1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/vmalloc.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/kasan.h>
26 #include <linux/node.h>
27 #include <linux/kmsan.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/mempolicy.h>
31 #include <linux/ctype.h>
32 #include <linux/stackdepot.h>
33 #include <linux/debugobjects.h>
34 #include <linux/kallsyms.h>
35 #include <linux/kfence.h>
36 #include <linux/memory.h>
37 #include <linux/math64.h>
38 #include <linux/fault-inject.h>
39 #include <linux/kmemleak.h>
40 #include <linux/stacktrace.h>
41 #include <linux/prefetch.h>
42 #include <linux/memcontrol.h>
43 #include <linux/random.h>
44 #include <kunit/test.h>
45 #include <kunit/test-bug.h>
46 #include <linux/sort.h>
47
48 #include <linux/debugfs.h>
49 #include <trace/events/kmem.h>
50
51 #include "internal.h"
52
53 /*
54 * Lock order:
55 * 1. slab_mutex (Global Mutex)
56 * 2. node->list_lock (Spinlock)
57 * 3. kmem_cache->cpu_slab->lock (Local lock)
58 * 4. slab_lock(slab) (Only on some arches)
59 * 5. object_map_lock (Only for debugging)
60 *
61 * slab_mutex
62 *
63 * The role of the slab_mutex is to protect the list of all the slabs
64 * and to synchronize major metadata changes to slab cache structures.
65 * Also synchronizes memory hotplug callbacks.
66 *
67 * slab_lock
68 *
69 * The slab_lock is a wrapper around the page lock, thus it is a bit
70 * spinlock.
71 *
72 * The slab_lock is only used on arches that do not have the ability
73 * to do a cmpxchg_double. It only protects:
74 *
75 * A. slab->freelist -> List of free objects in a slab
76 * B. slab->inuse -> Number of objects in use
77 * C. slab->objects -> Number of objects in slab
78 * D. slab->frozen -> frozen state
79 *
80 * Frozen slabs
81 *
82 * If a slab is frozen then it is exempt from list management. It is
83 * the cpu slab which is actively allocated from by the processor that
84 * froze it and it is not on any list. The processor that froze the
85 * slab is the one who can perform list operations on the slab. Other
86 * processors may put objects onto the freelist but the processor that
87 * froze the slab is the only one that can retrieve the objects from the
88 * slab's freelist.
89 *
90 * CPU partial slabs
91 *
92 * The partially empty slabs cached on the CPU partial list are used
93 * for performance reasons, which speeds up the allocation process.
94 * These slabs are not frozen, but are also exempt from list management,
95 * by clearing the SL_partial flag when moving out of the node
96 * partial list. Please see __slab_free() for more details.
97 *
98 * To sum up, the current scheme is:
99 * - node partial slab: SL_partial && !frozen
100 * - cpu partial slab: !SL_partial && !frozen
101 * - cpu slab: !SL_partial && frozen
102 * - full slab: !SL_partial && !frozen
103 *
104 * list_lock
105 *
106 * The list_lock protects the partial and full list on each node and
107 * the partial slab counter. If taken then no new slabs may be added or
108 * removed from the lists nor make the number of partial slabs be modified.
109 * (Note that the total number of slabs is an atomic value that may be
110 * modified without taking the list lock).
111 *
112 * The list_lock is a centralized lock and thus we avoid taking it as
113 * much as possible. As long as SLUB does not have to handle partial
114 * slabs, operations can continue without any centralized lock. F.e.
115 * allocating a long series of objects that fill up slabs does not require
116 * the list lock.
117 *
118 * For debug caches, all allocations are forced to go through a list_lock
119 * protected region to serialize against concurrent validation.
120 *
121 * cpu_slab->lock local lock
122 *
123 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
124 * except the stat counters. This is a percpu structure manipulated only by
125 * the local cpu, so the lock protects against being preempted or interrupted
126 * by an irq. Fast path operations rely on lockless operations instead.
127 *
128 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
129 * which means the lockless fastpath cannot be used as it might interfere with
130 * an in-progress slow path operations. In this case the local lock is always
131 * taken but it still utilizes the freelist for the common operations.
132 *
133 * lockless fastpaths
134 *
135 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
136 * are fully lockless when satisfied from the percpu slab (and when
137 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
138 * They also don't disable preemption or migration or irqs. They rely on
139 * the transaction id (tid) field to detect being preempted or moved to
140 * another cpu.
141 *
142 * irq, preemption, migration considerations
143 *
144 * Interrupts are disabled as part of list_lock or local_lock operations, or
145 * around the slab_lock operation, in order to make the slab allocator safe
146 * to use in the context of an irq.
147 *
148 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
149 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
150 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
151 * doesn't have to be revalidated in each section protected by the local lock.
152 *
153 * SLUB assigns one slab for allocation to each processor.
154 * Allocations only occur from these slabs called cpu slabs.
155 *
156 * Slabs with free elements are kept on a partial list and during regular
157 * operations no list for full slabs is used. If an object in a full slab is
158 * freed then the slab will show up again on the partial lists.
159 * We track full slabs for debugging purposes though because otherwise we
160 * cannot scan all objects.
161 *
162 * Slabs are freed when they become empty. Teardown and setup is
163 * minimal so we rely on the page allocators per cpu caches for
164 * fast frees and allocs.
165 *
166 * slab->frozen The slab is frozen and exempt from list processing.
167 * This means that the slab is dedicated to a purpose
168 * such as satisfying allocations for a specific
169 * processor. Objects may be freed in the slab while
170 * it is frozen but slab_free will then skip the usual
171 * list operations. It is up to the processor holding
172 * the slab to integrate the slab into the slab lists
173 * when the slab is no longer needed.
174 *
175 * One use of this flag is to mark slabs that are
176 * used for allocations. Then such a slab becomes a cpu
177 * slab. The cpu slab may be equipped with an additional
178 * freelist that allows lockless access to
179 * free objects in addition to the regular freelist
180 * that requires the slab lock.
181 *
182 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
183 * options set. This moves slab handling out of
184 * the fast path and disables lockless freelists.
185 */
186
187 /**
188 * enum slab_flags - How the slab flags bits are used.
189 * @SL_locked: Is locked with slab_lock()
190 * @SL_partial: On the per-node partial list
191 * @SL_pfmemalloc: Was allocated from PF_MEMALLOC reserves
192 *
193 * The slab flags share space with the page flags but some bits have
194 * different interpretations. The high bits are used for information
195 * like zone/node/section.
196 */
197 enum slab_flags {
198 SL_locked = PG_locked,
199 SL_partial = PG_workingset, /* Historical reasons for this bit */
200 SL_pfmemalloc = PG_active, /* Historical reasons for this bit */
201 };
202
203 /*
204 * We could simply use migrate_disable()/enable() but as long as it's a
205 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
206 */
207 #ifndef CONFIG_PREEMPT_RT
208 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
209 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
210 #define USE_LOCKLESS_FAST_PATH() (true)
211 #else
212 #define slub_get_cpu_ptr(var) \
213 ({ \
214 migrate_disable(); \
215 this_cpu_ptr(var); \
216 })
217 #define slub_put_cpu_ptr(var) \
218 do { \
219 (void)(var); \
220 migrate_enable(); \
221 } while (0)
222 #define USE_LOCKLESS_FAST_PATH() (false)
223 #endif
224
225 #ifndef CONFIG_SLUB_TINY
226 #define __fastpath_inline __always_inline
227 #else
228 #define __fastpath_inline
229 #endif
230
231 #ifdef CONFIG_SLUB_DEBUG
232 #ifdef CONFIG_SLUB_DEBUG_ON
233 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
234 #else
235 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
236 #endif
237 #endif /* CONFIG_SLUB_DEBUG */
238
239 #ifdef CONFIG_NUMA
240 static DEFINE_STATIC_KEY_FALSE(strict_numa);
241 #endif
242
243 /* Structure holding parameters for get_partial() call chain */
244 struct partial_context {
245 gfp_t flags;
246 unsigned int orig_size;
247 void *object;
248 };
249
kmem_cache_debug(struct kmem_cache * s)250 static inline bool kmem_cache_debug(struct kmem_cache *s)
251 {
252 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
253 }
254
fixup_red_left(struct kmem_cache * s,void * p)255 void *fixup_red_left(struct kmem_cache *s, void *p)
256 {
257 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
258 p += s->red_left_pad;
259
260 return p;
261 }
262
kmem_cache_has_cpu_partial(struct kmem_cache * s)263 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
264 {
265 #ifdef CONFIG_SLUB_CPU_PARTIAL
266 return !kmem_cache_debug(s);
267 #else
268 return false;
269 #endif
270 }
271
272 /*
273 * Issues still to be resolved:
274 *
275 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
276 *
277 * - Variable sizing of the per node arrays
278 */
279
280 /* Enable to log cmpxchg failures */
281 #undef SLUB_DEBUG_CMPXCHG
282
283 #ifndef CONFIG_SLUB_TINY
284 /*
285 * Minimum number of partial slabs. These will be left on the partial
286 * lists even if they are empty. kmem_cache_shrink may reclaim them.
287 */
288 #define MIN_PARTIAL 5
289
290 /*
291 * Maximum number of desirable partial slabs.
292 * The existence of more partial slabs makes kmem_cache_shrink
293 * sort the partial list by the number of objects in use.
294 */
295 #define MAX_PARTIAL 10
296 #else
297 #define MIN_PARTIAL 0
298 #define MAX_PARTIAL 0
299 #endif
300
301 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
302 SLAB_POISON | SLAB_STORE_USER)
303
304 /*
305 * These debug flags cannot use CMPXCHG because there might be consistency
306 * issues when checking or reading debug information
307 */
308 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
309 SLAB_TRACE)
310
311
312 /*
313 * Debugging flags that require metadata to be stored in the slab. These get
314 * disabled when slab_debug=O is used and a cache's min order increases with
315 * metadata.
316 */
317 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
318
319 #define OO_SHIFT 16
320 #define OO_MASK ((1 << OO_SHIFT) - 1)
321 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
322
323 /* Internal SLUB flags */
324 /* Poison object */
325 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
326 /* Use cmpxchg_double */
327
328 #ifdef system_has_freelist_aba
329 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
330 #else
331 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
332 #endif
333
334 /*
335 * Tracking user of a slab.
336 */
337 #define TRACK_ADDRS_COUNT 16
338 struct track {
339 unsigned long addr; /* Called from address */
340 #ifdef CONFIG_STACKDEPOT
341 depot_stack_handle_t handle;
342 #endif
343 int cpu; /* Was running on cpu */
344 int pid; /* Pid context */
345 unsigned long when; /* When did the operation occur */
346 };
347
348 enum track_item { TRACK_ALLOC, TRACK_FREE };
349
350 #ifdef SLAB_SUPPORTS_SYSFS
351 static int sysfs_slab_add(struct kmem_cache *);
352 static int sysfs_slab_alias(struct kmem_cache *, const char *);
353 #else
sysfs_slab_add(struct kmem_cache * s)354 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)355 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
356 { return 0; }
357 #endif
358
359 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
360 static void debugfs_slab_add(struct kmem_cache *);
361 #else
debugfs_slab_add(struct kmem_cache * s)362 static inline void debugfs_slab_add(struct kmem_cache *s) { }
363 #endif
364
365 enum stat_item {
366 ALLOC_FASTPATH, /* Allocation from cpu slab */
367 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
368 FREE_FASTPATH, /* Free to cpu slab */
369 FREE_SLOWPATH, /* Freeing not to cpu slab */
370 FREE_FROZEN, /* Freeing to frozen slab */
371 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
372 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
373 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
374 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
375 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
376 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
377 FREE_SLAB, /* Slab freed to the page allocator */
378 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
379 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
380 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
381 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
382 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
383 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
384 DEACTIVATE_BYPASS, /* Implicit deactivation */
385 ORDER_FALLBACK, /* Number of times fallback was necessary */
386 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
387 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
388 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
389 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
390 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
391 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
392 NR_SLUB_STAT_ITEMS
393 };
394
395 #ifndef CONFIG_SLUB_TINY
396 /*
397 * When changing the layout, make sure freelist and tid are still compatible
398 * with this_cpu_cmpxchg_double() alignment requirements.
399 */
400 struct kmem_cache_cpu {
401 union {
402 struct {
403 void **freelist; /* Pointer to next available object */
404 unsigned long tid; /* Globally unique transaction id */
405 };
406 freelist_aba_t freelist_tid;
407 };
408 struct slab *slab; /* The slab from which we are allocating */
409 #ifdef CONFIG_SLUB_CPU_PARTIAL
410 struct slab *partial; /* Partially allocated slabs */
411 #endif
412 local_lock_t lock; /* Protects the fields above */
413 #ifdef CONFIG_SLUB_STATS
414 unsigned int stat[NR_SLUB_STAT_ITEMS];
415 #endif
416 };
417 #endif /* CONFIG_SLUB_TINY */
418
stat(const struct kmem_cache * s,enum stat_item si)419 static inline void stat(const struct kmem_cache *s, enum stat_item si)
420 {
421 #ifdef CONFIG_SLUB_STATS
422 /*
423 * The rmw is racy on a preemptible kernel but this is acceptable, so
424 * avoid this_cpu_add()'s irq-disable overhead.
425 */
426 raw_cpu_inc(s->cpu_slab->stat[si]);
427 #endif
428 }
429
430 static inline
stat_add(const struct kmem_cache * s,enum stat_item si,int v)431 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
432 {
433 #ifdef CONFIG_SLUB_STATS
434 raw_cpu_add(s->cpu_slab->stat[si], v);
435 #endif
436 }
437
438 /*
439 * The slab lists for all objects.
440 */
441 struct kmem_cache_node {
442 spinlock_t list_lock;
443 unsigned long nr_partial;
444 struct list_head partial;
445 #ifdef CONFIG_SLUB_DEBUG
446 atomic_long_t nr_slabs;
447 atomic_long_t total_objects;
448 struct list_head full;
449 #endif
450 };
451
get_node(struct kmem_cache * s,int node)452 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
453 {
454 return s->node[node];
455 }
456
457 /*
458 * Iterator over all nodes. The body will be executed for each node that has
459 * a kmem_cache_node structure allocated (which is true for all online nodes)
460 */
461 #define for_each_kmem_cache_node(__s, __node, __n) \
462 for (__node = 0; __node < nr_node_ids; __node++) \
463 if ((__n = get_node(__s, __node)))
464
465 /*
466 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
467 * Corresponds to node_state[N_MEMORY], but can temporarily
468 * differ during memory hotplug/hotremove operations.
469 * Protected by slab_mutex.
470 */
471 static nodemask_t slab_nodes;
472
473 #ifndef CONFIG_SLUB_TINY
474 /*
475 * Workqueue used for flush_cpu_slab().
476 */
477 static struct workqueue_struct *flushwq;
478 #endif
479
480 /********************************************************************
481 * Core slab cache functions
482 *******************************************************************/
483
484 /*
485 * Returns freelist pointer (ptr). With hardening, this is obfuscated
486 * with an XOR of the address where the pointer is held and a per-cache
487 * random number.
488 */
freelist_ptr_encode(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)489 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
490 void *ptr, unsigned long ptr_addr)
491 {
492 unsigned long encoded;
493
494 #ifdef CONFIG_SLAB_FREELIST_HARDENED
495 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
496 #else
497 encoded = (unsigned long)ptr;
498 #endif
499 return (freeptr_t){.v = encoded};
500 }
501
freelist_ptr_decode(const struct kmem_cache * s,freeptr_t ptr,unsigned long ptr_addr)502 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
503 freeptr_t ptr, unsigned long ptr_addr)
504 {
505 void *decoded;
506
507 #ifdef CONFIG_SLAB_FREELIST_HARDENED
508 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
509 #else
510 decoded = (void *)ptr.v;
511 #endif
512 return decoded;
513 }
514
get_freepointer(struct kmem_cache * s,void * object)515 static inline void *get_freepointer(struct kmem_cache *s, void *object)
516 {
517 unsigned long ptr_addr;
518 freeptr_t p;
519
520 object = kasan_reset_tag(object);
521 ptr_addr = (unsigned long)object + s->offset;
522 p = *(freeptr_t *)(ptr_addr);
523 return freelist_ptr_decode(s, p, ptr_addr);
524 }
525
526 #ifndef CONFIG_SLUB_TINY
prefetch_freepointer(const struct kmem_cache * s,void * object)527 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
528 {
529 prefetchw(object + s->offset);
530 }
531 #endif
532
533 /*
534 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
535 * pointer value in the case the current thread loses the race for the next
536 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
537 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
538 * KMSAN will still check all arguments of cmpxchg because of imperfect
539 * handling of inline assembly.
540 * To work around this problem, we apply __no_kmsan_checks to ensure that
541 * get_freepointer_safe() returns initialized memory.
542 */
543 __no_kmsan_checks
get_freepointer_safe(struct kmem_cache * s,void * object)544 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
545 {
546 unsigned long freepointer_addr;
547 freeptr_t p;
548
549 if (!debug_pagealloc_enabled_static())
550 return get_freepointer(s, object);
551
552 object = kasan_reset_tag(object);
553 freepointer_addr = (unsigned long)object + s->offset;
554 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
555 return freelist_ptr_decode(s, p, freepointer_addr);
556 }
557
set_freepointer(struct kmem_cache * s,void * object,void * fp)558 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
559 {
560 unsigned long freeptr_addr = (unsigned long)object + s->offset;
561
562 #ifdef CONFIG_SLAB_FREELIST_HARDENED
563 BUG_ON(object == fp); /* naive detection of double free or corruption */
564 #endif
565
566 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
567 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
568 }
569
570 /*
571 * See comment in calculate_sizes().
572 */
freeptr_outside_object(struct kmem_cache * s)573 static inline bool freeptr_outside_object(struct kmem_cache *s)
574 {
575 return s->offset >= s->inuse;
576 }
577
578 /*
579 * Return offset of the end of info block which is inuse + free pointer if
580 * not overlapping with object.
581 */
get_info_end(struct kmem_cache * s)582 static inline unsigned int get_info_end(struct kmem_cache *s)
583 {
584 if (freeptr_outside_object(s))
585 return s->inuse + sizeof(void *);
586 else
587 return s->inuse;
588 }
589
590 /* Loop over all objects in a slab */
591 #define for_each_object(__p, __s, __addr, __objects) \
592 for (__p = fixup_red_left(__s, __addr); \
593 __p < (__addr) + (__objects) * (__s)->size; \
594 __p += (__s)->size)
595
order_objects(unsigned int order,unsigned int size)596 static inline unsigned int order_objects(unsigned int order, unsigned int size)
597 {
598 return ((unsigned int)PAGE_SIZE << order) / size;
599 }
600
oo_make(unsigned int order,unsigned int size)601 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
602 unsigned int size)
603 {
604 struct kmem_cache_order_objects x = {
605 (order << OO_SHIFT) + order_objects(order, size)
606 };
607
608 return x;
609 }
610
oo_order(struct kmem_cache_order_objects x)611 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
612 {
613 return x.x >> OO_SHIFT;
614 }
615
oo_objects(struct kmem_cache_order_objects x)616 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
617 {
618 return x.x & OO_MASK;
619 }
620
621 #ifdef CONFIG_SLUB_CPU_PARTIAL
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)622 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
623 {
624 unsigned int nr_slabs;
625
626 s->cpu_partial = nr_objects;
627
628 /*
629 * We take the number of objects but actually limit the number of
630 * slabs on the per cpu partial list, in order to limit excessive
631 * growth of the list. For simplicity we assume that the slabs will
632 * be half-full.
