slabobj_ext * obj_exts)2043 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
2044 {
2045 struct slabobj_ext *slab_exts;
2046 struct slab *obj_exts_slab;
2047
2048 obj_exts_slab = virt_to_slab(obj_exts);
2049 slab_exts = slab_obj_exts(obj_exts_slab);
2050 if (slab_exts) {
2051 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
2052 obj_exts_slab, obj_exts);
2053
2054 if (unlikely(is_codetag_empty(&slab_exts[offs].ref)))
2055 return;
2056
2057 /* codetag should be NULL here */
2058 WARN_ON(slab_exts[offs].ref.ct);
2059 set_codetag_empty(&slab_exts[offs].ref);
2060 }
2061 }
2062
mark_failed_objexts_alloc(struct slab * slab)2063 static inline bool mark_failed_objexts_alloc(struct slab *slab)
2064 {
2065 return cmpxchg(&slab->obj_exts, 0, OBJEXTS_ALLOC_FAIL) == 0;
2066 }
2067
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2068 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2069 struct slabobj_ext *vec, unsigned int objects)
2070 {
2071 /*
2072 * If vector previously failed to allocate then we have live
2073 * objects with no tag reference. Mark all references in this
2074 * vector as empty to avoid warnings later on.
2075 */
2076 if (obj_exts == OBJEXTS_ALLOC_FAIL) {
2077 unsigned int i;
2078
2079 for (i = 0; i < objects; i++)
2080 set_codetag_empty(&vec[i].ref);
2081 }
2082 }
2083
2084 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2085
mark_objexts_empty(struct slabobj_ext * obj_exts)2086 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)2087 static inline bool mark_failed_objexts_alloc(struct slab *slab) { return false; }
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2088 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2089 struct slabobj_ext *vec, unsigned int objects) {}
2090
2091 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2092
init_slab_obj_exts(struct slab * slab)2093 static inline void init_slab_obj_exts(struct slab *slab)
2094 {
2095 slab->obj_exts = 0;
2096 }
2097
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2098 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2099 gfp_t gfp, bool new_slab)
2100 {
2101 bool allow_spin = gfpflags_allow_spinning(gfp);
2102 unsigned int objects = objs_per_slab(s, slab);
2103 unsigned long new_exts;
2104 unsigned long old_exts;
2105 struct slabobj_ext *vec;
2106
2107 gfp &= ~OBJCGS_CLEAR_MASK;
2108 /* Prevent recursive extension vector allocation */
2109 gfp |= __GFP_NO_OBJ_EXT;
2110
2111 /*
2112 * Note that allow_spin may be false during early boot and its
2113 * restricted GFP_BOOT_MASK. Due to kmalloc_nolock() only supporting
2114 * architectures with cmpxchg16b, early obj_exts will be missing for
2115 * very early allocations on those.
2116 */
2117 if (unlikely(!allow_spin)) {
2118 size_t sz = objects * sizeof(struct slabobj_ext);
2119
2120 vec = kmalloc_nolock(sz, __GFP_ZERO | __GFP_NO_OBJ_EXT,
2121 slab_nid(slab));
2122 } else {
2123 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2124 slab_nid(slab));
2125 }
2126 if (!vec) {
2127 /*
2128 * Try to mark vectors which failed to allocate.
2129 * If this operation fails, there may be a racing process
2130 * that has already completed the allocation.
2131 */
2132 if (!mark_failed_objexts_alloc(slab) &&
2133 slab_obj_exts(slab))
2134 return 0;
2135
2136 return -ENOMEM;
2137 }
2138
2139 new_exts = (unsigned long)vec;
2140 if (unlikely(!allow_spin))
2141 new_exts |= OBJEXTS_NOSPIN_ALLOC;
2142 #ifdef CONFIG_MEMCG
2143 new_exts |= MEMCG_DATA_OBJEXTS;
2144 #endif
2145 retry:
2146 old_exts = READ_ONCE(slab->obj_exts);
2147 handle_failed_objexts_alloc(old_exts, vec, objects);
2148 if (new_slab) {
2149 /*
2150 * If the slab is brand new and nobody can yet access its
2151 * obj_exts, no synchronization is required and obj_exts can
2152 * be simply assigned.
2153 */
2154 slab->obj_exts = new_exts;
2155 } else if (old_exts & ~OBJEXTS_FLAGS_MASK) {
2156 /*
2157 * If the slab is already in use, somebody can allocate and
2158 * assign slabobj_exts in parallel. In this case the existing
2159 * objcg vector should be reused.
2160 */
2161 mark_objexts_empty(vec);
2162 if (unlikely(!allow_spin))
2163 kfree_nolock(vec);
2164 else
2165 kfree(vec);
2166 return 0;
2167 } else if (cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2168 /* Retry if a racing thread changed slab->obj_exts from under us. */
2169 goto retry;
2170 }
2171
2172 if (allow_spin)
2173 kmemleak_not_leak(vec);
2174 return 0;
2175 }
2176
free_slab_obj_exts(struct slab * slab)2177 static inline void free_slab_obj_exts(struct slab *slab)
2178 {
2179 struct slabobj_ext *obj_exts;
2180
2181 obj_exts = slab_obj_exts(slab);
2182 if (!obj_exts) {
2183 /*
2184 * If obj_exts allocation failed, slab->obj_exts is set to
2185 * OBJEXTS_ALLOC_FAIL. In this case, we end up here and should
2186 * clear the flag.
2187 */
2188 slab->obj_exts = 0;
2189 return;
2190 }
2191
2192 /*
2193 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2194 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2195 * warning if slab has extensions but the extension of an object is
2196 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2197 * the extension for obj_exts is expected to be NULL.
2198 */
2199 mark_objexts_empty(obj_exts);
2200 if (unlikely(READ_ONCE(slab->obj_exts) & OBJEXTS_NOSPIN_ALLOC))
2201 kfree_nolock(obj_exts);
2202 else
2203 kfree(obj_exts);
2204 slab->obj_exts = 0;
2205 }
2206
2207 #else /* CONFIG_SLAB_OBJ_EXT */
2208
init_slab_obj_exts(struct slab * slab)2209 static inline void init_slab_obj_exts(struct slab *slab)
2210 {
2211 }
2212
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2213 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2214 gfp_t gfp, bool new_slab)
2215 {
2216 return 0;
2217 }
2218
free_slab_obj_exts(struct slab * slab)2219 static inline void free_slab_obj_exts(struct slab *slab)
2220 {
2221 }
2222
2223 #endif /* CONFIG_SLAB_OBJ_EXT */
2224
2225 #ifdef CONFIG_MEM_ALLOC_PROFILING
2226
2227 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2228 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2229 {
2230 struct slab *slab;
2231
2232 slab = virt_to_slab(p);
2233 if (!slab_obj_exts(slab) &&
2234 alloc_slab_obj_exts(slab, s, flags, false)) {
2235 pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2236 __func__, s->name);
2237 return NULL;
2238 }
2239
2240 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2241 }
2242
2243 /* Should be called only if mem_alloc_profiling_enabled() */
2244 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2245 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2246 {
2247 struct slabobj_ext *obj_exts;
2248
2249 if (!object)
2250 return;
2251
2252 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2253 return;
2254
2255 if (flags & __GFP_NO_OBJ_EXT)
2256 return;
2257
2258 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2259 /*
2260 * Currently obj_exts is used only for allocation profiling.
2261 * If other users appear then mem_alloc_profiling_enabled()
2262 * check should be added before alloc_tag_add().
2263 */
2264 if (likely(obj_exts))
2265 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2266 else
2267 alloc_tag_set_inaccurate(current->alloc_tag);
2268 }
2269
2270 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2271 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2272 {
2273 if (mem_alloc_profiling_enabled())
2274 __alloc_tagging_slab_alloc_hook(s, object, flags);
2275 }
2276
2277 /* Should be called only if mem_alloc_profiling_enabled() */
2278 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2279 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2280 int objects)
2281 {
2282 struct slabobj_ext *obj_exts;
2283 int i;
2284
2285 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2286 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2287 return;
2288
2289 obj_exts = slab_obj_exts(slab);
2290 if (!obj_exts)
2291 return;
2292
2293 for (i = 0; i < objects; i++) {
2294 unsigned int off = obj_to_index(s, slab, p[i]);
2295
2296 alloc_tag_sub(&obj_exts[off].ref, s->size);
2297 }
2298 }
2299
2300 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2301 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2302 int objects)
2303 {
2304 if (mem_alloc_profiling_enabled())
2305 __alloc_tagging_slab_free_hook(s, slab, p, objects);
2306 }
2307
2308 #else /* CONFIG_MEM_ALLOC_PROFILING */
2309
2310 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2311 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2312 {
2313 }
2314
2315 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2316 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2317 int objects)
2318 {
2319 }
2320
2321 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2322
2323
2324 #ifdef CONFIG_MEMCG
2325
2326 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2327
2328 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2329 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2330 gfp_t flags, size_t size, void **p)
2331 {
2332 if (likely(!memcg_kmem_online()))
2333 return true;
2334
2335 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2336 return true;
2337
2338 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2339 return true;
2340
2341 if (likely(size == 1)) {
2342 memcg_alloc_abort_single(s, *p);
2343 *p = NULL;
2344 } else {
2345 kmem_cache_free_bulk(s, size, p);
2346 }
2347
2348 return false;
2349 }
2350
2351 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2352 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2353 int objects)
2354 {
2355 struct slabobj_ext *obj_exts;
2356
2357 if (!memcg_kmem_online())
2358 return;
2359
2360 obj_exts = slab_obj_exts(slab);
2361 if (likely(!obj_exts))
2362 return;
2363
2364 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2365 }
2366
2367 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2368 bool memcg_slab_post_charge(void *p, gfp_t flags)
2369 {
2370 struct slabobj_ext *slab_exts;
2371 struct kmem_cache *s;
2372 struct page *page;
2373 struct slab *slab;
2374 unsigned long off;
2375
2376 page = virt_to_page(p);
2377 if (PageLargeKmalloc(page)) {
2378 unsigned int order;
2379 int size;
2380
2381 if (PageMemcgKmem(page))
2382 return true;
2383
2384 order = large_kmalloc_order(page);
2385 if (__memcg_kmem_charge_page(page, flags, order))
2386 return false;
2387
2388 /*
2389 * This page has already been accounted in the global stats but
2390 * not in the memcg stats. So, subtract from the global and use
2391 * the interface which adds to both global and memcg stats.
2392 */
2393 size = PAGE_SIZE << order;
2394 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B, -size);
2395 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, size);
2396 return true;
2397 }
2398
2399 slab = page_slab(page);
2400 s = slab->slab_cache;
2401
2402 /*
2403 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2404 * of slab_obj_exts being allocated from the same slab and thus the slab
2405 * becoming effectively unfreeable.
2406 */
2407 if (is_kmalloc_normal(s))
2408 return true;
2409
2410 /* Ignore already charged objects. */
2411 slab_exts = slab_obj_exts(slab);
2412 if (slab_exts) {
2413 off = obj_to_index(s, slab, p);
2414 if (unlikely(slab_exts[off].objcg))
2415 return true;
2416 }
2417
2418 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2419 }
2420
2421 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2422 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2423 struct list_lru *lru,
2424 gfp_t flags, size_t size,
2425 void **p)
2426 {
2427 return true;
2428 }
2429
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2430 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2431 void **p, int objects)
2432 {
2433 }
2434
memcg_slab_post_charge(void * p,gfp_t flags)2435 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2436 {
2437 return true;
2438 }
2439 #endif /* CONFIG_MEMCG */
2440
2441 #ifdef CONFIG_SLUB_RCU_DEBUG
2442 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2443
2444 struct rcu_delayed_free {
2445 struct rcu_head head;
2446 void *object;
2447 };
2448 #endif
2449
2450 /*
2451 * Hooks for other subsystems that check memory allocations. In a typical
2452 * production configuration these hooks all should produce no code at all.
2453 *
2454 * Returns true if freeing of the object can proceed, false if its reuse
2455 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2456 * to KFENCE.
2457 */
2458 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2459 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2460 bool after_rcu_delay)
2461 {
2462 /* Are the object contents still accessible? */
2463 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2464
2465 kmemleak_free_recursive(x, s->flags);
2466 kmsan_slab_free(s, x);
2467
2468 debug_check_no_locks_freed(x, s->object_size);
2469
2470 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2471 debug_check_no_obj_freed(x, s->object_size);
2472
2473 /* Use KCSAN to help debug racy use-after-free. */
2474 if (!still_accessible)
2475 __kcsan_check_access(x, s->object_size,
2476 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2477
2478 if (kfence_free(x))
2479 return false;
2480
2481 /*
2482 * Give KASAN a chance to notice an invalid free operation before we
2483 * modify the object.
2484 */
2485 if (kasan_slab_pre_free(s, x))
2486 return false;
2487
2488 #ifdef CONFIG_SLUB_RCU_DEBUG
2489 if (still_accessible) {
2490 struct rcu_delayed_free *delayed_free;
2491
2492 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2493 if (delayed_free) {
2494 /*
2495 * Let KASAN track our call stack as a "related work
2496 * creation", just like if the object had been freed
2497 * normally via kfree_rcu().
2498 * We have to do this manually because the rcu_head is
2499 * not located inside the object.
2500 */
2501 kasan_record_aux_stack(x);
2502
2503 delayed_free->object = x;
2504 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2505 return false;
2506 }
2507 }
2508 #endif /* CONFIG_SLUB_RCU_DEBUG */
2509
2510 /*
2511 * As memory initialization might be integrated into KASAN,
2512 * kasan_slab_free and initialization memset's must be
2513 * kept together to avoid discrepancies in behavior.
2514 *
2515 * The initialization memset's clear the object and the metadata,
2516 * but don't touch the SLAB redzone.
2517 *
2518 * The object's freepointer is also avoided if stored outside the
2519 * object.
2520 */
2521 if (unlikely(init)) {
2522 int rsize;
2523 unsigned int inuse, orig_size;
2524
2525 inuse = get_info_end(s);
2526 orig_size = get_orig_size(s, x);
2527 if (!kasan_has_integrated_init())
2528 memset(kasan_reset_tag(x), 0, orig_size);
2529 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2530 memset((char *)kasan_reset_tag(x) + inuse, 0,
2531 s->size - inuse - rsize);
2532 /*
2533 * Restore orig_size, otherwise kmalloc redzone overwritten
2534 * would be reported
2535 */
2536 set_orig_size(s, x, orig_size);
2537
2538 }
2539 /* KASAN might put x into memory quarantine, delaying its reuse. */
2540 return !kasan_slab_free(s, x, init, still_accessible, false);
2541 }
2542
2543 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2544 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2545 int *cnt)
2546 {
2547
2548 void *object;
2549 void *next = *head;
2550 void *old_tail = *tail;
2551 bool init;
2552
2553 if (is_kfence_address(next)) {
2554 slab_free_hook(s, next, false, false);
2555 return false;
2556 }
2557
2558 /* Head and tail of the reconstructed freelist */
2559 *head = NULL;
2560 *tail = NULL;
2561
2562 init = slab_want_init_on_free(s);
2563
2564 do {
2565 object = next;
2566 next = get_freepointer(s, object);
2567
2568 /* If object's reuse doesn't have to be delayed */
2569 if (likely(slab_free_hook(s, object, init, false))) {
2570 /* Move object to the new freelist */
2571 set_freepointer(s, object, *head);
2572 *head = object;
2573 if (!*tail)
2574 *tail = object;
2575 } else {
2576 /*
2577 * Adjust the reconstructed freelist depth
2578 * accordingly if object's reuse is delayed.
2579 */
2580 --(*cnt);
2581 }
2582 } while (object != old_tail);
2583
2584 return *head != NULL;
2585 }
2586
setup_object(struct kmem_cache * s,void * object)2587 static void *setup_object(struct kmem_cache *s, void *object)
2588 {
2589 setup_object_debug(s, object);
2590 object = kasan_init_slab_obj(s, object);
2591 if (unlikely(s->ctor)) {
2592 kasan_unpoison_new_object(s, object);
2593 s->ctor(object);
2594 kasan_poison_new_object(s, object);
2595 }
2596 return object;
2597 }
2598
alloc_empty_sheaf(struct kmem_cache * s,gfp_t gfp)2599 static struct slab_sheaf *alloc_empty_sheaf(struct kmem_cache *s, gfp_t gfp)
2600 {
2601 struct slab_sheaf *sheaf;
2602 size_t sheaf_size;
2603
2604 if (gfp & __GFP_NO_OBJ_EXT)
2605 return NULL;
2606
2607 gfp &= ~OBJCGS_CLEAR_MASK;
2608
2609 /*
2610 * Prevent recursion to the same cache, or a deep stack of kmallocs of
2611 * varying sizes (sheaf capacity might differ for each kmalloc size
2612 * bucket)
2613 */
2614 if (s->flags & SLAB_KMALLOC)
2615 gfp |= __GFP_NO_OBJ_EXT;
2616
2617 sheaf_size = struct_size(sheaf, objects, s->sheaf_capacity);
2618 sheaf = kzalloc(sheaf_size, gfp);
2619
2620 if (unlikely(!sheaf))
2621 return NULL;
2622
2623 sheaf->cache = s;
2624
2625 stat(s, SHEAF_ALLOC);
2626
2627 return sheaf;
2628 }
2629
free_empty_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf)2630 static void free_empty_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf)
2631 {
2632 kfree(sheaf);
2633
2634 stat(s, SHEAF_FREE);
2635 }
2636
2637 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
2638 size_t size, void **p);
2639
2640
refill_sheaf(struct kmem_cache * s,struct slab_sheaf * sheaf,gfp_t gfp)2641 static int refill_sheaf(struct kmem_cache *s, struct slab_sheaf *sheaf,
2642 gfp_t gfp)
2643 {
2644 int to_fill = s->sheaf_capacity - sheaf->size;
2645 int filled;
2646
2647 if (!to_fill)
2648 return 0;
2649
2650 filled = __kmem_cache_alloc_bulk(s, gfp, to_fill,
2651 &sheaf->objects[sheaf->size]);
2652
2653 sheaf->size += filled;
2654
2655 stat_add(s, SHEAF_REFILL, filled);
2656
2657 if (filled < to_fill)
2658 return -ENOMEM;
2659
2660 return 0;
2661 }
2662
2663
alloc_full_sheaf(struct kmem_cache * s,gfp_t gfp)2664 static struct slab_sheaf *alloc_full_sheaf(struct kmem_cache *s, gfp_t gfp)
2665 {
2666 struct slab_sheaf *sheaf = alloc_empty_sheaf(s, gfp);
2667
2668 if (!sheaf)
2669 return NULL;
2670
2671 if (refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC)) {
2672 free_empty_sheaf(s, sheaf);
2673 return NULL;
2674 }
2675
2676 return sheaf;
2677 }
2678
2679 /*
2680 * Maximum number of objects freed during a single flush of main pcs sheaf.
2681 * Translates directly to an on-stack array size.
2682 */
2683 #define PCS_BATCH_MAX 32U
2684
2685 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
2686
2687 /*
2688 * Free all objects from the main sheaf. In order to perform
2689 * __kmem_cache_free_bulk() outside of cpu_sheaves->lock, work in batches where
2690 * object pointers are moved to a on-stack array under the lock. To bound the
2691 * stack usage, limit each batch to PCS_BATCH_MAX.
2692 *
2693 * returns true if at least partially flushed
2694 */
sheaf_flush_main(struct kmem_cache * s)2695 static bool sheaf_flush_main(struct kmem_cache *s)
2696 {
2697 struct slub_percpu_sheaves *pcs;
2698 unsigned int batch, remaining;
2699 void *objects[PCS_BATCH_MAX];
2700 struct slab_sheaf *sheaf;
2701 bool ret = false;
2702
2703 next_batch:
2704 if (!local_trylock(&s->cpu_sheaves->lock))
2705 return ret;
2706
2707 pcs = this_cpu_ptr(s->cpu_sheaves);
2708 sheaf = pcs->main;
2709
2710 batch = min(PCS_BATCH_MAX, sheaf->size);
2711
2712 sheaf->size -= batch;
2713 memcpy(objects, sheaf->objects + sheaf->size, batch * sizeof(void *));
2714
2715 remaining = sheaf->size;
2716
2717 local_unlock(&s->cpu_sheaves->lock);
2718
2719 __kmem_cache_free_bulk(s, batch, &objects[0]);
2720
2721 stat_add(s, SHEAF_FLUSH, batch);
2722
2723 ret = true;
2724
2725 if (remaining)
2726 goto next_batch;
2727
2728 return ret;
2729 }
2730
2731 /*
2732 * Free all objects from a sheaf that's unused, i.e. not linked to any
2733 * cpu_sheaves, so we need no locking and batching. The locking is also not
2734 * necessary when flushing cpu's sheaves (both spare and main) during cpu
2735 * hotremove as the cpu is not executing anymore.
2736 */
sheaf_flush_unused(struct kmem_cache * s,struct slab_sheaf * sheaf)2737 static void sheaf_flush_unused(struct kmem_cache *s, struct slab_sheaf *sheaf)
2738 {
2739 if (!sheaf->size)
2740 return;
2741
2742 stat_add(s, SHEAF_FLUSH, sheaf->size);
2743
2744 __kmem_cache_free_bulk(s, sheaf->size, &sheaf->objects[0]);
2745
2746 sheaf->size = 0;
2747 }
2748
__rcu_free_sheaf_prepare(struct kmem_cache * s,struct slab_sheaf * sheaf)2749 static bool __rcu_free_sheaf_prepare(struct kmem_cache *s,
2750 struct slab_sheaf *sheaf)
2751 {
2752 bool init = slab_want_init_on_free(s);
2753 void **p = &sheaf->objects[0];
2754 unsigned int i = 0;
2755 bool pfmemalloc = false;
2756
2757 while (i < sheaf->size) {
2758 struct slab *slab = virt_to_slab(p[i]);
2759
2760 memcg_slab_free_hook(s, slab, p + i, 1);
2761 alloc_tagging_slab_free_hook(s, slab, p + i, 1);
2762
2763 if (unlikely(!slab_free_hook(s, p[i], init, true))) {
2764 p[i] = p[--sheaf->size];
2765 continue;
2766 }
2767
2768 if (slab_test_pfmemalloc(slab))
2769 pfmemalloc = true;
2770
2771 i++;
2772 }
2773
2774 return pfmemalloc;
2775 }
2776
rcu_free_sheaf_nobarn(struct rcu_head * head)2777 static void rcu_free_sheaf_nobarn(struct rcu_head *head)
2778 {
2779 struct slab_sheaf *sheaf;
2780 struct kmem_cache *s;
2781
2782 sheaf = container_of(head, struct slab_sheaf, rcu_head);
2783 s = sheaf->cache;
2784
2785 __rcu_free_sheaf_prepare(s, sheaf);
2786
2787 sheaf_flush_unused(s, sheaf);
2788
2789 free_empty_sheaf(s, sheaf);
2790 }
2791
2792 /*
2793 * Caller needs to make sure migration is disabled in order to fully flush
2794 * single cpu's sheaves
2795 *
2796 * must not be called from an irq
2797 *
2798 * flushing operations are rare so let's keep it simple and flush to slabs
2799 * directly, skipping the barn
2800 */
pcs_flush_all(struct kmem_cache * s)2801 static void pcs_flush_all(struct kmem_cache *s)
2802 {
2803 struct slub_percpu_sheaves *pcs;
2804 struct slab_sheaf *spare, *rcu_free;
2805
2806 local_lock(&s->cpu_sheaves->lock);
2807 pcs = this_cpu_ptr(s->cpu_sheaves);
2808
2809 spare = pcs->spare;
2810 pcs->spare = NULL;
2811
2812 rcu_free = pcs->rcu_free;
2813 pcs->rcu_free = NULL;
2814
2815 local_unlock(&s->cpu_sheaves->lock);
2816
2817 if (spare) {
2818 sheaf_flush_unused(s, spare);
2819 free_empty_sheaf(s, spare);
2820 }
2821
2822 if (rcu_free)
2823 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2824
2825 sheaf_flush_main(s);
2826 }
2827
__pcs_flush_all_cpu(struct kmem_cache * s,unsigned int cpu)2828 static void __pcs_flush_all_cpu(struct kmem_cache *s, unsigned int cpu)
2829 {
2830 struct slub_percpu_sheaves *pcs;
2831
2832 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2833
2834 /* The cpu is not executing anymore so we don't need pcs->lock */
2835 sheaf_flush_unused(s, pcs->main);
2836 if (pcs->spare) {
2837 sheaf_flush_unused(s, pcs->spare);
2838 free_empty_sheaf(s, pcs->spare);
2839 pcs->spare = NULL;
2840 }
2841
2842 if (pcs->rcu_free) {
2843 call_rcu(&pcs->rcu_free->rcu_head, rcu_free_sheaf_nobarn);
2844 pcs->rcu_free = NULL;
2845 }
2846 }
2847
pcs_destroy(struct kmem_cache * s)2848 static void pcs_destroy(struct kmem_cache *s)
2849 {
2850 int cpu;
2851
2852 for_each_possible_cpu(cpu) {
2853 struct slub_percpu_sheaves *pcs;
2854
2855 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
2856
2857 /* can happen when unwinding failed create */
2858 if (!pcs->main)
2859 continue;
2860
2861 /*
2862 * We have already passed __kmem_cache_shutdown() so everything
2863 * was flushed and there should be no objects allocated from
2864 * slabs, otherwise kmem_cache_destroy() would have aborted.
2865 * Therefore something would have to be really wrong if the
2866 * warnings here trigger, and we should rather leave objects and
2867 * sheaves to leak in that case.
2868 */
2869
2870 WARN_ON(pcs->spare);
2871 WARN_ON(pcs->rcu_free);
2872
2873 if (!WARN_ON(pcs->main->size)) {
2874 free_empty_sheaf(s, pcs->main);
2875 pcs->main = NULL;
2876 }
2877 }
2878
2879 free_percpu(s->cpu_sheaves);
2880 s->cpu_sheaves = NULL;
2881 }
2882
barn_get_empty_sheaf(struct node_barn * barn)2883 static struct slab_sheaf *barn_get_empty_sheaf(struct node_barn *barn)
2884 {
2885 struct slab_sheaf *empty = NULL;
2886 unsigned long flags;
2887
2888 if (!data_race(barn->nr_empty))
2889 return NULL;
2890
2891 spin_lock_irqsave(&barn->lock, flags);
2892
2893 if (likely(barn->nr_empty)) {
2894 empty = list_first_entry(&barn->sheaves_empty,
2895 struct slab_sheaf, barn_list);
2896 list_del(&empty->barn_list);
2897 barn->nr_empty--;
2898 }
2899
2900 spin_unlock_irqrestore(&barn->lock, flags);
2901
2902 return empty;
2903 }
2904
2905 /*
2906 * The following two functions are used mainly in cases where we have to undo an
2907 * intended action due to a race or cpu migration. Thus they do not check the
2908 * empty or full sheaf limits for simplicity.
2909 */
2910
barn_put_empty_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2911 static void barn_put_empty_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2912 {
2913 unsigned long flags;
2914
2915 spin_lock_irqsave(&barn->lock, flags);
2916
2917 list_add(&sheaf->barn_list, &barn->sheaves_empty);
2918 barn->nr_empty++;
2919
2920 spin_unlock_irqrestore(&barn->lock, flags);
2921 }
2922
barn_put_full_sheaf(struct node_barn * barn,struct slab_sheaf * sheaf)2923 static void barn_put_full_sheaf(struct node_barn *barn, struct slab_sheaf *sheaf)
2924 {
2925 unsigned long flags;
2926
2927 spin_lock_irqsave(&barn->lock, flags);
2928
2929 list_add(&sheaf->barn_list, &barn->sheaves_full);
2930 barn->nr_full++;
2931
2932 spin_unlock_irqrestore(&barn->lock, flags);
2933 }
2934
barn_get_full_or_empty_sheaf(struct node_barn * barn)2935 static struct slab_sheaf *barn_get_full_or_empty_sheaf(struct node_barn *barn)
2936 {
2937 struct slab_sheaf *sheaf = NULL;
2938 unsigned long flags;
2939
2940 if (!data_race(barn->nr_full) && !data_race(barn->nr_empty))
2941 return NULL;
2942
2943 spin_lock_irqsave(&barn->lock, flags);
2944
2945 if (barn->nr_full) {
2946 sheaf = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2947 barn_list);
2948 list_del(&sheaf->barn_list);
2949 barn->nr_full--;
2950 } else if (barn->nr_empty) {
2951 sheaf = list_first_entry(&barn->sheaves_empty,
2952 struct slab_sheaf, barn_list);
2953 list_del(&sheaf->barn_list);
2954 barn->nr_empty--;
2955 }
2956
2957 spin_unlock_irqrestore(&barn->lock, flags);
2958
2959 return sheaf;
2960 }
2961
2962 /*
2963 * If a full sheaf is available, return it and put the supplied empty one to
2964 * barn. We ignore the limit on empty sheaves as the number of sheaves doesn't
2965 * change.
2966 */
2967 static struct slab_sheaf *
barn_replace_empty_sheaf(struct node_barn * barn,struct slab_sheaf * empty)2968 barn_replace_empty_sheaf(struct node_barn *barn, struct slab_sheaf *empty)
2969 {
2970 struct slab_sheaf *full = NULL;
2971 unsigned long flags;
2972
2973 if (!data_race(barn->nr_full))
2974 return NULL;
2975
2976 spin_lock_irqsave(&barn->lock, flags);
2977
2978 if (likely(barn->nr_full)) {
2979 full = list_first_entry(&barn->sheaves_full, struct slab_sheaf,
2980 barn_list);
2981 list_del(&full->barn_list);
2982 list_add(&empty->barn_list, &barn->sheaves_empty);
2983 barn->nr_full--;
2984 barn->nr_empty++;
2985 }
2986
2987 spin_unlock_irqrestore(&barn->lock, flags);
2988
2989 return full;
2990 }
2991
2992 /*
2993 * If an empty sheaf is available, return it and put the supplied full one to
2994 * barn. But if there are too many full sheaves, reject this with -E2BIG.
2995 */
2996 static struct slab_sheaf *
barn_replace_full_sheaf(struct node_barn * barn,struct slab_sheaf * full)2997 barn_replace_full_sheaf(struct node_barn *barn, struct slab_sheaf *full)
2998 {
2999 struct slab_sheaf *empty;
3000 unsigned long flags;
3001
3002 /* we don't repeat this check under barn->lock as it's not critical */
3003 if (data_race(barn->nr_full) >= MAX_FULL_SHEAVES)
3004 return ERR_PTR(-E2BIG);
3005 if (!data_race(barn->nr_empty))
3006 return ERR_PTR(-ENOMEM);
3007
3008 spin_lock_irqsave(&barn->lock, flags);
3009
3010 if (likely(barn->nr_empty)) {
3011 empty = list_first_entry(&barn->sheaves_empty, struct slab_sheaf,
3012 barn_list);
3013 list_del(&empty->barn_list);
3014 list_add(&full->barn_list, &barn->sheaves_full);
3015 barn->nr_empty--;
3016 barn->nr_full++;
3017 } else {
3018 empty = ERR_PTR(-ENOMEM);
3019 }
3020
3021 spin_unlock_irqrestore(&barn->lock, flags);
3022
3023 return empty;
3024 }
3025
barn_init(struct node_barn * barn)3026 static void barn_init(struct node_barn *barn)
3027 {
3028 spin_lock_init(&barn->lock);
3029 INIT_LIST_HEAD(&barn->sheaves_full);
3030 INIT_LIST_HEAD(&barn->sheaves_empty);
3031 barn->nr_full = 0;
3032 barn->nr_empty = 0;
3033 }
3034
barn_shrink(struct kmem_cache * s,struct node_barn * barn)3035 static void barn_shrink(struct kmem_cache *s, struct node_barn *barn)
3036 {
3037 LIST_HEAD(empty_list);
3038 LIST_HEAD(full_list);
3039 struct slab_sheaf *sheaf, *sheaf2;
3040 unsigned long flags;
3041
3042 spin_lock_irqsave(&barn->lock, flags);
3043
3044 list_splice_init(&barn->sheaves_full, &full_list);
3045 barn->nr_full = 0;
3046 list_splice_init(&barn->sheaves_empty, &empty_list);
3047 barn->nr_empty = 0;
3048
3049 spin_unlock_irqrestore(&barn->lock, flags);
3050
3051 list_for_each_entry_safe(sheaf, sheaf2, &full_list, barn_list) {
3052 sheaf_flush_unused(s, sheaf);
3053 free_empty_sheaf(s, sheaf);
3054 }
3055
3056 list_for_each_entry_safe(sheaf, sheaf2, &empty_list, barn_list)
3057 free_empty_sheaf(s, sheaf);
3058 }
3059
3060 /*
3061 * Slab allocation and freeing
3062 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo,bool allow_spin)3063 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
3064 struct kmem_cache_order_objects oo,
3065 bool allow_spin)
3066 {
3067 struct page *page;
3068 struct slab *slab;
3069 unsigned int order = oo_order(oo);
3070
3071 if (unlikely(!allow_spin))
3072 page = alloc_frozen_pages_nolock(0/* __GFP_COMP is implied */,
3073 node, order);
3074 else if (node == NUMA_NO_NODE)
3075 page = alloc_frozen_pages(flags, order);
3076 else
3077 page = __alloc_frozen_pages(flags, order, node, NULL);
3078
3079 if (!page)
3080 return NULL;
3081
3082 __SetPageSlab(page);
3083 slab = page_slab(page);
3084 if (page_is_pfmemalloc(page))
3085 slab_set_pfmemalloc(slab);
3086
3087 return slab;
3088 }
3089
3090 #ifdef CONFIG_SLAB_FREELIST_RANDOM
3091 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)3092 static int init_cache_random_seq(struct kmem_cache *s)
3093 {
3094 unsigned int count = oo_objects(s->oo);
3095 int err;
3096
3097 /* Bailout if already initialised */
3098 if (s->random_seq)
3099 return 0;
3100
3101 err = cache_random_seq_create(s, count, GFP_KERNEL);
3102 if (err) {
3103 pr_err("SLUB: Unable to initialize free list for %s\n",
3104 s->name);
3105 return err;
3106 }
3107
3108 /* Transform to an offset on the set of pages */
3109 if (s->random_seq) {
3110 unsigned int i;
3111
3112 for (i = 0; i < count; i++)
3113 s->random_seq[i] *= s->size;
3114 }
3115 return 0;
3116 }
3117
3118 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)3119 static void __init init_freelist_randomization(void)
3120 {
3121 struct kmem_cache *s;
3122
3123 mutex_lock(&slab_mutex);
3124
3125 list_for_each_entry(s, &slab_caches, list)
3126 init_cache_random_seq(s);
3127
3128 mutex_unlock(&slab_mutex);
3129 }
3130
3131 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)3132 static void *next_freelist_entry(struct kmem_cache *s,
3133 unsigned long *pos, void *start,
3134 unsigned long page_limit,
3135 unsigned long freelist_count)
3136 {
3137 unsigned int idx;
3138
3139 /*
3140 * If the target page allocation failed, the number of objects on the
3141 * page might be smaller than the usual size defined by the cache.
