1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * trace_events_filter - generic event filtering
4 *
5 * Copyright (C) 2009 Tom Zanussi <tzanussi@gmail.com>
6 */
7
8 #include <linux/uaccess.h>
9 #include <linux/module.h>
10 #include <linux/ctype.h>
11 #include <linux/mutex.h>
12 #include <linux/perf_event.h>
13 #include <linux/slab.h>
14
15 #include "trace.h"
16 #include "trace_output.h"
17
18 #define DEFAULT_SYS_FILTER_MESSAGE \
19 "### global filter ###\n" \
20 "# Use this to set filters for multiple events.\n" \
21 "# Only events with the given fields will be affected.\n" \
22 "# If no events are modified, an error message will be displayed here"
23
24 /* Due to token parsing '<=' must be before '<' and '>=' must be before '>' */
25 #define OPS \
26 C( OP_GLOB, "~" ), \
27 C( OP_NE, "!=" ), \
28 C( OP_EQ, "==" ), \
29 C( OP_LE, "<=" ), \
30 C( OP_LT, "<" ), \
31 C( OP_GE, ">=" ), \
32 C( OP_GT, ">" ), \
33 C( OP_BAND, "&" ), \
34 C( OP_MAX, NULL )
35
36 #undef C
37 #define C(a, b) a
38
39 enum filter_op_ids { OPS };
40
41 #undef C
42 #define C(a, b) b
43
44 static const char * ops[] = { OPS };
45
46 enum filter_pred_fn {
47 FILTER_PRED_FN_NOP,
48 FILTER_PRED_FN_64,
49 FILTER_PRED_FN_64_CPUMASK,
50 FILTER_PRED_FN_S64,
51 FILTER_PRED_FN_U64,
52 FILTER_PRED_FN_32,
53 FILTER_PRED_FN_32_CPUMASK,
54 FILTER_PRED_FN_S32,
55 FILTER_PRED_FN_U32,
56 FILTER_PRED_FN_16,
57 FILTER_PRED_FN_16_CPUMASK,
58 FILTER_PRED_FN_S16,
59 FILTER_PRED_FN_U16,
60 FILTER_PRED_FN_8,
61 FILTER_PRED_FN_8_CPUMASK,
62 FILTER_PRED_FN_S8,
63 FILTER_PRED_FN_U8,
64 FILTER_PRED_FN_COMM,
65 FILTER_PRED_FN_STRING,
66 FILTER_PRED_FN_STRLOC,
67 FILTER_PRED_FN_STRRELLOC,
68 FILTER_PRED_FN_PCHAR_USER,
69 FILTER_PRED_FN_PCHAR,
70 FILTER_PRED_FN_CPU,
71 FILTER_PRED_FN_CPU_CPUMASK,
72 FILTER_PRED_FN_CPUMASK,
73 FILTER_PRED_FN_CPUMASK_CPU,
74 FILTER_PRED_FN_FUNCTION,
75 FILTER_PRED_FN_,
76 FILTER_PRED_TEST_VISITED,
77 };
78
79 struct filter_pred {
80 struct regex *regex;
81 struct cpumask *mask;
82 unsigned short *ops;
83 struct ftrace_event_field *field;
84 u64 val;
85 u64 val2;
86 enum filter_pred_fn fn_num;
87 int offset;
88 int not;
89 int op;
90 };
91
92 /*
93 * pred functions are OP_LE, OP_LT, OP_GE, OP_GT, and OP_BAND
94 * pred_funcs_##type below must match the order of them above.
95 */
96 #define PRED_FUNC_START OP_LE
97 #define PRED_FUNC_MAX (OP_BAND - PRED_FUNC_START)
98
99 #define ERRORS \
100 C(NONE, "No error"), \
101 C(INVALID_OP, "Invalid operator"), \
102 C(TOO_MANY_OPEN, "Too many '('"), \
103 C(TOO_MANY_CLOSE, "Too few '('"), \
104 C(MISSING_QUOTE, "Missing matching quote"), \
105 C(MISSING_BRACE_OPEN, "Missing '{'"), \
106 C(MISSING_BRACE_CLOSE, "Missing '}'"), \
107 C(OPERAND_TOO_LONG, "Operand too long"), \
108 C(EXPECT_STRING, "Expecting string field"), \
109 C(EXPECT_DIGIT, "Expecting numeric field"), \
110 C(ILLEGAL_FIELD_OP, "Illegal operation for field type"), \
111 C(FIELD_NOT_FOUND, "Field not found"), \
112 C(ILLEGAL_INTVAL, "Illegal integer value"), \
113 C(BAD_SUBSYS_FILTER, "Couldn't find or set field in one of a subsystem's events"), \
114 C(TOO_MANY_PREDS, "Too many terms in predicate expression"), \
115 C(INVALID_FILTER, "Meaningless filter expression"), \
116 C(INVALID_CPULIST, "Invalid cpulist"), \
117 C(IP_FIELD_ONLY, "Only 'ip' field is supported for function trace"), \
118 C(INVALID_VALUE, "Invalid value (did you forget quotes)?"), \
119 C(NO_FUNCTION, "Function not found"), \
120 C(ERRNO, "Error"), \
121 C(NO_FILTER, "No filter found")
122
123 #undef C
124 #define C(a, b) FILT_ERR_##a
125
126 enum { ERRORS };
127
128 #undef C
129 #define C(a, b) b
130
131 static const char *err_text[] = { ERRORS };
132
133 /* Called after a '!' character but "!=" and "!~" are not "not"s */
is_not(const char * str)134 static bool is_not(const char *str)
135 {
136 switch (str[1]) {
137 case '=':
138 case '~':
139 return false;
140 }
141 return true;
142 }
143
144 /**
145 * struct prog_entry - a singe entry in the filter program
146 * @target: Index to jump to on a branch (actually one minus the index)
147 * @when_to_branch: The value of the result of the predicate to do a branch
148 * @pred: The predicate to execute.
149 */
150 struct prog_entry {
151 int target;
152 int when_to_branch;
153 struct filter_pred *pred;
154 };
155
156 /**
157 * update_preds - assign a program entry a label target
158 * @prog: The program array
159 * @N: The index of the current entry in @prog
160 * @invert: What to assign a program entry for its branch condition
161 *
162 * The program entry at @N has a target that points to the index of a program
163 * entry that can have its target and when_to_branch fields updated.
164 * Update the current program entry denoted by index @N target field to be
165 * that of the updated entry. This will denote the entry to update if
166 * we are processing an "||" after an "&&".
167 */
update_preds(struct prog_entry * prog,int N,int invert)168 static void update_preds(struct prog_entry *prog, int N, int invert)
169 {
170 int t, s;
171
172 t = prog[N].target;
173 s = prog[t].target;
174 prog[t].when_to_branch = invert;
175 prog[t].target = N;
176 prog[N].target = s;
177 }
178
179 struct filter_parse_error {
180 int lasterr;
181 int lasterr_pos;
182 };
183
parse_error(struct filter_parse_error * pe,int err,int pos)184 static void parse_error(struct filter_parse_error *pe, int err, int pos)
185 {
186 pe->lasterr = err;
187 pe->lasterr_pos = pos;
188 }
189
190 typedef int (*parse_pred_fn)(const char *str, void *data, int pos,
191 struct filter_parse_error *pe,
192 struct filter_pred **pred);
193
194 enum {
195 INVERT = 1,
196 PROCESS_AND = 2,
197 PROCESS_OR = 4,
198 };
199
free_predicate(struct filter_pred * pred)200 static void free_predicate(struct filter_pred *pred)
201 {
202 if (pred) {
203 kfree(pred->regex);
204 kfree(pred->mask);
205 kfree(pred);
206 }
207 }
208
209 /*
210 * Without going into a formal proof, this explains the method that is used in
211 * parsing the logical expressions.
212 *
213 * For example, if we have: "a && !(!b || (c && g)) || d || e && !f"
214 * The first pass will convert it into the following program:
215 *
216 * n1: r=a; l1: if (!r) goto l4;
217 * n2: r=b; l2: if (!r) goto l4;
218 * n3: r=c; r=!r; l3: if (r) goto l4;
219 * n4: r=g; r=!r; l4: if (r) goto l5;
220 * n5: r=d; l5: if (r) goto T
221 * n6: r=e; l6: if (!r) goto l7;
222 * n7: r=f; r=!r; l7: if (!r) goto F
223 * T: return TRUE
224 * F: return FALSE
225 *
226 * To do this, we use a data structure to represent each of the above
227 * predicate and conditions that has:
228 *
229 * predicate, when_to_branch, invert, target
230 *
231 * The "predicate" will hold the function to determine the result "r".
232 * The "when_to_branch" denotes what "r" should be if a branch is to be taken
233 * "&&" would contain "!r" or (0) and "||" would contain "r" or (1).
234 * The "invert" holds whether the value should be reversed before testing.
235 * The "target" contains the label "l#" to jump to.
236 *
237 * A stack is created to hold values when parentheses are used.
238 *
239 * To simplify the logic, the labels will start at 0 and not 1.
240 *
241 * The possible invert values are 1 and 0. The number of "!"s that are in scope
242 * before the predicate determines the invert value, if the number is odd then
243 * the invert value is 1 and 0 otherwise. This means the invert value only
244 * needs to be toggled when a new "!" is introduced compared to what is stored
245 * on the stack, where parentheses were used.
246 *
247 * The top of the stack and "invert" are initialized to zero.
248 *
249 * ** FIRST PASS **
250 *
251 * #1 A loop through all the tokens is done:
252 *
253 * #2 If the token is an "(", the stack is push, and the current stack value
254 * gets the current invert value, and the loop continues to the next token.
255 * The top of the stack saves the "invert" value to keep track of what
256 * the current inversion is. As "!(a && !b || c)" would require all
257 * predicates being affected separately by the "!" before the parentheses.
258 * And that would end up being equivalent to "(!a || b) && !c"
259 *
260 * #3 If the token is an "!", the current "invert" value gets inverted, and
261 * the loop continues. Note, if the next token is a predicate, then
262 * this "invert" value is only valid for the current program entry,
263 * and does not affect other predicates later on.
264 *
265 * The only other acceptable token is the predicate string.
266 *
267 * #4 A new entry into the program is added saving: the predicate and the
268 * current value of "invert". The target is currently assigned to the
269 * previous program index (this will not be its final value).
270 *
271 * #5 We now enter another loop and look at the next token. The only valid
272 * tokens are ")", "&&", "||" or end of the input string "\0".
273 *
274 * #6 The invert variable is reset to the current value saved on the top of
275 * the stack.
276 *
277 * #7 The top of the stack holds not only the current invert value, but also
278 * if a "&&" or "||" needs to be processed. Note, the "&&" takes higher
279 * precedence than "||". That is "a && b || c && d" is equivalent to
280 * "(a && b) || (c && d)". Thus the first thing to do is to see if "&&" needs
281 * to be processed. This is the case if an "&&" was the last token. If it was
282 * then we call update_preds(). This takes the program, the current index in
283 * the program, and the current value of "invert". More will be described
284 * below about this function.
285 *
286 * #8 If the next token is "&&" then we set a flag in the top of the stack
287 * that denotes that "&&" needs to be processed, break out of this loop
288 * and continue with the outer loop.
289 *
290 * #9 Otherwise, if a "||" needs to be processed then update_preds() is called.
291 * This is called with the program, the current index in the program, but
292 * this time with an inverted value of "invert" (that is !invert). This is
293 * because the value taken will become the "when_to_branch" value of the
294 * program.
295 * Note, this is called when the next token is not an "&&". As stated before,
296 * "&&" takes higher precedence, and "||" should not be processed yet if the
297 * next logical operation is "&&".
298 *
299 * #10 If the next token is "||" then we set a flag in the top of the stack
300 * that denotes that "||" needs to be processed, break out of this loop
301 * and continue with the outer loop.
302 *
303 * #11 If this is the end of the input string "\0" then we break out of both
304 * loops.
305 *
306 * #12 Otherwise, the next token is ")", where we pop the stack and continue
307 * this inner loop.
308 *
309 * Now to discuss the update_pred() function, as that is key to the setting up
310 * of the program. Remember the "target" of the program is initialized to the
311 * previous index and not the "l" label. The target holds the index into the
312 * program that gets affected by the operand. Thus if we have something like
313 * "a || b && c", when we process "a" the target will be "-1" (undefined).
314 * When we process "b", its target is "0", which is the index of "a", as that's
315 * the predicate that is affected by "||". But because the next token after "b"
316 * is "&&" we don't call update_preds(). Instead continue to "c". As the
317 * next token after "c" is not "&&" but the end of input, we first process the
318 * "&&" by calling update_preds() for the "&&" then we process the "||" by
319 * calling updates_preds() with the values for processing "||".
320 *
321 * What does that mean? What update_preds() does is to first save the "target"
322 * of the program entry indexed by the current program entry's "target"
323 * (remember the "target" is initialized to previous program entry), and then
324 * sets that "target" to the current index which represents the label "l#".