633 */
634 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
635 s->cpu_partial_slabs = nr_slabs;
636 }
637
slub_get_cpu_partial(struct kmem_cache * s)638 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
639 {
640 return s->cpu_partial_slabs;
641 }
642 #else
643 static inline void
slub_set_cpu_partial(struct kmem_cache * s,unsigned int nr_objects)644 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
645 {
646 }
647
slub_get_cpu_partial(struct kmem_cache * s)648 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
649 {
650 return 0;
651 }
652 #endif /* CONFIG_SLUB_CPU_PARTIAL */
653
654 /*
655 * If network-based swap is enabled, slub must keep track of whether memory
656 * were allocated from pfmemalloc reserves.
657 */
slab_test_pfmemalloc(const struct slab * slab)658 static inline bool slab_test_pfmemalloc(const struct slab *slab)
659 {
660 return test_bit(SL_pfmemalloc, &slab->flags);
661 }
662
slab_set_pfmemalloc(struct slab * slab)663 static inline void slab_set_pfmemalloc(struct slab *slab)
664 {
665 set_bit(SL_pfmemalloc, &slab->flags);
666 }
667
__slab_clear_pfmemalloc(struct slab * slab)668 static inline void __slab_clear_pfmemalloc(struct slab *slab)
669 {
670 __clear_bit(SL_pfmemalloc, &slab->flags);
671 }
672
673 /*
674 * Per slab locking using the pagelock
675 */
slab_lock(struct slab * slab)676 static __always_inline void slab_lock(struct slab *slab)
677 {
678 bit_spin_lock(SL_locked, &slab->flags);
679 }
680
slab_unlock(struct slab * slab)681 static __always_inline void slab_unlock(struct slab *slab)
682 {
683 bit_spin_unlock(SL_locked, &slab->flags);
684 }
685
686 static inline bool
__update_freelist_fast(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)687 __update_freelist_fast(struct slab *slab,
688 void *freelist_old, unsigned long counters_old,
689 void *freelist_new, unsigned long counters_new)
690 {
691 #ifdef system_has_freelist_aba
692 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
693 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
694
695 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
696 #else
697 return false;
698 #endif
699 }
700
701 static inline bool
__update_freelist_slow(struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new)702 __update_freelist_slow(struct slab *slab,
703 void *freelist_old, unsigned long counters_old,
704 void *freelist_new, unsigned long counters_new)
705 {
706 bool ret = false;
707
708 slab_lock(slab);
709 if (slab->freelist == freelist_old &&
710 slab->counters == counters_old) {
711 slab->freelist = freelist_new;
712 slab->counters = counters_new;
713 ret = true;
714 }
715 slab_unlock(slab);
716
717 return ret;
718 }
719
720 /*
721 * Interrupts must be disabled (for the fallback code to work right), typically
722 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
723 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
724 * allocation/ free operation in hardirq context. Therefore nothing can
725 * interrupt the operation.
726 */
__slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)727 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
728 void *freelist_old, unsigned long counters_old,
729 void *freelist_new, unsigned long counters_new,
730 const char *n)
731 {
732 bool ret;
733
734 if (USE_LOCKLESS_FAST_PATH())
735 lockdep_assert_irqs_disabled();
736
737 if (s->flags & __CMPXCHG_DOUBLE) {
738 ret = __update_freelist_fast(slab, freelist_old, counters_old,
739 freelist_new, counters_new);
740 } else {
741 ret = __update_freelist_slow(slab, freelist_old, counters_old,
742 freelist_new, counters_new);
743 }
744 if (likely(ret))
745 return true;
746
747 cpu_relax();
748 stat(s, CMPXCHG_DOUBLE_FAIL);
749
750 #ifdef SLUB_DEBUG_CMPXCHG
751 pr_info("%s %s: cmpxchg double redo ", n, s->name);
752 #endif
753
754 return false;
755 }
756
slab_update_freelist(struct kmem_cache * s,struct slab * slab,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)757 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
758 void *freelist_old, unsigned long counters_old,
759 void *freelist_new, unsigned long counters_new,
760 const char *n)
761 {
762 bool ret;
763
764 if (s->flags & __CMPXCHG_DOUBLE) {
765 ret = __update_freelist_fast(slab, freelist_old, counters_old,
766 freelist_new, counters_new);
767 } else {
768 unsigned long flags;
769
770 local_irq_save(flags);
771 ret = __update_freelist_slow(slab, freelist_old, counters_old,
772 freelist_new, counters_new);
773 local_irq_restore(flags);
774 }
775 if (likely(ret))
776 return true;
777
778 cpu_relax();
779 stat(s, CMPXCHG_DOUBLE_FAIL);
780
781 #ifdef SLUB_DEBUG_CMPXCHG
782 pr_info("%s %s: cmpxchg double redo ", n, s->name);
783 #endif
784
785 return false;
786 }
787
788 /*
789 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
790 * family will round up the real request size to these fixed ones, so
791 * there could be an extra area than what is requested. Save the original
792 * request size in the meta data area, for better debug and sanity check.
793 */
set_orig_size(struct kmem_cache * s,void * object,unsigned int orig_size)794 static inline void set_orig_size(struct kmem_cache *s,
795 void *object, unsigned int orig_size)
796 {
797 void *p = kasan_reset_tag(object);
798
799 if (!slub_debug_orig_size(s))
800 return;
801
802 p += get_info_end(s);
803 p += sizeof(struct track) * 2;
804
805 *(unsigned int *)p = orig_size;
806 }
807
get_orig_size(struct kmem_cache * s,void * object)808 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
809 {
810 void *p = kasan_reset_tag(object);
811
812 if (is_kfence_address(object))
813 return kfence_ksize(object);
814
815 if (!slub_debug_orig_size(s))
816 return s->object_size;
817
818 p += get_info_end(s);
819 p += sizeof(struct track) * 2;
820
821 return *(unsigned int *)p;
822 }
823
824 #ifdef CONFIG_SLUB_DEBUG
825 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
826 static DEFINE_SPINLOCK(object_map_lock);
827
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct slab * slab)828 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
829 struct slab *slab)
830 {
831 void *addr = slab_address(slab);
832 void *p;
833
834 bitmap_zero(obj_map, slab->objects);
835
836 for (p = slab->freelist; p; p = get_freepointer(s, p))
837 set_bit(__obj_to_index(s, addr, p), obj_map);
838 }
839
840 #if IS_ENABLED(CONFIG_KUNIT)
slab_add_kunit_errors(void)841 static bool slab_add_kunit_errors(void)
842 {
843 struct kunit_resource *resource;
844
845 if (!kunit_get_current_test())
846 return false;
847
848 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
849 if (!resource)
850 return false;
851
852 (*(int *)resource->data)++;
853 kunit_put_resource(resource);
854 return true;
855 }
856
slab_in_kunit_test(void)857 bool slab_in_kunit_test(void)
858 {
859 struct kunit_resource *resource;
860
861 if (!kunit_get_current_test())
862 return false;
863
864 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
865 if (!resource)
866 return false;
867
868 kunit_put_resource(resource);
869 return true;
870 }
871 #else
slab_add_kunit_errors(void)872 static inline bool slab_add_kunit_errors(void) { return false; }
873 #endif
874
size_from_object(struct kmem_cache * s)875 static inline unsigned int size_from_object(struct kmem_cache *s)
876 {
877 if (s->flags & SLAB_RED_ZONE)
878 return s->size - s->red_left_pad;
879
880 return s->size;
881 }
882
restore_red_left(struct kmem_cache * s,void * p)883 static inline void *restore_red_left(struct kmem_cache *s, void *p)
884 {
885 if (s->flags & SLAB_RED_ZONE)
886 p -= s->red_left_pad;
887
888 return p;
889 }
890
891 /*
892 * Debug settings:
893 */
894 #if defined(CONFIG_SLUB_DEBUG_ON)
895 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
896 #else
897 static slab_flags_t slub_debug;
898 #endif
899
900 static char *slub_debug_string;
901 static int disable_higher_order_debug;
902
903 /*
904 * slub is about to manipulate internal object metadata. This memory lies
905 * outside the range of the allocated object, so accessing it would normally
906 * be reported by kasan as a bounds error. metadata_access_enable() is used
907 * to tell kasan that these accesses are OK.
908 */
metadata_access_enable(void)909 static inline void metadata_access_enable(void)
910 {
911 kasan_disable_current();
912 kmsan_disable_current();
913 }
914
metadata_access_disable(void)915 static inline void metadata_access_disable(void)
916 {
917 kmsan_enable_current();
918 kasan_enable_current();
919 }
920
921 /*
922 * Object debugging
923 */
924
925 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct slab * slab,void * object)926 static inline int check_valid_pointer(struct kmem_cache *s,
927 struct slab *slab, void *object)
928 {
929 void *base;
930
931 if (!object)
932 return 1;
933
934 base = slab_address(slab);
935 object = kasan_reset_tag(object);
936 object = restore_red_left(s, object);
937 if (object < base || object >= base + slab->objects * s->size ||
938 (object - base) % s->size) {
939 return 0;
940 }
941
942 return 1;
943 }
944
print_section(char * level,char * text,u8 * addr,unsigned int length)945 static void print_section(char *level, char *text, u8 *addr,
946 unsigned int length)
947 {
948 metadata_access_enable();
949 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
950 16, 1, kasan_reset_tag((void *)addr), length, 1);
951 metadata_access_disable();
952 }
953
get_track(struct kmem_cache * s,void * object,enum track_item alloc)954 static struct track *get_track(struct kmem_cache *s, void *object,
955 enum track_item alloc)
956 {
957 struct track *p;
958
959 p = object + get_info_end(s);
960
961 return kasan_reset_tag(p + alloc);
962 }
963
964 #ifdef CONFIG_STACKDEPOT
set_track_prepare(gfp_t gfp_flags)965 static noinline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
966 {
967 depot_stack_handle_t handle;
968 unsigned long entries[TRACK_ADDRS_COUNT];
969 unsigned int nr_entries;
970
971 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
972 handle = stack_depot_save(entries, nr_entries, gfp_flags);
973
974 return handle;
975 }
976 #else
set_track_prepare(gfp_t gfp_flags)977 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags)
978 {
979 return 0;
980 }
981 #endif
982
set_track_update(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,depot_stack_handle_t handle)983 static void set_track_update(struct kmem_cache *s, void *object,
984 enum track_item alloc, unsigned long addr,
985 depot_stack_handle_t handle)
986 {
987 struct track *p = get_track(s, object, alloc);
988
989 #ifdef CONFIG_STACKDEPOT
990 p->handle = handle;
991 #endif
992 p->addr = addr;
993 p->cpu = smp_processor_id();
994 p->pid = current->pid;
995 p->when = jiffies;
996 }
997
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)998 static __always_inline void set_track(struct kmem_cache *s, void *object,
999 enum track_item alloc, unsigned long addr, gfp_t gfp_flags)
1000 {
1001 depot_stack_handle_t handle = set_track_prepare(gfp_flags);
1002
1003 set_track_update(s, object, alloc, addr, handle);
1004 }
1005
init_tracking(struct kmem_cache * s,void * object)1006 static void init_tracking(struct kmem_cache *s, void *object)
1007 {
1008 struct track *p;
1009
1010 if (!(s->flags & SLAB_STORE_USER))
1011 return;
1012
1013 p = get_track(s, object, TRACK_ALLOC);
1014 memset(p, 0, 2*sizeof(struct track));
1015 }
1016
print_track(const char * s,struct track * t,unsigned long pr_time)1017 static void print_track(const char *s, struct track *t, unsigned long pr_time)
1018 {
1019 depot_stack_handle_t handle __maybe_unused;
1020
1021 if (!t->addr)
1022 return;
1023
1024 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
1025 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
1026 #ifdef CONFIG_STACKDEPOT
1027 handle = READ_ONCE(t->handle);
1028 if (handle)
1029 stack_depot_print(handle);
1030 else
1031 pr_err("object allocation/free stack trace missing\n");
1032 #endif
1033 }
1034
print_tracking(struct kmem_cache * s,void * object)1035 void print_tracking(struct kmem_cache *s, void *object)
1036 {
1037 unsigned long pr_time = jiffies;
1038 if (!(s->flags & SLAB_STORE_USER))
1039 return;
1040
1041 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1042 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1043 }
1044
print_slab_info(const struct slab * slab)1045 static void print_slab_info(const struct slab *slab)
1046 {
1047 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1048 slab, slab->objects, slab->inuse, slab->freelist,
1049 &slab->flags);
1050 }
1051
skip_orig_size_check(struct kmem_cache * s,const void * object)1052 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1053 {
1054 set_orig_size(s, (void *)object, s->object_size);
1055 }
1056
__slab_bug(struct kmem_cache * s,const char * fmt,va_list argsp)1057 static void __slab_bug(struct kmem_cache *s, const char *fmt, va_list argsp)
1058 {
1059 struct va_format vaf;
1060 va_list args;
1061
1062 va_copy(args, argsp);
1063 vaf.fmt = fmt;
1064 vaf.va = &args;
1065 pr_err("=============================================================================\n");
1066 pr_err("BUG %s (%s): %pV\n", s ? s->name : "<unknown>", print_tainted(), &vaf);
1067 pr_err("-----------------------------------------------------------------------------\n\n");
1068 va_end(args);
1069 }
1070
slab_bug(struct kmem_cache * s,const char * fmt,...)1071 static void slab_bug(struct kmem_cache *s, const char *fmt, ...)
1072 {
1073 va_list args;
1074
1075 va_start(args, fmt);
1076 __slab_bug(s, fmt, args);
1077 va_end(args);
1078 }
1079
1080 __printf(2, 3)
slab_fix(struct kmem_cache * s,const char * fmt,...)1081 static void slab_fix(struct kmem_cache *s, const char *fmt, ...)
1082 {
1083 struct va_format vaf;
1084 va_list args;
1085
1086 if (slab_add_kunit_errors())
1087 return;
1088
1089 va_start(args, fmt);
1090 vaf.fmt = fmt;
1091 vaf.va = &args;
1092 pr_err("FIX %s: %pV\n", s->name, &vaf);
1093 va_end(args);
1094 }
1095
print_trailer(struct kmem_cache * s,struct slab * slab,u8 * p)1096 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1097 {
1098 unsigned int off; /* Offset of last byte */
1099 u8 *addr = slab_address(slab);
1100
1101 print_tracking(s, p);
1102
1103 print_slab_info(slab);
1104
1105 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1106 p, p - addr, get_freepointer(s, p));
1107
1108 if (s->flags & SLAB_RED_ZONE)
1109 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1110 s->red_left_pad);
1111 else if (p > addr + 16)
1112 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1113
1114 print_section(KERN_ERR, "Object ", p,
1115 min_t(unsigned int, s->object_size, PAGE_SIZE));
1116 if (s->flags & SLAB_RED_ZONE)
1117 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1118 s->inuse - s->object_size);
1119
1120 off = get_info_end(s);
1121
1122 if (s->flags & SLAB_STORE_USER)
1123 off += 2 * sizeof(struct track);
1124
1125 if (slub_debug_orig_size(s))
1126 off += sizeof(unsigned int);
1127
1128 off += kasan_metadata_size(s, false);
1129
1130 if (off != size_from_object(s))
1131 /* Beginning of the filler is the free pointer */
1132 print_section(KERN_ERR, "Padding ", p + off,
1133 size_from_object(s) - off);
1134 }
1135
object_err(struct kmem_cache * s,struct slab * slab,u8 * object,const char * reason)1136 static void object_err(struct kmem_cache *s, struct slab *slab,
1137 u8 *object, const char *reason)
1138 {
1139 if (slab_add_kunit_errors())
1140 return;
1141
1142 slab_bug(s, reason);
1143 if (!object || !check_valid_pointer(s, slab, object)) {
1144 print_slab_info(slab);
1145 pr_err("Invalid pointer 0x%p\n", object);
1146 } else {
1147 print_trailer(s, slab, object);
1148 }
1149 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1150
1151 WARN_ON(1);
1152 }
1153
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1154 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1155 void **freelist, void *nextfree)
1156 {
1157 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1158 !check_valid_pointer(s, slab, nextfree) && freelist) {
1159 object_err(s, slab, *freelist, "Freechain corrupt");
1160 *freelist = NULL;
1161 slab_fix(s, "Isolate corrupted freechain");
1162 return true;
1163 }
1164
1165 return false;
1166 }
1167
__slab_err(struct slab * slab)1168 static void __slab_err(struct slab *slab)
1169 {
1170 if (slab_in_kunit_test())
1171 return;
1172
1173 print_slab_info(slab);
1174 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1175
1176 WARN_ON(1);
1177 }
1178
slab_err(struct kmem_cache * s,struct slab * slab,const char * fmt,...)1179 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1180 const char *fmt, ...)
1181 {
1182 va_list args;
1183
1184 if (slab_add_kunit_errors())
1185 return;
1186
1187 va_start(args, fmt);
1188 __slab_bug(s, fmt, args);
1189 va_end(args);
1190
1191 __slab_err(slab);
1192 }
1193
init_object(struct kmem_cache * s,void * object,u8 val)1194 static void init_object(struct kmem_cache *s, void *object, u8 val)
1195 {
1196 u8 *p = kasan_reset_tag(object);
1197 unsigned int poison_size = s->object_size;
1198
1199 if (s->flags & SLAB_RED_ZONE) {
1200 /*
1201 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1202 * the shadow makes it possible to distinguish uninit-value
1203 * from use-after-free.
1204 */
1205 memset_no_sanitize_memory(p - s->red_left_pad, val,
1206 s->red_left_pad);
1207
1208 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1209 /*
1210 * Redzone the extra allocated space by kmalloc than
1211 * requested, and the poison size will be limited to
1212 * the original request size accordingly.
1213 */
1214 poison_size = get_orig_size(s, object);
1215 }
1216 }
1217
1218 if (s->flags & __OBJECT_POISON) {
1219 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1220 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1221 }
1222
1223 if (s->flags & SLAB_RED_ZONE)
1224 memset_no_sanitize_memory(p + poison_size, val,
1225 s->inuse - poison_size);
1226 }
1227
restore_bytes(struct kmem_cache * s,const char * message,u8 data,void * from,void * to)1228 static void restore_bytes(struct kmem_cache *s, const char *message, u8 data,
1229 void *from, void *to)
1230 {
1231 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1232 memset(from, data, to - from);
1233 }
1234
1235 #ifdef CONFIG_KMSAN
1236 #define pad_check_attributes noinline __no_kmsan_checks
1237 #else
1238 #define pad_check_attributes
1239 #endif
1240
1241 static pad_check_attributes int
check_bytes_and_report(struct kmem_cache * s,struct slab * slab,u8 * object,const char * what,u8 * start,unsigned int value,unsigned int bytes,bool slab_obj_print)1242 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1243 u8 *object, const char *what, u8 *start, unsigned int value,
1244 unsigned int bytes, bool slab_obj_print)
1245 {
1246 u8 *fault;
1247 u8 *end;
1248 u8 *addr = slab_address(slab);
1249
1250 metadata_access_enable();
1251 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1252 metadata_access_disable();
1253 if (!fault)
1254 return 1;
1255
1256 end = start + bytes;
1257 while (end > fault && end[-1] == value)
1258 end--;
1259
1260 if (slab_add_kunit_errors())
1261 goto skip_bug_print;
1262
1263 pr_err("[%s overwritten] 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1264 what, fault, end - 1, fault - addr, fault[0], value);
1265
1266 if (slab_obj_print)
1267 object_err(s, slab, object, "Object corrupt");
1268
1269 skip_bug_print:
1270 restore_bytes(s, what, value, fault, end);
1271 return 0;
1272 }
1273
1274 /*
1275 * Object layout:
1276 *
1277 * object address
1278 * Bytes of the object to be managed.
