xref: /linux/drivers/md/dm-integrity.c (revision 136114e0abf03005e182d75761ab694648e6d388)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4  * Copyright (C) 2016-2017 Milan Broz
5  * Copyright (C) 2016-2017 Mikulas Patocka
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include "dm-bio-record.h"
11 
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/hex.h>
21 #include <linux/random.h>
22 #include <linux/reboot.h>
23 #include <crypto/hash.h>
24 #include <crypto/skcipher.h>
25 #include <crypto/utils.h>
26 #include <linux/async_tx.h>
27 #include <linux/dm-bufio.h>
28 
29 #include "dm-audit.h"
30 
31 #define DM_MSG_PREFIX "integrity"
32 
33 #define DEFAULT_INTERLEAVE_SECTORS	32768
34 #define DEFAULT_JOURNAL_SIZE_FACTOR	7
35 #define DEFAULT_SECTORS_PER_BITMAP_BIT	32768
36 #define DEFAULT_BUFFER_SECTORS		128
37 #define DEFAULT_JOURNAL_WATERMARK	50
38 #define DEFAULT_SYNC_MSEC		10000
39 #define DEFAULT_MAX_JOURNAL_SECTORS	(IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
40 #define MIN_LOG2_INTERLEAVE_SECTORS	3
41 #define MAX_LOG2_INTERLEAVE_SECTORS	31
42 #define METADATA_WORKQUEUE_MAX_ACTIVE	16
43 #define RECALC_SECTORS			(IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
44 #define RECALC_WRITE_SUPER		16
45 #define BITMAP_BLOCK_SIZE		4096	/* don't change it */
46 #define BITMAP_FLUSH_INTERVAL		(10 * HZ)
47 #define DISCARD_FILLER			0xf6
48 #define SALT_SIZE			16
49 #define RECHECK_POOL_SIZE		256
50 
51 /*
52  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
53  * so it should not be enabled in the official kernel
54  */
55 //#define DEBUG_PRINT
56 //#define INTERNAL_VERIFY
57 
58 /*
59  * On disk structures
60  */
61 
62 #define SB_MAGIC			"integrt"
63 #define SB_VERSION_1			1
64 #define SB_VERSION_2			2
65 #define SB_VERSION_3			3
66 #define SB_VERSION_4			4
67 #define SB_VERSION_5			5
68 #define SB_VERSION_6			6
69 #define SB_SECTORS			8
70 #define MAX_SECTORS_PER_BLOCK		8
71 
72 struct superblock {
73 	__u8 magic[8];
74 	__u8 version;
75 	__u8 log2_interleave_sectors;
76 	__le16 integrity_tag_size;
77 	__le32 journal_sections;
78 	__le64 provided_data_sectors;	/* userspace uses this value */
79 	__le32 flags;
80 	__u8 log2_sectors_per_block;
81 	__u8 log2_blocks_per_bitmap_bit;
82 	__u8 pad[2];
83 	__le64 recalc_sector;
84 	__u8 pad2[8];
85 	__u8 salt[SALT_SIZE];
86 };
87 
88 #define SB_FLAG_HAVE_JOURNAL_MAC	0x1
89 #define SB_FLAG_RECALCULATING		0x2
90 #define SB_FLAG_DIRTY_BITMAP		0x4
91 #define SB_FLAG_FIXED_PADDING		0x8
92 #define SB_FLAG_FIXED_HMAC		0x10
93 #define SB_FLAG_INLINE			0x20
94 
95 #define	JOURNAL_ENTRY_ROUNDUP		8
96 
97 typedef __le64 commit_id_t;
98 #define JOURNAL_MAC_PER_SECTOR		8
99 
100 struct journal_entry {
101 	union {
102 		struct {
103 			__le32 sector_lo;
104 			__le32 sector_hi;
105 		} s;
106 		__le64 sector;
107 	} u;
108 	commit_id_t last_bytes[];
109 	/* __u8 tag[0]; */
110 };
111 
112 #define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
113 
114 #if BITS_PER_LONG == 64
115 #define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
116 #else
117 #define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
118 #endif
119 #define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
120 #define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
121 #define journal_entry_set_unused(je)		((je)->u.s.sector_hi = cpu_to_le32(-1))
122 #define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
123 #define journal_entry_set_inprogress(je)	((je)->u.s.sector_hi = cpu_to_le32(-2))
124 
125 #define JOURNAL_BLOCK_SECTORS		8
126 #define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
127 #define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
128 
129 struct journal_sector {
130 	struct_group(sectors,
131 		__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
132 		__u8 mac[JOURNAL_MAC_PER_SECTOR];
133 	);
134 	commit_id_t commit_id;
135 };
136 
137 #define MAX_TAG_SIZE			255
138 
139 #define METADATA_PADDING_SECTORS	8
140 
141 #define N_COMMIT_IDS			4
142 
143 static unsigned char prev_commit_seq(unsigned char seq)
144 {
145 	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
146 }
147 
148 static unsigned char next_commit_seq(unsigned char seq)
149 {
150 	return (seq + 1) % N_COMMIT_IDS;
151 }
152 
153 /*
154  * In-memory structures
155  */
156 
157 struct journal_node {
158 	struct rb_node node;
159 	sector_t sector;
160 };
161 
162 struct alg_spec {
163 	char *alg_string;
164 	char *key_string;
165 	__u8 *key;
166 	unsigned int key_size;
167 };
168 
169 struct dm_integrity_c {
170 	struct dm_dev *dev;
171 	struct dm_dev *meta_dev;
172 	unsigned int tag_size;
173 	__s8 log2_tag_size;
174 	unsigned int tuple_size;
175 	sector_t start;
176 	mempool_t journal_io_mempool;
177 	struct dm_io_client *io;
178 	struct dm_bufio_client *bufio;
179 	struct workqueue_struct *metadata_wq;
180 	struct superblock *sb;
181 	unsigned int journal_pages;
182 	unsigned int n_bitmap_blocks;
183 
184 	struct page_list *journal;
185 	struct page_list *journal_io;
186 	struct page_list *journal_xor;
187 	struct page_list *recalc_bitmap;
188 	struct page_list *may_write_bitmap;
189 	struct bitmap_block_status *bbs;
190 	unsigned int bitmap_flush_interval;
191 	int synchronous_mode;
192 	struct bio_list synchronous_bios;
193 	struct delayed_work bitmap_flush_work;
194 
195 	struct crypto_skcipher *journal_crypt;
196 	struct scatterlist **journal_scatterlist;
197 	struct scatterlist **journal_io_scatterlist;
198 	struct skcipher_request **sk_requests;
199 
200 	struct crypto_shash *journal_mac;
201 
202 	struct journal_node *journal_tree;
203 	struct rb_root journal_tree_root;
204 
205 	sector_t provided_data_sectors;
206 
207 	unsigned short journal_entry_size;
208 	unsigned char journal_entries_per_sector;
209 	unsigned char journal_section_entries;
210 	unsigned short journal_section_sectors;
211 	unsigned int journal_sections;
212 	unsigned int journal_entries;
213 	sector_t data_device_sectors;
214 	sector_t meta_device_sectors;
215 	unsigned int initial_sectors;
216 	unsigned int metadata_run;
217 	__s8 log2_metadata_run;
218 	__u8 log2_buffer_sectors;
219 	__u8 sectors_per_block;
220 	__u8 log2_blocks_per_bitmap_bit;
221 
222 	unsigned char mode;
223 	bool internal_hash;
224 
225 	int failed;
226 
227 	struct crypto_shash *internal_shash;
228 	struct crypto_ahash *internal_ahash;
229 	unsigned int internal_hash_digestsize;
230 
231 	struct dm_target *ti;
232 
233 	/* these variables are locked with endio_wait.lock */
234 	struct rb_root in_progress;
235 	struct list_head wait_list;
236 	wait_queue_head_t endio_wait;
237 	struct workqueue_struct *wait_wq;
238 	struct workqueue_struct *offload_wq;
239 
240 	unsigned char commit_seq;
241 	commit_id_t commit_ids[N_COMMIT_IDS];
242 
243 	unsigned int committed_section;
244 	unsigned int n_committed_sections;
245 
246 	unsigned int uncommitted_section;
247 	unsigned int n_uncommitted_sections;
248 
249 	unsigned int free_section;
250 	unsigned char free_section_entry;
251 	unsigned int free_sectors;
252 
253 	unsigned int free_sectors_threshold;
254 
255 	struct workqueue_struct *commit_wq;
256 	struct work_struct commit_work;
257 
258 	struct workqueue_struct *writer_wq;
259 	struct work_struct writer_work;
260 
261 	struct workqueue_struct *recalc_wq;
262 	struct work_struct recalc_work;
263 
264 	struct bio_list flush_bio_list;
265 
266 	unsigned long autocommit_jiffies;
267 	struct timer_list autocommit_timer;
268 	unsigned int autocommit_msec;
269 
270 	wait_queue_head_t copy_to_journal_wait;
271 
272 	struct completion crypto_backoff;
273 
274 	bool wrote_to_journal;
275 	bool journal_uptodate;
276 	bool just_formatted;
277 	bool recalculate_flag;
278 	bool reset_recalculate_flag;
279 	bool discard;
280 	bool fix_padding;
281 	bool fix_hmac;
282 	bool legacy_recalculate;
283 
284 	mempool_t ahash_req_pool;
285 	struct ahash_request *journal_ahash_req;
286 
287 	struct alg_spec internal_hash_alg;
288 	struct alg_spec journal_crypt_alg;
289 	struct alg_spec journal_mac_alg;
290 
291 	atomic64_t number_of_mismatches;
292 
293 	mempool_t recheck_pool;
294 	struct bio_set recheck_bios;
295 	struct bio_set recalc_bios;
296 
297 	struct notifier_block reboot_notifier;
298 };
299 
300 struct dm_integrity_range {
301 	sector_t logical_sector;
302 	sector_t n_sectors;
303 	bool waiting;
304 	union {
305 		struct rb_node node;
306 		struct {
307 			struct task_struct *task;
308 			struct list_head wait_entry;
309 		};
310 	};
311 };
312 
313 struct dm_integrity_io {
314 	struct work_struct work;
315 
316 	struct dm_integrity_c *ic;
317 	enum req_op op;
318 	bool fua;
319 
320 	struct dm_integrity_range range;
321 
322 	sector_t metadata_block;
323 	unsigned int metadata_offset;
324 
325 	atomic_t in_flight;
326 	blk_status_t bi_status;
327 
328 	struct completion *completion;
329 
330 	struct dm_bio_details bio_details;
331 
332 	char *integrity_payload;
333 	unsigned payload_len;
334 	bool integrity_payload_from_mempool;
335 	bool integrity_range_locked;
336 
337 	struct ahash_request *ahash_req;
338 };
339 
340 struct journal_completion {
341 	struct dm_integrity_c *ic;
342 	atomic_t in_flight;
343 	struct completion comp;
344 };
345 
346 struct journal_io {
347 	struct dm_integrity_range range;
348 	struct journal_completion *comp;
349 };
350 
351 struct bitmap_block_status {
352 	struct work_struct work;
353 	struct dm_integrity_c *ic;
354 	unsigned int idx;
355 	unsigned long *bitmap;
356 	struct bio_list bio_queue;
357 	spinlock_t bio_queue_lock;
358 
359 };
360 
361 static struct kmem_cache *journal_io_cache;
362 
363 #define JOURNAL_IO_MEMPOOL	32
364 #define AHASH_MEMPOOL		32
365 
366 #ifdef DEBUG_PRINT
367 #define DEBUG_print(x, ...)			printk(KERN_DEBUG x, ##__VA_ARGS__)
368 #define DEBUG_bytes(bytes, len, msg, ...)	printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
369 						       len ? ": " : "", len, bytes)
370 #else
371 #define DEBUG_print(x, ...)			do { } while (0)
372 #define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
373 #endif
374 
375 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
376 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map);
377 static void integrity_bio_wait(struct work_struct *w);
378 static void dm_integrity_dtr(struct dm_target *ti);
379 
380 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
381 {
382 	if (err == -EILSEQ)
383 		atomic64_inc(&ic->number_of_mismatches);
384 	if (!cmpxchg(&ic->failed, 0, err))
385 		DMERR("Error on %s: %d", msg, err);
386 }
387 
388 static int dm_integrity_failed(struct dm_integrity_c *ic)
389 {
390 	return READ_ONCE(ic->failed);
391 }
392 
393 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
394 {
395 	if (ic->legacy_recalculate)
396 		return false;
397 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
398 	    ic->internal_hash_alg.key || ic->journal_mac_alg.key :
399 	    ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
400 		return true;
401 	return false;
402 }
403 
404 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
405 					  unsigned int j, unsigned char seq)
406 {
407 	/*
408 	 * Xor the number with section and sector, so that if a piece of
409 	 * journal is written at wrong place, it is detected.
410 	 */
411 	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
412 }
413 
414 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
415 				sector_t *area, sector_t *offset)
416 {
417 	if (!ic->meta_dev) {
418 		__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
419 		*area = data_sector >> log2_interleave_sectors;
420 		*offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
421 	} else {
422 		*area = 0;
423 		*offset = data_sector;
424 	}
425 }
426 
427 #define sector_to_block(ic, n)						\
428 do {									\
429 	BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1));		\
430 	(n) >>= (ic)->sb->log2_sectors_per_block;			\
431 } while (0)
432 
433 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
434 					    sector_t offset, unsigned int *metadata_offset)
435 {
436 	__u64 ms;
437 	unsigned int mo;
438 
439 	ms = area << ic->sb->log2_interleave_sectors;
440 	if (likely(ic->log2_metadata_run >= 0))
441 		ms += area << ic->log2_metadata_run;
442 	else
443 		ms += area * ic->metadata_run;
444 	ms >>= ic->log2_buffer_sectors;
445 
446 	sector_to_block(ic, offset);
447 
448 	if (likely(ic->log2_tag_size >= 0)) {
449 		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
450 		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
451 	} else {
452 		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
453 		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
454 	}
455 	*metadata_offset = mo;
456 	return ms;
457 }
458 
459 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
460 {
461 	sector_t result;
462 
463 	if (ic->meta_dev)
464 		return offset;
465 
466 	result = area << ic->sb->log2_interleave_sectors;
467 	if (likely(ic->log2_metadata_run >= 0))
468 		result += (area + 1) << ic->log2_metadata_run;
469 	else
470 		result += (area + 1) * ic->metadata_run;
471 
472 	result += (sector_t)ic->initial_sectors + offset;
473 	result += ic->start;
474 
475 	return result;
476 }
477 
478 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
479 {
480 	if (unlikely(*sec_ptr >= ic->journal_sections))
481 		*sec_ptr -= ic->journal_sections;
482 }
483 
484 static void sb_set_version(struct dm_integrity_c *ic)
485 {
486 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
487 		ic->sb->version = SB_VERSION_6;
488 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
489 		ic->sb->version = SB_VERSION_5;
490 	else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
491 		ic->sb->version = SB_VERSION_4;
492 	else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
493 		ic->sb->version = SB_VERSION_3;
494 	else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
495 		ic->sb->version = SB_VERSION_2;
496 	else
497 		ic->sb->version = SB_VERSION_1;
498 }
499 
500 static int sb_mac(struct dm_integrity_c *ic, bool wr)
501 {
502 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
503 	int r;
504 	unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
505 	__u8 *sb = (__u8 *)ic->sb;
506 	__u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
507 
508 	if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT ||
509 	    mac_size > HASH_MAX_DIGESTSIZE) {
510 		dm_integrity_io_error(ic, "digest is too long", -EINVAL);
511 		return -EINVAL;
512 	}
513 
514 	desc->tfm = ic->journal_mac;
515 
516 	if (likely(wr)) {
517 		r = crypto_shash_digest(desc, sb, mac - sb, mac);
518 		if (unlikely(r < 0)) {
519 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
520 			return r;
521 		}
522 	} else {
523 		__u8 actual_mac[HASH_MAX_DIGESTSIZE];
524 
525 		r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
526 		if (unlikely(r < 0)) {
527 			dm_integrity_io_error(ic, "crypto_shash_digest", r);
528 			return r;
529 		}
530 		if (crypto_memneq(mac, actual_mac, mac_size)) {
531 			dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
532 			dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
533 			return -EILSEQ;
534 		}
535 	}
536 
537 	return 0;
538 }
539 
540 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
541 {
542 	struct dm_io_request io_req;
543 	struct dm_io_region io_loc;
544 	const enum req_op op = opf & REQ_OP_MASK;
545 	int r;
546 
547 	io_req.bi_opf = opf;
548 	io_req.mem.type = DM_IO_KMEM;
549 	io_req.mem.ptr.addr = ic->sb;
550 	io_req.notify.fn = NULL;
551 	io_req.client = ic->io;
552 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
553 	io_loc.sector = ic->start;
554 	io_loc.count = SB_SECTORS;
555 
556 	if (op == REQ_OP_WRITE) {
557 		sb_set_version(ic);
558 		if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
559 			r = sb_mac(ic, true);
560 			if (unlikely(r))
561 				return r;
562 		}
563 	}
564 
565 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
566 	if (unlikely(r))
567 		return r;
568 
569 	if (op == REQ_OP_READ) {
570 		if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
571 			r = sb_mac(ic, false);
572 			if (unlikely(r))
573 				return r;
574 		}
575 	}
576 
577 	return 0;
578 }
579 
580 #define BITMAP_OP_TEST_ALL_SET		0
581 #define BITMAP_OP_TEST_ALL_CLEAR	1
582 #define BITMAP_OP_SET			2
583 #define BITMAP_OP_CLEAR			3
584 
585 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
586 			    sector_t sector, sector_t n_sectors, int mode)
587 {
588 	unsigned long bit, end_bit, this_end_bit, page, end_page;
589 	unsigned long *data;
590 
591 	if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
592 		DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
593 			sector,
594 			n_sectors,
595 			ic->sb->log2_sectors_per_block,
596 			ic->log2_blocks_per_bitmap_bit,
597 			mode);
598 		BUG();
599 	}
600 
601 	if (unlikely(!n_sectors))
602 		return true;
603 
604 	bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
605 	end_bit = (sector + n_sectors - 1) >>
606 		(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
607 
608 	page = bit / (PAGE_SIZE * 8);
609 	bit %= PAGE_SIZE * 8;
610 
611 	end_page = end_bit / (PAGE_SIZE * 8);
612 	end_bit %= PAGE_SIZE * 8;
613 
614 repeat:
615 	if (page < end_page)
616 		this_end_bit = PAGE_SIZE * 8 - 1;
617 	else
618 		this_end_bit = end_bit;
619 
620 	data = lowmem_page_address(bitmap[page].page);
621 
622 	if (mode == BITMAP_OP_TEST_ALL_SET) {
623 		while (bit <= this_end_bit) {
624 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
625 				do {
626 					if (data[bit / BITS_PER_LONG] != -1)
627 						return false;
628 					bit += BITS_PER_LONG;
629 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
630 				continue;
631 			}
632 			if (!test_bit(bit, data))
633 				return false;
634 			bit++;
635 		}
636 	} else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
637 		while (bit <= this_end_bit) {
638 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
639 				do {
640 					if (data[bit / BITS_PER_LONG] != 0)
641 						return false;
642 					bit += BITS_PER_LONG;
643 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
644 				continue;
645 			}
646 			if (test_bit(bit, data))
647 				return false;
648 			bit++;
649 		}
650 	} else if (mode == BITMAP_OP_SET) {
651 		while (bit <= this_end_bit) {
652 			if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
653 				do {
654 					data[bit / BITS_PER_LONG] = -1;
655 					bit += BITS_PER_LONG;
656 				} while (this_end_bit >= bit + BITS_PER_LONG - 1);
657 				continue;
658 			}
659 			__set_bit(bit, data);
660 			bit++;
661 		}
662 	} else if (mode == BITMAP_OP_CLEAR) {
663 		if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
664 			clear_page(data);
665 		else {
666 			while (bit <= this_end_bit) {
667 				if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
668 					do {
669 						data[bit / BITS_PER_LONG] = 0;
670 						bit += BITS_PER_LONG;
671 					} while (this_end_bit >= bit + BITS_PER_LONG - 1);
672 					continue;
673 				}
674 				__clear_bit(bit, data);
675 				bit++;
676 			}
677 		}
678 	} else {
679 		BUG();
680 	}
681 
682 	if (unlikely(page < end_page)) {
683 		bit = 0;
684 		page++;
685 		goto repeat;
686 	}
687 
688 	return true;
689 }
690 
691 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
692 {
693 	unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
694 	unsigned int i;
695 
696 	for (i = 0; i < n_bitmap_pages; i++) {
697 		unsigned long *dst_data = lowmem_page_address(dst[i].page);
698 		unsigned long *src_data = lowmem_page_address(src[i].page);
699 
700 		copy_page(dst_data, src_data);
701 	}
702 }
703 
704 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
705 {
706 	unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
707 	unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
708 
709 	BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
710 	return &ic->bbs[bitmap_block];
711 }
712 
713 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
714 				 bool e, const char *function)
715 {
716 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
717 	unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
718 
719 	if (unlikely(section >= ic->journal_sections) ||
720 	    unlikely(offset >= limit)) {
721 		DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
722 		       function, section, offset, ic->journal_sections, limit);
723 		BUG();
724 	}
725 #endif
726 }
727 
728 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
729 			       unsigned int *pl_index, unsigned int *pl_offset)
730 {
731 	unsigned int sector;
732 
733 	access_journal_check(ic, section, offset, false, "page_list_location");
734 
735 	sector = section * ic->journal_section_sectors + offset;
736 
737 	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
738 	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
739 }
740 
741 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
742 					       unsigned int section, unsigned int offset, unsigned int *n_sectors)
743 {
744 	unsigned int pl_index, pl_offset;
745 	char *va;
746 
747 	page_list_location(ic, section, offset, &pl_index, &pl_offset);
748 
749 	if (n_sectors)
750 		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