3142 */
3143 do {
3144 idx = s->random_seq[*pos];
3145 *pos += 1;
3146 if (*pos >= freelist_count)
3147 *pos = 0;
3148 } while (unlikely(idx >= page_limit));
3149
3150 return (char *)start + idx;
3151 }
3152
3153 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3154 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3155 {
3156 void *start;
3157 void *cur;
3158 void *next;
3159 unsigned long idx, pos, page_limit, freelist_count;
3160
3161 if (slab->objects < 2 || !s->random_seq)
3162 return false;
3163
3164 freelist_count = oo_objects(s->oo);
3165 pos = get_random_u32_below(freelist_count);
3166
3167 page_limit = slab->objects * s->size;
3168 start = fixup_red_left(s, slab_address(slab));
3169
3170 /* First entry is used as the base of the freelist */
3171 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
3172 cur = setup_object(s, cur);
3173 slab->freelist = cur;
3174
3175 for (idx = 1; idx < slab->objects; idx++) {
3176 next = next_freelist_entry(s, &pos, start, page_limit,
3177 freelist_count);
3178 next = setup_object(s, next);
3179 set_freepointer(s, cur, next);
3180 cur = next;
3181 }
3182 set_freepointer(s, cur, NULL);
3183
3184 return true;
3185 }
3186 #else
init_cache_random_seq(struct kmem_cache * s)3187 static inline int init_cache_random_seq(struct kmem_cache *s)
3188 {
3189 return 0;
3190 }
init_freelist_randomization(void)3191 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)3192 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
3193 {
3194 return false;
3195 }
3196 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
3197
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)3198 static __always_inline void account_slab(struct slab *slab, int order,
3199 struct kmem_cache *s, gfp_t gfp)
3200 {
3201 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
3202 alloc_slab_obj_exts(slab, s, gfp, true);
3203
3204 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3205 PAGE_SIZE << order);
3206 }
3207
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)3208 static __always_inline void unaccount_slab(struct slab *slab, int order,
3209 struct kmem_cache *s)
3210 {
3211 /*
3212 * The slab object extensions should now be freed regardless of
3213 * whether mem_alloc_profiling_enabled() or not because profiling
3214 * might have been disabled after slab->obj_exts got allocated.
3215 */
3216 free_slab_obj_exts(slab);
3217
3218 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
3219 -(PAGE_SIZE << order));
3220 }
3221
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)3222 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
3223 {
3224 bool allow_spin = gfpflags_allow_spinning(flags);
3225 struct slab *slab;
3226 struct kmem_cache_order_objects oo = s->oo;
3227 gfp_t alloc_gfp;
3228 void *start, *p, *next;
3229 int idx;
3230 bool shuffle;
3231
3232 flags &= gfp_allowed_mask;
3233
3234 flags |= s->allocflags;
3235
3236 /*
3237 * Let the initial higher-order allocation fail under memory pressure
3238 * so we fall-back to the minimum order allocation.
3239 */
3240 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
3241 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
3242 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
3243
3244 /*
3245 * __GFP_RECLAIM could be cleared on the first allocation attempt,
3246 * so pass allow_spin flag directly.
3247 */
3248 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3249 if (unlikely(!slab)) {
3250 oo = s->min;
3251 alloc_gfp = flags;
3252 /*
3253 * Allocation may have failed due to fragmentation.
3254 * Try a lower order alloc if possible
3255 */
3256 slab = alloc_slab_page(alloc_gfp, node, oo, allow_spin);
3257 if (unlikely(!slab))
3258 return NULL;
3259 stat(s, ORDER_FALLBACK);
3260 }
3261
3262 slab->objects = oo_objects(oo);
3263 slab->inuse = 0;
3264 slab->frozen = 0;
3265 init_slab_obj_exts(slab);
3266
3267 account_slab(slab, oo_order(oo), s, flags);
3268
3269 slab->slab_cache = s;
3270
3271 kasan_poison_slab(slab);
3272
3273 start = slab_address(slab);
3274
3275 setup_slab_debug(s, slab, start);
3276
3277 shuffle = shuffle_freelist(s, slab);
3278
3279 if (!shuffle) {
3280 start = fixup_red_left(s, start);
3281 start = setup_object(s, start);
3282 slab->freelist = start;
3283 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
3284 next = p + s->size;
3285 next = setup_object(s, next);
3286 set_freepointer(s, p, next);
3287 p = next;
3288 }
3289 set_freepointer(s, p, NULL);
3290 }
3291
3292 return slab;
3293 }
3294
new_slab(struct kmem_cache * s,gfp_t flags,int node)3295 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
3296 {
3297 if (unlikely(flags & GFP_SLAB_BUG_MASK))
3298 flags = kmalloc_fix_flags(flags);
3299
3300 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
3301
3302 return allocate_slab(s,
3303 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
3304 }
3305
__free_slab(struct kmem_cache * s,struct slab * slab)3306 static void __free_slab(struct kmem_cache *s, struct slab *slab)
3307 {
3308 struct page *page = slab_page(slab);
3309 int order = compound_order(page);
3310 int pages = 1 << order;
3311
3312 __slab_clear_pfmemalloc(slab);
3313 page->mapping = NULL;
3314 __ClearPageSlab(page);
3315 mm_account_reclaimed_pages(pages);
3316 unaccount_slab(slab, order, s);
3317 free_frozen_pages(page, order);
3318 }
3319
rcu_free_slab(struct rcu_head * h)3320 static void rcu_free_slab(struct rcu_head *h)
3321 {
3322 struct slab *slab = container_of(h, struct slab, rcu_head);
3323
3324 __free_slab(slab->slab_cache, slab);
3325 }
3326
free_slab(struct kmem_cache * s,struct slab * slab)3327 static void free_slab(struct kmem_cache *s, struct slab *slab)
3328 {
3329 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
3330 void *p;
3331
3332 slab_pad_check(s, slab);
3333 for_each_object(p, s, slab_address(slab), slab->objects)
3334 check_object(s, slab, p, SLUB_RED_INACTIVE);
3335 }
3336
3337 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
3338 call_rcu(&slab->rcu_head, rcu_free_slab);
3339 else
3340 __free_slab(s, slab);
3341 }
3342
discard_slab(struct kmem_cache * s,struct slab * slab)3343 static void discard_slab(struct kmem_cache *s, struct slab *slab)
3344 {
3345 dec_slabs_node(s, slab_nid(slab), slab->objects);
3346 free_slab(s, slab);
3347 }
3348
slab_test_node_partial(const struct slab * slab)3349 static inline bool slab_test_node_partial(const struct slab *slab)
3350 {
3351 return test_bit(SL_partial, &slab->flags.f);
3352 }
3353
slab_set_node_partial(struct slab * slab)3354 static inline void slab_set_node_partial(struct slab *slab)
3355 {
3356 set_bit(SL_partial, &slab->flags.f);
3357 }
3358
slab_clear_node_partial(struct slab * slab)3359 static inline void slab_clear_node_partial(struct slab *slab)
3360 {
3361 clear_bit(SL_partial, &slab->flags.f);
3362 }
3363
3364 /*
3365 * Management of partially allocated slabs.
3366 */
3367 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3368 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
3369 {
3370 n->nr_partial++;
3371 if (tail == DEACTIVATE_TO_TAIL)
3372 list_add_tail(&slab->slab_list, &n->partial);
3373 else
3374 list_add(&slab->slab_list, &n->partial);
3375 slab_set_node_partial(slab);
3376 }
3377
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)3378 static inline void add_partial(struct kmem_cache_node *n,
3379 struct slab *slab, int tail)
3380 {
3381 lockdep_assert_held(&n->list_lock);
3382 __add_partial(n, slab, tail);
3383 }
3384
remove_partial(struct kmem_cache_node * n,struct slab * slab)3385 static inline void remove_partial(struct kmem_cache_node *n,
3386 struct slab *slab)
3387 {
3388 lockdep_assert_held(&n->list_lock);
3389 list_del(&slab->slab_list);
3390 slab_clear_node_partial(slab);
3391 n->nr_partial--;
3392 }
3393
3394 /*
3395 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
3396 * slab from the n->partial list. Remove only a single object from the slab, do
3397 * the alloc_debug_processing() checks and leave the slab on the list, or move
3398 * it to full list if it was the last free object.
3399 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)3400 static void *alloc_single_from_partial(struct kmem_cache *s,
3401 struct kmem_cache_node *n, struct slab *slab, int orig_size)
3402 {
3403 void *object;
3404
3405 lockdep_assert_held(&n->list_lock);
3406
3407 #ifdef CONFIG_SLUB_DEBUG
3408 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3409 if (!validate_slab_ptr(slab)) {
3410 slab_err(s, slab, "Not a valid slab page");
3411 return NULL;
3412 }
3413 }
3414 #endif
3415
3416 object = slab->freelist;
3417 slab->freelist = get_freepointer(s, object);
3418 slab->inuse++;
3419
3420 if (!alloc_debug_processing(s, slab, object, orig_size)) {
3421 remove_partial(n, slab);
3422 return NULL;
3423 }
3424
3425 if (slab->inuse == slab->objects) {
3426 remove_partial(n, slab);
3427 add_full(s, n, slab);
3428 }
3429
3430 return object;
3431 }
3432
3433 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist);
3434
3435 /*
3436 * Called only for kmem_cache_debug() caches to allocate from a freshly
3437 * allocated slab. Allocate a single object instead of whole freelist
3438 * and put the slab to the partial (or full) list.
3439 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size,gfp_t gfpflags)3440 static void *alloc_single_from_new_slab(struct kmem_cache *s, struct slab *slab,
3441 int orig_size, gfp_t gfpflags)
3442 {
3443 bool allow_spin = gfpflags_allow_spinning(gfpflags);
3444 int nid = slab_nid(slab);
3445 struct kmem_cache_node *n = get_node(s, nid);
3446 unsigned long flags;
3447 void *object;
3448
3449 if (!allow_spin && !spin_trylock_irqsave(&n->list_lock, flags)) {
3450 /* Unlucky, discard newly allocated slab */
3451 defer_deactivate_slab(slab, NULL);
3452 return NULL;
3453 }
3454
3455 object = slab->freelist;
3456 slab->freelist = get_freepointer(s, object);
3457 slab->inuse = 1;
3458
3459 if (!alloc_debug_processing(s, slab, object, orig_size)) {
3460 /*
3461 * It's not really expected that this would fail on a
3462 * freshly allocated slab, but a concurrent memory
3463 * corruption in theory could cause that.
3464 * Leak memory of allocated slab.
3465 */
3466 if (!allow_spin)
3467 spin_unlock_irqrestore(&n->list_lock, flags);
3468 return NULL;
3469 }
3470
3471 if (allow_spin)
3472 spin_lock_irqsave(&n->list_lock, flags);
3473
3474 if (slab->inuse == slab->objects)
3475 add_full(s, n, slab);
3476 else
3477 add_partial(n, slab, DEACTIVATE_TO_HEAD);
3478
3479 inc_slabs_node(s, nid, slab->objects);
3480 spin_unlock_irqrestore(&n->list_lock, flags);
3481
3482 return object;
3483 }
3484
3485 #ifdef CONFIG_SLUB_CPU_PARTIAL
3486 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
3487 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3488 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
3489 int drain) { }
3490 #endif
3491 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
3492
3493 /*
3494 * Try to allocate a partial slab from a specific node.
3495 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)3496 static struct slab *get_partial_node(struct kmem_cache *s,
3497 struct kmem_cache_node *n,
3498 struct partial_context *pc)
3499 {
3500 struct slab *slab, *slab2, *partial = NULL;
3501 unsigned long flags;
3502 unsigned int partial_slabs = 0;
3503
3504 /*
3505 * Racy check. If we mistakenly see no partial slabs then we
3506 * just allocate an empty slab. If we mistakenly try to get a
3507 * partial slab and there is none available then get_partial()
3508 * will return NULL.
3509 */
3510 if (!n || !n->nr_partial)
3511 return NULL;
3512
3513 if (gfpflags_allow_spinning(pc->flags))
3514 spin_lock_irqsave(&n->list_lock, flags);
3515 else if (!spin_trylock_irqsave(&n->list_lock, flags))
3516 return NULL;
3517 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
3518 if (!pfmemalloc_match(slab, pc->flags))
3519 continue;
3520
3521 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3522 void *object = alloc_single_from_partial(s, n, slab,
3523 pc->orig_size);
3524 if (object) {
3525 partial = slab;
3526 pc->object = object;
3527 break;
3528 }
3529 continue;
3530 }
3531
3532 remove_partial(n, slab);
3533
3534 if (!partial) {
3535 partial = slab;
3536 stat(s, ALLOC_FROM_PARTIAL);
3537
3538 if ((slub_get_cpu_partial(s) == 0)) {
3539 break;
3540 }
3541 } else {
3542 put_cpu_partial(s, slab, 0);
3543 stat(s, CPU_PARTIAL_NODE);
3544
3545 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
3546 break;
3547 }
3548 }
3549 }
3550 spin_unlock_irqrestore(&n->list_lock, flags);
3551 return partial;
3552 }
3553
3554 /*
3555 * Get a slab from somewhere. Search in increasing NUMA distances.
3556 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)3557 static struct slab *get_any_partial(struct kmem_cache *s,
3558 struct partial_context *pc)
3559 {
3560 #ifdef CONFIG_NUMA
3561 struct zonelist *zonelist;
3562 struct zoneref *z;
3563 struct zone *zone;
3564 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
3565 struct slab *slab;
3566 unsigned int cpuset_mems_cookie;
3567
3568 /*
3569 * The defrag ratio allows a configuration of the tradeoffs between
3570 * inter node defragmentation and node local allocations. A lower
3571 * defrag_ratio increases the tendency to do local allocations
3572 * instead of attempting to obtain partial slabs from other nodes.
3573 *
3574 * If the defrag_ratio is set to 0 then kmalloc() always
3575 * returns node local objects. If the ratio is higher then kmalloc()
3576 * may return off node objects because partial slabs are obtained
3577 * from other nodes and filled up.
3578 *
3579 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
3580 * (which makes defrag_ratio = 1000) then every (well almost)
3581 * allocation will first attempt to defrag slab caches on other nodes.
3582 * This means scanning over all nodes to look for partial slabs which
3583 * may be expensive if we do it every time we are trying to find a slab
3584 * with available objects.
3585 */
3586 if (!s->remote_node_defrag_ratio ||
3587 get_cycles() % 1024 > s->remote_node_defrag_ratio)
3588 return NULL;
3589
3590 do {
3591 cpuset_mems_cookie = read_mems_allowed_begin();
3592 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
3593 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
3594 struct kmem_cache_node *n;
3595
3596 n = get_node(s, zone_to_nid(zone));
3597
3598 if (n && cpuset_zone_allowed(zone, pc->flags) &&
3599 n->nr_partial > s->min_partial) {
3600 slab = get_partial_node(s, n, pc);
3601 if (slab) {
3602 /*
3603 * Don't check read_mems_allowed_retry()
3604 * here - if mems_allowed was updated in
3605 * parallel, that was a harmless race
3606 * between allocation and the cpuset
3607 * update
3608 */
3609 return slab;
3610 }
3611 }
3612 }
3613 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3614 #endif /* CONFIG_NUMA */
3615 return NULL;
3616 }
3617
3618 /*
3619 * Get a partial slab, lock it and return it.
3620 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)3621 static struct slab *get_partial(struct kmem_cache *s, int node,
3622 struct partial_context *pc)
3623 {
3624 struct slab *slab;
3625 int searchnode = node;
3626
3627 if (node == NUMA_NO_NODE)
3628 searchnode = numa_mem_id();
3629
3630 slab = get_partial_node(s, get_node(s, searchnode), pc);
3631 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3632 return slab;
3633
3634 return get_any_partial(s, pc);
3635 }
3636
3637 #ifdef CONFIG_PREEMPTION
3638 /*
3639 * Calculate the next globally unique transaction for disambiguation
3640 * during cmpxchg. The transactions start with the cpu number and are then
3641 * incremented by CONFIG_NR_CPUS.
3642 */
3643 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
3644 #else
3645 /*
3646 * No preemption supported therefore also no need to check for
3647 * different cpus.
3648 */
3649 #define TID_STEP 1
3650 #endif /* CONFIG_PREEMPTION */
3651
next_tid(unsigned long tid)3652 static inline unsigned long next_tid(unsigned long tid)
3653 {
3654 return tid + TID_STEP;
3655 }
3656
3657 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3658 static inline unsigned int tid_to_cpu(unsigned long tid)
3659 {
3660 return tid % TID_STEP;
3661 }
3662
tid_to_event(unsigned long tid)3663 static inline unsigned long tid_to_event(unsigned long tid)
3664 {
3665 return tid / TID_STEP;
3666 }
3667 #endif
3668
init_tid(int cpu)3669 static inline unsigned int init_tid(int cpu)
3670 {
3671 return cpu;
3672 }
3673
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3674 static inline void note_cmpxchg_failure(const char *n,
3675 const struct kmem_cache *s, unsigned long tid)
3676 {
3677 #ifdef SLUB_DEBUG_CMPXCHG
3678 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3679
3680 pr_info("%s %s: cmpxchg redo ", n, s->name);
3681
3682 if (IS_ENABLED(CONFIG_PREEMPTION) &&
3683 tid_to_cpu(tid) != tid_to_cpu(actual_tid)) {
3684 pr_warn("due to cpu change %d -> %d\n",
3685 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3686 } else if (tid_to_event(tid) != tid_to_event(actual_tid)) {
3687 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3688 tid_to_event(tid), tid_to_event(actual_tid));
3689 } else {
3690 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3691 actual_tid, tid, next_tid(tid));
3692 }
3693 #endif
3694 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3695 }
3696
init_kmem_cache_cpus(struct kmem_cache * s)3697 static void init_kmem_cache_cpus(struct kmem_cache *s)
3698 {
3699 #ifdef CONFIG_PREEMPT_RT
3700 /*
3701 * Register lockdep key for non-boot kmem caches to avoid
3702 * WARN_ON_ONCE(static_obj(key))) in lockdep_register_key()
3703 */
3704 bool finegrain_lockdep = !init_section_contains(s, 1);
3705 #else
3706 /*
3707 * Don't bother with different lockdep classes for each
3708 * kmem_cache, since we only use local_trylock_irqsave().
3709 */
3710 bool finegrain_lockdep = false;
3711 #endif
3712 int cpu;
3713 struct kmem_cache_cpu *c;
3714
3715 if (finegrain_lockdep)
3716 lockdep_register_key(&s->lock_key);
3717 for_each_possible_cpu(cpu) {
3718 c = per_cpu_ptr(s->cpu_slab, cpu);
3719 local_trylock_init(&c->lock);
3720 if (finegrain_lockdep)
3721 lockdep_set_class(&c->lock, &s->lock_key);
3722 c->tid = init_tid(cpu);
3723 }
3724 }
3725
3726 /*
3727 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3728 * unfreezes the slabs and puts it on the proper list.
3729 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3730 * by the caller.
3731 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3732 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3733 void *freelist)
3734 {
3735 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3736 int free_delta = 0;
3737 void *nextfree, *freelist_iter, *freelist_tail;
3738 int tail = DEACTIVATE_TO_HEAD;
3739 unsigned long flags = 0;
3740 struct freelist_counters old, new;
3741
3742 if (READ_ONCE(slab->freelist)) {
3743 stat(s, DEACTIVATE_REMOTE_FREES);
3744 tail = DEACTIVATE_TO_TAIL;
3745 }
3746
3747 /*
3748 * Stage one: Count the objects on cpu's freelist as free_delta and
3749 * remember the last object in freelist_tail for later splicing.
3750 */
3751 freelist_tail = NULL;
3752 freelist_iter = freelist;
3753 while (freelist_iter) {
3754 nextfree = get_freepointer(s, freelist_iter);
3755
3756 /*
3757 * If 'nextfree' is invalid, it is possible that the object at
3758 * 'freelist_iter' is already corrupted. So isolate all objects
3759 * starting at 'freelist_iter' by skipping them.
3760 */
3761 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3762 break;
3763
3764 freelist_tail = freelist_iter;
3765 free_delta++;
3766
3767 freelist_iter = nextfree;
3768 }
3769
3770 /*
3771 * Stage two: Unfreeze the slab while splicing the per-cpu
3772 * freelist to the head of slab's freelist.
3773 */
3774 do {
3775 old.freelist = READ_ONCE(slab->freelist);
3776 old.counters = READ_ONCE(slab->counters);
3777 VM_BUG_ON(!old.frozen);
3778
3779 /* Determine target state of the slab */
3780 new.counters = old.counters;
3781 new.frozen = 0;
3782 if (freelist_tail) {
3783 new.inuse -= free_delta;
3784 set_freepointer(s, freelist_tail, old.freelist);
3785 new.freelist = freelist;
3786 } else {
3787 new.freelist = old.freelist;
3788 }
3789 } while (!slab_update_freelist(s, slab, &old, &new, "unfreezing slab"));
3790
3791 /*
3792 * Stage three: Manipulate the slab list based on the updated state.
3793 */
3794 if (!new.inuse && n->nr_partial >= s->min_partial) {
3795 stat(s, DEACTIVATE_EMPTY);
3796 discard_slab(s, slab);
3797 stat(s, FREE_SLAB);
3798 } else if (new.freelist) {
3799 spin_lock_irqsave(&n->list_lock, flags);
3800 add_partial(n, slab, tail);
3801 spin_unlock_irqrestore(&n->list_lock, flags);
3802 stat(s, tail);
3803 } else {
3804 stat(s, DEACTIVATE_FULL);
3805 }
3806 }
3807
3808 /*
3809 * ___slab_alloc()'s caller is supposed to check if kmem_cache::kmem_cache_cpu::lock
3810 * can be acquired without a deadlock before invoking the function.
3811 *
3812 * Without LOCKDEP we trust the code to be correct. kmalloc_nolock() is
3813 * using local_lock_is_locked() properly before calling local_lock_cpu_slab(),
3814 * and kmalloc() is not used in an unsupported context.
3815 *
3816 * With LOCKDEP, on PREEMPT_RT lockdep does its checking in local_lock_irqsave().
3817 * On !PREEMPT_RT we use trylock to avoid false positives in NMI, but
3818 * lockdep_assert() will catch a bug in case:
3819 * #1
3820 * kmalloc() -> ___slab_alloc() -> irqsave -> NMI -> bpf -> kmalloc_nolock()
3821 * or
3822 * #2
3823 * kmalloc() -> ___slab_alloc() -> irqsave -> tracepoint/kprobe -> bpf -> kmalloc_nolock()
3824 *
3825 * On PREEMPT_RT an invocation is not possible from IRQ-off or preempt
3826 * disabled context. The lock will always be acquired and if needed it
3827 * block and sleep until the lock is available.
3828 * #1 is possible in !PREEMPT_RT only.
3829 * #2 is possible in both with a twist that irqsave is replaced with rt_spinlock:
3830 * kmalloc() -> ___slab_alloc() -> rt_spin_lock(kmem_cache_A) ->
3831 * tracepoint/kprobe -> bpf -> kmalloc_nolock() -> rt_spin_lock(kmem_cache_B)
3832 *
3833 * local_lock_is_locked() prevents the case kmem_cache_A == kmem_cache_B
3834 */
3835 #if defined(CONFIG_PREEMPT_RT) || !defined(CONFIG_LOCKDEP)
3836 #define local_lock_cpu_slab(s, flags) \
3837 local_lock_irqsave(&(s)->cpu_slab->lock, flags)
3838 #else
3839 #define local_lock_cpu_slab(s, flags) \
3840 do { \
3841 bool __l = local_trylock_irqsave(&(s)->cpu_slab->lock, flags); \
3842 lockdep_assert(__l); \
3843 } while (0)
3844 #endif
3845
3846 #define local_unlock_cpu_slab(s, flags) \
3847 local_unlock_irqrestore(&(s)->cpu_slab->lock, flags)
3848
3849 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3850 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3851 {
3852 struct kmem_cache_node *n = NULL, *n2 = NULL;
3853 struct slab *slab, *slab_to_discard = NULL;
3854 unsigned long flags = 0;
3855
3856 while (partial_slab) {
3857 slab = partial_slab;
3858 partial_slab = slab->next;
3859
3860 n2 = get_node(s, slab_nid(slab));
3861 if (n != n2) {
3862 if (n)
3863 spin_unlock_irqrestore(&n->list_lock, flags);
3864
3865 n = n2;
3866 spin_lock_irqsave(&n->list_lock, flags);
3867 }
3868
3869 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3870 slab->next = slab_to_discard;
3871 slab_to_discard = slab;
3872 } else {
3873 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3874 stat(s, FREE_ADD_PARTIAL);
3875 }
3876 }
3877
3878 if (n)
3879 spin_unlock_irqrestore(&n->list_lock, flags);
3880
3881 while (slab_to_discard) {
3882 slab = slab_to_discard;
3883 slab_to_discard = slab_to_discard->next;
3884
3885 stat(s, DEACTIVATE_EMPTY);
3886 discard_slab(s, slab);
3887 stat(s, FREE_SLAB);
3888 }
3889 }
3890
3891 /*
3892 * Put all the cpu partial slabs to the node partial list.
3893 */
put_partials(struct kmem_cache * s)3894 static void put_partials(struct kmem_cache *s)
3895 {
3896 struct slab *partial_slab;
3897 unsigned long flags;
3898
3899 local_lock_irqsave(&s->cpu_slab->lock, flags);
3900 partial_slab = this_cpu_read(s->cpu_slab->partial);
3901 this_cpu_write(s->cpu_slab->partial, NULL);
3902 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3903
3904 if (partial_slab)
3905 __put_partials(s, partial_slab);
3906 }
3907
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3908 static void put_partials_cpu(struct kmem_cache *s,
3909 struct kmem_cache_cpu *c)
3910 {
3911 struct slab *partial_slab;
3912
3913 partial_slab = slub_percpu_partial(c);
3914 c->partial = NULL;
3915
3916 if (partial_slab)
3917 __put_partials(s, partial_slab);
3918 }
3919
3920 /*
3921 * Put a slab into a partial slab slot if available.
3922 *
3923 * If we did not find a slot then simply move all the partials to the
3924 * per node partial list.
3925 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3926 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3927 {
3928 struct slab *oldslab;
3929 struct slab *slab_to_put = NULL;
3930 unsigned long flags;
3931 int slabs = 0;
3932
3933 local_lock_cpu_slab(s, flags);
3934
3935 oldslab = this_cpu_read(s->cpu_slab->partial);
3936
3937 if (oldslab) {
3938 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3939 /*
3940 * Partial array is full. Move the existing set to the
3941 * per node partial list. Postpone the actual unfreezing
3942 * outside of the critical section.
3943 */
3944 slab_to_put = oldslab;
3945 oldslab = NULL;
3946 } else {
3947 slabs = oldslab->slabs;
3948 }
3949 }
3950
3951 slabs++;
3952
3953 slab->slabs = slabs;
3954 slab->next = oldslab;
3955
3956 this_cpu_write(s->cpu_slab->partial, slab);
3957
3958 local_unlock_cpu_slab(s, flags);
3959
3960 if (slab_to_put) {
3961 __put_partials(s, slab_to_put);
3962 stat(s, CPU_PARTIAL_DRAIN);
3963 }
3964 }
3965
3966 #else /* CONFIG_SLUB_CPU_PARTIAL */
3967
put_partials(struct kmem_cache * s)3968 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3969 static inline void put_partials_cpu(struct kmem_cache *s,
3970 struct kmem_cache_cpu *c) { }
3971
3972 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3973
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3974 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3975 {
3976 unsigned long flags;
3977 struct slab *slab;
3978 void *freelist;
3979
3980 local_lock_irqsave(&s->cpu_slab->lock, flags);
3981
3982 slab = c->slab;
3983 freelist = c->freelist;
3984
3985 c->slab = NULL;
3986 c->freelist = NULL;
3987 c->tid = next_tid(c->tid);
3988
3989 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3990
3991 if (slab) {
3992 deactivate_slab(s, slab, freelist);
3993 stat(s, CPUSLAB_FLUSH);
3994 }
3995 }
3996
__flush_cpu_slab(struct kmem_cache * s,int cpu)3997 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3998 {
3999 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4000 void *freelist = c->freelist;
4001 struct slab *slab = c->slab;
4002
4003 c->slab = NULL;
4004 c->freelist = NULL;
4005 c->tid = next_tid(c->tid);
4006
4007 if (slab) {
4008 deactivate_slab(s, slab, freelist);
4009 stat(s, CPUSLAB_FLUSH);
4010 }
4011
4012 put_partials_cpu(s, c);
4013 }
4014
flush_this_cpu_slab(struct kmem_cache * s)4015 static inline void flush_this_cpu_slab(struct kmem_cache *s)
4016 {
4017 struct kmem_cache_cpu *c = this_cpu_ptr(s->cpu_slab);
4018
4019 if (c->slab)
4020 flush_slab(s, c);
4021
4022 put_partials(s);
4023 }
4024
has_cpu_slab(int cpu,struct kmem_cache * s)4025 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
4026 {
4027 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
4028
4029 return c->slab || slub_percpu_partial(c);
4030 }
4031
has_pcs_used(int cpu,struct kmem_cache * s)4032 static bool has_pcs_used(int cpu, struct kmem_cache *s)
4033 {
4034 struct slub_percpu_sheaves *pcs;
4035
4036 if (!s->cpu_sheaves)
4037 return false;
4038
4039 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
4040
4041 return (pcs->spare || pcs->rcu_free || pcs->main->size);
4042 }
4043
4044 /*
4045 * Flush cpu slab.
4046 *
4047 * Called from CPU work handler with migration disabled.