1279 * If the freepointer may overlay the object then the free
1280 * pointer is at the middle of the object.
1281 *
1282 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1283 * 0xa5 (POISON_END)
1284 *
1285 * object + s->object_size
1286 * Padding to reach word boundary. This is also used for Redzoning.
1287 * Padding is extended by another word if Redzoning is enabled and
1288 * object_size == inuse.
1289 *
1290 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1291 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1292 *
1293 * object + s->inuse
1294 * Meta data starts here.
1295 *
1296 * A. Free pointer (if we cannot overwrite object on free)
1297 * B. Tracking data for SLAB_STORE_USER
1298 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1299 * D. Padding to reach required alignment boundary or at minimum
1300 * one word if debugging is on to be able to detect writes
1301 * before the word boundary.
1302 *
1303 * Padding is done using 0x5a (POISON_INUSE)
1304 *
1305 * object + s->size
1306 * Nothing is used beyond s->size.
1307 *
1308 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1309 * ignored. And therefore no slab options that rely on these boundaries
1310 * may be used with merged slabcaches.
1311 */
1312
check_pad_bytes(struct kmem_cache * s,struct slab * slab,u8 * p)1313 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1314 {
1315 unsigned long off = get_info_end(s); /* The end of info */
1316
1317 if (s->flags & SLAB_STORE_USER) {
1318 /* We also have user information there */
1319 off += 2 * sizeof(struct track);
1320
1321 if (s->flags & SLAB_KMALLOC)
1322 off += sizeof(unsigned int);
1323 }
1324
1325 off += kasan_metadata_size(s, false);
1326
1327 if (size_from_object(s) == off)
1328 return 1;
1329
1330 return check_bytes_and_report(s, slab, p, "Object padding",
1331 p + off, POISON_INUSE, size_from_object(s) - off, true);
1332 }
1333
1334 /* Check the pad bytes at the end of a slab page */
1335 static pad_check_attributes void
slab_pad_check(struct kmem_cache * s,struct slab * slab)1336 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1337 {
1338 u8 *start;
1339 u8 *fault;
1340 u8 *end;
1341 u8 *pad;
1342 int length;
1343 int remainder;
1344
1345 if (!(s->flags & SLAB_POISON))
1346 return;
1347
1348 start = slab_address(slab);
1349 length = slab_size(slab);
1350 end = start + length;
1351 remainder = length % s->size;
1352 if (!remainder)
1353 return;
1354
1355 pad = end - remainder;
1356 metadata_access_enable();
1357 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1358 metadata_access_disable();
1359 if (!fault)
1360 return;
1361 while (end > fault && end[-1] == POISON_INUSE)
1362 end--;
1363
1364 slab_bug(s, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1365 fault, end - 1, fault - start);
1366 print_section(KERN_ERR, "Padding ", pad, remainder);
1367 __slab_err(slab);
1368
1369 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1370 }
1371
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1372 static int check_object(struct kmem_cache *s, struct slab *slab,
1373 void *object, u8 val)
1374 {
1375 u8 *p = object;
1376 u8 *endobject = object + s->object_size;
1377 unsigned int orig_size, kasan_meta_size;
1378 int ret = 1;
1379
1380 if (s->flags & SLAB_RED_ZONE) {
1381 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1382 object - s->red_left_pad, val, s->red_left_pad, ret))
1383 ret = 0;
1384
1385 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1386 endobject, val, s->inuse - s->object_size, ret))
1387 ret = 0;
1388
1389 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1390 orig_size = get_orig_size(s, object);
1391
1392 if (s->object_size > orig_size &&
1393 !check_bytes_and_report(s, slab, object,
1394 "kmalloc Redzone", p + orig_size,
1395 val, s->object_size - orig_size, ret)) {
1396 ret = 0;
1397 }
1398 }
1399 } else {
1400 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1401 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1402 endobject, POISON_INUSE,
1403 s->inuse - s->object_size, ret))
1404 ret = 0;
1405 }
1406 }
1407
1408 if (s->flags & SLAB_POISON) {
1409 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1410 /*
1411 * KASAN can save its free meta data inside of the
1412 * object at offset 0. Thus, skip checking the part of
1413 * the redzone that overlaps with the meta data.
1414 */
1415 kasan_meta_size = kasan_metadata_size(s, true);
1416 if (kasan_meta_size < s->object_size - 1 &&
1417 !check_bytes_and_report(s, slab, p, "Poison",
1418 p + kasan_meta_size, POISON_FREE,
1419 s->object_size - kasan_meta_size - 1, ret))
1420 ret = 0;
1421 if (kasan_meta_size < s->object_size &&
1422 !check_bytes_and_report(s, slab, p, "End Poison",
1423 p + s->object_size - 1, POISON_END, 1, ret))
1424 ret = 0;
1425 }
1426 /*
1427 * check_pad_bytes cleans up on its own.
1428 */
1429 if (!check_pad_bytes(s, slab, p))
1430 ret = 0;
1431 }
1432
1433 /*
1434 * Cannot check freepointer while object is allocated if
1435 * object and freepointer overlap.
1436 */
1437 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1438 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1439 object_err(s, slab, p, "Freepointer corrupt");
1440 /*
1441 * No choice but to zap it and thus lose the remainder
1442 * of the free objects in this slab. May cause
1443 * another error because the object count is now wrong.
1444 */
1445 set_freepointer(s, p, NULL);
1446 ret = 0;
1447 }
1448
1449 return ret;
1450 }
1451
check_slab(struct kmem_cache * s,struct slab * slab)1452 static int check_slab(struct kmem_cache *s, struct slab *slab)
1453 {
1454 int maxobj;
1455
1456 if (!folio_test_slab(slab_folio(slab))) {
1457 slab_err(s, slab, "Not a valid slab page");
1458 return 0;
1459 }
1460
1461 maxobj = order_objects(slab_order(slab), s->size);
1462 if (slab->objects > maxobj) {
1463 slab_err(s, slab, "objects %u > max %u",
1464 slab->objects, maxobj);
1465 return 0;
1466 }
1467 if (slab->inuse > slab->objects) {
1468 slab_err(s, slab, "inuse %u > max %u",
1469 slab->inuse, slab->objects);
1470 return 0;
1471 }
1472 if (slab->frozen) {
1473 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1474 return 0;
1475 }
1476
1477 /* Slab_pad_check fixes things up after itself */
1478 slab_pad_check(s, slab);
1479 return 1;
1480 }
1481
1482 /*
1483 * Determine if a certain object in a slab is on the freelist. Must hold the
1484 * slab lock to guarantee that the chains are in a consistent state.
1485 */
on_freelist(struct kmem_cache * s,struct slab * slab,void * search)1486 static bool on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1487 {
1488 int nr = 0;
1489 void *fp;
1490 void *object = NULL;
1491 int max_objects;
1492
1493 fp = slab->freelist;
1494 while (fp && nr <= slab->objects) {
1495 if (fp == search)
1496 return true;
1497 if (!check_valid_pointer(s, slab, fp)) {
1498 if (object) {
1499 object_err(s, slab, object,
1500 "Freechain corrupt");
1501 set_freepointer(s, object, NULL);
1502 break;
1503 } else {
1504 slab_err(s, slab, "Freepointer corrupt");
1505 slab->freelist = NULL;
1506 slab->inuse = slab->objects;
1507 slab_fix(s, "Freelist cleared");
1508 return false;
1509 }
1510 }
1511 object = fp;
1512 fp = get_freepointer(s, object);
1513 nr++;
1514 }
1515
1516 if (nr > slab->objects) {
1517 slab_err(s, slab, "Freelist cycle detected");
1518 slab->freelist = NULL;
1519 slab->inuse = slab->objects;
1520 slab_fix(s, "Freelist cleared");
1521 return false;
1522 }
1523
1524 max_objects = order_objects(slab_order(slab), s->size);
1525 if (max_objects > MAX_OBJS_PER_PAGE)
1526 max_objects = MAX_OBJS_PER_PAGE;
1527
1528 if (slab->objects != max_objects) {
1529 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1530 slab->objects, max_objects);
1531 slab->objects = max_objects;
1532 slab_fix(s, "Number of objects adjusted");
1533 }
1534 if (slab->inuse != slab->objects - nr) {
1535 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1536 slab->inuse, slab->objects - nr);
1537 slab->inuse = slab->objects - nr;
1538 slab_fix(s, "Object count adjusted");
1539 }
1540 return search == NULL;
1541 }
1542
trace(struct kmem_cache * s,struct slab * slab,void * object,int alloc)1543 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1544 int alloc)
1545 {
1546 if (s->flags & SLAB_TRACE) {
1547 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1548 s->name,
1549 alloc ? "alloc" : "free",
1550 object, slab->inuse,
1551 slab->freelist);
1552
1553 if (!alloc)
1554 print_section(KERN_INFO, "Object ", (void *)object,
1555 s->object_size);
1556
1557 dump_stack();
1558 }
1559 }
1560
1561 /*
1562 * Tracking of fully allocated slabs for debugging purposes.
1563 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1564 static void add_full(struct kmem_cache *s,
1565 struct kmem_cache_node *n, struct slab *slab)
1566 {
1567 if (!(s->flags & SLAB_STORE_USER))
1568 return;
1569
1570 lockdep_assert_held(&n->list_lock);
1571 list_add(&slab->slab_list, &n->full);
1572 }
1573
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1574 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1575 {
1576 if (!(s->flags & SLAB_STORE_USER))
1577 return;
1578
1579 lockdep_assert_held(&n->list_lock);
1580 list_del(&slab->slab_list);
1581 }
1582
node_nr_slabs(struct kmem_cache_node * n)1583 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1584 {
1585 return atomic_long_read(&n->nr_slabs);
1586 }
1587
inc_slabs_node(struct kmem_cache * s,int node,int objects)1588 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1589 {
1590 struct kmem_cache_node *n = get_node(s, node);
1591
1592 atomic_long_inc(&n->nr_slabs);
1593 atomic_long_add(objects, &n->total_objects);
1594 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1595 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1596 {
1597 struct kmem_cache_node *n = get_node(s, node);
1598
1599 atomic_long_dec(&n->nr_slabs);
1600 atomic_long_sub(objects, &n->total_objects);
1601 }
1602
1603 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,void * object)1604 static void setup_object_debug(struct kmem_cache *s, void *object)
1605 {
1606 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1607 return;
1608
1609 init_object(s, object, SLUB_RED_INACTIVE);
1610 init_tracking(s, object);
1611 }
1612
1613 static
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1614 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1615 {
1616 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1617 return;
1618
1619 metadata_access_enable();
1620 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1621 metadata_access_disable();
1622 }
1623
alloc_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object)1624 static inline int alloc_consistency_checks(struct kmem_cache *s,
1625 struct slab *slab, void *object)
1626 {
1627 if (!check_slab(s, slab))
1628 return 0;
1629
1630 if (!check_valid_pointer(s, slab, object)) {
1631 object_err(s, slab, object, "Freelist Pointer check fails");
1632 return 0;
1633 }
1634
1635 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1636 return 0;
1637
1638 return 1;
1639 }
1640
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1641 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1642 struct slab *slab, void *object, int orig_size)
1643 {
1644 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1645 if (!alloc_consistency_checks(s, slab, object))
1646 goto bad;
1647 }
1648
1649 /* Success. Perform special debug activities for allocs */
1650 trace(s, slab, object, 1);
1651 set_orig_size(s, object, orig_size);
1652 init_object(s, object, SLUB_RED_ACTIVE);
1653 return true;
1654
1655 bad:
1656 if (folio_test_slab(slab_folio(slab))) {
1657 /*
1658 * If this is a slab page then lets do the best we can
1659 * to avoid issues in the future. Marking all objects
1660 * as used avoids touching the remaining objects.
1661 */
1662 slab_fix(s, "Marking all objects used");
1663 slab->inuse = slab->objects;
1664 slab->freelist = NULL;
1665 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1666 }
1667 return false;
1668 }
1669
free_consistency_checks(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)1670 static inline int free_consistency_checks(struct kmem_cache *s,
1671 struct slab *slab, void *object, unsigned long addr)
1672 {
1673 if (!check_valid_pointer(s, slab, object)) {
1674 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1675 return 0;
1676 }
1677
1678 if (on_freelist(s, slab, object)) {
1679 object_err(s, slab, object, "Object already free");
1680 return 0;
1681 }
1682
1683 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1684 return 0;
1685
1686 if (unlikely(s != slab->slab_cache)) {
1687 if (!folio_test_slab(slab_folio(slab))) {
1688 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1689 object);
1690 } else if (!slab->slab_cache) {
1691 slab_err(NULL, slab, "No slab cache for object 0x%p",
1692 object);
1693 } else {
1694 object_err(s, slab, object,
1695 "page slab pointer corrupt.");
1696 }
1697 return 0;
1698 }
1699 return 1;
1700 }
1701
1702 /*
1703 * Parse a block of slab_debug options. Blocks are delimited by ';'
1704 *
1705 * @str: start of block
1706 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1707 * @slabs: return start of list of slabs, or NULL when there's no list
1708 * @init: assume this is initial parsing and not per-kmem-create parsing
1709 *
1710 * returns the start of next block if there's any, or NULL
1711 */
1712 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1713 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1714 {
1715 bool higher_order_disable = false;
1716
1717 /* Skip any completely empty blocks */
1718 while (*str && *str == ';')
1719 str++;
1720
1721 if (*str == ',') {
1722 /*
1723 * No options but restriction on slabs. This means full
1724 * debugging for slabs matching a pattern.
1725 */
1726 *flags = DEBUG_DEFAULT_FLAGS;
1727 goto check_slabs;
1728 }
1729 *flags = 0;
1730
1731 /* Determine which debug features should be switched on */
1732 for (; *str && *str != ',' && *str != ';'; str++) {
1733 switch (tolower(*str)) {
1734 case '-':
1735 *flags = 0;
1736 break;
1737 case 'f':
1738 *flags |= SLAB_CONSISTENCY_CHECKS;
1739 break;
1740 case 'z':
1741 *flags |= SLAB_RED_ZONE;
1742 break;
1743 case 'p':
1744 *flags |= SLAB_POISON;
1745 break;
1746 case 'u':
1747 *flags |= SLAB_STORE_USER;
1748 break;
1749 case 't':
1750 *flags |= SLAB_TRACE;
1751 break;
1752 case 'a':
1753 *flags |= SLAB_FAILSLAB;
1754 break;
1755 case 'o':
1756 /*
1757 * Avoid enabling debugging on caches if its minimum
1758 * order would increase as a result.
1759 */
1760 higher_order_disable = true;
1761 break;
1762 default:
1763 if (init)
1764 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1765 }
1766 }
1767 check_slabs:
1768 if (*str == ',')
1769 *slabs = ++str;
1770 else
1771 *slabs = NULL;
1772
1773 /* Skip over the slab list */
1774 while (*str && *str != ';')
1775 str++;
1776
1777 /* Skip any completely empty blocks */
1778 while (*str && *str == ';')
1779 str++;
1780
1781 if (init && higher_order_disable)
1782 disable_higher_order_debug = 1;
1783
1784 if (*str)
1785 return str;
1786 else
1787 return NULL;
1788 }
1789
setup_slub_debug(char * str)1790 static int __init setup_slub_debug(char *str)
1791 {
1792 slab_flags_t flags;
1793 slab_flags_t global_flags;
1794 char *saved_str;
1795 char *slab_list;
1796 bool global_slub_debug_changed = false;
1797 bool slab_list_specified = false;
1798
1799 global_flags = DEBUG_DEFAULT_FLAGS;
1800 if (*str++ != '=' || !*str)
1801 /*
1802 * No options specified. Switch on full debugging.
1803 */
1804 goto out;
1805
1806 saved_str = str;
1807 while (str) {
1808 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1809
1810 if (!slab_list) {
1811 global_flags = flags;
1812 global_slub_debug_changed = true;
1813 } else {
1814 slab_list_specified = true;
1815 if (flags & SLAB_STORE_USER)
1816 stack_depot_request_early_init();
1817 }
1818 }
1819
1820 /*
1821 * For backwards compatibility, a single list of flags with list of
1822 * slabs means debugging is only changed for those slabs, so the global
1823 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1824 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1825 * long as there is no option specifying flags without a slab list.
1826 */
1827 if (slab_list_specified) {
1828 if (!global_slub_debug_changed)
1829 global_flags = slub_debug;
1830 slub_debug_string = saved_str;
1831 }
1832 out:
1833 slub_debug = global_flags;
1834 if (slub_debug & SLAB_STORE_USER)
1835 stack_depot_request_early_init();
1836 if (slub_debug != 0 || slub_debug_string)
1837 static_branch_enable(&slub_debug_enabled);
1838 else
1839 static_branch_disable(&slub_debug_enabled);
1840 if ((static_branch_unlikely(&init_on_alloc) ||
1841 static_branch_unlikely(&init_on_free)) &&
1842 (slub_debug & SLAB_POISON))
1843 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1844 return 1;
1845 }
1846
1847 __setup("slab_debug", setup_slub_debug);
1848 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1849
1850 /*
1851 * kmem_cache_flags - apply debugging options to the cache
1852 * @flags: flags to set
1853 * @name: name of the cache
1854 *
1855 * Debug option(s) are applied to @flags. In addition to the debug
1856 * option(s), if a slab name (or multiple) is specified i.e.
1857 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1858 * then only the select slabs will receive the debug option(s).
1859 */
kmem_cache_flags(slab_flags_t flags,const char * name)1860 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1861 {
1862 char *iter;
1863 size_t len;
1864 char *next_block;
1865 slab_flags_t block_flags;
1866 slab_flags_t slub_debug_local = slub_debug;
1867
1868 if (flags & SLAB_NO_USER_FLAGS)
1869 return flags;
1870
1871 /*
1872 * If the slab cache is for debugging (e.g. kmemleak) then
1873 * don't store user (stack trace) information by default,
1874 * but let the user enable it via the command line below.
