xref: /linux/mm/slub.c (revision 1af80d00e1e026c317c6ec19b1072f81ba7af64c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/mempolicy.h>
30 #include <linux/ctype.h>
31 #include <linux/stackdepot.h>
32 #include <linux/debugobjects.h>
33 #include <linux/kallsyms.h>
34 #include <linux/kfence.h>
35 #include <linux/memory.h>
36 #include <linux/math64.h>
37 #include <linux/fault-inject.h>
38 #include <linux/kmemleak.h>
39 #include <linux/stacktrace.h>
40 #include <linux/prefetch.h>
41 #include <linux/memcontrol.h>
42 #include <linux/random.h>
43 #include <kunit/test.h>
44 #include <kunit/test-bug.h>
45 #include <linux/sort.h>
46 
47 #include <linux/debugfs.h>
48 #include <trace/events/kmem.h>
49 
50 #include "internal.h"
51 
52 /*
53  * Lock order:
54  *   1. slab_mutex (Global Mutex)
55  *   2. node->list_lock (Spinlock)
56  *   3. kmem_cache->cpu_slab->lock (Local lock)
57  *   4. slab_lock(slab) (Only on some arches)
58  *   5. object_map_lock (Only for debugging)
59  *
60  *   slab_mutex
61  *
62  *   The role of the slab_mutex is to protect the list of all the slabs
63  *   and to synchronize major metadata changes to slab cache structures.
64  *   Also synchronizes memory hotplug callbacks.
65  *
66  *   slab_lock
67  *
68  *   The slab_lock is a wrapper around the page lock, thus it is a bit
69  *   spinlock.
70  *
71  *   The slab_lock is only used on arches that do not have the ability
72  *   to do a cmpxchg_double. It only protects:
73  *
74  *	A. slab->freelist	-> List of free objects in a slab
75  *	B. slab->inuse		-> Number of objects in use
76  *	C. slab->objects	-> Number of objects in slab
77  *	D. slab->frozen		-> frozen state
78  *
79  *   Frozen slabs
80  *
81  *   If a slab is frozen then it is exempt from list management. It is
82  *   the cpu slab which is actively allocated from by the processor that
83  *   froze it and it is not on any list. The processor that froze the
84  *   slab is the one who can perform list operations on the slab. Other
85  *   processors may put objects onto the freelist but the processor that
86  *   froze the slab is the only one that can retrieve the objects from the
87  *   slab's freelist.
88  *
89  *   CPU partial slabs
90  *
91  *   The partially empty slabs cached on the CPU partial list are used
92  *   for performance reasons, which speeds up the allocation process.
93  *   These slabs are not frozen, but are also exempt from list management,
94  *   by clearing the PG_workingset flag when moving out of the node
95  *   partial list. Please see __slab_free() for more details.
96  *
97  *   To sum up, the current scheme is:
98  *   - node partial slab: PG_Workingset && !frozen
99  *   - cpu partial slab: !PG_Workingset && !frozen
100  *   - cpu slab: !PG_Workingset && frozen
101  *   - full slab: !PG_Workingset && !frozen
102  *
103  *   list_lock
104  *
105  *   The list_lock protects the partial and full list on each node and
106  *   the partial slab counter. If taken then no new slabs may be added or
107  *   removed from the lists nor make the number of partial slabs be modified.
108  *   (Note that the total number of slabs is an atomic value that may be
109  *   modified without taking the list lock).
110  *
111  *   The list_lock is a centralized lock and thus we avoid taking it as
112  *   much as possible. As long as SLUB does not have to handle partial
113  *   slabs, operations can continue without any centralized lock. F.e.
114  *   allocating a long series of objects that fill up slabs does not require
115  *   the list lock.
116  *
117  *   For debug caches, all allocations are forced to go through a list_lock
118  *   protected region to serialize against concurrent validation.
119  *
120  *   cpu_slab->lock local lock
121  *
122  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
123  *   except the stat counters. This is a percpu structure manipulated only by
124  *   the local cpu, so the lock protects against being preempted or interrupted
125  *   by an irq. Fast path operations rely on lockless operations instead.
126  *
127  *   On PREEMPT_RT, the local lock neither disables interrupts nor preemption
128  *   which means the lockless fastpath cannot be used as it might interfere with
129  *   an in-progress slow path operations. In this case the local lock is always
130  *   taken but it still utilizes the freelist for the common operations.
131  *
132  *   lockless fastpaths
133  *
134  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
135  *   are fully lockless when satisfied from the percpu slab (and when
136  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
137  *   They also don't disable preemption or migration or irqs. They rely on
138  *   the transaction id (tid) field to detect being preempted or moved to
139  *   another cpu.
140  *
141  *   irq, preemption, migration considerations
142  *
143  *   Interrupts are disabled as part of list_lock or local_lock operations, or
144  *   around the slab_lock operation, in order to make the slab allocator safe
145  *   to use in the context of an irq.
146  *
147  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
148  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
149  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
150  *   doesn't have to be revalidated in each section protected by the local lock.
151  *
152  * SLUB assigns one slab for allocation to each processor.
153  * Allocations only occur from these slabs called cpu slabs.
154  *
155  * Slabs with free elements are kept on a partial list and during regular
156  * operations no list for full slabs is used. If an object in a full slab is
157  * freed then the slab will show up again on the partial lists.
158  * We track full slabs for debugging purposes though because otherwise we
159  * cannot scan all objects.
160  *
161  * Slabs are freed when they become empty. Teardown and setup is
162  * minimal so we rely on the page allocators per cpu caches for
163  * fast frees and allocs.
164  *
165  * slab->frozen		The slab is frozen and exempt from list processing.
166  * 			This means that the slab is dedicated to a purpose
167  * 			such as satisfying allocations for a specific
168  * 			processor. Objects may be freed in the slab while
169  * 			it is frozen but slab_free will then skip the usual
170  * 			list operations. It is up to the processor holding
171  * 			the slab to integrate the slab into the slab lists
172  * 			when the slab is no longer needed.
173  *
174  * 			One use of this flag is to mark slabs that are
175  * 			used for allocations. Then such a slab becomes a cpu
176  * 			slab. The cpu slab may be equipped with an additional
177  * 			freelist that allows lockless access to
178  * 			free objects in addition to the regular freelist
179  * 			that requires the slab lock.
180  *
181  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
182  * 			options set. This moves	slab handling out of
183  * 			the fast path and disables lockless freelists.
184  */
185 
186 /*
187  * We could simply use migrate_disable()/enable() but as long as it's a
188  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189  */
190 #ifndef CONFIG_PREEMPT_RT
191 #define slub_get_cpu_ptr(var)		get_cpu_ptr(var)
192 #define slub_put_cpu_ptr(var)		put_cpu_ptr(var)
193 #define USE_LOCKLESS_FAST_PATH()	(true)
194 #else
195 #define slub_get_cpu_ptr(var)		\
196 ({					\
197 	migrate_disable();		\
198 	this_cpu_ptr(var);		\
199 })
200 #define slub_put_cpu_ptr(var)		\
201 do {					\
202 	(void)(var);			\
203 	migrate_enable();		\
204 } while (0)
205 #define USE_LOCKLESS_FAST_PATH()	(false)
206 #endif
207 
208 #ifndef CONFIG_SLUB_TINY
209 #define __fastpath_inline __always_inline
210 #else
211 #define __fastpath_inline
212 #endif
213 
214 #ifdef CONFIG_SLUB_DEBUG
215 #ifdef CONFIG_SLUB_DEBUG_ON
216 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
217 #else
218 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
219 #endif
220 #endif		/* CONFIG_SLUB_DEBUG */
221 
222 #ifdef CONFIG_NUMA
223 static DEFINE_STATIC_KEY_FALSE(strict_numa);
224 #endif
225 
226 /* Structure holding parameters for get_partial() call chain */
227 struct partial_context {
228 	gfp_t flags;
229 	unsigned int orig_size;
230 	void *object;
231 };
232 
kmem_cache_debug(struct kmem_cache * s)233 static inline bool kmem_cache_debug(struct kmem_cache *s)
234 {
235 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
236 }
237 
fixup_red_left(struct kmem_cache * s,void * p)238 void *fixup_red_left(struct kmem_cache *s, void *p)
239 {
240 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
241 		p += s->red_left_pad;
242 
243 	return p;
244 }
245 
kmem_cache_has_cpu_partial(struct kmem_cache * s)246 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
247 {
248 #ifdef CONFIG_SLUB_CPU_PARTIAL
249 	return !kmem_cache_debug(s);
250 #else
251 	return false;
252 #endif
253 }
254 
255 /*
256  * Issues still to be resolved:
257  *
258  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
259  *
260  * - Variable sizing of the per node arrays
261  */
262 
263 /* Enable to log cmpxchg failures */
264 #undef SLUB_DEBUG_CMPXCHG
265 
266 #ifndef CONFIG_SLUB_TINY
267 /*
268  * Minimum number of partial slabs. These will be left on the partial
269  * lists even if they are empty. kmem_cache_shrink may reclaim them.
270  */
271 #define MIN_PARTIAL 5
272 
273 /*
274  * Maximum number of desirable partial slabs.
275  * The existence of more partial slabs makes kmem_cache_shrink
276  * sort the partial list by the number of objects in use.
277  */
278 #define MAX_PARTIAL 10
279 #else
280 #define MIN_PARTIAL 0
281 #define MAX_PARTIAL 0
282 #endif
283 
284 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
285 				SLAB_POISON | SLAB_STORE_USER)
286 
287 /*
288  * These debug flags cannot use CMPXCHG because there might be consistency
289  * issues when checking or reading debug information
290  */
291 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
292 				SLAB_TRACE)
293 
294 
295 /*
296  * Debugging flags that require metadata to be stored in the slab.  These get
297  * disabled when slab_debug=O is used and a cache's min order increases with
298  * metadata.
299  */
300 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
301 
302 #define OO_SHIFT	16
303 #define OO_MASK		((1 << OO_SHIFT) - 1)
304 #define MAX_OBJS_PER_PAGE	32767 /* since slab.objects is u15 */
305 
306 /* Internal SLUB flags */
307 /* Poison object */
308 #define __OBJECT_POISON		__SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
309 /* Use cmpxchg_double */
310 
311 #ifdef system_has_freelist_aba
312 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
313 #else
314 #define __CMPXCHG_DOUBLE	__SLAB_FLAG_UNUSED
315 #endif
316 
317 /*
318  * Tracking user of a slab.
319  */
320 #define TRACK_ADDRS_COUNT 16
321 struct track {
322 	unsigned long addr;	/* Called from address */
323 #ifdef CONFIG_STACKDEPOT
324 	depot_stack_handle_t handle;
325 #endif
326 	int cpu;		/* Was running on cpu */
327 	int pid;		/* Pid context */
328 	unsigned long when;	/* When did the operation occur */
329 };
330 
331 enum track_item { TRACK_ALLOC, TRACK_FREE };
332 
333 #ifdef SLAB_SUPPORTS_SYSFS
334 static int sysfs_slab_add(struct kmem_cache *);
335 static int sysfs_slab_alias(struct kmem_cache *, const char *);
336 #else
sysfs_slab_add(struct kmem_cache * s)337 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)338 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
339 							{ return 0; }
340 #endif
341 
342 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
343 static void debugfs_slab_add(struct kmem_cache *);
344 #else
debugfs_slab_add(struct kmem_cache * s)345 static inline void debugfs_slab_add(struct kmem_cache *s) { }
346 #endif
347 
348 enum stat_item {
349 	ALLOC_FASTPATH,		/* Allocation from cpu slab */
350 	ALLOC_SLOWPATH,		/* Allocation by getting a new cpu slab */
351 	FREE_FASTPATH,		/* Free to cpu slab */
352 	FREE_SLOWPATH,		/* Freeing not to cpu slab */
353 	FREE_FROZEN,		/* Freeing to frozen slab */
354 	FREE_ADD_PARTIAL,	/* Freeing moves slab to partial list */
355 	FREE_REMOVE_PARTIAL,	/* Freeing removes last object */
356 	ALLOC_FROM_PARTIAL,	/* Cpu slab acquired from node partial list */
357 	ALLOC_SLAB,		/* Cpu slab acquired from page allocator */
358 	ALLOC_REFILL,		/* Refill cpu slab from slab freelist */
359 	ALLOC_NODE_MISMATCH,	/* Switching cpu slab */
360 	FREE_SLAB,		/* Slab freed to the page allocator */
361 	CPUSLAB_FLUSH,		/* Abandoning of the cpu slab */
362 	DEACTIVATE_FULL,	/* Cpu slab was full when deactivated */
363 	DEACTIVATE_EMPTY,	/* Cpu slab was empty when deactivated */
364 	DEACTIVATE_TO_HEAD,	/* Cpu slab was moved to the head of partials */
365 	DEACTIVATE_TO_TAIL,	/* Cpu slab was moved to the tail of partials */
366 	DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
367 	DEACTIVATE_BYPASS,	/* Implicit deactivation */
368 	ORDER_FALLBACK,		/* Number of times fallback was necessary */
369 	CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
370 	CMPXCHG_DOUBLE_FAIL,	/* Failures of slab freelist update */
371 	CPU_PARTIAL_ALLOC,	/* Used cpu partial on alloc */
372 	CPU_PARTIAL_FREE,	/* Refill cpu partial on free */
373 	CPU_PARTIAL_NODE,	/* Refill cpu partial from node partial */
374 	CPU_PARTIAL_DRAIN,	/* Drain cpu partial to node partial */
375 	NR_SLUB_STAT_ITEMS
376 };
377 
378 #ifndef CONFIG_SLUB_TINY
379 /*
380  * When changing the layout, make sure freelist and tid are still compatible
381  * with this_cpu_cmpxchg_double() alignment requirements.
382  */
383 struct kmem_cache_cpu {
384 	union {
385 		struct {
386 			void **freelist;	/* Pointer to next available object */
387 			unsigned long tid;	/* Globally unique transaction id */
388 		};
389 		freelist_aba_t freelist_tid;
390 	};
391 	struct slab *slab;	/* The slab from which we are allocating */
392 #ifdef CONFIG_SLUB_CPU_PARTIAL
393 	struct slab *partial;	/* Partially allocated slabs */
394 #endif
395 	local_lock_t lock;	/* Protects the fields above */
396 #ifdef CONFIG_SLUB_STATS
397 	unsigned int stat[NR_SLUB_STAT_ITEMS];
398 #endif
399 };
400 #endif /* CONFIG_SLUB_TINY */
401 
stat(const struct kmem_cache * s,enum stat_item si)402 static inline void stat(const struct kmem_cache *s, enum stat_item si)
403 {
404 #ifdef CONFIG_SLUB_STATS
405 	/*
406 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
407 	 * avoid this_cpu_add()'s irq-disable overhead.
408 	 */
409 	raw_cpu_inc(s->cpu_slab->stat[si]);
410 #endif
411 }
412 
413 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)414 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
415 {
416 #ifdef CONFIG_SLUB_STATS
417 	raw_cpu_add(s->cpu_slab->stat[si], v);
418 #endif
419 }
420 
421 /*
422  * The slab lists for all objects.
423  */
424 struct kmem_cache_node {
425 	spinlock_t list_lock;
426 	unsigned long nr_partial;
427 	struct list_head partial;
428 #ifdef CONFIG_SLUB_DEBUG
429 	atomic_long_t nr_slabs;
430 	atomic_long_t total_objects;
431 	struct list_head full;
432 #endif
433 };
434 
get_node(struct kmem_cache * s,int node)435 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
436 {
437 	return s->node[node];
438 }
439 
440 /*
441  * Iterator over all nodes. The body will be executed for each node that has
442  * a kmem_cache_node structure allocated (which is true for all online nodes)
443  */
444 #define for_each_kmem_cache_node(__s, __node, __n) \
445 	for (__node = 0; __node < nr_node_ids; __node++) \
446 		 if ((__n = get_node(__s, __node)))
447 
448 /*
449  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
450  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
451  * differ during memory hotplug/hotremove operations.
452  * Protected by slab_mutex.
453  */
454 static nodemask_t slab_nodes;
455 
456 #ifndef CONFIG_SLUB_TINY
457 /*
458  * Workqueue used for flush_cpu_slab().
459  */
460 static struct workqueue_struct *flushwq;
461 #endif
462 
463 /********************************************************************
464  * 			Core slab cache functions
465  *******************************************************************/
466 
467 /*
468  * Returns freelist pointer (ptr). With hardening, this is obfuscated
469  * with an XOR of the address where the pointer is held and a per-cache
470  * random number.
471  */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)472 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
473 					    void *ptr, unsigned long ptr_addr)
474 {
475 	unsigned long encoded;
476 
477 #ifdef CONFIG_SLAB_FREELIST_HARDENED
478 	encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
479 #else
480 	encoded = (unsigned long)ptr;
481 #endif
482 	return (freeptr_t){.v = encoded};
483 }
484 
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)485 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
486 					freeptr_t ptr, unsigned long ptr_addr)
487 {
488 	void *decoded;
489 
490 #ifdef CONFIG_SLAB_FREELIST_HARDENED
491 	decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
492 #else
493 	decoded = (void *)ptr.v;
494 #endif
495 	return decoded;
496 }
497 
get_freepointer(struct kmem_cache * s,void * object)498 static inline void *get_freepointer(struct kmem_cache *s, void *object)
499 {
500 	unsigned long ptr_addr;
501 	freeptr_t p;
502 
503 	object = kasan_reset_tag(object);
504 	ptr_addr = (unsigned long)object + s->offset;
505 	p = *(freeptr_t *)(ptr_addr);
506 	return freelist_ptr_decode(s, p, ptr_addr);
507 }
508 
509 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)510 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
511 {
512 	prefetchw(object + s->offset);
513 }
514 #endif
515 
516 /*
517  * When running under KMSAN, get_freepointer_safe() may return an uninitialized
518  * pointer value in the case the current thread loses the race for the next
519  * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
520  * slab_alloc_node() will fail, so the uninitialized value won't be used, but
521  * KMSAN will still check all arguments of cmpxchg because of imperfect
522  * handling of inline assembly.
523  * To work around this problem, we apply __no_kmsan_checks to ensure that
524  * get_freepointer_safe() returns initialized memory.
525  */
526 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)527 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
528 {
529 	unsigned long freepointer_addr;
530 	freeptr_t p;
531 
532 	if (!debug_pagealloc_enabled_static())
533 		return get_freepointer(s, object);
534 
535 	object = kasan_reset_tag(object);
536 	freepointer_addr = (unsigned long)object + s->offset;
537 	copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
538 	return freelist_ptr_decode(s, p, freepointer_addr);
539 }
540 
set_freepointer(struct kmem_cache * s,void * object,void * fp)541 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
542 {
543 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
544 
545 #ifdef CONFIG_SLAB_FREELIST_HARDENED
546 	BUG_ON(object == fp); /* naive detection of double free or corruption */
547 #endif
548 
549 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
550 	*(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
551 }
552 
553 /*
554  * See comment in calculate_sizes().
555  */
freeptr_outside_object(struct kmem_cache * s)556 static inline bool freeptr_outside_object(struct kmem_cache *s)
557 {
558 	return s->offset >= s->inuse;
559 }
560 
561 /*
562  * Return offset of the end of info block which is inuse + free pointer if
563  * not overlapping with object.
564  */
get_info_end(struct kmem_cache * s)565 static inline unsigned int get_info_end(struct kmem_cache *s)
566 {
567 	if (freeptr_outside_object(s))
568 		return s->inuse + sizeof(void *);
569 	else
570 		return s->inuse;
571 }
572 
573 /* Loop over all objects in a slab */
574 #define for_each_object(__p, __s, __addr, __objects) \
575 	for (__p = fixup_red_left(__s, __addr); \
576 		__p < (__addr) + (__objects) * (__s)->size; \
577 		__p += (__s)->size)
578 
order_objects(unsigned int order,unsigned int size)579 static inline unsigned int order_objects(unsigned int order, unsigned int size)
580 {
581 	return ((unsigned int)PAGE_SIZE << order) / size;
582 }
583 
oo_make(unsigned int order,unsigned int size)584 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
585 		unsigned int size)
586 {
587 	struct kmem_cache_order_objects x = {
588 		(order << OO_SHIFT) + order_objects(order, size)
589 	};
590 
591 	return x;
592 }
593 
oo_order(struct kmem_cache_order_objects x)594 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
595 {
596 	return x.x >> OO_SHIFT;
597 }
598 
oo_objects(struct kmem_cache_order_objects x)599 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
600 {
601 	return x.x & OO_MASK;
602 }
603 
604 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)605 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
606 {
607 	unsigned int nr_slabs;
608 
609 	s->cpu_partial = nr_objects;
610 
611 	/*
612 	 * We take the number of objects but actually limit the number of
613 	 * slabs on the per cpu partial list, in order to limit excessive
614 	 * growth of the list. For simplicity we assume that the slabs will
615 	 * be half-full.
616 	 */
617 	nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
618 	s->cpu_partial_slabs = nr_slabs;
619 }
620 
slub_get_cpu_partial(struct kmem_cache * s)621 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
622 {
623 	return s->cpu_partial_slabs;
624 }
625 #else
626 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)627 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
628 {
629 }
630 
slub_get_cpu_partial(struct kmem_cache * s)631 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
632 {
633 	return 0;
634 }
635 #endif /* CONFIG_SLUB_CPU_PARTIAL */
636 
637 /*
638  * Per slab locking using the pagelock
639  */
slab_lock(struct slab * slab)640 static __always_inline void slab_lock(struct slab *slab)
641 {
642 	bit_spin_lock(PG_locked, &slab->__page_flags);
643 }
644 
slab_unlock(struct slab * slab)645 static __always_inline void slab_unlock(struct slab *slab)
646 {
647 	bit_spin_unlock(PG_locked, &slab->__page_flags);
648 }
649 
650 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)651 __update_freelist_fast(struct slab *slab,
652 		      void *freelist_old, unsigned long counters_old,
653 		      void *freelist_new, unsigned long counters_new)
654 {
655 #ifdef system_has_freelist_aba
656 	freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
657 	freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
658 
659 	return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
660 #else
661 	return false;
662 #endif
663 }
664 
665 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)666 __update_freelist_slow(struct slab *slab,
667 		      void *freelist_old, unsigned long counters_old,
668 		      void *freelist_new, unsigned long counters_new)
669 {
670 	bool ret = false;
671 
672 	slab_lock(slab);
673 	if (slab->freelist == freelist_old &&
674 	    slab->counters == counters_old) {
675 		slab->freelist = freelist_new;
676 		slab->counters = counters_new;
677 		ret = true;
678 	}
679 	slab_unlock(slab);
680 
681 	return ret;
682 }
683 
684 /*
685  * Interrupts must be disabled (for the fallback code to work right), typically
686  * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
687  * part of bit_spin_lock(), is sufficient because the policy is not to allow any
688  * allocation/ free operation in hardirq context. Therefore nothing can
689  * interrupt the operation.
690  */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)691 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
692 		void *freelist_old, unsigned long counters_old,
693 		void *freelist_new, unsigned long counters_new,
694 		const char *n)
695 {
696 	bool ret;
697 
698 	if (USE_LOCKLESS_FAST_PATH())
699 		lockdep_assert_irqs_disabled();
700 
701 	if (s->flags & __CMPXCHG_DOUBLE) {
702 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
703 				            freelist_new, counters_new);
704 	} else {
705 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
706 				            freelist_new, counters_new);
707 	}
708 	if (likely(ret))
709 		return true;
710 
711 	cpu_relax();
712 	stat(s, CMPXCHG_DOUBLE_FAIL);
713 
714 #ifdef SLUB_DEBUG_CMPXCHG
715 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
716 #endif
717 
718 	return false;
719 }
720 
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)721 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
722 		void *freelist_old, unsigned long counters_old,
723 		void *freelist_new, unsigned long counters_new,
724 		const char *n)
725 {
726 	bool ret;
727 
728 	if (s->flags & __CMPXCHG_DOUBLE) {
729 		ret = __update_freelist_fast(slab, freelist_old, counters_old,
730 				            freelist_new, counters_new);
731 	} else {
732 		unsigned long flags;
733 
734 		local_irq_save(flags);
735 		ret = __update_freelist_slow(slab, freelist_old, counters_old,
736 				            freelist_new, counters_new);
737 		local_irq_restore(flags);
738 	}
739 	if (likely(ret))
740 		return true;
741 
742 	cpu_relax();
743 	stat(s, CMPXCHG_DOUBLE_FAIL);
744 
745 #ifdef SLUB_DEBUG_CMPXCHG
746 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
747 #endif
748 
749 	return false;
750 }
751 
752 /*
753  * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
754  * family will round up the real request size to these fixed ones, so
755  * there could be an extra area than what is requested. Save the original
756  * request size in the meta data area, for better debug and sanity check.
757  */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)758 static inline void set_orig_size(struct kmem_cache *s,
759 				void *object, unsigned int orig_size)
760 {
761 	void *p = kasan_reset_tag(object);
762 
763 	if (!slub_debug_orig_size(s))
764 		return;
765 
766 	p += get_info_end(s);
767 	p += sizeof(struct track) * 2;
768 
769 	*(unsigned int *)p = orig_size;
770 }
771 
get_orig_size(struct kmem_cache * s,void * object)772 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
773 {
774 	void *p = kasan_reset_tag(object);
775 
776 	if (is_kfence_address(object))
777 		return kfence_ksize(object);
778 
779 	if (!slub_debug_orig_size(s))
780 		return s->object_size;
781 
782 	p += get_info_end(s);
783 	p += sizeof(struct track) * 2;
784 
785 	return *(unsigned int *)p;
786 }
787 
788 #ifdef CONFIG_SLUB_DEBUG
789 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
790 static DEFINE_SPINLOCK(object_map_lock);
791 
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)792 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
793 		       struct slab *slab)
794 {
795 	void *addr = slab_address(slab);
796 	void *p;
797 
798 	bitmap_zero(obj_map, slab->objects);
799 
800 	for (p = slab->freelist; p; p = get_freepointer(s, p))
801 		set_bit(__obj_to_index(s, addr, p), obj_map);
802 }
803 
804 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)805 static bool slab_add_kunit_errors(void)
806 {
807 	struct kunit_resource *resource;
808 
809 	if (!kunit_get_current_test())
810 		return false;
811 
812 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
813 	if (!resource)
814 		return false;
815 
816 	(*(int *)resource->data)++;
817 	kunit_put_resource(resource);
818 	return true;
819 }
820 
slab_in_kunit_test(void)821 bool slab_in_kunit_test(void)
822 {
823 	struct kunit_resource *resource;
824 
825 	if (!kunit_get_current_test())
826 		return false;
827 
828 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
829 	if (!resource)
830 		return false;
831 
832 	kunit_put_resource(resource);
833 	return true;
834 }
835 #else
slab_add_kunit_errors(void)836 static inline bool slab_add_kunit_errors(void) { return false; }
837 #endif
838 
size_from_object(struct kmem_cache * s)839 static inline unsigned int size_from_object(struct kmem_cache *s)
840 {
841 	if (s->flags & SLAB_RED_ZONE)
842 		return s->size - s->red_left_pad;
843 
844 	return s->size;
845 }
846 
restore_red_left(struct kmem_cache * s,void * p)847 static inline void *restore_red_left(struct kmem_cache *s, void *p)
848 {
849 	if (s->flags & SLAB_RED_ZONE)
850 		p -= s->red_left_pad;
851 
852 	return p;
853 }
854 
855 /*
856  * Debug settings:
857  */
858 #if defined(CONFIG_SLUB_DEBUG_ON)
859 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
860 #else
861 static slab_flags_t slub_debug;
862 #endif
863 
864 static char *slub_debug_string;
865 static int disable_higher_order_debug;
866 
867 /*
868  * slub is about to manipulate internal object metadata.  This memory lies
869  * outside the range of the allocated object, so accessing it would normally
870  * be reported by kasan as a bounds error.  metadata_access_enable() is used
871  * to tell kasan that these accesses are OK.
