1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24
25 /**
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
30 */
gfs2_update_stats(struct gfs2_lkstats * s,unsigned index,s64 sample)31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 s64 sample)
33 {
34 /*
35 * @delta is the difference between the current rtt sample and the
36 * running average srtt. We add 1/8 of that to the srtt in order to
37 * update the current srtt estimate. The variance estimate is a bit
38 * more complicated. We subtract the current variance estimate from
39 * the abs value of the @delta and add 1/4 of that to the running
40 * total. That's equivalent to 3/4 of the current variance
41 * estimate plus 1/4 of the abs of @delta.
42 *
43 * Note that the index points at the array entry containing the
44 * smoothed mean value, and the variance is always in the following
45 * entry
46 *
47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 * case, they are not scaled fixed point.
50 */
51
52 s64 delta = sample - s->stats[index];
53 s->stats[index] += (delta >> 3);
54 index++;
55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
56 }
57
58 /**
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
61 *
62 * This assumes that gl->gl_dstamp has been set earlier.
63 *
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
66 * reply from the dlm.
67 *
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
74 */
gfs2_update_reply_times(struct gfs2_glock * gl)75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
76 {
77 struct gfs2_pcpu_lkstats *lks;
78 const unsigned gltype = gl->gl_name.ln_type;
79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 s64 rtt;
82
83 preempt_disable();
84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
88 preempt_enable();
89
90 trace_gfs2_glock_lock_time(gl, rtt);
91 }
92
93 /**
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
96 *
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
99 * each dlm call.
100 */
101
gfs2_update_request_times(struct gfs2_glock * gl)102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
103 {
104 struct gfs2_pcpu_lkstats *lks;
105 const unsigned gltype = gl->gl_name.ln_type;
106 ktime_t dstamp;
107 s64 irt;
108
109 preempt_disable();
110 dstamp = gl->gl_dstamp;
111 gl->gl_dstamp = ktime_get_real();
112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
116 preempt_enable();
117 }
118
gdlm_ast(void * arg)119 static void gdlm_ast(void *arg)
120 {
121 struct gfs2_glock *gl = arg;
122 unsigned ret = gl->gl_state;
123
124 /* If the glock is dead, we only react to a dlm_unlock() reply. */
125 if (__lockref_is_dead(&gl->gl_lockref) &&
126 gl->gl_lksb.sb_status != -DLM_EUNLOCK)
127 return;
128
129 gfs2_update_reply_times(gl);
130 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
131
132 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
134
135 switch (gl->gl_lksb.sb_status) {
136 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137 if (gl->gl_ops->go_unlocked)
138 gl->gl_ops->go_unlocked(gl);
139 gfs2_glock_free(gl);
140 return;
141 case -DLM_ECANCEL: /* Cancel while getting lock */
142 ret |= LM_OUT_CANCELED;
143 goto out;
144 case -EAGAIN: /* Try lock fails */
145 case -EDEADLK: /* Deadlock detected */
146 goto out;
147 case -ETIMEDOUT: /* Canceled due to timeout */
148 ret |= LM_OUT_ERROR;
149 goto out;
150 case 0: /* Success */
151 break;
152 default: /* Something unexpected */
153 BUG();
154 }
155
156 ret = gl->gl_req;
157 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
158 if (gl->gl_req == LM_ST_SHARED)
159 ret = LM_ST_DEFERRED;
160 else if (gl->gl_req == LM_ST_DEFERRED)
161 ret = LM_ST_SHARED;
162 else
163 BUG();
164 }
165
166 /*
167 * The GLF_INITIAL flag is initially set for new glocks. Upon the
168 * first successful new (non-conversion) request, we clear this flag to
169 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
170 * identifier to use for identifying it.
171 *
172 * Any failed initial requests do not create a DLM lock, so we ignore
173 * the gl->gl_lksb.sb_lkid values that come with such requests.