751 
752 	va = lowmem_page_address(pl[pl_index].page);
753 
754 	return (struct journal_sector *)(va + pl_offset);
755 }
756 
757 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
758 {
759 	return access_page_list(ic, ic->journal, section, offset, NULL);
760 }
761 
762 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
763 {
764 	unsigned int rel_sector, offset;
765 	struct journal_sector *js;
766 
767 	access_journal_check(ic, section, n, true, "access_journal_entry");
768 
769 	rel_sector = n % JOURNAL_BLOCK_SECTORS;
770 	offset = n / JOURNAL_BLOCK_SECTORS;
771 
772 	js = access_journal(ic, section, rel_sector);
773 	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
774 }
775 
776 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
777 {
778 	n <<= ic->sb->log2_sectors_per_block;
779 
780 	n += JOURNAL_BLOCK_SECTORS;
781 
782 	access_journal_check(ic, section, n, false, "access_journal_data");
783 
784 	return access_journal(ic, section, n);
785 }
786 
787 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
788 {
789 	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
790 	int r;
791 	unsigned int j, size;
792 
793 	desc->tfm = ic->journal_mac;
794 
795 	r = crypto_shash_init(desc);
796 	if (unlikely(r < 0)) {
797 		dm_integrity_io_error(ic, "crypto_shash_init", r);
798 		goto err;
799 	}
800 
801 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
802 		__le64 section_le;
803 
804 		r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
805 		if (unlikely(r < 0)) {
806 			dm_integrity_io_error(ic, "crypto_shash_update", r);
807 			goto err;
808 		}
809 
810 		section_le = cpu_to_le64(section);
811 		r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof(section_le));
812 		if (unlikely(r < 0)) {
813 			dm_integrity_io_error(ic, "crypto_shash_update", r);
814 			goto err;
815 		}
816 	}
817 
818 	for (j = 0; j < ic->journal_section_entries; j++) {
819 		struct journal_entry *je = access_journal_entry(ic, section, j);
820 
821 		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
822 		if (unlikely(r < 0)) {
823 			dm_integrity_io_error(ic, "crypto_shash_update", r);
824 			goto err;
825 		}
826 	}
827 
828 	size = crypto_shash_digestsize(ic->journal_mac);
829 
830 	if (likely(size <= JOURNAL_MAC_SIZE)) {
831 		r = crypto_shash_final(desc, result);
832 		if (unlikely(r < 0)) {
833 			dm_integrity_io_error(ic, "crypto_shash_final", r);
834 			goto err;
835 		}
836 		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
837 	} else {
838 		__u8 digest[HASH_MAX_DIGESTSIZE];
839 
840 		if (WARN_ON(size > sizeof(digest))) {
841 			dm_integrity_io_error(ic, "digest_size", -EINVAL);
842 			goto err;
843 		}
844 		r = crypto_shash_final(desc, digest);
845 		if (unlikely(r < 0)) {
846 			dm_integrity_io_error(ic, "crypto_shash_final", r);
847 			goto err;
848 		}
849 		memcpy(result, digest, JOURNAL_MAC_SIZE);
850 	}
851 
852 	return;
853 err:
854 	memset(result, 0, JOURNAL_MAC_SIZE);
855 }
856 
857 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
858 {
859 	__u8 result[JOURNAL_MAC_SIZE];
860 	unsigned int j;
861 
862 	if (!ic->journal_mac)
863 		return;
864 
865 	section_mac(ic, section, result);
866 
867 	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
868 		struct journal_sector *js = access_journal(ic, section, j);
869 
870 		if (likely(wr))
871 			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
872 		else {
873 			if (crypto_memneq(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
874 				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
875 				dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
876 			}
877 		}
878 	}
879 }
880 
881 static void complete_journal_op(void *context)
882 {
883 	struct journal_completion *comp = context;
884 
885 	BUG_ON(!atomic_read(&comp->in_flight));
886 	if (likely(atomic_dec_and_test(&comp->in_flight)))
887 		complete(&comp->comp);
888 }
889 
890 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
891 			unsigned int n_sections, struct journal_completion *comp)
892 {
893 	struct async_submit_ctl submit;
894 	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
895 	unsigned int pl_index, pl_offset, section_index;
896 	struct page_list *source_pl, *target_pl;
897 
898 	if (likely(encrypt)) {
899 		source_pl = ic->journal;
900 		target_pl = ic->journal_io;
901 	} else {
902 		source_pl = ic->journal_io;
903 		target_pl = ic->journal;
904 	}
905 
906 	page_list_location(ic, section, 0, &pl_index, &pl_offset);
907 
908 	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
909 
910 	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
911 
912 	section_index = pl_index;
913 
914 	do {
915 		size_t this_step;
916 		struct page *src_pages[2];
917 		struct page *dst_page;
918 
919 		while (unlikely(pl_index == section_index)) {
920 			unsigned int dummy;
921 
922 			if (likely(encrypt))
923 				rw_section_mac(ic, section, true);
924 			section++;
925 			n_sections--;
926 			if (!n_sections)
927 				break;
928 			page_list_location(ic, section, 0, &section_index, &dummy);
929 		}
930 
931 		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
932 		dst_page = target_pl[pl_index].page;
933 		src_pages[0] = source_pl[pl_index].page;
934 		src_pages[1] = ic->journal_xor[pl_index].page;
935 
936 		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
937 
938 		pl_index++;
939 		pl_offset = 0;
940 		n_bytes -= this_step;
941 	} while (n_bytes);
942 
943 	BUG_ON(n_sections);
944 
945 	async_tx_issue_pending_all();
946 }
947 
948 static void complete_journal_encrypt(void *data, int err)
949 {
950 	struct journal_completion *comp = data;
951 
952 	if (unlikely(err)) {
953 		if (likely(err == -EINPROGRESS)) {
954 			complete(&comp->ic->crypto_backoff);
955 			return;
956 		}
957 		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
958 	}
959 	complete_journal_op(comp);
960 }
961 
962 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
963 {
964 	int r;
965 
966 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
967 				      complete_journal_encrypt, comp);
968 	if (likely(encrypt))
969 		r = crypto_skcipher_encrypt(req);
970 	else
971 		r = crypto_skcipher_decrypt(req);
972 	if (likely(!r))
973 		return false;
974 	if (likely(r == -EINPROGRESS))
975 		return true;
976 	if (likely(r == -EBUSY)) {
977 		wait_for_completion(&comp->ic->crypto_backoff);
978 		reinit_completion(&comp->ic->crypto_backoff);
979 		return true;
980 	}
981 	dm_integrity_io_error(comp->ic, "encrypt", r);
982 	return false;
983 }
984 
985 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
986 			  unsigned int n_sections, struct journal_completion *comp)
987 {
988 	struct scatterlist **source_sg;
989 	struct scatterlist **target_sg;
990 
991 	atomic_add(2, &comp->in_flight);
992 
993 	if (likely(encrypt)) {
994 		source_sg = ic->journal_scatterlist;
995 		target_sg = ic->journal_io_scatterlist;
996 	} else {
997 		source_sg = ic->journal_io_scatterlist;
998 		target_sg = ic->journal_scatterlist;
999 	}
1000 
1001 	do {
1002 		struct skcipher_request *req;
1003 		unsigned int ivsize;
1004 		char *iv;
1005 
1006 		if (likely(encrypt))
1007 			rw_section_mac(ic, section, true);
1008 
1009 		req = ic->sk_requests[section];
1010 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1011 		iv = req->iv;
1012 
1013 		memcpy(iv, iv + ivsize, ivsize);
1014 
1015 		req->src = source_sg[section];
1016 		req->dst = target_sg[section];
1017 
1018 		if (unlikely(do_crypt(encrypt, req, comp)))
1019 			atomic_inc(&comp->in_flight);
1020 
1021 		section++;
1022 		n_sections--;
1023 	} while (n_sections);
1024 
1025 	atomic_dec(&comp->in_flight);
1026 	complete_journal_op(comp);
1027 }
1028 
1029 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1030 			    unsigned int n_sections, struct journal_completion *comp)
1031 {
1032 	if (ic->journal_xor)
1033 		return xor_journal(ic, encrypt, section, n_sections, comp);
1034 	else
1035 		return crypt_journal(ic, encrypt, section, n_sections, comp);
1036 }
1037 
1038 static void complete_journal_io(unsigned long error, void *context)
1039 {
1040 	struct journal_completion *comp = context;
1041 
1042 	if (unlikely(error != 0))
1043 		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1044 	complete_journal_op(comp);
1045 }
1046 
1047 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1048 			       unsigned int sector, unsigned int n_sectors,
1049 			       struct journal_completion *comp)
1050 {
1051 	struct dm_io_request io_req;
1052 	struct dm_io_region io_loc;
1053 	unsigned int pl_index, pl_offset;
1054 	int r;
1055 
1056 	if (unlikely(dm_integrity_failed(ic))) {
1057 		if (comp)
1058 			complete_journal_io(-1UL, comp);
1059 		return;
1060 	}
1061 
1062 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1063 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1064 
1065 	io_req.bi_opf = opf;
1066 	io_req.mem.type = DM_IO_PAGE_LIST;
1067 	if (ic->journal_io)
1068 		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1069 	else
1070 		io_req.mem.ptr.pl = &ic->journal[pl_index];
1071 	io_req.mem.offset = pl_offset;
1072 	if (likely(comp != NULL)) {
1073 		io_req.notify.fn = complete_journal_io;
1074 		io_req.notify.context = comp;
1075 	} else {
1076 		io_req.notify.fn = NULL;
1077 	}
1078 	io_req.client = ic->io;
1079 	io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1080 	io_loc.sector = ic->start + SB_SECTORS + sector;
1081 	io_loc.count = n_sectors;
1082 
1083 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1084 	if (unlikely(r)) {
1085 		dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1086 				      "reading journal" : "writing journal", r);
1087 		if (comp) {
1088 			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1089 			complete_journal_io(-1UL, comp);
1090 		}
1091 	}
1092 }
1093 
1094 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1095 		       unsigned int section, unsigned int n_sections,
1096 		       struct journal_completion *comp)
1097 {
1098 	unsigned int sector, n_sectors;
1099 
1100 	sector = section * ic->journal_section_sectors;
1101 	n_sectors = n_sections * ic->journal_section_sectors;
1102 
1103 	rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1104 }
1105 
1106 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1107 {
1108 	struct journal_completion io_comp;
1109 	struct journal_completion crypt_comp_1;
1110 	struct journal_completion crypt_comp_2;
1111 	unsigned int i;
1112 
1113 	io_comp.ic = ic;
1114 	init_completion(&io_comp.comp);
1115 
1116 	if (commit_start + commit_sections <= ic->journal_sections) {
1117 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1118 		if (ic->journal_io) {
1119 			crypt_comp_1.ic = ic;
1120 			init_completion(&crypt_comp_1.comp);
1121 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1122 			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1123 			wait_for_completion_io(&crypt_comp_1.comp);
1124 		} else {
1125 			for (i = 0; i < commit_sections; i++)
1126 				rw_section_mac(ic, commit_start + i, true);
1127 		}
1128 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1129 			   commit_sections, &io_comp);
1130 	} else {
1131 		unsigned int to_end;
1132 
1133 		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1134 		to_end = ic->journal_sections - commit_start;
1135 		if (ic->journal_io) {
1136 			crypt_comp_1.ic = ic;
1137 			init_completion(&crypt_comp_1.comp);
1138 			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1139 			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1140 			if (try_wait_for_completion(&crypt_comp_1.comp)) {
1141 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1142 					   commit_start, to_end, &io_comp);
1143 				reinit_completion(&crypt_comp_1.comp);
1144 				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1145 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1146 				wait_for_completion_io(&crypt_comp_1.comp);
1147 			} else {
1148 				crypt_comp_2.ic = ic;
1149 				init_completion(&crypt_comp_2.comp);
1150 				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1151 				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1152 				wait_for_completion_io(&crypt_comp_1.comp);
1153 				rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1154 				wait_for_completion_io(&crypt_comp_2.comp);
1155 			}
1156 		} else {
1157 			for (i = 0; i < to_end; i++)
1158 				rw_section_mac(ic, commit_start + i, true);
1159 			rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1160 			for (i = 0; i < commit_sections - to_end; i++)
1161 				rw_section_mac(ic, i, true);
1162 		}
1163 		rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1164 	}
1165 
1166 	wait_for_completion_io(&io_comp.comp);
1167 }
1168 
1169 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1170 			      unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1171 {
1172 	struct dm_io_request io_req;
1173 	struct dm_io_region io_loc;
1174 	int r;
1175 	unsigned int sector, pl_index, pl_offset;
1176 
1177 	BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1178 
1179 	if (unlikely(dm_integrity_failed(ic))) {
1180 		fn(-1UL, data);
1181 		return;
1182 	}
1183 
1184 	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1185 
1186 	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1187 	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1188 
1189 	io_req.bi_opf = REQ_OP_WRITE;
1190 	io_req.mem.type = DM_IO_PAGE_LIST;
1191 	io_req.mem.ptr.pl = &ic->journal[pl_index];
1192 	io_req.mem.offset = pl_offset;
1193 	io_req.notify.fn = fn;
1194 	io_req.notify.context = data;
1195 	io_req.client = ic->io;
1196 	io_loc.bdev = ic->dev->bdev;
1197 	io_loc.sector = target;
1198 	io_loc.count = n_sectors;
1199 
1200 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1201 	if (unlikely(r)) {
1202 		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1203 		fn(-1UL, data);
1204 	}
1205 }
1206 
1207 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1208 {
1209 	return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1210 	       range1->logical_sector + range1->n_sectors > range2->logical_sector;
1211 }
1212 
1213 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1214 {
1215 	struct rb_node **n = &ic->in_progress.rb_node;
1216 	struct rb_node *parent;
1217 
1218 	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1219 
1220 	if (likely(check_waiting)) {
1221 		struct dm_integrity_range *range;
1222 
1223 		list_for_each_entry(range, &ic->wait_list, wait_entry) {
1224 			if (unlikely(ranges_overlap(range, new_range)))
1225 				return false;
1226 		}
1227 	}
1228 
1229 	parent = NULL;
1230 
1231 	while (*n) {
1232 		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1233 
1234 		parent = *n;
1235 		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1236 			n = &range->node.rb_left;
1237 		else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1238 			n = &range->node.rb_right;
1239 		else
1240 			return false;
1241 	}
1242 
1243 	rb_link_node(&new_range->node, parent, n);
1244 	rb_insert_color(&new_range->node, &ic->in_progress);
1245 
1246 	return true;
1247 }
1248 
1249 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1250 {
1251 	rb_erase(&range->node, &ic->in_progress);
1252 	while (unlikely(!list_empty(&ic->wait_list))) {
1253 		struct dm_integrity_range *last_range =
1254 			list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1255 		struct task_struct *last_range_task;
1256 
1257 		last_range_task = last_range->task;
1258 		list_del(&last_range->wait_entry);
1259 		if (!add_new_range(ic, last_range, false)) {
1260 			last_range->task = last_range_task;
1261 			list_add(&last_range->wait_entry, &ic->wait_list);
1262 			break;
1263 		}
1264 		last_range->waiting = false;
1265 		wake_up_process(last_range_task);
1266 	}
1267 }
1268 
1269 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1270 {
1271 	unsigned long flags;
1272 
1273 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1274 	remove_range_unlocked(ic, range);
1275 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1276 }
1277 
1278 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1279 {
1280 	new_range->waiting = true;
1281 	list_add_tail(&new_range->wait_entry, &ic->wait_list);
1282 	new_range->task = current;
1283 	do {
1284 		__set_current_state(TASK_UNINTERRUPTIBLE);
1285 		spin_unlock_irq(&ic->endio_wait.lock);
1286 		io_schedule();
1287 		spin_lock_irq(&ic->endio_wait.lock);
1288 	} while (unlikely(new_range->waiting));
1289 }
1290 
1291 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1292 {
1293 	if (unlikely(!add_new_range(ic, new_range, true)))
1294 		wait_and_add_new_range(ic, new_range);
1295 }
1296 
1297 static void init_journal_node(struct journal_node *node)
1298 {
1299 	RB_CLEAR_NODE(&node->node);
1300 	node->sector = (sector_t)-1;
1301 }
1302 
1303 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1304 {
1305 	struct rb_node **link;
1306 	struct rb_node *parent;
1307 
1308 	node->sector = sector;
1309 	BUG_ON(!RB_EMPTY_NODE(&node->node));
1310 
1311 	link = &ic->journal_tree_root.rb_node;
1312 	parent = NULL;
1313 
1314 	while (*link) {
1315 		struct journal_node *j;
1316 
1317 		parent = *link;
1318 		j = container_of(parent, struct journal_node, node);
1319 		if (sector < j->sector)
1320 			link = &j->node.rb_left;
1321 		else
1322 			link = &j->node.rb_right;
1323 	}
1324 
1325 	rb_link_node(&node->node, parent, link);
1326 	rb_insert_color(&node->node, &ic->journal_tree_root);
1327 }
1328 
1329 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1330 {
1331 	BUG_ON(RB_EMPTY_NODE(&node->node));
1332 	rb_erase(&node->node, &ic->journal_tree_root);
1333 	init_journal_node(node);
1334 }
1335 
1336 #define NOT_FOUND	(-1U)
1337 
1338 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1339 {
1340 	struct rb_node *n = ic->journal_tree_root.rb_node;
1341 	unsigned int found = NOT_FOUND;
1342 
1343 	*next_sector = (sector_t)-1;
1344 	while (n) {
1345 		struct journal_node *j = container_of(n, struct journal_node, node);
1346 
1347 		if (sector == j->sector)
1348 			found = j - ic->journal_tree;
1349 
1350 		if (sector < j->sector) {
1351 			*next_sector = j->sector;
1352 			n = j->node.rb_left;
1353 		} else
1354 			n = j->node.rb_right;
1355 	}
1356 
1357 	return found;
1358 }
1359 
1360 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1361 {
1362 	struct journal_node *node, *next_node;
1363 	struct rb_node *next;
1364 
1365 	if (unlikely(pos >= ic->journal_entries))
1366 		return false;
1367 	node = &ic->journal_tree[pos];
1368 	if (unlikely(RB_EMPTY_NODE(&node->node)))
1369 		return false;
1370 	if (unlikely(node->sector != sector))
1371 		return false;
1372 
1373 	next = rb_next(&node->node);
1374 	if (unlikely(!next))
1375 		return true;
1376 
1377 	next_node = container_of(next, struct journal_node, node);
1378 	return next_node->sector != sector;
1379 }
1380 
1381 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1382 {
1383 	struct rb_node *next;
1384 	struct journal_node *next_node;
1385 	unsigned int next_section;
1386 
1387 	BUG_ON(RB_EMPTY_NODE(&node->node));
1388 
1389 	next = rb_next(&node->node);
1390 	if (unlikely(!next))
1391 		return false;
1392 
1393 	next_node = container_of(next, struct journal_node, node);
1394 
1395 	if (next_node->sector != node->sector)
1396 		return false;
1397 
1398 	next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1399 	if (next_section >= ic->committed_section &&
1400 	    next_section < ic->committed_section + ic->n_committed_sections)
1401 		return true;
1402 	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1403 		return true;
1404 
1405 	return false;
1406 }
1407 
1408 #define TAG_READ	0
1409 #define TAG_WRITE	1
1410 #define TAG_CMP		2
1411 
1412 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1413 			       unsigned int *metadata_offset, unsigned int total_size, int op)
1414 {
1415 	unsigned int hash_offset = 0;
1416 	unsigned char mismatch_hash = 0;
1417 	unsigned char mismatch_filler = !ic->discard;
1418 
1419 	do {
1420 		unsigned char *data, *dp;
1421 		struct dm_buffer *b;
1422 		unsigned int to_copy;
1423 		int r;
1424 
1425 		r = dm_integrity_failed(ic);
1426 		if (unlikely(r))
1427 			return r;
1428 
1429 		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1430 		if (IS_ERR(data))
1431 			return PTR_ERR(data);
1432 
1433 		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1434 		dp = data + *metadata_offset;
1435 		if (op == TAG_READ) {
1436 			memcpy(tag, dp, to_copy);
1437 		} else if (op == TAG_WRITE) {
1438 			if (crypto_memneq(dp, tag, to_copy)) {
1439 				memcpy(dp, tag, to_copy);
1440 				dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1441 			}
1442 		} else {
1443 			/* e.g.: op == TAG_CMP */
1444 
1445 			if (likely(is_power_of_2(ic->tag_size))) {
1446 				if (unlikely(crypto_memneq(dp, tag, to_copy)))
1447 					goto thorough_test;
1448 			} else {
1449 				unsigned int i, ts;
1450 thorough_test:
1451 				ts = total_size;
1452 
1453 				for (i = 0; i < to_copy; i++, ts--) {
1454 					/*
1455 					 * Warning: the control flow must not be
1456 					 * dependent on match/mismatch of
1457 					 * individual bytes.