872  */
metadata_access_enable(void)873 static inline void metadata_access_enable(void)
874 {
875 	kasan_disable_current();
876 	kmsan_disable_current();
877 }
878 
metadata_access_disable(void)879 static inline void metadata_access_disable(void)
880 {
881 	kmsan_enable_current();
882 	kasan_enable_current();
883 }
884 
885 /*
886  * Object debugging
887  */
888 
889 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)890 static inline int check_valid_pointer(struct kmem_cache *s,
891 				struct slab *slab, void *object)
892 {
893 	void *base;
894 
895 	if (!object)
896 		return 1;
897 
898 	base = slab_address(slab);
899 	object = kasan_reset_tag(object);
900 	object = restore_red_left(s, object);
901 	if (object < base || object >= base + slab->objects * s->size ||
902 		(object - base) % s->size) {
903 		return 0;
904 	}
905 
906 	return 1;
907 }
908 
print_section(char * level,char * text,u8 * addr,unsigned int length)909 static void print_section(char *level, char *text, u8 *addr,
910 			  unsigned int length)
911 {
912 	metadata_access_enable();
913 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
914 			16, 1, kasan_reset_tag((void *)addr), length, 1);
915 	metadata_access_disable();
916 }
917 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)918 static struct track *get_track(struct kmem_cache *s, void *object,
919 	enum track_item alloc)
920 {
921 	struct track *p;
922 
923 	p = object + get_info_end(s);
924 
925 	return kasan_reset_tag(p + alloc);
926 }
927 
928 #ifdef CONFIG_STACKDEPOT
set_track_prepare(void)929 static noinline depot_stack_handle_t set_track_prepare(void)
930 {
931 	depot_stack_handle_t handle;
932 	unsigned long entries[TRACK_ADDRS_COUNT];
933 	unsigned int nr_entries;
934 
935 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
936 	handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
937 
938 	return handle;
939 }
940 #else
set_track_prepare(void)941 static inline depot_stack_handle_t set_track_prepare(void)
942 {
943 	return 0;
944 }
945 #endif
946 
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)947 static void set_track_update(struct kmem_cache *s, void *object,
948 			     enum track_item alloc, unsigned long addr,
949 			     depot_stack_handle_t handle)
950 {
951 	struct track *p = get_track(s, object, alloc);
952 
953 #ifdef CONFIG_STACKDEPOT
954 	p->handle = handle;
955 #endif
956 	p->addr = addr;
957 	p->cpu = smp_processor_id();
958 	p->pid = current->pid;
959 	p->when = jiffies;
960 }
961 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)962 static __always_inline void set_track(struct kmem_cache *s, void *object,
963 				      enum track_item alloc, unsigned long addr)
964 {
965 	depot_stack_handle_t handle = set_track_prepare();
966 
967 	set_track_update(s, object, alloc, addr, handle);
968 }
969 
init_tracking(struct kmem_cache * s,void * object)970 static void init_tracking(struct kmem_cache *s, void *object)
971 {
972 	struct track *p;
973 
974 	if (!(s->flags & SLAB_STORE_USER))
975 		return;
976 
977 	p = get_track(s, object, TRACK_ALLOC);
978 	memset(p, 0, 2*sizeof(struct track));
979 }
980 
print_track(const char * s,struct track * t,unsigned long pr_time)981 static void print_track(const char *s, struct track *t, unsigned long pr_time)
982 {
983 	depot_stack_handle_t handle __maybe_unused;
984 
985 	if (!t->addr)
986 		return;
987 
988 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
989 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
990 #ifdef CONFIG_STACKDEPOT
991 	handle = READ_ONCE(t->handle);
992 	if (handle)
993 		stack_depot_print(handle);
994 	else
995 		pr_err("object allocation/free stack trace missing\n");
996 #endif
997 }
998 
print_tracking(struct kmem_cache * s,void * object)999 void print_tracking(struct kmem_cache *s, void *object)
1000 {
1001 	unsigned long pr_time = jiffies;
1002 	if (!(s->flags & SLAB_STORE_USER))
1003 		return;
1004 
1005 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1006 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1007 }
1008 
print_slab_info(const struct slab * slab)1009 static void print_slab_info(const struct slab *slab)
1010 {
1011 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1012 	       slab, slab->objects, slab->inuse, slab->freelist,
1013 	       &slab->__page_flags);
1014 }
1015 
skip_orig_size_check(struct kmem_cache * s,const void * object)1016 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017 {
1018 	set_orig_size(s, (void *)object, s->object_size);
1019 }
1020 
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1021 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1022 {
1023 	struct va_format vaf;
1024 	va_list args;
1025 
1026 	va_copy(args, argsp);
1027 	vaf.fmt = fmt;
1028 	vaf.va = &args;
1029 	pr_err("=============================================================================\n");
1030 	pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1031 	pr_err("-----------------------------------------------------------------------------\n\n");
1032 	va_end(args);
1033 }
1034 
slab_bug(struct kmem_cache * s,const char * fmt,...)1035 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1036 {
1037 	va_list args;
1038 
1039 	va_start(args, fmt);
1040 	__slab_bug(s, fmt, args);
1041 	va_end(args);
1042 }
1043 
1044 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1045 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1046 {
1047 	struct va_format vaf;
1048 	va_list args;
1049 
1050 	if (slab_add_kunit_errors())
1051 		return;
1052 
1053 	va_start(args, fmt);
1054 	vaf.fmt = fmt;
1055 	vaf.va = &args;
1056 	pr_err("FIX %s: %pV\n", s->name, &vaf);
1057 	va_end(args);
1058 }
1059 
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1060 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1061 {
1062 	unsigned int off;	/* Offset of last byte */
1063 	u8 *addr = slab_address(slab);
1064 
1065 	print_tracking(s, p);
1066 
1067 	print_slab_info(slab);
1068 
1069 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1070 	       p, p - addr, get_freepointer(s, p));
1071 
1072 	if (s->flags & SLAB_RED_ZONE)
1073 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
1074 			      s->red_left_pad);
1075 	else if (p > addr + 16)
1076 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1077 
1078 	print_section(KERN_ERR,         "Object   ", p,
1079 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
1080 	if (s->flags & SLAB_RED_ZONE)
1081 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
1082 			s->inuse - s->object_size);
1083 
1084 	off = get_info_end(s);
1085 
1086 	if (s->flags & SLAB_STORE_USER)
1087 		off += 2 * sizeof(struct track);
1088 
1089 	if (slub_debug_orig_size(s))
1090 		off += sizeof(unsigned int);
1091 
1092 	off += kasan_metadata_size(s, false);
1093 
1094 	if (off != size_from_object(s))
1095 		/* Beginning of the filler is the free pointer */
1096 		print_section(KERN_ERR, "Padding  ", p + off,
1097 			      size_from_object(s) - off);
1098 }
1099 
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1100 static void object_err(struct kmem_cache *s, struct slab *slab,
1101 			u8 *object, const char *reason)
1102 {
1103 	if (slab_add_kunit_errors())
1104 		return;
1105 
1106 	slab_bug(s, reason);
1107 	print_trailer(s, slab, object);
1108 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1109 
1110 	WARN_ON(1);
1111 }
1112 
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1113 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1114 			       void **freelist, void *nextfree)
1115 {
1116 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1117 	    !check_valid_pointer(s, slab, nextfree) && freelist) {
1118 		object_err(s, slab, *freelist, "Freechain corrupt");
1119 		*freelist = NULL;
1120 		slab_fix(s, "Isolate corrupted freechain");
1121 		return true;
1122 	}
1123 
1124 	return false;
1125 }
1126 
__slab_err(struct slab * slab)1127 static void __slab_err(struct slab *slab)
1128 {
1129 	if (slab_in_kunit_test())
1130 		return;
1131 
1132 	print_slab_info(slab);
1133 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1134 
1135 	WARN_ON(1);
1136 }
1137 
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1138 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1139 			const char *fmt, ...)
1140 {
1141 	va_list args;
1142 
1143 	if (slab_add_kunit_errors())
1144 		return;
1145 
1146 	va_start(args, fmt);
1147 	__slab_bug(s, fmt, args);
1148 	va_end(args);
1149 
1150 	__slab_err(slab);
1151 }
1152 
init_object(struct kmem_cache * s,void * object,u8 val)1153 static void init_object(struct kmem_cache *s, void *object, u8 val)
1154 {
1155 	u8 *p = kasan_reset_tag(object);
1156 	unsigned int poison_size = s->object_size;
1157 
1158 	if (s->flags & SLAB_RED_ZONE) {
1159 		/*
1160 		 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1161 		 * the shadow makes it possible to distinguish uninit-value
1162 		 * from use-after-free.
1163 		 */
1164 		memset_no_sanitize_memory(p - s->red_left_pad, val,
1165 					  s->red_left_pad);
1166 
1167 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1168 			/*
1169 			 * Redzone the extra allocated space by kmalloc than
1170 			 * requested, and the poison size will be limited to
1171 			 * the original request size accordingly.
1172 			 */
1173 			poison_size = get_orig_size(s, object);
1174 		}
1175 	}
1176 
1177 	if (s->flags & __OBJECT_POISON) {
1178 		memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1179 		memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1180 	}
1181 
1182 	if (s->flags & SLAB_RED_ZONE)
1183 		memset_no_sanitize_memory(p + poison_size, val,
1184 					  s->inuse - poison_size);
1185 }
1186 
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1187 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1188 						void *from, void *to)
1189 {
1190 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1191 	memset(from, data, to - from);
1192 }
1193 
1194 #ifdef CONFIG_KMSAN
1195 #define pad_check_attributes noinline __no_kmsan_checks
1196 #else
1197 #define pad_check_attributes
1198 #endif
1199 
1200 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1201 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1202 		       u8 *object, const char *what, u8 *start, unsigned int value,
1203 		       unsigned int bytes, bool slab_obj_print)
1204 {
1205 	u8 *fault;
1206 	u8 *end;
1207 	u8 *addr = slab_address(slab);
1208 
1209 	metadata_access_enable();
1210 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1211 	metadata_access_disable();
1212 	if (!fault)
1213 		return 1;
1214 
1215 	end = start + bytes;
1216 	while (end > fault && end[-1] == value)
1217 		end--;
1218 
1219 	if (slab_add_kunit_errors())
1220 		goto skip_bug_print;
1221 
1222 	pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1223 	       what, fault, end - 1, fault - addr, fault[0], value);
1224 
1225 	if (slab_obj_print)
1226 		object_err(s, slab, object, "Object corrupt");
1227 
1228 skip_bug_print:
1229 	restore_bytes(s, what, value, fault, end);
1230 	return 0;
1231 }
1232 
1233 /*
1234  * Object layout:
1235  *
1236  * object address
1237  * 	Bytes of the object to be managed.
1238  * 	If the freepointer may overlay the object then the free
1239  *	pointer is at the middle of the object.
1240  *
1241  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
1242  * 	0xa5 (POISON_END)
1243  *
1244  * object + s->object_size
1245  * 	Padding to reach word boundary. This is also used for Redzoning.
1246  * 	Padding is extended by another word if Redzoning is enabled and
1247  * 	object_size == inuse.
1248  *
1249  * 	We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1250  * 	0xcc (SLUB_RED_ACTIVE) for objects in use.
1251  *
1252  * object + s->inuse
1253  * 	Meta data starts here.
1254  *
1255  * 	A. Free pointer (if we cannot overwrite object on free)
1256  * 	B. Tracking data for SLAB_STORE_USER
1257  *	C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1258  *	D. Padding to reach required alignment boundary or at minimum
1259  * 		one word if debugging is on to be able to detect writes
1260  * 		before the word boundary.
1261  *
1262  *	Padding is done using 0x5a (POISON_INUSE)
1263  *
1264  * object + s->size
1265  * 	Nothing is used beyond s->size.
1266  *
1267  * If slabcaches are merged then the object_size and inuse boundaries are mostly
1268  * ignored. And therefore no slab options that rely on these boundaries
1269  * may be used with merged slabcaches.
1270  */
1271 
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1272 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1273 {
1274 	unsigned long off = get_info_end(s);	/* The end of info */
1275 
1276 	if (s->flags & SLAB_STORE_USER) {
1277 		/* We also have user information there */
1278 		off += 2 * sizeof(struct track);
1279 
1280 		if (s->flags & SLAB_KMALLOC)
1281 			off += sizeof(unsigned int);
1282 	}
1283 
1284 	off += kasan_metadata_size(s, false);
1285 
1286 	if (size_from_object(s) == off)
1287 		return 1;
1288 
1289 	return check_bytes_and_report(s, slab, p, "Object padding",
1290 			p + off, POISON_INUSE, size_from_object(s) - off, true);
1291 }
1292 
1293 /* Check the pad bytes at the end of a slab page */
1294 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1295 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1296 {
1297 	u8 *start;
1298 	u8 *fault;
1299 	u8 *end;
1300 	u8 *pad;
1301 	int length;
1302 	int remainder;
1303 
1304 	if (!(s->flags & SLAB_POISON))
1305 		return;
1306 
1307 	start = slab_address(slab);
1308 	length = slab_size(slab);
1309 	end = start + length;
1310 	remainder = length % s->size;
1311 	if (!remainder)
1312 		return;
1313 
1314 	pad = end - remainder;
1315 	metadata_access_enable();
1316 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1317 	metadata_access_disable();
1318 	if (!fault)
1319 		return;
1320 	while (end > fault && end[-1] == POISON_INUSE)
1321 		end--;
1322 
1323 	slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1324 		 fault, end - 1, fault - start);
1325 	print_section(KERN_ERR, "Padding ", pad, remainder);
1326 	__slab_err(slab);
1327 
1328 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1329 }
1330 
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1331 static int check_object(struct kmem_cache *s, struct slab *slab,
1332 					void *object, u8 val)
1333 {
1334 	u8 *p = object;
1335 	u8 *endobject = object + s->object_size;
1336 	unsigned int orig_size, kasan_meta_size;
1337 	int ret = 1;
1338 
1339 	if (s->flags & SLAB_RED_ZONE) {
1340 		if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1341 			object - s->red_left_pad, val, s->red_left_pad, ret))
1342 			ret = 0;
1343 
1344 		if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1345 			endobject, val, s->inuse - s->object_size, ret))
1346 			ret = 0;
1347 
1348 		if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1349 			orig_size = get_orig_size(s, object);
1350 
1351 			if (s->object_size > orig_size  &&
1352 				!check_bytes_and_report(s, slab, object,
1353 					"kmalloc Redzone", p + orig_size,
1354 					val, s->object_size - orig_size, ret)) {
1355 				ret = 0;
1356 			}
1357 		}
1358 	} else {
1359 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1360 			if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1361 				endobject, POISON_INUSE,
1362 				s->inuse - s->object_size, ret))
1363 				ret = 0;
1364 		}
1365 	}
1366 
1367 	if (s->flags & SLAB_POISON) {
1368 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1369 			/*
1370 			 * KASAN can save its free meta data inside of the
1371 			 * object at offset 0. Thus, skip checking the part of
1372 			 * the redzone that overlaps with the meta data.
1373 			 */
1374 			kasan_meta_size = kasan_metadata_size(s, true);
1375 			if (kasan_meta_size < s->object_size - 1 &&
1376 			    !check_bytes_and_report(s, slab, p, "Poison",
1377 					p + kasan_meta_size, POISON_FREE,
1378 					s->object_size - kasan_meta_size - 1, ret))
1379 				ret = 0;
1380 			if (kasan_meta_size < s->object_size &&
1381 			    !check_bytes_and_report(s, slab, p, "End Poison",
1382 					p + s->object_size - 1, POISON_END, 1, ret))
1383 				ret = 0;
1384 		}
1385 		/*
1386 		 * check_pad_bytes cleans up on its own.
1387 		 */
1388 		if (!check_pad_bytes(s, slab, p))
1389 			ret = 0;
1390 	}
1391 
1392 	/*
1393 	 * Cannot check freepointer while object is allocated if
1394 	 * object and freepointer overlap.
1395 	 */
1396 	if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1397 	    !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1398 		object_err(s, slab, p, "Freepointer corrupt");
1399 		/*
1400 		 * No choice but to zap it and thus lose the remainder
1401 		 * of the free objects in this slab. May cause
1402 		 * another error because the object count is now wrong.
1403 		 */
1404 		set_freepointer(s, p, NULL);
1405 		ret = 0;
1406 	}
1407 
1408 	return ret;
1409 }
1410 
check_slab(struct kmem_cache * s,struct slab * slab)1411 static int check_slab(struct kmem_cache *s, struct slab *slab)
1412 {
1413 	int maxobj;
1414 
1415 	if (!folio_test_slab(slab_folio(slab))) {
1416 		slab_err(s, slab, "Not a valid slab page");
1417 		return 0;
1418 	}
1419 
1420 	maxobj = order_objects(slab_order(slab), s->size);
1421 	if (slab->objects > maxobj) {
1422 		slab_err(s, slab, "objects %u > max %u",
1423 			slab->objects, maxobj);
1424 		return 0;
1425 	}
1426 	if (slab->inuse > slab->objects) {
1427 		slab_err(s, slab, "inuse %u > max %u",
1428 			slab->inuse, slab->objects);
1429 		return 0;
1430 	}
1431 	if (slab->frozen) {
1432 		slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1433 		return 0;
1434 	}
1435 
1436 	/* Slab_pad_check fixes things up after itself */
1437 	slab_pad_check(s, slab);
1438 	return 1;
1439 }
1440 
1441 /*
1442  * Determine if a certain object in a slab is on the freelist. Must hold the
1443  * slab lock to guarantee that the chains are in a consistent state.
1444  */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1445 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1446 {
1447 	int nr = 0;
1448 	void *fp;
1449 	void *object = NULL;
1450 	int max_objects;
1451 
1452 	fp = slab->freelist;
1453 	while (fp && nr <= slab->objects) {
1454 		if (fp == search)
1455 			return true;
1456 		if (!check_valid_pointer(s, slab, fp)) {
1457 			if (object) {
1458 				object_err(s, slab, object,
1459 					"Freechain corrupt");
1460 				set_freepointer(s, object, NULL);
1461 				break;
1462 			} else {
1463 				slab_err(s, slab, "Freepointer corrupt");
1464 				slab->freelist = NULL;
1465 				slab->inuse = slab->objects;
1466 				slab_fix(s, "Freelist cleared");
1467 				return false;
1468 			}
1469 		}
1470 		object = fp;
1471 		fp = get_freepointer(s, object);
1472 		nr++;
1473 	}
1474 
1475 	if (nr > slab->objects) {
1476 		slab_err(s, slab, "Freelist cycle detected");
1477 		slab->freelist = NULL;
1478 		slab->inuse = slab->objects;
1479 		slab_fix(s, "Freelist cleared");
1480 		return false;
1481 	}
1482 
1483 	max_objects = order_objects(slab_order(slab), s->size);
1484 	if (max_objects > MAX_OBJS_PER_PAGE)
1485 		max_objects = MAX_OBJS_PER_PAGE;
1486 
1487 	if (slab->objects != max_objects) {
1488 		slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1489 			 slab->objects, max_objects);
1490 		slab->objects = max_objects;
1491 		slab_fix(s, "Number of objects adjusted");
1492 	}
1493 	if (slab->inuse != slab->objects - nr) {
1494 		slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1495 			 slab->inuse, slab->objects - nr);
1496 		slab->inuse = slab->objects - nr;
1497 		slab_fix(s, "Object count adjusted");
1498 	}
1499 	return search == NULL;
1500 }
1501 
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1502 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1503 								int alloc)
1504 {
1505 	if (s->flags & SLAB_TRACE) {
1506 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1507 			s->name,
1508 			alloc ? "alloc" : "free",
1509 			object, slab->inuse,
1510 			slab->freelist);
1511 
1512 		if (!alloc)
1513 			print_section(KERN_INFO, "Object ", (void *)object,
1514 					s->object_size);
1515 
1516 		dump_stack();
1517 	}
1518 }
1519 
1520 /*
1521  * Tracking of fully allocated slabs for debugging purposes.
1522  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1523 static void add_full(struct kmem_cache *s,
1524 	struct kmem_cache_node *n, struct slab *slab)
1525 {
1526 	if (!(s->flags & SLAB_STORE_USER))
1527 		return;
1528 
1529 	lockdep_assert_held(&n->list_lock);
1530 	list_add(&slab->slab_list, &n->full);
1531 }
1532 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1533 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1534 {
1535 	if (!(s->flags & SLAB_STORE_USER))
1536 		return;
1537 
1538 	lockdep_assert_held(&n->list_lock);
1539 	list_del(&slab->slab_list);
1540 }
1541 
node_nr_slabs(struct kmem_cache_node * n)1542 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1543 {
1544 	return atomic_long_read(&n->nr_slabs);
1545 }
1546 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1547 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1548 {
1549 	struct kmem_cache_node *n = get_node(s, node);
1550 
1551 	atomic_long_inc(&n->nr_slabs);
1552 	atomic_long_add(objects, &n->total_objects);
1553 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1554 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1555 {
1556 	struct kmem_cache_node *n = get_node(s, node);
1557 
1558 	atomic_long_dec(&n->nr_slabs);
1559 	atomic_long_sub(objects, &n->total_objects);
1560 }
1561 
1562 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1563 static void setup_object_debug(struct kmem_cache *s, void *object)
1564 {
1565 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1566 		return;
1567 
1568 	init_object(s, object, SLUB_RED_INACTIVE);
1569 	init_tracking(s, object);
1570 }
1571 
1572 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1573 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1574 {
1575 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1576 		return;
1577 
1578 	metadata_access_enable();
1579 	memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1580 	metadata_access_disable();
1581 }
1582 
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1583 static inline int alloc_consistency_checks(struct kmem_cache *s,
1584 					struct slab *slab, void *object)
1585 {
1586 	if (!check_slab(s, slab))
1587 		return 0;
1588 
1589 	if (!check_valid_pointer(s, slab, object)) {
1590 		object_err(s, slab, object, "Freelist Pointer check fails");
1591 		return 0;
1592 	}
1593 
1594 	if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1595 		return 0;
1596 
1597 	return 1;
1598 }
1599 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1600 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1601 			struct slab *slab, void *object, int orig_size)
1602 {
1603 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1604 		if (!alloc_consistency_checks(s, slab, object))
1605 			goto bad;
1606 	}
1607 
1608 	/* Success. Perform special debug activities for allocs */
1609 	trace(s, slab, object, 1);
1610 	set_orig_size(s, object, orig_size);
1611 	init_object(s, object, SLUB_RED_ACTIVE);
1612 	return true;
1613 
1614 bad:
1615 	if (folio_test_slab(slab_folio(slab))) {
1616 		/*
1617 		 * If this is a slab page then lets do the best we can
1618 		 * to avoid issues in the future. Marking all objects
1619 		 * as used avoids touching the remaining objects.
1620 		 */
1621 		slab_fix(s, "Marking all objects used");
1622 		slab->inuse = slab->objects;
1623 		slab->freelist = NULL;
1624 		slab->frozen = 1; /* mark consistency-failed slab as frozen */
1625 	}
1626 	return false;
1627 }
1628 
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1629 static inline int free_consistency_checks(struct kmem_cache *s,
1630 		struct slab *slab, void *object, unsigned long addr)
1631 {
1632 	if (!check_valid_pointer(s, slab, object)) {
1633 		slab_err(s, slab, "Invalid object pointer 0x%p", object);
1634 		return 0;
1635 	}
1636 
1637 	if (on_freelist(s, slab, object)) {
1638 		object_err(s, slab, object, "Object already free");
1639 		return 0;
1640 	}
1641 
1642 	if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1643 		return 0;
1644 
1645 	if (unlikely(s != slab->slab_cache)) {
1646 		if (!folio_test_slab(slab_folio(slab))) {
1647 			slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1648 				 object);
1649 		} else if (!slab->slab_cache) {
1650 			slab_err(NULL, slab, "No slab cache for object 0x%p",
1651 				 object);
1652 		} else {
1653 			object_err(s, slab, object,
1654 				   "page slab pointer corrupt.");
1655 		}
1656 		return 0;
1657 	}
1658 	return 1;
1659 }
1660 
1661 /*
1662  * Parse a block of slab_debug options. Blocks are delimited by ';'
1663  *
1664  * @str:    start of block
1665  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1666  * @slabs:  return start of list of slabs, or NULL when there's no list
1667  * @init:   assume this is initial parsing and not per-kmem-create parsing
1668  *
1669  * returns the start of next block if there's any, or NULL
1670  */
1671 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1672 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1673 {
1674 	bool higher_order_disable = false;
1675 
1676 	/* Skip any completely empty blocks */
1677 	while (*str && *str == ';')
1678 		str++;
1679 
1680 	if (*str == ',') {
1681 		/*
1682 		 * No options but restriction on slabs. This means full
1683 		 * debugging for slabs matching a pattern.
1684 		 */
1685 		*flags = DEBUG_DEFAULT_FLAGS;
1686 		goto check_slabs;
1687 	}
1688 	*flags = 0;
1689 
1690 	/* Determine which debug features should be switched on */
1691 	for (; *str && *str != ',' && *str != ';'; str++) {
1692 		switch (tolower(*str)) {
1693 		case '-':
1694 			*flags = 0;
1695 			break;
1696 		case 'f':
1697 			*flags |= SLAB_CONSISTENCY_CHECKS;
1698 			break;
1699 		case 'z':
1700 			*flags |= SLAB_RED_ZONE;
1701 			break;
1702 		case 'p':
1703 			*flags |= SLAB_POISON;
1704 			break;
1705 		case 'u':
1706 			*flags |= SLAB_STORE_USER;
1707 			break;
1708 		case 't':
1709 			*flags |= SLAB_TRACE;
1710 			break;
1711 		case 'a':
1712 			*flags |= SLAB_FAILSLAB;
1713 			break;
1714 		case 'o':
1715 			/*
1716 			 * Avoid enabling debugging on caches if its minimum
1717 			 * order would increase as a result.
1718 			 */
1719 			higher_order_disable = true;
1720 			break;
1721 		default:
1722 			if (init)
1723 				pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1724 		}
1725 	}
1726 check_slabs:
1727 	if (*str == ',')
1728 		*slabs = ++str;
1729 	else
1730 		*slabs = NULL;
1731 
1732 	/* Skip over the slab list */
1733 	while (*str && *str != ';')
1734 		str++;
1735 
1736 	/* Skip any completely empty blocks */
1737 	while (*str && *str == ';')
1738 		str++;
1739 
1740 	if (init && higher_order_disable)
1741 		disable_higher_order_debug = 1;
1742 
1743 	if (*str)
1744 		return str;
1745 	else
1746 		return NULL;
1747 }
1748 
setup_slub_debug(char * str)1749 static int __init setup_slub_debug(char *str)
1750 {
1751 	slab_flags_t flags;
1752 	slab_flags_t global_flags;
1753 	char *saved_str;
1754 	char *slab_list;
1755 	bool global_slub_debug_changed = false;
1756 	bool slab_list_specified = false;
1757 
1758 	global_flags = DEBUG_DEFAULT_FLAGS;
1759 	if (*str++ != '=' || !*str)
1760 		/*
1761 		 * No options specified. Switch on full debugging.
1762 		 */
1763 		goto out;
1764 
1765 	saved_str = str;
1766 	while (str) {
1767 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1768 
1769 		if (!slab_list) {
1770 			global_flags = flags;
1771 			global_slub_debug_changed = true;
1772 		} else {
1773 			slab_list_specified = true;
1774 			if (flags & SLAB_STORE_USER)
1775 				stack_depot_request_early_init();
1776 		}
1777 	}
1778 
1779 	/*
1780 	 * For backwards compatibility, a single list of flags with list of
1781 	 * slabs means debugging is only changed for those slabs, so the global
1782 	 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1783 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1784 	 * long as there is no option specifying flags without a slab list.
1785 	 */
1786 	if (slab_list_specified) {
1787 		if (!global_slub_debug_changed)
1788 			global_flags = slub_debug;
1789 		slub_debug_string = saved_str;
1790 	}
1791 out:
1792 	slub_debug = global_flags;
1793 	if (slub_debug & SLAB_STORE_USER)
1794 		stack_depot_request_early_init();
1795 	if (slub_debug != 0 || slub_debug_string)
1796 		static_branch_enable(&slub_debug_enabled);
1797 	else
1798 		static_branch_disable(&slub_debug_enabled);
1799 	if ((static_branch_unlikely(&init_on_alloc) ||
1800 	     static_branch_unlikely(&init_on_free)) &&
1801 	    (slub_debug & SLAB_POISON))
1802 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1803 	return 1;
1804 }
1805 
1806 __setup("slab_debug", setup_slub_debug);
1807 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1808 
1809 /*
1810  * kmem_cache_flags - apply debugging options to the cache
1811  * @flags:		flags to set
1812  * @name:		name of the cache
1813  *
1814  * Debug option(s) are applied to @flags. In addition to the debug
1815  * option(s), if a slab name (or multiple) is specified i.e.
1816  * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1817  * then only the select slabs will receive the debug option(s).
1818  */
kmem_cache_flags(slab_flags_t flags,const char * name)1819 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1820 {
1821 	char *iter;
1822 	size_t len;
1823 	char *next_block;
1824 	slab_flags_t block_flags;
1825 	slab_flags_t slub_debug_local = slub_debug;
1826 
1827 	if (flags & SLAB_NO_USER_FLAGS)
1828 		return flags;
1829 
1830 	/*
1831 	 * If the slab cache is for debugging (e.g. kmemleak) then
1832 	 * don't store user (stack trace) information by default,
1833 	 * but let the user enable it via the command line below.
1834 	 */
1835 	if (flags & SLAB_NOLEAKTRACE)
1836 		slub_debug_local &= ~SLAB_STORE_USER;
1837 
1838 	len = strlen(name);
1839 	next_block = slub_debug_string;
1840 	/* Go through all blocks of debug options, see if any matches our slab's name */
1841 	while (next_block) {
1842 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1843 		if (!iter)
1844 			continue;
1845 		/* Found a block that has a slab list, search it */
1846 		while (*iter) {
1847 			char *end, *glob;
1848 			size_t cmplen;
1849 
1850 			end = strchrnul(iter, ',');
1851 			if (next_block && next_block < end)
1852 				end = next_block - 1;
1853 
1854 			glob = strnchr(iter, end - iter, '*');
1855 			if (glob)
1856 				cmplen = glob - iter;
1857 			else
1858 				cmplen = max_t(size_t, len, (end - iter));
1859 
1860 			if (!strncmp(name, iter, cmplen)) {
1861 				flags |= block_flags;
1862 				return flags;
1863 			}
1864 
1865 			if (!*end || *end == ';')
1866 				break;
1867 			iter = end + 1;
1868 		}
1869 	}
1870 
1871 	return flags | slub_debug_local;
1872 }
1873 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1874 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1875 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1876 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1877 
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1878 static inline bool alloc_debug_processing(struct kmem_cache *s,
1879 	struct slab *slab, void *object, int orig_size) { return true; }
1880 
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1881 static inline bool free_debug_processing(struct kmem_cache *s,
1882 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
1883 	unsigned long addr, depot_stack_handle_t handle) { return true; }
1884 
slab_pad_check(struct kmem_cache * s,struct slab * slab)1885 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1886 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1887 			void *object, u8 val) { return 1; }
set_track_prepare(void)1888 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)1889 static inline void set_track(struct kmem_cache *s, void *object,
1890 			     enum track_item alloc, unsigned long addr) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1891 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1892 					struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1893 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1894 					struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)1895 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1896 {
1897 	return flags;
1898 }
1899 #define slub_debug 0
1900 
1901 #define disable_higher_order_debug 0
1902 
node_nr_slabs(struct kmem_cache_node * n)1903 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1904 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1905 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1906 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1907 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1908 							int objects) {}
1909 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1910 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1911 			       void **freelist, void *nextfree)
1912 {
1913 	return false;
1914 }
1915 #endif
1916 #endif /* CONFIG_SLUB_DEBUG */
1917 
1918 #ifdef CONFIG_SLAB_OBJ_EXT
1919 
1920 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1921 
mark_objexts_empty(struct slabobj_ext * obj_exts)1922 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1923 {
1924 	struct slabobj_ext *slab_exts;
1925 	struct slab *obj_exts_slab;
1926 
1927 	obj_exts_slab = virt_to_slab(obj_exts);
1928 	slab_exts = slab_obj_exts(obj_exts_slab);
1929 	if (slab_exts) {
1930 		unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1931 						 obj_exts_slab, obj_exts);
1932 		/* codetag should be NULL */
1933 		WARN_ON(slab_exts[offs].ref.ct);
1934 		set_codetag_empty(&slab_exts[offs].ref);
1935 	}
1936 }
1937 
mark_failed_objexts_alloc(struct slab * slab)1938 static inline void mark_failed_objexts_alloc(struct slab *slab)
1939 {
1940 	slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1941 }
1942 
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1943 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1944 			struct slabobj_ext *vec, unsigned int objects)
1945 {
1946 	/*
1947 	 * If vector previously failed to allocate then we have live
1948 	 * objects with no tag reference. Mark all references in this
1949 	 * vector as empty to avoid warnings later on.
1950 	 */
1951 	if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1952 		unsigned int i;
1953 
1954 		for (i = 0; i < objects; i++)
1955 			set_codetag_empty(&vec[i].ref);
1956 	}
1957 }
1958 
1959 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1960 
mark_objexts_empty(struct slabobj_ext * obj_exts)1961 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)1962 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1963 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1964 			struct slabobj_ext *vec, unsigned int objects) {}
1965 
1966 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1967 
1968 /*
1969  * The allocated objcg pointers array is not accounted directly.
1970  * Moreover, it should not come from DMA buffer and is not readily
1971  * reclaimable. So those GFP bits should be masked off.