4048 */
flush_cpu_slab(struct work_struct * w)4049 static void flush_cpu_slab(struct work_struct *w)
4050 {
4051 struct kmem_cache *s;
4052 struct slub_flush_work *sfw;
4053
4054 sfw = container_of(w, struct slub_flush_work, work);
4055
4056 s = sfw->s;
4057
4058 if (s->cpu_sheaves)
4059 pcs_flush_all(s);
4060
4061 flush_this_cpu_slab(s);
4062 }
4063
flush_all_cpus_locked(struct kmem_cache * s)4064 static void flush_all_cpus_locked(struct kmem_cache *s)
4065 {
4066 struct slub_flush_work *sfw;
4067 unsigned int cpu;
4068
4069 lockdep_assert_cpus_held();
4070 mutex_lock(&flush_lock);
4071
4072 for_each_online_cpu(cpu) {
4073 sfw = &per_cpu(slub_flush, cpu);
4074 if (!has_cpu_slab(cpu, s) && !has_pcs_used(cpu, s)) {
4075 sfw->skip = true;
4076 continue;
4077 }
4078 INIT_WORK(&sfw->work, flush_cpu_slab);
4079 sfw->skip = false;
4080 sfw->s = s;
4081 queue_work_on(cpu, flushwq, &sfw->work);
4082 }
4083
4084 for_each_online_cpu(cpu) {
4085 sfw = &per_cpu(slub_flush, cpu);
4086 if (sfw->skip)
4087 continue;
4088 flush_work(&sfw->work);
4089 }
4090
4091 mutex_unlock(&flush_lock);
4092 }
4093
flush_all(struct kmem_cache * s)4094 static void flush_all(struct kmem_cache *s)
4095 {
4096 cpus_read_lock();
4097 flush_all_cpus_locked(s);
4098 cpus_read_unlock();
4099 }
4100
flush_rcu_sheaf(struct work_struct * w)4101 static void flush_rcu_sheaf(struct work_struct *w)
4102 {
4103 struct slub_percpu_sheaves *pcs;
4104 struct slab_sheaf *rcu_free;
4105 struct slub_flush_work *sfw;
4106 struct kmem_cache *s;
4107
4108 sfw = container_of(w, struct slub_flush_work, work);
4109 s = sfw->s;
4110
4111 local_lock(&s->cpu_sheaves->lock);
4112 pcs = this_cpu_ptr(s->cpu_sheaves);
4113
4114 rcu_free = pcs->rcu_free;
4115 pcs->rcu_free = NULL;
4116
4117 local_unlock(&s->cpu_sheaves->lock);
4118
4119 if (rcu_free)
4120 call_rcu(&rcu_free->rcu_head, rcu_free_sheaf_nobarn);
4121 }
4122
4123
4124 /* needed for kvfree_rcu_barrier() */
flush_all_rcu_sheaves(void)4125 void flush_all_rcu_sheaves(void)
4126 {
4127 struct slub_flush_work *sfw;
4128 struct kmem_cache *s;
4129 unsigned int cpu;
4130
4131 cpus_read_lock();
4132 mutex_lock(&slab_mutex);
4133
4134 list_for_each_entry(s, &slab_caches, list) {
4135 if (!s->cpu_sheaves)
4136 continue;
4137
4138 mutex_lock(&flush_lock);
4139
4140 for_each_online_cpu(cpu) {
4141 sfw = &per_cpu(slub_flush, cpu);
4142
4143 /*
4144 * we don't check if rcu_free sheaf exists - racing
4145 * __kfree_rcu_sheaf() might have just removed it.
4146 * by executing flush_rcu_sheaf() on the cpu we make
4147 * sure the __kfree_rcu_sheaf() finished its call_rcu()
4148 */
4149
4150 INIT_WORK(&sfw->work, flush_rcu_sheaf);
4151 sfw->s = s;
4152 queue_work_on(cpu, flushwq, &sfw->work);
4153 }
4154
4155 for_each_online_cpu(cpu) {
4156 sfw = &per_cpu(slub_flush, cpu);
4157 flush_work(&sfw->work);
4158 }
4159
4160 mutex_unlock(&flush_lock);
4161 }
4162
4163 mutex_unlock(&slab_mutex);
4164 cpus_read_unlock();
4165
4166 rcu_barrier();
4167 }
4168
4169 /*
4170 * Use the cpu notifier to insure that the cpu slabs are flushed when
4171 * necessary.
4172 */
slub_cpu_dead(unsigned int cpu)4173 static int slub_cpu_dead(unsigned int cpu)
4174 {
4175 struct kmem_cache *s;
4176
4177 mutex_lock(&slab_mutex);
4178 list_for_each_entry(s, &slab_caches, list) {
4179 __flush_cpu_slab(s, cpu);
4180 if (s->cpu_sheaves)
4181 __pcs_flush_all_cpu(s, cpu);
4182 }
4183 mutex_unlock(&slab_mutex);
4184 return 0;
4185 }
4186
4187 /*
4188 * Check if the objects in a per cpu structure fit numa
4189 * locality expectations.
4190 */
node_match(struct slab * slab,int node)4191 static inline int node_match(struct slab *slab, int node)
4192 {
4193 #ifdef CONFIG_NUMA
4194 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
4195 return 0;
4196 #endif
4197 return 1;
4198 }
4199
4200 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)4201 static int count_free(struct slab *slab)
4202 {
4203 return slab->objects - slab->inuse;
4204 }
4205
node_nr_objs(struct kmem_cache_node * n)4206 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
4207 {
4208 return atomic_long_read(&n->total_objects);
4209 }
4210
4211 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)4212 static inline bool free_debug_processing(struct kmem_cache *s,
4213 struct slab *slab, void *head, void *tail, int *bulk_cnt,
4214 unsigned long addr, depot_stack_handle_t handle)
4215 {
4216 bool checks_ok = false;
4217 void *object = head;
4218 int cnt = 0;
4219
4220 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4221 if (!check_slab(s, slab))
4222 goto out;
4223 }
4224
4225 if (slab->inuse < *bulk_cnt) {
4226 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
4227 slab->inuse, *bulk_cnt);
4228 goto out;
4229 }
4230
4231 next_object:
4232
4233 if (++cnt > *bulk_cnt)
4234 goto out_cnt;
4235
4236 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
4237 if (!free_consistency_checks(s, slab, object, addr))
4238 goto out;
4239 }
4240
4241 if (s->flags & SLAB_STORE_USER)
4242 set_track_update(s, object, TRACK_FREE, addr, handle);
4243 trace(s, slab, object, 0);
4244 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
4245 init_object(s, object, SLUB_RED_INACTIVE);
4246
4247 /* Reached end of constructed freelist yet? */
4248 if (object != tail) {
4249 object = get_freepointer(s, object);
4250 goto next_object;
4251 }
4252 checks_ok = true;
4253
4254 out_cnt:
4255 if (cnt != *bulk_cnt) {
4256 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
4257 *bulk_cnt, cnt);
4258 *bulk_cnt = cnt;
4259 }
4260
4261 out:
4262
4263 if (!checks_ok)
4264 slab_fix(s, "Object at 0x%p not freed", object);
4265
4266 return checks_ok;
4267 }
4268 #endif /* CONFIG_SLUB_DEBUG */
4269
4270 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))4271 static unsigned long count_partial(struct kmem_cache_node *n,
4272 int (*get_count)(struct slab *))
4273 {
4274 unsigned long flags;
4275 unsigned long x = 0;
4276 struct slab *slab;
4277
4278 spin_lock_irqsave(&n->list_lock, flags);
4279 list_for_each_entry(slab, &n->partial, slab_list)
4280 x += get_count(slab);
4281 spin_unlock_irqrestore(&n->list_lock, flags);
4282 return x;
4283 }
4284 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
4285
4286 #ifdef CONFIG_SLUB_DEBUG
4287 #define MAX_PARTIAL_TO_SCAN 10000
4288
count_partial_free_approx(struct kmem_cache_node * n)4289 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
4290 {
4291 unsigned long flags;
4292 unsigned long x = 0;
4293 struct slab *slab;
4294
4295 spin_lock_irqsave(&n->list_lock, flags);
4296 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
4297 list_for_each_entry(slab, &n->partial, slab_list)
4298 x += slab->objects - slab->inuse;
4299 } else {
4300 /*
4301 * For a long list, approximate the total count of objects in
4302 * it to meet the limit on the number of slabs to scan.
4303 * Scan from both the list's head and tail for better accuracy.
4304 */
4305 unsigned long scanned = 0;
4306
4307 list_for_each_entry(slab, &n->partial, slab_list) {
4308 x += slab->objects - slab->inuse;
4309 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
4310 break;
4311 }
4312 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
4313 x += slab->objects - slab->inuse;
4314 if (++scanned == MAX_PARTIAL_TO_SCAN)
4315 break;
4316 }
4317 x = mult_frac(x, n->nr_partial, scanned);
4318 x = min(x, node_nr_objs(n));
4319 }
4320 spin_unlock_irqrestore(&n->list_lock, flags);
4321 return x;
4322 }
4323
4324 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4325 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
4326 {
4327 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
4328 DEFAULT_RATELIMIT_BURST);
4329 int cpu = raw_smp_processor_id();
4330 int node;
4331 struct kmem_cache_node *n;
4332
4333 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
4334 return;
4335
4336 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
4337 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
4338 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
4339 s->name, s->object_size, s->size, oo_order(s->oo),
4340 oo_order(s->min));
4341
4342 if (oo_order(s->min) > get_order(s->object_size))
4343 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
4344 s->name);
4345
4346 for_each_kmem_cache_node(s, node, n) {
4347 unsigned long nr_slabs;
4348 unsigned long nr_objs;
4349 unsigned long nr_free;
4350
4351 nr_free = count_partial_free_approx(n);
4352 nr_slabs = node_nr_slabs(n);
4353 nr_objs = node_nr_objs(n);
4354
4355 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
4356 node, nr_slabs, nr_objs, nr_free);
4357 }
4358 }
4359 #else /* CONFIG_SLUB_DEBUG */
4360 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)4361 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
4362 #endif
4363
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)4364 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
4365 {
4366 if (unlikely(slab_test_pfmemalloc(slab)))
4367 return gfp_pfmemalloc_allowed(gfpflags);
4368
4369 return true;
4370 }
4371
4372 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)4373 __update_cpu_freelist_fast(struct kmem_cache *s,
4374 void *freelist_old, void *freelist_new,
4375 unsigned long tid)
4376 {
4377 struct freelist_tid old = { .freelist = freelist_old, .tid = tid };
4378 struct freelist_tid new = { .freelist = freelist_new, .tid = next_tid(tid) };
4379
4380 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid,
4381 &old.freelist_tid, new.freelist_tid);
4382 }
4383
4384 /*
4385 * Check the slab->freelist and either transfer the freelist to the
4386 * per cpu freelist or deactivate the slab.
4387 *
4388 * The slab is still frozen if the return value is not NULL.
4389 *
4390 * If this function returns NULL then the slab has been unfrozen.
4391 */
get_freelist(struct kmem_cache * s,struct slab * slab)4392 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
4393 {
4394 struct freelist_counters old, new;
4395
4396 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4397
4398 do {
4399 old.freelist = slab->freelist;
4400 old.counters = slab->counters;
4401
4402 new.freelist = NULL;
4403 new.counters = old.counters;
4404
4405 new.inuse = old.objects;
4406 new.frozen = old.freelist != NULL;
4407
4408
4409 } while (!__slab_update_freelist(s, slab, &old, &new, "get_freelist"));
4410
4411 return old.freelist;
4412 }
4413
4414 /*
4415 * Freeze the partial slab and return the pointer to the freelist.
4416 */
freeze_slab(struct kmem_cache * s,struct slab * slab)4417 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
4418 {
4419 struct freelist_counters old, new;
4420
4421 do {
4422 old.freelist = slab->freelist;
4423 old.counters = slab->counters;
4424
4425 new.freelist = NULL;
4426 new.counters = old.counters;
4427 VM_BUG_ON(new.frozen);
4428
4429 new.inuse = old.objects;
4430 new.frozen = 1;
4431
4432 } while (!slab_update_freelist(s, slab, &old, &new, "freeze_slab"));
4433
4434 return old.freelist;
4435 }
4436
4437 /*
4438 * Slow path. The lockless freelist is empty or we need to perform
4439 * debugging duties.
4440 *
4441 * Processing is still very fast if new objects have been freed to the
4442 * regular freelist. In that case we simply take over the regular freelist
4443 * as the lockless freelist and zap the regular freelist.
4444 *
4445 * If that is not working then we fall back to the partial lists. We take the
4446 * first element of the freelist as the object to allocate now and move the
4447 * rest of the freelist to the lockless freelist.
4448 *
4449 * And if we were unable to get a new slab from the partial slab lists then
4450 * we need to allocate a new slab. This is the slowest path since it involves
4451 * a call to the page allocator and the setup of a new slab.
4452 *
4453 * Version of __slab_alloc to use when we know that preemption is
4454 * already disabled (which is the case for bulk allocation).
4455 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4456 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4457 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4458 {
4459 bool allow_spin = gfpflags_allow_spinning(gfpflags);
4460 void *freelist;
4461 struct slab *slab;
4462 unsigned long flags;
4463 struct partial_context pc;
4464 bool try_thisnode = true;
4465
4466 stat(s, ALLOC_SLOWPATH);
4467
4468 reread_slab:
4469
4470 slab = READ_ONCE(c->slab);
4471 if (!slab) {
4472 /*
4473 * if the node is not online or has no normal memory, just
4474 * ignore the node constraint
4475 */
4476 if (unlikely(node != NUMA_NO_NODE &&
4477 !node_isset(node, slab_nodes)))
4478 node = NUMA_NO_NODE;
4479 goto new_slab;
4480 }
4481
4482 if (unlikely(!node_match(slab, node))) {
4483 /*
4484 * same as above but node_match() being false already
4485 * implies node != NUMA_NO_NODE.
4486 *
4487 * We don't strictly honor pfmemalloc and NUMA preferences
4488 * when !allow_spin because:
4489 *
4490 * 1. Most kmalloc() users allocate objects on the local node,
4491 * so kmalloc_nolock() tries not to interfere with them by
4492 * deactivating the cpu slab.
4493 *
4494 * 2. Deactivating due to NUMA or pfmemalloc mismatch may cause
4495 * unnecessary slab allocations even when n->partial list
4496 * is not empty.
4497 */
4498 if (!node_isset(node, slab_nodes) ||
4499 !allow_spin) {
4500 node = NUMA_NO_NODE;
4501 } else {
4502 stat(s, ALLOC_NODE_MISMATCH);
4503 goto deactivate_slab;
4504 }
4505 }
4506
4507 /*
4508 * By rights, we should be searching for a slab page that was
4509 * PFMEMALLOC but right now, we are losing the pfmemalloc
4510 * information when the page leaves the per-cpu allocator
4511 */
4512 if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin))
4513 goto deactivate_slab;
4514
4515 /* must check again c->slab in case we got preempted and it changed */
4516 local_lock_cpu_slab(s, flags);
4517
4518 if (unlikely(slab != c->slab)) {
4519 local_unlock_cpu_slab(s, flags);
4520 goto reread_slab;
4521 }
4522 freelist = c->freelist;
4523 if (freelist)
4524 goto load_freelist;
4525
4526 freelist = get_freelist(s, slab);
4527
4528 if (!freelist) {
4529 c->slab = NULL;
4530 c->tid = next_tid(c->tid);
4531 local_unlock_cpu_slab(s, flags);
4532 stat(s, DEACTIVATE_BYPASS);
4533 goto new_slab;
4534 }
4535
4536 stat(s, ALLOC_REFILL);
4537
4538 load_freelist:
4539
4540 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
4541
4542 /*
4543 * freelist is pointing to the list of objects to be used.
4544 * slab is pointing to the slab from which the objects are obtained.
4545 * That slab must be frozen for per cpu allocations to work.
4546 */
4547 VM_BUG_ON(!c->slab->frozen);
4548 c->freelist = get_freepointer(s, freelist);
4549 c->tid = next_tid(c->tid);
4550 local_unlock_cpu_slab(s, flags);
4551 return freelist;
4552
4553 deactivate_slab:
4554
4555 local_lock_cpu_slab(s, flags);
4556 if (slab != c->slab) {
4557 local_unlock_cpu_slab(s, flags);
4558 goto reread_slab;
4559 }
4560 freelist = c->freelist;
4561 c->slab = NULL;
4562 c->freelist = NULL;
4563 c->tid = next_tid(c->tid);
4564 local_unlock_cpu_slab(s, flags);
4565 deactivate_slab(s, slab, freelist);
4566
4567 new_slab:
4568
4569 #ifdef CONFIG_SLUB_CPU_PARTIAL
4570 while (slub_percpu_partial(c)) {
4571 local_lock_cpu_slab(s, flags);
4572 if (unlikely(c->slab)) {
4573 local_unlock_cpu_slab(s, flags);
4574 goto reread_slab;
4575 }
4576 if (unlikely(!slub_percpu_partial(c))) {
4577 local_unlock_cpu_slab(s, flags);
4578 /* we were preempted and partial list got empty */
4579 goto new_objects;
4580 }
4581
4582 slab = slub_percpu_partial(c);
4583 slub_set_percpu_partial(c, slab);
4584
4585 if (likely(node_match(slab, node) &&
4586 pfmemalloc_match(slab, gfpflags)) ||
4587 !allow_spin) {
4588 c->slab = slab;
4589 freelist = get_freelist(s, slab);
4590 VM_BUG_ON(!freelist);
4591 stat(s, CPU_PARTIAL_ALLOC);
4592 goto load_freelist;
4593 }
4594
4595 local_unlock_cpu_slab(s, flags);
4596
4597 slab->next = NULL;
4598 __put_partials(s, slab);
4599 }
4600 #endif
4601
4602 new_objects:
4603
4604 pc.flags = gfpflags;
4605 /*
4606 * When a preferred node is indicated but no __GFP_THISNODE
4607 *
4608 * 1) try to get a partial slab from target node only by having
4609 * __GFP_THISNODE in pc.flags for get_partial()
4610 * 2) if 1) failed, try to allocate a new slab from target node with
4611 * GPF_NOWAIT | __GFP_THISNODE opportunistically
4612 * 3) if 2) failed, retry with original gfpflags which will allow
4613 * get_partial() try partial lists of other nodes before potentially
4614 * allocating new page from other nodes
4615 */
4616 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4617 && try_thisnode)) {
4618 if (unlikely(!allow_spin))
4619 /* Do not upgrade gfp to NOWAIT from more restrictive mode */
4620 pc.flags = gfpflags | __GFP_THISNODE;
4621 else
4622 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
4623 }
4624
4625 pc.orig_size = orig_size;
4626 slab = get_partial(s, node, &pc);
4627 if (slab) {
4628 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4629 freelist = pc.object;
4630 /*
4631 * For debug caches here we had to go through
4632 * alloc_single_from_partial() so just store the
4633 * tracking info and return the object.
4634 *
4635 * Due to disabled preemption we need to disallow
4636 * blocking. The flags are further adjusted by
4637 * gfp_nested_mask() in stack_depot itself.
4638 */
4639 if (s->flags & SLAB_STORE_USER)
4640 set_track(s, freelist, TRACK_ALLOC, addr,
4641 gfpflags & ~(__GFP_DIRECT_RECLAIM));
4642
4643 return freelist;
4644 }
4645
4646 freelist = freeze_slab(s, slab);
4647 goto retry_load_slab;
4648 }
4649
4650 slub_put_cpu_ptr(s->cpu_slab);
4651 slab = new_slab(s, pc.flags, node);
4652 c = slub_get_cpu_ptr(s->cpu_slab);
4653
4654 if (unlikely(!slab)) {
4655 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
4656 && try_thisnode) {
4657 try_thisnode = false;
4658 goto new_objects;
4659 }
4660 slab_out_of_memory(s, gfpflags, node);
4661 return NULL;
4662 }
4663
4664 stat(s, ALLOC_SLAB);
4665
4666 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4667 freelist = alloc_single_from_new_slab(s, slab, orig_size, gfpflags);
4668
4669 if (unlikely(!freelist)) {
4670 /* This could cause an endless loop. Fail instead. */
4671 if (!allow_spin)
4672 return NULL;
4673 goto new_objects;
4674 }
4675
4676 if (s->flags & SLAB_STORE_USER)
4677 set_track(s, freelist, TRACK_ALLOC, addr,
4678 gfpflags & ~(__GFP_DIRECT_RECLAIM));
4679
4680 return freelist;
4681 }
4682
4683 /*
4684 * No other reference to the slab yet so we can
4685 * muck around with it freely without cmpxchg
4686 */
4687 freelist = slab->freelist;
4688 slab->freelist = NULL;
4689 slab->inuse = slab->objects;
4690 slab->frozen = 1;
4691
4692 inc_slabs_node(s, slab_nid(slab), slab->objects);
4693
4694 if (unlikely(!pfmemalloc_match(slab, gfpflags) && allow_spin)) {
4695 /*
4696 * For !pfmemalloc_match() case we don't load freelist so that
4697 * we don't make further mismatched allocations easier.
4698 */
4699 deactivate_slab(s, slab, get_freepointer(s, freelist));
4700 return freelist;
4701 }
4702
4703 retry_load_slab:
4704
4705 local_lock_cpu_slab(s, flags);
4706 if (unlikely(c->slab)) {
4707 void *flush_freelist = c->freelist;
4708 struct slab *flush_slab = c->slab;
4709
4710 c->slab = NULL;
4711 c->freelist = NULL;
4712 c->tid = next_tid(c->tid);
4713
4714 local_unlock_cpu_slab(s, flags);
4715
4716 if (unlikely(!allow_spin)) {
4717 /* Reentrant slub cannot take locks, defer */
4718 defer_deactivate_slab(flush_slab, flush_freelist);
4719 } else {
4720 deactivate_slab(s, flush_slab, flush_freelist);
4721 }
4722
4723 stat(s, CPUSLAB_FLUSH);
4724
4725 goto retry_load_slab;
4726 }
4727 c->slab = slab;
4728
4729 goto load_freelist;
4730 }
4731 /*
4732 * We disallow kprobes in ___slab_alloc() to prevent reentrance
4733 *
4734 * kmalloc() -> ___slab_alloc() -> local_lock_cpu_slab() protected part of
4735 * ___slab_alloc() manipulating c->freelist -> kprobe -> bpf ->
4736 * kmalloc_nolock() or kfree_nolock() -> __update_cpu_freelist_fast()
4737 * manipulating c->freelist without lock.
4738 *
4739 * This does not prevent kprobe in functions called from ___slab_alloc() such as
4740 * local_lock_irqsave() itself, and that is fine, we only need to protect the
4741 * c->freelist manipulation in ___slab_alloc() itself.
4742 */
4743 NOKPROBE_SYMBOL(___slab_alloc);
4744
4745 /*
4746 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
4747 * disabled. Compensates for possible cpu changes by refetching the per cpu area
4748 * pointer.
4749 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)4750 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
4751 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
4752 {
4753 void *p;
4754
4755 #ifdef CONFIG_PREEMPT_COUNT
4756 /*
4757 * We may have been preempted and rescheduled on a different
4758 * cpu before disabling preemption. Need to reload cpu area
4759 * pointer.
4760 */
4761 c = slub_get_cpu_ptr(s->cpu_slab);
4762 #endif
4763 if (unlikely(!gfpflags_allow_spinning(gfpflags))) {
4764 if (local_lock_is_locked(&s->cpu_slab->lock)) {
4765 /*
4766 * EBUSY is an internal signal to kmalloc_nolock() to
4767 * retry a different bucket. It's not propagated
4768 * to the caller.
4769 */
4770 p = ERR_PTR(-EBUSY);
4771 goto out;
4772 }
4773 }
4774 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
4775 out:
4776 #ifdef CONFIG_PREEMPT_COUNT
4777 slub_put_cpu_ptr(s->cpu_slab);
4778 #endif
4779 return p;
4780 }
4781
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4782 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4783 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4784 {
4785 struct kmem_cache_cpu *c;
4786 struct slab *slab;
4787 unsigned long tid;
4788 void *object;
4789
4790 redo:
4791 /*
4792 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4793 * enabled. We may switch back and forth between cpus while
4794 * reading from one cpu area. That does not matter as long
4795 * as we end up on the original cpu again when doing the cmpxchg.
4796 *
4797 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4798 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4799 * the tid. If we are preempted and switched to another cpu between the
4800 * two reads, it's OK as the two are still associated with the same cpu
4801 * and cmpxchg later will validate the cpu.
4802 */
4803 c = raw_cpu_ptr(s->cpu_slab);
4804 tid = READ_ONCE(c->tid);
4805
4806 /*
4807 * Irqless object alloc/free algorithm used here depends on sequence
4808 * of fetching cpu_slab's data. tid should be fetched before anything
4809 * on c to guarantee that object and slab associated with previous tid
4810 * won't be used with current tid. If we fetch tid first, object and
4811 * slab could be one associated with next tid and our alloc/free
4812 * request will be failed. In this case, we will retry. So, no problem.
4813 */
4814 barrier();
4815
4816 /*
4817 * The transaction ids are globally unique per cpu and per operation on
4818 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4819 * occurs on the right processor and that there was no operation on the
4820 * linked list in between.
4821 */
4822
4823 object = c->freelist;
4824 slab = c->slab;
4825
4826 #ifdef CONFIG_NUMA
4827 if (static_branch_unlikely(&strict_numa) &&
4828 node == NUMA_NO_NODE) {
4829
4830 struct mempolicy *mpol = current->mempolicy;
4831
4832 if (mpol) {
4833 /*
4834 * Special BIND rule support. If existing slab
4835 * is in permitted set then do not redirect
4836 * to a particular node.
4837 * Otherwise we apply the memory policy to get
4838 * the node we need to allocate on.
4839 */
4840 if (mpol->mode != MPOL_BIND || !slab ||
4841 !node_isset(slab_nid(slab), mpol->nodes))
4842
4843 node = mempolicy_slab_node();
4844 }
4845 }
4846 #endif
4847
4848 if (!USE_LOCKLESS_FAST_PATH() ||
4849 unlikely(!object || !slab || !node_match(slab, node))) {
4850 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4851 } else {
4852 void *next_object = get_freepointer_safe(s, object);
4853
4854 /*
4855 * The cmpxchg will only match if there was no additional
4856 * operation and if we are on the right processor.
4857 *
4858 * The cmpxchg does the following atomically (without lock
4859 * semantics!)
4860 * 1. Relocate first pointer to the current per cpu area.
4861 * 2. Verify that tid and freelist have not been changed
4862 * 3. If they were not changed replace tid and freelist
4863 *
4864 * Since this is without lock semantics the protection is only
4865 * against code executing on this cpu *not* from access by
4866 * other cpus.
4867 */
4868 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4869 note_cmpxchg_failure("slab_alloc", s, tid);
4870 goto redo;
4871 }
4872 prefetch_freepointer(s, next_object);
4873 stat(s, ALLOC_FASTPATH);
4874 }
4875
4876 return object;
4877 }
4878
4879 /*
4880 * If the object has been wiped upon free, make sure it's fully initialized by
4881 * zeroing out freelist pointer.
4882 *
4883 * Note that we also wipe custom freelist pointers.
4884 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4885 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4886 void *obj)
4887 {
4888 if (unlikely(slab_want_init_on_free(s)) && obj &&
4889 !freeptr_outside_object(s))
4890 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4891 0, sizeof(void *));
4892 }
4893
4894 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4895 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4896 {
4897 flags &= gfp_allowed_mask;
4898
4899 might_alloc(flags);
4900
4901 if (unlikely(should_failslab(s, flags)))
4902 return NULL;
4903
4904 return s;
4905 }
4906
4907 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4908 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4909 gfp_t flags, size_t size, void **p, bool init,
4910 unsigned int orig_size)
4911 {
4912 unsigned int zero_size = s->object_size;
4913 bool kasan_init = init;
4914 size_t i;
4915 gfp_t init_flags = flags & gfp_allowed_mask;
4916
4917 /*
4918 * For kmalloc object, the allocated memory size(object_size) is likely
4919 * larger than the requested size(orig_size). If redzone check is
4920 * enabled for the extra space, don't zero it, as it will be redzoned
4921 * soon. The redzone operation for this extra space could be seen as a
4922 * replacement of current poisoning under certain debug option, and
4923 * won't break other sanity checks.
4924 */
4925 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4926 (s->flags & SLAB_KMALLOC))
4927 zero_size = orig_size;
4928
4929 /*
4930 * When slab_debug is enabled, avoid memory initialization integrated
4931 * into KASAN and instead zero out the memory via the memset below with
4932 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4933 * cause false-positive reports. This does not lead to a performance
4934 * penalty on production builds, as slab_debug is not intended to be
4935 * enabled there.
4936 */
4937 if (__slub_debug_enabled())
4938 kasan_init = false;
4939
4940 /*
4941 * As memory initialization might be integrated into KASAN,
4942 * kasan_slab_alloc and initialization memset must be
4943 * kept together to avoid discrepancies in behavior.
4944 *
4945 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4946 */
4947 for (i = 0; i < size; i++) {
4948 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4949 if (p[i] && init && (!kasan_init ||
4950 !kasan_has_integrated_init()))
4951 memset(p[i], 0, zero_size);
4952 if (gfpflags_allow_spinning(flags))
4953 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4954 s->flags, init_flags);
4955 kmsan_slab_alloc(s, p[i], init_flags);
4956 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4957 }
4958
4959 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4960 }
4961
4962 /*
4963 * Replace the empty main sheaf with a (at least partially) full sheaf.
4964 *
4965 * Must be called with the cpu_sheaves local lock locked. If successful, returns
4966 * the pcs pointer and the local lock locked (possibly on a different cpu than
4967 * initially called). If not successful, returns NULL and the local lock
4968 * unlocked.
4969 */
4970 static struct slub_percpu_sheaves *
__pcs_replace_empty_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,gfp_t gfp)4971 __pcs_replace_empty_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs, gfp_t gfp)
4972 {
4973 struct slab_sheaf *empty = NULL;
4974 struct slab_sheaf *full;
4975 struct node_barn *barn;
4976 bool can_alloc;
4977
4978 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
4979
4980 if (pcs->spare && pcs->spare->size > 0) {
4981 swap(pcs->main, pcs->spare);
4982 return pcs;
4983 }
4984
4985 barn = get_barn(s);
4986 if (!barn) {
4987 local_unlock(&s->cpu_sheaves->lock);
4988 return NULL;
4989 }
4990
4991 full = barn_replace_empty_sheaf(barn, pcs->main);
4992
4993 if (full) {
4994 stat(s, BARN_GET);
4995 pcs->main = full;
4996 return pcs;
4997 }
4998
4999 stat(s, BARN_GET_FAIL);
5000
5001 can_alloc = gfpflags_allow_blocking(gfp);
5002
5003 if (can_alloc) {
5004 if (pcs->spare) {
5005 empty = pcs->spare;
5006 pcs->spare = NULL;
5007 } else {
5008 empty = barn_get_empty_sheaf(barn);
5009 }
5010 }
5011
5012 local_unlock(&s->cpu_sheaves->lock);
5013
5014 if (!can_alloc)
5015 return NULL;
5016
5017 if (empty) {
5018 if (!refill_sheaf(s, empty, gfp | __GFP_NOMEMALLOC)) {
5019 full = empty;
5020 } else {
5021 /*
5022 * we must be very low on memory so don't bother
5023 * with the barn
5024 */
5025 free_empty_sheaf(s, empty);
5026 }
5027 } else {
5028 full = alloc_full_sheaf(s, gfp);
5029 }
5030
5031 if (!full)
5032 return NULL;
5033
5034 /*
5035 * we can reach here only when gfpflags_allow_blocking
5036 * so this must not be an irq
5037 */
5038 local_lock(&s->cpu_sheaves->lock);
5039 pcs = this_cpu_ptr(s->cpu_sheaves);
5040
5041 /*
5042 * If we are returning empty sheaf, we either got it from the
5043 * barn or had to allocate one. If we are returning a full
5044 * sheaf, it's due to racing or being migrated to a different
5045 * cpu. Breaching the barn's sheaf limits should be thus rare
5046 * enough so just ignore them to simplify the recovery.
5047 */
5048
5049 if (pcs->main->size == 0) {
5050 barn_put_empty_sheaf(barn, pcs->main);
5051 pcs->main = full;
5052 return pcs;
5053 }
5054
5055 if (!pcs->spare) {
5056 pcs->spare = full;
5057 return pcs;
5058 }
5059
5060 if (pcs->spare->size == 0) {
5061 barn_put_empty_sheaf(barn, pcs->spare);
5062 pcs->spare = full;
5063 return pcs;
5064 }
5065
5066 barn_put_full_sheaf(barn, full);
5067 stat(s, BARN_PUT);
5068
5069 return pcs;
5070 }
5071
5072 static __fastpath_inline
alloc_from_pcs(struct kmem_cache * s,gfp_t gfp,int node)5073 void *alloc_from_pcs(struct kmem_cache *s, gfp_t gfp, int node)
5074 {
5075 struct slub_percpu_sheaves *pcs;
5076 bool node_requested;
5077 void *object;
5078
5079 #ifdef CONFIG_NUMA
5080 if (static_branch_unlikely(&strict_numa) &&
5081 node == NUMA_NO_NODE) {
5082
5083 struct mempolicy *mpol = current->mempolicy;
5084
5085 if (mpol) {
5086 /*
5087 * Special BIND rule support. If the local node
5088 * is in permitted set then do not redirect
5089 * to a particular node.