325 * That entry's "when_to_branch" is set to the value passed in (the "invert"
326 * or "!invert"). Then it sets the current program entry's target to the saved
327 * "target" value (the old value of the program that had its "target" updated
328 * to the label).
329 *
330 * Looking back at "a || b && c", we have the following steps:
331 * "a" - prog[0] = { "a", X, -1 } // pred, when_to_branch, target
332 * "||" - flag that we need to process "||"; continue outer loop
333 * "b" - prog[1] = { "b", X, 0 }
334 * "&&" - flag that we need to process "&&"; continue outer loop
335 * (Notice we did not process "||")
336 * "c" - prog[2] = { "c", X, 1 }
337 * update_preds(prog, 2, 0); // invert = 0 as we are processing "&&"
338 * t = prog[2].target; // t = 1
339 * s = prog[t].target; // s = 0
340 * prog[t].target = 2; // Set target to "l2"
341 * prog[t].when_to_branch = 0;
342 * prog[2].target = s;
343 * update_preds(prog, 2, 1); // invert = 1 as we are now processing "||"
344 * t = prog[2].target; // t = 0
345 * s = prog[t].target; // s = -1
346 * prog[t].target = 2; // Set target to "l2"
347 * prog[t].when_to_branch = 1;
348 * prog[2].target = s;
349 *
350 * #13 Which brings us to the final step of the first pass, which is to set
351 * the last program entry's when_to_branch and target, which will be
352 * when_to_branch = 0; target = N; ( the label after the program entry after
353 * the last program entry processed above).
354 *
355 * If we denote "TRUE" to be the entry after the last program entry processed,
356 * and "FALSE" the program entry after that, we are now done with the first
357 * pass.
358 *
359 * Making the above "a || b && c" have a program of:
360 * prog[0] = { "a", 1, 2 }
361 * prog[1] = { "b", 0, 2 }
362 * prog[2] = { "c", 0, 3 }
363 *
364 * Which translates into:
365 * n0: r = a; l0: if (r) goto l2;
366 * n1: r = b; l1: if (!r) goto l2;
367 * n2: r = c; l2: if (!r) goto l3; // Which is the same as "goto F;"
368 * T: return TRUE; l3:
369 * F: return FALSE
370 *
371 * Although, after the first pass, the program is correct, it is
372 * inefficient. The simple sample of "a || b && c" could be easily been
373 * converted into:
374 * n0: r = a; if (r) goto T
375 * n1: r = b; if (!r) goto F
376 * n2: r = c; if (!r) goto F
377 * T: return TRUE;
378 * F: return FALSE;
379 *
380 * The First Pass is over the input string. The next too passes are over
381 * the program itself.
382 *
383 * ** SECOND PASS **
384 *
385 * Which brings us to the second pass. If a jump to a label has the
386 * same condition as that label, it can instead jump to its target.
387 * The original example of "a && !(!b || (c && g)) || d || e && !f"
388 * where the first pass gives us:
389 *
390 * n1: r=a; l1: if (!r) goto l4;
391 * n2: r=b; l2: if (!r) goto l4;
392 * n3: r=c; r=!r; l3: if (r) goto l4;
393 * n4: r=g; r=!r; l4: if (r) goto l5;
394 * n5: r=d; l5: if (r) goto T
395 * n6: r=e; l6: if (!r) goto l7;
396 * n7: r=f; r=!r; l7: if (!r) goto F:
397 * T: return TRUE;
398 * F: return FALSE
399 *
400 * We can see that "l3: if (r) goto l4;" and at l4, we have "if (r) goto l5;".
401 * And "l5: if (r) goto T", we could optimize this by converting l3 and l4
402 * to go directly to T. To accomplish this, we start from the last
403 * entry in the program and work our way back. If the target of the entry
404 * has the same "when_to_branch" then we could use that entry's target.
405 * Doing this, the above would end up as:
406 *
407 * n1: r=a; l1: if (!r) goto l4;
408 * n2: r=b; l2: if (!r) goto l4;
409 * n3: r=c; r=!r; l3: if (r) goto T;
410 * n4: r=g; r=!r; l4: if (r) goto T;
411 * n5: r=d; l5: if (r) goto T;
412 * n6: r=e; l6: if (!r) goto F;
413 * n7: r=f; r=!r; l7: if (!r) goto F;
414 * T: return TRUE
415 * F: return FALSE
416 *
417 * In that same pass, if the "when_to_branch" doesn't match, we can simply
418 * go to the program entry after the label. That is, "l2: if (!r) goto l4;"
419 * where "l4: if (r) goto T;", then we can convert l2 to be:
420 * "l2: if (!r) goto n5;".
421 *
422 * This will have the second pass give us:
423 * n1: r=a; l1: if (!r) goto n5;
424 * n2: r=b; l2: if (!r) goto n5;
425 * n3: r=c; r=!r; l3: if (r) goto T;
426 * n4: r=g; r=!r; l4: if (r) goto T;
427 * n5: r=d; l5: if (r) goto T
428 * n6: r=e; l6: if (!r) goto F;
429 * n7: r=f; r=!r; l7: if (!r) goto F
430 * T: return TRUE
431 * F: return FALSE
432 *
433 * Notice, all the "l#" labels are no longer used, and they can now
434 * be discarded.
435 *
436 * ** THIRD PASS **
437 *
438 * For the third pass we deal with the inverts. As they simply just
439 * make the "when_to_branch" get inverted, a simple loop over the
440 * program to that does: "when_to_branch ^= invert;" will do the
441 * job, leaving us with:
442 * n1: r=a; if (!r) goto n5;
443 * n2: r=b; if (!r) goto n5;
444 * n3: r=c: if (!r) goto T;
445 * n4: r=g; if (!r) goto T;
446 * n5: r=d; if (r) goto T
447 * n6: r=e; if (!r) goto F;
448 * n7: r=f; if (r) goto F
449 * T: return TRUE
450 * F: return FALSE
451 *
452 * As "r = a; if (!r) goto n5;" is obviously the same as
453 * "if (!a) goto n5;" without doing anything we can interpret the
454 * program as:
455 * n1: if (!a) goto n5;
456 * n2: if (!b) goto n5;
457 * n3: if (!c) goto T;
458 * n4: if (!g) goto T;
459 * n5: if (d) goto T
460 * n6: if (!e) goto F;
461 * n7: if (f) goto F
462 * T: return TRUE
463 * F: return FALSE
464 *
465 * Since the inverts are discarded at the end, there's no reason to store
466 * them in the program array (and waste memory). A separate array to hold
467 * the inverts is used and freed at the end.
468 */
469 static struct prog_entry *
predicate_parse(const char * str,int nr_parens,int nr_preds,parse_pred_fn parse_pred,void * data,struct filter_parse_error * pe)470 predicate_parse(const char *str, int nr_parens, int nr_preds,
471 parse_pred_fn parse_pred, void *data,
472 struct filter_parse_error *pe)
473 {
474 struct prog_entry *prog_stack;
475 struct prog_entry *prog;
476 const char *ptr = str;
477 char *inverts = NULL;
478 int *op_stack;
479 int *top;
480 int invert = 0;
481 int ret = -ENOMEM;
482 int len;
483 int N = 0;
484 int i;
485
486 nr_preds += 2; /* For TRUE and FALSE */
487
488 op_stack = kmalloc_array(nr_parens, sizeof(*op_stack), GFP_KERNEL);
489 if (!op_stack)
490 return ERR_PTR(-ENOMEM);
491 prog_stack = kcalloc(nr_preds, sizeof(*prog_stack), GFP_KERNEL);
492 if (!prog_stack) {
493 parse_error(pe, -ENOMEM, 0);
494 goto out_free;
495 }
496 inverts = kmalloc_array(nr_preds, sizeof(*inverts), GFP_KERNEL);
497 if (!inverts) {
498 parse_error(pe, -ENOMEM, 0);
499 goto out_free;
500 }
501
502 top = op_stack;
503 prog = prog_stack;
504 *top = 0;
505
506 /* First pass */
507 while (*ptr) { /* #1 */
508 const char *next = ptr++;
509
510 if (isspace(*next))
511 continue;
512
513 switch (*next) {
514 case '(': /* #2 */
515 if (top - op_stack > nr_parens) {
516 ret = -EINVAL;
517 goto out_free;
518 }
519 *(++top) = invert;
520 continue;
521 case '!': /* #3 */
522 if (!is_not(next))
523 break;
524 invert = !invert;
525 continue;
526 }
527
528 if (N >= nr_preds) {
529 parse_error(pe, FILT_ERR_TOO_MANY_PREDS, next - str);
530 goto out_free;
531 }
532
533 inverts[N] = invert; /* #4 */
534 prog[N].target = N-1;
535
536 len = parse_pred(next, data, ptr - str, pe, &prog[N].pred);
537 if (len < 0) {
538 ret = len;
539 goto out_free;
540 }
541 ptr = next + len;
542
543 N++;
544
545 ret = -1;
546 while (1) { /* #5 */
547 next = ptr++;
548 if (isspace(*next))
549 continue;
550
551 switch (*next) {
552 case ')':
553 case '\0':
554 break;
555 case '&':
556 case '|':
557 /* accepting only "&&" or "||" */
558 if (next[1] == next[0]) {
559 ptr++;
560 break;
561 }
562 fallthrough;
563 default:
564 parse_error(pe, FILT_ERR_TOO_MANY_PREDS,
565 next - str);
566 goto out_free;
567 }
568
569 invert = *top & INVERT;
570
571 if (*top & PROCESS_AND) { /* #7 */
572 update_preds(prog, N - 1, invert);
573 *top &= ~PROCESS_AND;
574 }
575 if (*next == '&') { /* #8 */
576 *top |= PROCESS_AND;
577 break;
578 }
579 if (*top & PROCESS_OR) { /* #9 */
580 update_preds(prog, N - 1, !invert);
581 *top &= ~PROCESS_OR;
582 }
583 if (*next == '|') { /* #10 */
584 *top |= PROCESS_OR;
585 break;
586 }
587 if (!*next) /* #11 */
588 goto out;
589
590 if (top == op_stack) {
591 ret = -1;
592 /* Too few '(' */
593 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, ptr - str);
594 goto out_free;
595 }
596 top--; /* #12 */
597 }
598 }
599 out:
600 if (top != op_stack) {
601 /* Too many '(' */
602 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, ptr - str);
603 goto out_free;
604 }
605
606 if (!N) {
607 /* No program? */
608 ret = -EINVAL;
609 parse_error(pe, FILT_ERR_NO_FILTER, ptr - str);
610 goto out_free;
611 }
612
613 prog[N].pred = NULL; /* #13 */
614 prog[N].target = 1; /* TRUE */
615 prog[N+1].pred = NULL;
616 prog[N+1].target = 0; /* FALSE */
617 prog[N-1].target = N;
618 prog[N-1].when_to_branch = false;
619
620 /* Second Pass */
621 for (i = N-1 ; i--; ) {
622 int target = prog[i].target;
623 if (prog[i].when_to_branch == prog[target].when_to_branch)
624 prog[i].target = prog[target].target;
625 }
626
627 /* Third Pass */
628 for (i = 0; i < N; i++) {
629 invert = inverts[i] ^ prog[i].when_to_branch;
630 prog[i].when_to_branch = invert;
631 /* Make sure the program always moves forward */
632 if (WARN_ON(prog[i].target <= i)) {
633 ret = -EINVAL;
634 goto out_free;
635 }
636 }
637
638 kfree(op_stack);
639 kfree(inverts);
640 return prog;
641 out_free:
642 kfree(op_stack);
643 kfree(inverts);
644 if (prog_stack) {
645 for (i = 0; prog_stack[i].pred; i++)
646 free_predicate(prog_stack[i].pred);
647 kfree(prog_stack);
648 }
649 return ERR_PTR(ret);
650 }
651
652 static inline int
do_filter_cpumask(int op,const struct cpumask * mask,const struct cpumask * cmp)653 do_filter_cpumask(int op, const struct cpumask *mask, const struct cpumask *cmp)
654 {
655 switch (op) {
656 case OP_EQ:
657 return cpumask_equal(mask, cmp);
658 case OP_NE:
659 return !cpumask_equal(mask, cmp);
660 case OP_BAND:
661 return cpumask_intersects(mask, cmp);
662 default:
663 return 0;
664 }
665 }
666
667 /* Optimisation of do_filter_cpumask() for scalar fields */
668 static inline int
do_filter_scalar_cpumask(int op,unsigned int cpu,const struct cpumask * mask)669 do_filter_scalar_cpumask(int op, unsigned int cpu, const struct cpumask *mask)
670 {
671 /*
672 * Per the weight-of-one cpumask optimisations, the mask passed in this
673 * function has a weight >= 2, so it is never equal to a single scalar.