174 */
175
176 clear_bit(GLF_INITIAL, &gl->gl_flags);
177 gfs2_glock_complete(gl, ret);
178 return;
179 out:
180 if (test_bit(GLF_INITIAL, &gl->gl_flags))
181 gl->gl_lksb.sb_lkid = 0;
182 gfs2_glock_complete(gl, ret);
183 }
184
gdlm_bast(void * arg,int mode)185 static void gdlm_bast(void *arg, int mode)
186 {
187 struct gfs2_glock *gl = arg;
188
189 if (__lockref_is_dead(&gl->gl_lockref))
190 return;
191
192 switch (mode) {
193 case DLM_LOCK_EX:
194 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
195 break;
196 case DLM_LOCK_CW:
197 gfs2_glock_cb(gl, LM_ST_DEFERRED);
198 break;
199 case DLM_LOCK_PR:
200 gfs2_glock_cb(gl, LM_ST_SHARED);
201 break;
202 default:
203 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
204 BUG();
205 }
206 }
207
208 /* convert gfs lock-state to dlm lock-mode */
209
make_mode(struct gfs2_sbd * sdp,const unsigned int lmstate)210 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
211 {
212 switch (lmstate) {
213 case LM_ST_UNLOCKED:
214 return DLM_LOCK_NL;
215 case LM_ST_EXCLUSIVE:
216 return DLM_LOCK_EX;
217 case LM_ST_DEFERRED:
218 return DLM_LOCK_CW;
219 case LM_ST_SHARED:
220 return DLM_LOCK_PR;
221 }
222 fs_err(sdp, "unknown LM state %d\n", lmstate);
223 BUG();
224 return -1;
225 }
226
make_flags(struct gfs2_glock * gl,const unsigned int gfs_flags,const int req)227 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
228 const int req)
229 {
230 u32 lkf = 0;
231
232 if (gl->gl_lksb.sb_lvbptr)
233 lkf |= DLM_LKF_VALBLK;
234
235 if (gfs_flags & LM_FLAG_TRY)
236 lkf |= DLM_LKF_NOQUEUE;
237
238 if (gfs_flags & LM_FLAG_TRY_1CB) {
239 lkf |= DLM_LKF_NOQUEUE;
240 lkf |= DLM_LKF_NOQUEUEBAST;
241 }
242
243 if (gfs_flags & LM_FLAG_ANY) {
244 if (req == DLM_LOCK_PR)
245 lkf |= DLM_LKF_ALTCW;
246 else if (req == DLM_LOCK_CW)
247 lkf |= DLM_LKF_ALTPR;
248 else
249 BUG();
250 }
251
252 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) {
253 lkf |= DLM_LKF_CONVERT;
254 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
255 lkf |= DLM_LKF_QUECVT;
256 }
257
258 return lkf;
259 }
260
gfs2_reverse_hex(char * c,u64 value)261 static void gfs2_reverse_hex(char *c, u64 value)
262 {
263 *c = '0';
264 while (value) {
265 *c-- = hex_asc[value & 0x0f];
266 value >>= 4;
267 }
268 }
269
gdlm_lock(struct gfs2_glock * gl,unsigned int req_state,unsigned int flags)270 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
271 unsigned int flags)
272 {
273 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
274 int req;
275 u32 lkf;
276 char strname[GDLM_STRNAME_BYTES] = "";
277 int error;
278
279 req = make_mode(gl->gl_name.ln_sbd, req_state);
280 lkf = make_flags(gl, flags, req);
281 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
282 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
283 if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
284 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
285 strname[GDLM_STRNAME_BYTES - 1] = '\0';
286 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
287 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
288 gl->gl_dstamp = ktime_get_real();
289 } else {
290 gfs2_update_request_times(gl);
291 }
292 /*
293 * Submit the actual lock request.
294 */
295
296 again:
297 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
298 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
299 if (error == -EBUSY) {
300 msleep(20);
301 goto again;
302 }
303 return error;
304 }
305
gdlm_put_lock(struct gfs2_glock * gl)306 static void gdlm_put_lock(struct gfs2_glock *gl)
307 {
308 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
309 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
310 int error;
311
312 BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
313
314 if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
315 gfs2_glock_free(gl);
316 return;
317 }
318
319 clear_bit(GLF_BLOCKING, &gl->gl_flags);
320 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
321 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
322 gfs2_update_request_times(gl);
323
324 /* don't want to call dlm if we've unmounted the lock protocol */
325 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
326 gfs2_glock_free(gl);
327 return;
328 }
329
330 /*
331 * When the lockspace is released, all remaining glocks will be
332 * unlocked automatically. This is more efficient than unlocking them
333 * individually, but when the lock is held in DLM_LOCK_EX or
334 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost.
335 */
336
337 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
338 (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
339 gfs2_glock_free_later(gl);
340 return;
341 }
342
343 again:
344 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
345 NULL, gl);
346 if (error == -EBUSY) {
347 msleep(20);
348 goto again;
349 }
350
351 if (error) {
352 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
353 gl->gl_name.ln_type,
354 (unsigned long long)gl->gl_name.ln_number, error);
355 }
356 }
357
gdlm_cancel(struct gfs2_glock * gl)358 static void gdlm_cancel(struct gfs2_glock *gl)
359 {
360 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
361 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
362 }
363
364 /*
365 * dlm/gfs2 recovery coordination using dlm_recover callbacks
366 *
367 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
368 * 1. dlm_controld sees lockspace members change
369 * 2. dlm_controld blocks dlm-kernel locking activity
370 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
371 * 4. dlm_controld starts and finishes its own user level recovery
372 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
373 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
374 * 7. dlm_recoverd does its own lock recovery
375 * 8. dlm_recoverd unblocks dlm-kernel locking activity
376 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
377 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
378 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
379 * 12. gfs2_recover dequeues and recovers journals of failed nodes
380 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
381 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
382 * 15. gfs2_control unblocks normal locking when all journals are recovered
383 *
384 * - failures during recovery
385 *
386 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
387 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
388 * recovering for a prior failure. gfs2_control needs a way to detect
389 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
390 * the recover_block and recover_start values.
391 *
392 * recover_done() provides a new lockspace generation number each time it
393 * is called (step 9). This generation number is saved as recover_start.
394 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
395 * recover_block = recover_start. So, while recover_block is equal to
396 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
397 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
398 *
399 * - more specific gfs2 steps in sequence above
400 *
401 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
402 * 6. recover_slot records any failed jids (maybe none)
403 * 9. recover_done sets recover_start = new generation number
404 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
405 * 12. gfs2_recover does journal recoveries for failed jids identified above
406 * 14. gfs2_control clears control_lock lvb bits for recovered jids
407 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
408 * again) then do nothing, otherwise if recover_start > recover_block
409 * then clear BLOCK_LOCKS.