1458 					 */
1459 					mismatch_hash |= dp[i] ^ tag[i];
1460 					mismatch_filler |= dp[i] ^ DISCARD_FILLER;
1461 					hash_offset++;
1462 					if (unlikely(hash_offset == ic->tag_size)) {
1463 						if (unlikely(mismatch_hash) && unlikely(mismatch_filler)) {
1464 							dm_bufio_release(b);
1465 							return ts;
1466 						}
1467 						hash_offset = 0;
1468 						mismatch_hash = 0;
1469 						mismatch_filler = !ic->discard;
1470 					}
1471 				}
1472 			}
1473 		}
1474 		dm_bufio_release(b);
1475 
1476 		tag += to_copy;
1477 		*metadata_offset += to_copy;
1478 		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1479 			(*metadata_block)++;
1480 			*metadata_offset = 0;
1481 		}
1482 
1483 		if (unlikely(!is_power_of_2(ic->tag_size)))
1484 			hash_offset = (hash_offset + to_copy) % ic->tag_size;
1485 
1486 		total_size -= to_copy;
1487 	} while (unlikely(total_size));
1488 
1489 	return 0;
1490 }
1491 
1492 struct flush_request {
1493 	struct dm_io_request io_req;
1494 	struct dm_io_region io_reg;
1495 	struct dm_integrity_c *ic;
1496 	struct completion comp;
1497 };
1498 
1499 static void flush_notify(unsigned long error, void *fr_)
1500 {
1501 	struct flush_request *fr = fr_;
1502 
1503 	if (unlikely(error != 0))
1504 		dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1505 	complete(&fr->comp);
1506 }
1507 
1508 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1509 {
1510 	int r;
1511 	struct flush_request fr;
1512 
1513 	if (!ic->meta_dev)
1514 		flush_data = false;
1515 	if (flush_data) {
1516 		fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1517 		fr.io_req.mem.type = DM_IO_KMEM;
1518 		fr.io_req.mem.ptr.addr = NULL;
1519 		fr.io_req.notify.fn = flush_notify;
1520 		fr.io_req.notify.context = &fr;
1521 		fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio);
1522 		fr.io_reg.bdev = ic->dev->bdev;
1523 		fr.io_reg.sector = 0;
1524 		fr.io_reg.count = 0;
1525 		fr.ic = ic;
1526 		init_completion(&fr.comp);
1527 		r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1528 		BUG_ON(r);
1529 	}
1530 
1531 	r = dm_bufio_write_dirty_buffers(ic->bufio);
1532 	if (unlikely(r))
1533 		dm_integrity_io_error(ic, "writing tags", r);
1534 
1535 	if (flush_data)
1536 		wait_for_completion(&fr.comp);
1537 }
1538 
1539 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1540 {
1541 	DECLARE_WAITQUEUE(wait, current);
1542 
1543 	__add_wait_queue(&ic->endio_wait, &wait);
1544 	__set_current_state(TASK_UNINTERRUPTIBLE);
1545 	spin_unlock_irq(&ic->endio_wait.lock);
1546 	io_schedule();
1547 	spin_lock_irq(&ic->endio_wait.lock);
1548 	__remove_wait_queue(&ic->endio_wait, &wait);
1549 }
1550 
1551 static void autocommit_fn(struct timer_list *t)
1552 {
1553 	struct dm_integrity_c *ic = timer_container_of(ic, t,
1554 						       autocommit_timer);
1555 
1556 	if (likely(!dm_integrity_failed(ic)))
1557 		queue_work(ic->commit_wq, &ic->commit_work);
1558 }
1559 
1560 static void schedule_autocommit(struct dm_integrity_c *ic)
1561 {
1562 	if (!timer_pending(&ic->autocommit_timer))
1563 		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1564 }
1565 
1566 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1567 {
1568 	struct bio *bio;
1569 	unsigned long flags;
1570 
1571 	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1572 	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1573 	bio_list_add(&ic->flush_bio_list, bio);
1574 	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1575 
1576 	queue_work(ic->commit_wq, &ic->commit_work);
1577 }
1578 
1579 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1580 {
1581 	int r;
1582 
1583 	r = dm_integrity_failed(ic);
1584 	if (unlikely(r) && !bio->bi_status)
1585 		bio->bi_status = errno_to_blk_status(r);
1586 	if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1587 		unsigned long flags;
1588 
1589 		spin_lock_irqsave(&ic->endio_wait.lock, flags);
1590 		bio_list_add(&ic->synchronous_bios, bio);
1591 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1592 		spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1593 		return;
1594 	}
1595 	bio_endio(bio);
1596 }
1597 
1598 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1599 {
1600 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1601 
1602 	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1603 		submit_flush_bio(ic, dio);
1604 	else
1605 		do_endio(ic, bio);
1606 }
1607 
1608 static void dec_in_flight(struct dm_integrity_io *dio)
1609 {
1610 	if (atomic_dec_and_test(&dio->in_flight)) {
1611 		struct dm_integrity_c *ic = dio->ic;
1612 		struct bio *bio;
1613 
1614 		remove_range(ic, &dio->range);
1615 
1616 		if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1617 			schedule_autocommit(ic);
1618 
1619 		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1620 		if (unlikely(dio->bi_status) && !bio->bi_status)
1621 			bio->bi_status = dio->bi_status;
1622 		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1623 			dio->range.logical_sector += dio->range.n_sectors;
1624 			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1625 			INIT_WORK(&dio->work, integrity_bio_wait);
1626 			queue_work(ic->offload_wq, &dio->work);
1627 			return;
1628 		}
1629 		do_endio_flush(ic, dio);
1630 	}
1631 }
1632 
1633 static void integrity_end_io(struct bio *bio)
1634 {
1635 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1636 
1637 	dm_bio_restore(&dio->bio_details, bio);
1638 	if (bio->bi_integrity)
1639 		bio->bi_opf |= REQ_INTEGRITY;
1640 
1641 	if (dio->completion)
1642 		complete(dio->completion);
1643 
1644 	dec_in_flight(dio);
1645 }
1646 
1647 static void integrity_sector_checksum_shash(struct dm_integrity_c *ic, sector_t sector,
1648 					    const char *data, unsigned offset, char *result)
1649 {
1650 	__le64 sector_le = cpu_to_le64(sector);
1651 	SHASH_DESC_ON_STACK(req, ic->internal_shash);
1652 	int r;
1653 	unsigned int digest_size;
1654 
1655 	req->tfm = ic->internal_shash;
1656 
1657 	r = crypto_shash_init(req);
1658 	if (unlikely(r < 0)) {
1659 		dm_integrity_io_error(ic, "crypto_shash_init", r);
1660 		goto failed;
1661 	}
1662 
1663 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1664 		r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1665 		if (unlikely(r < 0)) {
1666 			dm_integrity_io_error(ic, "crypto_shash_update", r);
1667 			goto failed;
1668 		}
1669 	}
1670 
1671 	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof(sector_le));
1672 	if (unlikely(r < 0)) {
1673 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1674 		goto failed;
1675 	}
1676 
1677 	r = crypto_shash_update(req, data + offset, ic->sectors_per_block << SECTOR_SHIFT);
1678 	if (unlikely(r < 0)) {
1679 		dm_integrity_io_error(ic, "crypto_shash_update", r);
1680 		goto failed;
1681 	}
1682 
1683 	r = crypto_shash_final(req, result);
1684 	if (unlikely(r < 0)) {
1685 		dm_integrity_io_error(ic, "crypto_shash_final", r);
1686 		goto failed;
1687 	}
1688 
1689 	digest_size = ic->internal_hash_digestsize;
1690 	if (unlikely(digest_size < ic->tag_size))
1691 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1692 
1693 	return;
1694 
1695 failed:
1696 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1697 	get_random_bytes(result, ic->tag_size);
1698 }
1699 
1700 static void integrity_sector_checksum_ahash(struct dm_integrity_c *ic, struct ahash_request **ahash_req,
1701 					    sector_t sector, struct page *page, unsigned offset, char *result)
1702 {
1703 	__le64 sector_le = cpu_to_le64(sector);
1704 	struct ahash_request *req;
1705 	DECLARE_CRYPTO_WAIT(wait);
1706 	struct scatterlist sg[3], *s = sg;
1707 	int r;
1708 	unsigned int digest_size;
1709 	unsigned int nbytes = 0;
1710 
1711 	might_sleep();
1712 
1713 	req = *ahash_req;
1714 	if (unlikely(!req)) {
1715 		req = mempool_alloc(&ic->ahash_req_pool, GFP_NOIO);
1716 		*ahash_req = req;
1717 	}
1718 
1719 	ahash_request_set_tfm(req, ic->internal_ahash);
1720 	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, crypto_req_done, &wait);
1721 
1722 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1723 		sg_init_table(sg, 3);
1724 		sg_set_buf(s, (const __u8 *)&ic->sb->salt, SALT_SIZE);
1725 		nbytes += SALT_SIZE;
1726 		s++;
1727 	} else {
1728 		sg_init_table(sg, 2);
1729 	}
1730 
1731 	if (likely(!is_vmalloc_addr(&sector_le))) {
1732 		sg_set_buf(s, &sector_le, sizeof(sector_le));
1733 	} else {
1734 		struct page *sec_page = vmalloc_to_page(&sector_le);
1735 		unsigned int sec_off = offset_in_page(&sector_le);
1736 		sg_set_page(s, sec_page, sizeof(sector_le), sec_off);
1737 	}
1738 	nbytes += sizeof(sector_le);
1739 	s++;
1740 
1741 	sg_set_page(s, page, ic->sectors_per_block << SECTOR_SHIFT, offset);
1742 	nbytes += ic->sectors_per_block << SECTOR_SHIFT;
1743 
1744 	ahash_request_set_crypt(req, sg, result, nbytes);
1745 
1746 	r = crypto_wait_req(crypto_ahash_digest(req), &wait);
1747 	if (unlikely(r)) {
1748 		dm_integrity_io_error(ic, "crypto_ahash_digest", r);
1749 		goto failed;
1750 	}
1751 
1752 	digest_size = ic->internal_hash_digestsize;
1753 	if (unlikely(digest_size < ic->tag_size))
1754 		memset(result + digest_size, 0, ic->tag_size - digest_size);
1755 
1756 	return;
1757 
1758 failed:
1759 	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1760 	get_random_bytes(result, ic->tag_size);
1761 }
1762 
1763 static void integrity_sector_checksum(struct dm_integrity_c *ic, struct ahash_request **ahash_req,
1764 				      sector_t sector, const char *data, unsigned offset, char *result)
1765 {
1766 	if (likely(ic->internal_shash != NULL))
1767 		integrity_sector_checksum_shash(ic, sector, data, offset, result);
1768 	else
1769 		integrity_sector_checksum_ahash(ic, ahash_req, sector, (struct page *)data, offset, result);
1770 }
1771 
1772 static void *integrity_kmap(struct dm_integrity_c *ic, struct page *p)
1773 {
1774 	if (likely(ic->internal_shash != NULL))
1775 		return kmap_local_page(p);
1776 	else
1777 		return p;
1778 }
1779 
1780 static void integrity_kunmap(struct dm_integrity_c *ic, const void *ptr)
1781 {
1782 	if (likely(ic->internal_shash != NULL))
1783 		kunmap_local(ptr);
1784 }
1785 
1786 static void *integrity_identity(struct dm_integrity_c *ic, void *data)
1787 {
1788 #ifdef CONFIG_DEBUG_SG
1789 	BUG_ON(offset_in_page(data));
1790 	BUG_ON(!virt_addr_valid(data));
1791 #endif
1792 	if (likely(ic->internal_shash != NULL))
1793 		return data;
1794 	else
1795 		return virt_to_page(data);
1796 }
1797 
1798 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1799 {
1800 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1801 	struct dm_integrity_c *ic = dio->ic;
1802 	struct bvec_iter iter;
1803 	struct bio_vec bv;
1804 	sector_t sector, logical_sector, area, offset;
1805 	struct page *page;
1806 
1807 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1808 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1809 							     &dio->metadata_offset);
1810 	sector = get_data_sector(ic, area, offset);
1811 	logical_sector = dio->range.logical_sector;
1812 
1813 	page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1814 
1815 	__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1816 		unsigned pos = 0;
1817 
1818 		do {
1819 			sector_t alignment;
1820 			char *mem;
1821 			char *buffer = page_to_virt(page);
1822 			unsigned int buffer_offset;
1823 			int r;
1824 			struct dm_io_request io_req;
1825 			struct dm_io_region io_loc;
1826 			io_req.bi_opf = REQ_OP_READ;
1827 			io_req.mem.type = DM_IO_KMEM;
1828 			io_req.mem.ptr.addr = buffer;
1829 			io_req.notify.fn = NULL;
1830 			io_req.client = ic->io;
1831 			io_loc.bdev = ic->dev->bdev;
1832 			io_loc.sector = sector;
1833 			io_loc.count = ic->sectors_per_block;
1834 
1835 			/* Align the bio to logical block size */
1836 			alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1837 			alignment &= -alignment;
1838 			io_loc.sector = round_down(io_loc.sector, alignment);
1839 			io_loc.count += sector - io_loc.sector;
1840 			buffer_offset = (sector - io_loc.sector) << SECTOR_SHIFT;
1841 			io_loc.count = round_up(io_loc.count, alignment);
1842 
1843 			r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1844 			if (unlikely(r)) {
1845 				dio->bi_status = errno_to_blk_status(r);
1846 				goto free_ret;
1847 			}
1848 
1849 			integrity_sector_checksum(ic, &dio->ahash_req, logical_sector, integrity_identity(ic, buffer), buffer_offset, checksum);
1850 			r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1851 						&dio->metadata_offset, ic->tag_size, TAG_CMP);
1852 			if (r) {
1853 				if (r > 0) {
1854 					DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1855 						    bio->bi_bdev, logical_sector);
1856 					atomic64_inc(&ic->number_of_mismatches);
1857 					dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1858 							 bio, logical_sector, 0);
1859 					r = -EILSEQ;
1860 				}
1861 				dio->bi_status = errno_to_blk_status(r);
1862 				goto free_ret;
1863 			}
1864 
1865 			mem = bvec_kmap_local(&bv);
1866 			memcpy(mem + pos, buffer + buffer_offset, ic->sectors_per_block << SECTOR_SHIFT);
1867 			kunmap_local(mem);
1868 
1869 			pos += ic->sectors_per_block << SECTOR_SHIFT;
1870 			sector += ic->sectors_per_block;
1871 			logical_sector += ic->sectors_per_block;
1872 		} while (pos < bv.bv_len);
1873 	}
1874 free_ret:
1875 	mempool_free(page, &ic->recheck_pool);
1876 }
1877 
1878 static void integrity_metadata(struct work_struct *w)
1879 {
1880 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1881 	struct dm_integrity_c *ic = dio->ic;
1882 
1883 	int r;
1884 
1885 	if (ic->internal_hash) {
1886 		struct bvec_iter iter;
1887 		struct bio_vec bv;
1888 		unsigned int digest_size = ic->internal_hash_digestsize;
1889 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1890 		char *checksums;
1891 		unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1892 		char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1893 		sector_t sector;
1894 		unsigned int sectors_to_process;
1895 
1896 		if (unlikely(ic->mode == 'R'))
1897 			goto skip_io;
1898 
1899 		if (likely(dio->op != REQ_OP_DISCARD))
1900 			checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1901 					    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1902 		else
1903 			checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1904 		if (!checksums) {
1905 			checksums = checksums_onstack;
1906 			if (WARN_ON(extra_space &&
1907 				    digest_size > sizeof(checksums_onstack))) {
1908 				r = -EINVAL;
1909 				goto error;
1910 			}
1911 		}
1912 
1913 		if (unlikely(dio->op == REQ_OP_DISCARD)) {
1914 			unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1915 			unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1916 			unsigned int max_blocks = max_size / ic->tag_size;
1917 
1918 			memset(checksums, DISCARD_FILLER, max_size);
1919 
1920 			while (bi_size) {
1921 				unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1922 
1923 				this_step_blocks = min(this_step_blocks, max_blocks);
1924 				r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1925 							this_step_blocks * ic->tag_size, TAG_WRITE);
1926 				if (unlikely(r)) {
1927 					if (likely(checksums != checksums_onstack))
1928 						kfree(checksums);
1929 					goto error;
1930 				}
1931 
1932 				bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1933 			}
1934 
1935 			if (likely(checksums != checksums_onstack))
1936 				kfree(checksums);
1937 			goto skip_io;
1938 		}
1939 
1940 		sector = dio->range.logical_sector;
1941 		sectors_to_process = dio->range.n_sectors;
1942 
1943 		__bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1944 			struct bio_vec bv_copy = bv;
1945 			unsigned int pos;
1946 			char *mem, *checksums_ptr;
1947 
1948 again:
1949 			mem = integrity_kmap(ic, bv_copy.bv_page);
1950 			pos = 0;
1951 			checksums_ptr = checksums;
1952 			do {
1953 				integrity_sector_checksum(ic, &dio->ahash_req, sector, mem, bv_copy.bv_offset + pos, checksums_ptr);
1954 				checksums_ptr += ic->tag_size;
1955 				sectors_to_process -= ic->sectors_per_block;
1956 				pos += ic->sectors_per_block << SECTOR_SHIFT;
1957 				sector += ic->sectors_per_block;
1958 			} while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1959 			integrity_kunmap(ic, mem);
1960 
1961 			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1962 						checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1963 			if (unlikely(r)) {
1964 				if (likely(checksums != checksums_onstack))
1965 					kfree(checksums);
1966 				if (r > 0) {
1967 					integrity_recheck(dio, checksums_onstack);
1968 					goto skip_io;
1969 				}
1970 				goto error;
1971 			}
1972 
1973 			if (!sectors_to_process)
1974 				break;
1975 
1976 			if (unlikely(pos < bv_copy.bv_len)) {
1977 				bv_copy.bv_offset += pos;
1978 				bv_copy.bv_len -= pos;
1979 				goto again;
1980 			}
1981 		}
1982 
1983 		if (likely(checksums != checksums_onstack))
1984 			kfree(checksums);
1985 	} else {
1986 		struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1987 
1988 		if (bip) {
1989 			struct bio_vec biv;
1990 			struct bvec_iter iter;
1991 			unsigned int data_to_process = dio->range.n_sectors;
1992 
1993 			sector_to_block(ic, data_to_process);
1994 			data_to_process *= ic->tag_size;
1995 
1996 			bip_for_each_vec(biv, bip, iter) {
1997 				unsigned char *tag;
1998 				unsigned int this_len;
1999 
2000 				BUG_ON(PageHighMem(biv.bv_page));
2001 				tag = bvec_virt(&biv);
2002 				this_len = min(biv.bv_len, data_to_process);
2003 				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
2004 							this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
2005 				if (unlikely(r))
2006 					goto error;
2007 				data_to_process -= this_len;
2008 				if (!data_to_process)
2009 					break;
2010 			}
2011 		}
2012 	}
2013 skip_io:
2014 	dec_in_flight(dio);
2015 	return;
2016 error:
2017 	dio->bi_status = errno_to_blk_status(r);
2018 	dec_in_flight(dio);
2019 }
2020 
2021 static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
2022 {
2023 	if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
2024 		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
2025 		      logical_sector, bio_sectors(bio),
2026 		      ic->provided_data_sectors);
2027 		return false;
2028 	}
2029 	if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
2030 		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
2031 		      ic->sectors_per_block,
2032 		      logical_sector, bio_sectors(bio));
2033 		return false;
2034 	}
2035 	if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
2036 		struct bvec_iter iter;
2037 		struct bio_vec bv;
2038 
2039 		bio_for_each_segment(bv, bio, iter) {
2040 			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
2041 				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
2042 					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
2043 				return false;
2044 			}
2045 		}
2046 	}
2047 	return true;
2048 }
2049 
2050 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
2051 {
2052 	struct dm_integrity_c *ic = ti->private;
2053 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2054 	struct bio_integrity_payload *bip;
2055 
2056 	sector_t area, offset;
2057 
2058 	dio->ic = ic;
2059 	dio->bi_status = 0;
2060 	dio->op = bio_op(bio);
2061 	dio->ahash_req = NULL;
2062 
2063 	if (ic->mode == 'I') {
2064 		bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
2065 		dio->integrity_payload = NULL;
2066 		dio->integrity_payload_from_mempool = false;
2067 		dio->integrity_range_locked = false;
2068 		return dm_integrity_map_inline(dio, true);
2069 	}
2070 
2071 	if (unlikely(dio->op == REQ_OP_DISCARD)) {
2072 		if (ti->max_io_len) {
2073 			sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
2074 			unsigned int log2_max_io_len = __fls(ti->max_io_len);
2075 			sector_t start_boundary = sec >> log2_max_io_len;
2076 			sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
2077 
2078 			if (start_boundary < end_boundary) {
2079 				sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
2080 
2081 				dm_accept_partial_bio(bio, len);
2082 			}
2083 		}
2084 	}
2085 
2086 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
2087 		submit_flush_bio(ic, dio);
2088 		return DM_MAPIO_SUBMITTED;
2089 	}
2090 
2091 	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
2092 	dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
2093 	if (unlikely(dio->fua)) {
2094 		/*
2095 		 * Don't pass down the FUA flag because we have to flush
2096 		 * disk cache anyway.