1972  */
1973 #define OBJCGS_CLEAR_MASK	(__GFP_DMA | __GFP_RECLAIMABLE | \
1974 				__GFP_ACCOUNT | __GFP_NOFAIL)
1975 
init_slab_obj_exts(struct slab * slab)1976 static inline void init_slab_obj_exts(struct slab *slab)
1977 {
1978 	slab->obj_exts = 0;
1979 }
1980 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)1981 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1982 		        gfp_t gfp, bool new_slab)
1983 {
1984 	unsigned int objects = objs_per_slab(s, slab);
1985 	unsigned long new_exts;
1986 	unsigned long old_exts;
1987 	struct slabobj_ext *vec;
1988 
1989 	gfp &= ~OBJCGS_CLEAR_MASK;
1990 	/* Prevent recursive extension vector allocation */
1991 	gfp |= __GFP_NO_OBJ_EXT;
1992 	vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1993 			   slab_nid(slab));
1994 	if (!vec) {
1995 		/* Mark vectors which failed to allocate */
1996 		if (new_slab)
1997 			mark_failed_objexts_alloc(slab);
1998 
1999 		return -ENOMEM;
2000 	}
2001 
2002 	new_exts = (unsigned long)vec;
2003 #ifdef CONFIG_MEMCG
2004 	new_exts |= MEMCG_DATA_OBJEXTS;
2005 #endif
2006 	old_exts = READ_ONCE(slab->obj_exts);
2007 	handle_failed_objexts_alloc(old_exts, vec, objects);
2008 	if (new_slab) {
2009 		/*
2010 		 * If the slab is brand new and nobody can yet access its
2011 		 * obj_exts, no synchronization is required and obj_exts can
2012 		 * be simply assigned.
2013 		 */
2014 		slab->obj_exts = new_exts;
2015 	} else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2016 		   cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2017 		/*
2018 		 * If the slab is already in use, somebody can allocate and
2019 		 * assign slabobj_exts in parallel. In this case the existing
2020 		 * objcg vector should be reused.
2021 		 */
2022 		mark_objexts_empty(vec);
2023 		kfree(vec);
2024 		return 0;
2025 	}
2026 
2027 	kmemleak_not_leak(vec);
2028 	return 0;
2029 }
2030 
free_slab_obj_exts(struct slab * slab)2031 static inline void free_slab_obj_exts(struct slab *slab)
2032 {
2033 	struct slabobj_ext *obj_exts;
2034 
2035 	obj_exts = slab_obj_exts(slab);
2036 	if (!obj_exts)
2037 		return;
2038 
2039 	/*
2040 	 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2041 	 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2042 	 * warning if slab has extensions but the extension of an object is
2043 	 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2044 	 * the extension for obj_exts is expected to be NULL.
2045 	 */
2046 	mark_objexts_empty(obj_exts);
2047 	kfree(obj_exts);
2048 	slab->obj_exts = 0;
2049 }
2050 
2051 #else /* CONFIG_SLAB_OBJ_EXT */
2052 
init_slab_obj_exts(struct slab * slab)2053 static inline void init_slab_obj_exts(struct slab *slab)
2054 {
2055 }
2056 
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2057 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2058 			       gfp_t gfp, bool new_slab)
2059 {
2060 	return 0;
2061 }
2062 
free_slab_obj_exts(struct slab * slab)2063 static inline void free_slab_obj_exts(struct slab *slab)
2064 {
2065 }
2066 
2067 #endif /* CONFIG_SLAB_OBJ_EXT */
2068 
2069 #ifdef CONFIG_MEM_ALLOC_PROFILING
2070 
2071 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2072 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2073 {
2074 	struct slab *slab;
2075 
2076 	if (!p)
2077 		return NULL;
2078 
2079 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2080 		return NULL;
2081 
2082 	if (flags & __GFP_NO_OBJ_EXT)
2083 		return NULL;
2084 
2085 	slab = virt_to_slab(p);
2086 	if (!slab_obj_exts(slab) &&
2087 	    alloc_slab_obj_exts(slab, s, flags, false)) {
2088 		pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2089 			     __func__, s->name);
2090 		return NULL;
2091 	}
2092 
2093 	return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2094 }
2095 
2096 /* Should be called only if mem_alloc_profiling_enabled() */
2097 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2098 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2099 {
2100 	struct slabobj_ext *obj_exts;
2101 
2102 	obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2103 	/*
2104 	 * Currently obj_exts is used only for allocation profiling.
2105 	 * If other users appear then mem_alloc_profiling_enabled()
2106 	 * check should be added before alloc_tag_add().
2107 	 */
2108 	if (likely(obj_exts))
2109 		alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2110 }
2111 
2112 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2113 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2114 {
2115 	if (mem_alloc_profiling_enabled())
2116 		__alloc_tagging_slab_alloc_hook(s, object, flags);
2117 }
2118 
2119 /* Should be called only if mem_alloc_profiling_enabled() */
2120 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2121 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2122 			       int objects)
2123 {
2124 	struct slabobj_ext *obj_exts;
2125 	int i;
2126 
2127 	/* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2128 	if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2129 		return;
2130 
2131 	obj_exts = slab_obj_exts(slab);
2132 	if (!obj_exts)
2133 		return;
2134 
2135 	for (i = 0; i < objects; i++) {
2136 		unsigned int off = obj_to_index(s, slab, p[i]);
2137 
2138 		alloc_tag_sub(&obj_exts[off].ref, s->size);
2139 	}
2140 }
2141 
2142 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2143 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2144 			     int objects)
2145 {
2146 	if (mem_alloc_profiling_enabled())
2147 		__alloc_tagging_slab_free_hook(s, slab, p, objects);
2148 }
2149 
2150 #else /* CONFIG_MEM_ALLOC_PROFILING */
2151 
2152 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2153 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2154 {
2155 }
2156 
2157 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2158 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2159 			     int objects)
2160 {
2161 }
2162 
2163 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2164 
2165 
2166 #ifdef CONFIG_MEMCG
2167 
2168 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2169 
2170 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2171 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2172 				gfp_t flags, size_t size, void **p)
2173 {
2174 	if (likely(!memcg_kmem_online()))
2175 		return true;
2176 
2177 	if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2178 		return true;
2179 
2180 	if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2181 		return true;
2182 
2183 	if (likely(size == 1)) {
2184 		memcg_alloc_abort_single(s, *p);
2185 		*p = NULL;
2186 	} else {
2187 		kmem_cache_free_bulk(s, size, p);
2188 	}
2189 
2190 	return false;
2191 }
2192 
2193 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2194 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2195 			  int objects)
2196 {
2197 	struct slabobj_ext *obj_exts;
2198 
2199 	if (!memcg_kmem_online())
2200 		return;
2201 
2202 	obj_exts = slab_obj_exts(slab);
2203 	if (likely(!obj_exts))
2204 		return;
2205 
2206 	__memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2207 }
2208 
2209 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2210 bool memcg_slab_post_charge(void *p, gfp_t flags)
2211 {
2212 	struct slabobj_ext *slab_exts;
2213 	struct kmem_cache *s;
2214 	struct folio *folio;
2215 	struct slab *slab;
2216 	unsigned long off;
2217 
2218 	folio = virt_to_folio(p);
2219 	if (!folio_test_slab(folio)) {
2220 		int size;
2221 
2222 		if (folio_memcg_kmem(folio))
2223 			return true;
2224 
2225 		if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2226 					     folio_order(folio)))
2227 			return false;
2228 
2229 		/*
2230 		 * This folio has already been accounted in the global stats but
2231 		 * not in the memcg stats. So, subtract from the global and use
2232 		 * the interface which adds to both global and memcg stats.
2233 		 */
2234 		size = folio_size(folio);
2235 		node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2236 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2237 		return true;
2238 	}
2239 
2240 	slab = folio_slab(folio);
2241 	s = slab->slab_cache;
2242 
2243 	/*
2244 	 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2245 	 * of slab_obj_exts being allocated from the same slab and thus the slab
2246 	 * becoming effectively unfreeable.
2247 	 */
2248 	if (is_kmalloc_normal(s))
2249 		return true;
2250 
2251 	/* Ignore already charged objects. */
2252 	slab_exts = slab_obj_exts(slab);
2253 	if (slab_exts) {
2254 		off = obj_to_index(s, slab, p);
2255 		if (unlikely(slab_exts[off].objcg))
2256 			return true;
2257 	}
2258 
2259 	return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2260 }
2261 
2262 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2263 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2264 					      struct list_lru *lru,
2265 					      gfp_t flags, size_t size,
2266 					      void **p)
2267 {
2268 	return true;
2269 }
2270 
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2271 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2272 					void **p, int objects)
2273 {
2274 }
2275 
memcg_slab_post_charge(void * p,gfp_t flags)2276 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2277 {
2278 	return true;
2279 }
2280 #endif /* CONFIG_MEMCG */
2281 
2282 #ifdef CONFIG_SLUB_RCU_DEBUG
2283 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2284 
2285 struct rcu_delayed_free {
2286 	struct rcu_head head;
2287 	void *object;
2288 };
2289 #endif
2290 
2291 /*
2292  * Hooks for other subsystems that check memory allocations. In a typical
2293  * production configuration these hooks all should produce no code at all.
2294  *
2295  * Returns true if freeing of the object can proceed, false if its reuse
2296  * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2297  * to KFENCE.
2298  */
2299 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2300 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2301 		    bool after_rcu_delay)
2302 {
2303 	/* Are the object contents still accessible? */
2304 	bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2305 
2306 	kmemleak_free_recursive(x, s->flags);
2307 	kmsan_slab_free(s, x);
2308 
2309 	debug_check_no_locks_freed(x, s->object_size);
2310 
2311 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
2312 		debug_check_no_obj_freed(x, s->object_size);
2313 
2314 	/* Use KCSAN to help debug racy use-after-free. */
2315 	if (!still_accessible)
2316 		__kcsan_check_access(x, s->object_size,
2317 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2318 
2319 	if (kfence_free(x))
2320 		return false;
2321 
2322 	/*
2323 	 * Give KASAN a chance to notice an invalid free operation before we
2324 	 * modify the object.
2325 	 */
2326 	if (kasan_slab_pre_free(s, x))
2327 		return false;
2328 
2329 #ifdef CONFIG_SLUB_RCU_DEBUG
2330 	if (still_accessible) {
2331 		struct rcu_delayed_free *delayed_free;
2332 
2333 		delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2334 		if (delayed_free) {
2335 			/*
2336 			 * Let KASAN track our call stack as a "related work
2337 			 * creation", just like if the object had been freed
2338 			 * normally via kfree_rcu().
2339 			 * We have to do this manually because the rcu_head is
2340 			 * not located inside the object.
2341 			 */
2342 			kasan_record_aux_stack(x);
2343 
2344 			delayed_free->object = x;
2345 			call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2346 			return false;
2347 		}
2348 	}
2349 #endif /* CONFIG_SLUB_RCU_DEBUG */
2350 
2351 	/*
2352 	 * As memory initialization might be integrated into KASAN,
2353 	 * kasan_slab_free and initialization memset's must be
2354 	 * kept together to avoid discrepancies in behavior.
2355 	 *
2356 	 * The initialization memset's clear the object and the metadata,
2357 	 * but don't touch the SLAB redzone.
2358 	 *
2359 	 * The object's freepointer is also avoided if stored outside the
2360 	 * object.
2361 	 */
2362 	if (unlikely(init)) {
2363 		int rsize;
2364 		unsigned int inuse, orig_size;
2365 
2366 		inuse = get_info_end(s);
2367 		orig_size = get_orig_size(s, x);
2368 		if (!kasan_has_integrated_init())
2369 			memset(kasan_reset_tag(x), 0, orig_size);
2370 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2371 		memset((char *)kasan_reset_tag(x) + inuse, 0,
2372 		       s->size - inuse - rsize);
2373 		/*
2374 		 * Restore orig_size, otherwize kmalloc redzone overwritten
2375 		 * would be reported
2376 		 */
2377 		set_orig_size(s, x, orig_size);
2378 
2379 	}
2380 	/* KASAN might put x into memory quarantine, delaying its reuse. */
2381 	return !kasan_slab_free(s, x, init, still_accessible);
2382 }
2383 
2384 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2385 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2386 			     int *cnt)
2387 {
2388 
2389 	void *object;
2390 	void *next = *head;
2391 	void *old_tail = *tail;
2392 	bool init;
2393 
2394 	if (is_kfence_address(next)) {
2395 		slab_free_hook(s, next, false, false);
2396 		return false;
2397 	}
2398 
2399 	/* Head and tail of the reconstructed freelist */
2400 	*head = NULL;
2401 	*tail = NULL;
2402 
2403 	init = slab_want_init_on_free(s);
2404 
2405 	do {
2406 		object = next;
2407 		next = get_freepointer(s, object);
2408 
2409 		/* If object's reuse doesn't have to be delayed */
2410 		if (likely(slab_free_hook(s, object, init, false))) {
2411 			/* Move object to the new freelist */
2412 			set_freepointer(s, object, *head);
2413 			*head = object;
2414 			if (!*tail)
2415 				*tail = object;
2416 		} else {
2417 			/*
2418 			 * Adjust the reconstructed freelist depth
2419 			 * accordingly if object's reuse is delayed.
2420 			 */
2421 			--(*cnt);
2422 		}
2423 	} while (object != old_tail);
2424 
2425 	return *head != NULL;
2426 }
2427 
setup_object(struct kmem_cache * s,void * object)2428 static void *setup_object(struct kmem_cache *s, void *object)
2429 {
2430 	setup_object_debug(s, object);
2431 	object = kasan_init_slab_obj(s, object);
2432 	if (unlikely(s->ctor)) {
2433 		kasan_unpoison_new_object(s, object);
2434 		s->ctor(object);
2435 		kasan_poison_new_object(s, object);
2436 	}
2437 	return object;
2438 }
2439 
2440 /*
2441  * Slab allocation and freeing
2442  */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)2443 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2444 		struct kmem_cache_order_objects oo)
2445 {
2446 	struct folio *folio;
2447 	struct slab *slab;
2448 	unsigned int order = oo_order(oo);
2449 
2450 	if (node == NUMA_NO_NODE)
2451 		folio = (struct folio *)alloc_frozen_pages(flags, order);
2452 	else
2453 		folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2454 
2455 	if (!folio)
2456 		return NULL;
2457 
2458 	slab = folio_slab(folio);
2459 	__folio_set_slab(folio);
2460 	if (folio_is_pfmemalloc(folio))
2461 		slab_set_pfmemalloc(slab);
2462 
2463 	return slab;
2464 }
2465 
2466 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2467 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)2468 static int init_cache_random_seq(struct kmem_cache *s)
2469 {
2470 	unsigned int count = oo_objects(s->oo);
2471 	int err;
2472 
2473 	/* Bailout if already initialised */
2474 	if (s->random_seq)
2475 		return 0;
2476 
2477 	err = cache_random_seq_create(s, count, GFP_KERNEL);
2478 	if (err) {
2479 		pr_err("SLUB: Unable to initialize free list for %s\n",
2480 			s->name);
2481 		return err;
2482 	}
2483 
2484 	/* Transform to an offset on the set of pages */
2485 	if (s->random_seq) {
2486 		unsigned int i;
2487 
2488 		for (i = 0; i < count; i++)
2489 			s->random_seq[i] *= s->size;
2490 	}
2491 	return 0;
2492 }
2493 
2494 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)2495 static void __init init_freelist_randomization(void)
2496 {
2497 	struct kmem_cache *s;
2498 
2499 	mutex_lock(&slab_mutex);
2500 
2501 	list_for_each_entry(s, &slab_caches, list)
2502 		init_cache_random_seq(s);
2503 
2504 	mutex_unlock(&slab_mutex);
2505 }
2506 
2507 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)2508 static void *next_freelist_entry(struct kmem_cache *s,
2509 				unsigned long *pos, void *start,
2510 				unsigned long page_limit,
2511 				unsigned long freelist_count)
2512 {
2513 	unsigned int idx;
2514 
2515 	/*
2516 	 * If the target page allocation failed, the number of objects on the
2517 	 * page might be smaller than the usual size defined by the cache.
2518 	 */
2519 	do {
2520 		idx = s->random_seq[*pos];
2521 		*pos += 1;
2522 		if (*pos >= freelist_count)
2523 			*pos = 0;
2524 	} while (unlikely(idx >= page_limit));
2525 
2526 	return (char *)start + idx;
2527 }
2528 
2529 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2530 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2531 {
2532 	void *start;
2533 	void *cur;
2534 	void *next;
2535 	unsigned long idx, pos, page_limit, freelist_count;
2536 
2537 	if (slab->objects < 2 || !s->random_seq)
2538 		return false;
2539 
2540 	freelist_count = oo_objects(s->oo);
2541 	pos = get_random_u32_below(freelist_count);
2542 
2543 	page_limit = slab->objects * s->size;
2544 	start = fixup_red_left(s, slab_address(slab));
2545 
2546 	/* First entry is used as the base of the freelist */
2547 	cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2548 	cur = setup_object(s, cur);
2549 	slab->freelist = cur;
2550 
2551 	for (idx = 1; idx < slab->objects; idx++) {
2552 		next = next_freelist_entry(s, &pos, start, page_limit,
2553 			freelist_count);
2554 		next = setup_object(s, next);
2555 		set_freepointer(s, cur, next);
2556 		cur = next;
2557 	}
2558 	set_freepointer(s, cur, NULL);
2559 
2560 	return true;
2561 }
2562 #else
init_cache_random_seq(struct kmem_cache * s)2563 static inline int init_cache_random_seq(struct kmem_cache *s)
2564 {
2565 	return 0;
2566 }
init_freelist_randomization(void)2567 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2568 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2569 {
2570 	return false;
2571 }
2572 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2573 
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)2574 static __always_inline void account_slab(struct slab *slab, int order,
2575 					 struct kmem_cache *s, gfp_t gfp)
2576 {
2577 	if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2578 		alloc_slab_obj_exts(slab, s, gfp, true);
2579 
2580 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2581 			    PAGE_SIZE << order);
2582 }
2583 
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)2584 static __always_inline void unaccount_slab(struct slab *slab, int order,
2585 					   struct kmem_cache *s)
2586 {
2587 	/*
2588 	 * The slab object extensions should now be freed regardless of
2589 	 * whether mem_alloc_profiling_enabled() or not because profiling
2590 	 * might have been disabled after slab->obj_exts got allocated.
2591 	 */
2592 	free_slab_obj_exts(slab);
2593 
2594 	mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2595 			    -(PAGE_SIZE << order));
2596 }
2597 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2598 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2599 {
2600 	struct slab *slab;
2601 	struct kmem_cache_order_objects oo = s->oo;
2602 	gfp_t alloc_gfp;
2603 	void *start, *p, *next;
2604 	int idx;
2605 	bool shuffle;
2606 
2607 	flags &= gfp_allowed_mask;
2608 
2609 	flags |= s->allocflags;
2610 
2611 	/*
2612 	 * Let the initial higher-order allocation fail under memory pressure
2613 	 * so we fall-back to the minimum order allocation.
2614 	 */
2615 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2616 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2617 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2618 
2619 	slab = alloc_slab_page(alloc_gfp, node, oo);
2620 	if (unlikely(!slab)) {
2621 		oo = s->min;
2622 		alloc_gfp = flags;
2623 		/*
2624 		 * Allocation may have failed due to fragmentation.
2625 		 * Try a lower order alloc if possible
2626 		 */
2627 		slab = alloc_slab_page(alloc_gfp, node, oo);
2628 		if (unlikely(!slab))
2629 			return NULL;
2630 		stat(s, ORDER_FALLBACK);
2631 	}
2632 
2633 	slab->objects = oo_objects(oo);
2634 	slab->inuse = 0;
2635 	slab->frozen = 0;
2636 	init_slab_obj_exts(slab);
2637 
2638 	account_slab(slab, oo_order(oo), s, flags);
2639 
2640 	slab->slab_cache = s;
2641 
2642 	kasan_poison_slab(slab);
2643 
2644 	start = slab_address(slab);
2645 
2646 	setup_slab_debug(s, slab, start);
2647 
2648 	shuffle = shuffle_freelist(s, slab);
2649 
2650 	if (!shuffle) {
2651 		start = fixup_red_left(s, start);
2652 		start = setup_object(s, start);
2653 		slab->freelist = start;
2654 		for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2655 			next = p + s->size;
2656 			next = setup_object(s, next);
2657 			set_freepointer(s, p, next);
2658 			p = next;
2659 		}
2660 		set_freepointer(s, p, NULL);
2661 	}
2662 
2663 	return slab;
2664 }
2665 
new_slab(struct kmem_cache * s,gfp_t flags,int node)2666 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2667 {
2668 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
2669 		flags = kmalloc_fix_flags(flags);
2670 
2671 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2672 
2673 	return allocate_slab(s,
2674 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2675 }
2676 
__free_slab(struct kmem_cache * s,struct slab * slab)2677 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2678 {
2679 	struct folio *folio = slab_folio(slab);
2680 	int order = folio_order(folio);
2681 	int pages = 1 << order;
2682 
2683 	__slab_clear_pfmemalloc(slab);
2684 	folio->mapping = NULL;
2685 	__folio_clear_slab(folio);
2686 	mm_account_reclaimed_pages(pages);
2687 	unaccount_slab(slab, order, s);
2688 	free_frozen_pages(&folio->page, order);
2689 }
2690 
rcu_free_slab(struct rcu_head * h)2691 static void rcu_free_slab(struct rcu_head *h)
2692 {
2693 	struct slab *slab = container_of(h, struct slab, rcu_head);
2694 
2695 	__free_slab(slab->slab_cache, slab);
2696 }
2697 
free_slab(struct kmem_cache * s,struct slab * slab)2698 static void free_slab(struct kmem_cache *s, struct slab *slab)
2699 {
2700 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2701 		void *p;
2702 
2703 		slab_pad_check(s, slab);
2704 		for_each_object(p, s, slab_address(slab), slab->objects)
2705 			check_object(s, slab, p, SLUB_RED_INACTIVE);
2706 	}
2707 
2708 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2709 		call_rcu(&slab->rcu_head, rcu_free_slab);
2710 	else
2711 		__free_slab(s, slab);
2712 }
2713 
discard_slab(struct kmem_cache * s,struct slab * slab)2714 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2715 {
2716 	dec_slabs_node(s, slab_nid(slab), slab->objects);
2717 	free_slab(s, slab);
2718 }
2719 
2720 /*
2721  * SLUB reuses PG_workingset bit to keep track of whether it's on
2722  * the per-node partial list.
2723  */
slab_test_node_partial(const struct slab * slab)2724 static inline bool slab_test_node_partial(const struct slab *slab)
2725 {
2726 	return folio_test_workingset(slab_folio(slab));
2727 }
2728 
slab_set_node_partial(struct slab * slab)2729 static inline void slab_set_node_partial(struct slab *slab)
2730 {
2731 	set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2732 }
2733 
slab_clear_node_partial(struct slab * slab)2734 static inline void slab_clear_node_partial(struct slab *slab)
2735 {
2736 	clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2737 }
2738 
2739 /*
2740  * Management of partially allocated slabs.
2741  */
2742 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2743 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2744 {
2745 	n->nr_partial++;
2746 	if (tail == DEACTIVATE_TO_TAIL)
2747 		list_add_tail(&slab->slab_list, &n->partial);
2748 	else
2749 		list_add(&slab->slab_list, &n->partial);
2750 	slab_set_node_partial(slab);
2751 }
2752 
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2753 static inline void add_partial(struct kmem_cache_node *n,
2754 				struct slab *slab, int tail)
2755 {
2756 	lockdep_assert_held(&n->list_lock);
2757 	__add_partial(n, slab, tail);
2758 }
2759 
remove_partial(struct kmem_cache_node * n,struct slab * slab)2760 static inline void remove_partial(struct kmem_cache_node *n,
2761 					struct slab *slab)
2762 {
2763 	lockdep_assert_held(&n->list_lock);
2764 	list_del(&slab->slab_list);
2765 	slab_clear_node_partial(slab);
2766 	n->nr_partial--;
2767 }
2768 
2769 /*
2770  * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2771  * slab from the n->partial list. Remove only a single object from the slab, do
2772  * the alloc_debug_processing() checks and leave the slab on the list, or move
2773  * it to full list if it was the last free object.
2774  */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2775 static void *alloc_single_from_partial(struct kmem_cache *s,
2776 		struct kmem_cache_node *n, struct slab *slab, int orig_size)
2777 {
2778 	void *object;
2779 
2780 	lockdep_assert_held(&n->list_lock);
2781 
2782 	object = slab->freelist;
2783 	slab->freelist = get_freepointer(s, object);
2784 	slab->inuse++;
2785 
2786 	if (!alloc_debug_processing(s, slab, object, orig_size)) {
2787 		if (folio_test_slab(slab_folio(slab)))
2788 			remove_partial(n, slab);
2789 		return NULL;
2790 	}
2791 
2792 	if (slab->inuse == slab->objects) {
2793 		remove_partial(n, slab);
2794 		add_full(s, n, slab);
2795 	}
2796 
2797 	return object;
2798 }
2799 
2800 /*
2801  * Called only for kmem_cache_debug() caches to allocate from a freshly
2802  * allocated slab. Allocate a single object instead of whole freelist
2803  * and put the slab to the partial (or full) list.
2804  */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2805 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2806 					struct slab *slab, int orig_size)
2807 {
2808 	int nid = slab_nid(slab);
2809 	struct kmem_cache_node *n = get_node(s, nid);
2810 	unsigned long flags;
2811 	void *object;
2812 
2813 
2814 	object = slab->freelist;
2815 	slab->freelist = get_freepointer(s, object);
2816 	slab->inuse = 1;
2817 
2818 	if (!alloc_debug_processing(s, slab, object, orig_size))
2819 		/*
2820 		 * It's not really expected that this would fail on a
2821 		 * freshly allocated slab, but a concurrent memory
2822 		 * corruption in theory could cause that.
2823 		 */
2824 		return NULL;
2825 
2826 	spin_lock_irqsave(&n->list_lock, flags);
2827 
2828 	if (slab->inuse == slab->objects)
2829 		add_full(s, n, slab);
2830 	else
2831 		add_partial(n, slab, DEACTIVATE_TO_HEAD);
2832 
2833 	inc_slabs_node(s, nid, slab->objects);
2834 	spin_unlock_irqrestore(&n->list_lock, flags);
2835 
2836 	return object;
2837 }
2838 
2839 #ifdef CONFIG_SLUB_CPU_PARTIAL
2840 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2841 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2842 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2843 				   int drain) { }
2844 #endif
2845 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2846 
2847 /*
2848  * Try to allocate a partial slab from a specific node.
2849  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2850 static struct slab *get_partial_node(struct kmem_cache *s,
2851 				     struct kmem_cache_node *n,
2852 				     struct partial_context *pc)
2853 {
2854 	struct slab *slab, *slab2, *partial = NULL;
2855 	unsigned long flags;
2856 	unsigned int partial_slabs = 0;
2857 
2858 	/*
2859 	 * Racy check. If we mistakenly see no partial slabs then we
2860 	 * just allocate an empty slab. If we mistakenly try to get a
2861 	 * partial slab and there is none available then get_partial()
2862 	 * will return NULL.
2863 	 */
2864 	if (!n || !n->nr_partial)
2865 		return NULL;
2866 
2867 	spin_lock_irqsave(&n->list_lock, flags);
2868 	list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2869 		if (!pfmemalloc_match(slab, pc->flags))
2870 			continue;
2871 
2872 		if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2873 			void *object = alloc_single_from_partial(s, n, slab,
2874 							pc->orig_size);
2875 			if (object) {
2876 				partial = slab;
2877 				pc->object = object;
2878 				break;
2879 			}
2880 			continue;
2881 		}
2882 
2883 		remove_partial(n, slab);
2884 
2885 		if (!partial) {
2886 			partial = slab;
2887 			stat(s, ALLOC_FROM_PARTIAL);
2888 
2889 			if ((slub_get_cpu_partial(s) == 0)) {
2890 				break;
2891 			}
2892 		} else {
2893 			put_cpu_partial(s, slab, 0);
2894 			stat(s, CPU_PARTIAL_NODE);
2895 
2896 			if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2897 				break;
2898 			}
2899 		}
2900 	}
2901 	spin_unlock_irqrestore(&n->list_lock, flags);
2902 	return partial;
2903 }
2904 
2905 /*
2906  * Get a slab from somewhere. Search in increasing NUMA distances.
2907  */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2908 static struct slab *get_any_partial(struct kmem_cache *s,
2909 				    struct partial_context *pc)
2910 {
2911 #ifdef CONFIG_NUMA
2912 	struct zonelist *zonelist;
2913 	struct zoneref *z;
2914 	struct zone *zone;
2915 	enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2916 	struct slab *slab;
2917 	unsigned int cpuset_mems_cookie;
2918 
2919 	/*
2920 	 * The defrag ratio allows a configuration of the tradeoffs between
2921 	 * inter node defragmentation and node local allocations. A lower
2922 	 * defrag_ratio increases the tendency to do local allocations
2923 	 * instead of attempting to obtain partial slabs from other nodes.
2924 	 *
2925 	 * If the defrag_ratio is set to 0 then kmalloc() always
2926 	 * returns node local objects. If the ratio is higher then kmalloc()
2927 	 * may return off node objects because partial slabs are obtained
2928 	 * from other nodes and filled up.
2929 	 *
2930 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2931 	 * (which makes defrag_ratio = 1000) then every (well almost)
2932 	 * allocation will first attempt to defrag slab caches on other nodes.
2933 	 * This means scanning over all nodes to look for partial slabs which
2934 	 * may be expensive if we do it every time we are trying to find a slab
2935 	 * with available objects.
2936 	 */
2937 	if (!s->remote_node_defrag_ratio ||
2938 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2939 		return NULL;
2940 
2941 	do {
2942 		cpuset_mems_cookie = read_mems_allowed_begin();
2943 		zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2944 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2945 			struct kmem_cache_node *n;
2946 
2947 			n = get_node(s, zone_to_nid(zone));
2948 
2949 			if (n && cpuset_zone_allowed(zone, pc->flags) &&
2950 					n->nr_partial > s->min_partial) {
2951 				slab = get_partial_node(s, n, pc);
2952 				if (slab) {
2953 					/*
2954 					 * Don't check read_mems_allowed_retry()
2955 					 * here - if mems_allowed was updated in
2956 					 * parallel, that was a harmless race
2957 					 * between allocation and the cpuset
2958 					 * update
2959 					 */
2960 					return slab;
2961 				}
2962 			}
2963 		}
2964 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2965 #endif	/* CONFIG_NUMA */
2966 	return NULL;
2967 }
2968 
2969 /*
2970  * Get a partial slab, lock it and return it.
2971  */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)2972 static struct slab *get_partial(struct kmem_cache *s, int node,
2973 				struct partial_context *pc)
2974 {
2975 	struct slab *slab;
2976 	int searchnode = node;
2977 
2978 	if (node == NUMA_NO_NODE)
2979 		searchnode = numa_mem_id();
2980 
2981 	slab = get_partial_node(s, get_node(s, searchnode), pc);
2982 	if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2983 		return slab;
2984 
2985 	return get_any_partial(s, pc);
2986 }
2987 
2988 #ifndef CONFIG_SLUB_TINY
2989 
2990 #ifdef CONFIG_PREEMPTION
2991 /*
2992  * Calculate the next globally unique transaction for disambiguation
2993  * during cmpxchg. The transactions start with the cpu number and are then
2994  * incremented by CONFIG_NR_CPUS.