410 *
411 * - parallel recovery steps across all nodes
412 *
413 * All nodes attempt to update the control_lock lvb with the new generation
414 * number and jid bits, but only the first to get the control_lock EX will
415 * do so; others will see that it's already done (lvb already contains new
416 * generation number.)
417 *
418 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
419 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
420 * . One node gets control_lock first and writes the lvb, others see it's done
421 * . All nodes attempt to recover jids for which they see control_lock bits set
422 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
423 * . All nodes will eventually see all lvb bits clear and unblock locks
424 *
425 * - is there a problem with clearing an lvb bit that should be set
426 * and missing a journal recovery?
427 *
428 * 1. jid fails
429 * 2. lvb bit set for step 1
430 * 3. jid recovered for step 1
431 * 4. jid taken again (new mount)
432 * 5. jid fails (for step 4)
433 * 6. lvb bit set for step 5 (will already be set)
434 * 7. lvb bit cleared for step 3
435 *
436 * This is not a problem because the failure in step 5 does not
437 * require recovery, because the mount in step 4 could not have
438 * progressed far enough to unblock locks and access the fs. The
439 * control_mount() function waits for all recoveries to be complete
440 * for the latest lockspace generation before ever unblocking locks
441 * and returning. The mount in step 4 waits until the recovery in
442 * step 1 is done.
443 *
444 * - special case of first mounter: first node to mount the fs
445 *
446 * The first node to mount a gfs2 fs needs to check all the journals
447 * and recover any that need recovery before other nodes are allowed
448 * to mount the fs. (Others may begin mounting, but they must wait
449 * for the first mounter to be done before taking locks on the fs
450 * or accessing the fs.) This has two parts:
451 *
452 * 1. The mounted_lock tells a node it's the first to mount the fs.
453 * Each node holds the mounted_lock in PR while it's mounted.
454 * Each node tries to acquire the mounted_lock in EX when it mounts.
455 * If a node is granted the mounted_lock EX it means there are no
456 * other mounted nodes (no PR locks exist), and it is the first mounter.
457 * The mounted_lock is demoted to PR when first recovery is done, so
458 * others will fail to get an EX lock, but will get a PR lock.
459 *
460 * 2. The control_lock blocks others in control_mount() while the first
461 * mounter is doing first mount recovery of all journals.
462 * A mounting node needs to acquire control_lock in EX mode before
463 * it can proceed. The first mounter holds control_lock in EX while doing
464 * the first mount recovery, blocking mounts from other nodes, then demotes
465 * control_lock to NL when it's done (others_may_mount/first_done),
466 * allowing other nodes to continue mounting.
467 *
468 * first mounter:
469 * control_lock EX/NOQUEUE success
470 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
471 * set first=1
472 * do first mounter recovery
473 * mounted_lock EX->PR
474 * control_lock EX->NL, write lvb generation
475 *
476 * other mounter:
477 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
478 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
479 * mounted_lock PR/NOQUEUE success
480 * read lvb generation
481 * control_lock EX->NL
482 * set first=0
483 *
484 * - mount during recovery
485 *
486 * If a node mounts while others are doing recovery (not first mounter),
487 * the mounting node will get its initial recover_done() callback without
488 * having seen any previous failures/callbacks.
489 *
490 * It must wait for all recoveries preceding its mount to be finished
491 * before it unblocks locks. It does this by repeating the "other mounter"
492 * steps above until the lvb generation number is >= its mount generation
493 * number (from initial recover_done) and all lvb bits are clear.
494 *
495 * - control_lock lvb format
496 *
497 * 4 bytes generation number: the latest dlm lockspace generation number
498 * from recover_done callback. Indicates the jid bitmap has been updated
499 * to reflect all slot failures through that generation.
500 * 4 bytes unused.
501 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
502 * that jid N needs recovery.