1875 */
1876 if (flags & SLAB_NOLEAKTRACE)
1877 slub_debug_local &= ~SLAB_STORE_USER;
1878
1879 len = strlen(name);
1880 next_block = slub_debug_string;
1881 /* Go through all blocks of debug options, see if any matches our slab's name */
1882 while (next_block) {
1883 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1884 if (!iter)
1885 continue;
1886 /* Found a block that has a slab list, search it */
1887 while (*iter) {
1888 char *end, *glob;
1889 size_t cmplen;
1890
1891 end = strchrnul(iter, ',');
1892 if (next_block && next_block < end)
1893 end = next_block - 1;
1894
1895 glob = strnchr(iter, end - iter, '*');
1896 if (glob)
1897 cmplen = glob - iter;
1898 else
1899 cmplen = max_t(size_t, len, (end - iter));
1900
1901 if (!strncmp(name, iter, cmplen)) {
1902 flags |= block_flags;
1903 return flags;
1904 }
1905
1906 if (!*end || *end == ';')
1907 break;
1908 iter = end + 1;
1909 }
1910 }
1911
1912 return flags | slub_debug_local;
1913 }
1914 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,void * object)1915 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1916 static inline
setup_slab_debug(struct kmem_cache * s,struct slab * slab,void * addr)1917 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1918
alloc_debug_processing(struct kmem_cache * s,struct slab * slab,void * object,int orig_size)1919 static inline bool alloc_debug_processing(struct kmem_cache *s,
1920 struct slab *slab, void *object, int orig_size) { return true; }
1921
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)1922 static inline bool free_debug_processing(struct kmem_cache *s,
1923 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1924 unsigned long addr, depot_stack_handle_t handle) { return true; }
1925
slab_pad_check(struct kmem_cache * s,struct slab * slab)1926 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
check_object(struct kmem_cache * s,struct slab * slab,void * object,u8 val)1927 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1928 void *object, u8 val) { return 1; }
set_track_prepare(gfp_t gfp_flags)1929 static inline depot_stack_handle_t set_track_prepare(gfp_t gfp_flags) { return 0; }
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr,gfp_t gfp_flags)1930 static inline void set_track(struct kmem_cache *s, void *object,
1931 enum track_item alloc, unsigned long addr, gfp_t gfp_flags) {}
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1932 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1933 struct slab *slab) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab)1934 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1935 struct slab *slab) {}
kmem_cache_flags(slab_flags_t flags,const char * name)1936 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1937 {
1938 return flags;
1939 }
1940 #define slub_debug 0
1941
1942 #define disable_higher_order_debug 0
1943
node_nr_slabs(struct kmem_cache_node * n)1944 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1945 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1946 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1947 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1948 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1949 int objects) {}
1950 #ifndef CONFIG_SLUB_TINY
freelist_corrupted(struct kmem_cache * s,struct slab * slab,void ** freelist,void * nextfree)1951 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1952 void **freelist, void *nextfree)
1953 {
1954 return false;
1955 }
1956 #endif
1957 #endif /* CONFIG_SLUB_DEBUG */
1958
1959 #ifdef CONFIG_SLAB_OBJ_EXT
1960
1961 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1962
mark_objexts_empty(struct slabobj_ext * obj_exts)1963 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1964 {
1965 struct slabobj_ext *slab_exts;
1966 struct slab *obj_exts_slab;
1967
1968 obj_exts_slab = virt_to_slab(obj_exts);
1969 slab_exts = slab_obj_exts(obj_exts_slab);
1970 if (slab_exts) {
1971 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1972 obj_exts_slab, obj_exts);
1973 /* codetag should be NULL */
1974 WARN_ON(slab_exts[offs].ref.ct);
1975 set_codetag_empty(&slab_exts[offs].ref);
1976 }
1977 }
1978
mark_failed_objexts_alloc(struct slab * slab)1979 static inline void mark_failed_objexts_alloc(struct slab *slab)
1980 {
1981 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1982 }
1983
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)1984 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1985 struct slabobj_ext *vec, unsigned int objects)
1986 {
1987 /*
1988 * If vector previously failed to allocate then we have live
1989 * objects with no tag reference. Mark all references in this
1990 * vector as empty to avoid warnings later on.
1991 */
1992 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1993 unsigned int i;
1994
1995 for (i = 0; i < objects; i++)
1996 set_codetag_empty(&vec[i].ref);
1997 }
1998 }
1999
2000 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2001
mark_objexts_empty(struct slabobj_ext * obj_exts)2002 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
mark_failed_objexts_alloc(struct slab * slab)2003 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
handle_failed_objexts_alloc(unsigned long obj_exts,struct slabobj_ext * vec,unsigned int objects)2004 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
2005 struct slabobj_ext *vec, unsigned int objects) {}
2006
2007 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
2008
2009 /*
2010 * The allocated objcg pointers array is not accounted directly.
2011 * Moreover, it should not come from DMA buffer and is not readily
2012 * reclaimable. So those GFP bits should be masked off.
2013 */
2014 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
2015 __GFP_ACCOUNT | __GFP_NOFAIL)
2016
init_slab_obj_exts(struct slab * slab)2017 static inline void init_slab_obj_exts(struct slab *slab)
2018 {
2019 slab->obj_exts = 0;
2020 }
2021
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2022 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2023 gfp_t gfp, bool new_slab)
2024 {
2025 unsigned int objects = objs_per_slab(s, slab);
2026 unsigned long new_exts;
2027 unsigned long old_exts;
2028 struct slabobj_ext *vec;
2029
2030 gfp &= ~OBJCGS_CLEAR_MASK;
2031 /* Prevent recursive extension vector allocation */
2032 gfp |= __GFP_NO_OBJ_EXT;
2033 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
2034 slab_nid(slab));
2035 if (!vec) {
2036 /* Mark vectors which failed to allocate */
2037 if (new_slab)
2038 mark_failed_objexts_alloc(slab);
2039
2040 return -ENOMEM;
2041 }
2042
2043 new_exts = (unsigned long)vec;
2044 #ifdef CONFIG_MEMCG
2045 new_exts |= MEMCG_DATA_OBJEXTS;
2046 #endif
2047 old_exts = READ_ONCE(slab->obj_exts);
2048 handle_failed_objexts_alloc(old_exts, vec, objects);
2049 if (new_slab) {
2050 /*
2051 * If the slab is brand new and nobody can yet access its
2052 * obj_exts, no synchronization is required and obj_exts can
2053 * be simply assigned.
2054 */
2055 slab->obj_exts = new_exts;
2056 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
2057 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
2058 /*
2059 * If the slab is already in use, somebody can allocate and
2060 * assign slabobj_exts in parallel. In this case the existing
2061 * objcg vector should be reused.
2062 */
2063 mark_objexts_empty(vec);
2064 kfree(vec);
2065 return 0;
2066 }
2067
2068 kmemleak_not_leak(vec);
2069 return 0;
2070 }
2071
free_slab_obj_exts(struct slab * slab)2072 static inline void free_slab_obj_exts(struct slab *slab)
2073 {
2074 struct slabobj_ext *obj_exts;
2075
2076 obj_exts = slab_obj_exts(slab);
2077 if (!obj_exts)
2078 return;
2079
2080 /*
2081 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2082 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2083 * warning if slab has extensions but the extension of an object is
2084 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2085 * the extension for obj_exts is expected to be NULL.
2086 */
2087 mark_objexts_empty(obj_exts);
2088 kfree(obj_exts);
2089 slab->obj_exts = 0;
2090 }
2091
2092 #else /* CONFIG_SLAB_OBJ_EXT */
2093
init_slab_obj_exts(struct slab * slab)2094 static inline void init_slab_obj_exts(struct slab *slab)
2095 {
2096 }
2097
alloc_slab_obj_exts(struct slab * slab,struct kmem_cache * s,gfp_t gfp,bool new_slab)2098 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2099 gfp_t gfp, bool new_slab)
2100 {
2101 return 0;
2102 }
2103
free_slab_obj_exts(struct slab * slab)2104 static inline void free_slab_obj_exts(struct slab *slab)
2105 {
2106 }
2107
2108 #endif /* CONFIG_SLAB_OBJ_EXT */
2109
2110 #ifdef CONFIG_MEM_ALLOC_PROFILING
2111
2112 static inline struct slabobj_ext *
prepare_slab_obj_exts_hook(struct kmem_cache * s,gfp_t flags,void * p)2113 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2114 {
2115 struct slab *slab;
2116
2117 if (!p)
2118 return NULL;
2119
2120 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2121 return NULL;
2122
2123 if (flags & __GFP_NO_OBJ_EXT)
2124 return NULL;
2125
2126 slab = virt_to_slab(p);
2127 if (!slab_obj_exts(slab) &&
2128 alloc_slab_obj_exts(slab, s, flags, false)) {
2129 pr_warn_once("%s, %s: Failed to create slab extension vector!\n",
2130 __func__, s->name);
2131 return NULL;
2132 }
2133
2134 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2135 }
2136
2137 /* Should be called only if mem_alloc_profiling_enabled() */
2138 static noinline void
__alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2139 __alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2140 {
2141 struct slabobj_ext *obj_exts;
2142
2143 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2144 /*
2145 * Currently obj_exts is used only for allocation profiling.
2146 * If other users appear then mem_alloc_profiling_enabled()
2147 * check should be added before alloc_tag_add().
2148 */
2149 if (likely(obj_exts))
2150 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2151 }
2152
2153 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2154 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2155 {
2156 if (mem_alloc_profiling_enabled())
2157 __alloc_tagging_slab_alloc_hook(s, object, flags);
2158 }
2159
2160 /* Should be called only if mem_alloc_profiling_enabled() */
2161 static noinline void
__alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2162 __alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2163 int objects)
2164 {
2165 struct slabobj_ext *obj_exts;
2166 int i;
2167
2168 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2169 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2170 return;
2171
2172 obj_exts = slab_obj_exts(slab);
2173 if (!obj_exts)
2174 return;
2175
2176 for (i = 0; i < objects; i++) {
2177 unsigned int off = obj_to_index(s, slab, p[i]);
2178
2179 alloc_tag_sub(&obj_exts[off].ref, s->size);
2180 }
2181 }
2182
2183 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2184 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2185 int objects)
2186 {
2187 if (mem_alloc_profiling_enabled())
2188 __alloc_tagging_slab_free_hook(s, slab, p, objects);
2189 }
2190
2191 #else /* CONFIG_MEM_ALLOC_PROFILING */
2192
2193 static inline void
alloc_tagging_slab_alloc_hook(struct kmem_cache * s,void * object,gfp_t flags)2194 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2195 {
2196 }
2197
2198 static inline void
alloc_tagging_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2199 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2200 int objects)
2201 {
2202 }
2203
2204 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2205
2206
2207 #ifdef CONFIG_MEMCG
2208
2209 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2210
2211 static __fastpath_inline
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2212 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2213 gfp_t flags, size_t size, void **p)
2214 {
2215 if (likely(!memcg_kmem_online()))
2216 return true;
2217
2218 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2219 return true;
2220
2221 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2222 return true;
2223
2224 if (likely(size == 1)) {
2225 memcg_alloc_abort_single(s, *p);
2226 *p = NULL;
2227 } else {
2228 kmem_cache_free_bulk(s, size, p);
2229 }
2230
2231 return false;
2232 }
2233
2234 static __fastpath_inline
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2235 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2236 int objects)
2237 {
2238 struct slabobj_ext *obj_exts;
2239
2240 if (!memcg_kmem_online())
2241 return;
2242
2243 obj_exts = slab_obj_exts(slab);
2244 if (likely(!obj_exts))
2245 return;
2246
2247 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2248 }
2249
2250 static __fastpath_inline
memcg_slab_post_charge(void * p,gfp_t flags)2251 bool memcg_slab_post_charge(void *p, gfp_t flags)
2252 {
2253 struct slabobj_ext *slab_exts;
2254 struct kmem_cache *s;
2255 struct folio *folio;
2256 struct slab *slab;
2257 unsigned long off;
2258
2259 folio = virt_to_folio(p);
2260 if (!folio_test_slab(folio)) {
2261 int size;
2262
2263 if (folio_memcg_kmem(folio))
2264 return true;
2265
2266 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2267 folio_order(folio)))
2268 return false;
2269
2270 /*
2271 * This folio has already been accounted in the global stats but
2272 * not in the memcg stats. So, subtract from the global and use
2273 * the interface which adds to both global and memcg stats.
2274 */
2275 size = folio_size(folio);
2276 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2277 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2278 return true;
2279 }
2280
2281 slab = folio_slab(folio);
2282 s = slab->slab_cache;
2283
2284 /*
2285 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2286 * of slab_obj_exts being allocated from the same slab and thus the slab
2287 * becoming effectively unfreeable.
2288 */
2289 if (is_kmalloc_normal(s))
2290 return true;
2291
2292 /* Ignore already charged objects. */
2293 slab_exts = slab_obj_exts(slab);
2294 if (slab_exts) {
2295 off = obj_to_index(s, slab, p);
2296 if (unlikely(slab_exts[off].objcg))
2297 return true;
2298 }
2299
2300 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2301 }
2302
2303 #else /* CONFIG_MEMCG */
memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)2304 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2305 struct list_lru *lru,
2306 gfp_t flags, size_t size,
2307 void **p)
2308 {
2309 return true;
2310 }
2311
memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects)2312 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2313 void **p, int objects)
2314 {
2315 }
2316
memcg_slab_post_charge(void * p,gfp_t flags)2317 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2318 {
2319 return true;
2320 }
2321 #endif /* CONFIG_MEMCG */
2322
2323 #ifdef CONFIG_SLUB_RCU_DEBUG
2324 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2325
2326 struct rcu_delayed_free {
2327 struct rcu_head head;
2328 void *object;
2329 };
2330 #endif
2331
2332 /*
2333 * Hooks for other subsystems that check memory allocations. In a typical
2334 * production configuration these hooks all should produce no code at all.
2335 *
2336 * Returns true if freeing of the object can proceed, false if its reuse
2337 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2338 * to KFENCE.
2339 */
2340 static __always_inline
slab_free_hook(struct kmem_cache * s,void * x,bool init,bool after_rcu_delay)2341 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2342 bool after_rcu_delay)
2343 {
2344 /* Are the object contents still accessible? */
2345 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2346
2347 kmemleak_free_recursive(x, s->flags);
2348 kmsan_slab_free(s, x);
2349
2350 debug_check_no_locks_freed(x, s->object_size);
2351
2352 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2353 debug_check_no_obj_freed(x, s->object_size);
2354
2355 /* Use KCSAN to help debug racy use-after-free. */
2356 if (!still_accessible)
2357 __kcsan_check_access(x, s->object_size,
2358 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2359
2360 if (kfence_free(x))
2361 return false;
2362
2363 /*
2364 * Give KASAN a chance to notice an invalid free operation before we
2365 * modify the object.
2366 */
2367 if (kasan_slab_pre_free(s, x))
2368 return false;
2369
2370 #ifdef CONFIG_SLUB_RCU_DEBUG
2371 if (still_accessible) {
2372 struct rcu_delayed_free *delayed_free;
2373
2374 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2375 if (delayed_free) {
2376 /*
2377 * Let KASAN track our call stack as a "related work
2378 * creation", just like if the object had been freed
2379 * normally via kfree_rcu().
2380 * We have to do this manually because the rcu_head is
2381 * not located inside the object.
2382 */
2383 kasan_record_aux_stack(x);
2384
2385 delayed_free->object = x;
2386 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2387 return false;
2388 }
2389 }
2390 #endif /* CONFIG_SLUB_RCU_DEBUG */
2391
2392 /*
2393 * As memory initialization might be integrated into KASAN,
2394 * kasan_slab_free and initialization memset's must be
2395 * kept together to avoid discrepancies in behavior.
2396 *
2397 * The initialization memset's clear the object and the metadata,
2398 * but don't touch the SLAB redzone.
2399 *
2400 * The object's freepointer is also avoided if stored outside the
2401 * object.
2402 */
2403 if (unlikely(init)) {
2404 int rsize;
2405 unsigned int inuse, orig_size;
2406
2407 inuse = get_info_end(s);
2408 orig_size = get_orig_size(s, x);
2409 if (!kasan_has_integrated_init())
2410 memset(kasan_reset_tag(x), 0, orig_size);
2411 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2412 memset((char *)kasan_reset_tag(x) + inuse, 0,
2413 s->size - inuse - rsize);
2414 /*
2415 * Restore orig_size, otherwize kmalloc redzone overwritten
2416 * would be reported
2417 */
2418 set_orig_size(s, x, orig_size);
2419
2420 }
2421 /* KASAN might put x into memory quarantine, delaying its reuse. */
2422 return !kasan_slab_free(s, x, init, still_accessible);
2423 }
2424
2425 static __fastpath_inline
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)2426 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2427 int *cnt)
2428 {
2429
2430 void *object;
2431 void *next = *head;
2432 void *old_tail = *tail;
2433 bool init;
2434
2435 if (is_kfence_address(next)) {
2436 slab_free_hook(s, next, false, false);
2437 return false;
2438 }
2439
2440 /* Head and tail of the reconstructed freelist */
2441 *head = NULL;
2442 *tail = NULL;
2443
2444 init = slab_want_init_on_free(s);
2445
2446 do {
2447 object = next;
2448 next = get_freepointer(s, object);
2449
2450 /* If object's reuse doesn't have to be delayed */
2451 if (likely(slab_free_hook(s, object, init, false))) {
2452 /* Move object to the new freelist */
2453 set_freepointer(s, object, *head);
2454 *head = object;
2455 if (!*tail)
2456 *tail = object;
2457 } else {
2458 /*
2459 * Adjust the reconstructed freelist depth
2460 * accordingly if object's reuse is delayed.
2461 */
2462 --(*cnt);
2463 }
2464 } while (object != old_tail);
2465
2466 return *head != NULL;
2467 }
2468
setup_object(struct kmem_cache * s,void * object)2469 static void *setup_object(struct kmem_cache *s, void *object)
2470 {
2471 setup_object_debug(s, object);
2472 object = kasan_init_slab_obj(s, object);
2473 if (unlikely(s->ctor)) {
2474 kasan_unpoison_new_object(s, object);
2475 s->ctor(object);
2476 kasan_poison_new_object(s, object);
2477 }
2478 return object;
2479 }
2480
2481 /*
2482 * Slab allocation and freeing
2483 */
alloc_slab_page(gfp_t flags,int node,struct kmem_cache_order_objects oo)2484 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2485 struct kmem_cache_order_objects oo)
2486 {
2487 struct folio *folio;
2488 struct slab *slab;
2489 unsigned int order = oo_order(oo);
2490
2491 if (node == NUMA_NO_NODE)
2492 folio = (struct folio *)alloc_frozen_pages(flags, order);
2493 else
2494 folio = (struct folio *)__alloc_frozen_pages(flags, order, node, NULL);
2495
2496 if (!folio)
2497 return NULL;
2498
2499 slab = folio_slab(folio);
2500 __folio_set_slab(folio);
2501 if (folio_is_pfmemalloc(folio))
2502 slab_set_pfmemalloc(slab);
2503
2504 return slab;
2505 }
2506
2507 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2508 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)2509 static int init_cache_random_seq(struct kmem_cache *s)
2510 {
2511 unsigned int count = oo_objects(s->oo);
2512 int err;
2513
2514 /* Bailout if already initialised */
2515 if (s->random_seq)
2516 return 0;
2517
2518 err = cache_random_seq_create(s, count, GFP_KERNEL);
2519 if (err) {
2520 pr_err("SLUB: Unable to initialize free list for %s\n",
2521 s->name);
2522 return err;
2523 }
2524
2525 /* Transform to an offset on the set of pages */
2526 if (s->random_seq) {
2527 unsigned int i;
2528
2529 for (i = 0; i < count; i++)
2530 s->random_seq[i] *= s->size;
2531 }
2532 return 0;
2533 }
2534
2535 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)2536 static void __init init_freelist_randomization(void)
2537 {
2538 struct kmem_cache *s;
2539
2540 mutex_lock(&slab_mutex);
2541
2542 list_for_each_entry(s, &slab_caches, list)
2543 init_cache_random_seq(s);
2544
2545 mutex_unlock(&slab_mutex);
2546 }
2547
2548 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)2549 static void *next_freelist_entry(struct kmem_cache *s,
2550 unsigned long *pos, void *start,
2551 unsigned long page_limit,
2552 unsigned long freelist_count)
2553 {
2554 unsigned int idx;
2555
2556 /*
2557 * If the target page allocation failed, the number of objects on the
2558 * page might be smaller than the usual size defined by the cache.