2995  */
2996 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2997 #else
2998 /*
2999  * No preemption supported therefore also no need to check for
3000  * different cpus.
3001  */
3002 #define TID_STEP 1
3003 #endif /* CONFIG_PREEMPTION */
3004 
next_tid(unsigned long tid)3005 static inline unsigned long next_tid(unsigned long tid)
3006 {
3007 	return tid + TID_STEP;
3008 }
3009 
3010 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3011 static inline unsigned int tid_to_cpu(unsigned long tid)
3012 {
3013 	return tid % TID_STEP;
3014 }
3015 
tid_to_event(unsigned long tid)3016 static inline unsigned long tid_to_event(unsigned long tid)
3017 {
3018 	return tid / TID_STEP;
3019 }
3020 #endif
3021 
init_tid(int cpu)3022 static inline unsigned int init_tid(int cpu)
3023 {
3024 	return cpu;
3025 }
3026 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3027 static inline void note_cmpxchg_failure(const char *n,
3028 		const struct kmem_cache *s, unsigned long tid)
3029 {
3030 #ifdef SLUB_DEBUG_CMPXCHG
3031 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3032 
3033 	pr_info("%s %s: cmpxchg redo ", n, s->name);
3034 
3035 #ifdef CONFIG_PREEMPTION
3036 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3037 		pr_warn("due to cpu change %d -> %d\n",
3038 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
3039 	else
3040 #endif
3041 	if (tid_to_event(tid) != tid_to_event(actual_tid))
3042 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
3043 			tid_to_event(tid), tid_to_event(actual_tid));
3044 	else
3045 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3046 			actual_tid, tid, next_tid(tid));
3047 #endif
3048 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3049 }
3050 
init_kmem_cache_cpus(struct kmem_cache * s)3051 static void init_kmem_cache_cpus(struct kmem_cache *s)
3052 {
3053 	int cpu;
3054 	struct kmem_cache_cpu *c;
3055 
3056 	for_each_possible_cpu(cpu) {
3057 		c = per_cpu_ptr(s->cpu_slab, cpu);
3058 		local_lock_init(&c->lock);
3059 		c->tid = init_tid(cpu);
3060 	}
3061 }
3062 
3063 /*
3064  * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3065  * unfreezes the slabs and puts it on the proper list.
3066  * Assumes the slab has been already safely taken away from kmem_cache_cpu
3067  * by the caller.
3068  */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3069 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3070 			    void *freelist)
3071 {
3072 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3073 	int free_delta = 0;
3074 	void *nextfree, *freelist_iter, *freelist_tail;
3075 	int tail = DEACTIVATE_TO_HEAD;
3076 	unsigned long flags = 0;
3077 	struct slab new;
3078 	struct slab old;
3079 
3080 	if (READ_ONCE(slab->freelist)) {
3081 		stat(s, DEACTIVATE_REMOTE_FREES);
3082 		tail = DEACTIVATE_TO_TAIL;
3083 	}
3084 
3085 	/*
3086 	 * Stage one: Count the objects on cpu's freelist as free_delta and
3087 	 * remember the last object in freelist_tail for later splicing.
3088 	 */
3089 	freelist_tail = NULL;
3090 	freelist_iter = freelist;
3091 	while (freelist_iter) {
3092 		nextfree = get_freepointer(s, freelist_iter);
3093 
3094 		/*
3095 		 * If 'nextfree' is invalid, it is possible that the object at
3096 		 * 'freelist_iter' is already corrupted.  So isolate all objects
3097 		 * starting at 'freelist_iter' by skipping them.
3098 		 */
3099 		if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3100 			break;
3101 
3102 		freelist_tail = freelist_iter;
3103 		free_delta++;
3104 
3105 		freelist_iter = nextfree;
3106 	}
3107 
3108 	/*
3109 	 * Stage two: Unfreeze the slab while splicing the per-cpu
3110 	 * freelist to the head of slab's freelist.
3111 	 */
3112 	do {
3113 		old.freelist = READ_ONCE(slab->freelist);
3114 		old.counters = READ_ONCE(slab->counters);
3115 		VM_BUG_ON(!old.frozen);
3116 
3117 		/* Determine target state of the slab */
3118 		new.counters = old.counters;
3119 		new.frozen = 0;
3120 		if (freelist_tail) {
3121 			new.inuse -= free_delta;
3122 			set_freepointer(s, freelist_tail, old.freelist);
3123 			new.freelist = freelist;
3124 		} else {
3125 			new.freelist = old.freelist;
3126 		}
3127 	} while (!slab_update_freelist(s, slab,
3128 		old.freelist, old.counters,
3129 		new.freelist, new.counters,
3130 		"unfreezing slab"));
3131 
3132 	/*
3133 	 * Stage three: Manipulate the slab list based on the updated state.
3134 	 */
3135 	if (!new.inuse && n->nr_partial >= s->min_partial) {
3136 		stat(s, DEACTIVATE_EMPTY);
3137 		discard_slab(s, slab);
3138 		stat(s, FREE_SLAB);
3139 	} else if (new.freelist) {
3140 		spin_lock_irqsave(&n->list_lock, flags);
3141 		add_partial(n, slab, tail);
3142 		spin_unlock_irqrestore(&n->list_lock, flags);
3143 		stat(s, tail);
3144 	} else {
3145 		stat(s, DEACTIVATE_FULL);
3146 	}
3147 }
3148 
3149 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3150 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3151 {
3152 	struct kmem_cache_node *n = NULL, *n2 = NULL;
3153 	struct slab *slab, *slab_to_discard = NULL;
3154 	unsigned long flags = 0;
3155 
3156 	while (partial_slab) {
3157 		slab = partial_slab;
3158 		partial_slab = slab->next;
3159 
3160 		n2 = get_node(s, slab_nid(slab));
3161 		if (n != n2) {
3162 			if (n)
3163 				spin_unlock_irqrestore(&n->list_lock, flags);
3164 
3165 			n = n2;
3166 			spin_lock_irqsave(&n->list_lock, flags);
3167 		}
3168 
3169 		if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3170 			slab->next = slab_to_discard;
3171 			slab_to_discard = slab;
3172 		} else {
3173 			add_partial(n, slab, DEACTIVATE_TO_TAIL);
3174 			stat(s, FREE_ADD_PARTIAL);
3175 		}
3176 	}
3177 
3178 	if (n)
3179 		spin_unlock_irqrestore(&n->list_lock, flags);
3180 
3181 	while (slab_to_discard) {
3182 		slab = slab_to_discard;
3183 		slab_to_discard = slab_to_discard->next;
3184 
3185 		stat(s, DEACTIVATE_EMPTY);
3186 		discard_slab(s, slab);
3187 		stat(s, FREE_SLAB);
3188 	}
3189 }
3190 
3191 /*
3192  * Put all the cpu partial slabs to the node partial list.
3193  */
put_partials(struct kmem_cache * s)3194 static void put_partials(struct kmem_cache *s)
3195 {
3196 	struct slab *partial_slab;
3197 	unsigned long flags;
3198 
3199 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3200 	partial_slab = this_cpu_read(s->cpu_slab->partial);
3201 	this_cpu_write(s->cpu_slab->partial, NULL);
3202 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3203 
3204 	if (partial_slab)
3205 		__put_partials(s, partial_slab);
3206 }
3207 
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3208 static void put_partials_cpu(struct kmem_cache *s,
3209 			     struct kmem_cache_cpu *c)
3210 {
3211 	struct slab *partial_slab;
3212 
3213 	partial_slab = slub_percpu_partial(c);
3214 	c->partial = NULL;
3215 
3216 	if (partial_slab)
3217 		__put_partials(s, partial_slab);
3218 }
3219 
3220 /*
3221  * Put a slab into a partial slab slot if available.
3222  *
3223  * If we did not find a slot then simply move all the partials to the
3224  * per node partial list.
3225  */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3226 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3227 {
3228 	struct slab *oldslab;
3229 	struct slab *slab_to_put = NULL;
3230 	unsigned long flags;
3231 	int slabs = 0;
3232 
3233 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3234 
3235 	oldslab = this_cpu_read(s->cpu_slab->partial);
3236 
3237 	if (oldslab) {
3238 		if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3239 			/*
3240 			 * Partial array is full. Move the existing set to the
3241 			 * per node partial list. Postpone the actual unfreezing
3242 			 * outside of the critical section.
3243 			 */
3244 			slab_to_put = oldslab;
3245 			oldslab = NULL;
3246 		} else {
3247 			slabs = oldslab->slabs;
3248 		}
3249 	}
3250 
3251 	slabs++;
3252 
3253 	slab->slabs = slabs;
3254 	slab->next = oldslab;
3255 
3256 	this_cpu_write(s->cpu_slab->partial, slab);
3257 
3258 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3259 
3260 	if (slab_to_put) {
3261 		__put_partials(s, slab_to_put);
3262 		stat(s, CPU_PARTIAL_DRAIN);
3263 	}
3264 }
3265 
3266 #else	/* CONFIG_SLUB_CPU_PARTIAL */
3267 
put_partials(struct kmem_cache * s)3268 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3269 static inline void put_partials_cpu(struct kmem_cache *s,
3270 				    struct kmem_cache_cpu *c) { }
3271 
3272 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
3273 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3274 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3275 {
3276 	unsigned long flags;
3277 	struct slab *slab;
3278 	void *freelist;
3279 
3280 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3281 
3282 	slab = c->slab;
3283 	freelist = c->freelist;
3284 
3285 	c->slab = NULL;
3286 	c->freelist = NULL;
3287 	c->tid = next_tid(c->tid);
3288 
3289 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3290 
3291 	if (slab) {
3292 		deactivate_slab(s, slab, freelist);
3293 		stat(s, CPUSLAB_FLUSH);
3294 	}
3295 }
3296 
__flush_cpu_slab(struct kmem_cache * s,int cpu)3297 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3298 {
3299 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3300 	void *freelist = c->freelist;
3301 	struct slab *slab = c->slab;
3302 
3303 	c->slab = NULL;
3304 	c->freelist = NULL;
3305 	c->tid = next_tid(c->tid);
3306 
3307 	if (slab) {
3308 		deactivate_slab(s, slab, freelist);
3309 		stat(s, CPUSLAB_FLUSH);
3310 	}
3311 
3312 	put_partials_cpu(s, c);
3313 }
3314 
3315 struct slub_flush_work {
3316 	struct work_struct work;
3317 	struct kmem_cache *s;
3318 	bool skip;
3319 };
3320 
3321 /*
3322  * Flush cpu slab.
3323  *
3324  * Called from CPU work handler with migration disabled.
3325  */
flush_cpu_slab(struct work_struct * w)3326 static void flush_cpu_slab(struct work_struct *w)
3327 {
3328 	struct kmem_cache *s;
3329 	struct kmem_cache_cpu *c;
3330 	struct slub_flush_work *sfw;
3331 
3332 	sfw = container_of(w, struct slub_flush_work, work);
3333 
3334 	s = sfw->s;
3335 	c = this_cpu_ptr(s->cpu_slab);
3336 
3337 	if (c->slab)
3338 		flush_slab(s, c);
3339 
3340 	put_partials(s);
3341 }
3342 
has_cpu_slab(int cpu,struct kmem_cache * s)3343 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3344 {
3345 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3346 
3347 	return c->slab || slub_percpu_partial(c);
3348 }
3349 
3350 static DEFINE_MUTEX(flush_lock);
3351 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3352 
flush_all_cpus_locked(struct kmem_cache * s)3353 static void flush_all_cpus_locked(struct kmem_cache *s)
3354 {
3355 	struct slub_flush_work *sfw;
3356 	unsigned int cpu;
3357 
3358 	lockdep_assert_cpus_held();
3359 	mutex_lock(&flush_lock);
3360 
3361 	for_each_online_cpu(cpu) {
3362 		sfw = &per_cpu(slub_flush, cpu);
3363 		if (!has_cpu_slab(cpu, s)) {
3364 			sfw->skip = true;
3365 			continue;
3366 		}
3367 		INIT_WORK(&sfw->work, flush_cpu_slab);
3368 		sfw->skip = false;
3369 		sfw->s = s;
3370 		queue_work_on(cpu, flushwq, &sfw->work);
3371 	}
3372 
3373 	for_each_online_cpu(cpu) {
3374 		sfw = &per_cpu(slub_flush, cpu);
3375 		if (sfw->skip)
3376 			continue;
3377 		flush_work(&sfw->work);
3378 	}
3379 
3380 	mutex_unlock(&flush_lock);
3381 }
3382 
flush_all(struct kmem_cache * s)3383 static void flush_all(struct kmem_cache *s)
3384 {
3385 	cpus_read_lock();
3386 	flush_all_cpus_locked(s);
3387 	cpus_read_unlock();
3388 }
3389 
3390 /*
3391  * Use the cpu notifier to insure that the cpu slabs are flushed when
3392  * necessary.
3393  */
slub_cpu_dead(unsigned int cpu)3394 static int slub_cpu_dead(unsigned int cpu)
3395 {
3396 	struct kmem_cache *s;
3397 
3398 	mutex_lock(&slab_mutex);
3399 	list_for_each_entry(s, &slab_caches, list)
3400 		__flush_cpu_slab(s, cpu);
3401 	mutex_unlock(&slab_mutex);
3402 	return 0;
3403 }
3404 
3405 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)3406 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)3407 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)3408 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)3409 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3410 #endif /* CONFIG_SLUB_TINY */
3411 
3412 /*
3413  * Check if the objects in a per cpu structure fit numa
3414  * locality expectations.
3415  */
node_match(struct slab * slab,int node)3416 static inline int node_match(struct slab *slab, int node)
3417 {
3418 #ifdef CONFIG_NUMA
3419 	if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3420 		return 0;
3421 #endif
3422 	return 1;
3423 }
3424 
3425 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)3426 static int count_free(struct slab *slab)
3427 {
3428 	return slab->objects - slab->inuse;
3429 }
3430 
node_nr_objs(struct kmem_cache_node * n)3431 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3432 {
3433 	return atomic_long_read(&n->total_objects);
3434 }
3435 
3436 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)3437 static inline bool free_debug_processing(struct kmem_cache *s,
3438 	struct slab *slab, void *head, void *tail, int *bulk_cnt,
3439 	unsigned long addr, depot_stack_handle_t handle)
3440 {
3441 	bool checks_ok = false;
3442 	void *object = head;
3443 	int cnt = 0;
3444 
3445 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3446 		if (!check_slab(s, slab))
3447 			goto out;
3448 	}
3449 
3450 	if (slab->inuse < *bulk_cnt) {
3451 		slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3452 			 slab->inuse, *bulk_cnt);
3453 		goto out;
3454 	}
3455 
3456 next_object:
3457 
3458 	if (++cnt > *bulk_cnt)
3459 		goto out_cnt;
3460 
3461 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3462 		if (!free_consistency_checks(s, slab, object, addr))
3463 			goto out;
3464 	}
3465 
3466 	if (s->flags & SLAB_STORE_USER)
3467 		set_track_update(s, object, TRACK_FREE, addr, handle);
3468 	trace(s, slab, object, 0);
3469 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3470 	init_object(s, object, SLUB_RED_INACTIVE);
3471 
3472 	/* Reached end of constructed freelist yet? */
3473 	if (object != tail) {
3474 		object = get_freepointer(s, object);
3475 		goto next_object;
3476 	}
3477 	checks_ok = true;
3478 
3479 out_cnt:
3480 	if (cnt != *bulk_cnt) {
3481 		slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3482 			 *bulk_cnt, cnt);
3483 		*bulk_cnt = cnt;
3484 	}
3485 
3486 out:
3487 
3488 	if (!checks_ok)
3489 		slab_fix(s, "Object at 0x%p not freed", object);
3490 
3491 	return checks_ok;
3492 }
3493 #endif /* CONFIG_SLUB_DEBUG */
3494 
3495 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))3496 static unsigned long count_partial(struct kmem_cache_node *n,
3497 					int (*get_count)(struct slab *))
3498 {
3499 	unsigned long flags;
3500 	unsigned long x = 0;
3501 	struct slab *slab;
3502 
3503 	spin_lock_irqsave(&n->list_lock, flags);
3504 	list_for_each_entry(slab, &n->partial, slab_list)
3505 		x += get_count(slab);
3506 	spin_unlock_irqrestore(&n->list_lock, flags);
3507 	return x;
3508 }
3509 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3510 
3511 #ifdef CONFIG_SLUB_DEBUG
3512 #define MAX_PARTIAL_TO_SCAN 10000
3513 
count_partial_free_approx(struct kmem_cache_node * n)3514 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3515 {
3516 	unsigned long flags;
3517 	unsigned long x = 0;
3518 	struct slab *slab;
3519 
3520 	spin_lock_irqsave(&n->list_lock, flags);
3521 	if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3522 		list_for_each_entry(slab, &n->partial, slab_list)
3523 			x += slab->objects - slab->inuse;
3524 	} else {
3525 		/*
3526 		 * For a long list, approximate the total count of objects in
3527 		 * it to meet the limit on the number of slabs to scan.
3528 		 * Scan from both the list's head and tail for better accuracy.
3529 		 */
3530 		unsigned long scanned = 0;
3531 
3532 		list_for_each_entry(slab, &n->partial, slab_list) {
3533 			x += slab->objects - slab->inuse;
3534 			if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3535 				break;
3536 		}
3537 		list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3538 			x += slab->objects - slab->inuse;
3539 			if (++scanned == MAX_PARTIAL_TO_SCAN)
3540 				break;
3541 		}
3542 		x = mult_frac(x, n->nr_partial, scanned);
3543 		x = min(x, node_nr_objs(n));
3544 	}
3545 	spin_unlock_irqrestore(&n->list_lock, flags);
3546 	return x;
3547 }
3548 
3549 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3550 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3551 {
3552 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3553 				      DEFAULT_RATELIMIT_BURST);
3554 	int cpu = raw_smp_processor_id();
3555 	int node;
3556 	struct kmem_cache_node *n;
3557 
3558 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3559 		return;
3560 
3561 	pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3562 		cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3563 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3564 		s->name, s->object_size, s->size, oo_order(s->oo),
3565 		oo_order(s->min));
3566 
3567 	if (oo_order(s->min) > get_order(s->object_size))
3568 		pr_warn("  %s debugging increased min order, use slab_debug=O to disable.\n",
3569 			s->name);
3570 
3571 	for_each_kmem_cache_node(s, node, n) {
3572 		unsigned long nr_slabs;
3573 		unsigned long nr_objs;
3574 		unsigned long nr_free;
3575 
3576 		nr_free  = count_partial_free_approx(n);
3577 		nr_slabs = node_nr_slabs(n);
3578 		nr_objs  = node_nr_objs(n);
3579 
3580 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
3581 			node, nr_slabs, nr_objs, nr_free);
3582 	}
3583 }
3584 #else /* CONFIG_SLUB_DEBUG */
3585 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3586 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3587 #endif
3588 
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3589 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3590 {
3591 	if (unlikely(slab_test_pfmemalloc(slab)))
3592 		return gfp_pfmemalloc_allowed(gfpflags);
3593 
3594 	return true;
3595 }
3596 
3597 #ifndef CONFIG_SLUB_TINY
3598 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3599 __update_cpu_freelist_fast(struct kmem_cache *s,
3600 			   void *freelist_old, void *freelist_new,
3601 			   unsigned long tid)
3602 {
3603 	freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3604 	freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3605 
3606 	return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3607 					     &old.full, new.full);
3608 }
3609 
3610 /*
3611  * Check the slab->freelist and either transfer the freelist to the
3612  * per cpu freelist or deactivate the slab.
3613  *
3614  * The slab is still frozen if the return value is not NULL.
3615  *
3616  * If this function returns NULL then the slab has been unfrozen.
3617  */
get_freelist(struct kmem_cache * s,struct slab * slab)3618 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3619 {
3620 	struct slab new;
3621 	unsigned long counters;
3622 	void *freelist;
3623 
3624 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3625 
3626 	do {
3627 		freelist = slab->freelist;
3628 		counters = slab->counters;
3629 
3630 		new.counters = counters;
3631 
3632 		new.inuse = slab->objects;
3633 		new.frozen = freelist != NULL;
3634 
3635 	} while (!__slab_update_freelist(s, slab,
3636 		freelist, counters,
3637 		NULL, new.counters,
3638 		"get_freelist"));
3639 
3640 	return freelist;
3641 }
3642 
3643 /*
3644  * Freeze the partial slab and return the pointer to the freelist.
3645  */
freeze_slab(struct kmem_cache * s,struct slab * slab)3646 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3647 {
3648 	struct slab new;
3649 	unsigned long counters;
3650 	void *freelist;
3651 
3652 	do {
3653 		freelist = slab->freelist;
3654 		counters = slab->counters;
3655 
3656 		new.counters = counters;
3657 		VM_BUG_ON(new.frozen);
3658 
3659 		new.inuse = slab->objects;
3660 		new.frozen = 1;
3661 
3662 	} while (!slab_update_freelist(s, slab,
3663 		freelist, counters,
3664 		NULL, new.counters,
3665 		"freeze_slab"));
3666 
3667 	return freelist;
3668 }
3669 
3670 /*
3671  * Slow path. The lockless freelist is empty or we need to perform
3672  * debugging duties.
3673  *
3674  * Processing is still very fast if new objects have been freed to the
3675  * regular freelist. In that case we simply take over the regular freelist
3676  * as the lockless freelist and zap the regular freelist.
3677  *
3678  * If that is not working then we fall back to the partial lists. We take the
3679  * first element of the freelist as the object to allocate now and move the
3680  * rest of the freelist to the lockless freelist.
3681  *
3682  * And if we were unable to get a new slab from the partial slab lists then
3683  * we need to allocate a new slab. This is the slowest path since it involves
3684  * a call to the page allocator and the setup of a new slab.
3685  *
3686  * Version of __slab_alloc to use when we know that preemption is
3687  * already disabled (which is the case for bulk allocation).
3688  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3689 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3690 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3691 {
3692 	void *freelist;
3693 	struct slab *slab;
3694 	unsigned long flags;
3695 	struct partial_context pc;
3696 	bool try_thisnode = true;
3697 
3698 	stat(s, ALLOC_SLOWPATH);
3699 
3700 reread_slab:
3701 
3702 	slab = READ_ONCE(c->slab);
3703 	if (!slab) {
3704 		/*
3705 		 * if the node is not online or has no normal memory, just
3706 		 * ignore the node constraint
3707 		 */
3708 		if (unlikely(node != NUMA_NO_NODE &&
3709 			     !node_isset(node, slab_nodes)))
3710 			node = NUMA_NO_NODE;
3711 		goto new_slab;
3712 	}
3713 
3714 	if (unlikely(!node_match(slab, node))) {
3715 		/*
3716 		 * same as above but node_match() being false already
3717 		 * implies node != NUMA_NO_NODE
3718 		 */
3719 		if (!node_isset(node, slab_nodes)) {
3720 			node = NUMA_NO_NODE;
3721 		} else {
3722 			stat(s, ALLOC_NODE_MISMATCH);
3723 			goto deactivate_slab;
3724 		}
3725 	}
3726 
3727 	/*
3728 	 * By rights, we should be searching for a slab page that was
3729 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
3730 	 * information when the page leaves the per-cpu allocator
3731 	 */
3732 	if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3733 		goto deactivate_slab;
3734 
3735 	/* must check again c->slab in case we got preempted and it changed */
3736 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3737 	if (unlikely(slab != c->slab)) {
3738 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3739 		goto reread_slab;
3740 	}
3741 	freelist = c->freelist;
3742 	if (freelist)
3743 		goto load_freelist;
3744 
3745 	freelist = get_freelist(s, slab);
3746 
3747 	if (!freelist) {
3748 		c->slab = NULL;
3749 		c->tid = next_tid(c->tid);
3750 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3751 		stat(s, DEACTIVATE_BYPASS);
3752 		goto new_slab;
3753 	}
3754 
3755 	stat(s, ALLOC_REFILL);
3756 
3757 load_freelist:
3758 
3759 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3760 
3761 	/*
3762 	 * freelist is pointing to the list of objects to be used.
3763 	 * slab is pointing to the slab from which the objects are obtained.
3764 	 * That slab must be frozen for per cpu allocations to work.
3765 	 */
3766 	VM_BUG_ON(!c->slab->frozen);
3767 	c->freelist = get_freepointer(s, freelist);
3768 	c->tid = next_tid(c->tid);
3769 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3770 	return freelist;
3771 
3772 deactivate_slab:
3773 
3774 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3775 	if (slab != c->slab) {
3776 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3777 		goto reread_slab;
3778 	}
3779 	freelist = c->freelist;
3780 	c->slab = NULL;
3781 	c->freelist = NULL;
3782 	c->tid = next_tid(c->tid);
3783 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3784 	deactivate_slab(s, slab, freelist);
3785 
3786 new_slab:
3787 
3788 #ifdef CONFIG_SLUB_CPU_PARTIAL
3789 	while (slub_percpu_partial(c)) {
3790 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3791 		if (unlikely(c->slab)) {
3792 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3793 			goto reread_slab;
3794 		}
3795 		if (unlikely(!slub_percpu_partial(c))) {
3796 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3797 			/* we were preempted and partial list got empty */
3798 			goto new_objects;
3799 		}
3800 
3801 		slab = slub_percpu_partial(c);
3802 		slub_set_percpu_partial(c, slab);
3803 
3804 		if (likely(node_match(slab, node) &&
3805 			   pfmemalloc_match(slab, gfpflags))) {
3806 			c->slab = slab;
3807 			freelist = get_freelist(s, slab);
3808 			VM_BUG_ON(!freelist);
3809 			stat(s, CPU_PARTIAL_ALLOC);
3810 			goto load_freelist;
3811 		}
3812 
3813 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3814 
3815 		slab->next = NULL;
3816 		__put_partials(s, slab);
3817 	}
3818 #endif
3819 
3820 new_objects:
3821 
3822 	pc.flags = gfpflags;
3823 	/*
3824 	 * When a preferred node is indicated but no __GFP_THISNODE
3825 	 *
3826 	 * 1) try to get a partial slab from target node only by having
3827 	 *    __GFP_THISNODE in pc.flags for get_partial()
3828 	 * 2) if 1) failed, try to allocate a new slab from target node with
3829 	 *    GPF_NOWAIT | __GFP_THISNODE opportunistically
3830 	 * 3) if 2) failed, retry with original gfpflags which will allow
3831 	 *    get_partial() try partial lists of other nodes before potentially
3832 	 *    allocating new page from other nodes
3833 	 */
3834 	if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3835 		     && try_thisnode))
3836 		pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3837 
3838 	pc.orig_size = orig_size;
3839 	slab = get_partial(s, node, &pc);
3840 	if (slab) {
3841 		if (kmem_cache_debug(s)) {
3842 			freelist = pc.object;
3843 			/*
3844 			 * For debug caches here we had to go through
3845 			 * alloc_single_from_partial() so just store the
3846 			 * tracking info and return the object.
3847 			 */
3848 			if (s->flags & SLAB_STORE_USER)
3849 				set_track(s, freelist, TRACK_ALLOC, addr);
3850 
3851 			return freelist;
3852 		}
3853 
3854 		freelist = freeze_slab(s, slab);
3855 		goto retry_load_slab;
3856 	}
3857 
3858 	slub_put_cpu_ptr(s->cpu_slab);
3859 	slab = new_slab(s, pc.flags, node);
3860 	c = slub_get_cpu_ptr(s->cpu_slab);
3861 
3862 	if (unlikely(!slab)) {
3863 		if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3864 		    && try_thisnode) {
3865 			try_thisnode = false;
3866 			goto new_objects;
3867 		}
3868 		slab_out_of_memory(s, gfpflags, node);
3869 		return NULL;
3870 	}
3871 
3872 	stat(s, ALLOC_SLAB);
3873 
3874 	if (kmem_cache_debug(s)) {
3875 		freelist = alloc_single_from_new_slab(s, slab, orig_size);
3876 
3877 		if (unlikely(!freelist))
3878 			goto new_objects;
3879 
3880 		if (s->flags & SLAB_STORE_USER)
3881 			set_track(s, freelist, TRACK_ALLOC, addr);
3882 
3883 		return freelist;
3884 	}
3885 
3886 	/*
3887 	 * No other reference to the slab yet so we can
3888 	 * muck around with it freely without cmpxchg
3889 	 */
3890 	freelist = slab->freelist;
3891 	slab->freelist = NULL;
3892 	slab->inuse = slab->objects;
3893 	slab->frozen = 1;
3894 
3895 	inc_slabs_node(s, slab_nid(slab), slab->objects);
3896 
3897 	if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3898 		/*
3899 		 * For !pfmemalloc_match() case we don't load freelist so that
3900 		 * we don't make further mismatched allocations easier.
3901 		 */
3902 		deactivate_slab(s, slab, get_freepointer(s, freelist));
3903 		return freelist;
3904 	}
3905 
3906 retry_load_slab:
3907 
3908 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3909 	if (unlikely(c->slab)) {
3910 		void *flush_freelist = c->freelist;
3911 		struct slab *flush_slab = c->slab;
3912 
3913 		c->slab = NULL;
3914 		c->freelist = NULL;
3915 		c->tid = next_tid(c->tid);
3916 
3917 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3918 
3919 		deactivate_slab(s, flush_slab, flush_freelist);
3920 
3921 		stat(s, CPUSLAB_FLUSH);
3922 
3923 		goto retry_load_slab;
3924 	}
3925 	c->slab = slab;
3926 
3927 	goto load_freelist;
3928 }
3929 
3930 /*
3931  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3932  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3933  * pointer.
3934  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3935 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3936 			  unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3937 {
3938 	void *p;
3939 
3940 #ifdef CONFIG_PREEMPT_COUNT
3941 	/*
3942 	 * We may have been preempted and rescheduled on a different
3943 	 * cpu before disabling preemption. Need to reload cpu area
3944 	 * pointer.
3945 	 */
3946 	c = slub_get_cpu_ptr(s->cpu_slab);
3947 #endif
3948 
3949 	p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3950 #ifdef CONFIG_PREEMPT_COUNT
3951 	slub_put_cpu_ptr(s->cpu_slab);
3952 #endif
3953 	return p;
3954 }
3955 
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3956 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3957 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3958 {
3959 	struct kmem_cache_cpu *c;
3960 	struct slab *slab;
3961 	unsigned long tid;
3962 	void *object;
3963 
3964 redo:
3965 	/*
3966 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3967 	 * enabled. We may switch back and forth between cpus while
3968 	 * reading from one cpu area. That does not matter as long
3969 	 * as we end up on the original cpu again when doing the cmpxchg.
3970 	 *
3971 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3972 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3973 	 * the tid. If we are preempted and switched to another cpu between the
3974 	 * two reads, it's OK as the two are still associated with the same cpu
3975 	 * and cmpxchg later will validate the cpu.