503 */
504
505 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
506
control_lvb_read(struct lm_lockstruct * ls,uint32_t * lvb_gen,char * lvb_bits)507 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
508 char *lvb_bits)
509 {
510 __le32 gen;
511 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
512 memcpy(&gen, lvb_bits, sizeof(__le32));
513 *lvb_gen = le32_to_cpu(gen);
514 }
515
control_lvb_write(struct lm_lockstruct * ls,uint32_t lvb_gen,char * lvb_bits)516 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
517 char *lvb_bits)
518 {
519 __le32 gen;
520 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
521 gen = cpu_to_le32(lvb_gen);
522 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
523 }
524
all_jid_bits_clear(char * lvb)525 static int all_jid_bits_clear(char *lvb)
526 {
527 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
528 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
529 }
530
sync_wait_cb(void * arg)531 static void sync_wait_cb(void *arg)
532 {
533 struct lm_lockstruct *ls = arg;
534 complete(&ls->ls_sync_wait);
535 }
536
sync_unlock(struct gfs2_sbd * sdp,struct dlm_lksb * lksb,char * name)537 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
538 {
539 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
540 int error;
541
542 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
543 if (error) {
544 fs_err(sdp, "%s lkid %x error %d\n",
545 name, lksb->sb_lkid, error);
546 return error;
547 }
548
549 wait_for_completion(&ls->ls_sync_wait);
550
551 if (lksb->sb_status != -DLM_EUNLOCK) {
552 fs_err(sdp, "%s lkid %x status %d\n",
553 name, lksb->sb_lkid, lksb->sb_status);
554 return -1;
555 }
556 return 0;
557 }
558
sync_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags,unsigned int num,struct dlm_lksb * lksb,char * name)559 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
560 unsigned int num, struct dlm_lksb *lksb, char *name)
561 {
562 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
563 char strname[GDLM_STRNAME_BYTES];
564 int error, status;
565
566 memset(strname, 0, GDLM_STRNAME_BYTES);
567 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
568
569 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
570 strname, GDLM_STRNAME_BYTES - 1,
571 0, sync_wait_cb, ls, NULL);
572 if (error) {
573 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
574 name, lksb->sb_lkid, flags, mode, error);
575 return error;
576 }
577
578 wait_for_completion(&ls->ls_sync_wait);
579
580 status = lksb->sb_status;
581
582 if (status && status != -EAGAIN) {
583 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
584 name, lksb->sb_lkid, flags, mode, status);
585 }
586
587 return status;
588 }
589
mounted_unlock(struct gfs2_sbd * sdp)590 static int mounted_unlock(struct gfs2_sbd *sdp)
591 {
592 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
593 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
594 }
595
mounted_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)596 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
597 {
598 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
599 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
600 &ls->ls_mounted_lksb, "mounted_lock");
601 }
602
control_unlock(struct gfs2_sbd * sdp)603 static int control_unlock(struct gfs2_sbd *sdp)
604 {
605 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
606 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
607 }
608
control_lock(struct gfs2_sbd * sdp,int mode,uint32_t flags)609 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
610 {
611 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
612 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
613 &ls->ls_control_lksb, "control_lock");
614 }
615
616 /**
617 * remote_withdraw - react to a node withdrawing from the file system
618 * @sdp: The superblock
619 */
remote_withdraw(struct gfs2_sbd * sdp)620 static void remote_withdraw(struct gfs2_sbd *sdp)
621 {
622 struct gfs2_jdesc *jd;
623 int ret = 0, count = 0;
624
625 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
626 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
627 continue;
628 ret = gfs2_recover_journal(jd, true);
629 if (ret)
630 break;
631 count++;
632 }
633
634 /* Now drop the additional reference we acquired */
635 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
636 }
637
gfs2_control_func(struct work_struct * work)638 static void gfs2_control_func(struct work_struct *work)
639 {
640 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
641 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
642 uint32_t block_gen, start_gen, lvb_gen, flags;
643 int recover_set = 0;
644 int write_lvb = 0;
645 int recover_size;
646 int i, error;
647
648 /* First check for other nodes that may have done a withdraw. */
649 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
650 remote_withdraw(sdp);
651 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
652 return;
653 }
654
655 spin_lock(&ls->ls_recover_spin);
656 /*
657 * No MOUNT_DONE means we're still mounting; control_mount()
658 * will set this flag, after which this thread will take over
659 * all further clearing of BLOCK_LOCKS.
660 *
661 * FIRST_MOUNT means this node is doing first mounter recovery,
662 * for which recovery control is handled by
663 * control_mount()/control_first_done(), not this thread.
664 */
665 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
666 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
667 spin_unlock(&ls->ls_recover_spin);
668 return;
669 }
670 block_gen = ls->ls_recover_block;
671 start_gen = ls->ls_recover_start;
672 spin_unlock(&ls->ls_recover_spin);
673
674 /*
675 * Equal block_gen and start_gen implies we are between
676 * recover_prep and recover_done callbacks, which means
677 * dlm recovery is in progress and dlm locking is blocked.
678 * There's no point trying to do any work until recover_done.
679 */
680
681 if (block_gen == start_gen)
682 return;
683
684 /*
685 * Propagate recover_submit[] and recover_result[] to lvb:
686 * dlm_recoverd adds to recover_submit[] jids needing recovery
687 * gfs2_recover adds to recover_result[] journal recovery results
688 *
689 * set lvb bit for jids in recover_submit[] if the lvb has not
690 * yet been updated for the generation of the failure
691 *
692 * clear lvb bit for jids in recover_result[] if the result of
693 * the journal recovery is SUCCESS
694 */
695
696 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
697 if (error) {
698 fs_err(sdp, "control lock EX error %d\n", error);
699 return;
700 }
701
702 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
703
704 spin_lock(&ls->ls_recover_spin);
705 if (block_gen != ls->ls_recover_block ||
706 start_gen != ls->ls_recover_start) {
707 fs_info(sdp, "recover generation %u block1 %u %u\n",
708 start_gen, block_gen, ls->ls_recover_block);
709 spin_unlock(&ls->ls_recover_spin);
710 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
711 return;
712 }
713
714 recover_size = ls->ls_recover_size;
715
716 if (lvb_gen <= start_gen) {
717 /*
718 * Clear lvb bits for jids we've successfully recovered.
719 * Because all nodes attempt to recover failed journals,
720 * a journal can be recovered multiple times successfully
721 * in succession. Only the first will really do recovery,
722 * the others find it clean, but still report a successful
723 * recovery. So, another node may have already recovered
724 * the jid and cleared the lvb bit for it.