2559 */
2560 do {
2561 idx = s->random_seq[*pos];
2562 *pos += 1;
2563 if (*pos >= freelist_count)
2564 *pos = 0;
2565 } while (unlikely(idx >= page_limit));
2566
2567 return (char *)start + idx;
2568 }
2569
2570 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2571 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2572 {
2573 void *start;
2574 void *cur;
2575 void *next;
2576 unsigned long idx, pos, page_limit, freelist_count;
2577
2578 if (slab->objects < 2 || !s->random_seq)
2579 return false;
2580
2581 freelist_count = oo_objects(s->oo);
2582 pos = get_random_u32_below(freelist_count);
2583
2584 page_limit = slab->objects * s->size;
2585 start = fixup_red_left(s, slab_address(slab));
2586
2587 /* First entry is used as the base of the freelist */
2588 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2589 cur = setup_object(s, cur);
2590 slab->freelist = cur;
2591
2592 for (idx = 1; idx < slab->objects; idx++) {
2593 next = next_freelist_entry(s, &pos, start, page_limit,
2594 freelist_count);
2595 next = setup_object(s, next);
2596 set_freepointer(s, cur, next);
2597 cur = next;
2598 }
2599 set_freepointer(s, cur, NULL);
2600
2601 return true;
2602 }
2603 #else
init_cache_random_seq(struct kmem_cache * s)2604 static inline int init_cache_random_seq(struct kmem_cache *s)
2605 {
2606 return 0;
2607 }
init_freelist_randomization(void)2608 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct slab * slab)2609 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2610 {
2611 return false;
2612 }
2613 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2614
account_slab(struct slab * slab,int order,struct kmem_cache * s,gfp_t gfp)2615 static __always_inline void account_slab(struct slab *slab, int order,
2616 struct kmem_cache *s, gfp_t gfp)
2617 {
2618 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2619 alloc_slab_obj_exts(slab, s, gfp, true);
2620
2621 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2622 PAGE_SIZE << order);
2623 }
2624
unaccount_slab(struct slab * slab,int order,struct kmem_cache * s)2625 static __always_inline void unaccount_slab(struct slab *slab, int order,
2626 struct kmem_cache *s)
2627 {
2628 /*
2629 * The slab object extensions should now be freed regardless of
2630 * whether mem_alloc_profiling_enabled() or not because profiling
2631 * might have been disabled after slab->obj_exts got allocated.
2632 */
2633 free_slab_obj_exts(slab);
2634
2635 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2636 -(PAGE_SIZE << order));
2637 }
2638
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)2639 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2640 {
2641 struct slab *slab;
2642 struct kmem_cache_order_objects oo = s->oo;
2643 gfp_t alloc_gfp;
2644 void *start, *p, *next;
2645 int idx;
2646 bool shuffle;
2647
2648 flags &= gfp_allowed_mask;
2649
2650 flags |= s->allocflags;
2651
2652 /*
2653 * Let the initial higher-order allocation fail under memory pressure
2654 * so we fall-back to the minimum order allocation.
2655 */
2656 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2657 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2658 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2659
2660 slab = alloc_slab_page(alloc_gfp, node, oo);
2661 if (unlikely(!slab)) {
2662 oo = s->min;
2663 alloc_gfp = flags;
2664 /*
2665 * Allocation may have failed due to fragmentation.
2666 * Try a lower order alloc if possible
2667 */
2668 slab = alloc_slab_page(alloc_gfp, node, oo);
2669 if (unlikely(!slab))
2670 return NULL;
2671 stat(s, ORDER_FALLBACK);
2672 }
2673
2674 slab->objects = oo_objects(oo);
2675 slab->inuse = 0;
2676 slab->frozen = 0;
2677 init_slab_obj_exts(slab);
2678
2679 account_slab(slab, oo_order(oo), s, flags);
2680
2681 slab->slab_cache = s;
2682
2683 kasan_poison_slab(slab);
2684
2685 start = slab_address(slab);
2686
2687 setup_slab_debug(s, slab, start);
2688
2689 shuffle = shuffle_freelist(s, slab);
2690
2691 if (!shuffle) {
2692 start = fixup_red_left(s, start);
2693 start = setup_object(s, start);
2694 slab->freelist = start;
2695 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2696 next = p + s->size;
2697 next = setup_object(s, next);
2698 set_freepointer(s, p, next);
2699 p = next;
2700 }
2701 set_freepointer(s, p, NULL);
2702 }
2703
2704 return slab;
2705 }
2706
new_slab(struct kmem_cache * s,gfp_t flags,int node)2707 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2708 {
2709 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2710 flags = kmalloc_fix_flags(flags);
2711
2712 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2713
2714 return allocate_slab(s,
2715 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2716 }
2717
__free_slab(struct kmem_cache * s,struct slab * slab)2718 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2719 {
2720 struct folio *folio = slab_folio(slab);
2721 int order = folio_order(folio);
2722 int pages = 1 << order;
2723
2724 __slab_clear_pfmemalloc(slab);
2725 folio->mapping = NULL;
2726 __folio_clear_slab(folio);
2727 mm_account_reclaimed_pages(pages);
2728 unaccount_slab(slab, order, s);
2729 free_frozen_pages(&folio->page, order);
2730 }
2731
rcu_free_slab(struct rcu_head * h)2732 static void rcu_free_slab(struct rcu_head *h)
2733 {
2734 struct slab *slab = container_of(h, struct slab, rcu_head);
2735
2736 __free_slab(slab->slab_cache, slab);
2737 }
2738
free_slab(struct kmem_cache * s,struct slab * slab)2739 static void free_slab(struct kmem_cache *s, struct slab *slab)
2740 {
2741 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2742 void *p;
2743
2744 slab_pad_check(s, slab);
2745 for_each_object(p, s, slab_address(slab), slab->objects)
2746 check_object(s, slab, p, SLUB_RED_INACTIVE);
2747 }
2748
2749 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2750 call_rcu(&slab->rcu_head, rcu_free_slab);
2751 else
2752 __free_slab(s, slab);
2753 }
2754
discard_slab(struct kmem_cache * s,struct slab * slab)2755 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2756 {
2757 dec_slabs_node(s, slab_nid(slab), slab->objects);
2758 free_slab(s, slab);
2759 }
2760
slab_test_node_partial(const struct slab * slab)2761 static inline bool slab_test_node_partial(const struct slab *slab)
2762 {
2763 return test_bit(SL_partial, &slab->flags);
2764 }
2765
slab_set_node_partial(struct slab * slab)2766 static inline void slab_set_node_partial(struct slab *slab)
2767 {
2768 set_bit(SL_partial, &slab->flags);
2769 }
2770
slab_clear_node_partial(struct slab * slab)2771 static inline void slab_clear_node_partial(struct slab *slab)
2772 {
2773 clear_bit(SL_partial, &slab->flags);
2774 }
2775
2776 /*
2777 * Management of partially allocated slabs.
2778 */
2779 static inline void
__add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2780 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2781 {
2782 n->nr_partial++;
2783 if (tail == DEACTIVATE_TO_TAIL)
2784 list_add_tail(&slab->slab_list, &n->partial);
2785 else
2786 list_add(&slab->slab_list, &n->partial);
2787 slab_set_node_partial(slab);
2788 }
2789
add_partial(struct kmem_cache_node * n,struct slab * slab,int tail)2790 static inline void add_partial(struct kmem_cache_node *n,
2791 struct slab *slab, int tail)
2792 {
2793 lockdep_assert_held(&n->list_lock);
2794 __add_partial(n, slab, tail);
2795 }
2796
remove_partial(struct kmem_cache_node * n,struct slab * slab)2797 static inline void remove_partial(struct kmem_cache_node *n,
2798 struct slab *slab)
2799 {
2800 lockdep_assert_held(&n->list_lock);
2801 list_del(&slab->slab_list);
2802 slab_clear_node_partial(slab);
2803 n->nr_partial--;
2804 }
2805
2806 /*
2807 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2808 * slab from the n->partial list. Remove only a single object from the slab, do
2809 * the alloc_debug_processing() checks and leave the slab on the list, or move
2810 * it to full list if it was the last free object.
2811 */
alloc_single_from_partial(struct kmem_cache * s,struct kmem_cache_node * n,struct slab * slab,int orig_size)2812 static void *alloc_single_from_partial(struct kmem_cache *s,
2813 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2814 {
2815 void *object;
2816
2817 lockdep_assert_held(&n->list_lock);
2818
2819 object = slab->freelist;
2820 slab->freelist = get_freepointer(s, object);
2821 slab->inuse++;
2822
2823 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2824 if (folio_test_slab(slab_folio(slab)))
2825 remove_partial(n, slab);
2826 return NULL;
2827 }
2828
2829 if (slab->inuse == slab->objects) {
2830 remove_partial(n, slab);
2831 add_full(s, n, slab);
2832 }
2833
2834 return object;
2835 }
2836
2837 /*
2838 * Called only for kmem_cache_debug() caches to allocate from a freshly
2839 * allocated slab. Allocate a single object instead of whole freelist
2840 * and put the slab to the partial (or full) list.
2841 */
alloc_single_from_new_slab(struct kmem_cache * s,struct slab * slab,int orig_size)2842 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2843 struct slab *slab, int orig_size)
2844 {
2845 int nid = slab_nid(slab);
2846 struct kmem_cache_node *n = get_node(s, nid);
2847 unsigned long flags;
2848 void *object;
2849
2850
2851 object = slab->freelist;
2852 slab->freelist = get_freepointer(s, object);
2853 slab->inuse = 1;
2854
2855 if (!alloc_debug_processing(s, slab, object, orig_size))
2856 /*
2857 * It's not really expected that this would fail on a
2858 * freshly allocated slab, but a concurrent memory
2859 * corruption in theory could cause that.
2860 */
2861 return NULL;
2862
2863 spin_lock_irqsave(&n->list_lock, flags);
2864
2865 if (slab->inuse == slab->objects)
2866 add_full(s, n, slab);
2867 else
2868 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2869
2870 inc_slabs_node(s, nid, slab->objects);
2871 spin_unlock_irqrestore(&n->list_lock, flags);
2872
2873 return object;
2874 }
2875
2876 #ifdef CONFIG_SLUB_CPU_PARTIAL
2877 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2878 #else
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)2879 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2880 int drain) { }
2881 #endif
2882 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2883
2884 /*
2885 * Try to allocate a partial slab from a specific node.
2886 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct partial_context * pc)2887 static struct slab *get_partial_node(struct kmem_cache *s,
2888 struct kmem_cache_node *n,
2889 struct partial_context *pc)
2890 {
2891 struct slab *slab, *slab2, *partial = NULL;
2892 unsigned long flags;
2893 unsigned int partial_slabs = 0;
2894
2895 /*
2896 * Racy check. If we mistakenly see no partial slabs then we
2897 * just allocate an empty slab. If we mistakenly try to get a
2898 * partial slab and there is none available then get_partial()
2899 * will return NULL.
2900 */
2901 if (!n || !n->nr_partial)
2902 return NULL;
2903
2904 spin_lock_irqsave(&n->list_lock, flags);
2905 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2906 if (!pfmemalloc_match(slab, pc->flags))
2907 continue;
2908
2909 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2910 void *object = alloc_single_from_partial(s, n, slab,
2911 pc->orig_size);
2912 if (object) {
2913 partial = slab;
2914 pc->object = object;
2915 break;
2916 }
2917 continue;
2918 }
2919
2920 remove_partial(n, slab);
2921
2922 if (!partial) {
2923 partial = slab;
2924 stat(s, ALLOC_FROM_PARTIAL);
2925
2926 if ((slub_get_cpu_partial(s) == 0)) {
2927 break;
2928 }
2929 } else {
2930 put_cpu_partial(s, slab, 0);
2931 stat(s, CPU_PARTIAL_NODE);
2932
2933 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2934 break;
2935 }
2936 }
2937 }
2938 spin_unlock_irqrestore(&n->list_lock, flags);
2939 return partial;
2940 }
2941
2942 /*
2943 * Get a slab from somewhere. Search in increasing NUMA distances.
2944 */
get_any_partial(struct kmem_cache * s,struct partial_context * pc)2945 static struct slab *get_any_partial(struct kmem_cache *s,
2946 struct partial_context *pc)
2947 {
2948 #ifdef CONFIG_NUMA
2949 struct zonelist *zonelist;
2950 struct zoneref *z;
2951 struct zone *zone;
2952 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2953 struct slab *slab;
2954 unsigned int cpuset_mems_cookie;
2955
2956 /*
2957 * The defrag ratio allows a configuration of the tradeoffs between
2958 * inter node defragmentation and node local allocations. A lower
2959 * defrag_ratio increases the tendency to do local allocations
2960 * instead of attempting to obtain partial slabs from other nodes.
2961 *
2962 * If the defrag_ratio is set to 0 then kmalloc() always
2963 * returns node local objects. If the ratio is higher then kmalloc()
2964 * may return off node objects because partial slabs are obtained
2965 * from other nodes and filled up.
2966 *
2967 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2968 * (which makes defrag_ratio = 1000) then every (well almost)
2969 * allocation will first attempt to defrag slab caches on other nodes.
2970 * This means scanning over all nodes to look for partial slabs which
2971 * may be expensive if we do it every time we are trying to find a slab
2972 * with available objects.
2973 */
2974 if (!s->remote_node_defrag_ratio ||
2975 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2976 return NULL;
2977
2978 do {
2979 cpuset_mems_cookie = read_mems_allowed_begin();
2980 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2981 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2982 struct kmem_cache_node *n;
2983
2984 n = get_node(s, zone_to_nid(zone));
2985
2986 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2987 n->nr_partial > s->min_partial) {
2988 slab = get_partial_node(s, n, pc);
2989 if (slab) {
2990 /*
2991 * Don't check read_mems_allowed_retry()
2992 * here - if mems_allowed was updated in
2993 * parallel, that was a harmless race
2994 * between allocation and the cpuset
2995 * update
2996 */
2997 return slab;
2998 }
2999 }
3000 }
3001 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3002 #endif /* CONFIG_NUMA */
3003 return NULL;
3004 }
3005
3006 /*
3007 * Get a partial slab, lock it and return it.
3008 */
get_partial(struct kmem_cache * s,int node,struct partial_context * pc)3009 static struct slab *get_partial(struct kmem_cache *s, int node,
3010 struct partial_context *pc)
3011 {
3012 struct slab *slab;
3013 int searchnode = node;
3014
3015 if (node == NUMA_NO_NODE)
3016 searchnode = numa_mem_id();
3017
3018 slab = get_partial_node(s, get_node(s, searchnode), pc);
3019 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
3020 return slab;
3021
3022 return get_any_partial(s, pc);
3023 }
3024
3025 #ifndef CONFIG_SLUB_TINY
3026
3027 #ifdef CONFIG_PREEMPTION
3028 /*
3029 * Calculate the next globally unique transaction for disambiguation
3030 * during cmpxchg. The transactions start with the cpu number and are then
3031 * incremented by CONFIG_NR_CPUS.
3032 */
3033 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
3034 #else
3035 /*
3036 * No preemption supported therefore also no need to check for
3037 * different cpus.
3038 */
3039 #define TID_STEP 1
3040 #endif /* CONFIG_PREEMPTION */
3041
next_tid(unsigned long tid)3042 static inline unsigned long next_tid(unsigned long tid)
3043 {
3044 return tid + TID_STEP;
3045 }
3046
3047 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)3048 static inline unsigned int tid_to_cpu(unsigned long tid)
3049 {
3050 return tid % TID_STEP;
3051 }
3052
tid_to_event(unsigned long tid)3053 static inline unsigned long tid_to_event(unsigned long tid)
3054 {
3055 return tid / TID_STEP;
3056 }
3057 #endif
3058
init_tid(int cpu)3059 static inline unsigned int init_tid(int cpu)
3060 {
3061 return cpu;
3062 }
3063
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)3064 static inline void note_cmpxchg_failure(const char *n,
3065 const struct kmem_cache *s, unsigned long tid)
3066 {
3067 #ifdef SLUB_DEBUG_CMPXCHG
3068 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3069
3070 pr_info("%s %s: cmpxchg redo ", n, s->name);
3071
3072 #ifdef CONFIG_PREEMPTION
3073 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3074 pr_warn("due to cpu change %d -> %d\n",
3075 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3076 else
3077 #endif
3078 if (tid_to_event(tid) != tid_to_event(actual_tid))
3079 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3080 tid_to_event(tid), tid_to_event(actual_tid));
3081 else
3082 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3083 actual_tid, tid, next_tid(tid));
3084 #endif
3085 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3086 }
3087
init_kmem_cache_cpus(struct kmem_cache * s)3088 static void init_kmem_cache_cpus(struct kmem_cache *s)
3089 {
3090 int cpu;
3091 struct kmem_cache_cpu *c;
3092
3093 for_each_possible_cpu(cpu) {
3094 c = per_cpu_ptr(s->cpu_slab, cpu);
3095 local_lock_init(&c->lock);
3096 c->tid = init_tid(cpu);
3097 }
3098 }
3099
3100 /*
3101 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3102 * unfreezes the slabs and puts it on the proper list.
3103 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3104 * by the caller.
3105 */
deactivate_slab(struct kmem_cache * s,struct slab * slab,void * freelist)3106 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3107 void *freelist)
3108 {
3109 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3110 int free_delta = 0;
3111 void *nextfree, *freelist_iter, *freelist_tail;
3112 int tail = DEACTIVATE_TO_HEAD;
3113 unsigned long flags = 0;
3114 struct slab new;
3115 struct slab old;
3116
3117 if (READ_ONCE(slab->freelist)) {
3118 stat(s, DEACTIVATE_REMOTE_FREES);
3119 tail = DEACTIVATE_TO_TAIL;
3120 }
3121
3122 /*
3123 * Stage one: Count the objects on cpu's freelist as free_delta and
3124 * remember the last object in freelist_tail for later splicing.