2097 		 */
2098 		bio->bi_opf &= ~REQ_FUA;
2099 	}
2100 	if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
2101 		return DM_MAPIO_KILL;
2102 
2103 	bip = bio_integrity(bio);
2104 	if (!ic->internal_hash) {
2105 		if (bip) {
2106 			unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
2107 
2108 			if (ic->log2_tag_size >= 0)
2109 				wanted_tag_size <<= ic->log2_tag_size;
2110 			else
2111 				wanted_tag_size *= ic->tag_size;
2112 			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2113 				DMERR("Invalid integrity data size %u, expected %u",
2114 				      bip->bip_iter.bi_size, wanted_tag_size);
2115 				return DM_MAPIO_KILL;
2116 			}
2117 		}
2118 	} else {
2119 		if (unlikely(bip != NULL)) {
2120 			DMERR("Unexpected integrity data when using internal hash");
2121 			return DM_MAPIO_KILL;
2122 		}
2123 	}
2124 
2125 	if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2126 		return DM_MAPIO_KILL;
2127 
2128 	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2129 	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2130 	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2131 
2132 	dm_integrity_map_continue(dio, true);
2133 	return DM_MAPIO_SUBMITTED;
2134 }
2135 
2136 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2137 				 unsigned int journal_section, unsigned int journal_entry)
2138 {
2139 	struct dm_integrity_c *ic = dio->ic;
2140 	sector_t logical_sector;
2141 	unsigned int n_sectors;
2142 
2143 	logical_sector = dio->range.logical_sector;
2144 	n_sectors = dio->range.n_sectors;
2145 	do {
2146 		struct bio_vec bv = bio_iovec(bio);
2147 		char *mem;
2148 
2149 		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2150 			bv.bv_len = n_sectors << SECTOR_SHIFT;
2151 		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2152 		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2153 retry_kmap:
2154 		mem = kmap_local_page(bv.bv_page);
2155 		if (likely(dio->op == REQ_OP_WRITE))
2156 			flush_dcache_page(bv.bv_page);
2157 
2158 		do {
2159 			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2160 
2161 			if (unlikely(dio->op == REQ_OP_READ)) {
2162 				struct journal_sector *js;
2163 				char *mem_ptr;
2164 				unsigned int s;
2165 
2166 				if (unlikely(journal_entry_is_inprogress(je))) {
2167 					flush_dcache_page(bv.bv_page);
2168 					kunmap_local(mem);
2169 
2170 					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2171 					goto retry_kmap;
2172 				}
2173 				smp_rmb();
2174 				BUG_ON(journal_entry_get_sector(je) != logical_sector);
2175 				js = access_journal_data(ic, journal_section, journal_entry);
2176 				mem_ptr = mem + bv.bv_offset;
2177 				s = 0;
2178 				do {
2179 					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2180 					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2181 					js++;
2182 					mem_ptr += 1 << SECTOR_SHIFT;
2183 				} while (++s < ic->sectors_per_block);
2184 			}
2185 
2186 			if (!ic->internal_hash) {
2187 				struct bio_integrity_payload *bip = bio_integrity(bio);
2188 				unsigned int tag_todo = ic->tag_size;
2189 				char *tag_ptr = journal_entry_tag(ic, je);
2190 
2191 				if (bip) {
2192 					do {
2193 						struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2194 						unsigned int tag_now = min(biv.bv_len, tag_todo);
2195 						char *tag_addr;
2196 
2197 						BUG_ON(PageHighMem(biv.bv_page));
2198 						tag_addr = bvec_virt(&biv);
2199 						if (likely(dio->op == REQ_OP_WRITE))
2200 							memcpy(tag_ptr, tag_addr, tag_now);
2201 						else
2202 							memcpy(tag_addr, tag_ptr, tag_now);
2203 						bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2204 						tag_ptr += tag_now;
2205 						tag_todo -= tag_now;
2206 					} while (unlikely(tag_todo));
2207 				} else if (likely(dio->op == REQ_OP_WRITE))
2208 					memset(tag_ptr, 0, tag_todo);
2209 			}
2210 
2211 			if (likely(dio->op == REQ_OP_WRITE)) {
2212 				struct journal_sector *js;
2213 				unsigned int s;
2214 
2215 				js = access_journal_data(ic, journal_section, journal_entry);
2216 				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2217 
2218 				s = 0;
2219 				do {
2220 					je->last_bytes[s] = js[s].commit_id;
2221 				} while (++s < ic->sectors_per_block);
2222 
2223 				if (ic->internal_hash) {
2224 					unsigned int digest_size = ic->internal_hash_digestsize;
2225 					void *js_page = integrity_identity(ic, (char *)js - offset_in_page(js));
2226 					unsigned js_offset = offset_in_page(js);
2227 
2228 					if (unlikely(digest_size > ic->tag_size)) {
2229 						char checksums_onstack[HASH_MAX_DIGESTSIZE];
2230 
2231 						integrity_sector_checksum(ic, &dio->ahash_req, logical_sector, js_page, js_offset, checksums_onstack);
2232 						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2233 					} else
2234 						integrity_sector_checksum(ic, &dio->ahash_req, logical_sector, js_page, js_offset, journal_entry_tag(ic, je));
2235 				}
2236 
2237 				journal_entry_set_sector(je, logical_sector);
2238 			}
2239 			logical_sector += ic->sectors_per_block;
2240 
2241 			journal_entry++;
2242 			if (unlikely(journal_entry == ic->journal_section_entries)) {
2243 				journal_entry = 0;
2244 				journal_section++;
2245 				wraparound_section(ic, &journal_section);
2246 			}
2247 
2248 			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2249 		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2250 
2251 		if (unlikely(dio->op == REQ_OP_READ))
2252 			flush_dcache_page(bv.bv_page);
2253 		kunmap_local(mem);
2254 	} while (n_sectors);
2255 
2256 	if (likely(dio->op == REQ_OP_WRITE)) {
2257 		smp_mb();
2258 		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2259 			wake_up(&ic->copy_to_journal_wait);
2260 		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2261 			queue_work(ic->commit_wq, &ic->commit_work);
2262 		else
2263 			schedule_autocommit(ic);
2264 	} else
2265 		remove_range(ic, &dio->range);
2266 
2267 	if (unlikely(bio->bi_iter.bi_size)) {
2268 		sector_t area, offset;
2269 
2270 		dio->range.logical_sector = logical_sector;
2271 		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2272 		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2273 		return true;
2274 	}
2275 
2276 	return false;
2277 }
2278 
2279 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2280 {
2281 	struct dm_integrity_c *ic = dio->ic;
2282 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2283 	unsigned int journal_section, journal_entry;
2284 	unsigned int journal_read_pos;
2285 	sector_t recalc_sector;
2286 	struct completion read_comp;
2287 	bool discard_retried = false;
2288 	bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2289 
2290 	if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2291 		need_sync_io = true;
2292 
2293 	if (need_sync_io && from_map) {
2294 		INIT_WORK(&dio->work, integrity_bio_wait);
2295 		queue_work(ic->offload_wq, &dio->work);
2296 		return;
2297 	}
2298 
2299 lock_retry:
2300 	spin_lock_irq(&ic->endio_wait.lock);
2301 retry:
2302 	if (unlikely(dm_integrity_failed(ic))) {
2303 		spin_unlock_irq(&ic->endio_wait.lock);
2304 		do_endio(ic, bio);
2305 		return;
2306 	}
2307 	dio->range.n_sectors = bio_sectors(bio);
2308 	journal_read_pos = NOT_FOUND;
2309 	if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2310 		if (dio->op == REQ_OP_WRITE) {
2311 			unsigned int next_entry, i, pos;
2312 			unsigned int ws, we, range_sectors;
2313 
2314 			dio->range.n_sectors = min(dio->range.n_sectors,
2315 						   (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2316 			if (unlikely(!dio->range.n_sectors)) {
2317 				if (from_map)
2318 					goto offload_to_thread;
2319 				sleep_on_endio_wait(ic);
2320 				goto retry;
2321 			}
2322 			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2323 			ic->free_sectors -= range_sectors;
2324 			journal_section = ic->free_section;
2325 			journal_entry = ic->free_section_entry;
2326 
2327 			next_entry = ic->free_section_entry + range_sectors;
2328 			ic->free_section_entry = next_entry % ic->journal_section_entries;
2329 			ic->free_section += next_entry / ic->journal_section_entries;
2330 			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2331 			wraparound_section(ic, &ic->free_section);
2332 
2333 			pos = journal_section * ic->journal_section_entries + journal_entry;
2334 			ws = journal_section;
2335 			we = journal_entry;
2336 			i = 0;
2337 			do {
2338 				struct journal_entry *je;
2339 
2340 				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2341 				pos++;
2342 				if (unlikely(pos >= ic->journal_entries))
2343 					pos = 0;
2344 
2345 				je = access_journal_entry(ic, ws, we);
2346 				BUG_ON(!journal_entry_is_unused(je));
2347 				journal_entry_set_inprogress(je);
2348 				we++;
2349 				if (unlikely(we == ic->journal_section_entries)) {
2350 					we = 0;
2351 					ws++;
2352 					wraparound_section(ic, &ws);
2353 				}
2354 			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2355 
2356 			spin_unlock_irq(&ic->endio_wait.lock);
2357 			goto journal_read_write;
2358 		} else {
2359 			sector_t next_sector;
2360 
2361 			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2362 			if (likely(journal_read_pos == NOT_FOUND)) {
2363 				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2364 					dio->range.n_sectors = next_sector - dio->range.logical_sector;
2365 			} else {
2366 				unsigned int i;
2367 				unsigned int jp = journal_read_pos + 1;
2368 
2369 				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2370 					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2371 						break;
2372 				}
2373 				dio->range.n_sectors = i;
2374 			}
2375 		}
2376 	}
2377 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2378 		/*
2379 		 * We must not sleep in the request routine because it could
2380 		 * stall bios on current->bio_list.
2381 		 * So, we offload the bio to a workqueue if we have to sleep.
2382 		 */
2383 		if (from_map) {
2384 offload_to_thread:
2385 			spin_unlock_irq(&ic->endio_wait.lock);
2386 			INIT_WORK(&dio->work, integrity_bio_wait);
2387 			queue_work(ic->wait_wq, &dio->work);
2388 			return;
2389 		}
2390 		if (journal_read_pos != NOT_FOUND)
2391 			dio->range.n_sectors = ic->sectors_per_block;
2392 		wait_and_add_new_range(ic, &dio->range);
2393 		/*
2394 		 * wait_and_add_new_range drops the spinlock, so the journal
2395 		 * may have been changed arbitrarily. We need to recheck.
2396 		 * To simplify the code, we restrict I/O size to just one block.
2397 		 */
2398 		if (journal_read_pos != NOT_FOUND) {
2399 			sector_t next_sector;
2400 			unsigned int new_pos;
2401 
2402 			new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2403 			if (unlikely(new_pos != journal_read_pos)) {
2404 				remove_range_unlocked(ic, &dio->range);
2405 				goto retry;
2406 			}
2407 		}
2408 	}
2409 	if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2410 		sector_t next_sector;
2411 		unsigned int new_pos;
2412 
2413 		new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2414 		if (unlikely(new_pos != NOT_FOUND) ||
2415 		    unlikely(next_sector < dio->range.logical_sector + dio->range.n_sectors)) {
2416 			remove_range_unlocked(ic, &dio->range);
2417 			spin_unlock_irq(&ic->endio_wait.lock);
2418 			queue_work(ic->commit_wq, &ic->commit_work);
2419 			flush_workqueue(ic->commit_wq);
2420 			queue_work(ic->writer_wq, &ic->writer_work);
2421 			flush_workqueue(ic->writer_wq);
2422 			discard_retried = true;
2423 			goto lock_retry;
2424 		}
2425 	}
2426 	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2427 	spin_unlock_irq(&ic->endio_wait.lock);
2428 
2429 	if (unlikely(journal_read_pos != NOT_FOUND)) {
2430 		journal_section = journal_read_pos / ic->journal_section_entries;
2431 		journal_entry = journal_read_pos % ic->journal_section_entries;
2432 		goto journal_read_write;
2433 	}
2434 
2435 	if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2436 		if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2437 				     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2438 			struct bitmap_block_status *bbs;
2439 
2440 			bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2441 			spin_lock(&bbs->bio_queue_lock);
2442 			bio_list_add(&bbs->bio_queue, bio);
2443 			spin_unlock(&bbs->bio_queue_lock);
2444 			queue_work(ic->writer_wq, &bbs->work);
2445 			return;
2446 		}
2447 	}
2448 
2449 	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2450 
2451 	if (need_sync_io) {
2452 		init_completion(&read_comp);
2453 		dio->completion = &read_comp;
2454 	} else
2455 		dio->completion = NULL;
2456 
2457 	dm_bio_record(&dio->bio_details, bio);
2458 	bio_set_dev(bio, ic->dev->bdev);
2459 	bio->bi_integrity = NULL;
2460 	bio->bi_opf &= ~REQ_INTEGRITY;
2461 	bio->bi_end_io = integrity_end_io;
2462 	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2463 
2464 	if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2465 		integrity_metadata(&dio->work);
2466 		dm_integrity_flush_buffers(ic, false);
2467 
2468 		dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2469 		dio->completion = NULL;
2470 
2471 		submit_bio_noacct(bio);
2472 
2473 		return;
2474 	}
2475 
2476 	submit_bio_noacct(bio);
2477 
2478 	if (need_sync_io) {
2479 		wait_for_completion_io(&read_comp);
2480 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2481 		    dio->range.logical_sector + dio->range.n_sectors > recalc_sector)
2482 			goto skip_check;
2483 		if (ic->mode == 'B') {
2484 			if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2485 					     dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2486 				goto skip_check;
2487 		}
2488 
2489 		if (likely(!bio->bi_status))
2490 			integrity_metadata(&dio->work);
2491 		else
2492 skip_check:
2493 			dec_in_flight(dio);
2494 	} else {
2495 		INIT_WORK(&dio->work, integrity_metadata);
2496 		queue_work(ic->metadata_wq, &dio->work);
2497 	}
2498 
2499 	return;
2500 
2501 journal_read_write:
2502 	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2503 		goto lock_retry;
2504 
2505 	do_endio_flush(ic, dio);
2506 }
2507 
2508 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map)
2509 {
2510 	struct dm_integrity_c *ic = dio->ic;
2511 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2512 	struct bio_integrity_payload *bip;
2513 	unsigned ret;
2514 	sector_t recalc_sector;
2515 
2516 	if (unlikely(bio_integrity(bio))) {
2517 		bio->bi_status = BLK_STS_NOTSUPP;
2518 		bio_endio(bio);
2519 		return DM_MAPIO_SUBMITTED;
2520 	}
2521 
2522 	bio_set_dev(bio, ic->dev->bdev);
2523 	if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
2524 		return DM_MAPIO_REMAPPED;
2525 
2526 retry:
2527 	if (!dio->integrity_payload) {
2528 		unsigned digest_size, extra_size;
2529 		dio->payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
2530 		digest_size = ic->internal_hash_digestsize;
2531 		extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
2532 		dio->payload_len += extra_size;
2533 		dio->integrity_payload = kmalloc(dio->payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
2534 		if (unlikely(!dio->integrity_payload)) {
2535 			const unsigned x_size = PAGE_SIZE << 1;
2536 			if (dio->payload_len > x_size) {
2537 				unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
2538 				if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
2539 					bio->bi_status = BLK_STS_NOTSUPP;
2540 					bio_endio(bio);
2541 					return DM_MAPIO_SUBMITTED;
2542 				}
2543 				dm_accept_partial_bio(bio, sectors);
2544 				goto retry;
2545 			}
2546 		}
2547 	}
2548 
2549 	dio->range.logical_sector = bio->bi_iter.bi_sector;
2550 	dio->range.n_sectors = bio_sectors(bio);
2551 
2552 	if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)))
2553 		goto skip_spinlock;
2554 #ifdef CONFIG_64BIT
2555 	/*
2556 	 * On 64-bit CPUs we can optimize the lock away (so that it won't cause
2557 	 * cache line bouncing) and use acquire/release barriers instead.
2558 	 *
2559 	 * Paired with smp_store_release in integrity_recalc_inline.
2560 	 */
2561 	recalc_sector = le64_to_cpu(smp_load_acquire(&ic->sb->recalc_sector));
2562 	if (likely(dio->range.logical_sector + dio->range.n_sectors <= recalc_sector))
2563 		goto skip_spinlock;
2564 #endif
2565 	spin_lock_irq(&ic->endio_wait.lock);
2566 	recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2567 	if (dio->range.logical_sector + dio->range.n_sectors <= recalc_sector)
2568 		goto skip_unlock;
2569 	if (unlikely(!add_new_range(ic, &dio->range, true))) {
2570 		if (from_map) {
2571 			spin_unlock_irq(&ic->endio_wait.lock);
2572 			INIT_WORK(&dio->work, integrity_bio_wait);
2573 			queue_work(ic->wait_wq, &dio->work);
2574 			return DM_MAPIO_SUBMITTED;
2575 		}
2576 		wait_and_add_new_range(ic, &dio->range);
2577 	}
2578 	dio->integrity_range_locked = true;
2579 skip_unlock:
2580 	spin_unlock_irq(&ic->endio_wait.lock);
2581 skip_spinlock:
2582 
2583 	if (unlikely(!dio->integrity_payload)) {
2584 		dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2585 		dio->integrity_payload_from_mempool = true;
2586 	}
2587 
2588 	dio->bio_details.bi_iter = bio->bi_iter;
2589 
2590 	if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
2591 		return DM_MAPIO_KILL;
2592 	}
2593 
2594 	bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
2595 
2596 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
2597 	if (IS_ERR(bip)) {
2598 		bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2599 		bio_endio(bio);
2600 		return DM_MAPIO_SUBMITTED;
2601 	}
2602 
2603 	if (dio->op == REQ_OP_WRITE) {
2604 		unsigned pos = 0;
2605 		while (dio->bio_details.bi_iter.bi_size) {
2606 			struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2607 			const char *mem = integrity_kmap(ic, bv.bv_page);
2608 			if (ic->tag_size < ic->tuple_size)
2609 				memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
2610 			integrity_sector_checksum(ic, &dio->ahash_req, dio->bio_details.bi_iter.bi_sector, mem, bv.bv_offset, dio->integrity_payload + pos);
2611 			integrity_kunmap(ic, mem);
2612 			pos += ic->tuple_size;
2613 			bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2614 		}
2615 	}
2616 
2617 	ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
2618 					dio->payload_len, offset_in_page(dio->integrity_payload));
2619 	if (unlikely(ret != dio->payload_len)) {
2620 		bio->bi_status = BLK_STS_RESOURCE;
2621 		bio_endio(bio);
2622 		return DM_MAPIO_SUBMITTED;
2623 	}
2624 
2625 	return DM_MAPIO_REMAPPED;
2626 }
2627 
2628 static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
2629 {
2630 	struct dm_integrity_c *ic = dio->ic;
2631 	if (unlikely(dio->integrity_payload_from_mempool))
2632 		mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
2633 	else
2634 		kfree(dio->integrity_payload);
2635 	dio->integrity_payload = NULL;
2636 	dio->integrity_payload_from_mempool = false;
2637 }
2638 
2639 static void dm_integrity_inline_recheck(struct work_struct *w)
2640 {
2641 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2642 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2643 	struct dm_integrity_c *ic = dio->ic;
2644 	struct bio *outgoing_bio;
2645 	void *outgoing_data;
2646 
2647 	dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2648 	dio->integrity_payload_from_mempool = true;
2649 
2650 	outgoing_data = dio->integrity_payload + PAGE_SIZE;
2651 
2652 	while (dio->bio_details.bi_iter.bi_size) {
2653 		char digest[HASH_MAX_DIGESTSIZE];
2654 		int r;
2655 		struct bio_integrity_payload *bip;
2656 		struct bio_vec bv;
2657 		char *mem;
2658 
2659 		outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
2660 		bio_add_virt_nofail(outgoing_bio, outgoing_data,
2661 				ic->sectors_per_block << SECTOR_SHIFT);
2662 
2663 		bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
2664 		if (IS_ERR(bip)) {
2665 			bio_put(outgoing_bio);
2666 			bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2667 			bio_endio(bio);
2668 			return;
2669 		}
2670 
2671 		r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
2672 		if (unlikely(r != ic->tuple_size)) {
2673 			bio_put(outgoing_bio);
2674 			bio->bi_status = BLK_STS_RESOURCE;
2675 			bio_endio(bio);
2676 			return;
2677 		}
2678 
2679 		outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
2680 
2681 		r = submit_bio_wait(outgoing_bio);
2682 		if (unlikely(r != 0)) {
2683 			bio_put(outgoing_bio);
2684 			bio->bi_status = errno_to_blk_status(r);
2685 			bio_endio(bio);
2686 			return;
2687 		}
2688 		bio_put(outgoing_bio);
2689 
2690 		integrity_sector_checksum(ic, &dio->ahash_req, dio->bio_details.bi_iter.bi_sector, integrity_identity(ic, outgoing_data), 0, digest);
2691 		if (unlikely(crypto_memneq(digest, dio->integrity_payload, min(ic->internal_hash_digestsize, ic->tag_size)))) {
2692 			DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2693 				ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
2694 			atomic64_inc(&ic->number_of_mismatches);
2695 			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
2696 				bio, dio->bio_details.bi_iter.bi_sector, 0);
2697 
2698 			bio->bi_status = BLK_STS_PROTECTION;
2699 			bio_endio(bio);
2700 			return;
2701 		}
2702 
2703 		bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2704 		mem = bvec_kmap_local(&bv);
2705 		memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
2706 		kunmap_local(mem);
2707 
2708 		bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2709 	}
2710 
2711 	bio_endio(bio);
2712 }
2713 
2714 static inline bool dm_integrity_check(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
2715 {
2716 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2717 	unsigned pos = 0;
2718 
2719 	while (dio->bio_details.bi_iter.bi_size) {
2720 		char digest[HASH_MAX_DIGESTSIZE];
2721 		struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2722 		char *mem = integrity_kmap(ic, bv.bv_page);
2723 		integrity_sector_checksum(ic, &dio->ahash_req, dio->bio_details.bi_iter.bi_sector, mem, bv.bv_offset, digest);
2724 		if (unlikely(crypto_memneq(digest, dio->integrity_payload + pos,
2725 				min(ic->internal_hash_digestsize, ic->tag_size)))) {
2726 			integrity_kunmap(ic, mem);
2727 			dm_integrity_free_payload(dio);
2728 			INIT_WORK(&dio->work, dm_integrity_inline_recheck);
2729 			queue_work(ic->offload_wq, &dio->work);
2730 			return false;
2731 		}
2732 		integrity_kunmap(ic, mem);
2733 		pos += ic->tuple_size;
2734 		bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2735 	}
2736 
2737 	return true;
2738 }
2739 
2740 static void dm_integrity_inline_async_check(struct work_struct *w)
2741 {
2742 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2743 	struct dm_integrity_c *ic = dio->ic;
2744 	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2745 
2746 	if (likely(dm_integrity_check(ic, dio)))
2747 		bio_endio(bio);
2748 }
2749 
2750 static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
2751 {
2752 	struct dm_integrity_c *ic = ti->private;
2753 	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2754 	if (ic->mode == 'I') {
2755 		if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK) && likely(dio->bio_details.bi_iter.bi_size != 0)) {
2756 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2757 			    unlikely(dio->integrity_range_locked))
2758 			    	goto skip_check;
2759 			if (likely(ic->internal_shash != NULL)) {
2760 				if (unlikely(!dm_integrity_check(ic, dio)))
2761 					return DM_ENDIO_INCOMPLETE;
2762 			} else {
2763 				INIT_WORK(&dio->work, dm_integrity_inline_async_check);
2764 				queue_work(ic->offload_wq, &dio->work);
2765 				return DM_ENDIO_INCOMPLETE;
2766 			}
2767 		}
2768 skip_check:
2769 		dm_integrity_free_payload(dio);
2770 		if (unlikely(dio->integrity_range_locked))
2771 			remove_range(ic, &dio->range);
2772 	}
2773 	if (unlikely(dio->ahash_req))
2774 		mempool_free(dio->ahash_req, &ic->ahash_req_pool);
2775 	return DM_ENDIO_DONE;
2776 }
2777 
2778 static void integrity_bio_wait(struct work_struct *w)
2779 {
2780 	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2781 	struct dm_integrity_c *ic = dio->ic;
2782 
2783 	if (ic->mode == 'I') {
2784 		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2785 		int r = dm_integrity_map_inline(dio, false);
2786 		switch (r) {
2787 			case DM_MAPIO_KILL:
2788 				bio->bi_status = BLK_STS_IOERR;
2789 				fallthrough;
2790 			case DM_MAPIO_REMAPPED:
2791 				submit_bio_noacct(bio);
2792 				fallthrough;
2793 			case DM_MAPIO_SUBMITTED:
2794 				return;
2795 			default:
2796 				BUG();
2797 		}
2798 	} else {
2799 		dm_integrity_map_continue(dio, false);
2800 	}
2801 }
2802 
2803 static void pad_uncommitted(struct dm_integrity_c *ic)
2804 {
2805 	if (ic->free_section_entry) {
2806 		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2807 		ic->free_section_entry = 0;
2808 		ic->free_section++;