3976 	 */
3977 	c = raw_cpu_ptr(s->cpu_slab);
3978 	tid = READ_ONCE(c->tid);
3979 
3980 	/*
3981 	 * Irqless object alloc/free algorithm used here depends on sequence
3982 	 * of fetching cpu_slab's data. tid should be fetched before anything
3983 	 * on c to guarantee that object and slab associated with previous tid
3984 	 * won't be used with current tid. If we fetch tid first, object and
3985 	 * slab could be one associated with next tid and our alloc/free
3986 	 * request will be failed. In this case, we will retry. So, no problem.
3987 	 */
3988 	barrier();
3989 
3990 	/*
3991 	 * The transaction ids are globally unique per cpu and per operation on
3992 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3993 	 * occurs on the right processor and that there was no operation on the
3994 	 * linked list in between.
3995 	 */
3996 
3997 	object = c->freelist;
3998 	slab = c->slab;
3999 
4000 #ifdef CONFIG_NUMA
4001 	if (static_branch_unlikely(&strict_numa) &&
4002 			node == NUMA_NO_NODE) {
4003 
4004 		struct mempolicy *mpol = current->mempolicy;
4005 
4006 		if (mpol) {
4007 			/*
4008 			 * Special BIND rule support. If existing slab
4009 			 * is in permitted set then do not redirect
4010 			 * to a particular node.
4011 			 * Otherwise we apply the memory policy to get
4012 			 * the node we need to allocate on.
4013 			 */
4014 			if (mpol->mode != MPOL_BIND || !slab ||
4015 					!node_isset(slab_nid(slab), mpol->nodes))
4016 
4017 				node = mempolicy_slab_node();
4018 		}
4019 	}
4020 #endif
4021 
4022 	if (!USE_LOCKLESS_FAST_PATH() ||
4023 	    unlikely(!object || !slab || !node_match(slab, node))) {
4024 		object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4025 	} else {
4026 		void *next_object = get_freepointer_safe(s, object);
4027 
4028 		/*
4029 		 * The cmpxchg will only match if there was no additional
4030 		 * operation and if we are on the right processor.
4031 		 *
4032 		 * The cmpxchg does the following atomically (without lock
4033 		 * semantics!)
4034 		 * 1. Relocate first pointer to the current per cpu area.
4035 		 * 2. Verify that tid and freelist have not been changed
4036 		 * 3. If they were not changed replace tid and freelist
4037 		 *
4038 		 * Since this is without lock semantics the protection is only
4039 		 * against code executing on this cpu *not* from access by
4040 		 * other cpus.
4041 		 */
4042 		if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4043 			note_cmpxchg_failure("slab_alloc", s, tid);
4044 			goto redo;
4045 		}
4046 		prefetch_freepointer(s, next_object);
4047 		stat(s, ALLOC_FASTPATH);
4048 	}
4049 
4050 	return object;
4051 }
4052 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4053 static void *__slab_alloc_node(struct kmem_cache *s,
4054 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4055 {
4056 	struct partial_context pc;
4057 	struct slab *slab;
4058 	void *object;
4059 
4060 	pc.flags = gfpflags;
4061 	pc.orig_size = orig_size;
4062 	slab = get_partial(s, node, &pc);
4063 
4064 	if (slab)
4065 		return pc.object;
4066 
4067 	slab = new_slab(s, gfpflags, node);
4068 	if (unlikely(!slab)) {
4069 		slab_out_of_memory(s, gfpflags, node);
4070 		return NULL;
4071 	}
4072 
4073 	object = alloc_single_from_new_slab(s, slab, orig_size);
4074 
4075 	return object;
4076 }
4077 #endif /* CONFIG_SLUB_TINY */
4078 
4079 /*
4080  * If the object has been wiped upon free, make sure it's fully initialized by
4081  * zeroing out freelist pointer.
4082  *
4083  * Note that we also wipe custom freelist pointers.
4084  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4085 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4086 						   void *obj)
4087 {
4088 	if (unlikely(slab_want_init_on_free(s)) && obj &&
4089 	    !freeptr_outside_object(s))
4090 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4091 			0, sizeof(void *));
4092 }
4093 
4094 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4095 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4096 {
4097 	flags &= gfp_allowed_mask;
4098 
4099 	might_alloc(flags);
4100 
4101 	if (unlikely(should_failslab(s, flags)))
4102 		return NULL;
4103 
4104 	return s;
4105 }
4106 
4107 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4108 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4109 			  gfp_t flags, size_t size, void **p, bool init,
4110 			  unsigned int orig_size)
4111 {
4112 	unsigned int zero_size = s->object_size;
4113 	bool kasan_init = init;
4114 	size_t i;
4115 	gfp_t init_flags = flags & gfp_allowed_mask;
4116 
4117 	/*
4118 	 * For kmalloc object, the allocated memory size(object_size) is likely
4119 	 * larger than the requested size(orig_size). If redzone check is
4120 	 * enabled for the extra space, don't zero it, as it will be redzoned
4121 	 * soon. The redzone operation for this extra space could be seen as a
4122 	 * replacement of current poisoning under certain debug option, and
4123 	 * won't break other sanity checks.
4124 	 */
4125 	if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4126 	    (s->flags & SLAB_KMALLOC))
4127 		zero_size = orig_size;
4128 
4129 	/*
4130 	 * When slab_debug is enabled, avoid memory initialization integrated
4131 	 * into KASAN and instead zero out the memory via the memset below with
4132 	 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4133 	 * cause false-positive reports. This does not lead to a performance
4134 	 * penalty on production builds, as slab_debug is not intended to be
4135 	 * enabled there.
4136 	 */
4137 	if (__slub_debug_enabled())
4138 		kasan_init = false;
4139 
4140 	/*
4141 	 * As memory initialization might be integrated into KASAN,
4142 	 * kasan_slab_alloc and initialization memset must be
4143 	 * kept together to avoid discrepancies in behavior.
4144 	 *
4145 	 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4146 	 */
4147 	for (i = 0; i < size; i++) {
4148 		p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4149 		if (p[i] && init && (!kasan_init ||
4150 				     !kasan_has_integrated_init()))
4151 			memset(p[i], 0, zero_size);
4152 		kmemleak_alloc_recursive(p[i], s->object_size, 1,
4153 					 s->flags, init_flags);
4154 		kmsan_slab_alloc(s, p[i], init_flags);
4155 		alloc_tagging_slab_alloc_hook(s, p[i], flags);
4156 	}
4157 
4158 	return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4159 }
4160 
4161 /*
4162  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4163  * have the fastpath folded into their functions. So no function call
4164  * overhead for requests that can be satisfied on the fastpath.
4165  *
4166  * The fastpath works by first checking if the lockless freelist can be used.
4167  * If not then __slab_alloc is called for slow processing.
4168  *
4169  * Otherwise we can simply pick the next object from the lockless free list.
4170  */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4171 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4172 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4173 {
4174 	void *object;
4175 	bool init = false;
4176 
4177 	s = slab_pre_alloc_hook(s, gfpflags);
4178 	if (unlikely(!s))
4179 		return NULL;
4180 
4181 	object = kfence_alloc(s, orig_size, gfpflags);
4182 	if (unlikely(object))
4183 		goto out;
4184 
4185 	object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4186 
4187 	maybe_wipe_obj_freeptr(s, object);
4188 	init = slab_want_init_on_alloc(gfpflags, s);
4189 
4190 out:
4191 	/*
4192 	 * When init equals 'true', like for kzalloc() family, only
4193 	 * @orig_size bytes might be zeroed instead of s->object_size
4194 	 * In case this fails due to memcg_slab_post_alloc_hook(),
4195 	 * object is set to NULL
4196 	 */
4197 	slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4198 
4199 	return object;
4200 }
4201 
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)4202 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4203 {
4204 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4205 				    s->object_size);
4206 
4207 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4208 
4209 	return ret;
4210 }
4211 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4212 
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)4213 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4214 			   gfp_t gfpflags)
4215 {
4216 	void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4217 				    s->object_size);
4218 
4219 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4220 
4221 	return ret;
4222 }
4223 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4224 
kmem_cache_charge(void * objp,gfp_t gfpflags)4225 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4226 {
4227 	if (!memcg_kmem_online())
4228 		return true;
4229 
4230 	return memcg_slab_post_charge(objp, gfpflags);
4231 }
4232 EXPORT_SYMBOL(kmem_cache_charge);
4233 
4234 /**
4235  * kmem_cache_alloc_node - Allocate an object on the specified node
4236  * @s: The cache to allocate from.
4237  * @gfpflags: See kmalloc().
4238  * @node: node number of the target node.
4239  *
4240  * Identical to kmem_cache_alloc but it will allocate memory on the given
4241  * node, which can improve the performance for cpu bound structures.
4242  *
4243  * Fallback to other node is possible if __GFP_THISNODE is not set.
4244  *
4245  * Return: pointer to the new object or %NULL in case of error
4246  */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)4247 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4248 {
4249 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4250 
4251 	trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4252 
4253 	return ret;
4254 }
4255 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4256 
4257 /*
4258  * To avoid unnecessary overhead, we pass through large allocation requests
4259  * directly to the page allocator. We use __GFP_COMP, because we will need to
4260  * know the allocation order to free the pages properly in kfree.
4261  */
___kmalloc_large_node(size_t size,gfp_t flags,int node)4262 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4263 {
4264 	struct folio *folio;
4265 	void *ptr = NULL;
4266 	unsigned int order = get_order(size);
4267 
4268 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
4269 		flags = kmalloc_fix_flags(flags);
4270 
4271 	flags |= __GFP_COMP;
4272 	folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4273 	if (folio) {
4274 		ptr = folio_address(folio);
4275 		lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4276 				      PAGE_SIZE << order);
4277 		__folio_set_large_kmalloc(folio);
4278 	}
4279 
4280 	ptr = kasan_kmalloc_large(ptr, size, flags);
4281 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
4282 	kmemleak_alloc(ptr, size, 1, flags);
4283 	kmsan_kmalloc_large(ptr, size, flags);
4284 
4285 	return ptr;
4286 }
4287 
__kmalloc_large_noprof(size_t size,gfp_t flags)4288 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4289 {
4290 	void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4291 
4292 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4293 		      flags, NUMA_NO_NODE);
4294 	return ret;
4295 }
4296 EXPORT_SYMBOL(__kmalloc_large_noprof);
4297 
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)4298 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4299 {
4300 	void *ret = ___kmalloc_large_node(size, flags, node);
4301 
4302 	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4303 		      flags, node);
4304 	return ret;
4305 }
4306 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4307 
4308 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)4309 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4310 			unsigned long caller)
4311 {
4312 	struct kmem_cache *s;
4313 	void *ret;
4314 
4315 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4316 		ret = __kmalloc_large_node_noprof(size, flags, node);
4317 		trace_kmalloc(caller, ret, size,
4318 			      PAGE_SIZE << get_order(size), flags, node);
4319 		return ret;
4320 	}
4321 
4322 	if (unlikely(!size))
4323 		return ZERO_SIZE_PTR;
4324 
4325 	s = kmalloc_slab(size, b, flags, caller);
4326 
4327 	ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4328 	ret = kasan_kmalloc(s, ret, size, flags);
4329 	trace_kmalloc(caller, ret, size, s->size, flags, node);
4330 	return ret;
4331 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)4332 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4333 {
4334 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4335 }
4336 EXPORT_SYMBOL(__kmalloc_node_noprof);
4337 
__kmalloc_noprof(size_t size,gfp_t flags)4338 void *__kmalloc_noprof(size_t size, gfp_t flags)
4339 {
4340 	return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4341 }
4342 EXPORT_SYMBOL(__kmalloc_noprof);
4343 
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)4344 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4345 					 int node, unsigned long caller)
4346 {
4347 	return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4348 
4349 }
4350 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4351 
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)4352 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4353 {
4354 	void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4355 					    _RET_IP_, size);
4356 
4357 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4358 
4359 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4360 	return ret;
4361 }
4362 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4363 
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)4364 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4365 				  int node, size_t size)
4366 {
4367 	void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4368 
4369 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4370 
4371 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4372 	return ret;
4373 }
4374 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4375 
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)4376 static noinline void free_to_partial_list(
4377 	struct kmem_cache *s, struct slab *slab,
4378 	void *head, void *tail, int bulk_cnt,
4379 	unsigned long addr)
4380 {
4381 	struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4382 	struct slab *slab_free = NULL;
4383 	int cnt = bulk_cnt;
4384 	unsigned long flags;
4385 	depot_stack_handle_t handle = 0;
4386 
4387 	if (s->flags & SLAB_STORE_USER)
4388 		handle = set_track_prepare();
4389 
4390 	spin_lock_irqsave(&n->list_lock, flags);
4391 
4392 	if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4393 		void *prior = slab->freelist;
4394 
4395 		/* Perform the actual freeing while we still hold the locks */
4396 		slab->inuse -= cnt;
4397 		set_freepointer(s, tail, prior);
4398 		slab->freelist = head;
4399 
4400 		/*
4401 		 * If the slab is empty, and node's partial list is full,
4402 		 * it should be discarded anyway no matter it's on full or
4403 		 * partial list.
4404 		 */
4405 		if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4406 			slab_free = slab;
4407 
4408 		if (!prior) {
4409 			/* was on full list */
4410 			remove_full(s, n, slab);
4411 			if (!slab_free) {
4412 				add_partial(n, slab, DEACTIVATE_TO_TAIL);
4413 				stat(s, FREE_ADD_PARTIAL);
4414 			}
4415 		} else if (slab_free) {
4416 			remove_partial(n, slab);
4417 			stat(s, FREE_REMOVE_PARTIAL);
4418 		}
4419 	}
4420 
4421 	if (slab_free) {
4422 		/*
4423 		 * Update the counters while still holding n->list_lock to
4424 		 * prevent spurious validation warnings
4425 		 */
4426 		dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4427 	}
4428 
4429 	spin_unlock_irqrestore(&n->list_lock, flags);
4430 
4431 	if (slab_free) {
4432 		stat(s, FREE_SLAB);
4433 		free_slab(s, slab_free);
4434 	}
4435 }
4436 
4437 /*
4438  * Slow path handling. This may still be called frequently since objects
4439  * have a longer lifetime than the cpu slabs in most processing loads.
4440  *
4441  * So we still attempt to reduce cache line usage. Just take the slab
4442  * lock and free the item. If there is no additional partial slab
4443  * handling required then we can return immediately.
4444  */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4445 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4446 			void *head, void *tail, int cnt,
4447 			unsigned long addr)
4448 
4449 {
4450 	void *prior;
4451 	int was_frozen;
4452 	struct slab new;
4453 	unsigned long counters;
4454 	struct kmem_cache_node *n = NULL;
4455 	unsigned long flags;
4456 	bool on_node_partial;
4457 
4458 	stat(s, FREE_SLOWPATH);
4459 
4460 	if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4461 		free_to_partial_list(s, slab, head, tail, cnt, addr);
4462 		return;
4463 	}
4464 
4465 	do {
4466 		if (unlikely(n)) {
4467 			spin_unlock_irqrestore(&n->list_lock, flags);
4468 			n = NULL;
4469 		}
4470 		prior = slab->freelist;
4471 		counters = slab->counters;
4472 		set_freepointer(s, tail, prior);
4473 		new.counters = counters;
4474 		was_frozen = new.frozen;
4475 		new.inuse -= cnt;
4476 		if ((!new.inuse || !prior) && !was_frozen) {
4477 			/* Needs to be taken off a list */
4478 			if (!kmem_cache_has_cpu_partial(s) || prior) {
4479 
4480 				n = get_node(s, slab_nid(slab));
4481 				/*
4482 				 * Speculatively acquire the list_lock.
4483 				 * If the cmpxchg does not succeed then we may
4484 				 * drop the list_lock without any processing.
4485 				 *
4486 				 * Otherwise the list_lock will synchronize with
4487 				 * other processors updating the list of slabs.
4488 				 */
4489 				spin_lock_irqsave(&n->list_lock, flags);
4490 
4491 				on_node_partial = slab_test_node_partial(slab);
4492 			}
4493 		}
4494 
4495 	} while (!slab_update_freelist(s, slab,
4496 		prior, counters,
4497 		head, new.counters,
4498 		"__slab_free"));
4499 
4500 	if (likely(!n)) {
4501 
4502 		if (likely(was_frozen)) {
4503 			/*
4504 			 * The list lock was not taken therefore no list
4505 			 * activity can be necessary.
4506 			 */
4507 			stat(s, FREE_FROZEN);
4508 		} else if (kmem_cache_has_cpu_partial(s) && !prior) {
4509 			/*
4510 			 * If we started with a full slab then put it onto the
4511 			 * per cpu partial list.
4512 			 */
4513 			put_cpu_partial(s, slab, 1);
4514 			stat(s, CPU_PARTIAL_FREE);
4515 		}
4516 
4517 		return;
4518 	}
4519 
4520 	/*
4521 	 * This slab was partially empty but not on the per-node partial list,
4522 	 * in which case we shouldn't manipulate its list, just return.
4523 	 */
4524 	if (prior && !on_node_partial) {
4525 		spin_unlock_irqrestore(&n->list_lock, flags);
4526 		return;
4527 	}
4528 
4529 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4530 		goto slab_empty;
4531 
4532 	/*
4533 	 * Objects left in the slab. If it was not on the partial list before
4534 	 * then add it.
4535 	 */
4536 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4537 		add_partial(n, slab, DEACTIVATE_TO_TAIL);
4538 		stat(s, FREE_ADD_PARTIAL);
4539 	}
4540 	spin_unlock_irqrestore(&n->list_lock, flags);
4541 	return;
4542 
4543 slab_empty:
4544 	if (prior) {
4545 		/*
4546 		 * Slab on the partial list.
4547 		 */
4548 		remove_partial(n, slab);
4549 		stat(s, FREE_REMOVE_PARTIAL);
4550 	}
4551 
4552 	spin_unlock_irqrestore(&n->list_lock, flags);
4553 	stat(s, FREE_SLAB);
4554 	discard_slab(s, slab);
4555 }
4556 
4557 #ifndef CONFIG_SLUB_TINY
4558 /*
4559  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4560  * can perform fastpath freeing without additional function calls.
4561  *
4562  * The fastpath is only possible if we are freeing to the current cpu slab
4563  * of this processor. This typically the case if we have just allocated
4564  * the item before.
4565  *
4566  * If fastpath is not possible then fall back to __slab_free where we deal
4567  * with all sorts of special processing.
4568  *
4569  * Bulk free of a freelist with several objects (all pointing to the
4570  * same slab) possible by specifying head and tail ptr, plus objects
4571  * count (cnt). Bulk free indicated by tail pointer being set.
4572  */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4573 static __always_inline void do_slab_free(struct kmem_cache *s,
4574 				struct slab *slab, void *head, void *tail,
4575 				int cnt, unsigned long addr)
4576 {
4577 	struct kmem_cache_cpu *c;
4578 	unsigned long tid;
4579 	void **freelist;
4580 
4581 redo:
4582 	/*
4583 	 * Determine the currently cpus per cpu slab.
4584 	 * The cpu may change afterward. However that does not matter since
4585 	 * data is retrieved via this pointer. If we are on the same cpu
4586 	 * during the cmpxchg then the free will succeed.
4587 	 */
4588 	c = raw_cpu_ptr(s->cpu_slab);
4589 	tid = READ_ONCE(c->tid);
4590 
4591 	/* Same with comment on barrier() in __slab_alloc_node() */
4592 	barrier();
4593 
4594 	if (unlikely(slab != c->slab)) {
4595 		__slab_free(s, slab, head, tail, cnt, addr);
4596 		return;
4597 	}
4598 
4599 	if (USE_LOCKLESS_FAST_PATH()) {
4600 		freelist = READ_ONCE(c->freelist);
4601 
4602 		set_freepointer(s, tail, freelist);
4603 
4604 		if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4605 			note_cmpxchg_failure("slab_free", s, tid);
4606 			goto redo;
4607 		}
4608 	} else {
4609 		/* Update the free list under the local lock */
4610 		local_lock(&s->cpu_slab->lock);
4611 		c = this_cpu_ptr(s->cpu_slab);
4612 		if (unlikely(slab != c->slab)) {
4613 			local_unlock(&s->cpu_slab->lock);
4614 			goto redo;
4615 		}
4616 		tid = c->tid;
4617 		freelist = c->freelist;
4618 
4619 		set_freepointer(s, tail, freelist);
4620 		c->freelist = head;
4621 		c->tid = next_tid(tid);
4622 
4623 		local_unlock(&s->cpu_slab->lock);
4624 	}
4625 	stat_add(s, FREE_FASTPATH, cnt);
4626 }
4627 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4628 static void do_slab_free(struct kmem_cache *s,
4629 				struct slab *slab, void *head, void *tail,
4630 				int cnt, unsigned long addr)
4631 {
4632 	__slab_free(s, slab, head, tail, cnt, addr);
4633 }
4634 #endif /* CONFIG_SLUB_TINY */
4635 
4636 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)4637 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4638 	       unsigned long addr)
4639 {
4640 	memcg_slab_free_hook(s, slab, &object, 1);
4641 	alloc_tagging_slab_free_hook(s, slab, &object, 1);
4642 
4643 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4644 		do_slab_free(s, slab, object, object, 1, addr);
4645 }
4646 
4647 #ifdef CONFIG_MEMCG
4648 /* Do not inline the rare memcg charging failed path into the allocation path */
4649 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)4650 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4651 {
4652 	if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4653 		do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4654 }
4655 #endif
4656 
4657 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)4658 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4659 		    void *tail, void **p, int cnt, unsigned long addr)
4660 {
4661 	memcg_slab_free_hook(s, slab, p, cnt);
4662 	alloc_tagging_slab_free_hook(s, slab, p, cnt);
4663 	/*
4664 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4665 	 * to remove objects, whose reuse must be delayed.
4666 	 */
4667 	if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4668 		do_slab_free(s, slab, head, tail, cnt, addr);
4669 }
4670 
4671 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)4672 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4673 {
4674 	struct rcu_delayed_free *delayed_free =
4675 			container_of(rcu_head, struct rcu_delayed_free, head);
4676 	void *object = delayed_free->object;
4677 	struct slab *slab = virt_to_slab(object);
4678 	struct kmem_cache *s;
4679 
4680 	kfree(delayed_free);
4681 
4682 	if (WARN_ON(is_kfence_address(object)))
4683 		return;
4684 
4685 	/* find the object and the cache again */
4686 	if (WARN_ON(!slab))
4687 		return;
4688 	s = slab->slab_cache;
4689 	if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4690 		return;
4691 
4692 	/* resume freeing */
4693 	if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4694 		do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4695 }
4696 #endif /* CONFIG_SLUB_RCU_DEBUG */
4697 
4698 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)4699 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4700 {
4701 	do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4702 }
4703 #endif
4704 
virt_to_cache(const void * obj)4705 static inline struct kmem_cache *virt_to_cache(const void *obj)
4706 {
4707 	struct slab *slab;
4708 
4709 	slab = virt_to_slab(obj);
4710 	if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4711 		return NULL;
4712 	return slab->slab_cache;
4713 }
4714 
cache_from_obj(struct kmem_cache * s,void * x)4715 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4716 {
4717 	struct kmem_cache *cachep;
4718 
4719 	if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4720 	    !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4721 		return s;
4722 
4723 	cachep = virt_to_cache(x);
4724 	if (WARN(cachep && cachep != s,
4725 		 "%s: Wrong slab cache. %s but object is from %s\n",
4726 		 __func__, s->name, cachep->name))
4727 		print_tracking(cachep, x);
4728 	return cachep;
4729 }
4730 
4731 /**
4732  * kmem_cache_free - Deallocate an object
4733  * @s: The cache the allocation was from.
4734  * @x: The previously allocated object.
4735  *
4736  * Free an object which was previously allocated from this
4737  * cache.
4738  */
kmem_cache_free(struct kmem_cache * s,void * x)4739 void kmem_cache_free(struct kmem_cache *s, void *x)
4740 {
4741 	s = cache_from_obj(s, x);
4742 	if (!s)
4743 		return;
4744 	trace_kmem_cache_free(_RET_IP_, x, s);
4745 	slab_free(s, virt_to_slab(x), x, _RET_IP_);
4746 }
4747 EXPORT_SYMBOL(kmem_cache_free);
4748 
free_large_kmalloc(struct folio * folio,void * object)4749 static void free_large_kmalloc(struct folio *folio, void *object)
4750 {
4751 	unsigned int order = folio_order(folio);
4752 
4753 	if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
4754 		dump_page(&folio->page, "Not a kmalloc allocation");
4755 		return;
4756 	}
4757 
4758 	if (WARN_ON_ONCE(order == 0))
4759 		pr_warn_once("object pointer: 0x%p\n", object);
4760 
4761 	kmemleak_free(object);
4762 	kasan_kfree_large(object);
4763 	kmsan_kfree_large(object);
4764 
4765 	lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4766 			      -(PAGE_SIZE << order));
4767 	__folio_clear_large_kmalloc(folio);
4768 	folio_put(folio);
4769 }
4770 
4771 /*
4772  * Given an rcu_head embedded within an object obtained from kvmalloc at an
4773  * offset < 4k, free the object in question.
4774  */
kvfree_rcu_cb(struct rcu_head * head)4775 void kvfree_rcu_cb(struct rcu_head *head)
4776 {
4777 	void *obj = head;
4778 	struct folio *folio;
4779 	struct slab *slab;
4780 	struct kmem_cache *s;
4781 	void *slab_addr;
4782 
4783 	if (is_vmalloc_addr(obj)) {
4784 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4785 		vfree(obj);
4786 		return;
4787 	}
4788 
4789 	folio = virt_to_folio(obj);
4790 	if (!folio_test_slab(folio)) {
4791 		/*
4792 		 * rcu_head offset can be only less than page size so no need to
4793 		 * consider folio order
4794 		 */
4795 		obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4796 		free_large_kmalloc(folio, obj);
4797 		return;
4798 	}
4799 
4800 	slab = folio_slab(folio);
4801 	s = slab->slab_cache;
4802 	slab_addr = folio_address(folio);
4803 
4804 	if (is_kfence_address(obj)) {
4805 		obj = kfence_object_start(obj);
4806 	} else {
4807 		unsigned int idx = __obj_to_index(s, slab_addr, obj);
4808 
4809 		obj = slab_addr + s->size * idx;
4810 		obj = fixup_red_left(s, obj);
4811 	}
4812 
4813 	slab_free(s, slab, obj, _RET_IP_);
4814 }
4815 
4816 /**
4817  * kfree - free previously allocated memory
4818  * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4819  *
4820  * If @object is NULL, no operation is performed.
4821  */
kfree(const void * object)4822 void kfree(const void *object)
4823 {
4824 	struct folio *folio;
4825 	struct slab *slab;
4826 	struct kmem_cache *s;
4827 	void *x = (void *)object;
4828 
4829 	trace_kfree(_RET_IP_, object);
4830 
4831 	if (unlikely(ZERO_OR_NULL_PTR(object)))
4832 		return;
4833 
4834 	folio = virt_to_folio(object);
4835 	if (unlikely(!folio_test_slab(folio))) {
4836 		free_large_kmalloc(folio, (void *)object);
4837 		return;
4838 	}
4839 
4840 	slab = folio_slab(folio);
4841 	s = slab->slab_cache;
4842 	slab_free(s, slab, x, _RET_IP_);
4843 }
4844 EXPORT_SYMBOL(kfree);
4845 
4846 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)4847 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4848 {
4849 	void *ret;
4850 	size_t ks = 0;
4851 	int orig_size = 0;
4852 	struct kmem_cache *s = NULL;
4853 
4854 	if (unlikely(ZERO_OR_NULL_PTR(p)))
4855 		goto alloc_new;
4856 
4857 	/* Check for double-free. */
4858 	if (!kasan_check_byte(p))
4859 		return NULL;
4860 
4861 	if (is_kfence_address(p)) {
4862 		ks = orig_size = kfence_ksize(p);
4863 	} else {
4864 		struct folio *folio;
4865 
4866 		folio = virt_to_folio(p);
4867 		if (unlikely(!folio_test_slab(folio))) {
4868 			/* Big kmalloc object */
4869 			WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4870 			WARN_ON(p != folio_address(folio));
4871 			ks = folio_size(folio);
4872 		} else {
4873 			s = folio_slab(folio)->slab_cache;
4874 			orig_size = get_orig_size(s, (void *)p);
4875 			ks = s->object_size;
4876 		}
4877 	}
4878 
4879 	/* If the old object doesn't fit, allocate a bigger one */
4880 	if (new_size > ks)
4881 		goto alloc_new;
4882 
4883 	/* Zero out spare memory. */
4884 	if (want_init_on_alloc(flags)) {
4885 		kasan_disable_current();
4886 		if (orig_size && orig_size < new_size)
4887 			memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4888 		else
4889 			memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4890 		kasan_enable_current();
4891 	}
4892 
4893 	/* Setup kmalloc redzone when needed */
4894 	if (s && slub_debug_orig_size(s)) {
4895 		set_orig_size(s, (void *)p, new_size);
4896 		if (s->flags & SLAB_RED_ZONE && new_size < ks)
4897 			memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4898 						SLUB_RED_ACTIVE, ks - new_size);
4899 	}
4900 
4901 	p = kasan_krealloc(p, new_size, flags);
4902 	return (void *)p;
4903 
4904 alloc_new:
4905 	ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4906 	if (ret && p) {
4907 		/* Disable KASAN checks as the object's redzone is accessed. */
4908 		kasan_disable_current();
4909 		memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4910 		kasan_enable_current();
4911 	}
4912 
4913 	return ret;
4914 }
4915 
4916 /**
4917  * krealloc - reallocate memory. The contents will remain unchanged.
4918  * @p: object to reallocate memory for.
4919  * @new_size: how many bytes of memory are required.
4920  * @flags: the type of memory to allocate.
4921  *
4922  * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
4923  * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4924  *
4925  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4926  * initial memory allocation, every subsequent call to this API for the same
4927  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4928  * __GFP_ZERO is not fully honored by this API.
4929  *
4930  * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4931  * size of an allocation (but not the exact size it was allocated with) and
4932  * hence implements the following semantics for shrinking and growing buffers
4933  * with __GFP_ZERO.
4934  *
4935  *         new             bucket
4936  * 0       size             size
4937  * |--------|----------------|
4938  * |  keep  |      zero      |
4939  *
4940  * Otherwise, the original allocation size 'orig_size' could be used to
4941  * precisely clear the requested size, and the new size will also be stored
4942  * as the new 'orig_size'.
4943  *
4944  * In any case, the contents of the object pointed to are preserved up to the
4945  * lesser of the new and old sizes.
4946  *
4947  * Return: pointer to the allocated memory or %NULL in case of error
4948  */
krealloc_noprof(const void * p,size_t new_size,gfp_t flags)4949 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4950 {
4951 	void *ret;
4952 
4953 	if (unlikely(!new_size)) {
4954 		kfree(p);
4955 		return ZERO_SIZE_PTR;
4956 	}
4957 
4958 	ret = __do_krealloc(p, new_size, flags);
4959 	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4960 		kfree(p);
4961 
4962 	return ret;
4963 }
4964 EXPORT_SYMBOL(krealloc_noprof);
4965 
kmalloc_gfp_adjust(gfp_t flags,size_t size)4966 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
4967 {
4968 	/*
4969 	 * We want to attempt a large physically contiguous block first because
4970 	 * it is less likely to fragment multiple larger blocks and therefore
4971 	 * contribute to a long term fragmentation less than vmalloc fallback.