3125 */
3126 freelist_tail = NULL;
3127 freelist_iter = freelist;
3128 while (freelist_iter) {
3129 nextfree = get_freepointer(s, freelist_iter);
3130
3131 /*
3132 * If 'nextfree' is invalid, it is possible that the object at
3133 * 'freelist_iter' is already corrupted. So isolate all objects
3134 * starting at 'freelist_iter' by skipping them.
3135 */
3136 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3137 break;
3138
3139 freelist_tail = freelist_iter;
3140 free_delta++;
3141
3142 freelist_iter = nextfree;
3143 }
3144
3145 /*
3146 * Stage two: Unfreeze the slab while splicing the per-cpu
3147 * freelist to the head of slab's freelist.
3148 */
3149 do {
3150 old.freelist = READ_ONCE(slab->freelist);
3151 old.counters = READ_ONCE(slab->counters);
3152 VM_BUG_ON(!old.frozen);
3153
3154 /* Determine target state of the slab */
3155 new.counters = old.counters;
3156 new.frozen = 0;
3157 if (freelist_tail) {
3158 new.inuse -= free_delta;
3159 set_freepointer(s, freelist_tail, old.freelist);
3160 new.freelist = freelist;
3161 } else {
3162 new.freelist = old.freelist;
3163 }
3164 } while (!slab_update_freelist(s, slab,
3165 old.freelist, old.counters,
3166 new.freelist, new.counters,
3167 "unfreezing slab"));
3168
3169 /*
3170 * Stage three: Manipulate the slab list based on the updated state.
3171 */
3172 if (!new.inuse && n->nr_partial >= s->min_partial) {
3173 stat(s, DEACTIVATE_EMPTY);
3174 discard_slab(s, slab);
3175 stat(s, FREE_SLAB);
3176 } else if (new.freelist) {
3177 spin_lock_irqsave(&n->list_lock, flags);
3178 add_partial(n, slab, tail);
3179 spin_unlock_irqrestore(&n->list_lock, flags);
3180 stat(s, tail);
3181 } else {
3182 stat(s, DEACTIVATE_FULL);
3183 }
3184 }
3185
3186 #ifdef CONFIG_SLUB_CPU_PARTIAL
__put_partials(struct kmem_cache * s,struct slab * partial_slab)3187 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3188 {
3189 struct kmem_cache_node *n = NULL, *n2 = NULL;
3190 struct slab *slab, *slab_to_discard = NULL;
3191 unsigned long flags = 0;
3192
3193 while (partial_slab) {
3194 slab = partial_slab;
3195 partial_slab = slab->next;
3196
3197 n2 = get_node(s, slab_nid(slab));
3198 if (n != n2) {
3199 if (n)
3200 spin_unlock_irqrestore(&n->list_lock, flags);
3201
3202 n = n2;
3203 spin_lock_irqsave(&n->list_lock, flags);
3204 }
3205
3206 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3207 slab->next = slab_to_discard;
3208 slab_to_discard = slab;
3209 } else {
3210 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3211 stat(s, FREE_ADD_PARTIAL);
3212 }
3213 }
3214
3215 if (n)
3216 spin_unlock_irqrestore(&n->list_lock, flags);
3217
3218 while (slab_to_discard) {
3219 slab = slab_to_discard;
3220 slab_to_discard = slab_to_discard->next;
3221
3222 stat(s, DEACTIVATE_EMPTY);
3223 discard_slab(s, slab);
3224 stat(s, FREE_SLAB);
3225 }
3226 }
3227
3228 /*
3229 * Put all the cpu partial slabs to the node partial list.
3230 */
put_partials(struct kmem_cache * s)3231 static void put_partials(struct kmem_cache *s)
3232 {
3233 struct slab *partial_slab;
3234 unsigned long flags;
3235
3236 local_lock_irqsave(&s->cpu_slab->lock, flags);
3237 partial_slab = this_cpu_read(s->cpu_slab->partial);
3238 this_cpu_write(s->cpu_slab->partial, NULL);
3239 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3240
3241 if (partial_slab)
3242 __put_partials(s, partial_slab);
3243 }
3244
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3245 static void put_partials_cpu(struct kmem_cache *s,
3246 struct kmem_cache_cpu *c)
3247 {
3248 struct slab *partial_slab;
3249
3250 partial_slab = slub_percpu_partial(c);
3251 c->partial = NULL;
3252
3253 if (partial_slab)
3254 __put_partials(s, partial_slab);
3255 }
3256
3257 /*
3258 * Put a slab into a partial slab slot if available.
3259 *
3260 * If we did not find a slot then simply move all the partials to the
3261 * per node partial list.
3262 */
put_cpu_partial(struct kmem_cache * s,struct slab * slab,int drain)3263 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3264 {
3265 struct slab *oldslab;
3266 struct slab *slab_to_put = NULL;
3267 unsigned long flags;
3268 int slabs = 0;
3269
3270 local_lock_irqsave(&s->cpu_slab->lock, flags);
3271
3272 oldslab = this_cpu_read(s->cpu_slab->partial);
3273
3274 if (oldslab) {
3275 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3276 /*
3277 * Partial array is full. Move the existing set to the
3278 * per node partial list. Postpone the actual unfreezing
3279 * outside of the critical section.
3280 */
3281 slab_to_put = oldslab;
3282 oldslab = NULL;
3283 } else {
3284 slabs = oldslab->slabs;
3285 }
3286 }
3287
3288 slabs++;
3289
3290 slab->slabs = slabs;
3291 slab->next = oldslab;
3292
3293 this_cpu_write(s->cpu_slab->partial, slab);
3294
3295 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3296
3297 if (slab_to_put) {
3298 __put_partials(s, slab_to_put);
3299 stat(s, CPU_PARTIAL_DRAIN);
3300 }
3301 }
3302
3303 #else /* CONFIG_SLUB_CPU_PARTIAL */
3304
put_partials(struct kmem_cache * s)3305 static inline void put_partials(struct kmem_cache *s) { }
put_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)3306 static inline void put_partials_cpu(struct kmem_cache *s,
3307 struct kmem_cache_cpu *c) { }
3308
3309 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3310
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)3311 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3312 {
3313 unsigned long flags;
3314 struct slab *slab;
3315 void *freelist;
3316
3317 local_lock_irqsave(&s->cpu_slab->lock, flags);
3318
3319 slab = c->slab;
3320 freelist = c->freelist;
3321
3322 c->slab = NULL;
3323 c->freelist = NULL;
3324 c->tid = next_tid(c->tid);
3325
3326 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3327
3328 if (slab) {
3329 deactivate_slab(s, slab, freelist);
3330 stat(s, CPUSLAB_FLUSH);
3331 }
3332 }
3333
__flush_cpu_slab(struct kmem_cache * s,int cpu)3334 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3335 {
3336 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3337 void *freelist = c->freelist;
3338 struct slab *slab = c->slab;
3339
3340 c->slab = NULL;
3341 c->freelist = NULL;
3342 c->tid = next_tid(c->tid);
3343
3344 if (slab) {
3345 deactivate_slab(s, slab, freelist);
3346 stat(s, CPUSLAB_FLUSH);
3347 }
3348
3349 put_partials_cpu(s, c);
3350 }
3351
3352 struct slub_flush_work {
3353 struct work_struct work;
3354 struct kmem_cache *s;
3355 bool skip;
3356 };
3357
3358 /*
3359 * Flush cpu slab.
3360 *
3361 * Called from CPU work handler with migration disabled.
3362 */
flush_cpu_slab(struct work_struct * w)3363 static void flush_cpu_slab(struct work_struct *w)
3364 {
3365 struct kmem_cache *s;
3366 struct kmem_cache_cpu *c;
3367 struct slub_flush_work *sfw;
3368
3369 sfw = container_of(w, struct slub_flush_work, work);
3370
3371 s = sfw->s;
3372 c = this_cpu_ptr(s->cpu_slab);
3373
3374 if (c->slab)
3375 flush_slab(s, c);
3376
3377 put_partials(s);
3378 }
3379
has_cpu_slab(int cpu,struct kmem_cache * s)3380 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3381 {
3382 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3383
3384 return c->slab || slub_percpu_partial(c);
3385 }
3386
3387 static DEFINE_MUTEX(flush_lock);
3388 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3389
flush_all_cpus_locked(struct kmem_cache * s)3390 static void flush_all_cpus_locked(struct kmem_cache *s)
3391 {
3392 struct slub_flush_work *sfw;
3393 unsigned int cpu;
3394
3395 lockdep_assert_cpus_held();
3396 mutex_lock(&flush_lock);
3397
3398 for_each_online_cpu(cpu) {
3399 sfw = &per_cpu(slub_flush, cpu);
3400 if (!has_cpu_slab(cpu, s)) {
3401 sfw->skip = true;
3402 continue;
3403 }
3404 INIT_WORK(&sfw->work, flush_cpu_slab);
3405 sfw->skip = false;
3406 sfw->s = s;
3407 queue_work_on(cpu, flushwq, &sfw->work);
3408 }
3409
3410 for_each_online_cpu(cpu) {
3411 sfw = &per_cpu(slub_flush, cpu);
3412 if (sfw->skip)
3413 continue;
3414 flush_work(&sfw->work);
3415 }
3416
3417 mutex_unlock(&flush_lock);
3418 }
3419
flush_all(struct kmem_cache * s)3420 static void flush_all(struct kmem_cache *s)
3421 {
3422 cpus_read_lock();
3423 flush_all_cpus_locked(s);
3424 cpus_read_unlock();
3425 }
3426
3427 /*
3428 * Use the cpu notifier to insure that the cpu slabs are flushed when
3429 * necessary.
3430 */
slub_cpu_dead(unsigned int cpu)3431 static int slub_cpu_dead(unsigned int cpu)
3432 {
3433 struct kmem_cache *s;
3434
3435 mutex_lock(&slab_mutex);
3436 list_for_each_entry(s, &slab_caches, list)
3437 __flush_cpu_slab(s, cpu);
3438 mutex_unlock(&slab_mutex);
3439 return 0;
3440 }
3441
3442 #else /* CONFIG_SLUB_TINY */
flush_all_cpus_locked(struct kmem_cache * s)3443 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
flush_all(struct kmem_cache * s)3444 static inline void flush_all(struct kmem_cache *s) { }
__flush_cpu_slab(struct kmem_cache * s,int cpu)3445 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
slub_cpu_dead(unsigned int cpu)3446 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3447 #endif /* CONFIG_SLUB_TINY */
3448
3449 /*
3450 * Check if the objects in a per cpu structure fit numa
3451 * locality expectations.
3452 */
node_match(struct slab * slab,int node)3453 static inline int node_match(struct slab *slab, int node)
3454 {
3455 #ifdef CONFIG_NUMA
3456 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3457 return 0;
3458 #endif
3459 return 1;
3460 }
3461
3462 #ifdef CONFIG_SLUB_DEBUG
count_free(struct slab * slab)3463 static int count_free(struct slab *slab)
3464 {
3465 return slab->objects - slab->inuse;
3466 }
3467
node_nr_objs(struct kmem_cache_node * n)3468 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3469 {
3470 return atomic_long_read(&n->total_objects);
3471 }
3472
3473 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int * bulk_cnt,unsigned long addr,depot_stack_handle_t handle)3474 static inline bool free_debug_processing(struct kmem_cache *s,
3475 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3476 unsigned long addr, depot_stack_handle_t handle)
3477 {
3478 bool checks_ok = false;
3479 void *object = head;
3480 int cnt = 0;
3481
3482 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3483 if (!check_slab(s, slab))
3484 goto out;
3485 }
3486
3487 if (slab->inuse < *bulk_cnt) {
3488 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3489 slab->inuse, *bulk_cnt);
3490 goto out;
3491 }
3492
3493 next_object:
3494
3495 if (++cnt > *bulk_cnt)
3496 goto out_cnt;
3497
3498 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3499 if (!free_consistency_checks(s, slab, object, addr))
3500 goto out;
3501 }
3502
3503 if (s->flags & SLAB_STORE_USER)
3504 set_track_update(s, object, TRACK_FREE, addr, handle);
3505 trace(s, slab, object, 0);
3506 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3507 init_object(s, object, SLUB_RED_INACTIVE);
3508
3509 /* Reached end of constructed freelist yet? */
3510 if (object != tail) {
3511 object = get_freepointer(s, object);
3512 goto next_object;
3513 }
3514 checks_ok = true;
3515
3516 out_cnt:
3517 if (cnt != *bulk_cnt) {
3518 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3519 *bulk_cnt, cnt);
3520 *bulk_cnt = cnt;
3521 }
3522
3523 out:
3524
3525 if (!checks_ok)
3526 slab_fix(s, "Object at 0x%p not freed", object);
3527
3528 return checks_ok;
3529 }
3530 #endif /* CONFIG_SLUB_DEBUG */
3531
3532 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct slab *))3533 static unsigned long count_partial(struct kmem_cache_node *n,
3534 int (*get_count)(struct slab *))
3535 {
3536 unsigned long flags;
3537 unsigned long x = 0;
3538 struct slab *slab;
3539
3540 spin_lock_irqsave(&n->list_lock, flags);
3541 list_for_each_entry(slab, &n->partial, slab_list)
3542 x += get_count(slab);
3543 spin_unlock_irqrestore(&n->list_lock, flags);
3544 return x;
3545 }
3546 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3547
3548 #ifdef CONFIG_SLUB_DEBUG
3549 #define MAX_PARTIAL_TO_SCAN 10000
3550
count_partial_free_approx(struct kmem_cache_node * n)3551 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3552 {
3553 unsigned long flags;
3554 unsigned long x = 0;
3555 struct slab *slab;
3556
3557 spin_lock_irqsave(&n->list_lock, flags);
3558 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3559 list_for_each_entry(slab, &n->partial, slab_list)
3560 x += slab->objects - slab->inuse;
3561 } else {
3562 /*
3563 * For a long list, approximate the total count of objects in
3564 * it to meet the limit on the number of slabs to scan.
3565 * Scan from both the list's head and tail for better accuracy.
3566 */
3567 unsigned long scanned = 0;
3568
3569 list_for_each_entry(slab, &n->partial, slab_list) {
3570 x += slab->objects - slab->inuse;
3571 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3572 break;
3573 }
3574 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3575 x += slab->objects - slab->inuse;
3576 if (++scanned == MAX_PARTIAL_TO_SCAN)
3577 break;
3578 }
3579 x = mult_frac(x, n->nr_partial, scanned);
3580 x = min(x, node_nr_objs(n));
3581 }
3582 spin_unlock_irqrestore(&n->list_lock, flags);
3583 return x;
3584 }
3585
3586 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3587 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3588 {
3589 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3590 DEFAULT_RATELIMIT_BURST);
3591 int cpu = raw_smp_processor_id();
3592 int node;
3593 struct kmem_cache_node *n;
3594
3595 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3596 return;
3597
3598 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3599 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3600 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3601 s->name, s->object_size, s->size, oo_order(s->oo),
3602 oo_order(s->min));
3603
3604 if (oo_order(s->min) > get_order(s->object_size))
3605 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3606 s->name);
3607
3608 for_each_kmem_cache_node(s, node, n) {
3609 unsigned long nr_slabs;
3610 unsigned long nr_objs;
3611 unsigned long nr_free;
3612
3613 nr_free = count_partial_free_approx(n);
3614 nr_slabs = node_nr_slabs(n);
3615 nr_objs = node_nr_objs(n);
3616
3617 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3618 node, nr_slabs, nr_objs, nr_free);
3619 }
3620 }
3621 #else /* CONFIG_SLUB_DEBUG */
3622 static inline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)3623 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3624 #endif
3625
pfmemalloc_match(struct slab * slab,gfp_t gfpflags)3626 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3627 {
3628 if (unlikely(slab_test_pfmemalloc(slab)))
3629 return gfp_pfmemalloc_allowed(gfpflags);
3630
3631 return true;
3632 }
3633
3634 #ifndef CONFIG_SLUB_TINY
3635 static inline bool
__update_cpu_freelist_fast(struct kmem_cache * s,void * freelist_old,void * freelist_new,unsigned long tid)3636 __update_cpu_freelist_fast(struct kmem_cache *s,
3637 void *freelist_old, void *freelist_new,
3638 unsigned long tid)
3639 {
3640 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3641 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3642
3643 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3644 &old.full, new.full);
3645 }
3646
3647 /*
3648 * Check the slab->freelist and either transfer the freelist to the
3649 * per cpu freelist or deactivate the slab.
3650 *
3651 * The slab is still frozen if the return value is not NULL.
3652 *
3653 * If this function returns NULL then the slab has been unfrozen.
3654 */
get_freelist(struct kmem_cache * s,struct slab * slab)3655 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3656 {
3657 struct slab new;
3658 unsigned long counters;
3659 void *freelist;
3660
3661 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3662
3663 do {
3664 freelist = slab->freelist;
3665 counters = slab->counters;
3666
3667 new.counters = counters;
3668
3669 new.inuse = slab->objects;
3670 new.frozen = freelist != NULL;
3671
3672 } while (!__slab_update_freelist(s, slab,
3673 freelist, counters,
3674 NULL, new.counters,
3675 "get_freelist"));
3676
3677 return freelist;
3678 }
3679
3680 /*
3681 * Freeze the partial slab and return the pointer to the freelist.
3682 */
freeze_slab(struct kmem_cache * s,struct slab * slab)3683 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3684 {
3685 struct slab new;
3686 unsigned long counters;
3687 void *freelist;
3688
3689 do {
3690 freelist = slab->freelist;
3691 counters = slab->counters;
3692
3693 new.counters = counters;
3694 VM_BUG_ON(new.frozen);
3695
3696 new.inuse = slab->objects;
3697 new.frozen = 1;
3698
3699 } while (!slab_update_freelist(s, slab,
3700 freelist, counters,
3701 NULL, new.counters,
3702 "freeze_slab"));
3703
3704 return freelist;
3705 }
3706
3707 /*
3708 * Slow path. The lockless freelist is empty or we need to perform
3709 * debugging duties.
3710 *
3711 * Processing is still very fast if new objects have been freed to the
3712 * regular freelist. In that case we simply take over the regular freelist
3713 * as the lockless freelist and zap the regular freelist.
3714 *
3715 * If that is not working then we fall back to the partial lists. We take the
3716 * first element of the freelist as the object to allocate now and move the
3717 * rest of the freelist to the lockless freelist.
3718 *
3719 * And if we were unable to get a new slab from the partial slab lists then
3720 * we need to allocate a new slab. This is the slowest path since it involves
3721 * a call to the page allocator and the setup of a new slab.
3722 *
3723 * Version of __slab_alloc to use when we know that preemption is
3724 * already disabled (which is the case for bulk allocation).