5090 * Otherwise we apply the memory policy to get
5091 * the node we need to allocate on.
5092 */
5093 if (mpol->mode != MPOL_BIND ||
5094 !node_isset(numa_mem_id(), mpol->nodes))
5095
5096 node = mempolicy_slab_node();
5097 }
5098 }
5099 #endif
5100
5101 node_requested = IS_ENABLED(CONFIG_NUMA) && node != NUMA_NO_NODE;
5102
5103 /*
5104 * We assume the percpu sheaves contain only local objects although it's
5105 * not completely guaranteed, so we verify later.
5106 */
5107 if (unlikely(node_requested && node != numa_mem_id()))
5108 return NULL;
5109
5110 if (!local_trylock(&s->cpu_sheaves->lock))
5111 return NULL;
5112
5113 pcs = this_cpu_ptr(s->cpu_sheaves);
5114
5115 if (unlikely(pcs->main->size == 0)) {
5116 pcs = __pcs_replace_empty_main(s, pcs, gfp);
5117 if (unlikely(!pcs))
5118 return NULL;
5119 }
5120
5121 object = pcs->main->objects[pcs->main->size - 1];
5122
5123 if (unlikely(node_requested)) {
5124 /*
5125 * Verify that the object was from the node we want. This could
5126 * be false because of cpu migration during an unlocked part of
5127 * the current allocation or previous freeing process.
5128 */
5129 if (page_to_nid(virt_to_page(object)) != node) {
5130 local_unlock(&s->cpu_sheaves->lock);
5131 return NULL;
5132 }
5133 }
5134
5135 pcs->main->size--;
5136
5137 local_unlock(&s->cpu_sheaves->lock);
5138
5139 stat(s, ALLOC_PCS);
5140
5141 return object;
5142 }
5143
5144 static __fastpath_inline
alloc_from_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)5145 unsigned int alloc_from_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
5146 {
5147 struct slub_percpu_sheaves *pcs;
5148 struct slab_sheaf *main;
5149 unsigned int allocated = 0;
5150 unsigned int batch;
5151
5152 next_batch:
5153 if (!local_trylock(&s->cpu_sheaves->lock))
5154 return allocated;
5155
5156 pcs = this_cpu_ptr(s->cpu_sheaves);
5157
5158 if (unlikely(pcs->main->size == 0)) {
5159
5160 struct slab_sheaf *full;
5161 struct node_barn *barn;
5162
5163 if (pcs->spare && pcs->spare->size > 0) {
5164 swap(pcs->main, pcs->spare);
5165 goto do_alloc;
5166 }
5167
5168 barn = get_barn(s);
5169 if (!barn) {
5170 local_unlock(&s->cpu_sheaves->lock);
5171 return allocated;
5172 }
5173
5174 full = barn_replace_empty_sheaf(barn, pcs->main);
5175
5176 if (full) {
5177 stat(s, BARN_GET);
5178 pcs->main = full;
5179 goto do_alloc;
5180 }
5181
5182 stat(s, BARN_GET_FAIL);
5183
5184 local_unlock(&s->cpu_sheaves->lock);
5185
5186 /*
5187 * Once full sheaves in barn are depleted, let the bulk
5188 * allocation continue from slab pages, otherwise we would just
5189 * be copying arrays of pointers twice.
5190 */
5191 return allocated;
5192 }
5193
5194 do_alloc:
5195
5196 main = pcs->main;
5197 batch = min(size, main->size);
5198
5199 main->size -= batch;
5200 memcpy(p, main->objects + main->size, batch * sizeof(void *));
5201
5202 local_unlock(&s->cpu_sheaves->lock);
5203
5204 stat_add(s, ALLOC_PCS, batch);
5205
5206 allocated += batch;
5207
5208 if (batch < size) {
5209 p += batch;
5210 size -= batch;
5211 goto next_batch;
5212 }
5213
5214 return allocated;
5215 }
5216
5217
5218 /*
5219 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
5220 * have the fastpath folded into their functions. So no function call
5221 * overhead for requests that can be satisfied on the fastpath.
5222 *
5223 * The fastpath works by first checking if the lockless freelist can be used.
5224 * If not then __slab_alloc is called for slow processing.
5225 *
5226 * Otherwise we can simply pick the next object from the lockless free list.
5227 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)5228 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
5229 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
5230 {
5231 void *object;
5232 bool init = false;
5233
5234 s = slab_pre_alloc_hook(s, gfpflags);
5235 if (unlikely(!s))
5236 return NULL;
5237
5238 object = kfence_alloc(s, orig_size, gfpflags);
5239 if (unlikely(object))
5240 goto out;
5241
5242 if (s->cpu_sheaves)
5243 object = alloc_from_pcs(s, gfpflags, node);
5244
5245 if (!object)
5246 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
5247
5248 maybe_wipe_obj_freeptr(s, object);
5249 init = slab_want_init_on_alloc(gfpflags, s);
5250
5251 out:
5252 /*
5253 * When init equals 'true', like for kzalloc() family, only
5254 * @orig_size bytes might be zeroed instead of s->object_size
5255 * In case this fails due to memcg_slab_post_alloc_hook(),
5256 * object is set to NULL
5257 */
5258 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
5259
5260 return object;
5261 }
5262
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)5263 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
5264 {
5265 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
5266 s->object_size);
5267
5268 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5269
5270 return ret;
5271 }
5272 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
5273
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)5274 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
5275 gfp_t gfpflags)
5276 {
5277 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
5278 s->object_size);
5279
5280 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
5281
5282 return ret;
5283 }
5284 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
5285
kmem_cache_charge(void * objp,gfp_t gfpflags)5286 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
5287 {
5288 if (!memcg_kmem_online())
5289 return true;
5290
5291 return memcg_slab_post_charge(objp, gfpflags);
5292 }
5293 EXPORT_SYMBOL(kmem_cache_charge);
5294
5295 /**
5296 * kmem_cache_alloc_node - Allocate an object on the specified node
5297 * @s: The cache to allocate from.
5298 * @gfpflags: See kmalloc().
5299 * @node: node number of the target node.
5300 *
5301 * Identical to kmem_cache_alloc but it will allocate memory on the given
5302 * node, which can improve the performance for cpu bound structures.
5303 *
5304 * Fallback to other node is possible if __GFP_THISNODE is not set.
5305 *
5306 * Return: pointer to the new object or %NULL in case of error
5307 */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)5308 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
5309 {
5310 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
5311
5312 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
5313
5314 return ret;
5315 }
5316 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
5317
__prefill_sheaf_pfmemalloc(struct kmem_cache * s,struct slab_sheaf * sheaf,gfp_t gfp)5318 static int __prefill_sheaf_pfmemalloc(struct kmem_cache *s,
5319 struct slab_sheaf *sheaf, gfp_t gfp)
5320 {
5321 int ret = 0;
5322
5323 ret = refill_sheaf(s, sheaf, gfp | __GFP_NOMEMALLOC);
5324
5325 if (likely(!ret || !gfp_pfmemalloc_allowed(gfp)))
5326 return ret;
5327
5328 /*
5329 * if we are allowed to, refill sheaf with pfmemalloc but then remember
5330 * it for when it's returned
5331 */
5332 ret = refill_sheaf(s, sheaf, gfp);
5333 sheaf->pfmemalloc = true;
5334
5335 return ret;
5336 }
5337
5338 /*
5339 * returns a sheaf that has at least the requested size
5340 * when prefilling is needed, do so with given gfp flags
5341 *
5342 * return NULL if sheaf allocation or prefilling failed
5343 */
5344 struct slab_sheaf *
kmem_cache_prefill_sheaf(struct kmem_cache * s,gfp_t gfp,unsigned int size)5345 kmem_cache_prefill_sheaf(struct kmem_cache *s, gfp_t gfp, unsigned int size)
5346 {
5347 struct slub_percpu_sheaves *pcs;
5348 struct slab_sheaf *sheaf = NULL;
5349 struct node_barn *barn;
5350
5351 if (unlikely(size > s->sheaf_capacity)) {
5352
5353 /*
5354 * slab_debug disables cpu sheaves intentionally so all
5355 * prefilled sheaves become "oversize" and we give up on
5356 * performance for the debugging. Same with SLUB_TINY.
5357 * Creating a cache without sheaves and then requesting a
5358 * prefilled sheaf is however not expected, so warn.
5359 */
5360 WARN_ON_ONCE(s->sheaf_capacity == 0 &&
5361 !IS_ENABLED(CONFIG_SLUB_TINY) &&
5362 !(s->flags & SLAB_DEBUG_FLAGS));
5363
5364 sheaf = kzalloc(struct_size(sheaf, objects, size), gfp);
5365 if (!sheaf)
5366 return NULL;
5367
5368 stat(s, SHEAF_PREFILL_OVERSIZE);
5369 sheaf->cache = s;
5370 sheaf->capacity = size;
5371
5372 /*
5373 * we do not need to care about pfmemalloc here because oversize
5374 * sheaves area always flushed and freed when returned
5375 */
5376 if (!__kmem_cache_alloc_bulk(s, gfp, size,
5377 &sheaf->objects[0])) {
5378 kfree(sheaf);
5379 return NULL;
5380 }
5381
5382 sheaf->size = size;
5383
5384 return sheaf;
5385 }
5386
5387 local_lock(&s->cpu_sheaves->lock);
5388 pcs = this_cpu_ptr(s->cpu_sheaves);
5389
5390 if (pcs->spare) {
5391 sheaf = pcs->spare;
5392 pcs->spare = NULL;
5393 stat(s, SHEAF_PREFILL_FAST);
5394 } else {
5395 barn = get_barn(s);
5396
5397 stat(s, SHEAF_PREFILL_SLOW);
5398 if (barn)
5399 sheaf = barn_get_full_or_empty_sheaf(barn);
5400 if (sheaf && sheaf->size)
5401 stat(s, BARN_GET);
5402 else
5403 stat(s, BARN_GET_FAIL);
5404 }
5405
5406 local_unlock(&s->cpu_sheaves->lock);
5407
5408
5409 if (!sheaf)
5410 sheaf = alloc_empty_sheaf(s, gfp);
5411
5412 if (sheaf) {
5413 sheaf->capacity = s->sheaf_capacity;
5414 sheaf->pfmemalloc = false;
5415
5416 if (sheaf->size < size &&
5417 __prefill_sheaf_pfmemalloc(s, sheaf, gfp)) {
5418 sheaf_flush_unused(s, sheaf);
5419 free_empty_sheaf(s, sheaf);
5420 sheaf = NULL;
5421 }
5422 }
5423
5424 return sheaf;
5425 }
5426
5427 /*
5428 * Use this to return a sheaf obtained by kmem_cache_prefill_sheaf()
5429 *
5430 * If the sheaf cannot simply become the percpu spare sheaf, but there's space
5431 * for a full sheaf in the barn, we try to refill the sheaf back to the cache's
5432 * sheaf_capacity to avoid handling partially full sheaves.
5433 *
5434 * If the refill fails because gfp is e.g. GFP_NOWAIT, or the barn is full, the
5435 * sheaf is instead flushed and freed.
5436 */
kmem_cache_return_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5437 void kmem_cache_return_sheaf(struct kmem_cache *s, gfp_t gfp,
5438 struct slab_sheaf *sheaf)
5439 {
5440 struct slub_percpu_sheaves *pcs;
5441 struct node_barn *barn;
5442
5443 if (unlikely((sheaf->capacity != s->sheaf_capacity)
5444 || sheaf->pfmemalloc)) {
5445 sheaf_flush_unused(s, sheaf);
5446 kfree(sheaf);
5447 return;
5448 }
5449
5450 local_lock(&s->cpu_sheaves->lock);
5451 pcs = this_cpu_ptr(s->cpu_sheaves);
5452 barn = get_barn(s);
5453
5454 if (!pcs->spare) {
5455 pcs->spare = sheaf;
5456 sheaf = NULL;
5457 stat(s, SHEAF_RETURN_FAST);
5458 }
5459
5460 local_unlock(&s->cpu_sheaves->lock);
5461
5462 if (!sheaf)
5463 return;
5464
5465 stat(s, SHEAF_RETURN_SLOW);
5466
5467 /*
5468 * If the barn has too many full sheaves or we fail to refill the sheaf,
5469 * simply flush and free it.
5470 */
5471 if (!barn || data_race(barn->nr_full) >= MAX_FULL_SHEAVES ||
5472 refill_sheaf(s, sheaf, gfp)) {
5473 sheaf_flush_unused(s, sheaf);
5474 free_empty_sheaf(s, sheaf);
5475 return;
5476 }
5477
5478 barn_put_full_sheaf(barn, sheaf);
5479 stat(s, BARN_PUT);
5480 }
5481
5482 /*
5483 * refill a sheaf previously returned by kmem_cache_prefill_sheaf to at least
5484 * the given size
5485 *
5486 * the sheaf might be replaced by a new one when requesting more than
5487 * s->sheaf_capacity objects if such replacement is necessary, but the refill
5488 * fails (returning -ENOMEM), the existing sheaf is left intact
5489 *
5490 * In practice we always refill to full sheaf's capacity.
5491 */
kmem_cache_refill_sheaf(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf ** sheafp,unsigned int size)5492 int kmem_cache_refill_sheaf(struct kmem_cache *s, gfp_t gfp,
5493 struct slab_sheaf **sheafp, unsigned int size)
5494 {
5495 struct slab_sheaf *sheaf;
5496
5497 /*
5498 * TODO: do we want to support *sheaf == NULL to be equivalent of
5499 * kmem_cache_prefill_sheaf() ?
5500 */
5501 if (!sheafp || !(*sheafp))
5502 return -EINVAL;
5503
5504 sheaf = *sheafp;
5505 if (sheaf->size >= size)
5506 return 0;
5507
5508 if (likely(sheaf->capacity >= size)) {
5509 if (likely(sheaf->capacity == s->sheaf_capacity))
5510 return __prefill_sheaf_pfmemalloc(s, sheaf, gfp);
5511
5512 if (!__kmem_cache_alloc_bulk(s, gfp, sheaf->capacity - sheaf->size,
5513 &sheaf->objects[sheaf->size])) {
5514 return -ENOMEM;
5515 }
5516 sheaf->size = sheaf->capacity;
5517
5518 return 0;
5519 }
5520
5521 /*
5522 * We had a regular sized sheaf and need an oversize one, or we had an
5523 * oversize one already but need a larger one now.
5524 * This should be a very rare path so let's not complicate it.
5525 */
5526 sheaf = kmem_cache_prefill_sheaf(s, gfp, size);
5527 if (!sheaf)
5528 return -ENOMEM;
5529
5530 kmem_cache_return_sheaf(s, gfp, *sheafp);
5531 *sheafp = sheaf;
5532 return 0;
5533 }
5534
5535 /*
5536 * Allocate from a sheaf obtained by kmem_cache_prefill_sheaf()
5537 *
5538 * Guaranteed not to fail as many allocations as was the requested size.
5539 * After the sheaf is emptied, it fails - no fallback to the slab cache itself.
5540 *
5541 * The gfp parameter is meant only to specify __GFP_ZERO or __GFP_ACCOUNT
5542 * memcg charging is forced over limit if necessary, to avoid failure.
5543 *
5544 * It is possible that the allocation comes from kfence and then the sheaf
5545 * size is not decreased.
5546 */
5547 void *
kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache * s,gfp_t gfp,struct slab_sheaf * sheaf)5548 kmem_cache_alloc_from_sheaf_noprof(struct kmem_cache *s, gfp_t gfp,
5549 struct slab_sheaf *sheaf)
5550 {
5551 void *ret = NULL;
5552 bool init;
5553
5554 if (sheaf->size == 0)
5555 goto out;
5556
5557 ret = kfence_alloc(s, s->object_size, gfp);
5558
5559 if (likely(!ret))
5560 ret = sheaf->objects[--sheaf->size];
5561
5562 init = slab_want_init_on_alloc(gfp, s);
5563
5564 /* add __GFP_NOFAIL to force successful memcg charging */
5565 slab_post_alloc_hook(s, NULL, gfp | __GFP_NOFAIL, 1, &ret, init, s->object_size);
5566 out:
5567 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfp, NUMA_NO_NODE);
5568
5569 return ret;
5570 }
5571
kmem_cache_sheaf_size(struct slab_sheaf * sheaf)5572 unsigned int kmem_cache_sheaf_size(struct slab_sheaf *sheaf)
5573 {
5574 return sheaf->size;
5575 }
5576 /*
5577 * To avoid unnecessary overhead, we pass through large allocation requests
5578 * directly to the page allocator. We use __GFP_COMP, because we will need to
5579 * know the allocation order to free the pages properly in kfree.
5580 */
___kmalloc_large_node(size_t size,gfp_t flags,int node)5581 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
5582 {
5583 struct page *page;
5584 void *ptr = NULL;
5585 unsigned int order = get_order(size);
5586
5587 if (unlikely(flags & GFP_SLAB_BUG_MASK))
5588 flags = kmalloc_fix_flags(flags);
5589
5590 flags |= __GFP_COMP;
5591
5592 if (node == NUMA_NO_NODE)
5593 page = alloc_frozen_pages_noprof(flags, order);
5594 else
5595 page = __alloc_frozen_pages_noprof(flags, order, node, NULL);
5596
5597 if (page) {
5598 ptr = page_address(page);
5599 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
5600 PAGE_SIZE << order);
5601 __SetPageLargeKmalloc(page);
5602 }
5603
5604 ptr = kasan_kmalloc_large(ptr, size, flags);
5605 /* As ptr might get tagged, call kmemleak hook after KASAN. */
5606 kmemleak_alloc(ptr, size, 1, flags);
5607 kmsan_kmalloc_large(ptr, size, flags);
5608
5609 return ptr;
5610 }
5611
__kmalloc_large_noprof(size_t size,gfp_t flags)5612 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
5613 {
5614 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
5615
5616 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5617 flags, NUMA_NO_NODE);
5618 return ret;
5619 }
5620 EXPORT_SYMBOL(__kmalloc_large_noprof);
5621
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)5622 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
5623 {
5624 void *ret = ___kmalloc_large_node(size, flags, node);
5625
5626 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
5627 flags, node);
5628 return ret;
5629 }
5630 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
5631
5632 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)5633 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
5634 unsigned long caller)
5635 {
5636 struct kmem_cache *s;
5637 void *ret;
5638
5639 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5640 ret = __kmalloc_large_node_noprof(size, flags, node);
5641 trace_kmalloc(caller, ret, size,
5642 PAGE_SIZE << get_order(size), flags, node);
5643 return ret;
5644 }
5645
5646 if (unlikely(!size))
5647 return ZERO_SIZE_PTR;
5648
5649 s = kmalloc_slab(size, b, flags, caller);
5650
5651 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
5652 ret = kasan_kmalloc(s, ret, size, flags);
5653 trace_kmalloc(caller, ret, size, s->size, flags, node);
5654 return ret;
5655 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5656 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5657 {
5658 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
5659 }
5660 EXPORT_SYMBOL(__kmalloc_node_noprof);
5661
__kmalloc_noprof(size_t size,gfp_t flags)5662 void *__kmalloc_noprof(size_t size, gfp_t flags)
5663 {
5664 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
5665 }
5666 EXPORT_SYMBOL(__kmalloc_noprof);
5667
5668 /**
5669 * kmalloc_nolock - Allocate an object of given size from any context.
5670 * @size: size to allocate
5671 * @gfp_flags: GFP flags. Only __GFP_ACCOUNT, __GFP_ZERO, __GFP_NO_OBJ_EXT
5672 * allowed.
5673 * @node: node number of the target node.
5674 *
5675 * Return: pointer to the new object or NULL in case of error.
5676 * NULL does not mean EBUSY or EAGAIN. It means ENOMEM.
5677 * There is no reason to call it again and expect !NULL.
5678 */
kmalloc_nolock_noprof(size_t size,gfp_t gfp_flags,int node)5679 void *kmalloc_nolock_noprof(size_t size, gfp_t gfp_flags, int node)
5680 {
5681 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_NOMEMALLOC | gfp_flags;
5682 struct kmem_cache *s;
5683 bool can_retry = true;
5684 void *ret = ERR_PTR(-EBUSY);
5685
5686 VM_WARN_ON_ONCE(gfp_flags & ~(__GFP_ACCOUNT | __GFP_ZERO |
5687 __GFP_NO_OBJ_EXT));
5688
5689 if (unlikely(!size))
5690 return ZERO_SIZE_PTR;
5691
5692 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
5693 /* kmalloc_nolock() in PREEMPT_RT is not supported from irq */
5694 return NULL;
5695 retry:
5696 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
5697 return NULL;
5698 s = kmalloc_slab(size, NULL, alloc_gfp, _RET_IP_);
5699
5700 if (!(s->flags & __CMPXCHG_DOUBLE) && !kmem_cache_debug(s))
5701 /*
5702 * kmalloc_nolock() is not supported on architectures that
5703 * don't implement cmpxchg16b, but debug caches don't use
5704 * per-cpu slab and per-cpu partial slabs. They rely on
5705 * kmem_cache_node->list_lock, so kmalloc_nolock() can
5706 * attempt to allocate from debug caches by
5707 * spin_trylock_irqsave(&n->list_lock, ...)
5708 */
5709 return NULL;
5710
5711 /*
5712 * Do not call slab_alloc_node(), since trylock mode isn't
5713 * compatible with slab_pre_alloc_hook/should_failslab and
5714 * kfence_alloc. Hence call __slab_alloc_node() (at most twice)
5715 * and slab_post_alloc_hook() directly.
5716 *
5717 * In !PREEMPT_RT ___slab_alloc() manipulates (freelist,tid) pair
5718 * in irq saved region. It assumes that the same cpu will not
5719 * __update_cpu_freelist_fast() into the same (freelist,tid) pair.
5720 * Therefore use in_nmi() to check whether particular bucket is in
5721 * irq protected section.
5722 *
5723 * If in_nmi() && local_lock_is_locked(s->cpu_slab) then it means that
5724 * this cpu was interrupted somewhere inside ___slab_alloc() after
5725 * it did local_lock_irqsave(&s->cpu_slab->lock, flags).
5726 * In this case fast path with __update_cpu_freelist_fast() is not safe.
5727 */
5728 if (!in_nmi() || !local_lock_is_locked(&s->cpu_slab->lock))
5729 ret = __slab_alloc_node(s, alloc_gfp, node, _RET_IP_, size);
5730
5731 if (PTR_ERR(ret) == -EBUSY) {
5732 if (can_retry) {
5733 /* pick the next kmalloc bucket */
5734 size = s->object_size + 1;
5735 /*
5736 * Another alternative is to
5737 * if (memcg) alloc_gfp &= ~__GFP_ACCOUNT;
5738 * else if (!memcg) alloc_gfp |= __GFP_ACCOUNT;
5739 * to retry from bucket of the same size.
5740 */
5741 can_retry = false;
5742 goto retry;
5743 }
5744 ret = NULL;
5745 }
5746
5747 maybe_wipe_obj_freeptr(s, ret);
5748 slab_post_alloc_hook(s, NULL, alloc_gfp, 1, &ret,
5749 slab_want_init_on_alloc(alloc_gfp, s), size);
5750
5751 ret = kasan_kmalloc(s, ret, size, alloc_gfp);
5752 return ret;
5753 }
5754 EXPORT_SYMBOL_GPL(kmalloc_nolock_noprof);
5755
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)5756 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
5757 int node, unsigned long caller)
5758 {
5759 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
5760
5761 }
5762 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
5763
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)5764 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
5765 {
5766 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
5767 _RET_IP_, size);
5768
5769 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
5770
5771 ret = kasan_kmalloc(s, ret, size, gfpflags);
5772 return ret;
5773 }
5774 EXPORT_SYMBOL(__kmalloc_cache_noprof);
5775
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)5776 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
5777 int node, size_t size)
5778 {
5779 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
5780
5781 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
5782
5783 ret = kasan_kmalloc(s, ret, size, gfpflags);
5784 return ret;
5785 }
5786 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
5787
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)5788 static noinline void free_to_partial_list(
5789 struct kmem_cache *s, struct slab *slab,
5790 void *head, void *tail, int bulk_cnt,
5791 unsigned long addr)
5792 {
5793 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
5794 struct slab *slab_free = NULL;
5795 int cnt = bulk_cnt;
5796 unsigned long flags;
5797 depot_stack_handle_t handle = 0;
5798
5799 /*
5800 * We cannot use GFP_NOWAIT as there are callsites where waking up
5801 * kswapd could deadlock
5802 */
5803 if (s->flags & SLAB_STORE_USER)
5804 handle = set_track_prepare(__GFP_NOWARN);
5805
5806 spin_lock_irqsave(&n->list_lock, flags);
5807
5808 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
5809 void *prior = slab->freelist;
5810
5811 /* Perform the actual freeing while we still hold the locks */
5812 slab->inuse -= cnt;
5813 set_freepointer(s, tail, prior);
5814 slab->freelist = head;
5815
5816 /*
5817 * If the slab is empty, and node's partial list is full,
5818 * it should be discarded anyway no matter it's on full or
5819 * partial list.
5820 */
5821 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
5822 slab_free = slab;
5823
5824 if (!prior) {
5825 /* was on full list */
5826 remove_full(s, n, slab);
5827 if (!slab_free) {
5828 add_partial(n, slab, DEACTIVATE_TO_TAIL);
5829 stat(s, FREE_ADD_PARTIAL);
5830 }
5831 } else if (slab_free) {
5832 remove_partial(n, slab);
5833 stat(s, FREE_REMOVE_PARTIAL);
5834 }
5835 }
5836
5837 if (slab_free) {
5838 /*
5839 * Update the counters while still holding n->list_lock to
5840 * prevent spurious validation warnings
5841 */
5842 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
5843 }
5844
5845 spin_unlock_irqrestore(&n->list_lock, flags);
5846
5847 if (slab_free) {
5848 stat(s, FREE_SLAB);
5849 free_slab(s, slab_free);
5850 }
5851 }
5852
5853 /*
5854 * Slow path handling. This may still be called frequently since objects
5855 * have a longer lifetime than the cpu slabs in most processing loads.
5856 *
5857 * So we still attempt to reduce cache line usage. Just take the slab
5858 * lock and free the item. If there is no additional partial slab
5859 * handling required then we can return immediately.
5860 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)5861 static void __slab_free(struct kmem_cache *s, struct slab *slab,
5862 void *head, void *tail, int cnt,
5863 unsigned long addr)
5864
5865 {
5866 bool was_frozen, was_full;
5867 struct freelist_counters old, new;
5868 struct kmem_cache_node *n = NULL;
5869 unsigned long flags;
5870 bool on_node_partial;
5871
5872 stat(s, FREE_SLOWPATH);
5873
5874 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
5875 free_to_partial_list(s, slab, head, tail, cnt, addr);
5876 return;
5877 }
5878
5879 /*
5880 * It is enough to test IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) below
5881 * instead of kmem_cache_has_cpu_partial(s), because kmem_cache_debug(s)
5882 * is the only other reason it can be false, and it is already handled
5883 * above.
5884 */
5885
5886 do {
5887 if (unlikely(n)) {
5888 spin_unlock_irqrestore(&n->list_lock, flags);
5889 n = NULL;
5890 }
5891
5892 old.freelist = slab->freelist;
5893 old.counters = slab->counters;
5894
5895 was_full = (old.freelist == NULL);
5896 was_frozen = old.frozen;
5897
5898 set_freepointer(s, tail, old.freelist);
5899
5900 new.freelist = head;
5901 new.counters = old.counters;
5902 new.inuse -= cnt;
5903
5904 /*
5905 * Might need to be taken off (due to becoming empty) or added
5906 * to (due to not being full anymore) the partial list.
5907 * Unless it's frozen.
5908 */
5909 if ((!new.inuse || was_full) && !was_frozen) {
5910 /*
5911 * If slab becomes non-full and we have cpu partial
5912 * lists, we put it there unconditionally to avoid
5913 * taking the list_lock. Otherwise we need it.
5914 */
5915 if (!(IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && was_full)) {
5916
5917 n = get_node(s, slab_nid(slab));
5918 /*
5919 * Speculatively acquire the list_lock.
5920 * If the cmpxchg does not succeed then we may
5921 * drop the list_lock without any processing.
5922 *
5923 * Otherwise the list_lock will synchronize with
5924 * other processors updating the list of slabs.
5925 */
5926 spin_lock_irqsave(&n->list_lock, flags);
5927
5928 on_node_partial = slab_test_node_partial(slab);
5929 }
5930 }
5931
5932 } while (!slab_update_freelist(s, slab, &old, &new, "__slab_free"));
5933
5934 if (likely(!n)) {
5935
5936 if (likely(was_frozen)) {
5937 /*
5938 * The list lock was not taken therefore no list
5939 * activity can be necessary.
5940 */
5941 stat(s, FREE_FROZEN);
5942 } else if (IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && was_full) {
5943 /*
5944 * If we started with a full slab then put it onto the
5945 * per cpu partial list.
5946 */
5947 put_cpu_partial(s, slab, 1);
5948 stat(s, CPU_PARTIAL_FREE);
5949 }
5950
5951 /*
5952 * In other cases we didn't take the list_lock because the slab
5953 * was already on the partial list and will remain there.
5954 */
5955
5956 return;
5957 }
5958
5959 /*
5960 * This slab was partially empty but not on the per-node partial list,
5961 * in which case we shouldn't manipulate its list, just return.
5962 */
5963 if (!was_full && !on_node_partial) {
5964 spin_unlock_irqrestore(&n->list_lock, flags);
5965 return;
5966 }
5967
5968 /*
5969 * If slab became empty, should we add/keep it on the partial list or we
5970 * have enough?
5971 */
5972 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
5973 goto slab_empty;
5974
5975 /*
5976 * Objects left in the slab. If it was not on the partial list before
5977 * then add it. This can only happen when cache has no per cpu partial
5978 * list otherwise we would have put it there.
5979 */
5980 if (!IS_ENABLED(CONFIG_SLUB_CPU_PARTIAL) && unlikely(was_full)) {
5981 add_partial(n, slab, DEACTIVATE_TO_TAIL);
5982 stat(s, FREE_ADD_PARTIAL);
5983 }
5984 spin_unlock_irqrestore(&n->list_lock, flags);
5985 return;
5986
5987 slab_empty:
5988 /*
5989 * The slab could have a single object and thus go from full to empty in
5990 * a single free, but more likely it was on the partial list. Remove it.
5991 */
5992 if (likely(!was_full)) {
5993 remove_partial(n, slab);
5994 stat(s, FREE_REMOVE_PARTIAL);
5995 }
5996
5997 spin_unlock_irqrestore(&n->list_lock, flags);
5998 stat(s, FREE_SLAB);
5999 discard_slab(s, slab);
6000 }
6001
6002 /*
6003 * pcs is locked. We should have get rid of the spare sheaf and obtained an
6004 * empty sheaf, while the main sheaf is full. We want to install the empty sheaf
6005 * as a main sheaf, and make the current main sheaf a spare sheaf.
6006 *
6007 * However due to having relinquished the cpu_sheaves lock when obtaining
6008 * the empty sheaf, we need to handle some unlikely but possible cases.
6009 *
6010 * If we put any sheaf to barn here, it's because we were interrupted or have
6011 * been migrated to a different cpu, which should be rare enough so just ignore
6012 * the barn's limits to simplify the handling.
6013 *
6014 * An alternative scenario that gets us here is when we fail
6015 * barn_replace_full_sheaf(), because there's no empty sheaf available in the
6016 * barn, so we had to allocate it by alloc_empty_sheaf(). But because we saw the
6017 * limit on full sheaves was not exceeded, we assume it didn't change and just
6018 * put the full sheaf there.
6019 */
__pcs_install_empty_sheaf(struct kmem_cache * s,struct slub_percpu_sheaves * pcs,struct slab_sheaf * empty,struct node_barn * barn)6020 static void __pcs_install_empty_sheaf(struct kmem_cache *s,
6021 struct slub_percpu_sheaves *pcs, struct slab_sheaf *empty,
6022 struct node_barn *barn)
6023 {
6024 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6025
6026 /* This is what we expect to find if nobody interrupted us. */
6027 if (likely(!pcs->spare)) {
6028 pcs->spare = pcs->main;
6029 pcs->main = empty;
6030 return;
6031 }
6032
6033 /*
6034 * Unlikely because if the main sheaf had space, we would have just
6035 * freed to it. Get rid of our empty sheaf.
6036 */
6037 if (pcs->main->size < s->sheaf_capacity) {
6038 barn_put_empty_sheaf(barn, empty);
6039 return;
6040 }
6041
6042 /* Also unlikely for the same reason */
6043 if (pcs->spare->size < s->sheaf_capacity) {
6044 swap(pcs->main, pcs->spare);
6045 barn_put_empty_sheaf(barn, empty);
6046 return;
6047 }
6048
6049 /*
6050 * We probably failed barn_replace_full_sheaf() due to no empty sheaf
6051 * available there, but we allocated one, so finish the job.