4972 	 * However make sure that larger requests are not too disruptive - i.e.
4973 	 * do not direct reclaim unless physically continuous memory is preferred
4974 	 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
4975 	 * start working in the background
4976 	 */
4977 	if (size > PAGE_SIZE) {
4978 		flags |= __GFP_NOWARN;
4979 
4980 		if (!(flags & __GFP_RETRY_MAYFAIL))
4981 			flags &= ~__GFP_DIRECT_RECLAIM;
4982 
4983 		/* nofail semantic is implemented by the vmalloc fallback */
4984 		flags &= ~__GFP_NOFAIL;
4985 	}
4986 
4987 	return flags;
4988 }
4989 
4990 /**
4991  * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
4992  * failure, fall back to non-contiguous (vmalloc) allocation.
4993  * @size: size of the request.
4994  * @b: which set of kmalloc buckets to allocate from.
4995  * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
4996  * @node: numa node to allocate from
4997  *
4998  * Uses kmalloc to get the memory but if the allocation fails then falls back
4999  * to the vmalloc allocator. Use kvfree for freeing the memory.
5000  *
5001  * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
5002  * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
5003  * preferable to the vmalloc fallback, due to visible performance drawbacks.
5004  *
5005  * Return: pointer to the allocated memory of %NULL in case of failure
5006  */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5007 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5008 {
5009 	void *ret;
5010 
5011 	/*
5012 	 * It doesn't really make sense to fallback to vmalloc for sub page
5013 	 * requests
5014 	 */
5015 	ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
5016 				kmalloc_gfp_adjust(flags, size),
5017 				node, _RET_IP_);
5018 	if (ret || size <= PAGE_SIZE)
5019 		return ret;
5020 
5021 	/* non-sleeping allocations are not supported by vmalloc */
5022 	if (!gfpflags_allow_blocking(flags))
5023 		return NULL;
5024 
5025 	/* Don't even allow crazy sizes */
5026 	if (unlikely(size > INT_MAX)) {
5027 		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
5028 		return NULL;
5029 	}
5030 
5031 	/*
5032 	 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
5033 	 * since the callers already cannot assume anything
5034 	 * about the resulting pointer, and cannot play
5035 	 * protection games.
5036 	 */
5037 	return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
5038 			flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
5039 			node, __builtin_return_address(0));
5040 }
5041 EXPORT_SYMBOL(__kvmalloc_node_noprof);
5042 
5043 /**
5044  * kvfree() - Free memory.
5045  * @addr: Pointer to allocated memory.
5046  *
5047  * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
5048  * It is slightly more efficient to use kfree() or vfree() if you are certain
5049  * that you know which one to use.
5050  *
5051  * Context: Either preemptible task context or not-NMI interrupt.
5052  */
kvfree(const void * addr)5053 void kvfree(const void *addr)
5054 {
5055 	if (is_vmalloc_addr(addr))
5056 		vfree(addr);
5057 	else
5058 		kfree(addr);
5059 }
5060 EXPORT_SYMBOL(kvfree);
5061 
5062 /**
5063  * kvfree_sensitive - Free a data object containing sensitive information.
5064  * @addr: address of the data object to be freed.
5065  * @len: length of the data object.
5066  *
5067  * Use the special memzero_explicit() function to clear the content of a
5068  * kvmalloc'ed object containing sensitive data to make sure that the
5069  * compiler won't optimize out the data clearing.
5070  */
kvfree_sensitive(const void * addr,size_t len)5071 void kvfree_sensitive(const void *addr, size_t len)
5072 {
5073 	if (likely(!ZERO_OR_NULL_PTR(addr))) {
5074 		memzero_explicit((void *)addr, len);
5075 		kvfree(addr);
5076 	}
5077 }
5078 EXPORT_SYMBOL(kvfree_sensitive);
5079 
5080 /**
5081  * kvrealloc - reallocate memory; contents remain unchanged
5082  * @p: object to reallocate memory for
5083  * @size: the size to reallocate
5084  * @flags: the flags for the page level allocator
5085  *
5086  * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
5087  * and @p is not a %NULL pointer, the object pointed to is freed.
5088  *
5089  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
5090  * initial memory allocation, every subsequent call to this API for the same
5091  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
5092  * __GFP_ZERO is not fully honored by this API.
5093  *
5094  * In any case, the contents of the object pointed to are preserved up to the
5095  * lesser of the new and old sizes.
5096  *
5097  * This function must not be called concurrently with itself or kvfree() for the
5098  * same memory allocation.
5099  *
5100  * Return: pointer to the allocated memory or %NULL in case of error
5101  */
kvrealloc_noprof(const void * p,size_t size,gfp_t flags)5102 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
5103 {
5104 	void *n;
5105 
5106 	if (is_vmalloc_addr(p))
5107 		return vrealloc_noprof(p, size, flags);
5108 
5109 	n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
5110 	if (!n) {
5111 		/* We failed to krealloc(), fall back to kvmalloc(). */
5112 		n = kvmalloc_noprof(size, flags);
5113 		if (!n)
5114 			return NULL;
5115 
5116 		if (p) {
5117 			/* We already know that `p` is not a vmalloc address. */
5118 			kasan_disable_current();
5119 			memcpy(n, kasan_reset_tag(p), ksize(p));
5120 			kasan_enable_current();
5121 
5122 			kfree(p);
5123 		}
5124 	}
5125 
5126 	return n;
5127 }
5128 EXPORT_SYMBOL(kvrealloc_noprof);
5129 
5130 struct detached_freelist {
5131 	struct slab *slab;
5132 	void *tail;
5133 	void *freelist;
5134 	int cnt;
5135 	struct kmem_cache *s;
5136 };
5137 
5138 /*
5139  * This function progressively scans the array with free objects (with
5140  * a limited look ahead) and extract objects belonging to the same
5141  * slab.  It builds a detached freelist directly within the given
5142  * slab/objects.  This can happen without any need for
5143  * synchronization, because the objects are owned by running process.
5144  * The freelist is build up as a single linked list in the objects.
5145  * The idea is, that this detached freelist can then be bulk
5146  * transferred to the real freelist(s), but only requiring a single
5147  * synchronization primitive.  Look ahead in the array is limited due
5148  * to performance reasons.
5149  */
5150 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)5151 int build_detached_freelist(struct kmem_cache *s, size_t size,
5152 			    void **p, struct detached_freelist *df)
5153 {
5154 	int lookahead = 3;
5155 	void *object;
5156 	struct folio *folio;
5157 	size_t same;
5158 
5159 	object = p[--size];
5160 	folio = virt_to_folio(object);
5161 	if (!s) {
5162 		/* Handle kalloc'ed objects */
5163 		if (unlikely(!folio_test_slab(folio))) {
5164 			free_large_kmalloc(folio, object);
5165 			df->slab = NULL;
5166 			return size;
5167 		}
5168 		/* Derive kmem_cache from object */
5169 		df->slab = folio_slab(folio);
5170 		df->s = df->slab->slab_cache;
5171 	} else {
5172 		df->slab = folio_slab(folio);
5173 		df->s = cache_from_obj(s, object); /* Support for memcg */
5174 	}
5175 
5176 	/* Start new detached freelist */
5177 	df->tail = object;
5178 	df->freelist = object;
5179 	df->cnt = 1;
5180 
5181 	if (is_kfence_address(object))
5182 		return size;
5183 
5184 	set_freepointer(df->s, object, NULL);
5185 
5186 	same = size;
5187 	while (size) {
5188 		object = p[--size];
5189 		/* df->slab is always set at this point */
5190 		if (df->slab == virt_to_slab(object)) {
5191 			/* Opportunity build freelist */
5192 			set_freepointer(df->s, object, df->freelist);
5193 			df->freelist = object;
5194 			df->cnt++;
5195 			same--;
5196 			if (size != same)
5197 				swap(p[size], p[same]);
5198 			continue;
5199 		}
5200 
5201 		/* Limit look ahead search */
5202 		if (!--lookahead)
5203 			break;
5204 	}
5205 
5206 	return same;
5207 }
5208 
5209 /*
5210  * Internal bulk free of objects that were not initialised by the post alloc
5211  * hooks and thus should not be processed by the free hooks
5212  */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5213 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5214 {
5215 	if (!size)
5216 		return;
5217 
5218 	do {
5219 		struct detached_freelist df;
5220 
5221 		size = build_detached_freelist(s, size, p, &df);
5222 		if (!df.slab)
5223 			continue;
5224 
5225 		if (kfence_free(df.freelist))
5226 			continue;
5227 
5228 		do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
5229 			     _RET_IP_);
5230 	} while (likely(size));
5231 }
5232 
5233 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5234 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5235 {
5236 	if (!size)
5237 		return;
5238 
5239 	do {
5240 		struct detached_freelist df;
5241 
5242 		size = build_detached_freelist(s, size, p, &df);
5243 		if (!df.slab)
5244 			continue;
5245 
5246 		slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5247 			       df.cnt, _RET_IP_);
5248 	} while (likely(size));
5249 }
5250 EXPORT_SYMBOL(kmem_cache_free_bulk);
5251 
5252 #ifndef CONFIG_SLUB_TINY
5253 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5254 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5255 			    void **p)
5256 {
5257 	struct kmem_cache_cpu *c;
5258 	unsigned long irqflags;
5259 	int i;
5260 
5261 	/*
5262 	 * Drain objects in the per cpu slab, while disabling local
5263 	 * IRQs, which protects against PREEMPT and interrupts
5264 	 * handlers invoking normal fastpath.
5265 	 */
5266 	c = slub_get_cpu_ptr(s->cpu_slab);
5267 	local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5268 
5269 	for (i = 0; i < size; i++) {
5270 		void *object = kfence_alloc(s, s->object_size, flags);
5271 
5272 		if (unlikely(object)) {
5273 			p[i] = object;
5274 			continue;
5275 		}
5276 
5277 		object = c->freelist;
5278 		if (unlikely(!object)) {
5279 			/*
5280 			 * We may have removed an object from c->freelist using
5281 			 * the fastpath in the previous iteration; in that case,
5282 			 * c->tid has not been bumped yet.
5283 			 * Since ___slab_alloc() may reenable interrupts while
5284 			 * allocating memory, we should bump c->tid now.
5285 			 */
5286 			c->tid = next_tid(c->tid);
5287 
5288 			local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5289 
5290 			/*
5291 			 * Invoking slow path likely have side-effect
5292 			 * of re-populating per CPU c->freelist
5293 			 */
5294 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5295 					    _RET_IP_, c, s->object_size);
5296 			if (unlikely(!p[i]))
5297 				goto error;
5298 
5299 			c = this_cpu_ptr(s->cpu_slab);
5300 			maybe_wipe_obj_freeptr(s, p[i]);
5301 
5302 			local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5303 
5304 			continue; /* goto for-loop */
5305 		}
5306 		c->freelist = get_freepointer(s, object);
5307 		p[i] = object;
5308 		maybe_wipe_obj_freeptr(s, p[i]);
5309 		stat(s, ALLOC_FASTPATH);
5310 	}
5311 	c->tid = next_tid(c->tid);
5312 	local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5313 	slub_put_cpu_ptr(s->cpu_slab);
5314 
5315 	return i;
5316 
5317 error:
5318 	slub_put_cpu_ptr(s->cpu_slab);
5319 	__kmem_cache_free_bulk(s, i, p);
5320 	return 0;
5321 
5322 }
5323 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5324 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5325 				   size_t size, void **p)
5326 {
5327 	int i;
5328 
5329 	for (i = 0; i < size; i++) {
5330 		void *object = kfence_alloc(s, s->object_size, flags);
5331 
5332 		if (unlikely(object)) {
5333 			p[i] = object;
5334 			continue;
5335 		}
5336 
5337 		p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5338 					 _RET_IP_, s->object_size);
5339 		if (unlikely(!p[i]))
5340 			goto error;
5341 
5342 		maybe_wipe_obj_freeptr(s, p[i]);
5343 	}
5344 
5345 	return i;
5346 
5347 error:
5348 	__kmem_cache_free_bulk(s, i, p);
5349 	return 0;
5350 }
5351 #endif /* CONFIG_SLUB_TINY */
5352 
5353 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5354 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5355 				 void **p)
5356 {
5357 	int i;
5358 
5359 	if (!size)
5360 		return 0;
5361 
5362 	s = slab_pre_alloc_hook(s, flags);
5363 	if (unlikely(!s))
5364 		return 0;
5365 
5366 	i = __kmem_cache_alloc_bulk(s, flags, size, p);
5367 	if (unlikely(i == 0))
5368 		return 0;
5369 
5370 	/*
5371 	 * memcg and kmem_cache debug support and memory initialization.
5372 	 * Done outside of the IRQ disabled fastpath loop.
5373 	 */
5374 	if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5375 		    slab_want_init_on_alloc(flags, s), s->object_size))) {
5376 		return 0;
5377 	}
5378 	return i;
5379 }
5380 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5381 
5382 
5383 /*
5384  * Object placement in a slab is made very easy because we always start at
5385  * offset 0. If we tune the size of the object to the alignment then we can
5386  * get the required alignment by putting one properly sized object after
5387  * another.
5388  *
5389  * Notice that the allocation order determines the sizes of the per cpu
5390  * caches. Each processor has always one slab available for allocations.
5391  * Increasing the allocation order reduces the number of times that slabs
5392  * must be moved on and off the partial lists and is therefore a factor in
5393  * locking overhead.
5394  */
5395 
5396 /*
5397  * Minimum / Maximum order of slab pages. This influences locking overhead
5398  * and slab fragmentation. A higher order reduces the number of partial slabs
5399  * and increases the number of allocations possible without having to
5400  * take the list_lock.
5401  */
5402 static unsigned int slub_min_order;
5403 static unsigned int slub_max_order =
5404 	IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5405 static unsigned int slub_min_objects;
5406 
5407 /*
5408  * Calculate the order of allocation given an slab object size.
5409  *
5410  * The order of allocation has significant impact on performance and other
5411  * system components. Generally order 0 allocations should be preferred since
5412  * order 0 does not cause fragmentation in the page allocator. Larger objects
5413  * be problematic to put into order 0 slabs because there may be too much
5414  * unused space left. We go to a higher order if more than 1/16th of the slab
5415  * would be wasted.
5416  *
5417  * In order to reach satisfactory performance we must ensure that a minimum
5418  * number of objects is in one slab. Otherwise we may generate too much
5419  * activity on the partial lists which requires taking the list_lock. This is
5420  * less a concern for large slabs though which are rarely used.
5421  *
5422  * slab_max_order specifies the order where we begin to stop considering the
5423  * number of objects in a slab as critical. If we reach slab_max_order then
5424  * we try to keep the page order as low as possible. So we accept more waste
5425  * of space in favor of a small page order.
5426  *
5427  * Higher order allocations also allow the placement of more objects in a
5428  * slab and thereby reduce object handling overhead. If the user has
5429  * requested a higher minimum order then we start with that one instead of
5430  * the smallest order which will fit the object.
5431  */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)5432 static inline unsigned int calc_slab_order(unsigned int size,
5433 		unsigned int min_order, unsigned int max_order,
5434 		unsigned int fract_leftover)
5435 {
5436 	unsigned int order;
5437 
5438 	for (order = min_order; order <= max_order; order++) {
5439 
5440 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5441 		unsigned int rem;
5442 
5443 		rem = slab_size % size;
5444 
5445 		if (rem <= slab_size / fract_leftover)
5446 			break;
5447 	}
5448 
5449 	return order;
5450 }
5451 
calculate_order(unsigned int size)5452 static inline int calculate_order(unsigned int size)
5453 {
5454 	unsigned int order;
5455 	unsigned int min_objects;
5456 	unsigned int max_objects;
5457 	unsigned int min_order;
5458 
5459 	min_objects = slub_min_objects;
5460 	if (!min_objects) {
5461 		/*
5462 		 * Some architectures will only update present cpus when
5463 		 * onlining them, so don't trust the number if it's just 1. But
5464 		 * we also don't want to use nr_cpu_ids always, as on some other
5465 		 * architectures, there can be many possible cpus, but never
5466 		 * onlined. Here we compromise between trying to avoid too high
5467 		 * order on systems that appear larger than they are, and too
5468 		 * low order on systems that appear smaller than they are.
5469 		 */
5470 		unsigned int nr_cpus = num_present_cpus();
5471 		if (nr_cpus <= 1)
5472 			nr_cpus = nr_cpu_ids;
5473 		min_objects = 4 * (fls(nr_cpus) + 1);
5474 	}
5475 	/* min_objects can't be 0 because get_order(0) is undefined */
5476 	max_objects = max(order_objects(slub_max_order, size), 1U);
5477 	min_objects = min(min_objects, max_objects);
5478 
5479 	min_order = max_t(unsigned int, slub_min_order,
5480 			  get_order(min_objects * size));
5481 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5482 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5483 
5484 	/*
5485 	 * Attempt to find best configuration for a slab. This works by first
5486 	 * attempting to generate a layout with the best possible configuration
5487 	 * and backing off gradually.
5488 	 *
5489 	 * We start with accepting at most 1/16 waste and try to find the
5490 	 * smallest order from min_objects-derived/slab_min_order up to
5491 	 * slab_max_order that will satisfy the constraint. Note that increasing
5492 	 * the order can only result in same or less fractional waste, not more.
5493 	 *
5494 	 * If that fails, we increase the acceptable fraction of waste and try
5495 	 * again. The last iteration with fraction of 1/2 would effectively
5496 	 * accept any waste and give us the order determined by min_objects, as
5497 	 * long as at least single object fits within slab_max_order.
5498 	 */
5499 	for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5500 		order = calc_slab_order(size, min_order, slub_max_order,
5501 					fraction);
5502 		if (order <= slub_max_order)
5503 			return order;
5504 	}
5505 
5506 	/*
5507 	 * Doh this slab cannot be placed using slab_max_order.
5508 	 */
5509 	order = get_order(size);
5510 	if (order <= MAX_PAGE_ORDER)
5511 		return order;
5512 	return -ENOSYS;
5513 }
5514 
5515 static void
init_kmem_cache_node(struct kmem_cache_node * n)5516 init_kmem_cache_node(struct kmem_cache_node *n)
5517 {
5518 	n->nr_partial = 0;
5519 	spin_lock_init(&n->list_lock);
5520 	INIT_LIST_HEAD(&n->partial);
5521 #ifdef CONFIG_SLUB_DEBUG
5522 	atomic_long_set(&n->nr_slabs, 0);
5523 	atomic_long_set(&n->total_objects, 0);
5524 	INIT_LIST_HEAD(&n->full);
5525 #endif
5526 }
5527 
5528 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)5529 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5530 {
5531 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5532 			NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5533 			sizeof(struct kmem_cache_cpu));
5534 
5535 	/*
5536 	 * Must align to double word boundary for the double cmpxchg
5537 	 * instructions to work; see __pcpu_double_call_return_bool().
5538 	 */
5539 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5540 				     2 * sizeof(void *));
5541 
5542 	if (!s->cpu_slab)
5543 		return 0;
5544 
5545 	init_kmem_cache_cpus(s);
5546 
5547 	return 1;
5548 }
5549 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)5550 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5551 {
5552 	return 1;
5553 }
5554 #endif /* CONFIG_SLUB_TINY */
5555 
5556 static struct kmem_cache *kmem_cache_node;
5557 
5558 /*
5559  * No kmalloc_node yet so do it by hand. We know that this is the first
5560  * slab on the node for this slabcache. There are no concurrent accesses
5561  * possible.
5562  *
5563  * Note that this function only works on the kmem_cache_node
5564  * when allocating for the kmem_cache_node. This is used for bootstrapping
5565  * memory on a fresh node that has no slab structures yet.
5566  */
early_kmem_cache_node_alloc(int node)5567 static void early_kmem_cache_node_alloc(int node)
5568 {
5569 	struct slab *slab;
5570 	struct kmem_cache_node *n;
5571 
5572 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5573 
5574 	slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5575 
5576 	BUG_ON(!slab);
5577 	if (slab_nid(slab) != node) {
5578 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5579 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5580 	}
5581 
5582 	n = slab->freelist;
5583 	BUG_ON(!n);
5584 #ifdef CONFIG_SLUB_DEBUG
5585 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5586 #endif
5587 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5588 	slab->freelist = get_freepointer(kmem_cache_node, n);
5589 	slab->inuse = 1;
5590 	kmem_cache_node->node[node] = n;
5591 	init_kmem_cache_node(n);
5592 	inc_slabs_node(kmem_cache_node, node, slab->objects);
5593 
5594 	/*
5595 	 * No locks need to be taken here as it has just been
5596 	 * initialized and there is no concurrent access.
5597 	 */
5598 	__add_partial(n, slab, DEACTIVATE_TO_HEAD);
5599 }
5600 
free_kmem_cache_nodes(struct kmem_cache * s)5601 static void free_kmem_cache_nodes(struct kmem_cache *s)
5602 {
5603 	int node;
5604 	struct kmem_cache_node *n;
5605 
5606 	for_each_kmem_cache_node(s, node, n) {
5607 		s->node[node] = NULL;
5608 		kmem_cache_free(kmem_cache_node, n);
5609 	}
5610 }
5611 
__kmem_cache_release(struct kmem_cache * s)5612 void __kmem_cache_release(struct kmem_cache *s)
5613 {
5614 	cache_random_seq_destroy(s);
5615 #ifndef CONFIG_SLUB_TINY
5616 	free_percpu(s->cpu_slab);
5617 #endif
5618 	free_kmem_cache_nodes(s);
5619 }
5620 
init_kmem_cache_nodes(struct kmem_cache * s)5621 static int init_kmem_cache_nodes(struct kmem_cache *s)
5622 {
5623 	int node;
5624 
5625 	for_each_node_mask(node, slab_nodes) {
5626 		struct kmem_cache_node *n;
5627 
5628 		if (slab_state == DOWN) {
5629 			early_kmem_cache_node_alloc(node);
5630 			continue;
5631 		}
5632 		n = kmem_cache_alloc_node(kmem_cache_node,
5633 						GFP_KERNEL, node);
5634 
5635 		if (!n) {
5636 			free_kmem_cache_nodes(s);
5637 			return 0;
5638 		}
5639 
5640 		init_kmem_cache_node(n);
5641 		s->node[node] = n;
5642 	}
5643 	return 1;
5644 }
5645 
set_cpu_partial(struct kmem_cache * s)5646 static void set_cpu_partial(struct kmem_cache *s)
5647 {
5648 #ifdef CONFIG_SLUB_CPU_PARTIAL
5649 	unsigned int nr_objects;
5650 
5651 	/*
5652 	 * cpu_partial determined the maximum number of objects kept in the
5653 	 * per cpu partial lists of a processor.
5654 	 *
5655 	 * Per cpu partial lists mainly contain slabs that just have one
5656 	 * object freed. If they are used for allocation then they can be
5657 	 * filled up again with minimal effort. The slab will never hit the
5658 	 * per node partial lists and therefore no locking will be required.
5659 	 *
5660 	 * For backwards compatibility reasons, this is determined as number
5661 	 * of objects, even though we now limit maximum number of pages, see
5662 	 * slub_set_cpu_partial()
5663 	 */
5664 	if (!kmem_cache_has_cpu_partial(s))
5665 		nr_objects = 0;
5666 	else if (s->size >= PAGE_SIZE)
5667 		nr_objects = 6;
5668 	else if (s->size >= 1024)
5669 		nr_objects = 24;
5670 	else if (s->size >= 256)
5671 		nr_objects = 52;
5672 	else
5673 		nr_objects = 120;
5674 
5675 	slub_set_cpu_partial(s, nr_objects);
5676 #endif
5677 }
5678 
5679 /*
5680  * calculate_sizes() determines the order and the distribution of data within
5681  * a slab object.
5682  */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)5683 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5684 {
5685 	slab_flags_t flags = s->flags;
5686 	unsigned int size = s->object_size;
5687 	unsigned int order;
5688 
5689 	/*
5690 	 * Round up object size to the next word boundary. We can only
5691 	 * place the free pointer at word boundaries and this determines
5692 	 * the possible location of the free pointer.
5693 	 */
5694 	size = ALIGN(size, sizeof(void *));
5695 
5696 #ifdef CONFIG_SLUB_DEBUG
5697 	/*
5698 	 * Determine if we can poison the object itself. If the user of
5699 	 * the slab may touch the object after free or before allocation
5700 	 * then we should never poison the object itself.
5701 	 */
5702 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5703 			!s->ctor)
5704 		s->flags |= __OBJECT_POISON;
5705 	else
5706 		s->flags &= ~__OBJECT_POISON;
5707 
5708 
5709 	/*
5710 	 * If we are Redzoning then check if there is some space between the
5711 	 * end of the object and the free pointer. If not then add an
5712 	 * additional word to have some bytes to store Redzone information.
5713 	 */
5714 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5715 		size += sizeof(void *);
5716 #endif
5717 
5718 	/*
5719 	 * With that we have determined the number of bytes in actual use
5720 	 * by the object and redzoning.
5721 	 */
5722 	s->inuse = size;
5723 
5724 	if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5725 	    (flags & SLAB_POISON) || s->ctor ||
5726 	    ((flags & SLAB_RED_ZONE) &&
5727 	     (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5728 		/*
5729 		 * Relocate free pointer after the object if it is not
5730 		 * permitted to overwrite the first word of the object on
5731 		 * kmem_cache_free.
5732 		 *
5733 		 * This is the case if we do RCU, have a constructor or
5734 		 * destructor, are poisoning the objects, or are
5735 		 * redzoning an object smaller than sizeof(void *) or are
5736 		 * redzoning an object with slub_debug_orig_size() enabled,
5737 		 * in which case the right redzone may be extended.
5738 		 *
5739 		 * The assumption that s->offset >= s->inuse means free
5740 		 * pointer is outside of the object is used in the
5741 		 * freeptr_outside_object() function. If that is no
5742 		 * longer true, the function needs to be modified.
5743 		 */
5744 		s->offset = size;
5745 		size += sizeof(void *);
5746 	} else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5747 		s->offset = args->freeptr_offset;
5748 	} else {
5749 		/*
5750 		 * Store freelist pointer near middle of object to keep
5751 		 * it away from the edges of the object to avoid small
5752 		 * sized over/underflows from neighboring allocations.
5753 		 */
5754 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5755 	}
5756 
5757 #ifdef CONFIG_SLUB_DEBUG
5758 	if (flags & SLAB_STORE_USER) {
5759 		/*
5760 		 * Need to store information about allocs and frees after
5761 		 * the object.
5762 		 */
5763 		size += 2 * sizeof(struct track);
5764 
5765 		/* Save the original kmalloc request size */
5766 		if (flags & SLAB_KMALLOC)
5767 			size += sizeof(unsigned int);
5768 	}
5769 #endif
5770 
5771 	kasan_cache_create(s, &size, &s->flags);
5772 #ifdef CONFIG_SLUB_DEBUG
5773 	if (flags & SLAB_RED_ZONE) {
5774 		/*
5775 		 * Add some empty padding so that we can catch
5776 		 * overwrites from earlier objects rather than let
5777 		 * tracking information or the free pointer be
5778 		 * corrupted if a user writes before the start
5779 		 * of the object.
5780 		 */
5781 		size += sizeof(void *);
5782 
5783 		s->red_left_pad = sizeof(void *);
5784 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5785 		size += s->red_left_pad;
5786 	}
5787 #endif
5788 
5789 	/*
5790 	 * SLUB stores one object immediately after another beginning from
5791 	 * offset 0. In order to align the objects we have to simply size
5792 	 * each object to conform to the alignment.
5793 	 */
5794 	size = ALIGN(size, s->align);
5795 	s->size = size;
5796 	s->reciprocal_size = reciprocal_value(size);
5797 	order = calculate_order(size);
5798 
5799 	if ((int)order < 0)
5800 		return 0;
5801 
5802 	s->allocflags = __GFP_COMP;
5803 
5804 	if (s->flags & SLAB_CACHE_DMA)
5805 		s->allocflags |= GFP_DMA;
5806 
5807 	if (s->flags & SLAB_CACHE_DMA32)
5808 		s->allocflags |= GFP_DMA32;
5809 
5810 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5811 		s->allocflags |= __GFP_RECLAIMABLE;
5812 
5813 	/*
5814 	 * Determine the number of objects per slab
5815 	 */
5816 	s->oo = oo_make(order, size);
5817 	s->min = oo_make(get_order(size), size);
5818 
5819 	return !!oo_objects(s->oo);
5820 }
5821 
list_slab_objects(struct kmem_cache * s,struct slab * slab)5822 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
5823 {
5824 #ifdef CONFIG_SLUB_DEBUG
5825 	void *addr = slab_address(slab);
5826 	void *p;
5827 
5828 	if (!slab_add_kunit_errors())
5829 		slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
5830 
5831 	spin_lock(&object_map_lock);
5832 	__fill_map(object_map, s, slab);
5833 
5834 	for_each_object(p, s, addr, slab->objects) {
5835 
5836 		if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5837 			if (slab_add_kunit_errors())
5838 				continue;
5839 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5840 			print_tracking(s, p);
5841 		}
5842 	}
5843 	spin_unlock(&object_map_lock);
5844 
5845 	__slab_err(slab);
5846 #endif
5847 }
5848 
5849 /*
5850  * Attempt to free all partial slabs on a node.
5851  * This is called from __kmem_cache_shutdown(). We must take list_lock
5852  * because sysfs file might still access partial list after the shutdowning.
5853  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)5854 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5855 {
5856 	LIST_HEAD(discard);
5857 	struct slab *slab, *h;
5858 
5859 	BUG_ON(irqs_disabled());
5860 	spin_lock_irq(&n->list_lock);
5861 	list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5862 		if (!slab->inuse) {
5863 			remove_partial(n, slab);
5864 			list_add(&slab->slab_list, &discard);
5865 		} else {
5866 			list_slab_objects(s, slab);
5867 		}
5868 	}
5869 	spin_unlock_irq(&n->list_lock);
5870 
5871 	list_for_each_entry_safe(slab, h, &discard, slab_list)
5872 		discard_slab(s, slab);
5873 }
5874 
__kmem_cache_empty(struct kmem_cache * s)5875 bool __kmem_cache_empty(struct kmem_cache *s)
5876 {
5877 	int node;
5878 	struct kmem_cache_node *n;
5879 
5880 	for_each_kmem_cache_node(s, node, n)
5881 		if (n->nr_partial || node_nr_slabs(n))
5882 			return false;
5883 	return true;
5884 }
5885 
5886 /*
5887  * Release all resources used by a slab cache.