3725 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3726 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3727 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3728 {
3729 void *freelist;
3730 struct slab *slab;
3731 unsigned long flags;
3732 struct partial_context pc;
3733 bool try_thisnode = true;
3734
3735 stat(s, ALLOC_SLOWPATH);
3736
3737 reread_slab:
3738
3739 slab = READ_ONCE(c->slab);
3740 if (!slab) {
3741 /*
3742 * if the node is not online or has no normal memory, just
3743 * ignore the node constraint
3744 */
3745 if (unlikely(node != NUMA_NO_NODE &&
3746 !node_isset(node, slab_nodes)))
3747 node = NUMA_NO_NODE;
3748 goto new_slab;
3749 }
3750
3751 if (unlikely(!node_match(slab, node))) {
3752 /*
3753 * same as above but node_match() being false already
3754 * implies node != NUMA_NO_NODE
3755 */
3756 if (!node_isset(node, slab_nodes)) {
3757 node = NUMA_NO_NODE;
3758 } else {
3759 stat(s, ALLOC_NODE_MISMATCH);
3760 goto deactivate_slab;
3761 }
3762 }
3763
3764 /*
3765 * By rights, we should be searching for a slab page that was
3766 * PFMEMALLOC but right now, we are losing the pfmemalloc
3767 * information when the page leaves the per-cpu allocator
3768 */
3769 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3770 goto deactivate_slab;
3771
3772 /* must check again c->slab in case we got preempted and it changed */
3773 local_lock_irqsave(&s->cpu_slab->lock, flags);
3774 if (unlikely(slab != c->slab)) {
3775 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3776 goto reread_slab;
3777 }
3778 freelist = c->freelist;
3779 if (freelist)
3780 goto load_freelist;
3781
3782 freelist = get_freelist(s, slab);
3783
3784 if (!freelist) {
3785 c->slab = NULL;
3786 c->tid = next_tid(c->tid);
3787 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3788 stat(s, DEACTIVATE_BYPASS);
3789 goto new_slab;
3790 }
3791
3792 stat(s, ALLOC_REFILL);
3793
3794 load_freelist:
3795
3796 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3797
3798 /*
3799 * freelist is pointing to the list of objects to be used.
3800 * slab is pointing to the slab from which the objects are obtained.
3801 * That slab must be frozen for per cpu allocations to work.
3802 */
3803 VM_BUG_ON(!c->slab->frozen);
3804 c->freelist = get_freepointer(s, freelist);
3805 c->tid = next_tid(c->tid);
3806 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3807 return freelist;
3808
3809 deactivate_slab:
3810
3811 local_lock_irqsave(&s->cpu_slab->lock, flags);
3812 if (slab != c->slab) {
3813 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3814 goto reread_slab;
3815 }
3816 freelist = c->freelist;
3817 c->slab = NULL;
3818 c->freelist = NULL;
3819 c->tid = next_tid(c->tid);
3820 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3821 deactivate_slab(s, slab, freelist);
3822
3823 new_slab:
3824
3825 #ifdef CONFIG_SLUB_CPU_PARTIAL
3826 while (slub_percpu_partial(c)) {
3827 local_lock_irqsave(&s->cpu_slab->lock, flags);
3828 if (unlikely(c->slab)) {
3829 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3830 goto reread_slab;
3831 }
3832 if (unlikely(!slub_percpu_partial(c))) {
3833 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3834 /* we were preempted and partial list got empty */
3835 goto new_objects;
3836 }
3837
3838 slab = slub_percpu_partial(c);
3839 slub_set_percpu_partial(c, slab);
3840
3841 if (likely(node_match(slab, node) &&
3842 pfmemalloc_match(slab, gfpflags))) {
3843 c->slab = slab;
3844 freelist = get_freelist(s, slab);
3845 VM_BUG_ON(!freelist);
3846 stat(s, CPU_PARTIAL_ALLOC);
3847 goto load_freelist;
3848 }
3849
3850 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3851
3852 slab->next = NULL;
3853 __put_partials(s, slab);
3854 }
3855 #endif
3856
3857 new_objects:
3858
3859 pc.flags = gfpflags;
3860 /*
3861 * When a preferred node is indicated but no __GFP_THISNODE
3862 *
3863 * 1) try to get a partial slab from target node only by having
3864 * __GFP_THISNODE in pc.flags for get_partial()
3865 * 2) if 1) failed, try to allocate a new slab from target node with
3866 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3867 * 3) if 2) failed, retry with original gfpflags which will allow
3868 * get_partial() try partial lists of other nodes before potentially
3869 * allocating new page from other nodes
3870 */
3871 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3872 && try_thisnode))
3873 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3874
3875 pc.orig_size = orig_size;
3876 slab = get_partial(s, node, &pc);
3877 if (slab) {
3878 if (kmem_cache_debug(s)) {
3879 freelist = pc.object;
3880 /*
3881 * For debug caches here we had to go through
3882 * alloc_single_from_partial() so just store the
3883 * tracking info and return the object.
3884 *
3885 * Due to disabled preemption we need to disallow
3886 * blocking. The flags are further adjusted by
3887 * gfp_nested_mask() in stack_depot itself.
3888 */
3889 if (s->flags & SLAB_STORE_USER)
3890 set_track(s, freelist, TRACK_ALLOC, addr,
3891 gfpflags & ~(__GFP_DIRECT_RECLAIM));
3892
3893 return freelist;
3894 }
3895
3896 freelist = freeze_slab(s, slab);
3897 goto retry_load_slab;
3898 }
3899
3900 slub_put_cpu_ptr(s->cpu_slab);
3901 slab = new_slab(s, pc.flags, node);
3902 c = slub_get_cpu_ptr(s->cpu_slab);
3903
3904 if (unlikely(!slab)) {
3905 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3906 && try_thisnode) {
3907 try_thisnode = false;
3908 goto new_objects;
3909 }
3910 slab_out_of_memory(s, gfpflags, node);
3911 return NULL;
3912 }
3913
3914 stat(s, ALLOC_SLAB);
3915
3916 if (kmem_cache_debug(s)) {
3917 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3918
3919 if (unlikely(!freelist))
3920 goto new_objects;
3921
3922 if (s->flags & SLAB_STORE_USER)
3923 set_track(s, freelist, TRACK_ALLOC, addr,
3924 gfpflags & ~(__GFP_DIRECT_RECLAIM));
3925
3926 return freelist;
3927 }
3928
3929 /*
3930 * No other reference to the slab yet so we can
3931 * muck around with it freely without cmpxchg
3932 */
3933 freelist = slab->freelist;
3934 slab->freelist = NULL;
3935 slab->inuse = slab->objects;
3936 slab->frozen = 1;
3937
3938 inc_slabs_node(s, slab_nid(slab), slab->objects);
3939
3940 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3941 /*
3942 * For !pfmemalloc_match() case we don't load freelist so that
3943 * we don't make further mismatched allocations easier.
3944 */
3945 deactivate_slab(s, slab, get_freepointer(s, freelist));
3946 return freelist;
3947 }
3948
3949 retry_load_slab:
3950
3951 local_lock_irqsave(&s->cpu_slab->lock, flags);
3952 if (unlikely(c->slab)) {
3953 void *flush_freelist = c->freelist;
3954 struct slab *flush_slab = c->slab;
3955
3956 c->slab = NULL;
3957 c->freelist = NULL;
3958 c->tid = next_tid(c->tid);
3959
3960 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3961
3962 deactivate_slab(s, flush_slab, flush_freelist);
3963
3964 stat(s, CPUSLAB_FLUSH);
3965
3966 goto retry_load_slab;
3967 }
3968 c->slab = slab;
3969
3970 goto load_freelist;
3971 }
3972
3973 /*
3974 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3975 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3976 * pointer.
3977 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c,unsigned int orig_size)3978 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3979 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3980 {
3981 void *p;
3982
3983 #ifdef CONFIG_PREEMPT_COUNT
3984 /*
3985 * We may have been preempted and rescheduled on a different
3986 * cpu before disabling preemption. Need to reload cpu area
3987 * pointer.
3988 */
3989 c = slub_get_cpu_ptr(s->cpu_slab);
3990 #endif
3991
3992 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3993 #ifdef CONFIG_PREEMPT_COUNT
3994 slub_put_cpu_ptr(s->cpu_slab);
3995 #endif
3996 return p;
3997 }
3998
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3999 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
4000 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4001 {
4002 struct kmem_cache_cpu *c;
4003 struct slab *slab;
4004 unsigned long tid;
4005 void *object;
4006
4007 redo:
4008 /*
4009 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
4010 * enabled. We may switch back and forth between cpus while
4011 * reading from one cpu area. That does not matter as long
4012 * as we end up on the original cpu again when doing the cmpxchg.
4013 *
4014 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
4015 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
4016 * the tid. If we are preempted and switched to another cpu between the
4017 * two reads, it's OK as the two are still associated with the same cpu
4018 * and cmpxchg later will validate the cpu.
4019 */
4020 c = raw_cpu_ptr(s->cpu_slab);
4021 tid = READ_ONCE(c->tid);
4022
4023 /*
4024 * Irqless object alloc/free algorithm used here depends on sequence
4025 * of fetching cpu_slab's data. tid should be fetched before anything
4026 * on c to guarantee that object and slab associated with previous tid
4027 * won't be used with current tid. If we fetch tid first, object and
4028 * slab could be one associated with next tid and our alloc/free
4029 * request will be failed. In this case, we will retry. So, no problem.
4030 */
4031 barrier();
4032
4033 /*
4034 * The transaction ids are globally unique per cpu and per operation on
4035 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
4036 * occurs on the right processor and that there was no operation on the
4037 * linked list in between.
4038 */
4039
4040 object = c->freelist;
4041 slab = c->slab;
4042
4043 #ifdef CONFIG_NUMA
4044 if (static_branch_unlikely(&strict_numa) &&
4045 node == NUMA_NO_NODE) {
4046
4047 struct mempolicy *mpol = current->mempolicy;
4048
4049 if (mpol) {
4050 /*
4051 * Special BIND rule support. If existing slab
4052 * is in permitted set then do not redirect
4053 * to a particular node.
4054 * Otherwise we apply the memory policy to get
4055 * the node we need to allocate on.
4056 */
4057 if (mpol->mode != MPOL_BIND || !slab ||
4058 !node_isset(slab_nid(slab), mpol->nodes))
4059
4060 node = mempolicy_slab_node();
4061 }
4062 }
4063 #endif
4064
4065 if (!USE_LOCKLESS_FAST_PATH() ||
4066 unlikely(!object || !slab || !node_match(slab, node))) {
4067 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
4068 } else {
4069 void *next_object = get_freepointer_safe(s, object);
4070
4071 /*
4072 * The cmpxchg will only match if there was no additional
4073 * operation and if we are on the right processor.
4074 *
4075 * The cmpxchg does the following atomically (without lock
4076 * semantics!)
4077 * 1. Relocate first pointer to the current per cpu area.
4078 * 2. Verify that tid and freelist have not been changed
4079 * 3. If they were not changed replace tid and freelist
4080 *
4081 * Since this is without lock semantics the protection is only
4082 * against code executing on this cpu *not* from access by
4083 * other cpus.
4084 */
4085 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4086 note_cmpxchg_failure("slab_alloc", s, tid);
4087 goto redo;
4088 }
4089 prefetch_freepointer(s, next_object);
4090 stat(s, ALLOC_FASTPATH);
4091 }
4092
4093 return object;
4094 }
4095 #else /* CONFIG_SLUB_TINY */
__slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4096 static void *__slab_alloc_node(struct kmem_cache *s,
4097 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4098 {
4099 struct partial_context pc;
4100 struct slab *slab;
4101 void *object;
4102
4103 pc.flags = gfpflags;
4104 pc.orig_size = orig_size;
4105 slab = get_partial(s, node, &pc);
4106
4107 if (slab)
4108 return pc.object;
4109
4110 slab = new_slab(s, gfpflags, node);
4111 if (unlikely(!slab)) {
4112 slab_out_of_memory(s, gfpflags, node);
4113 return NULL;
4114 }
4115
4116 object = alloc_single_from_new_slab(s, slab, orig_size);
4117
4118 return object;
4119 }
4120 #endif /* CONFIG_SLUB_TINY */
4121
4122 /*
4123 * If the object has been wiped upon free, make sure it's fully initialized by
4124 * zeroing out freelist pointer.
4125 *
4126 * Note that we also wipe custom freelist pointers.
4127 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)4128 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4129 void *obj)
4130 {
4131 if (unlikely(slab_want_init_on_free(s)) && obj &&
4132 !freeptr_outside_object(s))
4133 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4134 0, sizeof(void *));
4135 }
4136
4137 static __fastpath_inline
slab_pre_alloc_hook(struct kmem_cache * s,gfp_t flags)4138 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4139 {
4140 flags &= gfp_allowed_mask;
4141
4142 might_alloc(flags);
4143
4144 if (unlikely(should_failslab(s, flags)))
4145 return NULL;
4146
4147 return s;
4148 }
4149
4150 static __fastpath_inline
slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p,bool init,unsigned int orig_size)4151 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4152 gfp_t flags, size_t size, void **p, bool init,
4153 unsigned int orig_size)
4154 {
4155 unsigned int zero_size = s->object_size;
4156 bool kasan_init = init;
4157 size_t i;
4158 gfp_t init_flags = flags & gfp_allowed_mask;
4159
4160 /*
4161 * For kmalloc object, the allocated memory size(object_size) is likely
4162 * larger than the requested size(orig_size). If redzone check is
4163 * enabled for the extra space, don't zero it, as it will be redzoned
4164 * soon. The redzone operation for this extra space could be seen as a
4165 * replacement of current poisoning under certain debug option, and
4166 * won't break other sanity checks.
4167 */
4168 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4169 (s->flags & SLAB_KMALLOC))
4170 zero_size = orig_size;
4171
4172 /*
4173 * When slab_debug is enabled, avoid memory initialization integrated
4174 * into KASAN and instead zero out the memory via the memset below with
4175 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4176 * cause false-positive reports. This does not lead to a performance
4177 * penalty on production builds, as slab_debug is not intended to be
4178 * enabled there.
4179 */
4180 if (__slub_debug_enabled())
4181 kasan_init = false;
4182
4183 /*
4184 * As memory initialization might be integrated into KASAN,
4185 * kasan_slab_alloc and initialization memset must be
4186 * kept together to avoid discrepancies in behavior.
4187 *
4188 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4189 */
4190 for (i = 0; i < size; i++) {
4191 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4192 if (p[i] && init && (!kasan_init ||
4193 !kasan_has_integrated_init()))
4194 memset(p[i], 0, zero_size);
4195 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4196 s->flags, init_flags);
4197 kmsan_slab_alloc(s, p[i], init_flags);
4198 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4199 }
4200
4201 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4202 }
4203
4204 /*
4205 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4206 * have the fastpath folded into their functions. So no function call
4207 * overhead for requests that can be satisfied on the fastpath.
4208 *
4209 * The fastpath works by first checking if the lockless freelist can be used.
4210 * If not then __slab_alloc is called for slow processing.
4211 *
4212 * Otherwise we can simply pick the next object from the lockless free list.
4213 */
slab_alloc_node(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)4214 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4215 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4216 {
4217 void *object;
4218 bool init = false;
4219
4220 s = slab_pre_alloc_hook(s, gfpflags);
4221 if (unlikely(!s))
4222 return NULL;
4223
4224 object = kfence_alloc(s, orig_size, gfpflags);
4225 if (unlikely(object))
4226 goto out;
4227
4228 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4229
4230 maybe_wipe_obj_freeptr(s, object);
4231 init = slab_want_init_on_alloc(gfpflags, s);
4232
4233 out:
4234 /*
4235 * When init equals 'true', like for kzalloc() family, only
4236 * @orig_size bytes might be zeroed instead of s->object_size
4237 * In case this fails due to memcg_slab_post_alloc_hook(),
4238 * object is set to NULL
4239 */
4240 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4241
4242 return object;
4243 }
4244
kmem_cache_alloc_noprof(struct kmem_cache * s,gfp_t gfpflags)4245 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4246 {
4247 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4248 s->object_size);
4249
4250 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4251
4252 return ret;
4253 }
4254 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4255
kmem_cache_alloc_lru_noprof(struct kmem_cache * s,struct list_lru * lru,gfp_t gfpflags)4256 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4257 gfp_t gfpflags)
4258 {
4259 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4260 s->object_size);
4261
4262 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4263
4264 return ret;
4265 }
4266 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4267
kmem_cache_charge(void * objp,gfp_t gfpflags)4268 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4269 {
4270 if (!memcg_kmem_online())
4271 return true;
4272
4273 return memcg_slab_post_charge(objp, gfpflags);
4274 }
4275 EXPORT_SYMBOL(kmem_cache_charge);
4276
4277 /**
4278 * kmem_cache_alloc_node - Allocate an object on the specified node
4279 * @s: The cache to allocate from.
4280 * @gfpflags: See kmalloc().
4281 * @node: node number of the target node.
4282 *
4283 * Identical to kmem_cache_alloc but it will allocate memory on the given
4284 * node, which can improve the performance for cpu bound structures.
4285 *
4286 * Fallback to other node is possible if __GFP_THISNODE is not set.
4287 *
4288 * Return: pointer to the new object or %NULL in case of error
4289 */
kmem_cache_alloc_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node)4290 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4291 {
4292 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4293
4294 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4295
4296 return ret;
4297 }
4298 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4299
4300 /*
4301 * To avoid unnecessary overhead, we pass through large allocation requests
4302 * directly to the page allocator. We use __GFP_COMP, because we will need to
4303 * know the allocation order to free the pages properly in kfree.