6052 */
6053 barn_put_full_sheaf(barn, pcs->main);
6054 stat(s, BARN_PUT);
6055 pcs->main = empty;
6056 }
6057
6058 /*
6059 * Replace the full main sheaf with a (at least partially) empty sheaf.
6060 *
6061 * Must be called with the cpu_sheaves local lock locked. If successful, returns
6062 * the pcs pointer and the local lock locked (possibly on a different cpu than
6063 * initially called). If not successful, returns NULL and the local lock
6064 * unlocked.
6065 */
6066 static struct slub_percpu_sheaves *
__pcs_replace_full_main(struct kmem_cache * s,struct slub_percpu_sheaves * pcs)6067 __pcs_replace_full_main(struct kmem_cache *s, struct slub_percpu_sheaves *pcs)
6068 {
6069 struct slab_sheaf *empty;
6070 struct node_barn *barn;
6071 bool put_fail;
6072
6073 restart:
6074 lockdep_assert_held(this_cpu_ptr(&s->cpu_sheaves->lock));
6075
6076 barn = get_barn(s);
6077 if (!barn) {
6078 local_unlock(&s->cpu_sheaves->lock);
6079 return NULL;
6080 }
6081
6082 put_fail = false;
6083
6084 if (!pcs->spare) {
6085 empty = barn_get_empty_sheaf(barn);
6086 if (empty) {
6087 pcs->spare = pcs->main;
6088 pcs->main = empty;
6089 return pcs;
6090 }
6091 goto alloc_empty;
6092 }
6093
6094 if (pcs->spare->size < s->sheaf_capacity) {
6095 swap(pcs->main, pcs->spare);
6096 return pcs;
6097 }
6098
6099 empty = barn_replace_full_sheaf(barn, pcs->main);
6100
6101 if (!IS_ERR(empty)) {
6102 stat(s, BARN_PUT);
6103 pcs->main = empty;
6104 return pcs;
6105 }
6106
6107 if (PTR_ERR(empty) == -E2BIG) {
6108 /* Since we got here, spare exists and is full */
6109 struct slab_sheaf *to_flush = pcs->spare;
6110
6111 stat(s, BARN_PUT_FAIL);
6112
6113 pcs->spare = NULL;
6114 local_unlock(&s->cpu_sheaves->lock);
6115
6116 sheaf_flush_unused(s, to_flush);
6117 empty = to_flush;
6118 goto got_empty;
6119 }
6120
6121 /*
6122 * We could not replace full sheaf because barn had no empty
6123 * sheaves. We can still allocate it and put the full sheaf in
6124 * __pcs_install_empty_sheaf(), but if we fail to allocate it,
6125 * make sure to count the fail.
6126 */
6127 put_fail = true;
6128
6129 alloc_empty:
6130 local_unlock(&s->cpu_sheaves->lock);
6131
6132 empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6133 if (empty)
6134 goto got_empty;
6135
6136 if (put_fail)
6137 stat(s, BARN_PUT_FAIL);
6138
6139 if (!sheaf_flush_main(s))
6140 return NULL;
6141
6142 if (!local_trylock(&s->cpu_sheaves->lock))
6143 return NULL;
6144
6145 pcs = this_cpu_ptr(s->cpu_sheaves);
6146
6147 /*
6148 * we flushed the main sheaf so it should be empty now,
6149 * but in case we got preempted or migrated, we need to
6150 * check again
6151 */
6152 if (pcs->main->size == s->sheaf_capacity)
6153 goto restart;
6154
6155 return pcs;
6156
6157 got_empty:
6158 if (!local_trylock(&s->cpu_sheaves->lock)) {
6159 barn_put_empty_sheaf(barn, empty);
6160 return NULL;
6161 }
6162
6163 pcs = this_cpu_ptr(s->cpu_sheaves);
6164 __pcs_install_empty_sheaf(s, pcs, empty, barn);
6165
6166 return pcs;
6167 }
6168
6169 /*
6170 * Free an object to the percpu sheaves.
6171 * The object is expected to have passed slab_free_hook() already.
6172 */
6173 static __fastpath_inline
free_to_pcs(struct kmem_cache * s,void * object)6174 bool free_to_pcs(struct kmem_cache *s, void *object)
6175 {
6176 struct slub_percpu_sheaves *pcs;
6177
6178 if (!local_trylock(&s->cpu_sheaves->lock))
6179 return false;
6180
6181 pcs = this_cpu_ptr(s->cpu_sheaves);
6182
6183 if (unlikely(pcs->main->size == s->sheaf_capacity)) {
6184
6185 pcs = __pcs_replace_full_main(s, pcs);
6186 if (unlikely(!pcs))
6187 return false;
6188 }
6189
6190 pcs->main->objects[pcs->main->size++] = object;
6191
6192 local_unlock(&s->cpu_sheaves->lock);
6193
6194 stat(s, FREE_PCS);
6195
6196 return true;
6197 }
6198
rcu_free_sheaf(struct rcu_head * head)6199 static void rcu_free_sheaf(struct rcu_head *head)
6200 {
6201 struct kmem_cache_node *n;
6202 struct slab_sheaf *sheaf;
6203 struct node_barn *barn = NULL;
6204 struct kmem_cache *s;
6205
6206 sheaf = container_of(head, struct slab_sheaf, rcu_head);
6207
6208 s = sheaf->cache;
6209
6210 /*
6211 * This may remove some objects due to slab_free_hook() returning false,
6212 * so that the sheaf might no longer be completely full. But it's easier
6213 * to handle it as full (unless it became completely empty), as the code
6214 * handles it fine. The only downside is that sheaf will serve fewer
6215 * allocations when reused. It only happens due to debugging, which is a
6216 * performance hit anyway.
6217 *
6218 * If it returns true, there was at least one object from pfmemalloc
6219 * slab so simply flush everything.
6220 */
6221 if (__rcu_free_sheaf_prepare(s, sheaf))
6222 goto flush;
6223
6224 n = get_node(s, sheaf->node);
6225 if (!n)
6226 goto flush;
6227
6228 barn = n->barn;
6229
6230 /* due to slab_free_hook() */
6231 if (unlikely(sheaf->size == 0))
6232 goto empty;
6233
6234 /*
6235 * Checking nr_full/nr_empty outside lock avoids contention in case the
6236 * barn is at the respective limit. Due to the race we might go over the
6237 * limit but that should be rare and harmless.
6238 */
6239
6240 if (data_race(barn->nr_full) < MAX_FULL_SHEAVES) {
6241 stat(s, BARN_PUT);
6242 barn_put_full_sheaf(barn, sheaf);
6243 return;
6244 }
6245
6246 flush:
6247 stat(s, BARN_PUT_FAIL);
6248 sheaf_flush_unused(s, sheaf);
6249
6250 empty:
6251 if (barn && data_race(barn->nr_empty) < MAX_EMPTY_SHEAVES) {
6252 barn_put_empty_sheaf(barn, sheaf);
6253 return;
6254 }
6255
6256 free_empty_sheaf(s, sheaf);
6257 }
6258
__kfree_rcu_sheaf(struct kmem_cache * s,void * obj)6259 bool __kfree_rcu_sheaf(struct kmem_cache *s, void *obj)
6260 {
6261 struct slub_percpu_sheaves *pcs;
6262 struct slab_sheaf *rcu_sheaf;
6263
6264 if (!local_trylock(&s->cpu_sheaves->lock))
6265 goto fail;
6266
6267 pcs = this_cpu_ptr(s->cpu_sheaves);
6268
6269 if (unlikely(!pcs->rcu_free)) {
6270
6271 struct slab_sheaf *empty;
6272 struct node_barn *barn;
6273
6274 if (pcs->spare && pcs->spare->size == 0) {
6275 pcs->rcu_free = pcs->spare;
6276 pcs->spare = NULL;
6277 goto do_free;
6278 }
6279
6280 barn = get_barn(s);
6281 if (!barn) {
6282 local_unlock(&s->cpu_sheaves->lock);
6283 goto fail;
6284 }
6285
6286 empty = barn_get_empty_sheaf(barn);
6287
6288 if (empty) {
6289 pcs->rcu_free = empty;
6290 goto do_free;
6291 }
6292
6293 local_unlock(&s->cpu_sheaves->lock);
6294
6295 empty = alloc_empty_sheaf(s, GFP_NOWAIT);
6296
6297 if (!empty)
6298 goto fail;
6299
6300 if (!local_trylock(&s->cpu_sheaves->lock)) {
6301 barn_put_empty_sheaf(barn, empty);
6302 goto fail;
6303 }
6304
6305 pcs = this_cpu_ptr(s->cpu_sheaves);
6306
6307 if (unlikely(pcs->rcu_free))
6308 barn_put_empty_sheaf(barn, empty);
6309 else
6310 pcs->rcu_free = empty;
6311 }
6312
6313 do_free:
6314
6315 rcu_sheaf = pcs->rcu_free;
6316
6317 /*
6318 * Since we flush immediately when size reaches capacity, we never reach
6319 * this with size already at capacity, so no OOB write is possible.
6320 */
6321 rcu_sheaf->objects[rcu_sheaf->size++] = obj;
6322
6323 if (likely(rcu_sheaf->size < s->sheaf_capacity)) {
6324 rcu_sheaf = NULL;
6325 } else {
6326 pcs->rcu_free = NULL;
6327 rcu_sheaf->node = numa_mem_id();
6328 }
6329
6330 /*
6331 * we flush before local_unlock to make sure a racing
6332 * flush_all_rcu_sheaves() doesn't miss this sheaf
6333 */
6334 if (rcu_sheaf)
6335 call_rcu(&rcu_sheaf->rcu_head, rcu_free_sheaf);
6336
6337 local_unlock(&s->cpu_sheaves->lock);
6338
6339 stat(s, FREE_RCU_SHEAF);
6340 return true;
6341
6342 fail:
6343 stat(s, FREE_RCU_SHEAF_FAIL);
6344 return false;
6345 }
6346
6347 /*
6348 * Bulk free objects to the percpu sheaves.
6349 * Unlike free_to_pcs() this includes the calls to all necessary hooks
6350 * and the fallback to freeing to slab pages.
6351 */
free_to_pcs_bulk(struct kmem_cache * s,size_t size,void ** p)6352 static void free_to_pcs_bulk(struct kmem_cache *s, size_t size, void **p)
6353 {
6354 struct slub_percpu_sheaves *pcs;
6355 struct slab_sheaf *main, *empty;
6356 bool init = slab_want_init_on_free(s);
6357 unsigned int batch, i = 0;
6358 struct node_barn *barn;
6359 void *remote_objects[PCS_BATCH_MAX];
6360 unsigned int remote_nr = 0;
6361 int node = numa_mem_id();
6362
6363 next_remote_batch:
6364 while (i < size) {
6365 struct slab *slab = virt_to_slab(p[i]);
6366
6367 memcg_slab_free_hook(s, slab, p + i, 1);
6368 alloc_tagging_slab_free_hook(s, slab, p + i, 1);
6369
6370 if (unlikely(!slab_free_hook(s, p[i], init, false))) {
6371 p[i] = p[--size];
6372 continue;
6373 }
6374
6375 if (unlikely((IS_ENABLED(CONFIG_NUMA) && slab_nid(slab) != node)
6376 || slab_test_pfmemalloc(slab))) {
6377 remote_objects[remote_nr] = p[i];
6378 p[i] = p[--size];
6379 if (++remote_nr >= PCS_BATCH_MAX)
6380 goto flush_remote;
6381 continue;
6382 }
6383
6384 i++;
6385 }
6386
6387 if (!size)
6388 goto flush_remote;
6389
6390 next_batch:
6391 if (!local_trylock(&s->cpu_sheaves->lock))
6392 goto fallback;
6393
6394 pcs = this_cpu_ptr(s->cpu_sheaves);
6395
6396 if (likely(pcs->main->size < s->sheaf_capacity))
6397 goto do_free;
6398
6399 barn = get_barn(s);
6400 if (!barn)
6401 goto no_empty;
6402
6403 if (!pcs->spare) {
6404 empty = barn_get_empty_sheaf(barn);
6405 if (!empty)
6406 goto no_empty;
6407
6408 pcs->spare = pcs->main;
6409 pcs->main = empty;
6410 goto do_free;
6411 }
6412
6413 if (pcs->spare->size < s->sheaf_capacity) {
6414 swap(pcs->main, pcs->spare);
6415 goto do_free;
6416 }
6417
6418 empty = barn_replace_full_sheaf(barn, pcs->main);
6419 if (IS_ERR(empty)) {
6420 stat(s, BARN_PUT_FAIL);
6421 goto no_empty;
6422 }
6423
6424 stat(s, BARN_PUT);
6425 pcs->main = empty;
6426
6427 do_free:
6428 main = pcs->main;
6429 batch = min(size, s->sheaf_capacity - main->size);
6430
6431 memcpy(main->objects + main->size, p, batch * sizeof(void *));
6432 main->size += batch;
6433
6434 local_unlock(&s->cpu_sheaves->lock);
6435
6436 stat_add(s, FREE_PCS, batch);
6437
6438 if (batch < size) {
6439 p += batch;
6440 size -= batch;
6441 goto next_batch;
6442 }
6443
6444 if (remote_nr)
6445 goto flush_remote;
6446
6447 return;
6448
6449 no_empty:
6450 local_unlock(&s->cpu_sheaves->lock);
6451
6452 /*
6453 * if we depleted all empty sheaves in the barn or there are too
6454 * many full sheaves, free the rest to slab pages
6455 */
6456 fallback:
6457 __kmem_cache_free_bulk(s, size, p);
6458
6459 flush_remote:
6460 if (remote_nr) {
6461 __kmem_cache_free_bulk(s, remote_nr, &remote_objects[0]);
6462 if (i < size) {
6463 remote_nr = 0;
6464 goto next_remote_batch;
6465 }
6466 }
6467 }
6468
6469 struct defer_free {
6470 struct llist_head objects;
6471 struct llist_head slabs;
6472 struct irq_work work;
6473 };
6474
6475 static void free_deferred_objects(struct irq_work *work);
6476
6477 static DEFINE_PER_CPU(struct defer_free, defer_free_objects) = {
6478 .objects = LLIST_HEAD_INIT(objects),
6479 .slabs = LLIST_HEAD_INIT(slabs),
6480 .work = IRQ_WORK_INIT(free_deferred_objects),
6481 };
6482
6483 /*
6484 * In PREEMPT_RT irq_work runs in per-cpu kthread, so it's safe
6485 * to take sleeping spin_locks from __slab_free() and deactivate_slab().
6486 * In !PREEMPT_RT irq_work will run after local_unlock_irqrestore().
6487 */
free_deferred_objects(struct irq_work * work)6488 static void free_deferred_objects(struct irq_work *work)
6489 {
6490 struct defer_free *df = container_of(work, struct defer_free, work);
6491 struct llist_head *objs = &df->objects;
6492 struct llist_head *slabs = &df->slabs;
6493 struct llist_node *llnode, *pos, *t;
6494
6495 if (llist_empty(objs) && llist_empty(slabs))
6496 return;
6497
6498 llnode = llist_del_all(objs);
6499 llist_for_each_safe(pos, t, llnode) {
6500 struct kmem_cache *s;
6501 struct slab *slab;
6502 void *x = pos;
6503
6504 slab = virt_to_slab(x);
6505 s = slab->slab_cache;
6506
6507 /* Point 'x' back to the beginning of allocated object */
6508 x -= s->offset;
6509
6510 /*
6511 * We used freepointer in 'x' to link 'x' into df->objects.
6512 * Clear it to NULL to avoid false positive detection
6513 * of "Freepointer corruption".
6514 */
6515 set_freepointer(s, x, NULL);
6516
6517 __slab_free(s, slab, x, x, 1, _THIS_IP_);
6518 }
6519
6520 llnode = llist_del_all(slabs);
6521 llist_for_each_safe(pos, t, llnode) {
6522 struct slab *slab = container_of(pos, struct slab, llnode);
6523
6524 if (slab->frozen)
6525 deactivate_slab(slab->slab_cache, slab, slab->flush_freelist);
6526 else
6527 free_slab(slab->slab_cache, slab);
6528 }
6529 }
6530
defer_free(struct kmem_cache * s,void * head)6531 static void defer_free(struct kmem_cache *s, void *head)
6532 {
6533 struct defer_free *df;
6534
6535 guard(preempt)();
6536
6537 df = this_cpu_ptr(&defer_free_objects);
6538 if (llist_add(head + s->offset, &df->objects))
6539 irq_work_queue(&df->work);
6540 }
6541
defer_deactivate_slab(struct slab * slab,void * flush_freelist)6542 static void defer_deactivate_slab(struct slab *slab, void *flush_freelist)
6543 {
6544 struct defer_free *df;
6545
6546 slab->flush_freelist = flush_freelist;
6547
6548 guard(preempt)();
6549
6550 df = this_cpu_ptr(&defer_free_objects);
6551 if (llist_add(&slab->llnode, &df->slabs))
6552 irq_work_queue(&df->work);
6553 }
6554
defer_free_barrier(void)6555 void defer_free_barrier(void)
6556 {
6557 int cpu;
6558
6559 for_each_possible_cpu(cpu)
6560 irq_work_sync(&per_cpu_ptr(&defer_free_objects, cpu)->work);
6561 }
6562
6563 /*
6564 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
6565 * can perform fastpath freeing without additional function calls.
6566 *
6567 * The fastpath is only possible if we are freeing to the current cpu slab
6568 * of this processor. This typically the case if we have just allocated
6569 * the item before.
6570 *
6571 * If fastpath is not possible then fall back to __slab_free where we deal
6572 * with all sorts of special processing.
6573 *
6574 * Bulk free of a freelist with several objects (all pointing to the
6575 * same slab) possible by specifying head and tail ptr, plus objects
6576 * count (cnt). Bulk free indicated by tail pointer being set.
6577 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)6578 static __always_inline void do_slab_free(struct kmem_cache *s,
6579 struct slab *slab, void *head, void *tail,
6580 int cnt, unsigned long addr)
6581 {
6582 /* cnt == 0 signals that it's called from kfree_nolock() */
6583 bool allow_spin = cnt;
6584 struct kmem_cache_cpu *c;
6585 unsigned long tid;
6586 void **freelist;
6587
6588 redo:
6589 /*
6590 * Determine the currently cpus per cpu slab.
6591 * The cpu may change afterward. However that does not matter since
6592 * data is retrieved via this pointer. If we are on the same cpu
6593 * during the cmpxchg then the free will succeed.
6594 */
6595 c = raw_cpu_ptr(s->cpu_slab);
6596 tid = READ_ONCE(c->tid);
6597
6598 /* Same with comment on barrier() in __slab_alloc_node() */
6599 barrier();
6600
6601 if (unlikely(slab != c->slab)) {
6602 if (unlikely(!allow_spin)) {
6603 /*
6604 * __slab_free() can locklessly cmpxchg16 into a slab,
6605 * but then it might need to take spin_lock or local_lock
6606 * in put_cpu_partial() for further processing.
6607 * Avoid the complexity and simply add to a deferred list.
6608 */
6609 defer_free(s, head);
6610 } else {
6611 __slab_free(s, slab, head, tail, cnt, addr);
6612 }
6613 return;
6614 }
6615
6616 if (unlikely(!allow_spin)) {
6617 if ((in_nmi() || !USE_LOCKLESS_FAST_PATH()) &&
6618 local_lock_is_locked(&s->cpu_slab->lock)) {
6619 defer_free(s, head);
6620 return;
6621 }
6622 cnt = 1; /* restore cnt. kfree_nolock() frees one object at a time */
6623 }
6624
6625 if (USE_LOCKLESS_FAST_PATH()) {
6626 freelist = READ_ONCE(c->freelist);
6627
6628 set_freepointer(s, tail, freelist);
6629
6630 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
6631 note_cmpxchg_failure("slab_free", s, tid);
6632 goto redo;
6633 }
6634 } else {
6635 __maybe_unused unsigned long flags = 0;
6636
6637 /* Update the free list under the local lock */
6638 local_lock_cpu_slab(s, flags);
6639 c = this_cpu_ptr(s->cpu_slab);
6640 if (unlikely(slab != c->slab)) {
6641 local_unlock_cpu_slab(s, flags);
6642 goto redo;
6643 }
6644 tid = c->tid;
6645 freelist = c->freelist;
6646
6647 set_freepointer(s, tail, freelist);
6648 c->freelist = head;
6649 c->tid = next_tid(tid);
6650
6651 local_unlock_cpu_slab(s, flags);
6652 }
6653 stat_add(s, FREE_FASTPATH, cnt);
6654 }
6655
6656 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)6657 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
6658 unsigned long addr)
6659 {
6660 memcg_slab_free_hook(s, slab, &object, 1);
6661 alloc_tagging_slab_free_hook(s, slab, &object, 1);
6662
6663 if (unlikely(!slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6664 return;
6665
6666 if (s->cpu_sheaves && likely(!IS_ENABLED(CONFIG_NUMA) ||
6667 slab_nid(slab) == numa_mem_id())
6668 && likely(!slab_test_pfmemalloc(slab))) {
6669 if (likely(free_to_pcs(s, object)))
6670 return;
6671 }
6672
6673 do_slab_free(s, slab, object, object, 1, addr);
6674 }
6675
6676 #ifdef CONFIG_MEMCG
6677 /* Do not inline the rare memcg charging failed path into the allocation path */
6678 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)6679 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
6680 {
6681 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
6682 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
6683 }
6684 #endif
6685
6686 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)6687 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
6688 void *tail, void **p, int cnt, unsigned long addr)
6689 {
6690 memcg_slab_free_hook(s, slab, p, cnt);
6691 alloc_tagging_slab_free_hook(s, slab, p, cnt);
6692 /*
6693 * With KASAN enabled slab_free_freelist_hook modifies the freelist
6694 * to remove objects, whose reuse must be delayed.
6695 */
6696 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
6697 do_slab_free(s, slab, head, tail, cnt, addr);
6698 }
6699
6700 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)6701 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
6702 {
6703 struct rcu_delayed_free *delayed_free =
6704 container_of(rcu_head, struct rcu_delayed_free, head);
6705 void *object = delayed_free->object;
6706 struct slab *slab = virt_to_slab(object);
6707 struct kmem_cache *s;
6708
6709 kfree(delayed_free);
6710
6711 if (WARN_ON(is_kfence_address(object)))
6712 return;
6713
6714 /* find the object and the cache again */
6715 if (WARN_ON(!slab))
6716 return;
6717 s = slab->slab_cache;
6718 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
6719 return;
6720
6721 /* resume freeing */
6722 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
6723 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
6724 }
6725 #endif /* CONFIG_SLUB_RCU_DEBUG */
6726
6727 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)6728 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
6729 {
6730 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
6731 }
6732 #endif
6733
virt_to_cache(const void * obj)6734 static inline struct kmem_cache *virt_to_cache(const void *obj)
6735 {
6736 struct slab *slab;
6737
6738 slab = virt_to_slab(obj);
6739 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
6740 return NULL;
6741 return slab->slab_cache;
6742 }
6743
cache_from_obj(struct kmem_cache * s,void * x)6744 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
6745 {
6746 struct kmem_cache *cachep;
6747
6748 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
6749 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
6750 return s;
6751
6752 cachep = virt_to_cache(x);
6753 if (WARN(cachep && cachep != s,
6754 "%s: Wrong slab cache. %s but object is from %s\n",
6755 __func__, s->name, cachep->name))
6756 print_tracking(cachep, x);
6757 return cachep;
6758 }
6759
6760 /**
6761 * kmem_cache_free - Deallocate an object
6762 * @s: The cache the allocation was from.
6763 * @x: The previously allocated object.
6764 *
6765 * Free an object which was previously allocated from this
6766 * cache.
6767 */
kmem_cache_free(struct kmem_cache * s,void * x)6768 void kmem_cache_free(struct kmem_cache *s, void *x)
6769 {
6770 s = cache_from_obj(s, x);
6771 if (!s)
6772 return;
6773 trace_kmem_cache_free(_RET_IP_, x, s);
6774 slab_free(s, virt_to_slab(x), x, _RET_IP_);
6775 }
6776 EXPORT_SYMBOL(kmem_cache_free);
6777
free_large_kmalloc(struct page * page,void * object)6778 static void free_large_kmalloc(struct page *page, void *object)
6779 {
6780 unsigned int order = compound_order(page);
6781
6782 if (WARN_ON_ONCE(!PageLargeKmalloc(page))) {
6783 dump_page(page, "Not a kmalloc allocation");
6784 return;
6785 }
6786
6787 if (WARN_ON_ONCE(order == 0))
6788 pr_warn_once("object pointer: 0x%p\n", object);
6789
6790 kmemleak_free(object);
6791 kasan_kfree_large(object);
6792 kmsan_kfree_large(object);
6793
6794 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
6795 -(PAGE_SIZE << order));
6796 __ClearPageLargeKmalloc(page);
6797 free_frozen_pages(page, order);
6798 }
6799
6800 /*
6801 * Given an rcu_head embedded within an object obtained from kvmalloc at an
6802 * offset < 4k, free the object in question.
6803 */
kvfree_rcu_cb(struct rcu_head * head)6804 void kvfree_rcu_cb(struct rcu_head *head)
6805 {
6806 void *obj = head;
6807 struct page *page;
6808 struct slab *slab;
6809 struct kmem_cache *s;
6810 void *slab_addr;
6811
6812 if (is_vmalloc_addr(obj)) {
6813 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6814 vfree(obj);
6815 return;
6816 }
6817
6818 page = virt_to_page(obj);
6819 slab = page_slab(page);
6820 if (!slab) {
6821 /*
6822 * rcu_head offset can be only less than page size so no need to
6823 * consider allocation order
6824 */
6825 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
6826 free_large_kmalloc(page, obj);
6827 return;
6828 }
6829
6830 s = slab->slab_cache;
6831 slab_addr = slab_address(slab);
6832
6833 if (is_kfence_address(obj)) {
6834 obj = kfence_object_start(obj);
6835 } else {
6836 unsigned int idx = __obj_to_index(s, slab_addr, obj);
6837
6838 obj = slab_addr + s->size * idx;
6839 obj = fixup_red_left(s, obj);
6840 }
6841
6842 slab_free(s, slab, obj, _RET_IP_);
6843 }
6844
6845 /**
6846 * kfree - free previously allocated memory
6847 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
6848 *
6849 * If @object is NULL, no operation is performed.
6850 */
kfree(const void * object)6851 void kfree(const void *object)
6852 {
6853 struct page *page;
6854 struct slab *slab;
6855 struct kmem_cache *s;
6856 void *x = (void *)object;
6857
6858 trace_kfree(_RET_IP_, object);
6859
6860 if (unlikely(ZERO_OR_NULL_PTR(object)))
6861 return;
6862
6863 page = virt_to_page(object);
6864 slab = page_slab(page);
6865 if (!slab) {
6866 free_large_kmalloc(page, (void *)object);
6867 return;
6868 }
6869
6870 s = slab->slab_cache;
6871 slab_free(s, slab, x, _RET_IP_);
6872 }
6873 EXPORT_SYMBOL(kfree);
6874
6875 /*
6876 * Can be called while holding raw_spinlock_t or from IRQ and NMI,
6877 * but ONLY for objects allocated by kmalloc_nolock().
6878 * Debug checks (like kmemleak and kfence) were skipped on allocation,
6879 * hence
6880 * obj = kmalloc(); kfree_nolock(obj);
6881 * will miss kmemleak/kfence book keeping and will cause false positives.
6882 * large_kmalloc is not supported either.
6883 */
kfree_nolock(const void * object)6884 void kfree_nolock(const void *object)
6885 {
6886 struct slab *slab;
6887 struct kmem_cache *s;
6888 void *x = (void *)object;
6889
6890 if (unlikely(ZERO_OR_NULL_PTR(object)))
6891 return;
6892
6893 slab = virt_to_slab(object);
6894 if (unlikely(!slab)) {
6895 WARN_ONCE(1, "large_kmalloc is not supported by kfree_nolock()");
6896 return;
6897 }
6898
6899 s = slab->slab_cache;
6900
6901 memcg_slab_free_hook(s, slab, &x, 1);
6902 alloc_tagging_slab_free_hook(s, slab, &x, 1);
6903 /*
6904 * Unlike slab_free() do NOT call the following:
6905 * kmemleak_free_recursive(x, s->flags);
6906 * debug_check_no_locks_freed(x, s->object_size);
6907 * debug_check_no_obj_freed(x, s->object_size);
6908 * __kcsan_check_access(x, s->object_size, ..);
6909 * kfence_free(x);
6910 * since they take spinlocks or not safe from any context.
6911 */
6912 kmsan_slab_free(s, x);
6913 /*
6914 * If KASAN finds a kernel bug it will do kasan_report_invalid_free()
6915 * which will call raw_spin_lock_irqsave() which is technically
6916 * unsafe from NMI, but take chance and report kernel bug.
6917 * The sequence of
6918 * kasan_report_invalid_free() -> raw_spin_lock_irqsave() -> NMI
6919 * -> kfree_nolock() -> kasan_report_invalid_free() on the same CPU
6920 * is double buggy and deserves to deadlock.
6921 */
6922 if (kasan_slab_pre_free(s, x))
6923 return;
6924 /*
6925 * memcg, kasan_slab_pre_free are done for 'x'.
6926 * The only thing left is kasan_poison without quarantine,
6927 * since kasan quarantine takes locks and not supported from NMI.
6928 */
6929 kasan_slab_free(s, x, false, false, /* skip quarantine */true);
6930 do_slab_free(s, slab, x, x, 0, _RET_IP_);
6931 }
6932 EXPORT_SYMBOL_GPL(kfree_nolock);
6933
6934 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)6935 __do_krealloc(const void *p, size_t new_size, unsigned long align, gfp_t flags, int nid)
6936 {
6937 void *ret;
6938 size_t ks = 0;
6939 int orig_size = 0;
6940 struct kmem_cache *s = NULL;
6941
6942 if (unlikely(ZERO_OR_NULL_PTR(p)))
6943 goto alloc_new;
6944
6945 /* Check for double-free. */
6946 if (!kasan_check_byte(p))
6947 return NULL;
6948
6949 /*
6950 * If reallocation is not necessary (e. g. the new size is less
6951 * than the current allocated size), the current allocation will be
6952 * preserved unless __GFP_THISNODE is set. In the latter case a new
6953 * allocation on the requested node will be attempted.
6954 */
6955 if (unlikely(flags & __GFP_THISNODE) && nid != NUMA_NO_NODE &&
6956 nid != page_to_nid(virt_to_page(p)))
6957 goto alloc_new;
6958
6959 if (is_kfence_address(p)) {
6960 ks = orig_size = kfence_ksize(p);
6961 } else {
6962 struct page *page = virt_to_page(p);
6963 struct slab *slab = page_slab(page);
6964
6965 if (!slab) {
6966 /* Big kmalloc object */
6967 ks = page_size(page);
6968 WARN_ON(ks <= KMALLOC_MAX_CACHE_SIZE);
6969 WARN_ON(p != page_address(page));
6970 } else {
6971 s = slab->slab_cache;
6972 orig_size = get_orig_size(s, (void *)p);
6973 ks = s->object_size;
6974 }
6975 }
6976
6977 /* If the old object doesn't fit, allocate a bigger one */
6978 if (new_size > ks)
6979 goto alloc_new;
6980
6981 /* If the old object doesn't satisfy the new alignment, allocate a new one */
6982 if (!IS_ALIGNED((unsigned long)p, align))
6983 goto alloc_new;
6984
6985 /* Zero out spare memory. */
6986 if (want_init_on_alloc(flags)) {
6987 kasan_disable_current();
6988 if (orig_size && orig_size < new_size)
6989 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
6990 else
6991 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
6992 kasan_enable_current();
6993 }
6994
6995 /* Setup kmalloc redzone when needed */
6996 if (s && slub_debug_orig_size(s)) {
6997 set_orig_size(s, (void *)p, new_size);
6998 if (s->flags & SLAB_RED_ZONE && new_size < ks)
6999 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
7000 SLUB_RED_ACTIVE, ks - new_size);
7001 }
7002
7003 p = kasan_krealloc(p, new_size, flags);
7004 return (void *)p;
7005
7006 alloc_new:
7007 ret = kmalloc_node_track_caller_noprof(new_size, flags, nid, _RET_IP_);
7008 if (ret && p) {
7009 /* Disable KASAN checks as the object's redzone is accessed. */
7010 kasan_disable_current();
7011 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
7012 kasan_enable_current();
7013 }
7014
7015 return ret;
7016 }
7017
7018 /**
7019 * krealloc_node_align - reallocate memory. The contents will remain unchanged.