725 */
726 for (i = 0; i < recover_size; i++) {
727 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
728 continue;
729
730 ls->ls_recover_result[i] = 0;
731
732 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
733 continue;
734
735 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
736 write_lvb = 1;
737 }
738 }
739
740 if (lvb_gen == start_gen) {
741 /*
742 * Failed slots before start_gen are already set in lvb.
743 */
744 for (i = 0; i < recover_size; i++) {
745 if (!ls->ls_recover_submit[i])
746 continue;
747 if (ls->ls_recover_submit[i] < lvb_gen)
748 ls->ls_recover_submit[i] = 0;
749 }
750 } else if (lvb_gen < start_gen) {
751 /*
752 * Failed slots before start_gen are not yet set in lvb.
753 */
754 for (i = 0; i < recover_size; i++) {
755 if (!ls->ls_recover_submit[i])
756 continue;
757 if (ls->ls_recover_submit[i] < start_gen) {
758 ls->ls_recover_submit[i] = 0;
759 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
760 }
761 }
762 /* even if there are no bits to set, we need to write the
763 latest generation to the lvb */
764 write_lvb = 1;
765 } else {
766 /*
767 * we should be getting a recover_done() for lvb_gen soon
768 */
769 }
770 spin_unlock(&ls->ls_recover_spin);
771
772 if (write_lvb) {
773 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
774 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
775 } else {
776 flags = DLM_LKF_CONVERT;
777 }
778
779 error = control_lock(sdp, DLM_LOCK_NL, flags);
780 if (error) {
781 fs_err(sdp, "control lock NL error %d\n", error);
782 return;
783 }
784
785 /*
786 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
787 * and clear a jid bit in the lvb if the recovery is a success.
788 * Eventually all journals will be recovered, all jid bits will
789 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
790 */
791
792 for (i = 0; i < recover_size; i++) {
793 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
794 fs_info(sdp, "recover generation %u jid %d\n",
795 start_gen, i);
796 gfs2_recover_set(sdp, i);
797 recover_set++;
798 }
799 }
800 if (recover_set)
801 return;
802
803 /*
804 * No more jid bits set in lvb, all recovery is done, unblock locks
805 * (unless a new recover_prep callback has occured blocking locks
806 * again while working above)
807 */
808
809 spin_lock(&ls->ls_recover_spin);
810 if (ls->ls_recover_block == block_gen &&
811 ls->ls_recover_start == start_gen) {
812 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
813 spin_unlock(&ls->ls_recover_spin);
814 fs_info(sdp, "recover generation %u done\n", start_gen);
815 gfs2_glock_thaw(sdp);
816 } else {
817 fs_info(sdp, "recover generation %u block2 %u %u\n",
818 start_gen, block_gen, ls->ls_recover_block);
819 spin_unlock(&ls->ls_recover_spin);
820 }
821 }
822
control_mount(struct gfs2_sbd * sdp)823 static int control_mount(struct gfs2_sbd *sdp)
824 {
825 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
826 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
827 int mounted_mode;
828 int retries = 0;
829 int error;
830
831 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
832 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
833 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
834 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
835 init_completion(&ls->ls_sync_wait);
836
837 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
838
839 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
840 if (error) {
841 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
842 return error;
843 }
844
845 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
846 if (error) {
847 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
848 control_unlock(sdp);
849 return error;
850 }
851 mounted_mode = DLM_LOCK_NL;
852
853 restart:
854 if (retries++ && signal_pending(current)) {
855 error = -EINTR;
856 goto fail;
857 }
858
859 /*
860 * We always start with both locks in NL. control_lock is
861 * demoted to NL below so we don't need to do it here.
862 */
863
864 if (mounted_mode != DLM_LOCK_NL) {
865 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
866 if (error)
867 goto fail;
868 mounted_mode = DLM_LOCK_NL;
869 }
870
871 /*
872 * Other nodes need to do some work in dlm recovery and gfs2_control
873 * before the recover_done and control_lock will be ready for us below.
874 * A delay here is not required but often avoids having to retry.
875 */
876
877 msleep_interruptible(500);
878
879 /*
880 * Acquire control_lock in EX and mounted_lock in either EX or PR.
881 * control_lock lvb keeps track of any pending journal recoveries.
882 * mounted_lock indicates if any other nodes have the fs mounted.
883 */
884
885 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
886 if (error == -EAGAIN) {
887 goto restart;
888 } else if (error) {
889 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
890 goto fail;
891 }
892
893 /**
894 * If we're a spectator, we don't want to take the lock in EX because
895 * we cannot do the first-mount responsibility it implies: recovery.
896 */
897 if (sdp->sd_args.ar_spectator)
898 goto locks_done;
899
900 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
901 if (!error) {
902 mounted_mode = DLM_LOCK_EX;
903 goto locks_done;
904 } else if (error != -EAGAIN) {
905 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
906 goto fail;
907 }
908
909 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
910 if (!error) {
911 mounted_mode = DLM_LOCK_PR;
912 goto locks_done;
913 } else {
914 /* not even -EAGAIN should happen here */
915 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
916 goto fail;
917 }
918
919 locks_done:
920 /*
921 * If we got both locks above in EX, then we're the first mounter.