2809 		wraparound_section(ic, &ic->free_section);
2810 		ic->n_uncommitted_sections++;
2811 	}
2812 	if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2813 		    (ic->n_uncommitted_sections + ic->n_committed_sections) *
2814 		    ic->journal_section_entries + ic->free_sectors)) {
2815 		DMCRIT("journal_sections %u, journal_section_entries %u, "
2816 		       "n_uncommitted_sections %u, n_committed_sections %u, "
2817 		       "journal_section_entries %u, free_sectors %u",
2818 		       ic->journal_sections, ic->journal_section_entries,
2819 		       ic->n_uncommitted_sections, ic->n_committed_sections,
2820 		       ic->journal_section_entries, ic->free_sectors);
2821 	}
2822 }
2823 
2824 static void integrity_commit(struct work_struct *w)
2825 {
2826 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2827 	unsigned int commit_start, commit_sections;
2828 	unsigned int i, j, n;
2829 	struct bio *flushes;
2830 
2831 	timer_delete(&ic->autocommit_timer);
2832 
2833 	if (ic->mode == 'I')
2834 		return;
2835 
2836 	spin_lock_irq(&ic->endio_wait.lock);
2837 	flushes = bio_list_get(&ic->flush_bio_list);
2838 	if (unlikely(ic->mode != 'J')) {
2839 		spin_unlock_irq(&ic->endio_wait.lock);
2840 		dm_integrity_flush_buffers(ic, true);
2841 		goto release_flush_bios;
2842 	}
2843 
2844 	pad_uncommitted(ic);
2845 	commit_start = ic->uncommitted_section;
2846 	commit_sections = ic->n_uncommitted_sections;
2847 	spin_unlock_irq(&ic->endio_wait.lock);
2848 
2849 	if (!commit_sections)
2850 		goto release_flush_bios;
2851 
2852 	ic->wrote_to_journal = true;
2853 
2854 	i = commit_start;
2855 	for (n = 0; n < commit_sections; n++) {
2856 		for (j = 0; j < ic->journal_section_entries; j++) {
2857 			struct journal_entry *je;
2858 
2859 			je = access_journal_entry(ic, i, j);
2860 			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2861 		}
2862 		for (j = 0; j < ic->journal_section_sectors; j++) {
2863 			struct journal_sector *js;
2864 
2865 			js = access_journal(ic, i, j);
2866 			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2867 		}
2868 		i++;
2869 		if (unlikely(i >= ic->journal_sections))
2870 			ic->commit_seq = next_commit_seq(ic->commit_seq);
2871 		wraparound_section(ic, &i);
2872 	}
2873 	smp_rmb();
2874 
2875 	write_journal(ic, commit_start, commit_sections);
2876 
2877 	spin_lock_irq(&ic->endio_wait.lock);
2878 	ic->uncommitted_section += commit_sections;
2879 	wraparound_section(ic, &ic->uncommitted_section);
2880 	ic->n_uncommitted_sections -= commit_sections;
2881 	ic->n_committed_sections += commit_sections;
2882 	spin_unlock_irq(&ic->endio_wait.lock);
2883 
2884 	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2885 		queue_work(ic->writer_wq, &ic->writer_work);
2886 
2887 release_flush_bios:
2888 	while (flushes) {
2889 		struct bio *next = flushes->bi_next;
2890 
2891 		flushes->bi_next = NULL;
2892 		do_endio(ic, flushes);
2893 		flushes = next;
2894 	}
2895 }
2896 
2897 static void complete_copy_from_journal(unsigned long error, void *context)
2898 {
2899 	struct journal_io *io = context;
2900 	struct journal_completion *comp = io->comp;
2901 	struct dm_integrity_c *ic = comp->ic;
2902 
2903 	remove_range(ic, &io->range);
2904 	mempool_free(io, &ic->journal_io_mempool);
2905 	if (unlikely(error != 0))
2906 		dm_integrity_io_error(ic, "copying from journal", -EIO);
2907 	complete_journal_op(comp);
2908 }
2909 
2910 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2911 			       struct journal_entry *je)
2912 {
2913 	unsigned int s = 0;
2914 
2915 	do {
2916 		js->commit_id = je->last_bytes[s];
2917 		js++;
2918 	} while (++s < ic->sectors_per_block);
2919 }
2920 
2921 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2922 			     unsigned int write_sections, bool from_replay)
2923 {
2924 	unsigned int i, j, n;
2925 	struct journal_completion comp;
2926 	struct blk_plug plug;
2927 
2928 	blk_start_plug(&plug);
2929 
2930 	comp.ic = ic;
2931 	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2932 	init_completion(&comp.comp);
2933 
2934 	i = write_start;
2935 	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2936 #ifndef INTERNAL_VERIFY
2937 		if (unlikely(from_replay))
2938 #endif
2939 			rw_section_mac(ic, i, false);
2940 		for (j = 0; j < ic->journal_section_entries; j++) {
2941 			struct journal_entry *je = access_journal_entry(ic, i, j);
2942 			sector_t sec, area, offset;
2943 			unsigned int k, l, next_loop;
2944 			sector_t metadata_block;
2945 			unsigned int metadata_offset;
2946 			struct journal_io *io;
2947 
2948 			if (journal_entry_is_unused(je))
2949 				continue;
2950 			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2951 			sec = journal_entry_get_sector(je);
2952 			if (unlikely(from_replay)) {
2953 				if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2954 					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2955 					sec &= ~(sector_t)(ic->sectors_per_block - 1);
2956 				}
2957 				if (unlikely(sec >= ic->provided_data_sectors)) {
2958 					journal_entry_set_unused(je);
2959 					continue;
2960 				}
2961 			}
2962 			get_area_and_offset(ic, sec, &area, &offset);
2963 			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2964 			for (k = j + 1; k < ic->journal_section_entries; k++) {
2965 				struct journal_entry *je2 = access_journal_entry(ic, i, k);
2966 				sector_t sec2, area2, offset2;
2967 
2968 				if (journal_entry_is_unused(je2))
2969 					break;
2970 				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2971 				sec2 = journal_entry_get_sector(je2);
2972 				if (unlikely(sec2 >= ic->provided_data_sectors))
2973 					break;
2974 				get_area_and_offset(ic, sec2, &area2, &offset2);
2975 				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2976 					break;
2977 				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2978 			}
2979 			next_loop = k - 1;
2980 
2981 			io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2982 			io->comp = &comp;
2983 			io->range.logical_sector = sec;
2984 			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2985 
2986 			spin_lock_irq(&ic->endio_wait.lock);
2987 			add_new_range_and_wait(ic, &io->range);
2988 
2989 			if (likely(!from_replay)) {
2990 				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2991 
2992 				/* don't write if there is newer committed sector */
2993 				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2994 					struct journal_entry *je2 = access_journal_entry(ic, i, j);
2995 
2996 					journal_entry_set_unused(je2);
2997 					remove_journal_node(ic, &section_node[j]);
2998 					j++;
2999 					sec += ic->sectors_per_block;
3000 					offset += ic->sectors_per_block;
3001 				}
3002 				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
3003 					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
3004 
3005 					journal_entry_set_unused(je2);
3006 					remove_journal_node(ic, &section_node[k - 1]);
3007 					k--;
3008 				}
3009 				if (j == k) {
3010 					remove_range_unlocked(ic, &io->range);
3011 					spin_unlock_irq(&ic->endio_wait.lock);
3012 					mempool_free(io, &ic->journal_io_mempool);
3013 					goto skip_io;
3014 				}
3015 				for (l = j; l < k; l++)
3016 					remove_journal_node(ic, &section_node[l]);
3017 			}
3018 			spin_unlock_irq(&ic->endio_wait.lock);
3019 
3020 			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3021 			for (l = j; l < k; l++) {
3022 				int r;
3023 				struct journal_entry *je2 = access_journal_entry(ic, i, l);
3024 
3025 				if (
3026 #ifndef INTERNAL_VERIFY
3027 				    unlikely(from_replay) &&
3028 #endif
3029 				    ic->internal_hash) {
3030 					char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
3031 					struct journal_sector *js = access_journal_data(ic, i, l);
3032 					void *js_page = integrity_identity(ic, (char *)js - offset_in_page(js));
3033 					unsigned js_offset = offset_in_page(js);
3034 
3035 					integrity_sector_checksum(ic, &ic->journal_ahash_req, sec + ((l - j) << ic->sb->log2_sectors_per_block),
3036 								  js_page, js_offset, test_tag);
3037 					if (unlikely(crypto_memneq(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
3038 						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
3039 						dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
3040 					}
3041 				}
3042 
3043 				journal_entry_set_unused(je2);
3044 				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
3045 							ic->tag_size, TAG_WRITE);
3046 				if (unlikely(r))
3047 					dm_integrity_io_error(ic, "reading tags", r);
3048 			}
3049 
3050 			atomic_inc(&comp.in_flight);
3051 			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
3052 					  (k - j) << ic->sb->log2_sectors_per_block,
3053 					  get_data_sector(ic, area, offset),
3054 					  complete_copy_from_journal, io);
3055 skip_io:
3056 			j = next_loop;
3057 		}
3058 	}
3059 
3060 	dm_bufio_write_dirty_buffers_async(ic->bufio);
3061 
3062 	blk_finish_plug(&plug);
3063 
3064 	complete_journal_op(&comp);
3065 	wait_for_completion_io(&comp.comp);
3066 
3067 	dm_integrity_flush_buffers(ic, true);
3068 }
3069 
3070 static void integrity_writer(struct work_struct *w)
3071 {
3072 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
3073 	unsigned int write_start, write_sections;
3074 	unsigned int prev_free_sectors;
3075 
3076 	spin_lock_irq(&ic->endio_wait.lock);
3077 	write_start = ic->committed_section;
3078 	write_sections = ic->n_committed_sections;
3079 	spin_unlock_irq(&ic->endio_wait.lock);
3080 
3081 	if (!write_sections)
3082 		return;
3083 
3084 	do_journal_write(ic, write_start, write_sections, false);
3085 
3086 	spin_lock_irq(&ic->endio_wait.lock);
3087 
3088 	ic->committed_section += write_sections;
3089 	wraparound_section(ic, &ic->committed_section);
3090 	ic->n_committed_sections -= write_sections;
3091 
3092 	prev_free_sectors = ic->free_sectors;
3093 	ic->free_sectors += write_sections * ic->journal_section_entries;
3094 	if (unlikely(!prev_free_sectors))
3095 		wake_up_locked(&ic->endio_wait);
3096 
3097 	spin_unlock_irq(&ic->endio_wait.lock);
3098 }
3099 
3100 static void recalc_write_super(struct dm_integrity_c *ic)
3101 {
3102 	int r;
3103 
3104 	dm_integrity_flush_buffers(ic, false);
3105 	if (dm_integrity_failed(ic))
3106 		return;
3107 
3108 	r = sync_rw_sb(ic, REQ_OP_WRITE);
3109 	if (unlikely(r))
3110 		dm_integrity_io_error(ic, "writing superblock", r);
3111 }
3112 
3113 static void integrity_recalc(struct work_struct *w)
3114 {
3115 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
3116 	size_t recalc_tags_size;
3117 	u8 *recalc_buffer = NULL;
3118 	u8 *recalc_tags = NULL;
3119 	struct ahash_request *ahash_req = NULL;
3120 	struct dm_integrity_range range;
3121 	struct dm_io_request io_req;
3122 	struct dm_io_region io_loc;
3123 	sector_t area, offset;
3124 	sector_t metadata_block;
3125 	unsigned int metadata_offset;
3126 	sector_t logical_sector, n_sectors;
3127 	__u8 *t;
3128 	unsigned int i;
3129 	int r;
3130 	unsigned int super_counter = 0;
3131 	unsigned recalc_sectors = RECALC_SECTORS;
3132 
3133 retry:
3134 	recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN);
3135 	if (!recalc_buffer) {
3136 oom:
3137 		recalc_sectors >>= 1;
3138 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3139 			goto retry;
3140 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3141 		goto free_ret;
3142 	}
3143 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3144 	if (ic->internal_hash_digestsize > ic->tag_size)
3145 		recalc_tags_size += ic->internal_hash_digestsize - ic->tag_size;
3146 	recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
3147 	if (!recalc_tags) {
3148 		kfree(recalc_buffer);
3149 		recalc_buffer = NULL;
3150 		goto oom;
3151 	}
3152 
3153 	DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
3154 
3155 	spin_lock_irq(&ic->endio_wait.lock);
3156 
3157 next_chunk:
3158 
3159 	if (unlikely(dm_post_suspending(ic->ti)))
3160 		goto unlock_ret;
3161 
3162 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3163 	if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
3164 		if (ic->mode == 'B') {
3165 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3166 			DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
3167 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3168 		}
3169 		goto unlock_ret;
3170 	}
3171 
3172 	get_area_and_offset(ic, range.logical_sector, &area, &offset);
3173 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3174 	if (!ic->meta_dev)
3175 		range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
3176 
3177 	add_new_range_and_wait(ic, &range);
3178 	spin_unlock_irq(&ic->endio_wait.lock);
3179 	logical_sector = range.logical_sector;
3180 	n_sectors = range.n_sectors;
3181 
3182 	if (ic->mode == 'B') {
3183 		if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
3184 			goto advance_and_next;
3185 
3186 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
3187 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3188 			logical_sector += ic->sectors_per_block;
3189 			n_sectors -= ic->sectors_per_block;
3190 			cond_resched();
3191 		}
3192 		while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
3193 				       ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3194 			n_sectors -= ic->sectors_per_block;
3195 			cond_resched();
3196 		}
3197 		get_area_and_offset(ic, logical_sector, &area, &offset);
3198 	}
3199 
3200 	DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
3201 
3202 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3203 		recalc_write_super(ic);
3204 		if (ic->mode == 'B')
3205 			queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3206 
3207 		super_counter = 0;
3208 	}
3209 
3210 	if (unlikely(dm_integrity_failed(ic)))
3211 		goto err;
3212 
3213 	io_req.bi_opf = REQ_OP_READ;
3214 	io_req.mem.type = DM_IO_KMEM;
3215 	io_req.mem.ptr.addr = recalc_buffer;
3216 	io_req.notify.fn = NULL;
3217 	io_req.client = ic->io;
3218 	io_loc.bdev = ic->dev->bdev;
3219 	io_loc.sector = get_data_sector(ic, area, offset);
3220 	io_loc.count = n_sectors;
3221 
3222 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
3223 	if (unlikely(r)) {
3224 		dm_integrity_io_error(ic, "reading data", r);
3225 		goto err;
3226 	}
3227 
3228 	t = recalc_tags;
3229 	for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
3230 		void *ptr = recalc_buffer + (i << SECTOR_SHIFT);
3231 		void *ptr_page = integrity_identity(ic, (char *)ptr - offset_in_page(ptr));
3232 		unsigned ptr_offset = offset_in_page(ptr);
3233 		integrity_sector_checksum(ic, &ahash_req, logical_sector + i, ptr_page, ptr_offset, t);
3234 		t += ic->tag_size;
3235 	}
3236 
3237 	metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3238 
3239 	r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
3240 	if (unlikely(r)) {
3241 		dm_integrity_io_error(ic, "writing tags", r);
3242 		goto err;
3243 	}
3244 
3245 	if (ic->mode == 'B') {
3246 		sector_t start, end;
3247 
3248 		start = (range.logical_sector >>
3249 			 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3250 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3251 		end = ((range.logical_sector + range.n_sectors) >>
3252 		       (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3253 			(ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3254 		block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
3255 	}
3256 
3257 advance_and_next:
3258 	cond_resched();
3259 
3260 	spin_lock_irq(&ic->endio_wait.lock);
3261 	remove_range_unlocked(ic, &range);
3262 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3263 	goto next_chunk;
3264 
3265 err:
3266 	remove_range(ic, &range);
3267 	goto free_ret;
3268 
3269 unlock_ret:
3270 	spin_unlock_irq(&ic->endio_wait.lock);
3271 
3272 	recalc_write_super(ic);
3273 
3274 free_ret:
3275 	kfree(recalc_buffer);
3276 	kvfree(recalc_tags);
3277 	mempool_free(ahash_req, &ic->ahash_req_pool);
3278 }
3279 
3280 static void integrity_recalc_inline(struct work_struct *w)
3281 {
3282 	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
3283 	size_t recalc_tags_size;
3284 	u8 *recalc_buffer = NULL;
3285 	u8 *recalc_tags = NULL;
3286 	struct ahash_request *ahash_req = NULL;
3287 	struct dm_integrity_range range;
3288 	struct bio *bio;
3289 	struct bio_integrity_payload *bip;
3290 	__u8 *t;
3291 	unsigned int i;
3292 	int r;
3293 	unsigned ret;
3294 	unsigned int super_counter = 0;
3295 	unsigned recalc_sectors = RECALC_SECTORS;
3296 
3297 retry:
3298 	recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN);
3299 	if (!recalc_buffer) {
3300 oom:
3301 		recalc_sectors >>= 1;
3302 		if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3303 			goto retry;
3304 		DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3305 		goto free_ret;
3306 	}
3307 
3308 	recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tuple_size;
3309 	if (ic->internal_hash_digestsize > ic->tuple_size)
3310 		recalc_tags_size += ic->internal_hash_digestsize - ic->tuple_size;
3311 	recalc_tags = kmalloc(recalc_tags_size, GFP_NOIO | __GFP_NOWARN);
3312 	if (!recalc_tags) {
3313 		kfree(recalc_buffer);
3314 		recalc_buffer = NULL;
3315 		goto oom;
3316 	}
3317 
3318 	spin_lock_irq(&ic->endio_wait.lock);
3319 
3320 next_chunk:
3321 	if (unlikely(dm_post_suspending(ic->ti)))
3322 		goto unlock_ret;
3323 
3324 	range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3325 	if (unlikely(range.logical_sector >= ic->provided_data_sectors))
3326 		goto unlock_ret;
3327 	range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3328 
3329 	add_new_range_and_wait(ic, &range);
3330 	spin_unlock_irq(&ic->endio_wait.lock);
3331 
3332 	if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3333 		recalc_write_super(ic);
3334 		super_counter = 0;
3335 	}
3336 
3337 	if (unlikely(dm_integrity_failed(ic)))
3338 		goto err;
3339 
3340 	DEBUG_print("recalculating: %llx - %llx\n", range.logical_sector, range.n_sectors);
3341 
3342 	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recalc_bios);
3343 	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3344 	bio_add_virt_nofail(bio, recalc_buffer,
3345 			range.n_sectors << SECTOR_SHIFT);
3346 	r = submit_bio_wait(bio);
3347 	bio_put(bio);
3348 	if (unlikely(r)) {
3349 		dm_integrity_io_error(ic, "reading data", r);
3350 		goto err;
3351 	}
3352 
3353 	t = recalc_tags;
3354 	for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
3355 		void *ptr = recalc_buffer + (i << SECTOR_SHIFT);
3356 		void *ptr_page = integrity_identity(ic, (char *)ptr - offset_in_page(ptr));
3357 		unsigned ptr_offset = offset_in_page(ptr);
3358 		memset(t, 0, ic->tuple_size);
3359 		integrity_sector_checksum(ic, &ahash_req, range.logical_sector + i, ptr_page, ptr_offset, t);
3360 		t += ic->tuple_size;
3361 	}
3362 
3363 	bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_WRITE, GFP_NOIO, &ic->recalc_bios);
3364 	bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3365 	bio_add_virt_nofail(bio, recalc_buffer,
3366 			range.n_sectors << SECTOR_SHIFT);
3367 
3368 	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
3369 	if (unlikely(IS_ERR(bip))) {
3370 		bio_put(bio);
3371 		DMCRIT("out of memory for bio integrity payload - recalculation disabled");
3372 		goto err;
3373 	}
3374 	ret = bio_integrity_add_page(bio, virt_to_page(recalc_tags), t - recalc_tags, offset_in_page(recalc_tags));
3375 	if (unlikely(ret != t - recalc_tags)) {
3376 		bio_put(bio);
3377 		dm_integrity_io_error(ic, "attaching integrity tags", -ENOMEM);
3378 		goto err;
3379 	}
3380 
3381 	r = submit_bio_wait(bio);
3382 	bio_put(bio);
3383 	if (unlikely(r)) {
3384 		dm_integrity_io_error(ic, "writing data", r);
3385 		goto err;
3386 	}
3387 
3388 	cond_resched();
3389 	spin_lock_irq(&ic->endio_wait.lock);
3390 	remove_range_unlocked(ic, &range);
3391 #ifdef CONFIG_64BIT
3392 	/* Paired with smp_load_acquire in dm_integrity_map_inline. */
3393 	smp_store_release(&ic->sb->recalc_sector, cpu_to_le64(range.logical_sector + range.n_sectors));
3394 #else
3395 	ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3396 #endif
3397 	goto next_chunk;
3398 
3399 err:
3400 	remove_range(ic, &range);
3401 	goto free_ret;
3402 
3403 unlock_ret:
3404 	spin_unlock_irq(&ic->endio_wait.lock);
3405 
3406 	recalc_write_super(ic);
3407 
3408 free_ret:
3409 	kfree(recalc_buffer);
3410 	kfree(recalc_tags);
3411 	mempool_free(ahash_req, &ic->ahash_req_pool);
3412 }
3413 
3414 static void bitmap_block_work(struct work_struct *w)
3415 {
3416 	struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
3417 	struct dm_integrity_c *ic = bbs->ic;
3418 	struct bio *bio;
3419 	struct bio_list bio_queue;
3420 	struct bio_list waiting;
3421 
3422 	bio_list_init(&waiting);
3423 
3424 	spin_lock(&bbs->bio_queue_lock);
3425 	bio_queue = bbs->bio_queue;
3426 	bio_list_init(&bbs->bio_queue);
3427 	spin_unlock(&bbs->bio_queue_lock);
3428 
3429 	while ((bio = bio_list_pop(&bio_queue))) {
3430 		struct dm_integrity_io *dio;
3431 
3432 		dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3433 
3434 		if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3435 				    dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
3436 			remove_range(ic, &dio->range);
3437 			INIT_WORK(&dio->work, integrity_bio_wait);
3438 			queue_work(ic->offload_wq, &dio->work);
3439 		} else {
3440 			block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
3441 					dio->range.n_sectors, BITMAP_OP_SET);
3442 			bio_list_add(&waiting, bio);
3443 		}
3444 	}
3445 
3446 	if (bio_list_empty(&waiting))
3447 		return;
3448 
3449 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
3450 			   bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
3451 			   BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
3452 
3453 	while ((bio = bio_list_pop(&waiting))) {
3454 		struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3455 
3456 		block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3457 				dio->range.n_sectors, BITMAP_OP_SET);
3458 
3459 		remove_range(ic, &dio->range);
3460 		INIT_WORK(&dio->work, integrity_bio_wait);
3461 		queue_work(ic->offload_wq, &dio->work);
3462 	}
3463 
3464 	queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3465 }
3466 
3467 static void bitmap_flush_work(struct work_struct *work)
3468 {
3469 	struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
3470 	struct dm_integrity_range range;
3471 	unsigned long limit;
3472 	struct bio *bio;
3473 
3474 	dm_integrity_flush_buffers(ic, false);
3475 
3476 	range.logical_sector = 0;
3477 	range.n_sectors = ic->provided_data_sectors;
3478 
3479 	spin_lock_irq(&ic->endio_wait.lock);
3480 	add_new_range_and_wait(ic, &range);
3481 	spin_unlock_irq(&ic->endio_wait.lock);
3482 
3483 	dm_integrity_flush_buffers(ic, true);
3484 
3485 	limit = ic->provided_data_sectors;
3486 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3487 		limit = le64_to_cpu(ic->sb->recalc_sector)
3488 			>> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
3489 			<< (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3490 	}
3491 	/*DEBUG_print("zeroing journal\n");*/
3492 	block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
3493 	block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
3494 
3495 	rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3496 			   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3497 
3498 	spin_lock_irq(&ic->endio_wait.lock);
3499 	remove_range_unlocked(ic, &range);
3500 	while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
3501 		bio_endio(bio);
3502 		spin_unlock_irq(&ic->endio_wait.lock);
3503 		spin_lock_irq(&ic->endio_wait.lock);
3504 	}
3505 	spin_unlock_irq(&ic->endio_wait.lock);
3506 }
3507 
3508 
3509 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
3510 			 unsigned int n_sections, unsigned char commit_seq)
3511 {
3512 	unsigned int i, j, n;
3513 
3514 	if (!n_sections)
3515 		return;
3516 
3517 	for (n = 0; n < n_sections; n++) {
3518 		i = start_section + n;
3519 		wraparound_section(ic, &i);
3520 		for (j = 0; j < ic->journal_section_sectors; j++) {
3521 			struct journal_sector *js = access_journal(ic, i, j);
3522 
3523 			BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
3524 			memset(&js->sectors, 0, sizeof(js->sectors));
3525 			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
3526 		}
3527 		for (j = 0; j < ic->journal_section_entries; j++) {
3528 			struct journal_entry *je = access_journal_entry(ic, i, j);
3529 
3530 			journal_entry_set_unused(je);
3531 		}
3532 	}
3533 
3534 	write_journal(ic, start_section, n_sections);
3535 }
3536 
3537 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3538 {
3539 	unsigned char k;
3540 
3541 	for (k = 0; k < N_COMMIT_IDS; k++) {
3542 		if (dm_integrity_commit_id(ic, i, j, k) == id)
3543 			return k;
3544 	}