7020 * @p: object to reallocate memory for.
7021 * @new_size: how many bytes of memory are required.
7022 * @align: desired alignment.
7023 * @flags: the type of memory to allocate.
7024 * @nid: NUMA node or NUMA_NO_NODE
7025 *
7026 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
7027 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
7028 *
7029 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7030 * Documentation/core-api/memory-allocation.rst for more details.
7031 *
7032 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7033 * initial memory allocation, every subsequent call to this API for the same
7034 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7035 * __GFP_ZERO is not fully honored by this API.
7036 *
7037 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
7038 * size of an allocation (but not the exact size it was allocated with) and
7039 * hence implements the following semantics for shrinking and growing buffers
7040 * with __GFP_ZERO::
7041 *
7042 * new bucket
7043 * 0 size size
7044 * |--------|----------------|
7045 * | keep | zero |
7046 *
7047 * Otherwise, the original allocation size 'orig_size' could be used to
7048 * precisely clear the requested size, and the new size will also be stored
7049 * as the new 'orig_size'.
7050 *
7051 * In any case, the contents of the object pointed to are preserved up to the
7052 * lesser of the new and old sizes.
7053 *
7054 * Return: pointer to the allocated memory or %NULL in case of error
7055 */
krealloc_node_align_noprof(const void * p,size_t new_size,unsigned long align,gfp_t flags,int nid)7056 void *krealloc_node_align_noprof(const void *p, size_t new_size, unsigned long align,
7057 gfp_t flags, int nid)
7058 {
7059 void *ret;
7060
7061 if (unlikely(!new_size)) {
7062 kfree(p);
7063 return ZERO_SIZE_PTR;
7064 }
7065
7066 ret = __do_krealloc(p, new_size, align, flags, nid);
7067 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
7068 kfree(p);
7069
7070 return ret;
7071 }
7072 EXPORT_SYMBOL(krealloc_node_align_noprof);
7073
kmalloc_gfp_adjust(gfp_t flags,size_t size)7074 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
7075 {
7076 /*
7077 * We want to attempt a large physically contiguous block first because
7078 * it is less likely to fragment multiple larger blocks and therefore
7079 * contribute to a long term fragmentation less than vmalloc fallback.
7080 * However make sure that larger requests are not too disruptive - i.e.
7081 * do not direct reclaim unless physically continuous memory is preferred
7082 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
7083 * start working in the background
7084 */
7085 if (size > PAGE_SIZE) {
7086 flags |= __GFP_NOWARN;
7087
7088 if (!(flags & __GFP_RETRY_MAYFAIL))
7089 flags &= ~__GFP_DIRECT_RECLAIM;
7090
7091 /* nofail semantic is implemented by the vmalloc fallback */
7092 flags &= ~__GFP_NOFAIL;
7093 }
7094
7095 return flags;
7096 }
7097
7098 /**
7099 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
7100 * failure, fall back to non-contiguous (vmalloc) allocation.
7101 * @size: size of the request.
7102 * @b: which set of kmalloc buckets to allocate from.
7103 * @align: desired alignment.
7104 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
7105 * @node: numa node to allocate from
7106 *
7107 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7108 * Documentation/core-api/memory-allocation.rst for more details.
7109 *
7110 * Uses kmalloc to get the memory but if the allocation fails then falls back
7111 * to the vmalloc allocator. Use kvfree for freeing the memory.
7112 *
7113 * GFP_NOWAIT and GFP_ATOMIC are supported, the __GFP_NORETRY modifier is not.
7114 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
7115 * preferable to the vmalloc fallback, due to visible performance drawbacks.
7116 *
7117 * Return: pointer to the allocated memory of %NULL in case of failure
7118 */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),unsigned long align,gfp_t flags,int node)7119 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), unsigned long align,
7120 gfp_t flags, int node)
7121 {
7122 bool allow_block;
7123 void *ret;
7124
7125 /*
7126 * It doesn't really make sense to fallback to vmalloc for sub page
7127 * requests
7128 */
7129 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
7130 kmalloc_gfp_adjust(flags, size),
7131 node, _RET_IP_);
7132 if (ret || size <= PAGE_SIZE)
7133 return ret;
7134
7135 /* Don't even allow crazy sizes */
7136 if (unlikely(size > INT_MAX)) {
7137 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7138 return NULL;
7139 }
7140
7141 /*
7142 * For non-blocking the VM_ALLOW_HUGE_VMAP is not used
7143 * because the huge-mapping path in vmalloc contains at
7144 * least one might_sleep() call.
7145 *
7146 * TODO: Revise huge-mapping path to support non-blocking
7147 * flags.
7148 */
7149 allow_block = gfpflags_allow_blocking(flags);
7150
7151 /*
7152 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
7153 * since the callers already cannot assume anything
7154 * about the resulting pointer, and cannot play
7155 * protection games.
7156 */
7157 return __vmalloc_node_range_noprof(size, align, VMALLOC_START, VMALLOC_END,
7158 flags, PAGE_KERNEL, allow_block ? VM_ALLOW_HUGE_VMAP:0,
7159 node, __builtin_return_address(0));
7160 }
7161 EXPORT_SYMBOL(__kvmalloc_node_noprof);
7162
7163 /**
7164 * kvfree() - Free memory.
7165 * @addr: Pointer to allocated memory.
7166 *
7167 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
7168 * It is slightly more efficient to use kfree() or vfree() if you are certain
7169 * that you know which one to use.
7170 *
7171 * Context: Either preemptible task context or not-NMI interrupt.
7172 */
kvfree(const void * addr)7173 void kvfree(const void *addr)
7174 {
7175 if (is_vmalloc_addr(addr))
7176 vfree(addr);
7177 else
7178 kfree(addr);
7179 }
7180 EXPORT_SYMBOL(kvfree);
7181
7182 /**
7183 * kvfree_sensitive - Free a data object containing sensitive information.
7184 * @addr: address of the data object to be freed.
7185 * @len: length of the data object.
7186 *
7187 * Use the special memzero_explicit() function to clear the content of a
7188 * kvmalloc'ed object containing sensitive data to make sure that the
7189 * compiler won't optimize out the data clearing.
7190 */
kvfree_sensitive(const void * addr,size_t len)7191 void kvfree_sensitive(const void *addr, size_t len)
7192 {
7193 if (likely(!ZERO_OR_NULL_PTR(addr))) {
7194 memzero_explicit((void *)addr, len);
7195 kvfree(addr);
7196 }
7197 }
7198 EXPORT_SYMBOL(kvfree_sensitive);
7199
7200 /**
7201 * kvrealloc_node_align - reallocate memory; contents remain unchanged
7202 * @p: object to reallocate memory for
7203 * @size: the size to reallocate
7204 * @align: desired alignment
7205 * @flags: the flags for the page level allocator
7206 * @nid: NUMA node id
7207 *
7208 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
7209 * and @p is not a %NULL pointer, the object pointed to is freed.
7210 *
7211 * Only alignments up to those guaranteed by kmalloc() will be honored. Please see
7212 * Documentation/core-api/memory-allocation.rst for more details.
7213 *
7214 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
7215 * initial memory allocation, every subsequent call to this API for the same
7216 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
7217 * __GFP_ZERO is not fully honored by this API.
7218 *
7219 * In any case, the contents of the object pointed to are preserved up to the
7220 * lesser of the new and old sizes.
7221 *
7222 * This function must not be called concurrently with itself or kvfree() for the
7223 * same memory allocation.
7224 *
7225 * Return: pointer to the allocated memory or %NULL in case of error
7226 */
kvrealloc_node_align_noprof(const void * p,size_t size,unsigned long align,gfp_t flags,int nid)7227 void *kvrealloc_node_align_noprof(const void *p, size_t size, unsigned long align,
7228 gfp_t flags, int nid)
7229 {
7230 void *n;
7231
7232 if (is_vmalloc_addr(p))
7233 return vrealloc_node_align_noprof(p, size, align, flags, nid);
7234
7235 n = krealloc_node_align_noprof(p, size, align, kmalloc_gfp_adjust(flags, size), nid);
7236 if (!n) {
7237 /* We failed to krealloc(), fall back to kvmalloc(). */
7238 n = kvmalloc_node_align_noprof(size, align, flags, nid);
7239 if (!n)
7240 return NULL;
7241
7242 if (p) {
7243 /* We already know that `p` is not a vmalloc address. */
7244 kasan_disable_current();
7245 memcpy(n, kasan_reset_tag(p), ksize(p));
7246 kasan_enable_current();
7247
7248 kfree(p);
7249 }
7250 }
7251
7252 return n;
7253 }
7254 EXPORT_SYMBOL(kvrealloc_node_align_noprof);
7255
7256 struct detached_freelist {
7257 struct slab *slab;
7258 void *tail;
7259 void *freelist;
7260 int cnt;
7261 struct kmem_cache *s;
7262 };
7263
7264 /*
7265 * This function progressively scans the array with free objects (with
7266 * a limited look ahead) and extract objects belonging to the same
7267 * slab. It builds a detached freelist directly within the given
7268 * slab/objects. This can happen without any need for
7269 * synchronization, because the objects are owned by running process.
7270 * The freelist is build up as a single linked list in the objects.
7271 * The idea is, that this detached freelist can then be bulk
7272 * transferred to the real freelist(s), but only requiring a single
7273 * synchronization primitive. Look ahead in the array is limited due
7274 * to performance reasons.
7275 */
7276 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)7277 int build_detached_freelist(struct kmem_cache *s, size_t size,
7278 void **p, struct detached_freelist *df)
7279 {
7280 int lookahead = 3;
7281 void *object;
7282 struct page *page;
7283 struct slab *slab;
7284 size_t same;
7285
7286 object = p[--size];
7287 page = virt_to_page(object);
7288 slab = page_slab(page);
7289 if (!s) {
7290 /* Handle kalloc'ed objects */
7291 if (!slab) {
7292 free_large_kmalloc(page, object);
7293 df->slab = NULL;
7294 return size;
7295 }
7296 /* Derive kmem_cache from object */
7297 df->slab = slab;
7298 df->s = slab->slab_cache;
7299 } else {
7300 df->slab = slab;
7301 df->s = cache_from_obj(s, object); /* Support for memcg */
7302 }
7303
7304 /* Start new detached freelist */
7305 df->tail = object;
7306 df->freelist = object;
7307 df->cnt = 1;
7308
7309 if (is_kfence_address(object))
7310 return size;
7311
7312 set_freepointer(df->s, object, NULL);
7313
7314 same = size;
7315 while (size) {
7316 object = p[--size];
7317 /* df->slab is always set at this point */
7318 if (df->slab == virt_to_slab(object)) {
7319 /* Opportunity build freelist */
7320 set_freepointer(df->s, object, df->freelist);
7321 df->freelist = object;
7322 df->cnt++;
7323 same--;
7324 if (size != same)
7325 swap(p[size], p[same]);
7326 continue;
7327 }
7328
7329 /* Limit look ahead search */
7330 if (!--lookahead)
7331 break;
7332 }
7333
7334 return same;
7335 }
7336
7337 /*
7338 * Internal bulk free of objects that were not initialised by the post alloc
7339 * hooks and thus should not be processed by the free hooks
7340 */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7341 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7342 {
7343 if (!size)
7344 return;
7345
7346 do {
7347 struct detached_freelist df;
7348
7349 size = build_detached_freelist(s, size, p, &df);
7350 if (!df.slab)
7351 continue;
7352
7353 if (kfence_free(df.freelist))
7354 continue;
7355
7356 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
7357 _RET_IP_);
7358 } while (likely(size));
7359 }
7360
7361 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)7362 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
7363 {
7364 if (!size)
7365 return;
7366
7367 /*
7368 * freeing to sheaves is so incompatible with the detached freelist so
7369 * once we go that way, we have to do everything differently
7370 */
7371 if (s && s->cpu_sheaves) {
7372 free_to_pcs_bulk(s, size, p);
7373 return;
7374 }
7375
7376 do {
7377 struct detached_freelist df;
7378
7379 size = build_detached_freelist(s, size, p, &df);
7380 if (!df.slab)
7381 continue;
7382
7383 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
7384 df.cnt, _RET_IP_);
7385 } while (likely(size));
7386 }
7387 EXPORT_SYMBOL(kmem_cache_free_bulk);
7388
7389 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7390 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
7391 void **p)
7392 {
7393 struct kmem_cache_cpu *c;
7394 unsigned long irqflags;
7395 int i;
7396
7397 /*
7398 * Drain objects in the per cpu slab, while disabling local
7399 * IRQs, which protects against PREEMPT and interrupts
7400 * handlers invoking normal fastpath.
7401 */
7402 c = slub_get_cpu_ptr(s->cpu_slab);
7403 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7404
7405 for (i = 0; i < size; i++) {
7406 void *object = c->freelist;
7407
7408 if (unlikely(!object)) {
7409 /*
7410 * We may have removed an object from c->freelist using
7411 * the fastpath in the previous iteration; in that case,
7412 * c->tid has not been bumped yet.
7413 * Since ___slab_alloc() may reenable interrupts while
7414 * allocating memory, we should bump c->tid now.
7415 */
7416 c->tid = next_tid(c->tid);
7417
7418 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7419
7420 /*
7421 * Invoking slow path likely have side-effect
7422 * of re-populating per CPU c->freelist
7423 */
7424 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
7425 _RET_IP_, c, s->object_size);
7426 if (unlikely(!p[i]))
7427 goto error;
7428
7429 c = this_cpu_ptr(s->cpu_slab);
7430 maybe_wipe_obj_freeptr(s, p[i]);
7431
7432 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
7433
7434 continue; /* goto for-loop */
7435 }
7436 c->freelist = get_freepointer(s, object);
7437 p[i] = object;
7438 maybe_wipe_obj_freeptr(s, p[i]);
7439 stat(s, ALLOC_FASTPATH);
7440 }
7441 c->tid = next_tid(c->tid);
7442 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
7443 slub_put_cpu_ptr(s->cpu_slab);
7444
7445 return i;
7446
7447 error:
7448 slub_put_cpu_ptr(s->cpu_slab);
7449 __kmem_cache_free_bulk(s, i, p);
7450 return 0;
7451
7452 }
7453
7454 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)7455 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
7456 void **p)
7457 {
7458 unsigned int i = 0;
7459 void *kfence_obj;
7460
7461 if (!size)
7462 return 0;
7463
7464 s = slab_pre_alloc_hook(s, flags);
7465 if (unlikely(!s))
7466 return 0;
7467
7468 /*
7469 * to make things simpler, only assume at most once kfence allocated
7470 * object per bulk allocation and choose its index randomly
7471 */
7472 kfence_obj = kfence_alloc(s, s->object_size, flags);
7473
7474 if (unlikely(kfence_obj)) {
7475 if (unlikely(size == 1)) {
7476 p[0] = kfence_obj;
7477 goto out;
7478 }
7479 size--;
7480 }
7481
7482 if (s->cpu_sheaves)
7483 i = alloc_from_pcs_bulk(s, size, p);
7484
7485 if (i < size) {
7486 /*
7487 * If we ran out of memory, don't bother with freeing back to
7488 * the percpu sheaves, we have bigger problems.
7489 */
7490 if (unlikely(__kmem_cache_alloc_bulk(s, flags, size - i, p + i) == 0)) {
7491 if (i > 0)
7492 __kmem_cache_free_bulk(s, i, p);
7493 if (kfence_obj)
7494 __kfence_free(kfence_obj);
7495 return 0;
7496 }
7497 }
7498
7499 if (unlikely(kfence_obj)) {
7500 int idx = get_random_u32_below(size + 1);
7501
7502 if (idx != size)
7503 p[size] = p[idx];
7504 p[idx] = kfence_obj;
7505
7506 size++;
7507 }
7508
7509 out:
7510 /*
7511 * memcg and kmem_cache debug support and memory initialization.
7512 * Done outside of the IRQ disabled fastpath loop.
7513 */
7514 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
7515 slab_want_init_on_alloc(flags, s), s->object_size))) {
7516 return 0;
7517 }
7518
7519 return size;
7520 }
7521 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
7522
7523 /*
7524 * Object placement in a slab is made very easy because we always start at
7525 * offset 0. If we tune the size of the object to the alignment then we can
7526 * get the required alignment by putting one properly sized object after
7527 * another.
7528 *
7529 * Notice that the allocation order determines the sizes of the per cpu
7530 * caches. Each processor has always one slab available for allocations.
7531 * Increasing the allocation order reduces the number of times that slabs
7532 * must be moved on and off the partial lists and is therefore a factor in
7533 * locking overhead.
7534 */
7535
7536 /*
7537 * Minimum / Maximum order of slab pages. This influences locking overhead
7538 * and slab fragmentation. A higher order reduces the number of partial slabs
7539 * and increases the number of allocations possible without having to
7540 * take the list_lock.
7541 */
7542 static unsigned int slub_min_order;
7543 static unsigned int slub_max_order =
7544 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
7545 static unsigned int slub_min_objects;
7546
7547 /*
7548 * Calculate the order of allocation given an slab object size.
7549 *
7550 * The order of allocation has significant impact on performance and other
7551 * system components. Generally order 0 allocations should be preferred since
7552 * order 0 does not cause fragmentation in the page allocator. Larger objects
7553 * be problematic to put into order 0 slabs because there may be too much
7554 * unused space left. We go to a higher order if more than 1/16th of the slab
7555 * would be wasted.
7556 *
7557 * In order to reach satisfactory performance we must ensure that a minimum
7558 * number of objects is in one slab. Otherwise we may generate too much
7559 * activity on the partial lists which requires taking the list_lock. This is
7560 * less a concern for large slabs though which are rarely used.
7561 *
7562 * slab_max_order specifies the order where we begin to stop considering the
7563 * number of objects in a slab as critical. If we reach slab_max_order then
7564 * we try to keep the page order as low as possible. So we accept more waste
7565 * of space in favor of a small page order.
7566 *
7567 * Higher order allocations also allow the placement of more objects in a
7568 * slab and thereby reduce object handling overhead. If the user has
7569 * requested a higher minimum order then we start with that one instead of
7570 * the smallest order which will fit the object.
7571 */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)7572 static inline unsigned int calc_slab_order(unsigned int size,
7573 unsigned int min_order, unsigned int max_order,
7574 unsigned int fract_leftover)
7575 {
7576 unsigned int order;
7577
7578 for (order = min_order; order <= max_order; order++) {
7579
7580 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
7581 unsigned int rem;
7582
7583 rem = slab_size % size;
7584
7585 if (rem <= slab_size / fract_leftover)
7586 break;
7587 }
7588
7589 return order;
7590 }
7591
calculate_order(unsigned int size)7592 static inline int calculate_order(unsigned int size)
7593 {
7594 unsigned int order;
7595 unsigned int min_objects;
7596 unsigned int max_objects;
7597 unsigned int min_order;
7598
7599 min_objects = slub_min_objects;
7600 if (!min_objects) {
7601 /*
7602 * Some architectures will only update present cpus when
7603 * onlining them, so don't trust the number if it's just 1. But
7604 * we also don't want to use nr_cpu_ids always, as on some other
7605 * architectures, there can be many possible cpus, but never
7606 * onlined. Here we compromise between trying to avoid too high
7607 * order on systems that appear larger than they are, and too
7608 * low order on systems that appear smaller than they are.
7609 */
7610 unsigned int nr_cpus = num_present_cpus();
7611 if (nr_cpus <= 1)
7612 nr_cpus = nr_cpu_ids;
7613 min_objects = 4 * (fls(nr_cpus) + 1);
7614 }
7615 /* min_objects can't be 0 because get_order(0) is undefined */
7616 max_objects = max(order_objects(slub_max_order, size), 1U);
7617 min_objects = min(min_objects, max_objects);
7618
7619 min_order = max_t(unsigned int, slub_min_order,
7620 get_order(min_objects * size));
7621 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
7622 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
7623
7624 /*
7625 * Attempt to find best configuration for a slab. This works by first
7626 * attempting to generate a layout with the best possible configuration
7627 * and backing off gradually.
7628 *
7629 * We start with accepting at most 1/16 waste and try to find the
7630 * smallest order from min_objects-derived/slab_min_order up to
7631 * slab_max_order that will satisfy the constraint. Note that increasing
7632 * the order can only result in same or less fractional waste, not more.
7633 *
7634 * If that fails, we increase the acceptable fraction of waste and try
7635 * again. The last iteration with fraction of 1/2 would effectively
7636 * accept any waste and give us the order determined by min_objects, as
7637 * long as at least single object fits within slab_max_order.
7638 */
7639 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
7640 order = calc_slab_order(size, min_order, slub_max_order,
7641 fraction);
7642 if (order <= slub_max_order)
7643 return order;
7644 }
7645
7646 /*
7647 * Doh this slab cannot be placed using slab_max_order.
7648 */
7649 order = get_order(size);
7650 if (order <= MAX_PAGE_ORDER)
7651 return order;
7652 return -ENOSYS;
7653 }
7654
7655 static void
init_kmem_cache_node(struct kmem_cache_node * n,struct node_barn * barn)7656 init_kmem_cache_node(struct kmem_cache_node *n, struct node_barn *barn)
7657 {
7658 n->nr_partial = 0;
7659 spin_lock_init(&n->list_lock);
7660 INIT_LIST_HEAD(&n->partial);
7661 #ifdef CONFIG_SLUB_DEBUG
7662 atomic_long_set(&n->nr_slabs, 0);
7663 atomic_long_set(&n->total_objects, 0);
7664 INIT_LIST_HEAD(&n->full);
7665 #endif
7666 n->barn = barn;
7667 if (barn)
7668 barn_init(barn);
7669 }
7670
alloc_kmem_cache_cpus(struct kmem_cache * s)7671 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
7672 {
7673 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
7674 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
7675 sizeof(struct kmem_cache_cpu));
7676
7677 /*
7678 * Must align to double word boundary for the double cmpxchg
7679 * instructions to work; see __pcpu_double_call_return_bool().
7680 */
7681 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
7682 2 * sizeof(void *));
7683
7684 if (!s->cpu_slab)
7685 return 0;
7686
7687 init_kmem_cache_cpus(s);
7688
7689 return 1;
7690 }
7691
init_percpu_sheaves(struct kmem_cache * s)7692 static int init_percpu_sheaves(struct kmem_cache *s)
7693 {
7694 int cpu;
7695
7696 for_each_possible_cpu(cpu) {
7697 struct slub_percpu_sheaves *pcs;
7698
7699 pcs = per_cpu_ptr(s->cpu_sheaves, cpu);
7700
7701 local_trylock_init(&pcs->lock);
7702
7703 pcs->main = alloc_empty_sheaf(s, GFP_KERNEL);
7704
7705 if (!pcs->main)
7706 return -ENOMEM;
7707 }
7708
7709 return 0;
7710 }
7711
7712 static struct kmem_cache *kmem_cache_node;
7713
7714 /*
7715 * No kmalloc_node yet so do it by hand. We know that this is the first
7716 * slab on the node for this slabcache. There are no concurrent accesses
7717 * possible.
7718 *
7719 * Note that this function only works on the kmem_cache_node
7720 * when allocating for the kmem_cache_node. This is used for bootstrapping
7721 * memory on a fresh node that has no slab structures yet.
7722 */
early_kmem_cache_node_alloc(int node)7723 static void early_kmem_cache_node_alloc(int node)
7724 {
7725 struct slab *slab;
7726 struct kmem_cache_node *n;
7727
7728 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
7729
7730 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
7731
7732 BUG_ON(!slab);
7733 if (slab_nid(slab) != node) {
7734 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
7735 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
7736 }
7737
7738 n = slab->freelist;
7739 BUG_ON(!n);
7740 #ifdef CONFIG_SLUB_DEBUG
7741 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
7742 #endif
7743 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
7744 slab->freelist = get_freepointer(kmem_cache_node, n);
7745 slab->inuse = 1;
7746 kmem_cache_node->node[node] = n;
7747 init_kmem_cache_node(n, NULL);
7748 inc_slabs_node(kmem_cache_node, node, slab->objects);
7749
7750 /*
7751 * No locks need to be taken here as it has just been
7752 * initialized and there is no concurrent access.
7753 */
7754 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
7755 }
7756
free_kmem_cache_nodes(struct kmem_cache * s)7757 static void free_kmem_cache_nodes(struct kmem_cache *s)
7758 {
7759 int node;
7760 struct kmem_cache_node *n;
7761
7762 for_each_kmem_cache_node(s, node, n) {
7763 if (n->barn) {
7764 WARN_ON(n->barn->nr_full);
7765 WARN_ON(n->barn->nr_empty);
7766 kfree(n->barn);
7767 n->barn = NULL;
7768 }
7769
7770 s->node[node] = NULL;
7771 kmem_cache_free(kmem_cache_node, n);
7772 }
7773 }
7774
__kmem_cache_release(struct kmem_cache * s)7775 void __kmem_cache_release(struct kmem_cache *s)
7776 {
7777 cache_random_seq_destroy(s);
7778 if (s->cpu_sheaves)
7779 pcs_destroy(s);
7780 #ifdef CONFIG_PREEMPT_RT
7781 if (s->cpu_slab)
7782 lockdep_unregister_key(&s->lock_key);
7783 #endif
7784 free_percpu(s->cpu_slab);
7785 free_kmem_cache_nodes(s);
7786 }
7787
init_kmem_cache_nodes(struct kmem_cache * s)7788 static int init_kmem_cache_nodes(struct kmem_cache *s)
7789 {
7790 int node;
7791
7792 for_each_node_mask(node, slab_nodes) {
7793 struct kmem_cache_node *n;
7794 struct node_barn *barn = NULL;
7795
7796 if (slab_state == DOWN) {
7797 early_kmem_cache_node_alloc(node);
7798 continue;
7799 }
7800
7801 if (s->cpu_sheaves) {
7802 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, node);
7803
7804 if (!barn)
7805 return 0;
7806 }
7807
7808 n = kmem_cache_alloc_node(kmem_cache_node,
7809 GFP_KERNEL, node);
7810 if (!n) {
7811 kfree(barn);
7812 return 0;
7813 }
7814
7815 init_kmem_cache_node(n, barn);
7816
7817 s->node[node] = n;
7818 }
7819 return 1;
7820 }
7821
set_cpu_partial(struct kmem_cache * s)7822 static void set_cpu_partial(struct kmem_cache *s)
7823 {
7824 #ifdef CONFIG_SLUB_CPU_PARTIAL
7825 unsigned int nr_objects;
7826
7827 /*
7828 * cpu_partial determined the maximum number of objects kept in the
7829 * per cpu partial lists of a processor.
7830 *
7831 * Per cpu partial lists mainly contain slabs that just have one
7832 * object freed. If they are used for allocation then they can be
7833 * filled up again with minimal effort. The slab will never hit the
7834 * per node partial lists and therefore no locking will be required.
7835 *
7836 * For backwards compatibility reasons, this is determined as number
7837 * of objects, even though we now limit maximum number of pages, see
7838 * slub_set_cpu_partial()
7839 */
7840 if (!kmem_cache_has_cpu_partial(s))
7841 nr_objects = 0;
7842 else if (s->size >= PAGE_SIZE)
7843 nr_objects = 6;
7844 else if (s->size >= 1024)
7845 nr_objects = 24;
7846 else if (s->size >= 256)
7847 nr_objects = 52;
7848 else
7849 nr_objects = 120;
7850
7851 slub_set_cpu_partial(s, nr_objects);
7852 #endif
7853 }
7854
7855 /*
7856 * calculate_sizes() determines the order and the distribution of data within
7857 * a slab object.
7858 */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)7859 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
7860 {
7861 slab_flags_t flags = s->flags;
7862 unsigned int size = s->object_size;
7863 unsigned int order;
7864
7865 /*
7866 * Round up object size to the next word boundary. We can only
7867 * place the free pointer at word boundaries and this determines
7868 * the possible location of the free pointer.
7869 */
7870 size = ALIGN(size, sizeof(void *));
7871
7872 #ifdef CONFIG_SLUB_DEBUG
7873 /*
7874 * Determine if we can poison the object itself. If the user of
7875 * the slab may touch the object after free or before allocation
7876 * then we should never poison the object itself.
7877 */
7878 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
7879 !s->ctor)
7880 s->flags |= __OBJECT_POISON;
7881 else
7882 s->flags &= ~__OBJECT_POISON;
7883
7884
7885 /*
7886 * If we are Redzoning then check if there is some space between the
7887 * end of the object and the free pointer. If not then add an
7888 * additional word to have some bytes to store Redzone information.
7889 */
7890 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
7891 size += sizeof(void *);
7892 #endif
7893
7894 /*
7895 * With that we have determined the number of bytes in actual use
7896 * by the object and redzoning.
7897 */
7898 s->inuse = size;
7899
7900 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
7901 (flags & SLAB_POISON) || s->ctor ||
7902 ((flags & SLAB_RED_ZONE) &&
7903 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
7904 /*
7905 * Relocate free pointer after the object if it is not
7906 * permitted to overwrite the first word of the object on
7907 * kmem_cache_free.
7908 *
7909 * This is the case if we do RCU, have a constructor, are
7910 * poisoning the objects, or are redzoning an object smaller
7911 * than sizeof(void *) or are redzoning an object with
7912 * slub_debug_orig_size() enabled, in which case the right
7913 * redzone may be extended.
7914 *
7915 * The assumption that s->offset >= s->inuse means free
7916 * pointer is outside of the object is used in the
7917 * freeptr_outside_object() function. If that is no
7918 * longer true, the function needs to be modified.
7919 */
7920 s->offset = size;
7921 size += sizeof(void *);
7922 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
7923 s->offset = args->freeptr_offset;
7924 } else {
7925 /*
7926 * Store freelist pointer near middle of object to keep
7927 * it away from the edges of the object to avoid small
7928 * sized over/underflows from neighboring allocations.
7929 */
7930 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
7931 }
7932
7933 #ifdef CONFIG_SLUB_DEBUG
7934 if (flags & SLAB_STORE_USER) {
7935 /*
7936 * Need to store information about allocs and frees after
7937 * the object.
7938 */
7939 size += 2 * sizeof(struct track);
7940
7941 /* Save the original kmalloc request size */
7942 if (flags & SLAB_KMALLOC)
7943 size += sizeof(unsigned int);
7944 }
7945 #endif
7946
7947 kasan_cache_create(s, &size, &s->flags);
7948 #ifdef CONFIG_SLUB_DEBUG
7949 if (flags & SLAB_RED_ZONE) {
7950 /*
7951 * Add some empty padding so that we can catch
7952 * overwrites from earlier objects rather than let
7953 * tracking information or the free pointer be
7954 * corrupted if a user writes before the start
7955 * of the object.
7956 */
7957 size += sizeof(void *);
7958
7959 s->red_left_pad = sizeof(void *);
7960 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
7961 size += s->red_left_pad;
7962 }
7963 #endif
7964
7965 /*
7966 * SLUB stores one object immediately after another beginning from
7967 * offset 0. In order to align the objects we have to simply size
7968 * each object to conform to the alignment.
7969 */
7970 size = ALIGN(size, s->align);
7971 s->size = size;
7972 s->reciprocal_size = reciprocal_value(size);
7973 order = calculate_order(size);
7974
7975 if ((int)order < 0)
7976 return 0;
7977
7978 s->allocflags = __GFP_COMP;
7979
7980 if (s->flags & SLAB_CACHE_DMA)
7981 s->allocflags |= GFP_DMA;
7982
7983 if (s->flags & SLAB_CACHE_DMA32)
7984 s->allocflags |= GFP_DMA32;
7985
7986 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7987 s->allocflags |= __GFP_RECLAIMABLE;
7988
7989 /*
7990 * Determine the number of objects per slab
7991 */
7992 s->oo = oo_make(order, size);
7993 s->min = oo_make(get_order(size), size);
7994
7995 return !!oo_objects(s->oo);
7996 }
7997
list_slab_objects(struct kmem_cache * s,struct slab * slab)7998 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
7999 {
8000 #ifdef CONFIG_SLUB_DEBUG
8001 void *addr = slab_address(slab);
8002 void *p;
8003
8004 if (!slab_add_kunit_errors())
8005 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
8006
8007 spin_lock(&object_map_lock);
8008 __fill_map(object_map, s, slab);
8009
8010 for_each_object(p, s, addr, slab->objects) {
8011
8012 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
8013 if (slab_add_kunit_errors())
8014 continue;
8015 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
8016 print_tracking(s, p);
8017 }
8018 }
8019 spin_unlock(&object_map_lock);
8020
8021 __slab_err(slab);
8022 #endif
8023 }
8024
8025 /*
8026 * Attempt to free all partial slabs on a node.
8027 * This is called from __kmem_cache_shutdown(). We must take list_lock
8028 * because sysfs file might still access partial list after the shutdowning.