922 * If not, then we need to wait for the control_lock lvb to be
923 * updated by other mounted nodes to reflect our mount generation.
924 *
925 * In simple first mounter cases, first mounter will see zero lvb_gen,
926 * but in cases where all existing nodes leave/fail before mounting
927 * nodes finish control_mount, then all nodes will be mounting and
928 * lvb_gen will be non-zero.
929 */
930
931 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
932
933 if (lvb_gen == 0xFFFFFFFF) {
934 /* special value to force mount attempts to fail */
935 fs_err(sdp, "control_mount control_lock disabled\n");
936 error = -EINVAL;
937 goto fail;
938 }
939
940 if (mounted_mode == DLM_LOCK_EX) {
941 /* first mounter, keep both EX while doing first recovery */
942 spin_lock(&ls->ls_recover_spin);
943 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
944 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
945 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
946 spin_unlock(&ls->ls_recover_spin);
947 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
948 return 0;
949 }
950
951 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
952 if (error)
953 goto fail;
954
955 /*
956 * We are not first mounter, now we need to wait for the control_lock
957 * lvb generation to be >= the generation from our first recover_done
958 * and all lvb bits to be clear (no pending journal recoveries.)
959 */
960
961 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
962 /* journals need recovery, wait until all are clear */
963 fs_info(sdp, "control_mount wait for journal recovery\n");
964 goto restart;
965 }
966
967 spin_lock(&ls->ls_recover_spin);
968 block_gen = ls->ls_recover_block;
969 start_gen = ls->ls_recover_start;
970 mount_gen = ls->ls_recover_mount;
971
972 if (lvb_gen < mount_gen) {
973 /* wait for mounted nodes to update control_lock lvb to our
974 generation, which might include new recovery bits set */
975 if (sdp->sd_args.ar_spectator) {
976 fs_info(sdp, "Recovery is required. Waiting for a "
977 "non-spectator to mount.\n");
978 msleep_interruptible(1000);
979 } else {
980 fs_info(sdp, "control_mount wait1 block %u start %u "
981 "mount %u lvb %u flags %lx\n", block_gen,
982 start_gen, mount_gen, lvb_gen,
983 ls->ls_recover_flags);
984 }
985 spin_unlock(&ls->ls_recover_spin);
986 goto restart;
987 }
988
989 if (lvb_gen != start_gen) {
990 /* wait for mounted nodes to update control_lock lvb to the
991 latest recovery generation */
992 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
993 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
994 lvb_gen, ls->ls_recover_flags);
995 spin_unlock(&ls->ls_recover_spin);
996 goto restart;
997 }
998
999 if (block_gen == start_gen) {
1000 /* dlm recovery in progress, wait for it to finish */
1001 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
1002 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1003 lvb_gen, ls->ls_recover_flags);
1004 spin_unlock(&ls->ls_recover_spin);
1005 goto restart;
1006 }
1007
1008 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1009 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1010 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1011 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1012 spin_unlock(&ls->ls_recover_spin);
1013 return 0;
1014
1015 fail:
1016 mounted_unlock(sdp);
1017 control_unlock(sdp);
1018 return error;
1019 }
1020
control_first_done(struct gfs2_sbd * sdp)1021 static int control_first_done(struct gfs2_sbd *sdp)
1022 {
1023 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1024 uint32_t start_gen, block_gen;
1025 int error;
1026
1027 restart:
1028 spin_lock(&ls->ls_recover_spin);
1029 start_gen = ls->ls_recover_start;
1030 block_gen = ls->ls_recover_block;
1031
1032 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1033 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1034 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1035 /* sanity check, should not happen */
1036 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1037 start_gen, block_gen, ls->ls_recover_flags);
1038 spin_unlock(&ls->ls_recover_spin);
1039 control_unlock(sdp);
1040 return -1;
1041 }
1042
1043 if (start_gen == block_gen) {
1044 /*
1045 * Wait for the end of a dlm recovery cycle to switch from
1046 * first mounter recovery. We can ignore any recover_slot
1047 * callbacks between the recover_prep and next recover_done
1048 * because we are still the first mounter and any failed nodes
1049 * have not fully mounted, so they don't need recovery.