674 */
675 switch (op) {
676 case OP_EQ:
677 return false;
678 case OP_NE:
679 return true;
680 case OP_BAND:
681 return cpumask_test_cpu(cpu, mask);
682 default:
683 return 0;
684 }
685 }
686
687 static inline int
do_filter_cpumask_scalar(int op,const struct cpumask * mask,unsigned int cpu)688 do_filter_cpumask_scalar(int op, const struct cpumask *mask, unsigned int cpu)
689 {
690 switch (op) {
691 case OP_EQ:
692 return cpumask_test_cpu(cpu, mask) &&
693 cpumask_nth(1, mask) >= nr_cpu_ids;
694 case OP_NE:
695 return !cpumask_test_cpu(cpu, mask) ||
696 cpumask_nth(1, mask) < nr_cpu_ids;
697 case OP_BAND:
698 return cpumask_test_cpu(cpu, mask);
699 default:
700 return 0;
701 }
702 }
703
704 enum pred_cmp_types {
705 PRED_CMP_TYPE_NOP,
706 PRED_CMP_TYPE_LT,
707 PRED_CMP_TYPE_LE,
708 PRED_CMP_TYPE_GT,
709 PRED_CMP_TYPE_GE,
710 PRED_CMP_TYPE_BAND,
711 };
712
713 #define DEFINE_COMPARISON_PRED(type) \
714 static int filter_pred_##type(struct filter_pred *pred, void *event) \
715 { \
716 switch (pred->op) { \
717 case OP_LT: { \
718 type *addr = (type *)(event + pred->offset); \
719 type val = (type)pred->val; \
720 return *addr < val; \
721 } \
722 case OP_LE: { \
723 type *addr = (type *)(event + pred->offset); \
724 type val = (type)pred->val; \
725 return *addr <= val; \
726 } \
727 case OP_GT: { \
728 type *addr = (type *)(event + pred->offset); \
729 type val = (type)pred->val; \
730 return *addr > val; \
731 } \
732 case OP_GE: { \
733 type *addr = (type *)(event + pred->offset); \
734 type val = (type)pred->val; \
735 return *addr >= val; \
736 } \
737 case OP_BAND: { \
738 type *addr = (type *)(event + pred->offset); \
739 type val = (type)pred->val; \
740 return !!(*addr & val); \
741 } \
742 default: \
743 return 0; \
744 } \
745 }
746
747 #define DEFINE_CPUMASK_COMPARISON_PRED(size) \
748 static int filter_pred_##size##_cpumask(struct filter_pred *pred, void *event) \
749 { \
750 u##size *addr = (u##size *)(event + pred->offset); \
751 unsigned int cpu = *addr; \
752 \
753 if (cpu >= nr_cpu_ids) \
754 return 0; \
755 \
756 return do_filter_scalar_cpumask(pred->op, cpu, pred->mask); \
757 }
758
759 #define DEFINE_EQUALITY_PRED(size) \
760 static int filter_pred_##size(struct filter_pred *pred, void *event) \
761 { \
762 u##size *addr = (u##size *)(event + pred->offset); \
763 u##size val = (u##size)pred->val; \
764 int match; \
765 \
766 match = (val == *addr) ^ pred->not; \
767 \
768 return match; \
769 }
770
771 DEFINE_COMPARISON_PRED(s64);
772 DEFINE_COMPARISON_PRED(u64);
773 DEFINE_COMPARISON_PRED(s32);
774 DEFINE_COMPARISON_PRED(u32);
775 DEFINE_COMPARISON_PRED(s16);
776 DEFINE_COMPARISON_PRED(u16);
777 DEFINE_COMPARISON_PRED(s8);
778 DEFINE_COMPARISON_PRED(u8);
779
780 DEFINE_CPUMASK_COMPARISON_PRED(64);
781 DEFINE_CPUMASK_COMPARISON_PRED(32);
782 DEFINE_CPUMASK_COMPARISON_PRED(16);
783 DEFINE_CPUMASK_COMPARISON_PRED(8);
784
785 DEFINE_EQUALITY_PRED(64);
786 DEFINE_EQUALITY_PRED(32);
787 DEFINE_EQUALITY_PRED(16);
788 DEFINE_EQUALITY_PRED(8);
789
790 /* user space strings temp buffer */
791 #define USTRING_BUF_SIZE 1024
792
793 struct ustring_buffer {
794 char buffer[USTRING_BUF_SIZE];
795 };
796
797 static __percpu struct ustring_buffer *ustring_per_cpu;
798
test_string(char * str)799 static __always_inline char *test_string(char *str)
800 {
801 struct ustring_buffer *ubuf;
802 char *kstr;
803
804 if (!ustring_per_cpu)
805 return NULL;
806
807 ubuf = this_cpu_ptr(ustring_per_cpu);
808 kstr = ubuf->buffer;
809
810 /* For safety, do not trust the string pointer */
811 if (strncpy_from_kernel_nofault(kstr, str, USTRING_BUF_SIZE) < 0)
812 return NULL;
813 return kstr;
814 }
815
test_ustring(char * str)816 static __always_inline char *test_ustring(char *str)
817 {
818 struct ustring_buffer *ubuf;
819 char __user *ustr;
820 char *kstr;
821
822 if (!ustring_per_cpu)
823 return NULL;
824
825 ubuf = this_cpu_ptr(ustring_per_cpu);
826 kstr = ubuf->buffer;
827
828 /* user space address? */
829 ustr = (char __user *)str;
830 if (strncpy_from_user_nofault(kstr, ustr, USTRING_BUF_SIZE) < 0)
831 return NULL;
832
833 return kstr;
834 }
835
836 /* Filter predicate for fixed sized arrays of characters */
filter_pred_string(struct filter_pred * pred,void * event)837 static int filter_pred_string(struct filter_pred *pred, void *event)
838 {
839 char *addr = (char *)(event + pred->offset);
840 int cmp, match;
841
842 cmp = pred->regex->match(addr, pred->regex, pred->regex->field_len);
843
844 match = cmp ^ pred->not;
845
846 return match;
847 }
848
filter_pchar(struct filter_pred * pred,char * str)849 static __always_inline int filter_pchar(struct filter_pred *pred, char *str)
850 {
851 int cmp, match;
852 int len;
853
854 len = strlen(str) + 1; /* including tailing '\0' */
855 cmp = pred->regex->match(str, pred->regex, len);
856
857 match = cmp ^ pred->not;
858
859 return match;
860 }
861 /* Filter predicate for char * pointers */
filter_pred_pchar(struct filter_pred * pred,void * event)862 static int filter_pred_pchar(struct filter_pred *pred, void *event)
863 {
864 char **addr = (char **)(event + pred->offset);
865 char *str;
866
867 str = test_string(*addr);
868 if (!str)
869 return 0;
870
871 return filter_pchar(pred, str);
872 }
873
874 /* Filter predicate for char * pointers in user space*/
filter_pred_pchar_user(struct filter_pred * pred,void * event)875 static int filter_pred_pchar_user(struct filter_pred *pred, void *event)
876 {
877 char **addr = (char **)(event + pred->offset);
878 char *str;
879
880 str = test_ustring(*addr);
881 if (!str)
882 return 0;
883
884 return filter_pchar(pred, str);
885 }
886
887 /*
888 * Filter predicate for dynamic sized arrays of characters.
889 * These are implemented through a list of strings at the end
890 * of the entry.
891 * Also each of these strings have a field in the entry which
892 * contains its offset from the beginning of the entry.
893 * We have then first to get this field, dereference it
894 * and add it to the address of the entry, and at last we have
895 * the address of the string.
896 */
filter_pred_strloc(struct filter_pred * pred,void * event)897 static int filter_pred_strloc(struct filter_pred *pred, void *event)
898 {
899 u32 str_item = *(u32 *)(event + pred->offset);
900 int str_loc = str_item & 0xffff;
901 int str_len = str_item >> 16;
902 char *addr = (char *)(event + str_loc);
903 int cmp, match;
904
905 cmp = pred->regex->match(addr, pred->regex, str_len);
906
907 match = cmp ^ pred->not;
908
909 return match;
910 }
911
912 /*
913 * Filter predicate for relative dynamic sized arrays of characters.
914 * These are implemented through a list of strings at the end
915 * of the entry as same as dynamic string.
916 * The difference is that the relative one records the location offset
917 * from the field itself, not the event entry.
918 */
filter_pred_strrelloc(struct filter_pred * pred,void * event)919 static int filter_pred_strrelloc(struct filter_pred *pred, void *event)
920 {
921 u32 *item = (u32 *)(event + pred->offset);
922 u32 str_item = *item;
923 int str_loc = str_item & 0xffff;
924 int str_len = str_item >> 16;
925 char *addr = (char *)(&item[1]) + str_loc;
926 int cmp, match;
927
928 cmp = pred->regex->match(addr, pred->regex, str_len);
929
930 match = cmp ^ pred->not;
931
932 return match;
933 }
934
935 /* Filter predicate for CPUs. */
filter_pred_cpu(struct filter_pred * pred,void * event)936 static int filter_pred_cpu(struct filter_pred *pred, void *event)
937 {
938 int cpu, cmp;
939
940 cpu = raw_smp_processor_id();
941 cmp = pred->val;
942
943 switch (pred->op) {
944 case OP_EQ:
945 return cpu == cmp;
946 case OP_NE:
947 return cpu != cmp;
948 case OP_LT:
949 return cpu < cmp;
950 case OP_LE:
951 return cpu <= cmp;
952 case OP_GT:
953 return cpu > cmp;
954 case OP_GE:
955 return cpu >= cmp;
956 default:
957 return 0;
958 }
959 }
960
961 /* Filter predicate for current CPU vs user-provided cpumask */
filter_pred_cpu_cpumask(struct filter_pred * pred,void * event)962 static int filter_pred_cpu_cpumask(struct filter_pred *pred, void *event)
963 {
964 int cpu = raw_smp_processor_id();
965
966 return do_filter_scalar_cpumask(pred->op, cpu, pred->mask);
967 }
968
969 /* Filter predicate for cpumask field vs user-provided cpumask */
filter_pred_cpumask(struct filter_pred * pred,void * event)970 static int filter_pred_cpumask(struct filter_pred *pred, void *event)
971 {
972 u32 item = *(u32 *)(event + pred->offset);
973 int loc = item & 0xffff;
974 const struct cpumask *mask = (event + loc);
975 const struct cpumask *cmp = pred->mask;
976
977 return do_filter_cpumask(pred->op, mask, cmp);
978 }
979
980 /* Filter predicate for cpumask field vs user-provided scalar */
filter_pred_cpumask_cpu(struct filter_pred * pred,void * event)981 static int filter_pred_cpumask_cpu(struct filter_pred *pred, void *event)
982 {
983 u32 item = *(u32 *)(event + pred->offset);
984 int loc = item & 0xffff;
985 const struct cpumask *mask = (event + loc);
986 unsigned int cpu = pred->val;
987
988 return do_filter_cpumask_scalar(pred->op, mask, cpu);
989 }
990
991 /* Filter predicate for COMM. */
filter_pred_comm(struct filter_pred * pred,void * event)992 static int filter_pred_comm(struct filter_pred *pred, void *event)
993 {
994 int cmp;
995
996 cmp = pred->regex->match(current->comm, pred->regex,
997 TASK_COMM_LEN);
998 return cmp ^ pred->not;
999 }
1000
1001 /* Filter predicate for functions. */
filter_pred_function(struct filter_pred * pred,void * event)1002 static int filter_pred_function(struct filter_pred *pred, void *event)
1003 {
1004 unsigned long *addr = (unsigned long *)(event + pred->offset);
1005 unsigned long start = (unsigned long)pred->val;
1006 unsigned long end = (unsigned long)pred->val2;
1007 int ret = *addr >= start && *addr < end;
1008
1009 return pred->op == OP_EQ ? ret : !ret;
1010 }
1011
1012 /*
1013 * regex_match_foo - Basic regex callbacks
1014 *
1015 * @str: the string to be searched
1016 * @r: the regex structure containing the pattern string
1017 * @len: the length of the string to be searched (including '\0')
1018 *
1019 * Note:
1020 * - @str might not be NULL-terminated if it's of type DYN_STRING
1021 * RDYN_STRING, or STATIC_STRING, unless @len is zero.