8029 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)8030 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
8031 {
8032 LIST_HEAD(discard);
8033 struct slab *slab, *h;
8034
8035 BUG_ON(irqs_disabled());
8036 spin_lock_irq(&n->list_lock);
8037 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
8038 if (!slab->inuse) {
8039 remove_partial(n, slab);
8040 list_add(&slab->slab_list, &discard);
8041 } else {
8042 list_slab_objects(s, slab);
8043 }
8044 }
8045 spin_unlock_irq(&n->list_lock);
8046
8047 list_for_each_entry_safe(slab, h, &discard, slab_list)
8048 discard_slab(s, slab);
8049 }
8050
__kmem_cache_empty(struct kmem_cache * s)8051 bool __kmem_cache_empty(struct kmem_cache *s)
8052 {
8053 int node;
8054 struct kmem_cache_node *n;
8055
8056 for_each_kmem_cache_node(s, node, n)
8057 if (n->nr_partial || node_nr_slabs(n))
8058 return false;
8059 return true;
8060 }
8061
8062 /*
8063 * Release all resources used by a slab cache.
8064 */
__kmem_cache_shutdown(struct kmem_cache * s)8065 int __kmem_cache_shutdown(struct kmem_cache *s)
8066 {
8067 int node;
8068 struct kmem_cache_node *n;
8069
8070 flush_all_cpus_locked(s);
8071
8072 /* we might have rcu sheaves in flight */
8073 if (s->cpu_sheaves)
8074 rcu_barrier();
8075
8076 /* Attempt to free all objects */
8077 for_each_kmem_cache_node(s, node, n) {
8078 if (n->barn)
8079 barn_shrink(s, n->barn);
8080 free_partial(s, n);
8081 if (n->nr_partial || node_nr_slabs(n))
8082 return 1;
8083 }
8084 return 0;
8085 }
8086
8087 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)8088 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
8089 {
8090 void *base;
8091 int __maybe_unused i;
8092 unsigned int objnr;
8093 void *objp;
8094 void *objp0;
8095 struct kmem_cache *s = slab->slab_cache;
8096 struct track __maybe_unused *trackp;
8097
8098 kpp->kp_ptr = object;
8099 kpp->kp_slab = slab;
8100 kpp->kp_slab_cache = s;
8101 base = slab_address(slab);
8102 objp0 = kasan_reset_tag(object);
8103 #ifdef CONFIG_SLUB_DEBUG
8104 objp = restore_red_left(s, objp0);
8105 #else
8106 objp = objp0;
8107 #endif
8108 objnr = obj_to_index(s, slab, objp);
8109 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
8110 objp = base + s->size * objnr;
8111 kpp->kp_objp = objp;
8112 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
8113 || (objp - base) % s->size) ||
8114 !(s->flags & SLAB_STORE_USER))
8115 return;
8116 #ifdef CONFIG_SLUB_DEBUG
8117 objp = fixup_red_left(s, objp);
8118 trackp = get_track(s, objp, TRACK_ALLOC);
8119 kpp->kp_ret = (void *)trackp->addr;
8120 #ifdef CONFIG_STACKDEPOT
8121 {
8122 depot_stack_handle_t handle;
8123 unsigned long *entries;
8124 unsigned int nr_entries;
8125
8126 handle = READ_ONCE(trackp->handle);
8127 if (handle) {
8128 nr_entries = stack_depot_fetch(handle, &entries);
8129 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8130 kpp->kp_stack[i] = (void *)entries[i];
8131 }
8132
8133 trackp = get_track(s, objp, TRACK_FREE);
8134 handle = READ_ONCE(trackp->handle);
8135 if (handle) {
8136 nr_entries = stack_depot_fetch(handle, &entries);
8137 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
8138 kpp->kp_free_stack[i] = (void *)entries[i];
8139 }
8140 }
8141 #endif
8142 #endif
8143 }
8144 #endif
8145
8146 /********************************************************************
8147 * Kmalloc subsystem
8148 *******************************************************************/
8149
setup_slub_min_order(const char * str,const struct kernel_param * kp)8150 static int __init setup_slub_min_order(const char *str, const struct kernel_param *kp)
8151 {
8152 int ret;
8153
8154 ret = kstrtouint(str, 0, &slub_min_order);
8155 if (ret)
8156 return ret;
8157
8158 if (slub_min_order > slub_max_order)
8159 slub_max_order = slub_min_order;
8160
8161 return 0;
8162 }
8163
8164 static const struct kernel_param_ops param_ops_slab_min_order __initconst = {
8165 .set = setup_slub_min_order,
8166 };
8167 __core_param_cb(slab_min_order, ¶m_ops_slab_min_order, &slub_min_order, 0);
8168 __core_param_cb(slub_min_order, ¶m_ops_slab_min_order, &slub_min_order, 0);
8169
setup_slub_max_order(const char * str,const struct kernel_param * kp)8170 static int __init setup_slub_max_order(const char *str, const struct kernel_param *kp)
8171 {
8172 int ret;
8173
8174 ret = kstrtouint(str, 0, &slub_max_order);
8175 if (ret)
8176 return ret;
8177
8178 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
8179
8180 if (slub_min_order > slub_max_order)
8181 slub_min_order = slub_max_order;
8182
8183 return 0;
8184 }
8185
8186 static const struct kernel_param_ops param_ops_slab_max_order __initconst = {
8187 .set = setup_slub_max_order,
8188 };
8189 __core_param_cb(slab_max_order, ¶m_ops_slab_max_order, &slub_max_order, 0);
8190 __core_param_cb(slub_max_order, ¶m_ops_slab_max_order, &slub_max_order, 0);
8191
8192 core_param(slab_min_objects, slub_min_objects, uint, 0);
8193 core_param(slub_min_objects, slub_min_objects, uint, 0);
8194
8195 #ifdef CONFIG_NUMA
setup_slab_strict_numa(const char * str,const struct kernel_param * kp)8196 static int __init setup_slab_strict_numa(const char *str, const struct kernel_param *kp)
8197 {
8198 if (nr_node_ids > 1) {
8199 static_branch_enable(&strict_numa);
8200 pr_info("SLUB: Strict NUMA enabled.\n");
8201 } else {
8202 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
8203 }
8204
8205 return 0;
8206 }
8207
8208 static const struct kernel_param_ops param_ops_slab_strict_numa __initconst = {
8209 .flags = KERNEL_PARAM_OPS_FL_NOARG,
8210 .set = setup_slab_strict_numa,
8211 };
8212 __core_param_cb(slab_strict_numa, ¶m_ops_slab_strict_numa, NULL, 0);
8213 #endif
8214
8215
8216 #ifdef CONFIG_HARDENED_USERCOPY
8217 /*
8218 * Rejects incorrectly sized objects and objects that are to be copied
8219 * to/from userspace but do not fall entirely within the containing slab
8220 * cache's usercopy region.
8221 *
8222 * Returns NULL if check passes, otherwise const char * to name of cache
8223 * to indicate an error.
8224 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)8225 void __check_heap_object(const void *ptr, unsigned long n,
8226 const struct slab *slab, bool to_user)
8227 {
8228 struct kmem_cache *s;
8229 unsigned int offset;
8230 bool is_kfence = is_kfence_address(ptr);
8231
8232 ptr = kasan_reset_tag(ptr);
8233
8234 /* Find object and usable object size. */
8235 s = slab->slab_cache;
8236
8237 /* Reject impossible pointers. */
8238 if (ptr < slab_address(slab))
8239 usercopy_abort("SLUB object not in SLUB page?!", NULL,
8240 to_user, 0, n);
8241
8242 /* Find offset within object. */
8243 if (is_kfence)
8244 offset = ptr - kfence_object_start(ptr);
8245 else
8246 offset = (ptr - slab_address(slab)) % s->size;
8247
8248 /* Adjust for redzone and reject if within the redzone. */
8249 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
8250 if (offset < s->red_left_pad)
8251 usercopy_abort("SLUB object in left red zone",
8252 s->name, to_user, offset, n);
8253 offset -= s->red_left_pad;
8254 }
8255
8256 /* Allow address range falling entirely within usercopy region. */
8257 if (offset >= s->useroffset &&
8258 offset - s->useroffset <= s->usersize &&
8259 n <= s->useroffset - offset + s->usersize)
8260 return;
8261
8262 usercopy_abort("SLUB object", s->name, to_user, offset, n);
8263 }
8264 #endif /* CONFIG_HARDENED_USERCOPY */
8265
8266 #define SHRINK_PROMOTE_MAX 32
8267
8268 /*
8269 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
8270 * up most to the head of the partial lists. New allocations will then
8271 * fill those up and thus they can be removed from the partial lists.
8272 *
8273 * The slabs with the least items are placed last. This results in them
8274 * being allocated from last increasing the chance that the last objects
8275 * are freed in them.
8276 */
__kmem_cache_do_shrink(struct kmem_cache * s)8277 static int __kmem_cache_do_shrink(struct kmem_cache *s)
8278 {
8279 int node;
8280 int i;
8281 struct kmem_cache_node *n;
8282 struct slab *slab;
8283 struct slab *t;
8284 struct list_head discard;
8285 struct list_head promote[SHRINK_PROMOTE_MAX];
8286 unsigned long flags;
8287 int ret = 0;
8288
8289 for_each_kmem_cache_node(s, node, n) {
8290 INIT_LIST_HEAD(&discard);
8291 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
8292 INIT_LIST_HEAD(promote + i);
8293
8294 if (n->barn)
8295 barn_shrink(s, n->barn);
8296
8297 spin_lock_irqsave(&n->list_lock, flags);
8298
8299 /*
8300 * Build lists of slabs to discard or promote.
8301 *
8302 * Note that concurrent frees may occur while we hold the
8303 * list_lock. slab->inuse here is the upper limit.
8304 */
8305 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
8306 int free = slab->objects - slab->inuse;
8307
8308 /* Do not reread slab->inuse */
8309 barrier();
8310
8311 /* We do not keep full slabs on the list */
8312 BUG_ON(free <= 0);
8313
8314 if (free == slab->objects) {
8315 list_move(&slab->slab_list, &discard);
8316 slab_clear_node_partial(slab);
8317 n->nr_partial--;
8318 dec_slabs_node(s, node, slab->objects);
8319 } else if (free <= SHRINK_PROMOTE_MAX)
8320 list_move(&slab->slab_list, promote + free - 1);
8321 }
8322
8323 /*
8324 * Promote the slabs filled up most to the head of the
8325 * partial list.
8326 */
8327 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
8328 list_splice(promote + i, &n->partial);
8329
8330 spin_unlock_irqrestore(&n->list_lock, flags);
8331
8332 /* Release empty slabs */
8333 list_for_each_entry_safe(slab, t, &discard, slab_list)
8334 free_slab(s, slab);
8335
8336 if (node_nr_slabs(n))
8337 ret = 1;
8338 }
8339
8340 return ret;
8341 }
8342
__kmem_cache_shrink(struct kmem_cache * s)8343 int __kmem_cache_shrink(struct kmem_cache *s)
8344 {
8345 flush_all(s);
8346 return __kmem_cache_do_shrink(s);
8347 }
8348
slab_mem_going_offline_callback(void)8349 static int slab_mem_going_offline_callback(void)
8350 {
8351 struct kmem_cache *s;
8352
8353 mutex_lock(&slab_mutex);
8354 list_for_each_entry(s, &slab_caches, list) {
8355 flush_all_cpus_locked(s);
8356 __kmem_cache_do_shrink(s);
8357 }
8358 mutex_unlock(&slab_mutex);
8359
8360 return 0;
8361 }
8362
slab_mem_going_online_callback(int nid)8363 static int slab_mem_going_online_callback(int nid)
8364 {
8365 struct kmem_cache_node *n;
8366 struct kmem_cache *s;
8367 int ret = 0;
8368
8369 /*
8370 * We are bringing a node online. No memory is available yet. We must
8371 * allocate a kmem_cache_node structure in order to bring the node
8372 * online.
8373 */
8374 mutex_lock(&slab_mutex);
8375 list_for_each_entry(s, &slab_caches, list) {
8376 struct node_barn *barn = NULL;
8377
8378 /*
8379 * The structure may already exist if the node was previously
8380 * onlined and offlined.
8381 */
8382 if (get_node(s, nid))
8383 continue;
8384
8385 if (s->cpu_sheaves) {
8386 barn = kmalloc_node(sizeof(*barn), GFP_KERNEL, nid);
8387
8388 if (!barn) {
8389 ret = -ENOMEM;
8390 goto out;
8391 }
8392 }
8393
8394 /*
8395 * XXX: kmem_cache_alloc_node will fallback to other nodes
8396 * since memory is not yet available from the node that
8397 * is brought up.
8398 */
8399 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
8400 if (!n) {
8401 kfree(barn);
8402 ret = -ENOMEM;
8403 goto out;
8404 }
8405
8406 init_kmem_cache_node(n, barn);
8407
8408 s->node[nid] = n;
8409 }
8410 /*
8411 * Any cache created after this point will also have kmem_cache_node
8412 * initialized for the new node.
8413 */
8414 node_set(nid, slab_nodes);
8415 out:
8416 mutex_unlock(&slab_mutex);
8417 return ret;
8418 }
8419
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)8420 static int slab_memory_callback(struct notifier_block *self,
8421 unsigned long action, void *arg)
8422 {
8423 struct node_notify *nn = arg;
8424 int nid = nn->nid;
8425 int ret = 0;
8426
8427 switch (action) {
8428 case NODE_ADDING_FIRST_MEMORY:
8429 ret = slab_mem_going_online_callback(nid);
8430 break;
8431 case NODE_REMOVING_LAST_MEMORY:
8432 ret = slab_mem_going_offline_callback();
8433 break;
8434 }
8435 if (ret)
8436 ret = notifier_from_errno(ret);
8437 else
8438 ret = NOTIFY_OK;
8439 return ret;
8440 }
8441
8442 /********************************************************************
8443 * Basic setup of slabs
8444 *******************************************************************/
8445
8446 /*
8447 * Used for early kmem_cache structures that were allocated using
8448 * the page allocator. Allocate them properly then fix up the pointers
8449 * that may be pointing to the wrong kmem_cache structure.
8450 */
8451
bootstrap(struct kmem_cache * static_cache)8452 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
8453 {
8454 int node;
8455 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
8456 struct kmem_cache_node *n;
8457
8458 memcpy(s, static_cache, kmem_cache->object_size);
8459
8460 /*
8461 * This runs very early, and only the boot processor is supposed to be
8462 * up. Even if it weren't true, IRQs are not up so we couldn't fire
8463 * IPIs around.
8464 */
8465 __flush_cpu_slab(s, smp_processor_id());
8466 for_each_kmem_cache_node(s, node, n) {
8467 struct slab *p;
8468
8469 list_for_each_entry(p, &n->partial, slab_list)
8470 p->slab_cache = s;
8471
8472 #ifdef CONFIG_SLUB_DEBUG
8473 list_for_each_entry(p, &n->full, slab_list)
8474 p->slab_cache = s;
8475 #endif
8476 }
8477 list_add(&s->list, &slab_caches);
8478 return s;
8479 }
8480
kmem_cache_init(void)8481 void __init kmem_cache_init(void)
8482 {
8483 static __initdata struct kmem_cache boot_kmem_cache,
8484 boot_kmem_cache_node;
8485 int node;
8486
8487 if (debug_guardpage_minorder())
8488 slub_max_order = 0;
8489
8490 /* Inform pointer hashing choice about slub debugging state. */
8491 hash_pointers_finalize(__slub_debug_enabled());
8492
8493 kmem_cache_node = &boot_kmem_cache_node;
8494 kmem_cache = &boot_kmem_cache;
8495
8496 /*
8497 * Initialize the nodemask for which we will allocate per node
8498 * structures. Here we don't need taking slab_mutex yet.
8499 */
8500 for_each_node_state(node, N_MEMORY)
8501 node_set(node, slab_nodes);
8502
8503 create_boot_cache(kmem_cache_node, "kmem_cache_node",
8504 sizeof(struct kmem_cache_node),
8505 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8506
8507 hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
8508
8509 /* Able to allocate the per node structures */
8510 slab_state = PARTIAL;
8511
8512 create_boot_cache(kmem_cache, "kmem_cache",
8513 offsetof(struct kmem_cache, node) +
8514 nr_node_ids * sizeof(struct kmem_cache_node *),
8515 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
8516
8517 kmem_cache = bootstrap(&boot_kmem_cache);
8518 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
8519
8520 /* Now we can use the kmem_cache to allocate kmalloc slabs */
8521 setup_kmalloc_cache_index_table();
8522 create_kmalloc_caches();
8523
8524 /* Setup random freelists for each cache */
8525 init_freelist_randomization();
8526
8527 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
8528 slub_cpu_dead);
8529
8530 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
8531 cache_line_size(),
8532 slub_min_order, slub_max_order, slub_min_objects,
8533 nr_cpu_ids, nr_node_ids);
8534 }
8535
kmem_cache_init_late(void)8536 void __init kmem_cache_init_late(void)
8537 {
8538 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
8539 WARN_ON(!flushwq);
8540 }
8541
8542 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))8543 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
8544 slab_flags_t flags, void (*ctor)(void *))
8545 {
8546 struct kmem_cache *s;
8547
8548 s = find_mergeable(size, align, flags, name, ctor);
8549 if (s) {
8550 if (sysfs_slab_alias(s, name))
8551 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
8552 name);
8553
8554 s->refcount++;
8555
8556 /*
8557 * Adjust the object sizes so that we clear
8558 * the complete object on kzalloc.
8559 */
8560 s->object_size = max(s->object_size, size);
8561 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
8562 }
8563
8564 return s;
8565 }
8566
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)8567 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
8568 unsigned int size, struct kmem_cache_args *args,
8569 slab_flags_t flags)
8570 {
8571 int err = -EINVAL;
8572
8573 s->name = name;
8574 s->size = s->object_size = size;
8575
8576 s->flags = kmem_cache_flags(flags, s->name);
8577 #ifdef CONFIG_SLAB_FREELIST_HARDENED
8578 s->random = get_random_long();
8579 #endif
8580 s->align = args->align;
8581 s->ctor = args->ctor;
8582 #ifdef CONFIG_HARDENED_USERCOPY
8583 s->useroffset = args->useroffset;
8584 s->usersize = args->usersize;
8585 #endif
8586
8587 if (!calculate_sizes(args, s))
8588 goto out;
8589 if (disable_higher_order_debug) {
8590 /*
8591 * Disable debugging flags that store metadata if the min slab
8592 * order increased.
8593 */
8594 if (get_order(s->size) > get_order(s->object_size)) {
8595 s->flags &= ~DEBUG_METADATA_FLAGS;
8596 s->offset = 0;
8597 if (!calculate_sizes(args, s))
8598 goto out;
8599 }
8600 }
8601
8602 #ifdef system_has_freelist_aba
8603 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
8604 /* Enable fast mode */
8605 s->flags |= __CMPXCHG_DOUBLE;
8606 }
8607 #endif
8608
8609 /*
8610 * The larger the object size is, the more slabs we want on the partial
8611 * list to avoid pounding the page allocator excessively.
8612 */
8613 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
8614 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
8615
8616 set_cpu_partial(s);
8617
8618 if (args->sheaf_capacity && !IS_ENABLED(CONFIG_SLUB_TINY)
8619 && !(s->flags & SLAB_DEBUG_FLAGS)) {
8620 s->cpu_sheaves = alloc_percpu(struct slub_percpu_sheaves);
8621 if (!s->cpu_sheaves) {
8622 err = -ENOMEM;
8623 goto out;
8624 }
8625 // TODO: increase capacity to grow slab_sheaf up to next kmalloc size?
8626 s->sheaf_capacity = args->sheaf_capacity;
8627 }
8628
8629 #ifdef CONFIG_NUMA
8630 s->remote_node_defrag_ratio = 1000;
8631 #endif
8632
8633 /* Initialize the pre-computed randomized freelist if slab is up */
8634 if (slab_state >= UP) {
8635 if (init_cache_random_seq(s))
8636 goto out;
8637 }
8638
8639 if (!init_kmem_cache_nodes(s))
8640 goto out;
8641
8642 if (!alloc_kmem_cache_cpus(s))
8643 goto out;
8644
8645 if (s->cpu_sheaves) {
8646 err = init_percpu_sheaves(s);
8647 if (err)
8648 goto out;
8649 }
8650
8651 err = 0;
8652
8653 /* Mutex is not taken during early boot */
8654 if (slab_state <= UP)
8655 goto out;
8656
8657 /*
8658 * Failing to create sysfs files is not critical to SLUB functionality.
8659 * If it fails, proceed with cache creation without these files.
8660 */
8661 if (sysfs_slab_add(s))
8662 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
8663
8664 if (s->flags & SLAB_STORE_USER)
8665 debugfs_slab_add(s);
8666
8667 out:
8668 if (err)
8669 __kmem_cache_release(s);
8670 return err;
8671 }
8672
8673 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)8674 static int count_inuse(struct slab *slab)
8675 {
8676 return slab->inuse;
8677 }
8678
count_total(struct slab * slab)8679 static int count_total(struct slab *slab)
8680 {
8681 return slab->objects;
8682 }
8683 #endif
8684
8685 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)8686 static void validate_slab(struct kmem_cache *s, struct slab *slab,
8687 unsigned long *obj_map)
8688 {
8689 void *p;
8690 void *addr = slab_address(slab);
8691
8692 if (!validate_slab_ptr(slab)) {
8693 slab_err(s, slab, "Not a valid slab page");
8694 return;
8695 }
8696
8697 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
8698 return;
8699
8700 /* Now we know that a valid freelist exists */
8701 __fill_map(obj_map, s, slab);
8702 for_each_object(p, s, addr, slab->objects) {
8703 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
8704 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
8705
8706 if (!check_object(s, slab, p, val))
8707 break;
8708 }
8709 }
8710
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)8711 static int validate_slab_node(struct kmem_cache *s,
8712 struct kmem_cache_node *n, unsigned long *obj_map)
8713 {
8714 unsigned long count = 0;
8715 struct slab *slab;
8716 unsigned long flags;
8717
8718 spin_lock_irqsave(&n->list_lock, flags);
8719
8720 list_for_each_entry(slab, &n->partial, slab_list) {
8721 validate_slab(s, slab, obj_map);
8722 count++;
8723 }
8724 if (count != n->nr_partial) {
8725 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
8726 s->name, count, n->nr_partial);
8727 slab_add_kunit_errors();
8728 }
8729
8730 if (!(s->flags & SLAB_STORE_USER))
8731 goto out;
8732
8733 list_for_each_entry(slab, &n->full, slab_list) {
8734 validate_slab(s, slab, obj_map);
8735 count++;
8736 }
8737 if (count != node_nr_slabs(n)) {
8738 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
8739 s->name, count, node_nr_slabs(n));
8740 slab_add_kunit_errors();
8741 }
8742
8743 out:
8744 spin_unlock_irqrestore(&n->list_lock, flags);
8745 return count;
8746 }
8747
validate_slab_cache(struct kmem_cache * s)8748 long validate_slab_cache(struct kmem_cache *s)
8749 {
8750 int node;
8751 unsigned long count = 0;
8752 struct kmem_cache_node *n;
8753 unsigned long *obj_map;
8754
8755 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
8756 if (!obj_map)
8757 return -ENOMEM;
8758
8759 flush_all(s);
8760 for_each_kmem_cache_node(s, node, n)
8761 count += validate_slab_node(s, n, obj_map);
8762
8763 bitmap_free(obj_map);
8764
8765 return count;
8766 }
8767 EXPORT_SYMBOL(validate_slab_cache);
8768
8769 #ifdef CONFIG_DEBUG_FS
8770 /*
8771 * Generate lists of code addresses where slabcache objects are allocated
8772 * and freed.
8773 */
8774
8775 struct location {
8776 depot_stack_handle_t handle;
8777 unsigned long count;
8778 unsigned long addr;
8779 unsigned long waste;
8780 long long sum_time;
8781 long min_time;
8782 long max_time;
8783 long min_pid;
8784 long max_pid;
8785 DECLARE_BITMAP(cpus, NR_CPUS);
8786 nodemask_t nodes;
8787 };
8788
8789 struct loc_track {
8790 unsigned long max;
8791 unsigned long count;
8792 struct location *loc;
8793 loff_t idx;
8794 };
8795
8796 static struct dentry *slab_debugfs_root;
8797
free_loc_track(struct loc_track * t)8798 static void free_loc_track(struct loc_track *t)
8799 {
8800 if (t->max)
8801 free_pages((unsigned long)t->loc,
8802 get_order(sizeof(struct location) * t->max));
8803 }
8804
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)8805 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
8806 {
8807 struct location *l;
8808 int order;
8809
8810 order = get_order(sizeof(struct location) * max);
8811
8812 l = (void *)__get_free_pages(flags, order);
8813 if (!l)
8814 return 0;
8815
8816 if (t->count) {
8817 memcpy(l, t->loc, sizeof(struct location) * t->count);
8818 free_loc_track(t);
8819 }
8820 t->max = max;
8821 t->loc = l;
8822 return 1;
8823 }
8824
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)8825 static int add_location(struct loc_track *t, struct kmem_cache *s,
8826 const struct track *track,
8827 unsigned int orig_size)
8828 {
8829 long start, end, pos;
8830 struct location *l;
8831 unsigned long caddr, chandle, cwaste;
8832 unsigned long age = jiffies - track->when;
8833 depot_stack_handle_t handle = 0;
8834 unsigned int waste = s->object_size - orig_size;
8835
8836 #ifdef CONFIG_STACKDEPOT
8837 handle = READ_ONCE(track->handle);
8838 #endif
8839 start = -1;
8840 end = t->count;
8841
8842 for ( ; ; ) {
8843 pos = start + (end - start + 1) / 2;
8844
8845 /*
8846 * There is nothing at "end". If we end up there
8847 * we need to add something to before end.
8848 */
8849 if (pos == end)
8850 break;
8851
8852 l = &t->loc[pos];
8853 caddr = l->addr;
8854 chandle = l->handle;
8855 cwaste = l->waste;
8856 if ((track->addr == caddr) && (handle == chandle) &&
8857 (waste == cwaste)) {
8858
8859 l->count++;
8860 if (track->when) {
8861 l->sum_time += age;
8862 if (age < l->min_time)
8863 l->min_time = age;
8864 if (age > l->max_time)
8865 l->max_time = age;
8866
8867 if (track->pid < l->min_pid)
8868 l->min_pid = track->pid;
8869 if (track->pid > l->max_pid)
8870 l->max_pid = track->pid;
8871
8872 cpumask_set_cpu(track->cpu,
8873 to_cpumask(l->cpus));
8874 }
8875 node_set(page_to_nid(virt_to_page(track)), l->nodes);
8876 return 1;
8877 }
8878
8879 if (track->addr < caddr)
8880 end = pos;
8881 else if (track->addr == caddr && handle < chandle)
8882 end = pos;
8883 else if (track->addr == caddr && handle == chandle &&
8884 waste < cwaste)
8885 end = pos;
8886 else
8887 start = pos;
8888 }
8889
8890 /*
8891 * Not found. Insert new tracking element.
8892 */
8893 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
8894 return 0;
8895
8896 l = t->loc + pos;
8897 if (pos < t->count)
8898 memmove(l + 1, l,
8899 (t->count - pos) * sizeof(struct location));
8900 t->count++;
8901 l->count = 1;
8902 l->addr = track->addr;
8903 l->sum_time = age;
8904 l->min_time = age;
8905 l->max_time = age;
8906 l->min_pid = track->pid;
8907 l->max_pid = track->pid;
8908 l->handle = handle;
8909 l->waste = waste;
8910 cpumask_clear(to_cpumask(l->cpus));
8911 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
8912 nodes_clear(l->nodes);
8913 node_set(page_to_nid(virt_to_page(track)), l->nodes);
8914 return 1;
8915 }
8916
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)8917 static void process_slab(struct loc_track *t, struct kmem_cache *s,
8918 struct slab *slab, enum track_item alloc,
8919 unsigned long *obj_map)
8920 {
8921 void *addr = slab_address(slab);
8922 bool is_alloc = (alloc == TRACK_ALLOC);
8923 void *p;
8924
8925 __fill_map(obj_map, s, slab);
8926
8927 for_each_object(p, s, addr, slab->objects)
8928 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
8929 add_location(t, s, get_track(s, p, alloc),
8930 is_alloc ? get_orig_size(s, p) :
8931 s->object_size);
8932 }
8933 #endif /* CONFIG_DEBUG_FS */
8934 #endif /* CONFIG_SLUB_DEBUG */
8935
8936 #ifdef SLAB_SUPPORTS_SYSFS
8937 enum slab_stat_type {
8938 SL_ALL, /* All slabs */
8939 SL_PARTIAL, /* Only partially allocated slabs */
8940 SL_CPU, /* Only slabs used for cpu caches */
8941 SL_OBJECTS, /* Determine allocated objects not slabs */
8942 SL_TOTAL /* Determine object capacity not slabs */
8943 };
8944
8945 #define SO_ALL (1 << SL_ALL)
8946 #define SO_PARTIAL (1 << SL_PARTIAL)
8947 #define SO_CPU (1 << SL_CPU)
8948 #define SO_OBJECTS (1 << SL_OBJECTS)
8949 #define SO_TOTAL (1 << SL_TOTAL)
8950
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)8951 static ssize_t show_slab_objects(struct kmem_cache *s,
8952 char *buf, unsigned long flags)
8953 {
8954 unsigned long total = 0;
8955 int node;
8956 int x;
8957 unsigned long *nodes;
8958 int len = 0;
8959
8960 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
8961 if (!nodes)
8962 return -ENOMEM;
8963
8964 if (flags & SO_CPU) {
8965 int cpu;
8966
8967 for_each_possible_cpu(cpu) {
8968 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
8969 cpu);
8970 int node;
8971 struct slab *slab;
8972
8973 slab = READ_ONCE(c->slab);
8974 if (!slab)
8975 continue;
8976
8977 node = slab_nid(slab);
8978 if (flags & SO_TOTAL)
8979 x = slab->objects;
8980 else if (flags & SO_OBJECTS)
8981 x = slab->inuse;
8982 else
8983 x = 1;
8984
8985 total += x;
8986 nodes[node] += x;
8987
8988 #ifdef CONFIG_SLUB_CPU_PARTIAL
8989 slab = slub_percpu_partial_read_once(c);
8990 if (slab) {
8991 node = slab_nid(slab);
8992 if (flags & SO_TOTAL)
8993 WARN_ON_ONCE(1);
8994 else if (flags & SO_OBJECTS)
8995 WARN_ON_ONCE(1);
8996 else
8997 x = data_race(slab->slabs);
8998 total += x;
8999 nodes[node] += x;
9000 }
9001 #endif
9002 }
9003 }
9004
9005 /*
9006 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
9007 * already held which will conflict with an existing lock order:
9008 *
9009 * mem_hotplug_lock->slab_mutex->kernfs_mutex
9010 *
9011 * We don't really need mem_hotplug_lock (to hold off
9012 * slab_mem_going_offline_callback) here because slab's memory hot
9013 * unplug code doesn't destroy the kmem_cache->node[] data.