1050 */
1051 spin_unlock(&ls->ls_recover_spin);
1052 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1053
1054 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1055 TASK_UNINTERRUPTIBLE);
1056 goto restart;
1057 }
1058
1059 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1060 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1061 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1062 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1063 spin_unlock(&ls->ls_recover_spin);
1064
1065 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1066 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1067
1068 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1069 if (error)
1070 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1071
1072 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1073 if (error)
1074 fs_err(sdp, "control_first_done control NL error %d\n", error);
1075
1076 return error;
1077 }
1078
1079 /*
1080 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1081 * to accommodate the largest slot number. (NB dlm slot numbers start at 1,
1082 * gfs2 jids start at 0, so jid = slot - 1)
1083 */
1084
1085 #define RECOVER_SIZE_INC 16
1086
set_recover_size(struct gfs2_sbd * sdp,struct dlm_slot * slots,int num_slots)1087 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1088 int num_slots)
1089 {
1090 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1091 uint32_t *submit = NULL;
1092 uint32_t *result = NULL;
1093 uint32_t old_size, new_size;
1094 int i, max_jid;
1095
1096 if (!ls->ls_lvb_bits) {
1097 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1098 if (!ls->ls_lvb_bits)
1099 return -ENOMEM;
1100 }
1101
1102 max_jid = 0;
1103 for (i = 0; i < num_slots; i++) {
1104 if (max_jid < slots[i].slot - 1)
1105 max_jid = slots[i].slot - 1;
1106 }
1107
1108 old_size = ls->ls_recover_size;
1109 new_size = old_size;
1110 while (new_size < max_jid + 1)
1111 new_size += RECOVER_SIZE_INC;
1112 if (new_size == old_size)
1113 return 0;
1114
1115 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1116 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1117 if (!submit || !result) {
1118 kfree(submit);
1119 kfree(result);
1120 return -ENOMEM;
1121 }
1122
1123 spin_lock(&ls->ls_recover_spin);
1124 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1125 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1126 kfree(ls->ls_recover_submit);
1127 kfree(ls->ls_recover_result);
1128 ls->ls_recover_submit = submit;
1129 ls->ls_recover_result = result;
1130 ls->ls_recover_size = new_size;
1131 spin_unlock(&ls->ls_recover_spin);
1132 return 0;
1133 }
1134
free_recover_size(struct lm_lockstruct * ls)1135 static void free_recover_size(struct lm_lockstruct *ls)
1136 {
1137 kfree(ls->ls_lvb_bits);
1138 kfree(ls->ls_recover_submit);
1139 kfree(ls->ls_recover_result);
1140 ls->ls_recover_submit = NULL;
1141 ls->ls_recover_result = NULL;
1142 ls->ls_recover_size = 0;
1143 ls->ls_lvb_bits = NULL;
1144 }
1145
1146 /* dlm calls before it does lock recovery */
1147
gdlm_recover_prep(void * arg)1148 static void gdlm_recover_prep(void *arg)
1149 {
1150 struct gfs2_sbd *sdp = arg;
1151 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1152
1153 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1154 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1155 return;
1156 }
1157 spin_lock(&ls->ls_recover_spin);
1158 ls->ls_recover_block = ls->ls_recover_start;
1159 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1160
1161 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1162 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1163 spin_unlock(&ls->ls_recover_spin);
1164 return;
1165 }
1166 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1167 spin_unlock(&ls->ls_recover_spin);
1168 }
1169
1170 /* dlm calls after recover_prep has been completed on all lockspace members;
1171 identifies slot/jid of failed member */
1172
gdlm_recover_slot(void * arg,struct dlm_slot * slot)1173 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1174 {
1175 struct gfs2_sbd *sdp = arg;
1176 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1177 int jid = slot->slot - 1;
1178
1179 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1180 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1181 jid);
1182 return;
1183 }
1184 spin_lock(&ls->ls_recover_spin);
1185 if (ls->ls_recover_size < jid + 1) {
1186 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1187 jid, ls->ls_recover_block, ls->ls_recover_size);
1188 spin_unlock(&ls->ls_recover_spin);
1189 return;
1190 }
1191
1192 if (ls->ls_recover_submit[jid]) {
1193 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1194 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1195 }
1196 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1197 spin_unlock(&ls->ls_recover_spin);
1198 }
1199
1200 /* dlm calls after recover_slot and after it completes lock recovery */
1201
gdlm_recover_done(void * arg,struct dlm_slot * slots,int num_slots,int our_slot,uint32_t generation)1202 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1203 int our_slot, uint32_t generation)
1204 {
1205 struct gfs2_sbd *sdp = arg;
1206 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1207
1208 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1209 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1210 return;
1211 }
1212 /* ensure the ls jid arrays are large enough */
1213 set_recover_size(sdp, slots, num_slots);
1214
1215 spin_lock(&ls->ls_recover_spin);
1216 ls->ls_recover_start = generation;
1217
1218 if (!ls->ls_recover_mount) {
1219 ls->ls_recover_mount = generation;
1220 ls->ls_jid = our_slot - 1;
1221 }
1222
1223 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1224 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1225
1226 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1227 smp_mb__after_atomic();
1228 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1229 spin_unlock(&ls->ls_recover_spin);
1230 }
1231