1022 */
1023
regex_match_full(char * str,struct regex * r,int len)1024 static int regex_match_full(char *str, struct regex *r, int len)
1025 {
1026 /* len of zero means str is dynamic and ends with '\0' */
1027 if (!len)
1028 return strcmp(str, r->pattern) == 0;
1029
1030 return strncmp(str, r->pattern, len) == 0;
1031 }
1032
regex_match_front(char * str,struct regex * r,int len)1033 static int regex_match_front(char *str, struct regex *r, int len)
1034 {
1035 if (len && len < r->len)
1036 return 0;
1037
1038 return strncmp(str, r->pattern, r->len) == 0;
1039 }
1040
regex_match_middle(char * str,struct regex * r,int len)1041 static int regex_match_middle(char *str, struct regex *r, int len)
1042 {
1043 if (!len)
1044 return strstr(str, r->pattern) != NULL;
1045
1046 return strnstr(str, r->pattern, len) != NULL;
1047 }
1048
regex_match_end(char * str,struct regex * r,int len)1049 static int regex_match_end(char *str, struct regex *r, int len)
1050 {
1051 int strlen = len - 1;
1052
1053 if (strlen >= r->len &&
1054 memcmp(str + strlen - r->len, r->pattern, r->len) == 0)
1055 return 1;
1056 return 0;
1057 }
1058
regex_match_glob(char * str,struct regex * r,int len __maybe_unused)1059 static int regex_match_glob(char *str, struct regex *r, int len __maybe_unused)
1060 {
1061 if (glob_match(r->pattern, str))
1062 return 1;
1063 return 0;
1064 }
1065
1066 /**
1067 * filter_parse_regex - parse a basic regex
1068 * @buff: the raw regex
1069 * @len: length of the regex
1070 * @search: will point to the beginning of the string to compare
1071 * @not: tell whether the match will have to be inverted
1072 *
1073 * This passes in a buffer containing a regex and this function will
1074 * set search to point to the search part of the buffer and
1075 * return the type of search it is (see enum above).
1076 * This does modify buff.
1077 *
1078 * Returns enum type.
1079 * search returns the pointer to use for comparison.
1080 * not returns 1 if buff started with a '!'
1081 * 0 otherwise.
1082 */
filter_parse_regex(char * buff,int len,char ** search,int * not)1083 enum regex_type filter_parse_regex(char *buff, int len, char **search, int *not)
1084 {
1085 int type = MATCH_FULL;
1086 int i;
1087
1088 if (buff[0] == '!') {
1089 *not = 1;
1090 buff++;
1091 len--;
1092 } else
1093 *not = 0;
1094
1095 *search = buff;
1096
1097 if (isdigit(buff[0]))
1098 return MATCH_INDEX;
1099
1100 for (i = 0; i < len; i++) {
1101 if (buff[i] == '*') {
1102 if (!i) {
1103 type = MATCH_END_ONLY;
1104 } else if (i == len - 1) {
1105 if (type == MATCH_END_ONLY)
1106 type = MATCH_MIDDLE_ONLY;
1107 else
1108 type = MATCH_FRONT_ONLY;
1109 buff[i] = 0;
1110 break;
1111 } else { /* pattern continues, use full glob */
1112 return MATCH_GLOB;
1113 }
1114 } else if (strchr("[?\\", buff[i])) {
1115 return MATCH_GLOB;
1116 }
1117 }
1118 if (buff[0] == '*')
1119 *search = buff + 1;
1120
1121 return type;
1122 }
1123
filter_build_regex(struct filter_pred * pred)1124 static void filter_build_regex(struct filter_pred *pred)
1125 {
1126 struct regex *r = pred->regex;
1127 char *search;
1128 enum regex_type type = MATCH_FULL;
1129
1130 if (pred->op == OP_GLOB) {
1131 type = filter_parse_regex(r->pattern, r->len, &search, &pred->not);
1132 r->len = strlen(search);
1133 memmove(r->pattern, search, r->len+1);
1134 }
1135
1136 switch (type) {
1137 /* MATCH_INDEX should not happen, but if it does, match full */
1138 case MATCH_INDEX:
1139 case MATCH_FULL:
1140 r->match = regex_match_full;
1141 break;
1142 case MATCH_FRONT_ONLY:
1143 r->match = regex_match_front;
1144 break;
1145 case MATCH_MIDDLE_ONLY:
1146 r->match = regex_match_middle;
1147 break;
1148 case MATCH_END_ONLY:
1149 r->match = regex_match_end;
1150 break;
1151 case MATCH_GLOB:
1152 r->match = regex_match_glob;
1153 break;
1154 }
1155 }
1156
1157
1158 #ifdef CONFIG_FTRACE_STARTUP_TEST
1159 static int test_pred_visited_fn(struct filter_pred *pred, void *event);
1160 #else
test_pred_visited_fn(struct filter_pred * pred,void * event)1161 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
1162 {
1163 return 0;
1164 }
1165 #endif
1166
1167
1168 static int filter_pred_fn_call(struct filter_pred *pred, void *event);
1169
1170 /* return 1 if event matches, 0 otherwise (discard) */
filter_match_preds(struct event_filter * filter,void * rec)1171 int filter_match_preds(struct event_filter *filter, void *rec)
1172 {
1173 struct prog_entry *prog;
1174 int i;
1175
1176 /* no filter is considered a match */
1177 if (!filter)
1178 return 1;
1179
1180 /* Protected by either SRCU(tracepoint_srcu) or preempt_disable */
1181 prog = rcu_dereference_raw(filter->prog);
1182 if (!prog)
1183 return 1;
1184
1185 for (i = 0; prog[i].pred; i++) {
1186 struct filter_pred *pred = prog[i].pred;
1187 int match = filter_pred_fn_call(pred, rec);
1188 if (match == prog[i].when_to_branch)
1189 i = prog[i].target;
1190 }
1191 return prog[i].target;
1192 }
1193 EXPORT_SYMBOL_GPL(filter_match_preds);
1194
remove_filter_string(struct event_filter * filter)1195 static void remove_filter_string(struct event_filter *filter)
1196 {
1197 if (!filter)
1198 return;
1199
1200 kfree(filter->filter_string);
1201 filter->filter_string = NULL;
1202 }
1203
append_filter_err(struct trace_array * tr,struct filter_parse_error * pe,struct event_filter * filter)1204 static void append_filter_err(struct trace_array *tr,
1205 struct filter_parse_error *pe,
1206 struct event_filter *filter)
1207 {
1208 struct trace_seq *s;
1209 int pos = pe->lasterr_pos;
1210 char *buf;
1211 int len;
1212
1213 if (WARN_ON(!filter->filter_string))
1214 return;
1215
1216 s = kmalloc(sizeof(*s), GFP_KERNEL);
1217 if (!s)
1218 return;
1219 trace_seq_init(s);
1220
1221 len = strlen(filter->filter_string);
1222 if (pos > len)
1223 pos = len;
1224
1225 /* indexing is off by one */
1226 if (pos)
1227 pos++;
1228
1229 trace_seq_puts(s, filter->filter_string);
1230 if (pe->lasterr > 0) {
1231 trace_seq_printf(s, "\n%*s", pos, "^");
1232 trace_seq_printf(s, "\nparse_error: %s\n", err_text[pe->lasterr]);
1233 tracing_log_err(tr, "event filter parse error",
1234 filter->filter_string, err_text,
1235 pe->lasterr, pe->lasterr_pos);
1236 } else {
1237 trace_seq_printf(s, "\nError: (%d)\n", pe->lasterr);
1238 tracing_log_err(tr, "event filter parse error",
1239 filter->filter_string, err_text,
1240 FILT_ERR_ERRNO, 0);
1241 }
1242 trace_seq_putc(s, 0);
1243 buf = kmemdup_nul(s->buffer, s->seq.len, GFP_KERNEL);
1244 if (buf) {
1245 kfree(filter->filter_string);
1246 filter->filter_string = buf;
1247 }
1248 kfree(s);
1249 }
1250
event_filter(struct trace_event_file * file)1251 static inline struct event_filter *event_filter(struct trace_event_file *file)
1252 {
1253 return rcu_dereference_protected(file->filter,
1254 lockdep_is_held(&event_mutex));
1255
1256 }
1257
1258 /* caller must hold event_mutex */
print_event_filter(struct trace_event_file * file,struct trace_seq * s)1259 void print_event_filter(struct trace_event_file *file, struct trace_seq *s)
1260 {
1261 struct event_filter *filter = event_filter(file);
1262
1263 if (filter && filter->filter_string)
1264 trace_seq_printf(s, "%s\n", filter->filter_string);
1265 else
1266 trace_seq_puts(s, "none\n");
1267 }
1268
print_subsystem_event_filter(struct event_subsystem * system,struct trace_seq * s)1269 void print_subsystem_event_filter(struct event_subsystem *system,
1270 struct trace_seq *s)
1271 {
1272 struct event_filter *filter;
1273
1274 mutex_lock(&event_mutex);
1275 filter = system->filter;
1276 if (filter && filter->filter_string)
1277 trace_seq_printf(s, "%s\n", filter->filter_string);
1278 else
1279 trace_seq_puts(s, DEFAULT_SYS_FILTER_MESSAGE "\n");
1280 mutex_unlock(&event_mutex);
1281 }
1282
free_prog(struct event_filter * filter)1283 static void free_prog(struct event_filter *filter)
1284 {
1285 struct prog_entry *prog;
1286 int i;
1287
1288 prog = rcu_access_pointer(filter->prog);
1289 if (!prog)
1290 return;
1291
1292 for (i = 0; prog[i].pred; i++)
1293 free_predicate(prog[i].pred);
1294 kfree(prog);
1295 }
1296
filter_disable(struct trace_event_file * file)1297 static void filter_disable(struct trace_event_file *file)
1298 {
1299 unsigned long old_flags = file->flags;
1300
1301 file->flags &= ~EVENT_FILE_FL_FILTERED;
1302
1303 if (old_flags != file->flags)
1304 trace_buffered_event_disable();
1305 }
1306
__free_filter(struct event_filter * filter)1307 static void __free_filter(struct event_filter *filter)
1308 {
1309 if (!filter)
1310 return;
1311
1312 free_prog(filter);
1313 kfree(filter->filter_string);
1314 kfree(filter);
1315 }
1316
free_event_filter(struct event_filter * filter)1317 void free_event_filter(struct event_filter *filter)
1318 {
1319 __free_filter(filter);
1320 }
1321
__remove_filter(struct trace_event_file * file)1322 static inline void __remove_filter(struct trace_event_file *file)
1323 {
1324 filter_disable(file);
1325 remove_filter_string(event_filter(file));
1326 }
1327
filter_free_subsystem_preds(struct trace_subsystem_dir * dir,struct trace_array * tr)1328 static void filter_free_subsystem_preds(struct trace_subsystem_dir *dir,
1329 struct trace_array *tr)
1330 {
1331 struct trace_event_file *file;
1332
1333 list_for_each_entry(file, &tr->events, list) {
1334 if (file->system != dir)
1335 continue;
1336 __remove_filter(file);
1337 }
1338 }
1339
1340 struct filter_list {
1341 struct list_head list;
1342 struct event_filter *filter;
1343 };
1344
1345 struct filter_head {
1346 struct list_head list;
1347 struct rcu_head rcu;
1348 };
1349
1350
free_filter_list(struct rcu_head * rhp)1351 static void free_filter_list(struct rcu_head *rhp)
1352 {
1353 struct filter_head *filter_list = container_of(rhp, struct filter_head, rcu);
1354 struct filter_list *filter_item, *tmp;
1355
1356 list_for_each_entry_safe(filter_item, tmp, &filter_list->list, list) {
1357 __free_filter(filter_item->filter);
1358 list_del(&filter_item->list);
1359 kfree(filter_item);
1360 }
1361 kfree(filter_list);
1362 }
1363
free_filter_list_tasks(struct rcu_head * rhp)1364 static void free_filter_list_tasks(struct rcu_head *rhp)
1365 {
1366 call_rcu(rhp, free_filter_list);
1367 }
1368
1369 /*
1370 * The tracepoint_synchronize_unregister() is a double rcu call.
1371 * It calls synchronize_rcu_tasks_trace() followed by synchronize_rcu().
1372 * Instead of waiting for it, simply call these via the call_rcu*()
1373 * variants.