5888  */
__kmem_cache_shutdown(struct kmem_cache * s)5889 int __kmem_cache_shutdown(struct kmem_cache *s)
5890 {
5891 	int node;
5892 	struct kmem_cache_node *n;
5893 
5894 	flush_all_cpus_locked(s);
5895 	/* Attempt to free all objects */
5896 	for_each_kmem_cache_node(s, node, n) {
5897 		free_partial(s, n);
5898 		if (n->nr_partial || node_nr_slabs(n))
5899 			return 1;
5900 	}
5901 	return 0;
5902 }
5903 
5904 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)5905 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5906 {
5907 	void *base;
5908 	int __maybe_unused i;
5909 	unsigned int objnr;
5910 	void *objp;
5911 	void *objp0;
5912 	struct kmem_cache *s = slab->slab_cache;
5913 	struct track __maybe_unused *trackp;
5914 
5915 	kpp->kp_ptr = object;
5916 	kpp->kp_slab = slab;
5917 	kpp->kp_slab_cache = s;
5918 	base = slab_address(slab);
5919 	objp0 = kasan_reset_tag(object);
5920 #ifdef CONFIG_SLUB_DEBUG
5921 	objp = restore_red_left(s, objp0);
5922 #else
5923 	objp = objp0;
5924 #endif
5925 	objnr = obj_to_index(s, slab, objp);
5926 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5927 	objp = base + s->size * objnr;
5928 	kpp->kp_objp = objp;
5929 	if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5930 			 || (objp - base) % s->size) ||
5931 	    !(s->flags & SLAB_STORE_USER))
5932 		return;
5933 #ifdef CONFIG_SLUB_DEBUG
5934 	objp = fixup_red_left(s, objp);
5935 	trackp = get_track(s, objp, TRACK_ALLOC);
5936 	kpp->kp_ret = (void *)trackp->addr;
5937 #ifdef CONFIG_STACKDEPOT
5938 	{
5939 		depot_stack_handle_t handle;
5940 		unsigned long *entries;
5941 		unsigned int nr_entries;
5942 
5943 		handle = READ_ONCE(trackp->handle);
5944 		if (handle) {
5945 			nr_entries = stack_depot_fetch(handle, &entries);
5946 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5947 				kpp->kp_stack[i] = (void *)entries[i];
5948 		}
5949 
5950 		trackp = get_track(s, objp, TRACK_FREE);
5951 		handle = READ_ONCE(trackp->handle);
5952 		if (handle) {
5953 			nr_entries = stack_depot_fetch(handle, &entries);
5954 			for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5955 				kpp->kp_free_stack[i] = (void *)entries[i];
5956 		}
5957 	}
5958 #endif
5959 #endif
5960 }
5961 #endif
5962 
5963 /********************************************************************
5964  *		Kmalloc subsystem
5965  *******************************************************************/
5966 
setup_slub_min_order(char * str)5967 static int __init setup_slub_min_order(char *str)
5968 {
5969 	get_option(&str, (int *)&slub_min_order);
5970 
5971 	if (slub_min_order > slub_max_order)
5972 		slub_max_order = slub_min_order;
5973 
5974 	return 1;
5975 }
5976 
5977 __setup("slab_min_order=", setup_slub_min_order);
5978 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5979 
5980 
setup_slub_max_order(char * str)5981 static int __init setup_slub_max_order(char *str)
5982 {
5983 	get_option(&str, (int *)&slub_max_order);
5984 	slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5985 
5986 	if (slub_min_order > slub_max_order)
5987 		slub_min_order = slub_max_order;
5988 
5989 	return 1;
5990 }
5991 
5992 __setup("slab_max_order=", setup_slub_max_order);
5993 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5994 
setup_slub_min_objects(char * str)5995 static int __init setup_slub_min_objects(char *str)
5996 {
5997 	get_option(&str, (int *)&slub_min_objects);
5998 
5999 	return 1;
6000 }
6001 
6002 __setup("slab_min_objects=", setup_slub_min_objects);
6003 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
6004 
6005 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)6006 static int __init setup_slab_strict_numa(char *str)
6007 {
6008 	if (nr_node_ids > 1) {
6009 		static_branch_enable(&strict_numa);
6010 		pr_info("SLUB: Strict NUMA enabled.\n");
6011 	} else {
6012 		pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
6013 	}
6014 
6015 	return 1;
6016 }
6017 
6018 __setup("slab_strict_numa", setup_slab_strict_numa);
6019 #endif
6020 
6021 
6022 #ifdef CONFIG_HARDENED_USERCOPY
6023 /*
6024  * Rejects incorrectly sized objects and objects that are to be copied
6025  * to/from userspace but do not fall entirely within the containing slab
6026  * cache's usercopy region.
6027  *
6028  * Returns NULL if check passes, otherwise const char * to name of cache
6029  * to indicate an error.
6030  */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)6031 void __check_heap_object(const void *ptr, unsigned long n,
6032 			 const struct slab *slab, bool to_user)
6033 {
6034 	struct kmem_cache *s;
6035 	unsigned int offset;
6036 	bool is_kfence = is_kfence_address(ptr);
6037 
6038 	ptr = kasan_reset_tag(ptr);
6039 
6040 	/* Find object and usable object size. */
6041 	s = slab->slab_cache;
6042 
6043 	/* Reject impossible pointers. */
6044 	if (ptr < slab_address(slab))
6045 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
6046 			       to_user, 0, n);
6047 
6048 	/* Find offset within object. */
6049 	if (is_kfence)
6050 		offset = ptr - kfence_object_start(ptr);
6051 	else
6052 		offset = (ptr - slab_address(slab)) % s->size;
6053 
6054 	/* Adjust for redzone and reject if within the redzone. */
6055 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
6056 		if (offset < s->red_left_pad)
6057 			usercopy_abort("SLUB object in left red zone",
6058 				       s->name, to_user, offset, n);
6059 		offset -= s->red_left_pad;
6060 	}
6061 
6062 	/* Allow address range falling entirely within usercopy region. */
6063 	if (offset >= s->useroffset &&
6064 	    offset - s->useroffset <= s->usersize &&
6065 	    n <= s->useroffset - offset + s->usersize)
6066 		return;
6067 
6068 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
6069 }
6070 #endif /* CONFIG_HARDENED_USERCOPY */
6071 
6072 #define SHRINK_PROMOTE_MAX 32
6073 
6074 /*
6075  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
6076  * up most to the head of the partial lists. New allocations will then
6077  * fill those up and thus they can be removed from the partial lists.
6078  *
6079  * The slabs with the least items are placed last. This results in them
6080  * being allocated from last increasing the chance that the last objects
6081  * are freed in them.
6082  */
__kmem_cache_do_shrink(struct kmem_cache * s)6083 static int __kmem_cache_do_shrink(struct kmem_cache *s)
6084 {
6085 	int node;
6086 	int i;
6087 	struct kmem_cache_node *n;
6088 	struct slab *slab;
6089 	struct slab *t;
6090 	struct list_head discard;
6091 	struct list_head promote[SHRINK_PROMOTE_MAX];
6092 	unsigned long flags;
6093 	int ret = 0;
6094 
6095 	for_each_kmem_cache_node(s, node, n) {
6096 		INIT_LIST_HEAD(&discard);
6097 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
6098 			INIT_LIST_HEAD(promote + i);
6099 
6100 		spin_lock_irqsave(&n->list_lock, flags);
6101 
6102 		/*
6103 		 * Build lists of slabs to discard or promote.
6104 		 *
6105 		 * Note that concurrent frees may occur while we hold the
6106 		 * list_lock. slab->inuse here is the upper limit.
6107 		 */
6108 		list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
6109 			int free = slab->objects - slab->inuse;
6110 
6111 			/* Do not reread slab->inuse */
6112 			barrier();
6113 
6114 			/* We do not keep full slabs on the list */
6115 			BUG_ON(free <= 0);
6116 
6117 			if (free == slab->objects) {
6118 				list_move(&slab->slab_list, &discard);
6119 				slab_clear_node_partial(slab);
6120 				n->nr_partial--;
6121 				dec_slabs_node(s, node, slab->objects);
6122 			} else if (free <= SHRINK_PROMOTE_MAX)
6123 				list_move(&slab->slab_list, promote + free - 1);
6124 		}
6125 
6126 		/*
6127 		 * Promote the slabs filled up most to the head of the
6128 		 * partial list.
6129 		 */
6130 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
6131 			list_splice(promote + i, &n->partial);
6132 
6133 		spin_unlock_irqrestore(&n->list_lock, flags);
6134 
6135 		/* Release empty slabs */
6136 		list_for_each_entry_safe(slab, t, &discard, slab_list)
6137 			free_slab(s, slab);
6138 
6139 		if (node_nr_slabs(n))
6140 			ret = 1;
6141 	}
6142 
6143 	return ret;
6144 }
6145 
__kmem_cache_shrink(struct kmem_cache * s)6146 int __kmem_cache_shrink(struct kmem_cache *s)
6147 {
6148 	flush_all(s);
6149 	return __kmem_cache_do_shrink(s);
6150 }
6151 
slab_mem_going_offline_callback(void * arg)6152 static int slab_mem_going_offline_callback(void *arg)
6153 {
6154 	struct kmem_cache *s;
6155 
6156 	mutex_lock(&slab_mutex);
6157 	list_for_each_entry(s, &slab_caches, list) {
6158 		flush_all_cpus_locked(s);
6159 		__kmem_cache_do_shrink(s);
6160 	}
6161 	mutex_unlock(&slab_mutex);
6162 
6163 	return 0;
6164 }
6165 
slab_mem_offline_callback(void * arg)6166 static void slab_mem_offline_callback(void *arg)
6167 {
6168 	struct memory_notify *marg = arg;
6169 	int offline_node;
6170 
6171 	offline_node = marg->status_change_nid_normal;
6172 
6173 	/*
6174 	 * If the node still has available memory. we need kmem_cache_node
6175 	 * for it yet.
6176 	 */
6177 	if (offline_node < 0)
6178 		return;
6179 
6180 	mutex_lock(&slab_mutex);
6181 	node_clear(offline_node, slab_nodes);
6182 	/*
6183 	 * We no longer free kmem_cache_node structures here, as it would be
6184 	 * racy with all get_node() users, and infeasible to protect them with
6185 	 * slab_mutex.
6186 	 */
6187 	mutex_unlock(&slab_mutex);
6188 }
6189 
slab_mem_going_online_callback(void * arg)6190 static int slab_mem_going_online_callback(void *arg)
6191 {
6192 	struct kmem_cache_node *n;
6193 	struct kmem_cache *s;
6194 	struct memory_notify *marg = arg;
6195 	int nid = marg->status_change_nid_normal;
6196 	int ret = 0;
6197 
6198 	/*
6199 	 * If the node's memory is already available, then kmem_cache_node is
6200 	 * already created. Nothing to do.
6201 	 */
6202 	if (nid < 0)
6203 		return 0;
6204 
6205 	/*
6206 	 * We are bringing a node online. No memory is available yet. We must
6207 	 * allocate a kmem_cache_node structure in order to bring the node
6208 	 * online.
6209 	 */
6210 	mutex_lock(&slab_mutex);
6211 	list_for_each_entry(s, &slab_caches, list) {
6212 		/*
6213 		 * The structure may already exist if the node was previously
6214 		 * onlined and offlined.
6215 		 */
6216 		if (get_node(s, nid))
6217 			continue;
6218 		/*
6219 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
6220 		 *      since memory is not yet available from the node that
6221 		 *      is brought up.
6222 		 */
6223 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
6224 		if (!n) {
6225 			ret = -ENOMEM;
6226 			goto out;
6227 		}
6228 		init_kmem_cache_node(n);
6229 		s->node[nid] = n;
6230 	}
6231 	/*
6232 	 * Any cache created after this point will also have kmem_cache_node
6233 	 * initialized for the new node.
6234 	 */
6235 	node_set(nid, slab_nodes);
6236 out:
6237 	mutex_unlock(&slab_mutex);
6238 	return ret;
6239 }
6240 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)6241 static int slab_memory_callback(struct notifier_block *self,
6242 				unsigned long action, void *arg)
6243 {
6244 	int ret = 0;
6245 
6246 	switch (action) {
6247 	case MEM_GOING_ONLINE:
6248 		ret = slab_mem_going_online_callback(arg);
6249 		break;
6250 	case MEM_GOING_OFFLINE:
6251 		ret = slab_mem_going_offline_callback(arg);
6252 		break;
6253 	case MEM_OFFLINE:
6254 	case MEM_CANCEL_ONLINE:
6255 		slab_mem_offline_callback(arg);
6256 		break;
6257 	case MEM_ONLINE:
6258 	case MEM_CANCEL_OFFLINE:
6259 		break;
6260 	}
6261 	if (ret)
6262 		ret = notifier_from_errno(ret);
6263 	else
6264 		ret = NOTIFY_OK;
6265 	return ret;
6266 }
6267 
6268 /********************************************************************
6269  *			Basic setup of slabs
6270  *******************************************************************/
6271 
6272 /*
6273  * Used for early kmem_cache structures that were allocated using
6274  * the page allocator. Allocate them properly then fix up the pointers
6275  * that may be pointing to the wrong kmem_cache structure.
6276  */
6277 
bootstrap(struct kmem_cache * static_cache)6278 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6279 {
6280 	int node;
6281 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6282 	struct kmem_cache_node *n;
6283 
6284 	memcpy(s, static_cache, kmem_cache->object_size);
6285 
6286 	/*
6287 	 * This runs very early, and only the boot processor is supposed to be
6288 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
6289 	 * IPIs around.
6290 	 */
6291 	__flush_cpu_slab(s, smp_processor_id());
6292 	for_each_kmem_cache_node(s, node, n) {
6293 		struct slab *p;
6294 
6295 		list_for_each_entry(p, &n->partial, slab_list)
6296 			p->slab_cache = s;
6297 
6298 #ifdef CONFIG_SLUB_DEBUG
6299 		list_for_each_entry(p, &n->full, slab_list)
6300 			p->slab_cache = s;
6301 #endif
6302 	}
6303 	list_add(&s->list, &slab_caches);
6304 	return s;
6305 }
6306 
kmem_cache_init(void)6307 void __init kmem_cache_init(void)
6308 {
6309 	static __initdata struct kmem_cache boot_kmem_cache,
6310 		boot_kmem_cache_node;
6311 	int node;
6312 
6313 	if (debug_guardpage_minorder())
6314 		slub_max_order = 0;
6315 
6316 	/* Print slub debugging pointers without hashing */
6317 	if (__slub_debug_enabled())
6318 		no_hash_pointers_enable(NULL);
6319 
6320 	kmem_cache_node = &boot_kmem_cache_node;
6321 	kmem_cache = &boot_kmem_cache;
6322 
6323 	/*
6324 	 * Initialize the nodemask for which we will allocate per node
6325 	 * structures. Here we don't need taking slab_mutex yet.
6326 	 */
6327 	for_each_node_state(node, N_NORMAL_MEMORY)
6328 		node_set(node, slab_nodes);
6329 
6330 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
6331 			sizeof(struct kmem_cache_node),
6332 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6333 
6334 	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6335 
6336 	/* Able to allocate the per node structures */
6337 	slab_state = PARTIAL;
6338 
6339 	create_boot_cache(kmem_cache, "kmem_cache",
6340 			offsetof(struct kmem_cache, node) +
6341 				nr_node_ids * sizeof(struct kmem_cache_node *),
6342 			SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6343 
6344 	kmem_cache = bootstrap(&boot_kmem_cache);
6345 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6346 
6347 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
6348 	setup_kmalloc_cache_index_table();
6349 	create_kmalloc_caches();
6350 
6351 	/* Setup random freelists for each cache */
6352 	init_freelist_randomization();
6353 
6354 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6355 				  slub_cpu_dead);
6356 
6357 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6358 		cache_line_size(),
6359 		slub_min_order, slub_max_order, slub_min_objects,
6360 		nr_cpu_ids, nr_node_ids);
6361 }
6362 
kmem_cache_init_late(void)6363 void __init kmem_cache_init_late(void)
6364 {
6365 #ifndef CONFIG_SLUB_TINY
6366 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6367 	WARN_ON(!flushwq);
6368 #endif
6369 }
6370 
6371 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))6372 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6373 		   slab_flags_t flags, void (*ctor)(void *))
6374 {
6375 	struct kmem_cache *s;
6376 
6377 	s = find_mergeable(size, align, flags, name, ctor);
6378 	if (s) {
6379 		if (sysfs_slab_alias(s, name))
6380 			pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6381 			       name);
6382 
6383 		s->refcount++;
6384 
6385 		/*
6386 		 * Adjust the object sizes so that we clear
6387 		 * the complete object on kzalloc.
6388 		 */
6389 		s->object_size = max(s->object_size, size);
6390 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6391 	}
6392 
6393 	return s;
6394 }
6395 
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)6396 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6397 			 unsigned int size, struct kmem_cache_args *args,
6398 			 slab_flags_t flags)
6399 {
6400 	int err = -EINVAL;
6401 
6402 	s->name = name;
6403 	s->size = s->object_size = size;
6404 
6405 	s->flags = kmem_cache_flags(flags, s->name);
6406 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6407 	s->random = get_random_long();
6408 #endif
6409 	s->align = args->align;
6410 	s->ctor = args->ctor;
6411 #ifdef CONFIG_HARDENED_USERCOPY
6412 	s->useroffset = args->useroffset;
6413 	s->usersize = args->usersize;
6414 #endif
6415 
6416 	if (!calculate_sizes(args, s))
6417 		goto out;
6418 	if (disable_higher_order_debug) {
6419 		/*
6420 		 * Disable debugging flags that store metadata if the min slab
6421 		 * order increased.
6422 		 */
6423 		if (get_order(s->size) > get_order(s->object_size)) {
6424 			s->flags &= ~DEBUG_METADATA_FLAGS;
6425 			s->offset = 0;
6426 			if (!calculate_sizes(args, s))
6427 				goto out;
6428 		}
6429 	}
6430 
6431 #ifdef system_has_freelist_aba
6432 	if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6433 		/* Enable fast mode */
6434 		s->flags |= __CMPXCHG_DOUBLE;
6435 	}
6436 #endif
6437 
6438 	/*
6439 	 * The larger the object size is, the more slabs we want on the partial
6440 	 * list to avoid pounding the page allocator excessively.
6441 	 */
6442 	s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6443 	s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6444 
6445 	set_cpu_partial(s);
6446 
6447 #ifdef CONFIG_NUMA
6448 	s->remote_node_defrag_ratio = 1000;
6449 #endif
6450 
6451 	/* Initialize the pre-computed randomized freelist if slab is up */
6452 	if (slab_state >= UP) {
6453 		if (init_cache_random_seq(s))
6454 			goto out;
6455 	}
6456 
6457 	if (!init_kmem_cache_nodes(s))
6458 		goto out;
6459 
6460 	if (!alloc_kmem_cache_cpus(s))
6461 		goto out;
6462 
6463 	err = 0;
6464 
6465 	/* Mutex is not taken during early boot */
6466 	if (slab_state <= UP)
6467 		goto out;
6468 
6469 	/*
6470 	 * Failing to create sysfs files is not critical to SLUB functionality.
6471 	 * If it fails, proceed with cache creation without these files.
6472 	 */
6473 	if (sysfs_slab_add(s))
6474 		pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6475 
6476 	if (s->flags & SLAB_STORE_USER)
6477 		debugfs_slab_add(s);
6478 
6479 out:
6480 	if (err)
6481 		__kmem_cache_release(s);
6482 	return err;
6483 }
6484 
6485 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)6486 static int count_inuse(struct slab *slab)
6487 {
6488 	return slab->inuse;
6489 }
6490 
count_total(struct slab * slab)6491 static int count_total(struct slab *slab)
6492 {
6493 	return slab->objects;
6494 }
6495 #endif
6496 
6497 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)6498 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6499 			  unsigned long *obj_map)
6500 {
6501 	void *p;
6502 	void *addr = slab_address(slab);
6503 
6504 	if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6505 		return;
6506 
6507 	/* Now we know that a valid freelist exists */
6508 	__fill_map(obj_map, s, slab);
6509 	for_each_object(p, s, addr, slab->objects) {
6510 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6511 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6512 
6513 		if (!check_object(s, slab, p, val))
6514 			break;
6515 	}
6516 }
6517 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)6518 static int validate_slab_node(struct kmem_cache *s,
6519 		struct kmem_cache_node *n, unsigned long *obj_map)
6520 {
6521 	unsigned long count = 0;
6522 	struct slab *slab;
6523 	unsigned long flags;
6524 
6525 	spin_lock_irqsave(&n->list_lock, flags);
6526 
6527 	list_for_each_entry(slab, &n->partial, slab_list) {
6528 		validate_slab(s, slab, obj_map);
6529 		count++;
6530 	}
6531 	if (count != n->nr_partial) {
6532 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6533 		       s->name, count, n->nr_partial);
6534 		slab_add_kunit_errors();
6535 	}
6536 
6537 	if (!(s->flags & SLAB_STORE_USER))
6538 		goto out;
6539 
6540 	list_for_each_entry(slab, &n->full, slab_list) {
6541 		validate_slab(s, slab, obj_map);
6542 		count++;
6543 	}
6544 	if (count != node_nr_slabs(n)) {
6545 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6546 		       s->name, count, node_nr_slabs(n));
6547 		slab_add_kunit_errors();
6548 	}
6549 
6550 out:
6551 	spin_unlock_irqrestore(&n->list_lock, flags);
6552 	return count;
6553 }
6554 
validate_slab_cache(struct kmem_cache * s)6555 long validate_slab_cache(struct kmem_cache *s)
6556 {
6557 	int node;
6558 	unsigned long count = 0;
6559 	struct kmem_cache_node *n;
6560 	unsigned long *obj_map;
6561 
6562 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6563 	if (!obj_map)
6564 		return -ENOMEM;
6565 
6566 	flush_all(s);
6567 	for_each_kmem_cache_node(s, node, n)
6568 		count += validate_slab_node(s, n, obj_map);
6569 
6570 	bitmap_free(obj_map);
6571 
6572 	return count;
6573 }
6574 EXPORT_SYMBOL(validate_slab_cache);
6575 
6576 #ifdef CONFIG_DEBUG_FS
6577 /*
6578  * Generate lists of code addresses where slabcache objects are allocated
6579  * and freed.
6580  */
6581 
6582 struct location {
6583 	depot_stack_handle_t handle;
6584 	unsigned long count;
6585 	unsigned long addr;
6586 	unsigned long waste;
6587 	long long sum_time;
6588 	long min_time;
6589 	long max_time;
6590 	long min_pid;
6591 	long max_pid;
6592 	DECLARE_BITMAP(cpus, NR_CPUS);
6593 	nodemask_t nodes;
6594 };
6595 
6596 struct loc_track {
6597 	unsigned long max;
6598 	unsigned long count;
6599 	struct location *loc;
6600 	loff_t idx;
6601 };
6602 
6603 static struct dentry *slab_debugfs_root;
6604 
free_loc_track(struct loc_track * t)6605 static void free_loc_track(struct loc_track *t)
6606 {
6607 	if (t->max)
6608 		free_pages((unsigned long)t->loc,
6609 			get_order(sizeof(struct location) * t->max));
6610 }
6611 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)6612 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6613 {
6614 	struct location *l;
6615 	int order;
6616 
6617 	order = get_order(sizeof(struct location) * max);
6618 
6619 	l = (void *)__get_free_pages(flags, order);
6620 	if (!l)
6621 		return 0;
6622 
6623 	if (t->count) {
6624 		memcpy(l, t->loc, sizeof(struct location) * t->count);
6625 		free_loc_track(t);
6626 	}
6627 	t->max = max;
6628 	t->loc = l;
6629 	return 1;
6630 }
6631 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)6632 static int add_location(struct loc_track *t, struct kmem_cache *s,
6633 				const struct track *track,
6634 				unsigned int orig_size)
6635 {
6636 	long start, end, pos;
6637 	struct location *l;
6638 	unsigned long caddr, chandle, cwaste;
6639 	unsigned long age = jiffies - track->when;
6640 	depot_stack_handle_t handle = 0;
6641 	unsigned int waste = s->object_size - orig_size;
6642 
6643 #ifdef CONFIG_STACKDEPOT
6644 	handle = READ_ONCE(track->handle);
6645 #endif
6646 	start = -1;
6647 	end = t->count;
6648 
6649 	for ( ; ; ) {
6650 		pos = start + (end - start + 1) / 2;
6651 
6652 		/*
6653 		 * There is nothing at "end". If we end up there
6654 		 * we need to add something to before end.
6655 		 */
6656 		if (pos == end)
6657 			break;
6658 
6659 		l = &t->loc[pos];
6660 		caddr = l->addr;
6661 		chandle = l->handle;
6662 		cwaste = l->waste;
6663 		if ((track->addr == caddr) && (handle == chandle) &&
6664 			(waste == cwaste)) {
6665 
6666 			l->count++;
6667 			if (track->when) {
6668 				l->sum_time += age;
6669 				if (age < l->min_time)
6670 					l->min_time = age;
6671 				if (age > l->max_time)
6672 					l->max_time = age;
6673 
6674 				if (track->pid < l->min_pid)
6675 					l->min_pid = track->pid;
6676 				if (track->pid > l->max_pid)
6677 					l->max_pid = track->pid;
6678 
6679 				cpumask_set_cpu(track->cpu,
6680 						to_cpumask(l->cpus));
6681 			}
6682 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
6683 			return 1;
6684 		}
6685 
6686 		if (track->addr < caddr)
6687 			end = pos;
6688 		else if (track->addr == caddr && handle < chandle)
6689 			end = pos;
6690 		else if (track->addr == caddr && handle == chandle &&
6691 				waste < cwaste)
6692 			end = pos;
6693 		else
6694 			start = pos;
6695 	}
6696 
6697 	/*
6698 	 * Not found. Insert new tracking element.
6699 	 */
6700 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6701 		return 0;
6702 
6703 	l = t->loc + pos;
6704 	if (pos < t->count)
6705 		memmove(l + 1, l,
6706 			(t->count - pos) * sizeof(struct location));
6707 	t->count++;
6708 	l->count = 1;
6709 	l->addr = track->addr;
6710 	l->sum_time = age;
6711 	l->min_time = age;
6712 	l->max_time = age;
6713 	l->min_pid = track->pid;
6714 	l->max_pid = track->pid;
6715 	l->handle = handle;
6716 	l->waste = waste;
6717 	cpumask_clear(to_cpumask(l->cpus));
6718 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6719 	nodes_clear(l->nodes);
6720 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
6721 	return 1;
6722 }
6723 
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)6724 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6725 		struct slab *slab, enum track_item alloc,
6726 		unsigned long *obj_map)
6727 {
6728 	void *addr = slab_address(slab);
6729 	bool is_alloc = (alloc == TRACK_ALLOC);
6730 	void *p;
6731 
6732 	__fill_map(obj_map, s, slab);
6733 
6734 	for_each_object(p, s, addr, slab->objects)
6735 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6736 			add_location(t, s, get_track(s, p, alloc),
6737 				     is_alloc ? get_orig_size(s, p) :
6738 						s->object_size);
6739 }
6740 #endif  /* CONFIG_DEBUG_FS   */
6741 #endif	/* CONFIG_SLUB_DEBUG */
6742 
6743 #ifdef SLAB_SUPPORTS_SYSFS
6744 enum slab_stat_type {
6745 	SL_ALL,			/* All slabs */
6746 	SL_PARTIAL,		/* Only partially allocated slabs */
6747 	SL_CPU,			/* Only slabs used for cpu caches */
6748 	SL_OBJECTS,		/* Determine allocated objects not slabs */
6749 	SL_TOTAL		/* Determine object capacity not slabs */
6750 };
6751 
6752 #define SO_ALL		(1 << SL_ALL)
6753 #define SO_PARTIAL	(1 << SL_PARTIAL)
6754 #define SO_CPU		(1 << SL_CPU)
6755 #define SO_OBJECTS	(1 << SL_OBJECTS)
6756 #define SO_TOTAL	(1 << SL_TOTAL)
6757 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)6758 static ssize_t show_slab_objects(struct kmem_cache *s,
6759 				 char *buf, unsigned long flags)
6760 {
6761 	unsigned long total = 0;
6762 	int node;
6763 	int x;
6764 	unsigned long *nodes;
6765 	int len = 0;
6766 
6767 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6768 	if (!nodes)
6769 		return -ENOMEM;
6770 
6771 	if (flags & SO_CPU) {
6772 		int cpu;
6773 
6774 		for_each_possible_cpu(cpu) {
6775 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6776 							       cpu);
6777 			int node;
6778 			struct slab *slab;
6779 
6780 			slab = READ_ONCE(c->slab);
6781 			if (!slab)
6782 				continue;
6783 
6784 			node = slab_nid(slab);
6785 			if (flags & SO_TOTAL)
6786 				x = slab->objects;
6787 			else if (flags & SO_OBJECTS)
6788 				x = slab->inuse;
6789 			else
6790 				x = 1;
6791 
6792 			total += x;
6793 			nodes[node] += x;
6794 
6795 #ifdef CONFIG_SLUB_CPU_PARTIAL
6796 			slab = slub_percpu_partial_read_once(c);
6797 			if (slab) {
6798 				node = slab_nid(slab);
6799 				if (flags & SO_TOTAL)
6800 					WARN_ON_ONCE(1);
6801 				else if (flags & SO_OBJECTS)
6802 					WARN_ON_ONCE(1);
6803 				else
6804 					x = data_race(slab->slabs);
6805 				total += x;
6806 				nodes[node] += x;
6807 			}
6808 #endif
6809 		}
6810 	}
6811 
6812 	/*
6813 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6814 	 * already held which will conflict with an existing lock order:
6815 	 *
6816 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6817 	 *
6818 	 * We don't really need mem_hotplug_lock (to hold off
6819 	 * slab_mem_going_offline_callback) here because slab's memory hot
6820 	 * unplug code doesn't destroy the kmem_cache->node[] data.