1232 /* gfs2_recover thread has a journal recovery result */
1233
gdlm_recovery_result(struct gfs2_sbd * sdp,unsigned int jid,unsigned int result)1234 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1235 unsigned int result)
1236 {
1237 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1238
1239 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1240 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1241 jid);
1242 return;
1243 }
1244 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1245 return;
1246
1247 /* don't care about the recovery of own journal during mount */
1248 if (jid == ls->ls_jid)
1249 return;
1250
1251 spin_lock(&ls->ls_recover_spin);
1252 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1253 spin_unlock(&ls->ls_recover_spin);
1254 return;
1255 }
1256 if (ls->ls_recover_size < jid + 1) {
1257 fs_err(sdp, "recovery_result jid %d short size %d\n",
1258 jid, ls->ls_recover_size);
1259 spin_unlock(&ls->ls_recover_spin);
1260 return;
1261 }
1262
1263 fs_info(sdp, "recover jid %d result %s\n", jid,
1264 result == LM_RD_GAVEUP ? "busy" : "success");
1265
1266 ls->ls_recover_result[jid] = result;
1267
1268 /* GAVEUP means another node is recovering the journal; delay our
1269 next attempt to recover it, to give the other node a chance to
1270 finish before trying again */
1271
1272 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1273 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1274 result == LM_RD_GAVEUP ? HZ : 0);
1275 spin_unlock(&ls->ls_recover_spin);
1276 }
1277
1278 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1279 .recover_prep = gdlm_recover_prep,
1280 .recover_slot = gdlm_recover_slot,
1281 .recover_done = gdlm_recover_done,
1282 };
1283
gdlm_mount(struct gfs2_sbd * sdp,const char * table)1284 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1285 {
1286 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1287 char cluster[GFS2_LOCKNAME_LEN];
1288 const char *fsname;
1289 uint32_t flags;
1290 int error, ops_result;
1291
1292 /*
1293 * initialize everything
1294 */
1295
1296 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1297 spin_lock_init(&ls->ls_recover_spin);
1298 ls->ls_recover_flags = 0;
1299 ls->ls_recover_mount = 0;
1300 ls->ls_recover_start = 0;
1301 ls->ls_recover_block = 0;
1302 ls->ls_recover_size = 0;
1303 ls->ls_recover_submit = NULL;
1304 ls->ls_recover_result = NULL;
1305 ls->ls_lvb_bits = NULL;
1306
1307 error = set_recover_size(sdp, NULL, 0);
1308 if (error)
1309 goto fail;
1310
1311 /*
1312 * prepare dlm_new_lockspace args
1313 */
1314
1315 fsname = strchr(table, ':');
1316 if (!fsname) {
1317 fs_info(sdp, "no fsname found\n");
1318 error = -EINVAL;
1319 goto fail_free;
1320 }
1321 memset(cluster, 0, sizeof(cluster));
1322 memcpy(cluster, table, strlen(table) - strlen(fsname));
1323 fsname++;
1324
1325 flags = DLM_LSFL_NEWEXCL;
1326
1327 /*
1328 * create/join lockspace
1329 */
1330
1331 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1332 &gdlm_lockspace_ops, sdp, &ops_result,
1333 &ls->ls_dlm);
1334 if (error) {
1335 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1336 goto fail_free;
1337 }
1338
1339 if (ops_result < 0) {
1340 /*
1341 * dlm does not support ops callbacks,
1342 * old dlm_controld/gfs_controld are used, try without ops.
1343 */
1344 fs_info(sdp, "dlm lockspace ops not used\n");
1345 free_recover_size(ls);
1346 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1347 return 0;
1348 }
1349
1350 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1351 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1352 error = -EINVAL;
1353 goto fail_release;
1354 }
1355
1356 /*
1357 * control_mount() uses control_lock to determine first mounter,
1358 * and for later mounts, waits for any recoveries to be cleared.
1359 */
1360
1361 error = control_mount(sdp);
1362 if (error) {
1363 fs_err(sdp, "mount control error %d\n", error);
1364 goto fail_release;
1365 }
1366
1367 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1368 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1369 smp_mb__after_atomic();
1370 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1371 return 0;
1372
1373 fail_release:
1374 dlm_release_lockspace(ls->ls_dlm, 2);
1375 fail_free:
1376 free_recover_size(ls);
1377 fail:
1378 return error;
1379 }
1380
gdlm_first_done(struct gfs2_sbd * sdp)1381 static void gdlm_first_done(struct gfs2_sbd *sdp)
1382 {
1383 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1384 int error;
1385
1386 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1387 return;
1388
1389 error = control_first_done(sdp);
1390 if (error)
1391 fs_err(sdp, "mount first_done error %d\n", error);
1392 }
1393
gdlm_unmount(struct gfs2_sbd * sdp)1394 static void gdlm_unmount(struct gfs2_sbd *sdp)
1395 {
1396 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1397
1398 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1399 goto release;
1400
1401 /* wait for gfs2_control_wq to be done with this mount */
1402
1403 spin_lock(&ls->ls_recover_spin);
1404 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1405 spin_unlock(&ls->ls_recover_spin);
1406 flush_delayed_work(&sdp->sd_control_work);
1407
1408 /* mounted_lock and control_lock will be purged in dlm recovery */
1409 release:
1410 if (ls->ls_dlm) {
1411 dlm_release_lockspace(ls->ls_dlm, 2);
1412 ls->ls_dlm = NULL;
1413 }
1414
1415 free_recover_size(ls);
1416 }
1417
1418 static const match_table_t dlm_tokens = {
1419 { Opt_jid, "jid=%d"},
1420 { Opt_id, "id=%d"},
1421 { Opt_first, "first=%d"},
1422 { Opt_nodir, "nodir=%d"},
1423 { Opt_err, NULL },
1424 };
1425
1426 const struct lm_lockops gfs2_dlm_ops = {
1427 .lm_proto_name = "lock_dlm",
1428 .lm_mount = gdlm_mount,
1429 .lm_first_done = gdlm_first_done,
1430 .lm_recovery_result = gdlm_recovery_result,
1431 .lm_unmount = gdlm_unmount,
1432 .lm_put_lock = gdlm_put_lock,
1433 .lm_lock = gdlm_lock,
1434 .lm_cancel = gdlm_cancel,
1435 .lm_tokens = &dlm_tokens,
1436 };
1437
1438