3545 	dm_integrity_io_error(ic, "journal commit id", -EIO);
3546 	return -EIO;
3547 }
3548 
3549 static void replay_journal(struct dm_integrity_c *ic)
3550 {
3551 	unsigned int i, j;
3552 	bool used_commit_ids[N_COMMIT_IDS];
3553 	unsigned int max_commit_id_sections[N_COMMIT_IDS];
3554 	unsigned int write_start, write_sections;
3555 	unsigned int continue_section;
3556 	bool journal_empty;
3557 	unsigned char unused, last_used, want_commit_seq;
3558 
3559 	if (ic->mode == 'R')
3560 		return;
3561 
3562 	if (ic->journal_uptodate)
3563 		return;
3564 
3565 	last_used = 0;
3566 	write_start = 0;
3567 
3568 	if (!ic->just_formatted) {
3569 		DEBUG_print("reading journal\n");
3570 		rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3571 		if (ic->journal_io)
3572 			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3573 		if (ic->journal_io) {
3574 			struct journal_completion crypt_comp;
3575 
3576 			crypt_comp.ic = ic;
3577 			init_completion(&crypt_comp.comp);
3578 			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3579 			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3580 			wait_for_completion(&crypt_comp.comp);
3581 		}
3582 		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3583 	}
3584 
3585 	if (dm_integrity_failed(ic))
3586 		goto clear_journal;
3587 
3588 	journal_empty = true;
3589 	memset(used_commit_ids, 0, sizeof(used_commit_ids));
3590 	memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3591 	for (i = 0; i < ic->journal_sections; i++) {
3592 		for (j = 0; j < ic->journal_section_sectors; j++) {
3593 			int k;
3594 			struct journal_sector *js = access_journal(ic, i, j);
3595 
3596 			k = find_commit_seq(ic, i, j, js->commit_id);
3597 			if (k < 0)
3598 				goto clear_journal;
3599 			used_commit_ids[k] = true;
3600 			max_commit_id_sections[k] = i;
3601 		}
3602 		if (journal_empty) {
3603 			for (j = 0; j < ic->journal_section_entries; j++) {
3604 				struct journal_entry *je = access_journal_entry(ic, i, j);
3605 
3606 				if (!journal_entry_is_unused(je)) {
3607 					journal_empty = false;
3608 					break;
3609 				}
3610 			}
3611 		}
3612 	}
3613 
3614 	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3615 		unused = N_COMMIT_IDS - 1;
3616 		while (unused && !used_commit_ids[unused - 1])
3617 			unused--;
3618 	} else {
3619 		for (unused = 0; unused < N_COMMIT_IDS; unused++)
3620 			if (!used_commit_ids[unused])
3621 				break;
3622 		if (unused == N_COMMIT_IDS) {
3623 			dm_integrity_io_error(ic, "journal commit ids", -EIO);
3624 			goto clear_journal;
3625 		}
3626 	}
3627 	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3628 		    unused, used_commit_ids[0], used_commit_ids[1],
3629 		    used_commit_ids[2], used_commit_ids[3]);
3630 
3631 	last_used = prev_commit_seq(unused);
3632 	want_commit_seq = prev_commit_seq(last_used);
3633 
3634 	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3635 		journal_empty = true;
3636 
3637 	write_start = max_commit_id_sections[last_used] + 1;
3638 	if (unlikely(write_start >= ic->journal_sections))
3639 		want_commit_seq = next_commit_seq(want_commit_seq);
3640 	wraparound_section(ic, &write_start);
3641 
3642 	i = write_start;
3643 	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3644 		for (j = 0; j < ic->journal_section_sectors; j++) {
3645 			struct journal_sector *js = access_journal(ic, i, j);
3646 
3647 			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3648 				/*
3649 				 * This could be caused by crash during writing.
3650 				 * We won't replay the inconsistent part of the
3651 				 * journal.
3652 				 */
3653 				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3654 					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3655 				goto brk;
3656 			}
3657 		}
3658 		i++;
3659 		if (unlikely(i >= ic->journal_sections))
3660 			want_commit_seq = next_commit_seq(want_commit_seq);
3661 		wraparound_section(ic, &i);
3662 	}
3663 brk:
3664 
3665 	if (!journal_empty) {
3666 		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3667 			    write_sections, write_start, want_commit_seq);
3668 		do_journal_write(ic, write_start, write_sections, true);
3669 	}
3670 
3671 	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3672 		continue_section = write_start;
3673 		ic->commit_seq = want_commit_seq;
3674 		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3675 	} else {
3676 		unsigned int s;
3677 		unsigned char erase_seq;
3678 
3679 clear_journal:
3680 		DEBUG_print("clearing journal\n");
3681 
3682 		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3683 		s = write_start;
3684 		init_journal(ic, s, 1, erase_seq);
3685 		s++;
3686 		wraparound_section(ic, &s);
3687 		if (ic->journal_sections >= 2) {
3688 			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3689 			s += ic->journal_sections - 2;
3690 			wraparound_section(ic, &s);
3691 			init_journal(ic, s, 1, erase_seq);
3692 		}
3693 
3694 		continue_section = 0;
3695 		ic->commit_seq = next_commit_seq(erase_seq);
3696 	}
3697 
3698 	ic->committed_section = continue_section;
3699 	ic->n_committed_sections = 0;
3700 
3701 	ic->uncommitted_section = continue_section;
3702 	ic->n_uncommitted_sections = 0;
3703 
3704 	ic->free_section = continue_section;
3705 	ic->free_section_entry = 0;
3706 	ic->free_sectors = ic->journal_entries;
3707 
3708 	ic->journal_tree_root = RB_ROOT;
3709 	for (i = 0; i < ic->journal_entries; i++)
3710 		init_journal_node(&ic->journal_tree[i]);
3711 }
3712 
3713 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3714 {
3715 	DEBUG_print("%s\n", __func__);
3716 
3717 	if (ic->mode == 'B') {
3718 		ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3719 		ic->synchronous_mode = 1;
3720 
3721 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3722 		queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3723 		flush_workqueue(ic->commit_wq);
3724 	}
3725 }
3726 
3727 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3728 {
3729 	struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3730 
3731 	DEBUG_print("%s\n", __func__);
3732 
3733 	dm_integrity_enter_synchronous_mode(ic);
3734 
3735 	return NOTIFY_DONE;
3736 }
3737 
3738 static void dm_integrity_postsuspend(struct dm_target *ti)
3739 {
3740 	struct dm_integrity_c *ic = ti->private;
3741 	int r;
3742 
3743 	WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3744 
3745 	timer_delete_sync(&ic->autocommit_timer);
3746 
3747 	if (ic->recalc_wq)
3748 		drain_workqueue(ic->recalc_wq);
3749 
3750 	if (ic->mode == 'B')
3751 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
3752 
3753 	queue_work(ic->commit_wq, &ic->commit_work);
3754 	drain_workqueue(ic->commit_wq);
3755 
3756 	if (ic->mode == 'J') {
3757 		queue_work(ic->writer_wq, &ic->writer_work);
3758 		drain_workqueue(ic->writer_wq);
3759 		dm_integrity_flush_buffers(ic, true);
3760 		if (ic->wrote_to_journal) {
3761 			init_journal(ic, ic->free_section,
3762 				     ic->journal_sections - ic->free_section, ic->commit_seq);
3763 			if (ic->free_section) {
3764 				init_journal(ic, 0, ic->free_section,
3765 					     next_commit_seq(ic->commit_seq));
3766 			}
3767 		}
3768 	}
3769 
3770 	if (ic->mode == 'B') {
3771 		dm_integrity_flush_buffers(ic, true);
3772 #if 1
3773 		/* set to 0 to test bitmap replay code */
3774 		init_journal(ic, 0, ic->journal_sections, 0);
3775 		ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3776 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3777 		if (unlikely(r))
3778 			dm_integrity_io_error(ic, "writing superblock", r);
3779 #endif
3780 	}
3781 
3782 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3783 
3784 	ic->journal_uptodate = true;
3785 }
3786 
3787 static void dm_integrity_resume(struct dm_target *ti)
3788 {
3789 	struct dm_integrity_c *ic = ti->private;
3790 	__u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3791 	int r;
3792 	__le32 flags;
3793 
3794 	DEBUG_print("resume\n");
3795 
3796 	ic->wrote_to_journal = false;
3797 
3798 	flags = ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING);
3799 	r = sync_rw_sb(ic, REQ_OP_READ);
3800 	if (r)
3801 		dm_integrity_io_error(ic, "reading superblock", r);
3802 	if ((ic->sb->flags & flags) != flags) {
3803 		ic->sb->flags |= flags;
3804 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3805 		if (unlikely(r))
3806 			dm_integrity_io_error(ic, "writing superblock", r);
3807 	}
3808 
3809 	if (ic->provided_data_sectors != old_provided_data_sectors) {
3810 		if (ic->provided_data_sectors > old_provided_data_sectors &&
3811 		    ic->mode == 'B' &&
3812 		    ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP) &&
3813 		    ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3814 			rw_journal_sectors(ic, REQ_OP_READ, 0,
3815 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3816 			block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3817 					ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3818 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3819 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3820 		}
3821 
3822 		ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3823 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3824 		if (unlikely(r))
3825 			dm_integrity_io_error(ic, "writing superblock", r);
3826 	}
3827 
3828 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3829 		DEBUG_print("resume dirty_bitmap\n");
3830 		rw_journal_sectors(ic, REQ_OP_READ, 0,
3831 				   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3832 		if (ic->mode == 'B') {
3833 			if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3834 			    !ic->reset_recalculate_flag) {
3835 				block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3836 				block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3837 				if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3838 						     BITMAP_OP_TEST_ALL_CLEAR)) {
3839 					ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3840 					ic->sb->recalc_sector = cpu_to_le64(0);
3841 				}
3842 			} else {
3843 				DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3844 					    ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3845 				ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3846 				block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3847 				block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3848 				block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3849 				rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3850 						   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3851 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3852 				ic->sb->recalc_sector = cpu_to_le64(0);
3853 			}
3854 		} else {
3855 			if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3856 			      block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3857 			    ic->reset_recalculate_flag) {
3858 				ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3859 				ic->sb->recalc_sector = cpu_to_le64(0);
3860 			}
3861 			init_journal(ic, 0, ic->journal_sections, 0);
3862 			replay_journal(ic);
3863 			ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3864 		}
3865 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3866 		if (unlikely(r))
3867 			dm_integrity_io_error(ic, "writing superblock", r);
3868 	} else {
3869 		replay_journal(ic);
3870 		if (ic->reset_recalculate_flag) {
3871 			ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3872 			ic->sb->recalc_sector = cpu_to_le64(0);
3873 		}
3874 		if (ic->mode == 'B') {
3875 			ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3876 			ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3877 			r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3878 			if (unlikely(r))
3879 				dm_integrity_io_error(ic, "writing superblock", r);
3880 
3881 			block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3882 			block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3883 			block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3884 			if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3885 			    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3886 				block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3887 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3888 				block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3889 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3890 				block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3891 						ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3892 			}
3893 			rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3894 					   ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3895 		}
3896 	}
3897 
3898 	DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3899 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3900 		__u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3901 
3902 		DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3903 		if (recalc_pos < ic->provided_data_sectors) {
3904 			queue_work(ic->recalc_wq, &ic->recalc_work);
3905 		} else if (recalc_pos > ic->provided_data_sectors) {
3906 			ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3907 			recalc_write_super(ic);
3908 		}
3909 	}
3910 
3911 	ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3912 	ic->reboot_notifier.next = NULL;
3913 	ic->reboot_notifier.priority = INT_MAX - 1;	/* be notified after md and before hardware drivers */
3914 	WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3915 
3916 #if 0
3917 	/* set to 1 to stress test synchronous mode */
3918 	dm_integrity_enter_synchronous_mode(ic);
3919 #endif
3920 }
3921 
3922 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3923 				unsigned int status_flags, char *result, unsigned int maxlen)
3924 {
3925 	struct dm_integrity_c *ic = ti->private;
3926 	unsigned int arg_count;
3927 	size_t sz = 0;
3928 
3929 	switch (type) {
3930 	case STATUSTYPE_INFO:
3931 		DMEMIT("%llu %llu",
3932 			(unsigned long long)atomic64_read(&ic->number_of_mismatches),
3933 			ic->provided_data_sectors);
3934 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3935 			DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3936 		else
3937 			DMEMIT(" -");
3938 		break;
3939 
3940 	case STATUSTYPE_TABLE: {
3941 		arg_count = 1; /* buffer_sectors */
3942 		arg_count += !!ic->meta_dev;
3943 		arg_count += ic->sectors_per_block != 1;
3944 		arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3945 		arg_count += ic->reset_recalculate_flag;
3946 		arg_count += ic->discard;
3947 		arg_count += ic->mode != 'I'; /* interleave_sectors */
3948 		arg_count += ic->mode == 'J'; /* journal_sectors */
3949 		arg_count += ic->mode == 'J'; /* journal_watermark */
3950 		arg_count += ic->mode == 'J'; /* commit_time */
3951 		arg_count += ic->mode == 'B'; /* sectors_per_bit */
3952 		arg_count += ic->mode == 'B'; /* bitmap_flush_interval */
3953 		arg_count += !!ic->internal_hash_alg.alg_string;
3954 		arg_count += !!ic->journal_crypt_alg.alg_string;
3955 		arg_count += !!ic->journal_mac_alg.alg_string;
3956 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3957 		arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3958 		arg_count += ic->legacy_recalculate;
3959 		DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3960 		       ic->tag_size, ic->mode, arg_count);
3961 		if (ic->meta_dev)
3962 			DMEMIT(" meta_device:%s", ic->meta_dev->name);
3963 		if (ic->sectors_per_block != 1)
3964 			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3965 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3966 			DMEMIT(" recalculate");
3967 		if (ic->reset_recalculate_flag)
3968 			DMEMIT(" reset_recalculate");
3969 		if (ic->discard)
3970 			DMEMIT(" allow_discards");
3971 		if (ic->mode != 'I')
3972 			DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3973 		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3974 		if (ic->mode == 'J') {
3975 			__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3976 
3977 			watermark_percentage += ic->journal_entries / 2;
3978 			do_div(watermark_percentage, ic->journal_entries);
3979 			DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3980 			DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3981 			DMEMIT(" commit_time:%u", ic->autocommit_msec);
3982 		}
3983 		if (ic->mode == 'B') {
3984 			DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3985 			DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3986 		}
3987 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3988 			DMEMIT(" fix_padding");
3989 		if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3990 			DMEMIT(" fix_hmac");
3991 		if (ic->legacy_recalculate)
3992 			DMEMIT(" legacy_recalculate");
3993 
3994 #define EMIT_ALG(a, n)							\
3995 		do {							\
3996 			if (ic->a.alg_string) {				\
3997 				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
3998 				if (ic->a.key_string)			\
3999 					DMEMIT(":%s", ic->a.key_string);\
4000 			}						\
4001 		} while (0)
4002 		EMIT_ALG(internal_hash_alg, "internal_hash");
4003 		EMIT_ALG(journal_crypt_alg, "journal_crypt");
4004 		EMIT_ALG(journal_mac_alg, "journal_mac");
4005 		break;
4006 	}
4007 	case STATUSTYPE_IMA:
4008 		DMEMIT_TARGET_NAME_VERSION(ti->type);
4009 		DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
4010 			ic->dev->name, ic->start, ic->tag_size, ic->mode);
4011 
4012 		if (ic->meta_dev)
4013 			DMEMIT(",meta_device=%s", ic->meta_dev->name);
4014 		if (ic->sectors_per_block != 1)
4015 			DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
4016 
4017 		DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
4018 		       'y' : 'n');
4019 		DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
4020 		DMEMIT(",fix_padding=%c",
4021 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
4022 		DMEMIT(",fix_hmac=%c",
4023 		       ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
4024 		DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
4025 
4026 		DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
4027 		DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
4028 		DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
4029 		DMEMIT(";");
4030 		break;
4031 	}
4032 }
4033 
4034 static int dm_integrity_iterate_devices(struct dm_target *ti,
4035 					iterate_devices_callout_fn fn, void *data)
4036 {
4037 	struct dm_integrity_c *ic = ti->private;
4038 
4039 	if (!ic->meta_dev)
4040 		return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
4041 	else
4042 		return fn(ti, ic->dev, 0, ti->len, data);
4043 }
4044 
4045 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
4046 {
4047 	struct dm_integrity_c *ic = ti->private;
4048 
4049 	if (ic->sectors_per_block > 1) {
4050 		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
4051 		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
4052 		limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
4053 		limits->dma_alignment = limits->logical_block_size - 1;
4054 		limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
4055 	}
4056 
4057 	if (!ic->internal_hash) {
4058 		struct blk_integrity *bi = &limits->integrity;
4059 
4060 		memset(bi, 0, sizeof(*bi));
4061 		bi->metadata_size = ic->tag_size;
4062 		bi->tag_size = bi->metadata_size;
4063 		bi->interval_exp =
4064 			ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
4065 	}
4066 
4067 	limits->max_integrity_segments = USHRT_MAX;
4068 }
4069 
4070 static void calculate_journal_section_size(struct dm_integrity_c *ic)
4071 {
4072 	unsigned int sector_space = JOURNAL_SECTOR_DATA;
4073 
4074 	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
4075 	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
4076 					 JOURNAL_ENTRY_ROUNDUP);
4077 
4078 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
4079 		sector_space -= JOURNAL_MAC_PER_SECTOR;
4080 	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
4081 	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
4082 	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
4083 	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
4084 }
4085 
4086 static int calculate_device_limits(struct dm_integrity_c *ic)
4087 {
4088 	__u64 initial_sectors;
4089 
4090 	calculate_journal_section_size(ic);
4091 	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
4092 	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
4093 		return -EINVAL;
4094 	ic->initial_sectors = initial_sectors;
4095 
4096 	if (ic->mode == 'I') {
4097 		if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
4098 			return -EINVAL;
4099 	} else if (!ic->meta_dev) {
4100 		sector_t last_sector, last_area, last_offset;
4101 
4102 		/* we have to maintain excessive padding for compatibility with existing volumes */
4103 		__u64 metadata_run_padding =
4104 			ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
4105 			(__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
4106 			(__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
4107 
4108 		ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
4109 					    metadata_run_padding) >> SECTOR_SHIFT;
4110 		if (!(ic->metadata_run & (ic->metadata_run - 1)))
4111 			ic->log2_metadata_run = __ffs(ic->metadata_run);
4112 		else
4113 			ic->log2_metadata_run = -1;
4114 
4115 		get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
4116 		last_sector = get_data_sector(ic, last_area, last_offset);
4117 		if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
4118 			return -EINVAL;
4119 	} else {
4120 		__u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
4121 
4122 		meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
4123 				>> (ic->log2_buffer_sectors + SECTOR_SHIFT);
4124 		meta_size <<= ic->log2_buffer_sectors;
4125 		if (ic->initial_sectors + meta_size < ic->initial_sectors ||
4126 		    ic->initial_sectors + meta_size > ic->meta_device_sectors)
4127 			return -EINVAL;
4128 		ic->metadata_run = 1;
4129 		ic->log2_metadata_run = 0;
4130 	}
4131 
4132 	return 0;
4133 }
4134 
4135 static void get_provided_data_sectors(struct dm_integrity_c *ic)
4136 {
4137 	if (!ic->meta_dev) {
4138 		int test_bit;
4139 
4140 		ic->provided_data_sectors = 0;
4141 		for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
4142 			__u64 prev_data_sectors = ic->provided_data_sectors;
4143 
4144 			ic->provided_data_sectors |= (sector_t)1 << test_bit;
4145 			if (calculate_device_limits(ic))
4146 				ic->provided_data_sectors = prev_data_sectors;
4147 		}
4148 	} else {
4149 		ic->provided_data_sectors = ic->data_device_sectors;
4150 		ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
4151 	}
4152 }
4153 
4154 static int initialize_superblock(struct dm_integrity_c *ic,
4155 				 unsigned int journal_sectors, unsigned int interleave_sectors)
4156 {
4157 	unsigned int journal_sections;
4158 	int test_bit;
4159 
4160 	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
4161 	memcpy(ic->sb->magic, SB_MAGIC, 8);
4162 	if (ic->mode == 'I')
4163 		ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
4164 	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
4165 	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
4166 	if (ic->journal_mac_alg.alg_string)
4167 		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
4168 
4169 	calculate_journal_section_size(ic);
4170 	journal_sections = journal_sectors / ic->journal_section_sectors;
4171 	if (!journal_sections)
4172 		journal_sections = 1;
4173 	if (ic->mode == 'I')
4174 		journal_sections = 0;
4175 
4176 	if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
4177 		ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
4178 		get_random_bytes(ic->sb->salt, SALT_SIZE);
4179 	}
4180 
4181 	if (!ic->meta_dev) {
4182 		if (ic->fix_padding)
4183 			ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
4184 		ic->sb->journal_sections = cpu_to_le32(journal_sections);
4185 		if (!interleave_sectors)
4186 			interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4187 		ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
4188 		ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4189 		ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4190 
4191 		get_provided_data_sectors(ic);
4192 		if (!ic->provided_data_sectors)
4193 			return -EINVAL;
4194 	} else {
4195 		ic->sb->log2_interleave_sectors = 0;
4196 
4197 		get_provided_data_sectors(ic);
4198 		if (!ic->provided_data_sectors)
4199 			return -EINVAL;
4200 
4201 try_smaller_buffer:
4202 		ic->sb->journal_sections = cpu_to_le32(0);
4203 		for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
4204 			__u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
4205 			__u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
4206 
4207 			if (test_journal_sections > journal_sections)
4208 				continue;
4209 			ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
4210 			if (calculate_device_limits(ic))