1374 */
delay_free_filter(struct filter_head * head)1375 static void delay_free_filter(struct filter_head *head)
1376 {
1377 call_rcu_tasks_trace(&head->rcu, free_filter_list_tasks);
1378 }
1379
try_delay_free_filter(struct event_filter * filter)1380 static void try_delay_free_filter(struct event_filter *filter)
1381 {
1382 struct filter_head *head;
1383 struct filter_list *item;
1384
1385 head = kmalloc(sizeof(*head), GFP_KERNEL);
1386 if (!head)
1387 goto free_now;
1388
1389 INIT_LIST_HEAD(&head->list);
1390
1391 item = kmalloc(sizeof(*item), GFP_KERNEL);
1392 if (!item) {
1393 kfree(head);
1394 goto free_now;
1395 }
1396
1397 item->filter = filter;
1398 list_add_tail(&item->list, &head->list);
1399 delay_free_filter(head);
1400 return;
1401
1402 free_now:
1403 /* Make sure the filter is not being used */
1404 tracepoint_synchronize_unregister();
1405 __free_filter(filter);
1406 }
1407
__free_subsystem_filter(struct trace_event_file * file)1408 static inline void __free_subsystem_filter(struct trace_event_file *file)
1409 {
1410 __free_filter(event_filter(file));
1411 file->filter = NULL;
1412 }
1413
event_set_filter(struct trace_event_file * file,struct event_filter * filter)1414 static inline void event_set_filter(struct trace_event_file *file,
1415 struct event_filter *filter)
1416 {
1417 rcu_assign_pointer(file->filter, filter);
1418 }
1419
event_clear_filter(struct trace_event_file * file)1420 static inline void event_clear_filter(struct trace_event_file *file)
1421 {
1422 RCU_INIT_POINTER(file->filter, NULL);
1423 }
1424
filter_free_subsystem_filters(struct trace_subsystem_dir * dir,struct trace_array * tr,struct event_filter * filter)1425 static void filter_free_subsystem_filters(struct trace_subsystem_dir *dir,
1426 struct trace_array *tr,
1427 struct event_filter *filter)
1428 {
1429 struct trace_event_file *file;
1430 struct filter_head *head;
1431 struct filter_list *item;
1432
1433 head = kmalloc(sizeof(*head), GFP_KERNEL);
1434 if (!head)
1435 goto free_now;
1436
1437 INIT_LIST_HEAD(&head->list);
1438
1439 item = kmalloc(sizeof(*item), GFP_KERNEL);
1440 if (!item)
1441 goto free_now;
1442
1443 item->filter = filter;
1444 list_add_tail(&item->list, &head->list);
1445
1446 list_for_each_entry(file, &tr->events, list) {
1447 if (file->system != dir)
1448 continue;
1449 item = kmalloc(sizeof(*item), GFP_KERNEL);
1450 if (!item)
1451 goto free_now;
1452 item->filter = event_filter(file);
1453 list_add_tail(&item->list, &head->list);
1454 event_clear_filter(file);
1455 }
1456
1457 delay_free_filter(head);
1458 return;
1459 free_now:
1460 tracepoint_synchronize_unregister();
1461
1462 if (head)
1463 free_filter_list(&head->rcu);
1464
1465 list_for_each_entry(file, &tr->events, list) {
1466 if (file->system != dir || !file->filter)
1467 continue;
1468 __free_subsystem_filter(file);
1469 }
1470 __free_filter(filter);
1471 }
1472
filter_assign_type(const char * type)1473 int filter_assign_type(const char *type)
1474 {
1475 if (strstr(type, "__data_loc")) {
1476 if (strstr(type, "char"))
1477 return FILTER_DYN_STRING;
1478 if (strstr(type, "cpumask_t"))
1479 return FILTER_CPUMASK;
1480 }
1481
1482 if (strstr(type, "__rel_loc") && strstr(type, "char"))
1483 return FILTER_RDYN_STRING;
1484
1485 if (strchr(type, '[') && strstr(type, "char"))
1486 return FILTER_STATIC_STRING;
1487
1488 if (strcmp(type, "char *") == 0 || strcmp(type, "const char *") == 0)
1489 return FILTER_PTR_STRING;
1490
1491 return FILTER_OTHER;
1492 }
1493
select_comparison_fn(enum filter_op_ids op,int field_size,int field_is_signed)1494 static enum filter_pred_fn select_comparison_fn(enum filter_op_ids op,
1495 int field_size, int field_is_signed)
1496 {
1497 enum filter_pred_fn fn = FILTER_PRED_FN_NOP;
1498 int pred_func_index = -1;
1499
1500 switch (op) {
1501 case OP_EQ:
1502 case OP_NE:
1503 break;
1504 default:
1505 if (WARN_ON_ONCE(op < PRED_FUNC_START))
1506 return fn;
1507 pred_func_index = op - PRED_FUNC_START;
1508 if (WARN_ON_ONCE(pred_func_index > PRED_FUNC_MAX))
1509 return fn;
1510 }
1511
1512 switch (field_size) {
1513 case 8:
1514 if (pred_func_index < 0)
1515 fn = FILTER_PRED_FN_64;
1516 else if (field_is_signed)
1517 fn = FILTER_PRED_FN_S64;
1518 else
1519 fn = FILTER_PRED_FN_U64;
1520 break;
1521 case 4:
1522 if (pred_func_index < 0)
1523 fn = FILTER_PRED_FN_32;
1524 else if (field_is_signed)
1525 fn = FILTER_PRED_FN_S32;
1526 else
1527 fn = FILTER_PRED_FN_U32;
1528 break;
1529 case 2:
1530 if (pred_func_index < 0)
1531 fn = FILTER_PRED_FN_16;
1532 else if (field_is_signed)
1533 fn = FILTER_PRED_FN_S16;
1534 else
1535 fn = FILTER_PRED_FN_U16;
1536 break;
1537 case 1:
1538 if (pred_func_index < 0)
1539 fn = FILTER_PRED_FN_8;
1540 else if (field_is_signed)
1541 fn = FILTER_PRED_FN_S8;
1542 else
1543 fn = FILTER_PRED_FN_U8;
1544 break;
1545 }
1546
1547 return fn;
1548 }
1549
1550
filter_pred_fn_call(struct filter_pred * pred,void * event)1551 static int filter_pred_fn_call(struct filter_pred *pred, void *event)
1552 {
1553 switch (pred->fn_num) {
1554 case FILTER_PRED_FN_64:
1555 return filter_pred_64(pred, event);
1556 case FILTER_PRED_FN_64_CPUMASK:
1557 return filter_pred_64_cpumask(pred, event);
1558 case FILTER_PRED_FN_S64:
1559 return filter_pred_s64(pred, event);
1560 case FILTER_PRED_FN_U64:
1561 return filter_pred_u64(pred, event);
1562 case FILTER_PRED_FN_32:
1563 return filter_pred_32(pred, event);
1564 case FILTER_PRED_FN_32_CPUMASK:
1565 return filter_pred_32_cpumask(pred, event);
1566 case FILTER_PRED_FN_S32:
1567 return filter_pred_s32(pred, event);
1568 case FILTER_PRED_FN_U32:
1569 return filter_pred_u32(pred, event);
1570 case FILTER_PRED_FN_16:
1571 return filter_pred_16(pred, event);
1572 case FILTER_PRED_FN_16_CPUMASK:
1573 return filter_pred_16_cpumask(pred, event);
1574 case FILTER_PRED_FN_S16:
1575 return filter_pred_s16(pred, event);
1576 case FILTER_PRED_FN_U16:
1577 return filter_pred_u16(pred, event);
1578 case FILTER_PRED_FN_8:
1579 return filter_pred_8(pred, event);
1580 case FILTER_PRED_FN_8_CPUMASK:
1581 return filter_pred_8_cpumask(pred, event);
1582 case FILTER_PRED_FN_S8:
1583 return filter_pred_s8(pred, event);
1584 case FILTER_PRED_FN_U8:
1585 return filter_pred_u8(pred, event);
1586 case FILTER_PRED_FN_COMM:
1587 return filter_pred_comm(pred, event);
1588 case FILTER_PRED_FN_STRING:
1589 return filter_pred_string(pred, event);
1590 case FILTER_PRED_FN_STRLOC:
1591 return filter_pred_strloc(pred, event);
1592 case FILTER_PRED_FN_STRRELLOC:
1593 return filter_pred_strrelloc(pred, event);
1594 case FILTER_PRED_FN_PCHAR_USER:
1595 return filter_pred_pchar_user(pred, event);
1596 case FILTER_PRED_FN_PCHAR:
1597 return filter_pred_pchar(pred, event);
1598 case FILTER_PRED_FN_CPU:
1599 return filter_pred_cpu(pred, event);
1600 case FILTER_PRED_FN_CPU_CPUMASK:
1601 return filter_pred_cpu_cpumask(pred, event);
1602 case FILTER_PRED_FN_CPUMASK:
1603 return filter_pred_cpumask(pred, event);
1604 case FILTER_PRED_FN_CPUMASK_CPU:
1605 return filter_pred_cpumask_cpu(pred, event);
1606 case FILTER_PRED_FN_FUNCTION:
1607 return filter_pred_function(pred, event);
1608 case FILTER_PRED_TEST_VISITED:
1609 return test_pred_visited_fn(pred, event);
1610 default:
1611 return 0;
1612 }
1613 }
1614
1615 /* Called when a predicate is encountered by predicate_parse() */
parse_pred(const char * str,void * data,int pos,struct filter_parse_error * pe,struct filter_pred ** pred_ptr)1616 static int parse_pred(const char *str, void *data,
1617 int pos, struct filter_parse_error *pe,
1618 struct filter_pred **pred_ptr)
1619 {
1620 struct trace_event_call *call = data;
1621 struct ftrace_event_field *field;
1622 struct filter_pred *pred = NULL;
1623 unsigned long offset;
1624 unsigned long size;
1625 unsigned long ip;
1626 char num_buf[24]; /* Big enough to hold an address */
1627 char *field_name;
1628 char *name;
1629 bool function = false;
1630 bool ustring = false;
1631 char q;
1632 u64 val;
1633 int len;
1634 int ret;
1635 int op;
1636 int s;
1637 int i = 0;
1638
1639 /* First find the field to associate to */
1640 while (isspace(str[i]))
1641 i++;
1642 s = i;
1643
1644 while (isalnum(str[i]) || str[i] == '_')
1645 i++;
1646
1647 len = i - s;
1648
1649 if (!len)
1650 return -1;
1651
1652 field_name = kmemdup_nul(str + s, len, GFP_KERNEL);
1653 if (!field_name)
1654 return -ENOMEM;
1655
1656 /* Make sure that the field exists */
1657
1658 field = trace_find_event_field(call, field_name);
1659 kfree(field_name);
1660 if (!field) {
1661 parse_error(pe, FILT_ERR_FIELD_NOT_FOUND, pos + i);
1662 return -EINVAL;
1663 }
1664
1665 /* See if the field is a user space string */
1666 if ((len = str_has_prefix(str + i, ".ustring"))) {
1667 ustring = true;
1668 i += len;
1669 }
1670
1671 /* See if the field is a kernel function name */
1672 if ((len = str_has_prefix(str + i, ".function"))) {
1673 function = true;
1674 i += len;
1675 }
1676
1677 while (isspace(str[i]))
1678 i++;
1679
1680 /* Make sure this op is supported */
1681 for (op = 0; ops[op]; op++) {
1682 /* This is why '<=' must come before '<' in ops[] */
1683 if (strncmp(str + i, ops[op], strlen(ops[op])) == 0)
1684 break;
1685 }
1686
1687 if (!ops[op]) {
1688 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1689 goto err_free;
1690 }
1691
1692 i += strlen(ops[op]);
1693
1694 while (isspace(str[i]))
1695 i++;
1696
1697 s = i;
1698
1699 pred = kzalloc(sizeof(*pred), GFP_KERNEL);
1700 if (!pred)
1701 return -ENOMEM;
1702
1703 pred->field = field;
1704 pred->offset = field->offset;
1705 pred->op = op;
1706
1707 if (function) {
1708 /* The field must be the same size as long */
1709 if (field->size != sizeof(long)) {
1710 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1711 goto err_free;
1712 }
1713
1714 /* Function only works with '==' or '!=' and an unquoted string */
1715 switch (op) {
1716 case OP_NE:
1717 case OP_EQ:
1718 break;
1719 default:
1720 parse_error(pe, FILT_ERR_INVALID_OP, pos + i);
1721 goto err_free;
1722 }
1723
1724 if (isdigit(str[i])) {
1725 /* We allow 0xDEADBEEF */
1726 while (isalnum(str[i]))
1727 i++;
1728
1729 len = i - s;
1730 /* 0xfeedfacedeadbeef is 18 chars max */
1731 if (len >= sizeof(num_buf)) {
1732 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1733 goto err_free;
1734 }
1735
1736 memcpy(num_buf, str + s, len);
1737 num_buf[len] = 0;
1738
1739 ret = kstrtoul(num_buf, 0, &ip);
1740 if (ret) {
1741 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
1742 goto err_free;
1743 }
1744 } else {
1745 s = i;
1746 for (; str[i] && !isspace(str[i]); i++)
1747 ;
1748
1749 len = i - s;
1750 name = kmemdup_nul(str + s, len, GFP_KERNEL);
1751 if (!name)
1752 goto err_mem;
1753 ip = kallsyms_lookup_name(name);
1754 kfree(name);
1755 if (!ip) {
1756 parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1757 goto err_free;
1758 }
1759 }
1760
1761 /* Now find the function start and end address */
1762 if (!kallsyms_lookup_size_offset(ip, &size, &offset)) {
1763 parse_error(pe, FILT_ERR_NO_FUNCTION, pos + i);
1764 goto err_free;
1765 }
1766
1767 pred->fn_num = FILTER_PRED_FN_FUNCTION;
1768 pred->val = ip - offset;
1769 pred->val2 = pred->val + size;
1770
1771 } else if (ftrace_event_is_function(call)) {
1772 /*
1773 * Perf does things different with function events.