9014 */
9015
9016 #ifdef CONFIG_SLUB_DEBUG
9017 if (flags & SO_ALL) {
9018 struct kmem_cache_node *n;
9019
9020 for_each_kmem_cache_node(s, node, n) {
9021
9022 if (flags & SO_TOTAL)
9023 x = node_nr_objs(n);
9024 else if (flags & SO_OBJECTS)
9025 x = node_nr_objs(n) - count_partial(n, count_free);
9026 else
9027 x = node_nr_slabs(n);
9028 total += x;
9029 nodes[node] += x;
9030 }
9031
9032 } else
9033 #endif
9034 if (flags & SO_PARTIAL) {
9035 struct kmem_cache_node *n;
9036
9037 for_each_kmem_cache_node(s, node, n) {
9038 if (flags & SO_TOTAL)
9039 x = count_partial(n, count_total);
9040 else if (flags & SO_OBJECTS)
9041 x = count_partial(n, count_inuse);
9042 else
9043 x = n->nr_partial;
9044 total += x;
9045 nodes[node] += x;
9046 }
9047 }
9048
9049 len += sysfs_emit_at(buf, len, "%lu", total);
9050 #ifdef CONFIG_NUMA
9051 for (node = 0; node < nr_node_ids; node++) {
9052 if (nodes[node])
9053 len += sysfs_emit_at(buf, len, " N%d=%lu",
9054 node, nodes[node]);
9055 }
9056 #endif
9057 len += sysfs_emit_at(buf, len, "\n");
9058 kfree(nodes);
9059
9060 return len;
9061 }
9062
9063 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
9064 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
9065
9066 struct slab_attribute {
9067 struct attribute attr;
9068 ssize_t (*show)(struct kmem_cache *s, char *buf);
9069 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
9070 };
9071
9072 #define SLAB_ATTR_RO(_name) \
9073 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
9074
9075 #define SLAB_ATTR(_name) \
9076 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
9077
slab_size_show(struct kmem_cache * s,char * buf)9078 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
9079 {
9080 return sysfs_emit(buf, "%u\n", s->size);
9081 }
9082 SLAB_ATTR_RO(slab_size);
9083
align_show(struct kmem_cache * s,char * buf)9084 static ssize_t align_show(struct kmem_cache *s, char *buf)
9085 {
9086 return sysfs_emit(buf, "%u\n", s->align);
9087 }
9088 SLAB_ATTR_RO(align);
9089
object_size_show(struct kmem_cache * s,char * buf)9090 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
9091 {
9092 return sysfs_emit(buf, "%u\n", s->object_size);
9093 }
9094 SLAB_ATTR_RO(object_size);
9095
objs_per_slab_show(struct kmem_cache * s,char * buf)9096 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
9097 {
9098 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
9099 }
9100 SLAB_ATTR_RO(objs_per_slab);
9101
order_show(struct kmem_cache * s,char * buf)9102 static ssize_t order_show(struct kmem_cache *s, char *buf)
9103 {
9104 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
9105 }
9106 SLAB_ATTR_RO(order);
9107
sheaf_capacity_show(struct kmem_cache * s,char * buf)9108 static ssize_t sheaf_capacity_show(struct kmem_cache *s, char *buf)
9109 {
9110 return sysfs_emit(buf, "%u\n", s->sheaf_capacity);
9111 }
9112 SLAB_ATTR_RO(sheaf_capacity);
9113
min_partial_show(struct kmem_cache * s,char * buf)9114 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
9115 {
9116 return sysfs_emit(buf, "%lu\n", s->min_partial);
9117 }
9118
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)9119 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
9120 size_t length)
9121 {
9122 unsigned long min;
9123 int err;
9124
9125 err = kstrtoul(buf, 10, &min);
9126 if (err)
9127 return err;
9128
9129 s->min_partial = min;
9130 return length;
9131 }
9132 SLAB_ATTR(min_partial);
9133
cpu_partial_show(struct kmem_cache * s,char * buf)9134 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
9135 {
9136 unsigned int nr_partial = 0;
9137 #ifdef CONFIG_SLUB_CPU_PARTIAL
9138 nr_partial = s->cpu_partial;
9139 #endif
9140
9141 return sysfs_emit(buf, "%u\n", nr_partial);
9142 }
9143
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)9144 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
9145 size_t length)
9146 {
9147 unsigned int objects;
9148 int err;
9149
9150 err = kstrtouint(buf, 10, &objects);
9151 if (err)
9152 return err;
9153 if (objects && !kmem_cache_has_cpu_partial(s))
9154 return -EINVAL;
9155
9156 slub_set_cpu_partial(s, objects);
9157 flush_all(s);
9158 return length;
9159 }
9160 SLAB_ATTR(cpu_partial);
9161
ctor_show(struct kmem_cache * s,char * buf)9162 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
9163 {
9164 if (!s->ctor)
9165 return 0;
9166 return sysfs_emit(buf, "%pS\n", s->ctor);
9167 }
9168 SLAB_ATTR_RO(ctor);
9169
aliases_show(struct kmem_cache * s,char * buf)9170 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
9171 {
9172 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
9173 }
9174 SLAB_ATTR_RO(aliases);
9175
partial_show(struct kmem_cache * s,char * buf)9176 static ssize_t partial_show(struct kmem_cache *s, char *buf)
9177 {
9178 return show_slab_objects(s, buf, SO_PARTIAL);
9179 }
9180 SLAB_ATTR_RO(partial);
9181
cpu_slabs_show(struct kmem_cache * s,char * buf)9182 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
9183 {
9184 return show_slab_objects(s, buf, SO_CPU);
9185 }
9186 SLAB_ATTR_RO(cpu_slabs);
9187
objects_partial_show(struct kmem_cache * s,char * buf)9188 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
9189 {
9190 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
9191 }
9192 SLAB_ATTR_RO(objects_partial);
9193
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)9194 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
9195 {
9196 int objects = 0;
9197 int slabs = 0;
9198 int cpu __maybe_unused;
9199 int len = 0;
9200
9201 #ifdef CONFIG_SLUB_CPU_PARTIAL
9202 for_each_online_cpu(cpu) {
9203 struct slab *slab;
9204
9205 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9206
9207 if (slab)
9208 slabs += data_race(slab->slabs);
9209 }
9210 #endif
9211
9212 /* Approximate half-full slabs, see slub_set_cpu_partial() */
9213 objects = (slabs * oo_objects(s->oo)) / 2;
9214 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
9215
9216 #ifdef CONFIG_SLUB_CPU_PARTIAL
9217 for_each_online_cpu(cpu) {
9218 struct slab *slab;
9219
9220 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
9221 if (slab) {
9222 slabs = data_race(slab->slabs);
9223 objects = (slabs * oo_objects(s->oo)) / 2;
9224 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
9225 cpu, objects, slabs);
9226 }
9227 }
9228 #endif
9229 len += sysfs_emit_at(buf, len, "\n");
9230
9231 return len;
9232 }
9233 SLAB_ATTR_RO(slabs_cpu_partial);
9234
reclaim_account_show(struct kmem_cache * s,char * buf)9235 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
9236 {
9237 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
9238 }
9239 SLAB_ATTR_RO(reclaim_account);
9240
hwcache_align_show(struct kmem_cache * s,char * buf)9241 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
9242 {
9243 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
9244 }
9245 SLAB_ATTR_RO(hwcache_align);
9246
9247 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)9248 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
9249 {
9250 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
9251 }
9252 SLAB_ATTR_RO(cache_dma);
9253 #endif
9254
9255 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)9256 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
9257 {
9258 return sysfs_emit(buf, "%u\n", s->usersize);
9259 }
9260 SLAB_ATTR_RO(usersize);
9261 #endif
9262
destroy_by_rcu_show(struct kmem_cache * s,char * buf)9263 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
9264 {
9265 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
9266 }
9267 SLAB_ATTR_RO(destroy_by_rcu);
9268
9269 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)9270 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
9271 {
9272 return show_slab_objects(s, buf, SO_ALL);
9273 }
9274 SLAB_ATTR_RO(slabs);
9275
total_objects_show(struct kmem_cache * s,char * buf)9276 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
9277 {
9278 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
9279 }
9280 SLAB_ATTR_RO(total_objects);
9281
objects_show(struct kmem_cache * s,char * buf)9282 static ssize_t objects_show(struct kmem_cache *s, char *buf)
9283 {
9284 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
9285 }
9286 SLAB_ATTR_RO(objects);
9287
sanity_checks_show(struct kmem_cache * s,char * buf)9288 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
9289 {
9290 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
9291 }
9292 SLAB_ATTR_RO(sanity_checks);
9293
trace_show(struct kmem_cache * s,char * buf)9294 static ssize_t trace_show(struct kmem_cache *s, char *buf)
9295 {
9296 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
9297 }
9298 SLAB_ATTR_RO(trace);
9299
red_zone_show(struct kmem_cache * s,char * buf)9300 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
9301 {
9302 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
9303 }
9304
9305 SLAB_ATTR_RO(red_zone);
9306
poison_show(struct kmem_cache * s,char * buf)9307 static ssize_t poison_show(struct kmem_cache *s, char *buf)
9308 {
9309 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
9310 }
9311
9312 SLAB_ATTR_RO(poison);
9313
store_user_show(struct kmem_cache * s,char * buf)9314 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
9315 {
9316 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
9317 }
9318
9319 SLAB_ATTR_RO(store_user);
9320
validate_show(struct kmem_cache * s,char * buf)9321 static ssize_t validate_show(struct kmem_cache *s, char *buf)
9322 {
9323 return 0;
9324 }
9325
validate_store(struct kmem_cache * s,const char * buf,size_t length)9326 static ssize_t validate_store(struct kmem_cache *s,
9327 const char *buf, size_t length)
9328 {
9329 int ret = -EINVAL;
9330
9331 if (buf[0] == '1' && kmem_cache_debug(s)) {
9332 ret = validate_slab_cache(s);
9333 if (ret >= 0)
9334 ret = length;
9335 }
9336 return ret;
9337 }
9338 SLAB_ATTR(validate);
9339
9340 #endif /* CONFIG_SLUB_DEBUG */
9341
9342 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)9343 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
9344 {
9345 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
9346 }
9347
failslab_store(struct kmem_cache * s,const char * buf,size_t length)9348 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
9349 size_t length)
9350 {
9351 if (s->refcount > 1)
9352 return -EINVAL;
9353
9354 if (buf[0] == '1')
9355 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
9356 else
9357 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
9358
9359 return length;
9360 }
9361 SLAB_ATTR(failslab);
9362 #endif
9363
shrink_show(struct kmem_cache * s,char * buf)9364 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
9365 {
9366 return 0;
9367 }
9368
shrink_store(struct kmem_cache * s,const char * buf,size_t length)9369 static ssize_t shrink_store(struct kmem_cache *s,
9370 const char *buf, size_t length)
9371 {
9372 if (buf[0] == '1')
9373 kmem_cache_shrink(s);
9374 else
9375 return -EINVAL;
9376 return length;
9377 }
9378 SLAB_ATTR(shrink);
9379
9380 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)9381 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
9382 {
9383 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
9384 }
9385
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)9386 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
9387 const char *buf, size_t length)
9388 {
9389 unsigned int ratio;
9390 int err;
9391
9392 err = kstrtouint(buf, 10, &ratio);
9393 if (err)
9394 return err;
9395 if (ratio > 100)
9396 return -ERANGE;
9397
9398 s->remote_node_defrag_ratio = ratio * 10;
9399
9400 return length;
9401 }
9402 SLAB_ATTR(remote_node_defrag_ratio);
9403 #endif
9404
9405 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)9406 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
9407 {
9408 unsigned long sum = 0;
9409 int cpu;
9410 int len = 0;
9411 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
9412
9413 if (!data)
9414 return -ENOMEM;
9415
9416 for_each_online_cpu(cpu) {
9417 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
9418
9419 data[cpu] = x;
9420 sum += x;
9421 }
9422
9423 len += sysfs_emit_at(buf, len, "%lu", sum);
9424
9425 #ifdef CONFIG_SMP
9426 for_each_online_cpu(cpu) {
9427 if (data[cpu])
9428 len += sysfs_emit_at(buf, len, " C%d=%u",
9429 cpu, data[cpu]);
9430 }
9431 #endif
9432 kfree(data);
9433 len += sysfs_emit_at(buf, len, "\n");
9434
9435 return len;
9436 }
9437
clear_stat(struct kmem_cache * s,enum stat_item si)9438 static void clear_stat(struct kmem_cache *s, enum stat_item si)
9439 {
9440 int cpu;
9441
9442 for_each_online_cpu(cpu)
9443 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
9444 }
9445
9446 #define STAT_ATTR(si, text) \
9447 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
9448 { \
9449 return show_stat(s, buf, si); \
9450 } \
9451 static ssize_t text##_store(struct kmem_cache *s, \
9452 const char *buf, size_t length) \
9453 { \
9454 if (buf[0] != '0') \
9455 return -EINVAL; \
9456 clear_stat(s, si); \
9457 return length; \
9458 } \
9459 SLAB_ATTR(text); \
9460
9461 STAT_ATTR(ALLOC_PCS, alloc_cpu_sheaf);
9462 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
9463 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
9464 STAT_ATTR(FREE_PCS, free_cpu_sheaf);
9465 STAT_ATTR(FREE_RCU_SHEAF, free_rcu_sheaf);
9466 STAT_ATTR(FREE_RCU_SHEAF_FAIL, free_rcu_sheaf_fail);
9467 STAT_ATTR(FREE_FASTPATH, free_fastpath);
9468 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
9469 STAT_ATTR(FREE_FROZEN, free_frozen);
9470 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
9471 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
9472 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
9473 STAT_ATTR(ALLOC_SLAB, alloc_slab);
9474 STAT_ATTR(ALLOC_REFILL, alloc_refill);
9475 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
9476 STAT_ATTR(FREE_SLAB, free_slab);
9477 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
9478 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
9479 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
9480 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
9481 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
9482 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
9483 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
9484 STAT_ATTR(ORDER_FALLBACK, order_fallback);
9485 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
9486 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
9487 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
9488 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
9489 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
9490 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
9491 STAT_ATTR(SHEAF_FLUSH, sheaf_flush);
9492 STAT_ATTR(SHEAF_REFILL, sheaf_refill);
9493 STAT_ATTR(SHEAF_ALLOC, sheaf_alloc);
9494 STAT_ATTR(SHEAF_FREE, sheaf_free);
9495 STAT_ATTR(BARN_GET, barn_get);
9496 STAT_ATTR(BARN_GET_FAIL, barn_get_fail);
9497 STAT_ATTR(BARN_PUT, barn_put);
9498 STAT_ATTR(BARN_PUT_FAIL, barn_put_fail);
9499 STAT_ATTR(SHEAF_PREFILL_FAST, sheaf_prefill_fast);
9500 STAT_ATTR(SHEAF_PREFILL_SLOW, sheaf_prefill_slow);
9501 STAT_ATTR(SHEAF_PREFILL_OVERSIZE, sheaf_prefill_oversize);
9502 STAT_ATTR(SHEAF_RETURN_FAST, sheaf_return_fast);
9503 STAT_ATTR(SHEAF_RETURN_SLOW, sheaf_return_slow);
9504 #endif /* CONFIG_SLUB_STATS */
9505
9506 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)9507 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
9508 {
9509 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
9510 }
9511
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)9512 static ssize_t skip_kfence_store(struct kmem_cache *s,
9513 const char *buf, size_t length)
9514 {
9515 int ret = length;
9516
9517 if (buf[0] == '0')
9518 s->flags &= ~SLAB_SKIP_KFENCE;
9519 else if (buf[0] == '1')
9520 s->flags |= SLAB_SKIP_KFENCE;
9521 else
9522 ret = -EINVAL;
9523
9524 return ret;
9525 }
9526 SLAB_ATTR(skip_kfence);
9527 #endif
9528
9529 static struct attribute *slab_attrs[] = {
9530 &slab_size_attr.attr,
9531 &object_size_attr.attr,
9532 &objs_per_slab_attr.attr,
9533 &order_attr.attr,
9534 &sheaf_capacity_attr.attr,
9535 &min_partial_attr.attr,
9536 &cpu_partial_attr.attr,
9537 &objects_partial_attr.attr,
9538 &partial_attr.attr,
9539 &cpu_slabs_attr.attr,
9540 &ctor_attr.attr,
9541 &aliases_attr.attr,
9542 &align_attr.attr,
9543 &hwcache_align_attr.attr,
9544 &reclaim_account_attr.attr,
9545 &destroy_by_rcu_attr.attr,
9546 &shrink_attr.attr,
9547 &slabs_cpu_partial_attr.attr,
9548 #ifdef CONFIG_SLUB_DEBUG
9549 &total_objects_attr.attr,
9550 &objects_attr.attr,
9551 &slabs_attr.attr,
9552 &sanity_checks_attr.attr,
9553 &trace_attr.attr,
9554 &red_zone_attr.attr,
9555 &poison_attr.attr,
9556 &store_user_attr.attr,
9557 &validate_attr.attr,
9558 #endif
9559 #ifdef CONFIG_ZONE_DMA
9560 &cache_dma_attr.attr,
9561 #endif
9562 #ifdef CONFIG_NUMA
9563 &remote_node_defrag_ratio_attr.attr,
9564 #endif
9565 #ifdef CONFIG_SLUB_STATS
9566 &alloc_cpu_sheaf_attr.attr,
9567 &alloc_fastpath_attr.attr,
9568 &alloc_slowpath_attr.attr,
9569 &free_cpu_sheaf_attr.attr,
9570 &free_rcu_sheaf_attr.attr,
9571 &free_rcu_sheaf_fail_attr.attr,
9572 &free_fastpath_attr.attr,
9573 &free_slowpath_attr.attr,
9574 &free_frozen_attr.attr,
9575 &free_add_partial_attr.attr,
9576 &free_remove_partial_attr.attr,
9577 &alloc_from_partial_attr.attr,
9578 &alloc_slab_attr.attr,
9579 &alloc_refill_attr.attr,
9580 &alloc_node_mismatch_attr.attr,
9581 &free_slab_attr.attr,
9582 &cpuslab_flush_attr.attr,
9583 &deactivate_full_attr.attr,
9584 &deactivate_empty_attr.attr,
9585 &deactivate_to_head_attr.attr,
9586 &deactivate_to_tail_attr.attr,
9587 &deactivate_remote_frees_attr.attr,
9588 &deactivate_bypass_attr.attr,
9589 &order_fallback_attr.attr,
9590 &cmpxchg_double_fail_attr.attr,
9591 &cmpxchg_double_cpu_fail_attr.attr,
9592 &cpu_partial_alloc_attr.attr,
9593 &cpu_partial_free_attr.attr,
9594 &cpu_partial_node_attr.attr,
9595 &cpu_partial_drain_attr.attr,
9596 &sheaf_flush_attr.attr,
9597 &sheaf_refill_attr.attr,
9598 &sheaf_alloc_attr.attr,
9599 &sheaf_free_attr.attr,
9600 &barn_get_attr.attr,
9601 &barn_get_fail_attr.attr,
9602 &barn_put_attr.attr,
9603 &barn_put_fail_attr.attr,
9604 &sheaf_prefill_fast_attr.attr,
9605 &sheaf_prefill_slow_attr.attr,
9606 &sheaf_prefill_oversize_attr.attr,
9607 &sheaf_return_fast_attr.attr,
9608 &sheaf_return_slow_attr.attr,
9609 #endif
9610 #ifdef CONFIG_FAILSLAB
9611 &failslab_attr.attr,
9612 #endif
9613 #ifdef CONFIG_HARDENED_USERCOPY
9614 &usersize_attr.attr,
9615 #endif
9616 #ifdef CONFIG_KFENCE
9617 &skip_kfence_attr.attr,
9618 #endif
9619
9620 NULL
9621 };
9622
9623 static const struct attribute_group slab_attr_group = {
9624 .attrs = slab_attrs,
9625 };
9626
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)9627 static ssize_t slab_attr_show(struct kobject *kobj,
9628 struct attribute *attr,
9629 char *buf)
9630 {
9631 struct slab_attribute *attribute;
9632 struct kmem_cache *s;
9633
9634 attribute = to_slab_attr(attr);
9635 s = to_slab(kobj);
9636
9637 if (!attribute->show)
9638 return -EIO;
9639
9640 return attribute->show(s, buf);
9641 }
9642
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)9643 static ssize_t slab_attr_store(struct kobject *kobj,
9644 struct attribute *attr,
9645 const char *buf, size_t len)
9646 {
9647 struct slab_attribute *attribute;
9648 struct kmem_cache *s;
9649
9650 attribute = to_slab_attr(attr);
9651 s = to_slab(kobj);
9652
9653 if (!attribute->store)
9654 return -EIO;
9655
9656 return attribute->store(s, buf, len);
9657 }
9658
kmem_cache_release(struct kobject * k)9659 static void kmem_cache_release(struct kobject *k)
9660 {
9661 slab_kmem_cache_release(to_slab(k));
9662 }
9663
9664 static const struct sysfs_ops slab_sysfs_ops = {
9665 .show = slab_attr_show,
9666 .store = slab_attr_store,
9667 };
9668
9669 static const struct kobj_type slab_ktype = {
9670 .sysfs_ops = &slab_sysfs_ops,
9671 .release = kmem_cache_release,
9672 };
9673
9674 static struct kset *slab_kset;
9675
cache_kset(struct kmem_cache * s)9676 static inline struct kset *cache_kset(struct kmem_cache *s)
9677 {
9678 return slab_kset;
9679 }
9680
9681 #define ID_STR_LENGTH 32
9682
9683 /* Create a unique string id for a slab cache:
9684 *
9685 * Format :[flags-]size
9686 */
create_unique_id(struct kmem_cache * s)9687 static char *create_unique_id(struct kmem_cache *s)
9688 {
9689 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
9690 char *p = name;
9691
9692 if (!name)
9693 return ERR_PTR(-ENOMEM);
9694
9695 *p++ = ':';
9696 /*
9697 * First flags affecting slabcache operations. We will only
9698 * get here for aliasable slabs so we do not need to support
9699 * too many flags. The flags here must cover all flags that
9700 * are matched during merging to guarantee that the id is
9701 * unique.
9702 */
9703 if (s->flags & SLAB_CACHE_DMA)
9704 *p++ = 'd';
9705 if (s->flags & SLAB_CACHE_DMA32)
9706 *p++ = 'D';
9707 if (s->flags & SLAB_RECLAIM_ACCOUNT)
9708 *p++ = 'a';
9709 if (s->flags & SLAB_CONSISTENCY_CHECKS)
9710 *p++ = 'F';
9711 if (s->flags & SLAB_ACCOUNT)
9712 *p++ = 'A';
9713 if (p != name + 1)
9714 *p++ = '-';
9715 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
9716
9717 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
9718 kfree(name);
9719 return ERR_PTR(-EINVAL);
9720 }
9721 kmsan_unpoison_memory(name, p - name);
9722 return name;
9723 }
9724
sysfs_slab_add(struct kmem_cache * s)9725 static int sysfs_slab_add(struct kmem_cache *s)
9726 {
9727 int err;
9728 const char *name;
9729 struct kset *kset = cache_kset(s);
9730 int unmergeable = slab_unmergeable(s);
9731
9732 if (!unmergeable && disable_higher_order_debug &&
9733 (slub_debug & DEBUG_METADATA_FLAGS))
9734 unmergeable = 1;
9735
9736 if (unmergeable) {
9737 /*
9738 * Slabcache can never be merged so we can use the name proper.
9739 * This is typically the case for debug situations. In that
9740 * case we can catch duplicate names easily.
9741 */
9742 sysfs_remove_link(&slab_kset->kobj, s->name);
9743 name = s->name;
9744 } else {
9745 /*
9746 * Create a unique name for the slab as a target
9747 * for the symlinks.
9748 */
9749 name = create_unique_id(s);
9750 if (IS_ERR(name))
9751 return PTR_ERR(name);
9752 }
9753
9754 s->kobj.kset = kset;
9755 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
9756 if (err)
9757 goto out;
9758
9759 err = sysfs_create_group(&s->kobj, &slab_attr_group);
9760 if (err)
9761 goto out_del_kobj;
9762
9763 if (!unmergeable) {
9764 /* Setup first alias */
9765 sysfs_slab_alias(s, s->name);
9766 }
9767 out:
9768 if (!unmergeable)
9769 kfree(name);
9770 return err;
9771 out_del_kobj:
9772 kobject_del(&s->kobj);
9773 goto out;
9774 }
9775
sysfs_slab_unlink(struct kmem_cache * s)9776 void sysfs_slab_unlink(struct kmem_cache *s)
9777 {
9778 if (s->kobj.state_in_sysfs)
9779 kobject_del(&s->kobj);
9780 }
9781
sysfs_slab_release(struct kmem_cache * s)9782 void sysfs_slab_release(struct kmem_cache *s)
9783 {
9784 kobject_put(&s->kobj);
9785 }
9786
9787 /*
9788 * Need to buffer aliases during bootup until sysfs becomes
9789 * available lest we lose that information.
9790 */
9791 struct saved_alias {
9792 struct kmem_cache *s;
9793 const char *name;
9794 struct saved_alias *next;
9795 };
9796
9797 static struct saved_alias *alias_list;
9798
sysfs_slab_alias(struct kmem_cache * s,const char * name)9799 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
9800 {
9801 struct saved_alias *al;
9802
9803 if (slab_state == FULL) {
9804 /*
9805 * If we have a leftover link then remove it.
9806 */
9807 sysfs_remove_link(&slab_kset->kobj, name);
9808 /*
9809 * The original cache may have failed to generate sysfs file.
9810 * In that case, sysfs_create_link() returns -ENOENT and
9811 * symbolic link creation is skipped.
9812 */
9813 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
9814 }
9815
9816 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
9817 if (!al)
9818 return -ENOMEM;
9819
9820 al->s = s;
9821 al->name = name;
9822 al->next = alias_list;
9823 alias_list = al;
9824 kmsan_unpoison_memory(al, sizeof(*al));
9825 return 0;
9826 }
9827
slab_sysfs_init(void)9828 static int __init slab_sysfs_init(void)
9829 {
9830 struct kmem_cache *s;
9831 int err;
9832
9833 mutex_lock(&slab_mutex);
9834
9835 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
9836 if (!slab_kset) {
9837 mutex_unlock(&slab_mutex);
9838 pr_err("Cannot register slab subsystem.\n");
9839 return -ENOMEM;
9840 }
9841
9842 slab_state = FULL;
9843
9844 list_for_each_entry(s, &slab_caches, list) {
9845 err = sysfs_slab_add(s);
9846 if (err)
9847 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
9848 s->name);
9849 }
9850
9851 while (alias_list) {
9852 struct saved_alias *al = alias_list;
9853
9854 alias_list = alias_list->next;
9855 err = sysfs_slab_alias(al->s, al->name);
9856 if (err)
9857 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
9858 al->name);
9859 kfree(al);
9860 }
9861
9862 mutex_unlock(&slab_mutex);
9863 return 0;
9864 }
9865 late_initcall(slab_sysfs_init);
9866 #endif /* SLAB_SUPPORTS_SYSFS */
9867
9868 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)9869 static int slab_debugfs_show(struct seq_file *seq, void *v)
9870 {
9871 struct loc_track *t = seq->private;
9872 struct location *l;
9873 unsigned long idx;
9874
9875 idx = (unsigned long) t->idx;
9876 if (idx < t->count) {
9877 l = &t->loc[idx];
9878
9879 seq_printf(seq, "%7ld ", l->count);
9880
9881 if (l->addr)
9882 seq_printf(seq, "%pS", (void *)l->addr);
9883 else
9884 seq_puts(seq, "<not-available>");
9885
9886 if (l->waste)
9887 seq_printf(seq, " waste=%lu/%lu",
9888 l->count * l->waste, l->waste);
9889
9890 if (l->sum_time != l->min_time) {
9891 seq_printf(seq, " age=%ld/%llu/%ld",
9892 l->min_time, div_u64(l->sum_time, l->count),
9893 l->max_time);
9894 } else
9895 seq_printf(seq, " age=%ld", l->min_time);
9896
9897 if (l->min_pid != l->max_pid)
9898 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
9899 else
9900 seq_printf(seq, " pid=%ld",
9901 l->min_pid);
9902
9903 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
9904 seq_printf(seq, " cpus=%*pbl",
9905 cpumask_pr_args(to_cpumask(l->cpus)));
9906
9907 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
9908 seq_printf(seq, " nodes=%*pbl",
9909 nodemask_pr_args(&l->nodes));
9910
9911 #ifdef CONFIG_STACKDEPOT
9912 {
9913 depot_stack_handle_t handle;
9914 unsigned long *entries;
9915 unsigned int nr_entries, j;
9916
9917 handle = READ_ONCE(l->handle);
9918 if (handle) {
9919 nr_entries = stack_depot_fetch(handle, &entries);
9920 seq_puts(seq, "\n");
9921 for (j = 0; j < nr_entries; j++)
9922 seq_printf(seq, " %pS\n", (void *)entries[j]);
9923 }
9924 }
9925 #endif
9926 seq_puts(seq, "\n");
9927 }
9928
9929 if (!idx && !t->count)
9930 seq_puts(seq, "No data\n");
9931
9932 return 0;
9933 }
9934
slab_debugfs_stop(struct seq_file * seq,void * v)9935 static void slab_debugfs_stop(struct seq_file *seq, void *v)
9936 {
9937 }
9938
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)9939 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
9940 {
9941 struct loc_track *t = seq->private;
9942
9943 t->idx = ++(*ppos);
9944 if (*ppos <= t->count)
9945 return ppos;
9946
9947 return NULL;
9948 }
9949
cmp_loc_by_count(const void * a,const void * b)9950 static int cmp_loc_by_count(const void *a, const void *b)
9951 {
9952 struct location *loc1 = (struct location *)a;
9953 struct location *loc2 = (struct location *)b;
9954
9955 return cmp_int(loc2->count, loc1->count);
9956 }
9957
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)9958 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
9959 {
9960 struct loc_track *t = seq->private;
9961
9962 t->idx = *ppos;
9963 return ppos;
9964 }
9965
9966 static const struct seq_operations slab_debugfs_sops = {
9967 .start = slab_debugfs_start,
9968 .next = slab_debugfs_next,
9969 .stop = slab_debugfs_stop,
9970 .show = slab_debugfs_show,
9971 };
9972
slab_debug_trace_open(struct inode * inode,struct file * filep)9973 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
9974 {
9975
9976 struct kmem_cache_node *n;
9977 enum track_item alloc;
9978 int node;
9979 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
9980 sizeof(struct loc_track));
9981 struct kmem_cache *s = file_inode(filep)->i_private;
9982 unsigned long *obj_map;
9983
9984 if (!t)
9985 return -ENOMEM;
9986
9987 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
9988 if (!obj_map) {
9989 seq_release_private(inode, filep);
9990 return -ENOMEM;
9991 }
9992
9993 alloc = debugfs_get_aux_num(filep);
9994
9995 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
9996 bitmap_free(obj_map);
9997 seq_release_private(inode, filep);
9998 return -ENOMEM;
9999 }
10000
10001 for_each_kmem_cache_node(s, node, n) {
10002 unsigned long flags;
10003 struct slab *slab;
10004
10005 if (!node_nr_slabs(n))
10006 continue;
10007
10008 spin_lock_irqsave(&n->list_lock, flags);
10009 list_for_each_entry(slab, &n->partial, slab_list)
10010 process_slab(t, s, slab, alloc, obj_map);
10011 list_for_each_entry(slab, &n->full, slab_list)
10012 process_slab(t, s, slab, alloc, obj_map);
10013 spin_unlock_irqrestore(&n->list_lock, flags);
10014 }
10015
10016 /* Sort locations by count */
10017 sort(t->loc, t->count, sizeof(struct location),
10018 cmp_loc_by_count, NULL);
10019
10020 bitmap_free(obj_map);
10021 return 0;
10022 }
10023
slab_debug_trace_release(struct inode * inode,struct file * file)10024 static int slab_debug_trace_release(struct inode *inode, struct file *file)
10025 {
10026 struct seq_file *seq = file->private_data;
10027 struct loc_track *t = seq->private;
10028
10029 free_loc_track(t);
10030 return seq_release_private(inode, file);
10031 }
10032
10033 static const struct file_operations slab_debugfs_fops = {
10034 .open = slab_debug_trace_open,
10035 .read = seq_read,
10036 .llseek = seq_lseek,
10037 .release = slab_debug_trace_release,
10038 };
10039
debugfs_slab_add(struct kmem_cache * s)10040 static void debugfs_slab_add(struct kmem_cache *s)
10041 {
10042 struct dentry *slab_cache_dir;
10043
10044 if (unlikely(!slab_debugfs_root))
10045 return;
10046
10047 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
10048
10049 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
10050 TRACK_ALLOC, &slab_debugfs_fops);
10051
10052 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
10053 TRACK_FREE, &slab_debugfs_fops);
10054 }
10055
debugfs_slab_release(struct kmem_cache * s)10056 void debugfs_slab_release(struct kmem_cache *s)
10057 {
10058 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
10059 }
10060
slab_debugfs_init(void)10061 static int __init slab_debugfs_init(void)
10062 {
10063 struct kmem_cache *s;
10064
10065 slab_debugfs_root = debugfs_create_dir("slab", NULL);
10066
10067 list_for_each_entry(s, &slab_caches, list)
10068 if (s->flags & SLAB_STORE_USER)
10069 debugfs_slab_add(s);
10070
10071 return 0;
10072
10073 }
10074 __initcall(slab_debugfs_init);
10075 #endif
10076 /*
10077 * The /proc/slabinfo ABI
10078 */
10079 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)10080 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
10081 {
10082 unsigned long nr_slabs = 0;
10083 unsigned long nr_objs = 0;
10084 unsigned long nr_free = 0;
10085 int node;
10086 struct kmem_cache_node *n;
10087
10088 for_each_kmem_cache_node(s, node, n) {
10089 nr_slabs += node_nr_slabs(n);
10090 nr_objs += node_nr_objs(n);
10091 nr_free += count_partial_free_approx(n);
10092 }
10093
10094 sinfo->active_objs = nr_objs - nr_free;
10095 sinfo->num_objs = nr_objs;
10096 sinfo->active_slabs = nr_slabs;
10097 sinfo->num_slabs = nr_slabs;
10098 sinfo->objects_per_slab = oo_objects(s->oo);
10099 sinfo->cache_order = oo_order(s->oo);
10100 }
10101 #endif /* CONFIG_SLUB_DEBUG */
10102