6821 	 */
6822 
6823 #ifdef CONFIG_SLUB_DEBUG
6824 	if (flags & SO_ALL) {
6825 		struct kmem_cache_node *n;
6826 
6827 		for_each_kmem_cache_node(s, node, n) {
6828 
6829 			if (flags & SO_TOTAL)
6830 				x = node_nr_objs(n);
6831 			else if (flags & SO_OBJECTS)
6832 				x = node_nr_objs(n) - count_partial(n, count_free);
6833 			else
6834 				x = node_nr_slabs(n);
6835 			total += x;
6836 			nodes[node] += x;
6837 		}
6838 
6839 	} else
6840 #endif
6841 	if (flags & SO_PARTIAL) {
6842 		struct kmem_cache_node *n;
6843 
6844 		for_each_kmem_cache_node(s, node, n) {
6845 			if (flags & SO_TOTAL)
6846 				x = count_partial(n, count_total);
6847 			else if (flags & SO_OBJECTS)
6848 				x = count_partial(n, count_inuse);
6849 			else
6850 				x = n->nr_partial;
6851 			total += x;
6852 			nodes[node] += x;
6853 		}
6854 	}
6855 
6856 	len += sysfs_emit_at(buf, len, "%lu", total);
6857 #ifdef CONFIG_NUMA
6858 	for (node = 0; node < nr_node_ids; node++) {
6859 		if (nodes[node])
6860 			len += sysfs_emit_at(buf, len, " N%d=%lu",
6861 					     node, nodes[node]);
6862 	}
6863 #endif
6864 	len += sysfs_emit_at(buf, len, "\n");
6865 	kfree(nodes);
6866 
6867 	return len;
6868 }
6869 
6870 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6871 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6872 
6873 struct slab_attribute {
6874 	struct attribute attr;
6875 	ssize_t (*show)(struct kmem_cache *s, char *buf);
6876 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6877 };
6878 
6879 #define SLAB_ATTR_RO(_name) \
6880 	static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6881 
6882 #define SLAB_ATTR(_name) \
6883 	static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6884 
slab_size_show(struct kmem_cache * s,char * buf)6885 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6886 {
6887 	return sysfs_emit(buf, "%u\n", s->size);
6888 }
6889 SLAB_ATTR_RO(slab_size);
6890 
align_show(struct kmem_cache * s,char * buf)6891 static ssize_t align_show(struct kmem_cache *s, char *buf)
6892 {
6893 	return sysfs_emit(buf, "%u\n", s->align);
6894 }
6895 SLAB_ATTR_RO(align);
6896 
object_size_show(struct kmem_cache * s,char * buf)6897 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6898 {
6899 	return sysfs_emit(buf, "%u\n", s->object_size);
6900 }
6901 SLAB_ATTR_RO(object_size);
6902 
objs_per_slab_show(struct kmem_cache * s,char * buf)6903 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6904 {
6905 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6906 }
6907 SLAB_ATTR_RO(objs_per_slab);
6908 
order_show(struct kmem_cache * s,char * buf)6909 static ssize_t order_show(struct kmem_cache *s, char *buf)
6910 {
6911 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6912 }
6913 SLAB_ATTR_RO(order);
6914 
min_partial_show(struct kmem_cache * s,char * buf)6915 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6916 {
6917 	return sysfs_emit(buf, "%lu\n", s->min_partial);
6918 }
6919 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)6920 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6921 				 size_t length)
6922 {
6923 	unsigned long min;
6924 	int err;
6925 
6926 	err = kstrtoul(buf, 10, &min);
6927 	if (err)
6928 		return err;
6929 
6930 	s->min_partial = min;
6931 	return length;
6932 }
6933 SLAB_ATTR(min_partial);
6934 
cpu_partial_show(struct kmem_cache * s,char * buf)6935 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6936 {
6937 	unsigned int nr_partial = 0;
6938 #ifdef CONFIG_SLUB_CPU_PARTIAL
6939 	nr_partial = s->cpu_partial;
6940 #endif
6941 
6942 	return sysfs_emit(buf, "%u\n", nr_partial);
6943 }
6944 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)6945 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6946 				 size_t length)
6947 {
6948 	unsigned int objects;
6949 	int err;
6950 
6951 	err = kstrtouint(buf, 10, &objects);
6952 	if (err)
6953 		return err;
6954 	if (objects && !kmem_cache_has_cpu_partial(s))
6955 		return -EINVAL;
6956 
6957 	slub_set_cpu_partial(s, objects);
6958 	flush_all(s);
6959 	return length;
6960 }
6961 SLAB_ATTR(cpu_partial);
6962 
ctor_show(struct kmem_cache * s,char * buf)6963 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6964 {
6965 	if (!s->ctor)
6966 		return 0;
6967 	return sysfs_emit(buf, "%pS\n", s->ctor);
6968 }
6969 SLAB_ATTR_RO(ctor);
6970 
aliases_show(struct kmem_cache * s,char * buf)6971 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6972 {
6973 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6974 }
6975 SLAB_ATTR_RO(aliases);
6976 
partial_show(struct kmem_cache * s,char * buf)6977 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6978 {
6979 	return show_slab_objects(s, buf, SO_PARTIAL);
6980 }
6981 SLAB_ATTR_RO(partial);
6982 
cpu_slabs_show(struct kmem_cache * s,char * buf)6983 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6984 {
6985 	return show_slab_objects(s, buf, SO_CPU);
6986 }
6987 SLAB_ATTR_RO(cpu_slabs);
6988 
objects_partial_show(struct kmem_cache * s,char * buf)6989 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6990 {
6991 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6992 }
6993 SLAB_ATTR_RO(objects_partial);
6994 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)6995 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6996 {
6997 	int objects = 0;
6998 	int slabs = 0;
6999 	int cpu __maybe_unused;
7000 	int len = 0;
7001 
7002 #ifdef CONFIG_SLUB_CPU_PARTIAL
7003 	for_each_online_cpu(cpu) {
7004 		struct slab *slab;
7005 
7006 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7007 
7008 		if (slab)
7009 			slabs += data_race(slab->slabs);
7010 	}
7011 #endif
7012 
7013 	/* Approximate half-full slabs, see slub_set_cpu_partial() */
7014 	objects = (slabs * oo_objects(s->oo)) / 2;
7015 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
7016 
7017 #ifdef CONFIG_SLUB_CPU_PARTIAL
7018 	for_each_online_cpu(cpu) {
7019 		struct slab *slab;
7020 
7021 		slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7022 		if (slab) {
7023 			slabs = data_race(slab->slabs);
7024 			objects = (slabs * oo_objects(s->oo)) / 2;
7025 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
7026 					     cpu, objects, slabs);
7027 		}
7028 	}
7029 #endif
7030 	len += sysfs_emit_at(buf, len, "\n");
7031 
7032 	return len;
7033 }
7034 SLAB_ATTR_RO(slabs_cpu_partial);
7035 
reclaim_account_show(struct kmem_cache * s,char * buf)7036 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
7037 {
7038 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
7039 }
7040 SLAB_ATTR_RO(reclaim_account);
7041 
hwcache_align_show(struct kmem_cache * s,char * buf)7042 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
7043 {
7044 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
7045 }
7046 SLAB_ATTR_RO(hwcache_align);
7047 
7048 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)7049 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
7050 {
7051 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
7052 }
7053 SLAB_ATTR_RO(cache_dma);
7054 #endif
7055 
7056 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)7057 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
7058 {
7059 	return sysfs_emit(buf, "%u\n", s->usersize);
7060 }
7061 SLAB_ATTR_RO(usersize);
7062 #endif
7063 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)7064 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
7065 {
7066 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
7067 }
7068 SLAB_ATTR_RO(destroy_by_rcu);
7069 
7070 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)7071 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
7072 {
7073 	return show_slab_objects(s, buf, SO_ALL);
7074 }
7075 SLAB_ATTR_RO(slabs);
7076 
total_objects_show(struct kmem_cache * s,char * buf)7077 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
7078 {
7079 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
7080 }
7081 SLAB_ATTR_RO(total_objects);
7082 
objects_show(struct kmem_cache * s,char * buf)7083 static ssize_t objects_show(struct kmem_cache *s, char *buf)
7084 {
7085 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
7086 }
7087 SLAB_ATTR_RO(objects);
7088 
sanity_checks_show(struct kmem_cache * s,char * buf)7089 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
7090 {
7091 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
7092 }
7093 SLAB_ATTR_RO(sanity_checks);
7094 
trace_show(struct kmem_cache * s,char * buf)7095 static ssize_t trace_show(struct kmem_cache *s, char *buf)
7096 {
7097 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
7098 }
7099 SLAB_ATTR_RO(trace);
7100 
red_zone_show(struct kmem_cache * s,char * buf)7101 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
7102 {
7103 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
7104 }
7105 
7106 SLAB_ATTR_RO(red_zone);
7107 
poison_show(struct kmem_cache * s,char * buf)7108 static ssize_t poison_show(struct kmem_cache *s, char *buf)
7109 {
7110 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
7111 }
7112 
7113 SLAB_ATTR_RO(poison);
7114 
store_user_show(struct kmem_cache * s,char * buf)7115 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
7116 {
7117 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
7118 }
7119 
7120 SLAB_ATTR_RO(store_user);
7121 
validate_show(struct kmem_cache * s,char * buf)7122 static ssize_t validate_show(struct kmem_cache *s, char *buf)
7123 {
7124 	return 0;
7125 }
7126 
validate_store(struct kmem_cache * s,const char * buf,size_t length)7127 static ssize_t validate_store(struct kmem_cache *s,
7128 			const char *buf, size_t length)
7129 {
7130 	int ret = -EINVAL;
7131 
7132 	if (buf[0] == '1' && kmem_cache_debug(s)) {
7133 		ret = validate_slab_cache(s);
7134 		if (ret >= 0)
7135 			ret = length;
7136 	}
7137 	return ret;
7138 }
7139 SLAB_ATTR(validate);
7140 
7141 #endif /* CONFIG_SLUB_DEBUG */
7142 
7143 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)7144 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
7145 {
7146 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
7147 }
7148 
failslab_store(struct kmem_cache * s,const char * buf,size_t length)7149 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
7150 				size_t length)
7151 {
7152 	if (s->refcount > 1)
7153 		return -EINVAL;
7154 
7155 	if (buf[0] == '1')
7156 		WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
7157 	else
7158 		WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
7159 
7160 	return length;
7161 }
7162 SLAB_ATTR(failslab);
7163 #endif
7164 
shrink_show(struct kmem_cache * s,char * buf)7165 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
7166 {
7167 	return 0;
7168 }
7169 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)7170 static ssize_t shrink_store(struct kmem_cache *s,
7171 			const char *buf, size_t length)
7172 {
7173 	if (buf[0] == '1')
7174 		kmem_cache_shrink(s);
7175 	else
7176 		return -EINVAL;
7177 	return length;
7178 }
7179 SLAB_ATTR(shrink);
7180 
7181 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)7182 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
7183 {
7184 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
7185 }
7186 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)7187 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
7188 				const char *buf, size_t length)
7189 {
7190 	unsigned int ratio;
7191 	int err;
7192 
7193 	err = kstrtouint(buf, 10, &ratio);
7194 	if (err)
7195 		return err;
7196 	if (ratio > 100)
7197 		return -ERANGE;
7198 
7199 	s->remote_node_defrag_ratio = ratio * 10;
7200 
7201 	return length;
7202 }
7203 SLAB_ATTR(remote_node_defrag_ratio);
7204 #endif
7205 
7206 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)7207 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
7208 {
7209 	unsigned long sum  = 0;
7210 	int cpu;
7211 	int len = 0;
7212 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
7213 
7214 	if (!data)
7215 		return -ENOMEM;
7216 
7217 	for_each_online_cpu(cpu) {
7218 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
7219 
7220 		data[cpu] = x;
7221 		sum += x;
7222 	}
7223 
7224 	len += sysfs_emit_at(buf, len, "%lu", sum);
7225 
7226 #ifdef CONFIG_SMP
7227 	for_each_online_cpu(cpu) {
7228 		if (data[cpu])
7229 			len += sysfs_emit_at(buf, len, " C%d=%u",
7230 					     cpu, data[cpu]);
7231 	}
7232 #endif
7233 	kfree(data);
7234 	len += sysfs_emit_at(buf, len, "\n");
7235 
7236 	return len;
7237 }
7238 
clear_stat(struct kmem_cache * s,enum stat_item si)7239 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7240 {
7241 	int cpu;
7242 
7243 	for_each_online_cpu(cpu)
7244 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7245 }
7246 
7247 #define STAT_ATTR(si, text) 					\
7248 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
7249 {								\
7250 	return show_stat(s, buf, si);				\
7251 }								\
7252 static ssize_t text##_store(struct kmem_cache *s,		\
7253 				const char *buf, size_t length)	\
7254 {								\
7255 	if (buf[0] != '0')					\
7256 		return -EINVAL;					\
7257 	clear_stat(s, si);					\
7258 	return length;						\
7259 }								\
7260 SLAB_ATTR(text);						\
7261 
7262 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7263 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7264 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7265 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7266 STAT_ATTR(FREE_FROZEN, free_frozen);
7267 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7268 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7269 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7270 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7271 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7272 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7273 STAT_ATTR(FREE_SLAB, free_slab);
7274 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7275 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7276 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7277 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7278 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7279 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7280 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7281 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7282 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7283 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7284 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7285 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7286 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7287 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7288 #endif	/* CONFIG_SLUB_STATS */
7289 
7290 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)7291 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7292 {
7293 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7294 }
7295 
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)7296 static ssize_t skip_kfence_store(struct kmem_cache *s,
7297 			const char *buf, size_t length)
7298 {
7299 	int ret = length;
7300 
7301 	if (buf[0] == '0')
7302 		s->flags &= ~SLAB_SKIP_KFENCE;
7303 	else if (buf[0] == '1')
7304 		s->flags |= SLAB_SKIP_KFENCE;
7305 	else
7306 		ret = -EINVAL;
7307 
7308 	return ret;
7309 }
7310 SLAB_ATTR(skip_kfence);
7311 #endif
7312 
7313 static struct attribute *slab_attrs[] = {
7314 	&slab_size_attr.attr,
7315 	&object_size_attr.attr,
7316 	&objs_per_slab_attr.attr,
7317 	&order_attr.attr,
7318 	&min_partial_attr.attr,
7319 	&cpu_partial_attr.attr,
7320 	&objects_partial_attr.attr,
7321 	&partial_attr.attr,
7322 	&cpu_slabs_attr.attr,
7323 	&ctor_attr.attr,
7324 	&aliases_attr.attr,
7325 	&align_attr.attr,
7326 	&hwcache_align_attr.attr,
7327 	&reclaim_account_attr.attr,
7328 	&destroy_by_rcu_attr.attr,
7329 	&shrink_attr.attr,
7330 	&slabs_cpu_partial_attr.attr,
7331 #ifdef CONFIG_SLUB_DEBUG
7332 	&total_objects_attr.attr,
7333 	&objects_attr.attr,
7334 	&slabs_attr.attr,
7335 	&sanity_checks_attr.attr,
7336 	&trace_attr.attr,
7337 	&red_zone_attr.attr,
7338 	&poison_attr.attr,
7339 	&store_user_attr.attr,
7340 	&validate_attr.attr,
7341 #endif
7342 #ifdef CONFIG_ZONE_DMA
7343 	&cache_dma_attr.attr,
7344 #endif
7345 #ifdef CONFIG_NUMA
7346 	&remote_node_defrag_ratio_attr.attr,
7347 #endif
7348 #ifdef CONFIG_SLUB_STATS
7349 	&alloc_fastpath_attr.attr,
7350 	&alloc_slowpath_attr.attr,
7351 	&free_fastpath_attr.attr,
7352 	&free_slowpath_attr.attr,
7353 	&free_frozen_attr.attr,
7354 	&free_add_partial_attr.attr,
7355 	&free_remove_partial_attr.attr,
7356 	&alloc_from_partial_attr.attr,
7357 	&alloc_slab_attr.attr,
7358 	&alloc_refill_attr.attr,
7359 	&alloc_node_mismatch_attr.attr,
7360 	&free_slab_attr.attr,
7361 	&cpuslab_flush_attr.attr,
7362 	&deactivate_full_attr.attr,
7363 	&deactivate_empty_attr.attr,
7364 	&deactivate_to_head_attr.attr,
7365 	&deactivate_to_tail_attr.attr,
7366 	&deactivate_remote_frees_attr.attr,
7367 	&deactivate_bypass_attr.attr,
7368 	&order_fallback_attr.attr,
7369 	&cmpxchg_double_fail_attr.attr,
7370 	&cmpxchg_double_cpu_fail_attr.attr,
7371 	&cpu_partial_alloc_attr.attr,
7372 	&cpu_partial_free_attr.attr,
7373 	&cpu_partial_node_attr.attr,
7374 	&cpu_partial_drain_attr.attr,
7375 #endif
7376 #ifdef CONFIG_FAILSLAB
7377 	&failslab_attr.attr,
7378 #endif
7379 #ifdef CONFIG_HARDENED_USERCOPY
7380 	&usersize_attr.attr,
7381 #endif
7382 #ifdef CONFIG_KFENCE
7383 	&skip_kfence_attr.attr,
7384 #endif
7385 
7386 	NULL
7387 };
7388 
7389 static const struct attribute_group slab_attr_group = {
7390 	.attrs = slab_attrs,
7391 };
7392 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)7393 static ssize_t slab_attr_show(struct kobject *kobj,
7394 				struct attribute *attr,
7395 				char *buf)
7396 {
7397 	struct slab_attribute *attribute;
7398 	struct kmem_cache *s;
7399 
7400 	attribute = to_slab_attr(attr);
7401 	s = to_slab(kobj);
7402 
7403 	if (!attribute->show)
7404 		return -EIO;
7405 
7406 	return attribute->show(s, buf);
7407 }
7408 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)7409 static ssize_t slab_attr_store(struct kobject *kobj,
7410 				struct attribute *attr,
7411 				const char *buf, size_t len)
7412 {
7413 	struct slab_attribute *attribute;
7414 	struct kmem_cache *s;
7415 
7416 	attribute = to_slab_attr(attr);
7417 	s = to_slab(kobj);
7418 
7419 	if (!attribute->store)
7420 		return -EIO;
7421 
7422 	return attribute->store(s, buf, len);
7423 }
7424 
kmem_cache_release(struct kobject * k)7425 static void kmem_cache_release(struct kobject *k)
7426 {
7427 	slab_kmem_cache_release(to_slab(k));
7428 }
7429 
7430 static const struct sysfs_ops slab_sysfs_ops = {
7431 	.show = slab_attr_show,
7432 	.store = slab_attr_store,
7433 };
7434 
7435 static const struct kobj_type slab_ktype = {
7436 	.sysfs_ops = &slab_sysfs_ops,
7437 	.release = kmem_cache_release,
7438 };
7439 
7440 static struct kset *slab_kset;
7441 
cache_kset(struct kmem_cache * s)7442 static inline struct kset *cache_kset(struct kmem_cache *s)
7443 {
7444 	return slab_kset;
7445 }
7446 
7447 #define ID_STR_LENGTH 32
7448 
7449 /* Create a unique string id for a slab cache:
7450  *
7451  * Format	:[flags-]size
7452  */
create_unique_id(struct kmem_cache * s)7453 static char *create_unique_id(struct kmem_cache *s)
7454 {
7455 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7456 	char *p = name;
7457 
7458 	if (!name)
7459 		return ERR_PTR(-ENOMEM);
7460 
7461 	*p++ = ':';
7462 	/*
7463 	 * First flags affecting slabcache operations. We will only
7464 	 * get here for aliasable slabs so we do not need to support
7465 	 * too many flags. The flags here must cover all flags that
7466 	 * are matched during merging to guarantee that the id is
7467 	 * unique.
7468 	 */
7469 	if (s->flags & SLAB_CACHE_DMA)
7470 		*p++ = 'd';
7471 	if (s->flags & SLAB_CACHE_DMA32)
7472 		*p++ = 'D';
7473 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
7474 		*p++ = 'a';
7475 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
7476 		*p++ = 'F';
7477 	if (s->flags & SLAB_ACCOUNT)
7478 		*p++ = 'A';
7479 	if (p != name + 1)
7480 		*p++ = '-';
7481 	p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7482 
7483 	if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7484 		kfree(name);
7485 		return ERR_PTR(-EINVAL);
7486 	}
7487 	kmsan_unpoison_memory(name, p - name);
7488 	return name;
7489 }
7490 
sysfs_slab_add(struct kmem_cache * s)7491 static int sysfs_slab_add(struct kmem_cache *s)
7492 {
7493 	int err;
7494 	const char *name;
7495 	struct kset *kset = cache_kset(s);
7496 	int unmergeable = slab_unmergeable(s);
7497 
7498 	if (!unmergeable && disable_higher_order_debug &&
7499 			(slub_debug & DEBUG_METADATA_FLAGS))
7500 		unmergeable = 1;
7501 
7502 	if (unmergeable) {
7503 		/*
7504 		 * Slabcache can never be merged so we can use the name proper.
7505 		 * This is typically the case for debug situations. In that
7506 		 * case we can catch duplicate names easily.
7507 		 */
7508 		sysfs_remove_link(&slab_kset->kobj, s->name);
7509 		name = s->name;
7510 	} else {
7511 		/*
7512 		 * Create a unique name for the slab as a target
7513 		 * for the symlinks.
7514 		 */
7515 		name = create_unique_id(s);
7516 		if (IS_ERR(name))
7517 			return PTR_ERR(name);
7518 	}
7519 
7520 	s->kobj.kset = kset;
7521 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7522 	if (err)
7523 		goto out;
7524 
7525 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
7526 	if (err)
7527 		goto out_del_kobj;
7528 
7529 	if (!unmergeable) {
7530 		/* Setup first alias */
7531 		sysfs_slab_alias(s, s->name);
7532 	}
7533 out:
7534 	if (!unmergeable)
7535 		kfree(name);
7536 	return err;
7537 out_del_kobj:
7538 	kobject_del(&s->kobj);
7539 	goto out;
7540 }
7541 
sysfs_slab_unlink(struct kmem_cache * s)7542 void sysfs_slab_unlink(struct kmem_cache *s)
7543 {
7544 	if (s->kobj.state_in_sysfs)
7545 		kobject_del(&s->kobj);
7546 }
7547 
sysfs_slab_release(struct kmem_cache * s)7548 void sysfs_slab_release(struct kmem_cache *s)
7549 {
7550 	kobject_put(&s->kobj);
7551 }
7552 
7553 /*
7554  * Need to buffer aliases during bootup until sysfs becomes
7555  * available lest we lose that information.
7556  */
7557 struct saved_alias {
7558 	struct kmem_cache *s;
7559 	const char *name;
7560 	struct saved_alias *next;
7561 };
7562 
7563 static struct saved_alias *alias_list;
7564 
sysfs_slab_alias(struct kmem_cache * s,const char * name)7565 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7566 {
7567 	struct saved_alias *al;
7568 
7569 	if (slab_state == FULL) {
7570 		/*
7571 		 * If we have a leftover link then remove it.
7572 		 */
7573 		sysfs_remove_link(&slab_kset->kobj, name);
7574 		/*
7575 		 * The original cache may have failed to generate sysfs file.
7576 		 * In that case, sysfs_create_link() returns -ENOENT and
7577 		 * symbolic link creation is skipped.
7578 		 */
7579 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7580 	}
7581 
7582 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7583 	if (!al)
7584 		return -ENOMEM;
7585 
7586 	al->s = s;
7587 	al->name = name;
7588 	al->next = alias_list;
7589 	alias_list = al;
7590 	kmsan_unpoison_memory(al, sizeof(*al));
7591 	return 0;
7592 }
7593 
slab_sysfs_init(void)7594 static int __init slab_sysfs_init(void)
7595 {
7596 	struct kmem_cache *s;
7597 	int err;
7598 
7599 	mutex_lock(&slab_mutex);
7600 
7601 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7602 	if (!slab_kset) {
7603 		mutex_unlock(&slab_mutex);
7604 		pr_err("Cannot register slab subsystem.\n");
7605 		return -ENOMEM;
7606 	}
7607 
7608 	slab_state = FULL;
7609 
7610 	list_for_each_entry(s, &slab_caches, list) {
7611 		err = sysfs_slab_add(s);
7612 		if (err)
7613 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7614 			       s->name);
7615 	}
7616 
7617 	while (alias_list) {
7618 		struct saved_alias *al = alias_list;
7619 
7620 		alias_list = alias_list->next;
7621 		err = sysfs_slab_alias(al->s, al->name);
7622 		if (err)
7623 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7624 			       al->name);
7625 		kfree(al);
7626 	}
7627 
7628 	mutex_unlock(&slab_mutex);
7629 	return 0;
7630 }
7631 late_initcall(slab_sysfs_init);
7632 #endif /* SLAB_SUPPORTS_SYSFS */
7633 
7634 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)7635 static int slab_debugfs_show(struct seq_file *seq, void *v)
7636 {
7637 	struct loc_track *t = seq->private;
7638 	struct location *l;
7639 	unsigned long idx;
7640 
7641 	idx = (unsigned long) t->idx;
7642 	if (idx < t->count) {
7643 		l = &t->loc[idx];
7644 
7645 		seq_printf(seq, "%7ld ", l->count);
7646 
7647 		if (l->addr)
7648 			seq_printf(seq, "%pS", (void *)l->addr);
7649 		else
7650 			seq_puts(seq, "<not-available>");
7651 
7652 		if (l->waste)
7653 			seq_printf(seq, " waste=%lu/%lu",
7654 				l->count * l->waste, l->waste);
7655 
7656 		if (l->sum_time != l->min_time) {
7657 			seq_printf(seq, " age=%ld/%llu/%ld",
7658 				l->min_time, div_u64(l->sum_time, l->count),
7659 				l->max_time);
7660 		} else
7661 			seq_printf(seq, " age=%ld", l->min_time);
7662 
7663 		if (l->min_pid != l->max_pid)
7664 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7665 		else
7666 			seq_printf(seq, " pid=%ld",
7667 				l->min_pid);
7668 
7669 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7670 			seq_printf(seq, " cpus=%*pbl",
7671 				 cpumask_pr_args(to_cpumask(l->cpus)));
7672 
7673 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7674 			seq_printf(seq, " nodes=%*pbl",
7675 				 nodemask_pr_args(&l->nodes));
7676 
7677 #ifdef CONFIG_STACKDEPOT
7678 		{
7679 			depot_stack_handle_t handle;
7680 			unsigned long *entries;
7681 			unsigned int nr_entries, j;
7682 
7683 			handle = READ_ONCE(l->handle);
7684 			if (handle) {
7685 				nr_entries = stack_depot_fetch(handle, &entries);
7686 				seq_puts(seq, "\n");
7687 				for (j = 0; j < nr_entries; j++)
7688 					seq_printf(seq, "        %pS\n", (void *)entries[j]);
7689 			}
7690 		}
7691 #endif
7692 		seq_puts(seq, "\n");
7693 	}
7694 
7695 	if (!idx && !t->count)
7696 		seq_puts(seq, "No data\n");
7697 
7698 	return 0;
7699 }
7700 
slab_debugfs_stop(struct seq_file * seq,void * v)7701 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7702 {
7703 }
7704 
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)7705 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7706 {
7707 	struct loc_track *t = seq->private;
7708 
7709 	t->idx = ++(*ppos);
7710 	if (*ppos <= t->count)
7711 		return ppos;
7712 
7713 	return NULL;
7714 }
7715 
cmp_loc_by_count(const void * a,const void * b,const void * data)7716 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7717 {
7718 	struct location *loc1 = (struct location *)a;
7719 	struct location *loc2 = (struct location *)b;
7720 
7721 	if (loc1->count > loc2->count)
7722 		return -1;
7723 	else
7724 		return 1;
7725 }
7726 
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)7727 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7728 {
7729 	struct loc_track *t = seq->private;
7730 
7731 	t->idx = *ppos;
7732 	return ppos;
7733 }
7734 
7735 static const struct seq_operations slab_debugfs_sops = {
7736 	.start  = slab_debugfs_start,
7737 	.next   = slab_debugfs_next,
7738 	.stop   = slab_debugfs_stop,
7739 	.show   = slab_debugfs_show,
7740 };
7741 
slab_debug_trace_open(struct inode * inode,struct file * filep)7742 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7743 {
7744 
7745 	struct kmem_cache_node *n;
7746 	enum track_item alloc;
7747 	int node;
7748 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7749 						sizeof(struct loc_track));
7750 	struct kmem_cache *s = file_inode(filep)->i_private;
7751 	unsigned long *obj_map;
7752 
7753 	if (!t)
7754 		return -ENOMEM;
7755 
7756 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7757 	if (!obj_map) {
7758 		seq_release_private(inode, filep);
7759 		return -ENOMEM;
7760 	}
7761 
7762 	alloc = debugfs_get_aux_num(filep);
7763 
7764 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7765 		bitmap_free(obj_map);
7766 		seq_release_private(inode, filep);
7767 		return -ENOMEM;
7768 	}
7769 
7770 	for_each_kmem_cache_node(s, node, n) {
7771 		unsigned long flags;
7772 		struct slab *slab;
7773 
7774 		if (!node_nr_slabs(n))
7775 			continue;
7776 
7777 		spin_lock_irqsave(&n->list_lock, flags);
7778 		list_for_each_entry(slab, &n->partial, slab_list)
7779 			process_slab(t, s, slab, alloc, obj_map);
7780 		list_for_each_entry(slab, &n->full, slab_list)
7781 			process_slab(t, s, slab, alloc, obj_map);
7782 		spin_unlock_irqrestore(&n->list_lock, flags);
7783 	}
7784 
7785 	/* Sort locations by count */
7786 	sort_r(t->loc, t->count, sizeof(struct location),
7787 		cmp_loc_by_count, NULL, NULL);
7788 
7789 	bitmap_free(obj_map);
7790 	return 0;
7791 }
7792 
slab_debug_trace_release(struct inode * inode,struct file * file)7793 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7794 {
7795 	struct seq_file *seq = file->private_data;
7796 	struct loc_track *t = seq->private;
7797 
7798 	free_loc_track(t);
7799 	return seq_release_private(inode, file);
7800 }
7801 
7802 static const struct file_operations slab_debugfs_fops = {
7803 	.open    = slab_debug_trace_open,
7804 	.read    = seq_read,
7805 	.llseek  = seq_lseek,
7806 	.release = slab_debug_trace_release,
7807 };
7808 
debugfs_slab_add(struct kmem_cache * s)7809 static void debugfs_slab_add(struct kmem_cache *s)
7810 {
7811 	struct dentry *slab_cache_dir;
7812 
7813 	if (unlikely(!slab_debugfs_root))
7814 		return;
7815 
7816 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7817 
7818 	debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7819 					TRACK_ALLOC, &slab_debugfs_fops);
7820 
7821 	debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7822 					TRACK_FREE, &slab_debugfs_fops);
7823 }
7824 
debugfs_slab_release(struct kmem_cache * s)7825 void debugfs_slab_release(struct kmem_cache *s)
7826 {
7827 	debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7828 }
7829 
slab_debugfs_init(void)7830 static int __init slab_debugfs_init(void)
7831 {
7832 	struct kmem_cache *s;
7833 
7834 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
7835 
7836 	list_for_each_entry(s, &slab_caches, list)
7837 		if (s->flags & SLAB_STORE_USER)
7838 			debugfs_slab_add(s);
7839 
7840 	return 0;
7841 
7842 }
7843 __initcall(slab_debugfs_init);
7844 #endif
7845 /*
7846  * The /proc/slabinfo ABI
7847  */
7848 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)7849 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7850 {
7851 	unsigned long nr_slabs = 0;
7852 	unsigned long nr_objs = 0;
7853 	unsigned long nr_free = 0;
7854 	int node;
7855 	struct kmem_cache_node *n;
7856 
7857 	for_each_kmem_cache_node(s, node, n) {
7858 		nr_slabs += node_nr_slabs(n);
7859 		nr_objs += node_nr_objs(n);
7860 		nr_free += count_partial_free_approx(n);
7861 	}
7862 
7863 	sinfo->active_objs = nr_objs - nr_free;
7864 	sinfo->num_objs = nr_objs;
7865 	sinfo->active_slabs = nr_slabs;
7866 	sinfo->num_slabs = nr_slabs;
7867 	sinfo->objects_per_slab = oo_objects(s->oo);
7868 	sinfo->cache_order = oo_order(s->oo);
7869 }
7870 #endif /* CONFIG_SLUB_DEBUG */
7871