1774 * It only allows an "ip" field, and expects a string.
1775 * But the string does not need to be surrounded by quotes.
1776 * If it is a string, the assigned function as a nop,
1777 * (perf doesn't use it) and grab everything.
1778 */
1779 if (strcmp(field->name, "ip") != 0) {
1780 parse_error(pe, FILT_ERR_IP_FIELD_ONLY, pos + i);
1781 goto err_free;
1782 }
1783 pred->fn_num = FILTER_PRED_FN_NOP;
1784
1785 /*
1786 * Quotes are not required, but if they exist then we need
1787 * to read them till we hit a matching one.
1788 */
1789 if (str[i] == '\'' || str[i] == '"')
1790 q = str[i];
1791 else
1792 q = 0;
1793
1794 for (i++; str[i]; i++) {
1795 if (q && str[i] == q)
1796 break;
1797 if (!q && (str[i] == ')' || str[i] == '&' ||
1798 str[i] == '|'))
1799 break;
1800 }
1801 /* Skip quotes */
1802 if (q)
1803 s++;
1804 len = i - s;
1805 if (len >= MAX_FILTER_STR_VAL) {
1806 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1807 goto err_free;
1808 }
1809
1810 pred->regex = kzalloc(sizeof(*pred->regex), GFP_KERNEL);
1811 if (!pred->regex)
1812 goto err_mem;
1813 pred->regex->len = len;
1814 memcpy(pred->regex->pattern, str + s, len);
1815 pred->regex->pattern[len] = 0;
1816
1817 } else if (!strncmp(str + i, "CPUS", 4)) {
1818 unsigned int maskstart;
1819 bool single;
1820 char *tmp;
1821
1822 switch (field->filter_type) {
1823 case FILTER_CPUMASK:
1824 case FILTER_CPU:
1825 case FILTER_OTHER:
1826 break;
1827 default:
1828 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1829 goto err_free;
1830 }
1831
1832 switch (op) {
1833 case OP_EQ:
1834 case OP_NE:
1835 case OP_BAND:
1836 break;
1837 default:
1838 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1839 goto err_free;
1840 }
1841
1842 /* Skip CPUS */
1843 i += 4;
1844 if (str[i++] != '{') {
1845 parse_error(pe, FILT_ERR_MISSING_BRACE_OPEN, pos + i);
1846 goto err_free;
1847 }
1848 maskstart = i;
1849
1850 /* Walk the cpulist until closing } */
1851 for (; str[i] && str[i] != '}'; i++)
1852 ;
1853
1854 if (str[i] != '}') {
1855 parse_error(pe, FILT_ERR_MISSING_BRACE_CLOSE, pos + i);
1856 goto err_free;
1857 }
1858
1859 if (maskstart == i) {
1860 parse_error(pe, FILT_ERR_INVALID_CPULIST, pos + i);
1861 goto err_free;
1862 }
1863
1864 /* Copy the cpulist between { and } */
1865 tmp = kmalloc((i - maskstart) + 1, GFP_KERNEL);
1866 if (!tmp)
1867 goto err_mem;
1868
1869 strscpy(tmp, str + maskstart, (i - maskstart) + 1);
1870 pred->mask = kzalloc(cpumask_size(), GFP_KERNEL);
1871 if (!pred->mask) {
1872 kfree(tmp);
1873 goto err_mem;
1874 }
1875
1876 /* Now parse it */
1877 if (cpulist_parse(tmp, pred->mask)) {
1878 kfree(tmp);
1879 parse_error(pe, FILT_ERR_INVALID_CPULIST, pos + i);
1880 goto err_free;
1881 }
1882 kfree(tmp);
1883
1884 /* Move along */
1885 i++;
1886
1887 /*
1888 * Optimisation: if the user-provided mask has a weight of one
1889 * then we can treat it as a scalar input.
1890 */
1891 single = cpumask_weight(pred->mask) == 1;
1892 if (single) {
1893 pred->val = cpumask_first(pred->mask);
1894 kfree(pred->mask);
1895 pred->mask = NULL;
1896 }
1897
1898 if (field->filter_type == FILTER_CPUMASK) {
1899 pred->fn_num = single ?
1900 FILTER_PRED_FN_CPUMASK_CPU :
1901 FILTER_PRED_FN_CPUMASK;
1902 } else if (field->filter_type == FILTER_CPU) {
1903 if (single) {
1904 if (pred->op == OP_BAND)
1905 pred->op = OP_EQ;
1906
1907 pred->fn_num = FILTER_PRED_FN_CPU;
1908 } else {
1909 pred->fn_num = FILTER_PRED_FN_CPU_CPUMASK;
1910 }
1911 } else if (single) {
1912 if (pred->op == OP_BAND)
1913 pred->op = OP_EQ;
1914
1915 pred->fn_num = select_comparison_fn(pred->op, field->size, false);
1916 if (pred->op == OP_NE)
1917 pred->not = 1;
1918 } else {
1919 switch (field->size) {
1920 case 8:
1921 pred->fn_num = FILTER_PRED_FN_64_CPUMASK;
1922 break;
1923 case 4:
1924 pred->fn_num = FILTER_PRED_FN_32_CPUMASK;
1925 break;
1926 case 2:
1927 pred->fn_num = FILTER_PRED_FN_16_CPUMASK;
1928 break;
1929 case 1:
1930 pred->fn_num = FILTER_PRED_FN_8_CPUMASK;
1931 break;
1932 }
1933 }
1934
1935 /* This is either a string, or an integer */
1936 } else if (str[i] == '\'' || str[i] == '"') {
1937 char q = str[i];
1938
1939 /* Make sure the op is OK for strings */
1940 switch (op) {
1941 case OP_NE:
1942 pred->not = 1;
1943 fallthrough;
1944 case OP_GLOB:
1945 case OP_EQ:
1946 break;
1947 default:
1948 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
1949 goto err_free;
1950 }
1951
1952 /* Make sure the field is OK for strings */
1953 if (!is_string_field(field)) {
1954 parse_error(pe, FILT_ERR_EXPECT_DIGIT, pos + i);
1955 goto err_free;
1956 }
1957
1958 for (i++; str[i]; i++) {
1959 if (str[i] == q)
1960 break;
1961 }
1962 if (!str[i]) {
1963 parse_error(pe, FILT_ERR_MISSING_QUOTE, pos + i);
1964 goto err_free;
1965 }
1966
1967 /* Skip quotes */
1968 s++;
1969 len = i - s;
1970 if (len >= MAX_FILTER_STR_VAL) {
1971 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
1972 goto err_free;
1973 }
1974
1975 pred->regex = kzalloc(sizeof(*pred->regex), GFP_KERNEL);
1976 if (!pred->regex)
1977 goto err_mem;
1978 pred->regex->len = len;
1979 memcpy(pred->regex->pattern, str + s, len);
1980 pred->regex->pattern[len] = 0;
1981
1982 filter_build_regex(pred);
1983
1984 if (field->filter_type == FILTER_COMM) {
1985 pred->fn_num = FILTER_PRED_FN_COMM;
1986
1987 } else if (field->filter_type == FILTER_STATIC_STRING) {
1988 pred->fn_num = FILTER_PRED_FN_STRING;
1989 pred->regex->field_len = field->size;
1990
1991 } else if (field->filter_type == FILTER_DYN_STRING) {
1992 pred->fn_num = FILTER_PRED_FN_STRLOC;
1993 } else if (field->filter_type == FILTER_RDYN_STRING)
1994 pred->fn_num = FILTER_PRED_FN_STRRELLOC;
1995 else {
1996
1997 if (!ustring_per_cpu) {
1998 /* Once allocated, keep it around for good */
1999 ustring_per_cpu = alloc_percpu(struct ustring_buffer);
2000 if (!ustring_per_cpu)
2001 goto err_mem;
2002 }
2003
2004 if (ustring)
2005 pred->fn_num = FILTER_PRED_FN_PCHAR_USER;
2006 else
2007 pred->fn_num = FILTER_PRED_FN_PCHAR;
2008 }
2009 /* go past the last quote */
2010 i++;
2011
2012 } else if (isdigit(str[i]) || str[i] == '-') {
2013
2014 /* Make sure the field is not a string */
2015 if (is_string_field(field)) {
2016 parse_error(pe, FILT_ERR_EXPECT_STRING, pos + i);
2017 goto err_free;
2018 }
2019
2020 if (op == OP_GLOB) {
2021 parse_error(pe, FILT_ERR_ILLEGAL_FIELD_OP, pos + i);
2022 goto err_free;
2023 }
2024
2025 if (str[i] == '-')
2026 i++;
2027
2028 /* We allow 0xDEADBEEF */
2029 while (isalnum(str[i]))
2030 i++;
2031
2032 len = i - s;
2033 /* 0xfeedfacedeadbeef is 18 chars max */
2034 if (len >= sizeof(num_buf)) {
2035 parse_error(pe, FILT_ERR_OPERAND_TOO_LONG, pos + i);
2036 goto err_free;
2037 }
2038
2039 memcpy(num_buf, str + s, len);
2040 num_buf[len] = 0;
2041
2042 /* Make sure it is a value */
2043 if (field->is_signed)
2044 ret = kstrtoll(num_buf, 0, &val);
2045 else
2046 ret = kstrtoull(num_buf, 0, &val);
2047 if (ret) {
2048 parse_error(pe, FILT_ERR_ILLEGAL_INTVAL, pos + s);
2049 goto err_free;
2050 }
2051
2052 pred->val = val;
2053
2054 if (field->filter_type == FILTER_CPU)
2055 pred->fn_num = FILTER_PRED_FN_CPU;
2056 else {
2057 pred->fn_num = select_comparison_fn(pred->op, field->size,
2058 field->is_signed);
2059 if (pred->op == OP_NE)
2060 pred->not = 1;
2061 }
2062
2063 } else {
2064 parse_error(pe, FILT_ERR_INVALID_VALUE, pos + i);
2065 goto err_free;
2066 }
2067
2068 *pred_ptr = pred;
2069 return i;
2070
2071 err_free:
2072 free_predicate(pred);
2073 return -EINVAL;
2074 err_mem:
2075 free_predicate(pred);
2076 return -ENOMEM;
2077 }
2078
2079 enum {
2080 TOO_MANY_CLOSE = -1,
2081 TOO_MANY_OPEN = -2,
2082 MISSING_QUOTE = -3,
2083 };
2084
2085 /*
2086 * Read the filter string once to calculate the number of predicates
2087 * as well as how deep the parentheses go.