4211 				ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
4212 
4213 		}
4214 		if (!le32_to_cpu(ic->sb->journal_sections)) {
4215 			if (ic->log2_buffer_sectors > 3) {
4216 				ic->log2_buffer_sectors--;
4217 				goto try_smaller_buffer;
4218 			}
4219 			return -EINVAL;
4220 		}
4221 	}
4222 
4223 	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
4224 
4225 	sb_set_version(ic);
4226 
4227 	return 0;
4228 }
4229 
4230 static void dm_integrity_free_page_list(struct page_list *pl)
4231 {
4232 	unsigned int i;
4233 
4234 	if (!pl)
4235 		return;
4236 	for (i = 0; pl[i].page; i++)
4237 		__free_page(pl[i].page);
4238 	kvfree(pl);
4239 }
4240 
4241 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
4242 {
4243 	struct page_list *pl;
4244 	unsigned int i;
4245 
4246 	pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
4247 	if (!pl)
4248 		return NULL;
4249 
4250 	for (i = 0; i < n_pages; i++) {
4251 		pl[i].page = alloc_page(GFP_KERNEL);
4252 		if (!pl[i].page) {
4253 			dm_integrity_free_page_list(pl);
4254 			return NULL;
4255 		}
4256 		if (i)
4257 			pl[i - 1].next = &pl[i];
4258 	}
4259 	pl[i].page = NULL;
4260 	pl[i].next = NULL;
4261 
4262 	return pl;
4263 }
4264 
4265 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
4266 {
4267 	unsigned int i;
4268 
4269 	for (i = 0; i < ic->journal_sections; i++)
4270 		kvfree(sl[i]);
4271 	kvfree(sl);
4272 }
4273 
4274 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
4275 								   struct page_list *pl)
4276 {
4277 	struct scatterlist **sl;
4278 	unsigned int i;
4279 
4280 	sl = kvmalloc_array(ic->journal_sections,
4281 			    sizeof(struct scatterlist *),
4282 			    GFP_KERNEL | __GFP_ZERO);
4283 	if (!sl)
4284 		return NULL;
4285 
4286 	for (i = 0; i < ic->journal_sections; i++) {
4287 		struct scatterlist *s;
4288 		unsigned int start_index, start_offset;
4289 		unsigned int end_index, end_offset;
4290 		unsigned int n_pages;
4291 		unsigned int idx;
4292 
4293 		page_list_location(ic, i, 0, &start_index, &start_offset);
4294 		page_list_location(ic, i, ic->journal_section_sectors - 1,
4295 				   &end_index, &end_offset);
4296 
4297 		n_pages = (end_index - start_index + 1);
4298 
4299 		s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
4300 				   GFP_KERNEL);
4301 		if (!s) {
4302 			dm_integrity_free_journal_scatterlist(ic, sl);
4303 			return NULL;
4304 		}
4305 
4306 		sg_init_table(s, n_pages);
4307 		for (idx = start_index; idx <= end_index; idx++) {
4308 			char *va = lowmem_page_address(pl[idx].page);
4309 			unsigned int start = 0, end = PAGE_SIZE;
4310 
4311 			if (idx == start_index)
4312 				start = start_offset;
4313 			if (idx == end_index)
4314 				end = end_offset + (1 << SECTOR_SHIFT);
4315 			sg_set_buf(&s[idx - start_index], va + start, end - start);
4316 		}
4317 
4318 		sl[i] = s;
4319 	}
4320 
4321 	return sl;
4322 }
4323 
4324 static void free_alg(struct alg_spec *a)
4325 {
4326 	kfree_sensitive(a->alg_string);
4327 	kfree_sensitive(a->key);
4328 	memset(a, 0, sizeof(*a));
4329 }
4330 
4331 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
4332 {
4333 	char *k;
4334 
4335 	free_alg(a);
4336 
4337 	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
4338 	if (!a->alg_string)
4339 		goto nomem;
4340 
4341 	k = strchr(a->alg_string, ':');
4342 	if (k) {
4343 		*k = 0;
4344 		a->key_string = k + 1;
4345 		if (strlen(a->key_string) & 1)
4346 			goto inval;
4347 
4348 		a->key_size = strlen(a->key_string) / 2;
4349 		a->key = kmalloc(a->key_size, GFP_KERNEL);
4350 		if (!a->key)
4351 			goto nomem;
4352 		if (hex2bin(a->key, a->key_string, a->key_size))
4353 			goto inval;
4354 	}
4355 
4356 	return 0;
4357 inval:
4358 	*error = error_inval;
4359 	return -EINVAL;
4360 nomem:
4361 	*error = "Out of memory for an argument";
4362 	return -ENOMEM;
4363 }
4364 
4365 static int get_mac(struct crypto_shash **shash, struct crypto_ahash **ahash,
4366 		   struct alg_spec *a, char **error, char *error_alg, char *error_key)
4367 {
4368 	int r;
4369 
4370 	if (a->alg_string) {
4371 		if (shash) {
4372 			*shash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4373 			if (IS_ERR(*shash)) {
4374 				*shash = NULL;
4375 				goto try_ahash;
4376 			}
4377 			if (a->key) {
4378 				r = crypto_shash_setkey(*shash, a->key, a->key_size);
4379 				if (r) {
4380 					*error = error_key;
4381 					return r;
4382 				}
4383 			} else if (crypto_shash_get_flags(*shash) & CRYPTO_TFM_NEED_KEY) {
4384 				*error = error_key;
4385 				return -ENOKEY;
4386 			}
4387 			return 0;
4388 		}
4389 try_ahash:
4390 		if (ahash) {
4391 			*ahash = crypto_alloc_ahash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4392 			if (IS_ERR(*ahash)) {
4393 				*error = error_alg;
4394 				r = PTR_ERR(*ahash);
4395 				*ahash = NULL;
4396 				return r;
4397 			}
4398 			if (a->key) {
4399 				r = crypto_ahash_setkey(*ahash, a->key, a->key_size);
4400 				if (r) {
4401 					*error = error_key;
4402 					return r;
4403 				}
4404 			} else if (crypto_ahash_get_flags(*ahash) & CRYPTO_TFM_NEED_KEY) {
4405 				*error = error_key;
4406 				return -ENOKEY;
4407 			}
4408 			return 0;
4409 		}
4410 		*error = error_alg;
4411 		return -ENOENT;
4412 	}
4413 
4414 	return 0;
4415 }
4416 
4417 static int create_journal(struct dm_integrity_c *ic, char **error)
4418 {
4419 	int r = 0;
4420 	unsigned int i;
4421 	__u64 journal_pages, journal_desc_size, journal_tree_size;
4422 	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
4423 	struct skcipher_request *req = NULL;
4424 
4425 	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
4426 	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
4427 	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
4428 	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
4429 
4430 	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
4431 				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
4432 	journal_desc_size = journal_pages * sizeof(struct page_list);
4433 	if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
4434 		*error = "Journal doesn't fit into memory";
4435 		r = -ENOMEM;
4436 		goto bad;
4437 	}
4438 	ic->journal_pages = journal_pages;
4439 
4440 	ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
4441 	if (!ic->journal) {
4442 		*error = "Could not allocate memory for journal";
4443 		r = -ENOMEM;
4444 		goto bad;
4445 	}
4446 	if (ic->journal_crypt_alg.alg_string) {
4447 		unsigned int ivsize, blocksize;
4448 		struct journal_completion comp;
4449 
4450 		comp.ic = ic;
4451 		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4452 		if (IS_ERR(ic->journal_crypt)) {
4453 			*error = "Invalid journal cipher";
4454 			r = PTR_ERR(ic->journal_crypt);
4455 			ic->journal_crypt = NULL;
4456 			goto bad;
4457 		}
4458 		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
4459 		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
4460 
4461 		if (ic->journal_crypt_alg.key) {
4462 			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
4463 						   ic->journal_crypt_alg.key_size);
4464 			if (r) {
4465 				*error = "Error setting encryption key";
4466 				goto bad;
4467 			}
4468 		}
4469 		DEBUG_print("cipher %s, block size %u iv size %u\n",
4470 			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
4471 
4472 		ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
4473 		if (!ic->journal_io) {
4474 			*error = "Could not allocate memory for journal io";
4475 			r = -ENOMEM;
4476 			goto bad;
4477 		}
4478 
4479 		if (blocksize == 1) {
4480 			struct scatterlist *sg;
4481 
4482 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4483 			if (!req) {
4484 				*error = "Could not allocate crypt request";
4485 				r = -ENOMEM;
4486 				goto bad;
4487 			}
4488 
4489 			crypt_iv = kzalloc(ivsize, GFP_KERNEL);
4490 			if (!crypt_iv) {
4491 				*error = "Could not allocate iv";
4492 				r = -ENOMEM;
4493 				goto bad;
4494 			}
4495 
4496 			ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
4497 			if (!ic->journal_xor) {
4498 				*error = "Could not allocate memory for journal xor";
4499 				r = -ENOMEM;
4500 				goto bad;
4501 			}
4502 
4503 			sg = kvmalloc_array(ic->journal_pages + 1,
4504 					    sizeof(struct scatterlist),
4505 					    GFP_KERNEL);
4506 			if (!sg) {
4507 				*error = "Unable to allocate sg list";
4508 				r = -ENOMEM;
4509 				goto bad;
4510 			}
4511 			sg_init_table(sg, ic->journal_pages + 1);
4512 			for (i = 0; i < ic->journal_pages; i++) {
4513 				char *va = lowmem_page_address(ic->journal_xor[i].page);
4514 
4515 				clear_page(va);
4516 				sg_set_buf(&sg[i], va, PAGE_SIZE);
4517 			}
4518 			sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
4519 
4520 			skcipher_request_set_crypt(req, sg, sg,
4521 						   PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
4522 			init_completion(&comp.comp);
4523 			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4524 			if (do_crypt(true, req, &comp))
4525 				wait_for_completion(&comp.comp);
4526 			kvfree(sg);
4527 			r = dm_integrity_failed(ic);
4528 			if (r) {
4529 				*error = "Unable to encrypt journal";
4530 				goto bad;
4531 			}
4532 			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
4533 
4534 			crypto_free_skcipher(ic->journal_crypt);
4535 			ic->journal_crypt = NULL;
4536 		} else {
4537 			unsigned int crypt_len = roundup(ivsize, blocksize);
4538 
4539 			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4540 			if (!req) {
4541 				*error = "Could not allocate crypt request";
4542 				r = -ENOMEM;
4543 				goto bad;
4544 			}
4545 
4546 			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
4547 			if (!crypt_iv) {
4548 				*error = "Could not allocate iv";
4549 				r = -ENOMEM;
4550 				goto bad;
4551 			}
4552 
4553 			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
4554 			if (!crypt_data) {
4555 				*error = "Unable to allocate crypt data";
4556 				r = -ENOMEM;
4557 				goto bad;
4558 			}
4559 
4560 			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
4561 			if (!ic->journal_scatterlist) {
4562 				*error = "Unable to allocate sg list";
4563 				r = -ENOMEM;
4564 				goto bad;
4565 			}
4566 			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
4567 			if (!ic->journal_io_scatterlist) {
4568 				*error = "Unable to allocate sg list";
4569 				r = -ENOMEM;
4570 				goto bad;
4571 			}
4572 			ic->sk_requests = kvmalloc_array(ic->journal_sections,
4573 							 sizeof(struct skcipher_request *),
4574 							 GFP_KERNEL | __GFP_ZERO);
4575 			if (!ic->sk_requests) {
4576 				*error = "Unable to allocate sk requests";
4577 				r = -ENOMEM;
4578 				goto bad;
4579 			}
4580 			for (i = 0; i < ic->journal_sections; i++) {
4581 				struct scatterlist sg;
4582 				struct skcipher_request *section_req;
4583 				__le32 section_le = cpu_to_le32(i);
4584 
4585 				memset(crypt_iv, 0x00, ivsize);
4586 				memset(crypt_data, 0x00, crypt_len);
4587 				memcpy(crypt_data, &section_le, min_t(size_t, crypt_len, sizeof(section_le)));
4588 
4589 				sg_init_one(&sg, crypt_data, crypt_len);
4590 				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4591 				init_completion(&comp.comp);
4592 				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4593 				if (do_crypt(true, req, &comp))
4594 					wait_for_completion(&comp.comp);
4595 
4596 				r = dm_integrity_failed(ic);
4597 				if (r) {
4598 					*error = "Unable to generate iv";
4599 					goto bad;
4600 				}
4601 
4602 				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4603 				if (!section_req) {
4604 					*error = "Unable to allocate crypt request";
4605 					r = -ENOMEM;
4606 					goto bad;
4607 				}
4608 				section_req->iv = kmalloc_array(ivsize, 2,
4609 								GFP_KERNEL);
4610 				if (!section_req->iv) {
4611 					skcipher_request_free(section_req);
4612 					*error = "Unable to allocate iv";
4613 					r = -ENOMEM;
4614 					goto bad;
4615 				}
4616 				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4617 				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4618 				ic->sk_requests[i] = section_req;
4619 				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4620 			}
4621 		}
4622 	}
4623 
4624 	for (i = 0; i < N_COMMIT_IDS; i++) {
4625 		unsigned int j;
4626 
4627 retest_commit_id:
4628 		for (j = 0; j < i; j++) {
4629 			if (ic->commit_ids[j] == ic->commit_ids[i]) {
4630 				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4631 				goto retest_commit_id;
4632 			}
4633 		}
4634 		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4635 	}
4636 
4637 	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4638 	if (journal_tree_size > ULONG_MAX) {
4639 		*error = "Journal doesn't fit into memory";
4640 		r = -ENOMEM;
4641 		goto bad;
4642 	}
4643 	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4644 	if (!ic->journal_tree) {
4645 		*error = "Could not allocate memory for journal tree";
4646 		r = -ENOMEM;
4647 	}
4648 bad:
4649 	kfree(crypt_data);
4650 	kfree(crypt_iv);
4651 	skcipher_request_free(req);
4652 
4653 	return r;
4654 }
4655 
4656 /*
4657  * Construct a integrity mapping
4658  *
4659  * Arguments:
4660  *	device
4661  *	offset from the start of the device
4662  *	tag size
4663  *	D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4664  *	number of optional arguments
4665  *	optional arguments:
4666  *		journal_sectors
4667  *		interleave_sectors
4668  *		buffer_sectors
4669  *		journal_watermark
4670  *		commit_time
4671  *		meta_device
4672  *		block_size
4673  *		sectors_per_bit
4674  *		bitmap_flush_interval
4675  *		internal_hash
4676  *		journal_crypt
4677  *		journal_mac
4678  *		recalculate
4679  */
4680 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4681 {
4682 	struct dm_integrity_c *ic;
4683 	char dummy;
4684 	int r;
4685 	unsigned int extra_args;
4686 	struct dm_arg_set as;
4687 	static const struct dm_arg _args[] = {
4688 		{0, 18, "Invalid number of feature args"},
4689 	};
4690 	unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4691 	bool should_write_sb;
4692 	__u64 threshold;
4693 	unsigned long long start;
4694 	__s8 log2_sectors_per_bitmap_bit = -1;
4695 	__s8 log2_blocks_per_bitmap_bit;
4696 	__u64 bits_in_journal;
4697 	__u64 n_bitmap_bits;
4698 
4699 #define DIRECT_ARGUMENTS	4
4700 
4701 	if (argc <= DIRECT_ARGUMENTS) {
4702 		ti->error = "Invalid argument count";
4703 		return -EINVAL;
4704 	}
4705 
4706 	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4707 	if (!ic) {
4708 		ti->error = "Cannot allocate integrity context";
4709 		return -ENOMEM;
4710 	}
4711 	ti->private = ic;
4712 	ti->per_io_data_size = sizeof(struct dm_integrity_io);
4713 	ic->ti = ti;
4714 
4715 	ic->in_progress = RB_ROOT;
4716 	INIT_LIST_HEAD(&ic->wait_list);
4717 	init_waitqueue_head(&ic->endio_wait);
4718 	bio_list_init(&ic->flush_bio_list);
4719 	init_waitqueue_head(&ic->copy_to_journal_wait);
4720 	init_completion(&ic->crypto_backoff);
4721 	atomic64_set(&ic->number_of_mismatches, 0);
4722 	ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4723 
4724 	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4725 	if (r) {
4726 		ti->error = "Device lookup failed";
4727 		goto bad;
4728 	}
4729 
4730 	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4731 		ti->error = "Invalid starting offset";
4732 		r = -EINVAL;
4733 		goto bad;
4734 	}
4735 	ic->start = start;
4736 
4737 	if (strcmp(argv[2], "-")) {
4738 		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4739 			ti->error = "Invalid tag size";
4740 			r = -EINVAL;
4741 			goto bad;
4742 		}
4743 	}
4744 
4745 	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4746 	    !strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
4747 	    !strcmp(argv[3], "I")) {
4748 		ic->mode = argv[3][0];
4749 	} else {
4750 		ti->error = "Invalid mode (expecting J, B, D, R, I)";
4751 		r = -EINVAL;
4752 		goto bad;
4753 	}
4754 
4755 	journal_sectors = 0;
4756 	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4757 	buffer_sectors = DEFAULT_BUFFER_SECTORS;
4758 	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4759 	sync_msec = DEFAULT_SYNC_MSEC;
4760 	ic->sectors_per_block = 1;
4761 
4762 	as.argc = argc - DIRECT_ARGUMENTS;
4763 	as.argv = argv + DIRECT_ARGUMENTS;
4764 	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4765 	if (r)
4766 		goto bad;
4767 
4768 	while (extra_args--) {
4769 		const char *opt_string;
4770 		unsigned int val;
4771 		unsigned long long llval;
4772 
4773 		opt_string = dm_shift_arg(&as);
4774 		if (!opt_string) {
4775 			r = -EINVAL;
4776 			ti->error = "Not enough feature arguments";
4777 			goto bad;
4778 		}
4779 		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4780 			journal_sectors = val ? val : 1;
4781 		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4782 			interleave_sectors = val;
4783 		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4784 			buffer_sectors = val;
4785 		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4786 			journal_watermark = val;
4787 		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4788 			sync_msec = val;
4789 		else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4790 			if (ic->meta_dev) {
4791 				dm_put_device(ti, ic->meta_dev);
4792 				ic->meta_dev = NULL;
4793 			}
4794 			r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4795 					  dm_table_get_mode(ti->table), &ic->meta_dev);
4796 			if (r) {
4797 				ti->error = "Device lookup failed";
4798 				goto bad;
4799 			}
4800 		} else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4801 			if (val < 1 << SECTOR_SHIFT ||
4802 			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4803 			    (val & (val - 1))) {
4804 				r = -EINVAL;
4805 				ti->error = "Invalid block_size argument";
4806 				goto bad;
4807 			}
4808 			ic->sectors_per_block = val >> SECTOR_SHIFT;
4809 		} else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4810 			log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4811 		} else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4812 			if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4813 				r = -EINVAL;
4814 				ti->error = "Invalid bitmap_flush_interval argument";
4815 				goto bad;
4816 			}
4817 			ic->bitmap_flush_interval = msecs_to_jiffies(val);
4818 		} else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4819 			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4820 					    "Invalid internal_hash argument");
4821 			if (r)
4822 				goto bad;
4823 		} else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4824 			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4825 					    "Invalid journal_crypt argument");
4826 			if (r)
4827 				goto bad;
4828 		} else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4829 			r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4830 					    "Invalid journal_mac argument");
4831 			if (r)
4832 				goto bad;
4833 		} else if (!strcmp(opt_string, "recalculate")) {
4834 			ic->recalculate_flag = true;
4835 		} else if (!strcmp(opt_string, "reset_recalculate")) {
4836 			ic->recalculate_flag = true;
4837 			ic->reset_recalculate_flag = true;
4838 		} else if (!strcmp(opt_string, "allow_discards")) {
4839 			ic->discard = true;
4840 		} else if (!strcmp(opt_string, "fix_padding")) {
4841 			ic->fix_padding = true;
4842 		} else if (!strcmp(opt_string, "fix_hmac")) {
4843 			ic->fix_hmac = true;
4844 		} else if (!strcmp(opt_string, "legacy_recalculate")) {
4845 			ic->legacy_recalculate = true;
4846 		} else {
4847 			r = -EINVAL;
4848 			ti->error = "Invalid argument";
4849 			goto bad;
4850 		}
4851 	}
4852 
4853 	ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4854 	if (!ic->meta_dev)
4855 		ic->meta_device_sectors = ic->data_device_sectors;
4856 	else
4857 		ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4858 
4859 	if (!journal_sectors) {
4860 		journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4861 				      ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4862 	}
4863 
4864 	if (!buffer_sectors)
4865 		buffer_sectors = 1;
4866 	ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4867 
4868 	r = get_mac(&ic->internal_shash, &ic->internal_ahash, &ic->internal_hash_alg, &ti->error,
4869 		    "Invalid internal hash", "Error setting internal hash key");
4870 	if (r)
4871 		goto bad;
4872 	if (ic->internal_shash) {
4873 		ic->internal_hash = true;
4874 		ic->internal_hash_digestsize = crypto_shash_digestsize(ic->internal_shash);
4875 	}
4876 	if (ic->internal_ahash) {
4877 		ic->internal_hash = true;
4878 		ic->internal_hash_digestsize = crypto_ahash_digestsize(ic->internal_ahash);
4879 		r = mempool_init_kmalloc_pool(&ic->ahash_req_pool, AHASH_MEMPOOL,
4880 					      sizeof(struct ahash_request) + crypto_ahash_reqsize(ic->internal_ahash));
4881 		if (r) {
4882 			ti->error = "Cannot allocate mempool";
4883 			goto bad;
4884 		}
4885 	}
4886 
4887 	r = get_mac(&ic->journal_mac, NULL, &ic->journal_mac_alg, &ti->error,
4888 		    "Invalid journal mac", "Error setting journal mac key");
4889 	if (r)
4890 		goto bad;
4891 
4892 	if (!ic->tag_size) {
4893 		if (!ic->internal_hash) {
4894 			ti->error = "Unknown tag size";
4895 			r = -EINVAL;
4896 			goto bad;
4897 		}
4898 		ic->tag_size = ic->internal_hash_digestsize;
4899 	}
4900 	if (ic->tag_size > MAX_TAG_SIZE) {
4901 		ti->error = "Too big tag size";
4902 		r = -EINVAL;
4903 		goto bad;
4904 	}
4905 	if (!(ic->tag_size & (ic->tag_size - 1)))
4906 		ic->log2_tag_size = __ffs(ic->tag_size);
4907 	else
4908 		ic->log2_tag_size = -1;
4909 
4910 	if (ic->mode == 'I') {
4911 		struct blk_integrity *bi;
4912 		if (ic->meta_dev) {
4913 			r = -EINVAL;
4914 			ti->error = "Metadata device not supported in inline mode";
4915 			goto bad;
4916 		}
4917 		if (!ic->internal_hash_alg.alg_string) {
4918 			r = -EINVAL;
4919 			ti->error = "Internal hash not set in inline mode";
4920 			goto bad;
4921 		}
4922 		if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
4923 			r = -EINVAL;
4924 			ti->error = "Journal crypt not supported in inline mode";
4925 			goto bad;
4926 		}
4927 		if (ic->discard) {
4928 			r = -EINVAL;
4929 			ti->error = "Discards not supported in inline mode";
4930 			goto bad;
4931 		}
4932 		bi = blk_get_integrity(ic->dev->bdev->bd_disk);
4933 		if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
4934 			r = -EINVAL;
4935 			ti->error = "Integrity profile not supported";
4936 			goto bad;
4937 		}
4938 		/*printk("tag_size: %u, metadata_size: %u\n", bi->tag_size, bi->metadata_size);*/
4939 		if (bi->metadata_size < ic->tag_size) {
4940 			r = -EINVAL;
4941 			ti->error = "The integrity profile is smaller than tag size";
4942 			goto bad;
4943 		}
4944 		if ((unsigned long)bi->metadata_size > PAGE_SIZE / 2) {
4945 			r = -EINVAL;
4946 			ti->error = "Too big tuple size";
4947 			goto bad;
4948 		}
4949 		ic->tuple_size = bi->metadata_size;
4950 		if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
4951 			r = -EINVAL;
4952 			ti->error = "Integrity profile sector size mismatch";
4953 			goto bad;
4954 		}
4955 	}
4956 
4957 	if (ic->mode == 'B' && !ic->internal_hash) {
4958 		r = -EINVAL;
4959 		ti->error = "Bitmap mode can be only used with internal hash";
4960 		goto bad;
4961 	}
4962 
4963 	if (ic->discard && !ic->internal_hash) {
4964 		r = -EINVAL;
4965 		ti->error = "Discard can be only used with internal hash";
4966 		goto bad;
4967 	}
4968 
4969 	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4970 	ic->autocommit_msec = sync_msec;
4971 	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4972 
4973 	ic->io = dm_io_client_create();
4974 	if (IS_ERR(ic->io)) {
4975 		r = PTR_ERR(ic->io);
4976 		ic->io = NULL;
4977 		ti->error = "Cannot allocate dm io";
4978 		goto bad;
4979 	}
4980 
4981 	r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4982 	if (r) {
4983 		ti->error = "Cannot allocate mempool";
4984 		goto bad;
4985 	}
4986 
4987 	r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
4988 	if (r) {
4989 		ti->error = "Cannot allocate mempool";
4990 		goto bad;
4991 	}
4992 
4993 	if (ic->mode == 'I') {
4994 		r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
4995 		if (r) {
4996 			ti->error = "Cannot allocate bio set";
4997 			goto bad;
4998 		}
4999 		r = bioset_init(&ic->recalc_bios, 1, 0, BIOSET_NEED_BVECS);
5000 		if (r) {
5001 			ti->error = "Cannot allocate bio set";
5002 			goto bad;
5003 		}
5004 	}
5005 
5006 	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
5007 					  WQ_MEM_RECLAIM | WQ_PERCPU,
5008 					  METADATA_WORKQUEUE_MAX_ACTIVE);
5009 	if (!ic->metadata_wq) {
5010 		ti->error = "Cannot allocate workqueue";
5011 		r = -ENOMEM;
5012 		goto bad;
5013 	}
5014 
5015 	/*
5016 	 * If this workqueue weren't ordered, it would cause bio reordering
5017 	 * and reduced performance.