2088 *
2089 * Returns:
2090 * 0 - everything is fine (err is undefined)
2091 * -1 - too many ')'
2092 * -2 - too many '('
2093 * -3 - No matching quote
2094 */
calc_stack(const char * str,int * parens,int * preds,int * err)2095 static int calc_stack(const char *str, int *parens, int *preds, int *err)
2096 {
2097 bool is_pred = false;
2098 int nr_preds = 0;
2099 int open = 1; /* Count the expression as "(E)" */
2100 int last_quote = 0;
2101 int max_open = 1;
2102 int quote = 0;
2103 int i;
2104
2105 *err = 0;
2106
2107 for (i = 0; str[i]; i++) {
2108 if (isspace(str[i]))
2109 continue;
2110 if (quote) {
2111 if (str[i] == quote)
2112 quote = 0;
2113 continue;
2114 }
2115
2116 switch (str[i]) {
2117 case '\'':
2118 case '"':
2119 quote = str[i];
2120 last_quote = i;
2121 break;
2122 case '|':
2123 case '&':
2124 if (str[i+1] != str[i])
2125 break;
2126 is_pred = false;
2127 continue;
2128 case '(':
2129 is_pred = false;
2130 open++;
2131 if (open > max_open)
2132 max_open = open;
2133 continue;
2134 case ')':
2135 is_pred = false;
2136 if (open == 1) {
2137 *err = i;
2138 return TOO_MANY_CLOSE;
2139 }
2140 open--;
2141 continue;
2142 }
2143 if (!is_pred) {
2144 nr_preds++;
2145 is_pred = true;
2146 }
2147 }
2148
2149 if (quote) {
2150 *err = last_quote;
2151 return MISSING_QUOTE;
2152 }
2153
2154 if (open != 1) {
2155 int level = open;
2156
2157 /* find the bad open */
2158 for (i--; i; i--) {
2159 if (quote) {
2160 if (str[i] == quote)
2161 quote = 0;
2162 continue;
2163 }
2164 switch (str[i]) {
2165 case '(':
2166 if (level == open) {
2167 *err = i;
2168 return TOO_MANY_OPEN;
2169 }
2170 level--;
2171 break;
2172 case ')':
2173 level++;
2174 break;
2175 case '\'':
2176 case '"':
2177 quote = str[i];
2178 break;
2179 }
2180 }
2181 /* First character is the '(' with missing ')' */
2182 *err = 0;
2183 return TOO_MANY_OPEN;
2184 }
2185
2186 /* Set the size of the required stacks */
2187 *parens = max_open;
2188 *preds = nr_preds;
2189 return 0;
2190 }
2191
process_preds(struct trace_event_call * call,const char * filter_string,struct event_filter * filter,struct filter_parse_error * pe)2192 static int process_preds(struct trace_event_call *call,
2193 const char *filter_string,
2194 struct event_filter *filter,
2195 struct filter_parse_error *pe)
2196 {
2197 struct prog_entry *prog;
2198 int nr_parens;
2199 int nr_preds;
2200 int index;
2201 int ret;
2202
2203 ret = calc_stack(filter_string, &nr_parens, &nr_preds, &index);
2204 if (ret < 0) {
2205 switch (ret) {
2206 case MISSING_QUOTE:
2207 parse_error(pe, FILT_ERR_MISSING_QUOTE, index);
2208 break;
2209 case TOO_MANY_OPEN:
2210 parse_error(pe, FILT_ERR_TOO_MANY_OPEN, index);
2211 break;
2212 default:
2213 parse_error(pe, FILT_ERR_TOO_MANY_CLOSE, index);
2214 }
2215 return ret;
2216 }
2217
2218 if (!nr_preds)
2219 return -EINVAL;
2220
2221 prog = predicate_parse(filter_string, nr_parens, nr_preds,
2222 parse_pred, call, pe);
2223 if (IS_ERR(prog))
2224 return PTR_ERR(prog);
2225
2226 rcu_assign_pointer(filter->prog, prog);
2227 return 0;
2228 }
2229
event_set_filtered_flag(struct trace_event_file * file)2230 static inline void event_set_filtered_flag(struct trace_event_file *file)
2231 {
2232 unsigned long old_flags = file->flags;
2233
2234 file->flags |= EVENT_FILE_FL_FILTERED;
2235
2236 if (old_flags != file->flags)
2237 trace_buffered_event_enable();
2238 }
2239
process_system_preds(struct trace_subsystem_dir * dir,struct trace_array * tr,struct filter_parse_error * pe,char * filter_string)2240 static int process_system_preds(struct trace_subsystem_dir *dir,
2241 struct trace_array *tr,
2242 struct filter_parse_error *pe,
2243 char *filter_string)
2244 {
2245 struct trace_event_file *file;
2246 struct filter_list *filter_item;
2247 struct event_filter *filter = NULL;
2248 struct filter_head *filter_list;
2249 bool fail = true;
2250 int err;
2251
2252 filter_list = kmalloc(sizeof(*filter_list), GFP_KERNEL);
2253 if (!filter_list)
2254 return -ENOMEM;
2255
2256 INIT_LIST_HEAD(&filter_list->list);
2257
2258 list_for_each_entry(file, &tr->events, list) {
2259
2260 if (file->system != dir)
2261 continue;
2262
2263 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2264 if (!filter)
2265 goto fail_mem;
2266
2267 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
2268 if (!filter->filter_string)
2269 goto fail_mem;
2270
2271 err = process_preds(file->event_call, filter_string, filter, pe);
2272 if (err) {
2273 filter_disable(file);
2274 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
2275 append_filter_err(tr, pe, filter);
2276 } else
2277 event_set_filtered_flag(file);
2278
2279
2280 filter_item = kzalloc(sizeof(*filter_item), GFP_KERNEL);
2281 if (!filter_item)
2282 goto fail_mem;
2283
2284 list_add_tail(&filter_item->list, &filter_list->list);
2285 /*
2286 * Regardless of if this returned an error, we still
2287 * replace the filter for the call.
2288 */
2289 filter_item->filter = event_filter(file);
2290 event_set_filter(file, filter);
2291 filter = NULL;
2292
2293 fail = false;
2294 }
2295
2296 if (fail)
2297 goto fail;
2298
2299 /*
2300 * The calls can still be using the old filters.
2301 * Do a synchronize_rcu() and to ensure all calls are
2302 * done with them before we free them.
2303 */
2304 delay_free_filter(filter_list);
2305 return 0;
2306 fail:
2307 /* No call succeeded */
2308 free_filter_list(&filter_list->rcu);
2309 parse_error(pe, FILT_ERR_BAD_SUBSYS_FILTER, 0);
2310 return -EINVAL;
2311 fail_mem:
2312 __free_filter(filter);
2313
2314 /* If any call succeeded, we still need to sync */
2315 if (!fail)
2316 delay_free_filter(filter_list);
2317 else
2318 free_filter_list(&filter_list->rcu);
2319
2320 return -ENOMEM;
2321 }
2322
create_filter_start(char * filter_string,bool set_str,struct filter_parse_error ** pse,struct event_filter ** filterp)2323 static int create_filter_start(char *filter_string, bool set_str,
2324 struct filter_parse_error **pse,
2325 struct event_filter **filterp)
2326 {
2327 struct event_filter *filter;
2328 struct filter_parse_error *pe = NULL;
2329 int err = 0;
2330
2331 if (WARN_ON_ONCE(*pse || *filterp))
2332 return -EINVAL;
2333
2334 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2335 if (filter && set_str) {
2336 filter->filter_string = kstrdup(filter_string, GFP_KERNEL);
2337 if (!filter->filter_string)
2338 err = -ENOMEM;
2339 }
2340
2341 pe = kzalloc(sizeof(*pe), GFP_KERNEL);
2342
2343 if (!filter || !pe || err) {
2344 kfree(pe);
2345 __free_filter(filter);
2346 return -ENOMEM;
2347 }
2348
2349 /* we're committed to creating a new filter */
2350 *filterp = filter;
2351 *pse = pe;
2352
2353 return 0;
2354 }
2355
create_filter_finish(struct filter_parse_error * pe)2356 static void create_filter_finish(struct filter_parse_error *pe)
2357 {
2358 kfree(pe);
2359 }
2360
2361 /**
2362 * create_filter - create a filter for a trace_event_call
2363 * @tr: the trace array associated with these events
2364 * @call: trace_event_call to create a filter for
2365 * @filter_string: filter string
2366 * @set_str: remember @filter_str and enable detailed error in filter
2367 * @filterp: out param for created filter (always updated on return)
2368 * Must be a pointer that references a NULL pointer.
2369 *
2370 * Creates a filter for @call with @filter_str. If @set_str is %true,
2371 * @filter_str is copied and recorded in the new filter.
2372 *
2373 * On success, returns 0 and *@filterp points to the new filter. On
2374 * failure, returns -errno and *@filterp may point to %NULL or to a new
2375 * filter. In the latter case, the returned filter contains error
2376 * information if @set_str is %true and the caller is responsible for
2377 * freeing it.
2378 */
create_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_string,bool set_str,struct event_filter ** filterp)2379 static int create_filter(struct trace_array *tr,
2380 struct trace_event_call *call,
2381 char *filter_string, bool set_str,
2382 struct event_filter **filterp)
2383 {
2384 struct filter_parse_error *pe = NULL;
2385 int err;
2386
2387 /* filterp must point to NULL */
2388 if (WARN_ON(*filterp))
2389 *filterp = NULL;
2390
2391 err = create_filter_start(filter_string, set_str, &pe, filterp);
2392 if (err)
2393 return err;
2394
2395 err = process_preds(call, filter_string, *filterp, pe);
2396 if (err && set_str)
2397 append_filter_err(tr, pe, *filterp);
2398 create_filter_finish(pe);
2399
2400 return err;
2401 }
2402
create_event_filter(struct trace_array * tr,struct trace_event_call * call,char * filter_str,bool set_str,struct event_filter ** filterp)2403 int create_event_filter(struct trace_array *tr,
2404 struct trace_event_call *call,
2405 char *filter_str, bool set_str,
2406 struct event_filter **filterp)
2407 {
2408 return create_filter(tr, call, filter_str, set_str, filterp);
2409 }
2410
2411 /**
2412 * create_system_filter - create a filter for an event subsystem
2413 * @dir: the descriptor for the subsystem directory
2414 * @filter_str: filter string
2415 * @filterp: out param for created filter (always updated on return)
2416 *
2417 * Identical to create_filter() except that it creates a subsystem filter
2418 * and always remembers @filter_str.
2419 */
create_system_filter(struct trace_subsystem_dir * dir,char * filter_str,struct event_filter ** filterp)2420 static int create_system_filter(struct trace_subsystem_dir *dir,
2421 char *filter_str, struct event_filter **filterp)
2422 {
2423 struct filter_parse_error *pe = NULL;
2424 int err;
2425
2426 err = create_filter_start(filter_str, true, &pe, filterp);
2427 if (!err) {
2428 err = process_system_preds(dir, dir->tr, pe, filter_str);
2429 if (!err) {
2430 /* System filters just show a default message */
2431 kfree((*filterp)->filter_string);
2432 (*filterp)->filter_string = NULL;
2433 } else {
2434 append_filter_err(dir->tr, pe, *filterp);
2435 }
2436 }
2437 create_filter_finish(pe);
2438
2439 return err;
2440 }
2441
2442 /* caller must hold event_mutex */
apply_event_filter(struct trace_event_file * file,char * filter_string)2443 int apply_event_filter(struct trace_event_file *file, char *filter_string)
2444 {
2445 struct trace_event_call *call = file->event_call;
2446 struct event_filter *filter = NULL;
2447 int err;
2448
2449 if (file->flags & EVENT_FILE_FL_FREED)
2450 return -ENODEV;
2451
2452 if (!strcmp(strstrip(filter_string), "0")) {
2453 filter_disable(file);
2454 filter = event_filter(file);
2455
2456 if (!filter)
2457 return 0;
2458
2459 event_clear_filter(file);
2460
2461 try_delay_free_filter(filter);
2462
2463 return 0;
2464 }
2465
2466 err = create_filter(file->tr, call, filter_string, true, &filter);
2467
2468 /*
2469 * Always swap the call filter with the new filter
2470 * even if there was an error. If there was an error
2471 * in the filter, we disable the filter and show the error
2472 * string
2473 */
2474 if (filter) {
2475 struct event_filter *tmp;
2476
2477 tmp = event_filter(file);
2478 if (!err)
2479 event_set_filtered_flag(file);
2480 else
2481 filter_disable(file);
2482
2483 event_set_filter(file, filter);
2484
2485 if (tmp)
2486 try_delay_free_filter(tmp);
2487 }
2488
2489 return err;
2490 }
2491
apply_subsystem_event_filter(struct trace_subsystem_dir * dir,char * filter_string)2492 int apply_subsystem_event_filter(struct trace_subsystem_dir *dir,
2493 char *filter_string)
2494 {
2495 struct event_subsystem *system = dir->subsystem;
2496 struct trace_array *tr = dir->tr;
2497 struct event_filter *filter = NULL;
2498 int err = 0;
2499
2500 guard(mutex)(&event_mutex);
2501
2502 /* Make sure the system still has events */
2503 if (!dir->nr_events)
2504 return -ENODEV;
2505
2506 if (!strcmp(strstrip(filter_string), "0")) {
2507 filter_free_subsystem_preds(dir, tr);
2508 remove_filter_string(system->filter);
2509 filter = system->filter;
2510 system->filter = NULL;
2511 /* Ensure all filters are no longer used */
2512 filter_free_subsystem_filters(dir, tr, filter);
2513 return 0;
2514 }
2515
2516 err = create_system_filter(dir, filter_string, &filter);
2517 if (filter) {
2518 /*
2519 * No event actually uses the system filter
2520 * we can free it without synchronize_rcu().
2521 */
2522 __free_filter(system->filter);
2523 system->filter = filter;
2524 }
2525
2526 return err;
2527 }
2528
2529 #ifdef CONFIG_PERF_EVENTS
2530
ftrace_profile_free_filter(struct perf_event * event)2531 void ftrace_profile_free_filter(struct perf_event *event)
2532 {
2533 struct event_filter *filter = event->filter;
2534
2535 event->filter = NULL;
2536 __free_filter(filter);
2537 }
2538
2539 struct function_filter_data {
2540 struct ftrace_ops *ops;
2541 int first_filter;
2542 int first_notrace;
2543 };
2544
2545 #ifdef CONFIG_FUNCTION_TRACER
2546 static char **
ftrace_function_filter_re(char * buf,int len,int * count)2547 ftrace_function_filter_re(char *buf, int len, int *count)
2548 {
2549 char *str, **re;
2550
2551 str = kstrndup(buf, len, GFP_KERNEL);
2552 if (!str)
2553 return NULL;
2554
2555 /*
2556 * The argv_split function takes white space
2557 * as a separator, so convert ',' into spaces.