5018 	 */
5019 	ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
5020 	if (!ic->wait_wq) {
5021 		ti->error = "Cannot allocate workqueue";
5022 		r = -ENOMEM;
5023 		goto bad;
5024 	}
5025 
5026 	ic->offload_wq = alloc_workqueue("dm-integrity-offload",
5027 					  WQ_MEM_RECLAIM | WQ_PERCPU,
5028 					  METADATA_WORKQUEUE_MAX_ACTIVE);
5029 	if (!ic->offload_wq) {
5030 		ti->error = "Cannot allocate workqueue";
5031 		r = -ENOMEM;
5032 		goto bad;
5033 	}
5034 
5035 	ic->commit_wq = alloc_workqueue("dm-integrity-commit",
5036 					WQ_MEM_RECLAIM | WQ_PERCPU, 1);
5037 	if (!ic->commit_wq) {
5038 		ti->error = "Cannot allocate workqueue";
5039 		r = -ENOMEM;
5040 		goto bad;
5041 	}
5042 	INIT_WORK(&ic->commit_work, integrity_commit);
5043 
5044 	if (ic->mode == 'J' || ic->mode == 'B') {
5045 		ic->writer_wq = alloc_workqueue("dm-integrity-writer",
5046 						WQ_MEM_RECLAIM | WQ_PERCPU, 1);
5047 		if (!ic->writer_wq) {
5048 			ti->error = "Cannot allocate workqueue";
5049 			r = -ENOMEM;
5050 			goto bad;
5051 		}
5052 		INIT_WORK(&ic->writer_work, integrity_writer);
5053 	}
5054 
5055 	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
5056 	if (!ic->sb) {
5057 		r = -ENOMEM;
5058 		ti->error = "Cannot allocate superblock area";
5059 		goto bad;
5060 	}
5061 
5062 	r = sync_rw_sb(ic, REQ_OP_READ);
5063 	if (r) {
5064 		ti->error = "Error reading superblock";
5065 		goto bad;
5066 	}
5067 	should_write_sb = false;
5068 	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
5069 		if (ic->mode != 'R') {
5070 			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
5071 				r = -EINVAL;
5072 				ti->error = "The device is not initialized";
5073 				goto bad;
5074 			}
5075 		}
5076 
5077 		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
5078 		if (r) {
5079 			ti->error = "Could not initialize superblock";
5080 			goto bad;
5081 		}
5082 		if (ic->mode != 'R')
5083 			should_write_sb = true;
5084 	}
5085 
5086 	if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
5087 		r = -EINVAL;
5088 		ti->error = "Unknown version";
5089 		goto bad;
5090 	}
5091 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
5092 		r = -EINVAL;
5093 		ti->error = "Inline flag mismatch";
5094 		goto bad;
5095 	}
5096 	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
5097 		r = -EINVAL;
5098 		ti->error = "Tag size doesn't match the information in superblock";
5099 		goto bad;
5100 	}
5101 	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
5102 		r = -EINVAL;
5103 		ti->error = "Block size doesn't match the information in superblock";
5104 		goto bad;
5105 	}
5106 	if (ic->mode != 'I') {
5107 		if (!le32_to_cpu(ic->sb->journal_sections)) {
5108 			r = -EINVAL;
5109 			ti->error = "Corrupted superblock, journal_sections is 0";
5110 			goto bad;
5111 		}
5112 	} else {
5113 		if (le32_to_cpu(ic->sb->journal_sections)) {
5114 			r = -EINVAL;
5115 			ti->error = "Corrupted superblock, journal_sections is not 0";
5116 			goto bad;
5117 		}
5118 	}
5119 	/* make sure that ti->max_io_len doesn't overflow */
5120 	if (!ic->meta_dev) {
5121 		if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
5122 		    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
5123 			r = -EINVAL;
5124 			ti->error = "Invalid interleave_sectors in the superblock";
5125 			goto bad;
5126 		}
5127 	} else {
5128 		if (ic->sb->log2_interleave_sectors) {
5129 			r = -EINVAL;
5130 			ti->error = "Invalid interleave_sectors in the superblock";
5131 			goto bad;
5132 		}
5133 	}
5134 	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
5135 		r = -EINVAL;
5136 		ti->error = "Journal mac mismatch";
5137 		goto bad;
5138 	}
5139 
5140 	get_provided_data_sectors(ic);
5141 	if (!ic->provided_data_sectors) {
5142 		r = -EINVAL;
5143 		ti->error = "The device is too small";
5144 		goto bad;
5145 	}
5146 
5147 try_smaller_buffer:
5148 	r = calculate_device_limits(ic);
5149 	if (r) {
5150 		if (ic->meta_dev) {
5151 			if (ic->log2_buffer_sectors > 3) {
5152 				ic->log2_buffer_sectors--;
5153 				goto try_smaller_buffer;
5154 			}
5155 		}
5156 		ti->error = "The device is too small";
5157 		goto bad;
5158 	}
5159 
5160 	if (log2_sectors_per_bitmap_bit < 0)
5161 		log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
5162 	if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
5163 		log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
5164 
5165 	bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
5166 	if (bits_in_journal > UINT_MAX)
5167 		bits_in_journal = UINT_MAX;
5168 	if (bits_in_journal)
5169 		while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
5170 			log2_sectors_per_bitmap_bit++;
5171 
5172 	log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
5173 	ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
5174 	if (should_write_sb)
5175 		ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
5176 
5177 	n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
5178 				+ (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
5179 	ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
5180 
5181 	if (!ic->meta_dev)
5182 		ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
5183 
5184 	if (ti->len > ic->provided_data_sectors) {
5185 		r = -EINVAL;
5186 		ti->error = "Not enough provided sectors for requested mapping size";
5187 		goto bad;
5188 	}
5189 
5190 	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
5191 	threshold += 50;
5192 	do_div(threshold, 100);
5193 	ic->free_sectors_threshold = threshold;
5194 
5195 	DEBUG_print("initialized:\n");
5196 	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
5197 	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
5198 	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
5199 	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
5200 	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
5201 	DEBUG_print("	journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
5202 	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
5203 	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
5204 	DEBUG_print("	data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
5205 	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
5206 	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
5207 	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
5208 	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
5209 	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
5210 	DEBUG_print("	bits_in_journal %llu\n", bits_in_journal);
5211 
5212 	if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
5213 		ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
5214 		ic->sb->recalc_sector = cpu_to_le64(0);
5215 	}
5216 
5217 	if (ic->internal_hash) {
5218 		ic->recalc_wq = alloc_workqueue("dm-integrity-recalc",
5219 						WQ_MEM_RECLAIM | WQ_PERCPU, 1);
5220 		if (!ic->recalc_wq) {
5221 			ti->error = "Cannot allocate workqueue";
5222 			r = -ENOMEM;
5223 			goto bad;
5224 		}
5225 		INIT_WORK(&ic->recalc_work, ic->mode == 'I' ? integrity_recalc_inline : integrity_recalc);
5226 	} else {
5227 		if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
5228 			ti->error = "Recalculate can only be specified with internal_hash";
5229 			r = -EINVAL;
5230 			goto bad;
5231 		}
5232 	}
5233 
5234 	if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
5235 	    le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
5236 	    dm_integrity_disable_recalculate(ic)) {
5237 		ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
5238 		r = -EOPNOTSUPP;
5239 		goto bad;
5240 	}
5241 
5242 	ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
5243 			1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
5244 	if (IS_ERR(ic->bufio)) {
5245 		r = PTR_ERR(ic->bufio);
5246 		ti->error = "Cannot initialize dm-bufio";
5247 		ic->bufio = NULL;
5248 		goto bad;
5249 	}
5250 	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
5251 
5252 	if (ic->mode != 'R' && ic->mode != 'I') {
5253 		r = create_journal(ic, &ti->error);
5254 		if (r)
5255 			goto bad;
5256 
5257 	}
5258 
5259 	if (ic->mode == 'B') {
5260 		unsigned int i;
5261 		unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
5262 
5263 		ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5264 		if (!ic->recalc_bitmap) {
5265 			ti->error = "Could not allocate memory for bitmap";
5266 			r = -ENOMEM;
5267 			goto bad;
5268 		}
5269 		ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5270 		if (!ic->may_write_bitmap) {
5271 			ti->error = "Could not allocate memory for bitmap";
5272 			r = -ENOMEM;
5273 			goto bad;
5274 		}
5275 		ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
5276 		if (!ic->bbs) {
5277 			ti->error = "Could not allocate memory for bitmap";
5278 			r = -ENOMEM;
5279 			goto bad;
5280 		}
5281 		INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
5282 		for (i = 0; i < ic->n_bitmap_blocks; i++) {
5283 			struct bitmap_block_status *bbs = &ic->bbs[i];
5284 			unsigned int sector, pl_index, pl_offset;
5285 
5286 			INIT_WORK(&bbs->work, bitmap_block_work);
5287 			bbs->ic = ic;
5288 			bbs->idx = i;
5289 			bio_list_init(&bbs->bio_queue);
5290 			spin_lock_init(&bbs->bio_queue_lock);
5291 
5292 			sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
5293 			pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
5294 			pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
5295 
5296 			bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
5297 		}
5298 	}
5299 
5300 	if (should_write_sb) {
5301 		init_journal(ic, 0, ic->journal_sections, 0);
5302 		r = dm_integrity_failed(ic);
5303 		if (unlikely(r)) {
5304 			ti->error = "Error initializing journal";
5305 			goto bad;
5306 		}
5307 		r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
5308 		if (r) {
5309 			ti->error = "Error initializing superblock";
5310 			goto bad;
5311 		}
5312 		ic->just_formatted = true;
5313 	}
5314 
5315 	if (!ic->meta_dev && ic->mode != 'I') {
5316 		r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
5317 		if (r)
5318 			goto bad;
5319 	}
5320 	if (ic->mode == 'B') {
5321 		unsigned int max_io_len;
5322 
5323 		max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
5324 		if (!max_io_len)
5325 			max_io_len = 1U << 31;
5326 		DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
5327 		if (!ti->max_io_len || ti->max_io_len > max_io_len) {
5328 			r = dm_set_target_max_io_len(ti, max_io_len);
5329 			if (r)
5330 				goto bad;
5331 		}
5332 	}
5333 
5334 	ti->num_flush_bios = 1;
5335 	ti->flush_supported = true;
5336 	if (ic->discard)
5337 		ti->num_discard_bios = 1;
5338 
5339 	if (ic->mode == 'I')
5340 		ti->mempool_needs_integrity = true;
5341 
5342 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
5343 	return 0;
5344 
5345 bad:
5346 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
5347 	dm_integrity_dtr(ti);
5348 	return r;
5349 }
5350 
5351 static void dm_integrity_dtr(struct dm_target *ti)
5352 {
5353 	struct dm_integrity_c *ic = ti->private;
5354 
5355 	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
5356 	BUG_ON(!list_empty(&ic->wait_list));
5357 
5358 	if (ic->mode == 'B' && ic->bitmap_flush_work.work.func)
5359 		cancel_delayed_work_sync(&ic->bitmap_flush_work);
5360 	if (ic->metadata_wq)
5361 		destroy_workqueue(ic->metadata_wq);
5362 	if (ic->wait_wq)
5363 		destroy_workqueue(ic->wait_wq);
5364 	if (ic->offload_wq)
5365 		destroy_workqueue(ic->offload_wq);
5366 	if (ic->commit_wq)
5367 		destroy_workqueue(ic->commit_wq);
5368 	if (ic->writer_wq)
5369 		destroy_workqueue(ic->writer_wq);
5370 	if (ic->recalc_wq)
5371 		destroy_workqueue(ic->recalc_wq);
5372 	kvfree(ic->bbs);
5373 	if (ic->bufio)
5374 		dm_bufio_client_destroy(ic->bufio);
5375 	mempool_free(ic->journal_ahash_req, &ic->ahash_req_pool);
5376 	mempool_exit(&ic->ahash_req_pool);
5377 	bioset_exit(&ic->recalc_bios);
5378 	bioset_exit(&ic->recheck_bios);
5379 	mempool_exit(&ic->recheck_pool);
5380 	mempool_exit(&ic->journal_io_mempool);
5381 	if (ic->io)
5382 		dm_io_client_destroy(ic->io);
5383 	if (ic->dev)
5384 		dm_put_device(ti, ic->dev);
5385 	if (ic->meta_dev)
5386 		dm_put_device(ti, ic->meta_dev);
5387 	dm_integrity_free_page_list(ic->journal);
5388 	dm_integrity_free_page_list(ic->journal_io);
5389 	dm_integrity_free_page_list(ic->journal_xor);
5390 	dm_integrity_free_page_list(ic->recalc_bitmap);
5391 	dm_integrity_free_page_list(ic->may_write_bitmap);
5392 	if (ic->journal_scatterlist)
5393 		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
5394 	if (ic->journal_io_scatterlist)
5395 		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
5396 	if (ic->sk_requests) {
5397 		unsigned int i;
5398 
5399 		for (i = 0; i < ic->journal_sections; i++) {
5400 			struct skcipher_request *req;
5401 
5402 			req = ic->sk_requests[i];
5403 			if (req) {
5404 				kfree_sensitive(req->iv);
5405 				skcipher_request_free(req);
5406 			}
5407 		}
5408 		kvfree(ic->sk_requests);
5409 	}
5410 	kvfree(ic->journal_tree);
5411 	if (ic->sb)
5412 		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
5413 
5414 	if (ic->internal_shash)
5415 		crypto_free_shash(ic->internal_shash);
5416 	if (ic->internal_ahash)
5417 		crypto_free_ahash(ic->internal_ahash);
5418 	free_alg(&ic->internal_hash_alg);
5419 
5420 	if (ic->journal_crypt)
5421 		crypto_free_skcipher(ic->journal_crypt);
5422 	free_alg(&ic->journal_crypt_alg);
5423 
5424 	if (ic->journal_mac)
5425 		crypto_free_shash(ic->journal_mac);
5426 	free_alg(&ic->journal_mac_alg);
5427 
5428 	kfree(ic);
5429 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
5430 }
5431 
5432 static struct target_type integrity_target = {
5433 	.name			= "integrity",
5434 	.version		= {1, 14, 0},
5435 	.module			= THIS_MODULE,
5436 	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
5437 	.ctr			= dm_integrity_ctr,
5438 	.dtr			= dm_integrity_dtr,
5439 	.map			= dm_integrity_map,
5440 	.end_io			= dm_integrity_end_io,
5441 	.postsuspend		= dm_integrity_postsuspend,
5442 	.resume			= dm_integrity_resume,
5443 	.status			= dm_integrity_status,
5444 	.iterate_devices	= dm_integrity_iterate_devices,
5445 	.io_hints		= dm_integrity_io_hints,
5446 };
5447 
5448 static int __init dm_integrity_init(void)
5449 {
5450 	int r;
5451 
5452 	journal_io_cache = kmem_cache_create("integrity_journal_io",
5453 					     sizeof(struct journal_io), 0, 0, NULL);
5454 	if (!journal_io_cache) {
5455 		DMERR("can't allocate journal io cache");
5456 		return -ENOMEM;
5457 	}
5458 
5459 	r = dm_register_target(&integrity_target);
5460 	if (r < 0) {
5461 		kmem_cache_destroy(journal_io_cache);
5462 		return r;
5463 	}
5464 
5465 	return 0;
5466 }
5467 
5468 static void __exit dm_integrity_exit(void)
5469 {
5470 	dm_unregister_target(&integrity_target);
5471 	kmem_cache_destroy(journal_io_cache);
5472 }
5473 
5474 module_init(dm_integrity_init);
5475 module_exit(dm_integrity_exit);
5476 
5477 MODULE_AUTHOR("Milan Broz");
5478 MODULE_AUTHOR("Mikulas Patocka");
5479 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
5480 MODULE_LICENSE("GPL");
5481