2558 */
2559 strreplace(str, ',', ' ');
2560
2561 re = argv_split(GFP_KERNEL, str, count);
2562 kfree(str);
2563 return re;
2564 }
2565
ftrace_function_set_regexp(struct ftrace_ops * ops,int filter,int reset,char * re,int len)2566 static int ftrace_function_set_regexp(struct ftrace_ops *ops, int filter,
2567 int reset, char *re, int len)
2568 {
2569 int ret;
2570
2571 if (filter)
2572 ret = ftrace_set_filter(ops, re, len, reset);
2573 else
2574 ret = ftrace_set_notrace(ops, re, len, reset);
2575
2576 return ret;
2577 }
2578
__ftrace_function_set_filter(int filter,char * buf,int len,struct function_filter_data * data)2579 static int __ftrace_function_set_filter(int filter, char *buf, int len,
2580 struct function_filter_data *data)
2581 {
2582 int i, re_cnt, ret = -EINVAL;
2583 int *reset;
2584 char **re;
2585
2586 reset = filter ? &data->first_filter : &data->first_notrace;
2587
2588 /*
2589 * The 'ip' field could have multiple filters set, separated
2590 * either by space or comma. We first cut the filter and apply
2591 * all pieces separately.
2592 */
2593 re = ftrace_function_filter_re(buf, len, &re_cnt);
2594 if (!re)
2595 return -EINVAL;
2596
2597 for (i = 0; i < re_cnt; i++) {
2598 ret = ftrace_function_set_regexp(data->ops, filter, *reset,
2599 re[i], strlen(re[i]));
2600 if (ret)
2601 break;
2602
2603 if (*reset)
2604 *reset = 0;
2605 }
2606
2607 argv_free(re);
2608 return ret;
2609 }
2610
ftrace_function_check_pred(struct filter_pred * pred)2611 static int ftrace_function_check_pred(struct filter_pred *pred)
2612 {
2613 struct ftrace_event_field *field = pred->field;
2614
2615 /*
2616 * Check the predicate for function trace, verify:
2617 * - only '==' and '!=' is used
2618 * - the 'ip' field is used
2619 */
2620 if ((pred->op != OP_EQ) && (pred->op != OP_NE))
2621 return -EINVAL;
2622
2623 if (strcmp(field->name, "ip"))
2624 return -EINVAL;
2625
2626 return 0;
2627 }
2628
ftrace_function_set_filter_pred(struct filter_pred * pred,struct function_filter_data * data)2629 static int ftrace_function_set_filter_pred(struct filter_pred *pred,
2630 struct function_filter_data *data)
2631 {
2632 int ret;
2633
2634 /* Checking the node is valid for function trace. */
2635 ret = ftrace_function_check_pred(pred);
2636 if (ret)
2637 return ret;
2638
2639 return __ftrace_function_set_filter(pred->op == OP_EQ,
2640 pred->regex->pattern,
2641 pred->regex->len,
2642 data);
2643 }
2644
is_or(struct prog_entry * prog,int i)2645 static bool is_or(struct prog_entry *prog, int i)
2646 {
2647 int target;
2648
2649 /*
2650 * Only "||" is allowed for function events, thus,
2651 * all true branches should jump to true, and any
2652 * false branch should jump to false.
2653 */
2654 target = prog[i].target + 1;
2655 /* True and false have NULL preds (all prog entries should jump to one */
2656 if (prog[target].pred)
2657 return false;
2658
2659 /* prog[target].target is 1 for TRUE, 0 for FALSE */
2660 return prog[i].when_to_branch == prog[target].target;
2661 }
2662
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2663 static int ftrace_function_set_filter(struct perf_event *event,
2664 struct event_filter *filter)
2665 {
2666 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2667 lockdep_is_held(&event_mutex));
2668 struct function_filter_data data = {
2669 .first_filter = 1,
2670 .first_notrace = 1,
2671 .ops = &event->ftrace_ops,
2672 };
2673 int i;
2674
2675 for (i = 0; prog[i].pred; i++) {
2676 struct filter_pred *pred = prog[i].pred;
2677
2678 if (!is_or(prog, i))
2679 return -EINVAL;
2680
2681 if (ftrace_function_set_filter_pred(pred, &data) < 0)
2682 return -EINVAL;
2683 }
2684 return 0;
2685 }
2686 #else
ftrace_function_set_filter(struct perf_event * event,struct event_filter * filter)2687 static int ftrace_function_set_filter(struct perf_event *event,
2688 struct event_filter *filter)
2689 {
2690 return -ENODEV;
2691 }
2692 #endif /* CONFIG_FUNCTION_TRACER */
2693
ftrace_profile_set_filter(struct perf_event * event,int event_id,char * filter_str)2694 int ftrace_profile_set_filter(struct perf_event *event, int event_id,
2695 char *filter_str)
2696 {
2697 int err;
2698 struct event_filter *filter = NULL;
2699 struct trace_event_call *call;
2700
2701 guard(mutex)(&event_mutex);
2702
2703 call = event->tp_event;
2704
2705 if (!call)
2706 return -EINVAL;
2707
2708 if (event->filter)
2709 return -EEXIST;
2710
2711 err = create_filter(NULL, call, filter_str, false, &filter);
2712 if (err)
2713 goto free_filter;
2714
2715 if (ftrace_event_is_function(call))
2716 err = ftrace_function_set_filter(event, filter);
2717 else
2718 event->filter = filter;
2719
2720 free_filter:
2721 if (err || ftrace_event_is_function(call))
2722 __free_filter(filter);
2723
2724 return err;
2725 }
2726
2727 #endif /* CONFIG_PERF_EVENTS */
2728
2729 #ifdef CONFIG_FTRACE_STARTUP_TEST
2730
2731 #include <linux/types.h>
2732 #include <linux/tracepoint.h>
2733
2734 #define CREATE_TRACE_POINTS
2735 #include "trace_events_filter_test.h"
2736
2737 #define DATA_REC(m, va, vb, vc, vd, ve, vf, vg, vh, nvisit) \
2738 { \
2739 .filter = FILTER, \
2740 .rec = { .a = va, .b = vb, .c = vc, .d = vd, \
2741 .e = ve, .f = vf, .g = vg, .h = vh }, \
2742 .match = m, \
2743 .not_visited = nvisit, \
2744 }
2745 #define YES 1
2746 #define NO 0
2747
2748 static struct test_filter_data_t {
2749 char *filter;
2750 struct trace_event_raw_ftrace_test_filter rec;
2751 int match;
2752 char *not_visited;
2753 } test_filter_data[] = {
2754 #define FILTER "a == 1 && b == 1 && c == 1 && d == 1 && " \
2755 "e == 1 && f == 1 && g == 1 && h == 1"
2756 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, ""),
2757 DATA_REC(NO, 0, 1, 1, 1, 1, 1, 1, 1, "bcdefgh"),
2758 DATA_REC(NO, 1, 1, 1, 1, 1, 1, 1, 0, ""),
2759 #undef FILTER
2760 #define FILTER "a == 1 || b == 1 || c == 1 || d == 1 || " \
2761 "e == 1 || f == 1 || g == 1 || h == 1"
2762 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2763 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2764 DATA_REC(YES, 1, 0, 0, 0, 0, 0, 0, 0, "bcdefgh"),
2765 #undef FILTER
2766 #define FILTER "(a == 1 || b == 1) && (c == 1 || d == 1) && " \
2767 "(e == 1 || f == 1) && (g == 1 || h == 1)"
2768 DATA_REC(NO, 0, 0, 1, 1, 1, 1, 1, 1, "dfh"),
2769 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2770 DATA_REC(YES, 1, 0, 1, 0, 0, 1, 0, 1, "bd"),
2771 DATA_REC(NO, 1, 0, 1, 0, 0, 1, 0, 0, "bd"),
2772 #undef FILTER
2773 #define FILTER "(a == 1 && b == 1) || (c == 1 && d == 1) || " \
2774 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2775 DATA_REC(YES, 1, 0, 1, 1, 1, 1, 1, 1, "efgh"),
2776 DATA_REC(YES, 0, 0, 0, 0, 0, 0, 1, 1, ""),
2777 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2778 #undef FILTER
2779 #define FILTER "(a == 1 && b == 1) && (c == 1 && d == 1) && " \
2780 "(e == 1 && f == 1) || (g == 1 && h == 1)"
2781 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 0, "gh"),
2782 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 1, ""),
2783 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, ""),
2784 #undef FILTER
2785 #define FILTER "((a == 1 || b == 1) || (c == 1 || d == 1) || " \
2786 "(e == 1 || f == 1)) && (g == 1 || h == 1)"
2787 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 0, 1, "bcdef"),
2788 DATA_REC(NO, 0, 0, 0, 0, 0, 0, 0, 0, ""),
2789 DATA_REC(YES, 1, 1, 1, 1, 1, 0, 1, 1, "h"),
2790 #undef FILTER
2791 #define FILTER "((((((((a == 1) && (b == 1)) || (c == 1)) && (d == 1)) || " \
2792 "(e == 1)) && (f == 1)) || (g == 1)) && (h == 1))"
2793 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "ceg"),
2794 DATA_REC(NO, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2795 DATA_REC(NO, 1, 0, 1, 0, 1, 0, 1, 0, ""),
2796 #undef FILTER
2797 #define FILTER "((((((((a == 1) || (b == 1)) && (c == 1)) || (d == 1)) && " \
2798 "(e == 1)) || (f == 1)) && (g == 1)) || (h == 1))"
2799 DATA_REC(YES, 1, 1, 1, 1, 1, 1, 1, 1, "bdfh"),
2800 DATA_REC(YES, 0, 1, 0, 1, 0, 1, 0, 1, ""),
2801 DATA_REC(YES, 1, 0, 1, 0, 1, 0, 1, 0, "bdfh"),
2802 };
2803
2804 #undef DATA_REC
2805 #undef FILTER
2806 #undef YES
2807 #undef NO
2808
2809 #define DATA_CNT ARRAY_SIZE(test_filter_data)
2810
2811 static int test_pred_visited;
2812
test_pred_visited_fn(struct filter_pred * pred,void * event)2813 static int test_pred_visited_fn(struct filter_pred *pred, void *event)
2814 {
2815 struct ftrace_event_field *field = pred->field;
2816
2817 test_pred_visited = 1;
2818 printk(KERN_INFO "\npred visited %s\n", field->name);
2819 return 1;
2820 }
2821
update_pred_fn(struct event_filter * filter,char * fields)2822 static void update_pred_fn(struct event_filter *filter, char *fields)
2823 {
2824 struct prog_entry *prog = rcu_dereference_protected(filter->prog,
2825 lockdep_is_held(&event_mutex));
2826 int i;
2827
2828 for (i = 0; prog[i].pred; i++) {
2829 struct filter_pred *pred = prog[i].pred;
2830 struct ftrace_event_field *field = pred->field;
2831
2832 WARN_ON_ONCE(pred->fn_num == FILTER_PRED_FN_NOP);
2833
2834 if (!field) {
2835 WARN_ONCE(1, "all leafs should have field defined %d", i);
2836 continue;
2837 }
2838
2839 if (!strchr(fields, *field->name))
2840 continue;
2841
2842 pred->fn_num = FILTER_PRED_TEST_VISITED;
2843 }
2844 }
2845
ftrace_test_event_filter(void)2846 static __init int ftrace_test_event_filter(void)
2847 {
2848 int i;
2849
2850 printk(KERN_INFO "Testing ftrace filter: ");
2851
2852 for (i = 0; i < DATA_CNT; i++) {
2853 struct event_filter *filter = NULL;
2854 struct test_filter_data_t *d = &test_filter_data[i];
2855 int err;
2856
2857 err = create_filter(NULL, &event_ftrace_test_filter,
2858 d->filter, false, &filter);
2859 if (err) {
2860 printk(KERN_INFO
2861 "Failed to get filter for '%s', err %d\n",
2862 d->filter, err);
2863 __free_filter(filter);
2864 break;
2865 }
2866
2867 /* Needed to dereference filter->prog */
2868 mutex_lock(&event_mutex);
2869 /*
2870 * The preemption disabling is not really needed for self
2871 * tests, but the rcu dereference will complain without it.
2872 */
2873 preempt_disable();
2874 if (*d->not_visited)
2875 update_pred_fn(filter, d->not_visited);
2876
2877 test_pred_visited = 0;
2878 err = filter_match_preds(filter, &d->rec);
2879 preempt_enable();
2880
2881 mutex_unlock(&event_mutex);
2882
2883 __free_filter(filter);
2884
2885 if (test_pred_visited) {
2886 printk(KERN_INFO
2887 "Failed, unwanted pred visited for filter %s\n",
2888 d->filter);
2889 break;
2890 }
2891
2892 if (err != d->match) {
2893 printk(KERN_INFO
2894 "Failed to match filter '%s', expected %d\n",
2895 d->filter, d->match);
2896 break;
2897 }
2898 }
2899
2900 if (i == DATA_CNT)
2901 printk(KERN_CONT "OK\n");
2902
2903 return 0;
2904 }
2905
2906 late_initcall(ftrace_test_event_filter);
2907
2908 #endif /* CONFIG_FTRACE_STARTUP_TEST */
2909