4304 */
___kmalloc_large_node(size_t size,gfp_t flags,int node)4305 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4306 {
4307 struct folio *folio;
4308 void *ptr = NULL;
4309 unsigned int order = get_order(size);
4310
4311 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4312 flags = kmalloc_fix_flags(flags);
4313
4314 flags |= __GFP_COMP;
4315
4316 if (node == NUMA_NO_NODE)
4317 folio = (struct folio *)alloc_frozen_pages_noprof(flags, order);
4318 else
4319 folio = (struct folio *)__alloc_frozen_pages_noprof(flags, order, node, NULL);
4320
4321 if (folio) {
4322 ptr = folio_address(folio);
4323 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4324 PAGE_SIZE << order);
4325 __folio_set_large_kmalloc(folio);
4326 }
4327
4328 ptr = kasan_kmalloc_large(ptr, size, flags);
4329 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4330 kmemleak_alloc(ptr, size, 1, flags);
4331 kmsan_kmalloc_large(ptr, size, flags);
4332
4333 return ptr;
4334 }
4335
__kmalloc_large_noprof(size_t size,gfp_t flags)4336 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4337 {
4338 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4339
4340 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4341 flags, NUMA_NO_NODE);
4342 return ret;
4343 }
4344 EXPORT_SYMBOL(__kmalloc_large_noprof);
4345
__kmalloc_large_node_noprof(size_t size,gfp_t flags,int node)4346 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4347 {
4348 void *ret = ___kmalloc_large_node(size, flags, node);
4349
4350 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4351 flags, node);
4352 return ret;
4353 }
4354 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4355
4356 static __always_inline
__do_kmalloc_node(size_t size,kmem_buckets * b,gfp_t flags,int node,unsigned long caller)4357 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4358 unsigned long caller)
4359 {
4360 struct kmem_cache *s;
4361 void *ret;
4362
4363 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4364 ret = __kmalloc_large_node_noprof(size, flags, node);
4365 trace_kmalloc(caller, ret, size,
4366 PAGE_SIZE << get_order(size), flags, node);
4367 return ret;
4368 }
4369
4370 if (unlikely(!size))
4371 return ZERO_SIZE_PTR;
4372
4373 s = kmalloc_slab(size, b, flags, caller);
4374
4375 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4376 ret = kasan_kmalloc(s, ret, size, flags);
4377 trace_kmalloc(caller, ret, size, s->size, flags, node);
4378 return ret;
4379 }
__kmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)4380 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4381 {
4382 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4383 }
4384 EXPORT_SYMBOL(__kmalloc_node_noprof);
4385
__kmalloc_noprof(size_t size,gfp_t flags)4386 void *__kmalloc_noprof(size_t size, gfp_t flags)
4387 {
4388 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4389 }
4390 EXPORT_SYMBOL(__kmalloc_noprof);
4391
__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node,unsigned long caller)4392 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4393 int node, unsigned long caller)
4394 {
4395 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4396
4397 }
4398 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4399
__kmalloc_cache_noprof(struct kmem_cache * s,gfp_t gfpflags,size_t size)4400 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4401 {
4402 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4403 _RET_IP_, size);
4404
4405 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4406
4407 ret = kasan_kmalloc(s, ret, size, gfpflags);
4408 return ret;
4409 }
4410 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4411
__kmalloc_cache_node_noprof(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)4412 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4413 int node, size_t size)
4414 {
4415 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4416
4417 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4418
4419 ret = kasan_kmalloc(s, ret, size, gfpflags);
4420 return ret;
4421 }
4422 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4423
free_to_partial_list(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int bulk_cnt,unsigned long addr)4424 static noinline void free_to_partial_list(
4425 struct kmem_cache *s, struct slab *slab,
4426 void *head, void *tail, int bulk_cnt,
4427 unsigned long addr)
4428 {
4429 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4430 struct slab *slab_free = NULL;
4431 int cnt = bulk_cnt;
4432 unsigned long flags;
4433 depot_stack_handle_t handle = 0;
4434
4435 /*
4436 * We cannot use GFP_NOWAIT as there are callsites where waking up
4437 * kswapd could deadlock
4438 */
4439 if (s->flags & SLAB_STORE_USER)
4440 handle = set_track_prepare(__GFP_NOWARN);
4441
4442 spin_lock_irqsave(&n->list_lock, flags);
4443
4444 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4445 void *prior = slab->freelist;
4446
4447 /* Perform the actual freeing while we still hold the locks */
4448 slab->inuse -= cnt;
4449 set_freepointer(s, tail, prior);
4450 slab->freelist = head;
4451
4452 /*
4453 * If the slab is empty, and node's partial list is full,
4454 * it should be discarded anyway no matter it's on full or
4455 * partial list.
4456 */
4457 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4458 slab_free = slab;
4459
4460 if (!prior) {
4461 /* was on full list */
4462 remove_full(s, n, slab);
4463 if (!slab_free) {
4464 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4465 stat(s, FREE_ADD_PARTIAL);
4466 }
4467 } else if (slab_free) {
4468 remove_partial(n, slab);
4469 stat(s, FREE_REMOVE_PARTIAL);
4470 }
4471 }
4472
4473 if (slab_free) {
4474 /*
4475 * Update the counters while still holding n->list_lock to
4476 * prevent spurious validation warnings
4477 */
4478 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4479 }
4480
4481 spin_unlock_irqrestore(&n->list_lock, flags);
4482
4483 if (slab_free) {
4484 stat(s, FREE_SLAB);
4485 free_slab(s, slab_free);
4486 }
4487 }
4488
4489 /*
4490 * Slow path handling. This may still be called frequently since objects
4491 * have a longer lifetime than the cpu slabs in most processing loads.
4492 *
4493 * So we still attempt to reduce cache line usage. Just take the slab
4494 * lock and free the item. If there is no additional partial slab
4495 * handling required then we can return immediately.
4496 */
__slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4497 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4498 void *head, void *tail, int cnt,
4499 unsigned long addr)
4500
4501 {
4502 void *prior;
4503 int was_frozen;
4504 struct slab new;
4505 unsigned long counters;
4506 struct kmem_cache_node *n = NULL;
4507 unsigned long flags;
4508 bool on_node_partial;
4509
4510 stat(s, FREE_SLOWPATH);
4511
4512 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4513 free_to_partial_list(s, slab, head, tail, cnt, addr);
4514 return;
4515 }
4516
4517 do {
4518 if (unlikely(n)) {
4519 spin_unlock_irqrestore(&n->list_lock, flags);
4520 n = NULL;
4521 }
4522 prior = slab->freelist;
4523 counters = slab->counters;
4524 set_freepointer(s, tail, prior);
4525 new.counters = counters;
4526 was_frozen = new.frozen;
4527 new.inuse -= cnt;
4528 if ((!new.inuse || !prior) && !was_frozen) {
4529 /* Needs to be taken off a list */
4530 if (!kmem_cache_has_cpu_partial(s) || prior) {
4531
4532 n = get_node(s, slab_nid(slab));
4533 /*
4534 * Speculatively acquire the list_lock.
4535 * If the cmpxchg does not succeed then we may
4536 * drop the list_lock without any processing.
4537 *
4538 * Otherwise the list_lock will synchronize with
4539 * other processors updating the list of slabs.
4540 */
4541 spin_lock_irqsave(&n->list_lock, flags);
4542
4543 on_node_partial = slab_test_node_partial(slab);
4544 }
4545 }
4546
4547 } while (!slab_update_freelist(s, slab,
4548 prior, counters,
4549 head, new.counters,
4550 "__slab_free"));
4551
4552 if (likely(!n)) {
4553
4554 if (likely(was_frozen)) {
4555 /*
4556 * The list lock was not taken therefore no list
4557 * activity can be necessary.
4558 */
4559 stat(s, FREE_FROZEN);
4560 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4561 /*
4562 * If we started with a full slab then put it onto the
4563 * per cpu partial list.
4564 */
4565 put_cpu_partial(s, slab, 1);
4566 stat(s, CPU_PARTIAL_FREE);
4567 }
4568
4569 return;
4570 }
4571
4572 /*
4573 * This slab was partially empty but not on the per-node partial list,
4574 * in which case we shouldn't manipulate its list, just return.
4575 */
4576 if (prior && !on_node_partial) {
4577 spin_unlock_irqrestore(&n->list_lock, flags);
4578 return;
4579 }
4580
4581 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4582 goto slab_empty;
4583
4584 /*
4585 * Objects left in the slab. If it was not on the partial list before
4586 * then add it.
4587 */
4588 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4589 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4590 stat(s, FREE_ADD_PARTIAL);
4591 }
4592 spin_unlock_irqrestore(&n->list_lock, flags);
4593 return;
4594
4595 slab_empty:
4596 if (prior) {
4597 /*
4598 * Slab on the partial list.
4599 */
4600 remove_partial(n, slab);
4601 stat(s, FREE_REMOVE_PARTIAL);
4602 }
4603
4604 spin_unlock_irqrestore(&n->list_lock, flags);
4605 stat(s, FREE_SLAB);
4606 discard_slab(s, slab);
4607 }
4608
4609 #ifndef CONFIG_SLUB_TINY
4610 /*
4611 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4612 * can perform fastpath freeing without additional function calls.
4613 *
4614 * The fastpath is only possible if we are freeing to the current cpu slab
4615 * of this processor. This typically the case if we have just allocated
4616 * the item before.
4617 *
4618 * If fastpath is not possible then fall back to __slab_free where we deal
4619 * with all sorts of special processing.
4620 *
4621 * Bulk free of a freelist with several objects (all pointing to the
4622 * same slab) possible by specifying head and tail ptr, plus objects
4623 * count (cnt). Bulk free indicated by tail pointer being set.
4624 */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4625 static __always_inline void do_slab_free(struct kmem_cache *s,
4626 struct slab *slab, void *head, void *tail,
4627 int cnt, unsigned long addr)
4628 {
4629 struct kmem_cache_cpu *c;
4630 unsigned long tid;
4631 void **freelist;
4632
4633 redo:
4634 /*
4635 * Determine the currently cpus per cpu slab.
4636 * The cpu may change afterward. However that does not matter since
4637 * data is retrieved via this pointer. If we are on the same cpu
4638 * during the cmpxchg then the free will succeed.
4639 */
4640 c = raw_cpu_ptr(s->cpu_slab);
4641 tid = READ_ONCE(c->tid);
4642
4643 /* Same with comment on barrier() in __slab_alloc_node() */
4644 barrier();
4645
4646 if (unlikely(slab != c->slab)) {
4647 __slab_free(s, slab, head, tail, cnt, addr);
4648 return;
4649 }
4650
4651 if (USE_LOCKLESS_FAST_PATH()) {
4652 freelist = READ_ONCE(c->freelist);
4653
4654 set_freepointer(s, tail, freelist);
4655
4656 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4657 note_cmpxchg_failure("slab_free", s, tid);
4658 goto redo;
4659 }
4660 } else {
4661 /* Update the free list under the local lock */
4662 local_lock(&s->cpu_slab->lock);
4663 c = this_cpu_ptr(s->cpu_slab);
4664 if (unlikely(slab != c->slab)) {
4665 local_unlock(&s->cpu_slab->lock);
4666 goto redo;
4667 }
4668 tid = c->tid;
4669 freelist = c->freelist;
4670
4671 set_freepointer(s, tail, freelist);
4672 c->freelist = head;
4673 c->tid = next_tid(tid);
4674
4675 local_unlock(&s->cpu_slab->lock);
4676 }
4677 stat_add(s, FREE_FASTPATH, cnt);
4678 }
4679 #else /* CONFIG_SLUB_TINY */
do_slab_free(struct kmem_cache * s,struct slab * slab,void * head,void * tail,int cnt,unsigned long addr)4680 static void do_slab_free(struct kmem_cache *s,
4681 struct slab *slab, void *head, void *tail,
4682 int cnt, unsigned long addr)
4683 {
4684 __slab_free(s, slab, head, tail, cnt, addr);
4685 }
4686 #endif /* CONFIG_SLUB_TINY */
4687
4688 static __fastpath_inline
slab_free(struct kmem_cache * s,struct slab * slab,void * object,unsigned long addr)4689 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4690 unsigned long addr)
4691 {
4692 memcg_slab_free_hook(s, slab, &object, 1);
4693 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4694
4695 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4696 do_slab_free(s, slab, object, object, 1, addr);
4697 }
4698
4699 #ifdef CONFIG_MEMCG
4700 /* Do not inline the rare memcg charging failed path into the allocation path */
4701 static noinline
memcg_alloc_abort_single(struct kmem_cache * s,void * object)4702 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4703 {
4704 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4705 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4706 }
4707 #endif
4708
4709 static __fastpath_inline
slab_free_bulk(struct kmem_cache * s,struct slab * slab,void * head,void * tail,void ** p,int cnt,unsigned long addr)4710 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4711 void *tail, void **p, int cnt, unsigned long addr)
4712 {
4713 memcg_slab_free_hook(s, slab, p, cnt);
4714 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4715 /*
4716 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4717 * to remove objects, whose reuse must be delayed.
4718 */
4719 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4720 do_slab_free(s, slab, head, tail, cnt, addr);
4721 }
4722
4723 #ifdef CONFIG_SLUB_RCU_DEBUG
slab_free_after_rcu_debug(struct rcu_head * rcu_head)4724 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4725 {
4726 struct rcu_delayed_free *delayed_free =
4727 container_of(rcu_head, struct rcu_delayed_free, head);
4728 void *object = delayed_free->object;
4729 struct slab *slab = virt_to_slab(object);
4730 struct kmem_cache *s;
4731
4732 kfree(delayed_free);
4733
4734 if (WARN_ON(is_kfence_address(object)))
4735 return;
4736
4737 /* find the object and the cache again */
4738 if (WARN_ON(!slab))
4739 return;
4740 s = slab->slab_cache;
4741 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4742 return;
4743
4744 /* resume freeing */
4745 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4746 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4747 }
4748 #endif /* CONFIG_SLUB_RCU_DEBUG */
4749
4750 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)4751 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4752 {
4753 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4754 }
4755 #endif
4756
virt_to_cache(const void * obj)4757 static inline struct kmem_cache *virt_to_cache(const void *obj)
4758 {
4759 struct slab *slab;
4760
4761 slab = virt_to_slab(obj);
4762 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4763 return NULL;
4764 return slab->slab_cache;
4765 }
4766
cache_from_obj(struct kmem_cache * s,void * x)4767 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4768 {
4769 struct kmem_cache *cachep;
4770
4771 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4772 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4773 return s;
4774
4775 cachep = virt_to_cache(x);
4776 if (WARN(cachep && cachep != s,
4777 "%s: Wrong slab cache. %s but object is from %s\n",
4778 __func__, s->name, cachep->name))
4779 print_tracking(cachep, x);
4780 return cachep;
4781 }
4782
4783 /**
4784 * kmem_cache_free - Deallocate an object
4785 * @s: The cache the allocation was from.
4786 * @x: The previously allocated object.
4787 *
4788 * Free an object which was previously allocated from this
4789 * cache.
4790 */
kmem_cache_free(struct kmem_cache * s,void * x)4791 void kmem_cache_free(struct kmem_cache *s, void *x)
4792 {
4793 s = cache_from_obj(s, x);
4794 if (!s)
4795 return;
4796 trace_kmem_cache_free(_RET_IP_, x, s);
4797 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4798 }
4799 EXPORT_SYMBOL(kmem_cache_free);
4800
free_large_kmalloc(struct folio * folio,void * object)4801 static void free_large_kmalloc(struct folio *folio, void *object)
4802 {
4803 unsigned int order = folio_order(folio);
4804
4805 if (WARN_ON_ONCE(!folio_test_large_kmalloc(folio))) {
4806 dump_page(&folio->page, "Not a kmalloc allocation");
4807 return;
4808 }
4809
4810 if (WARN_ON_ONCE(order == 0))
4811 pr_warn_once("object pointer: 0x%p\n", object);
4812
4813 kmemleak_free(object);
4814 kasan_kfree_large(object);
4815 kmsan_kfree_large(object);
4816
4817 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4818 -(PAGE_SIZE << order));
4819 __folio_clear_large_kmalloc(folio);
4820 free_frozen_pages(&folio->page, order);
4821 }
4822
4823 /*
4824 * Given an rcu_head embedded within an object obtained from kvmalloc at an
4825 * offset < 4k, free the object in question.
4826 */
kvfree_rcu_cb(struct rcu_head * head)4827 void kvfree_rcu_cb(struct rcu_head *head)
4828 {
4829 void *obj = head;
4830 struct folio *folio;
4831 struct slab *slab;
4832 struct kmem_cache *s;
4833 void *slab_addr;
4834
4835 if (is_vmalloc_addr(obj)) {
4836 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4837 vfree(obj);
4838 return;
4839 }
4840
4841 folio = virt_to_folio(obj);
4842 if (!folio_test_slab(folio)) {
4843 /*
4844 * rcu_head offset can be only less than page size so no need to
4845 * consider folio order
4846 */
4847 obj = (void *) PAGE_ALIGN_DOWN((unsigned long)obj);
4848 free_large_kmalloc(folio, obj);
4849 return;
4850 }
4851
4852 slab = folio_slab(folio);
4853 s = slab->slab_cache;
4854 slab_addr = folio_address(folio);
4855
4856 if (is_kfence_address(obj)) {
4857 obj = kfence_object_start(obj);
4858 } else {
4859 unsigned int idx = __obj_to_index(s, slab_addr, obj);
4860
4861 obj = slab_addr + s->size * idx;
4862 obj = fixup_red_left(s, obj);
4863 }
4864
4865 slab_free(s, slab, obj, _RET_IP_);
4866 }
4867
4868 /**
4869 * kfree - free previously allocated memory
4870 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4871 *
4872 * If @object is NULL, no operation is performed.
4873 */
kfree(const void * object)4874 void kfree(const void *object)
4875 {
4876 struct folio *folio;
4877 struct slab *slab;
4878 struct kmem_cache *s;
4879 void *x = (void *)object;
4880
4881 trace_kfree(_RET_IP_, object);
4882
4883 if (unlikely(ZERO_OR_NULL_PTR(object)))
4884 return;
4885
4886 folio = virt_to_folio(object);
4887 if (unlikely(!folio_test_slab(folio))) {
4888 free_large_kmalloc(folio, (void *)object);
4889 return;
4890 }
4891
4892 slab = folio_slab(folio);
4893 s = slab->slab_cache;
4894 slab_free(s, slab, x, _RET_IP_);
4895 }
4896 EXPORT_SYMBOL(kfree);
4897
4898 static __always_inline __realloc_size(2) void *
__do_krealloc(const void * p,size_t new_size,gfp_t flags)4899 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4900 {
4901 void *ret;
4902 size_t ks = 0;
4903 int orig_size = 0;
4904 struct kmem_cache *s = NULL;
4905
4906 if (unlikely(ZERO_OR_NULL_PTR(p)))
4907 goto alloc_new;
4908
4909 /* Check for double-free. */
4910 if (!kasan_check_byte(p))
4911 return NULL;
4912
4913 if (is_kfence_address(p)) {
4914 ks = orig_size = kfence_ksize(p);
4915 } else {
4916 struct folio *folio;
4917
4918 folio = virt_to_folio(p);
4919 if (unlikely(!folio_test_slab(folio))) {
4920 /* Big kmalloc object */
4921 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4922 WARN_ON(p != folio_address(folio));
4923 ks = folio_size(folio);
4924 } else {
4925 s = folio_slab(folio)->slab_cache;
4926 orig_size = get_orig_size(s, (void *)p);
4927 ks = s->object_size;
4928 }
4929 }
4930
4931 /* If the old object doesn't fit, allocate a bigger one */
4932 if (new_size > ks)
4933 goto alloc_new;
4934
4935 /* Zero out spare memory. */
4936 if (want_init_on_alloc(flags)) {
4937 kasan_disable_current();
4938 if (orig_size && orig_size < new_size)
4939 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4940 else
4941 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4942 kasan_enable_current();
4943 }
4944
4945 /* Setup kmalloc redzone when needed */
4946 if (s && slub_debug_orig_size(s)) {
4947 set_orig_size(s, (void *)p, new_size);
4948 if (s->flags & SLAB_RED_ZONE && new_size < ks)
4949 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4950 SLUB_RED_ACTIVE, ks - new_size);
4951 }
4952
4953 p = kasan_krealloc(p, new_size, flags);
4954 return (void *)p;
4955
4956 alloc_new:
4957 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4958 if (ret && p) {
4959 /* Disable KASAN checks as the object's redzone is accessed. */
4960 kasan_disable_current();
4961 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4962 kasan_enable_current();
4963 }
4964
4965 return ret;
4966 }
4967
4968 /**
4969 * krealloc - reallocate memory. The contents will remain unchanged.
4970 * @p: object to reallocate memory for.
4971 * @new_size: how many bytes of memory are required.
4972 * @flags: the type of memory to allocate.
4973 *
4974 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
4975 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4976 *
4977 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4978 * initial memory allocation, every subsequent call to this API for the same
4979 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4980 * __GFP_ZERO is not fully honored by this API.
4981 *
4982 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4983 * size of an allocation (but not the exact size it was allocated with) and
4984 * hence implements the following semantics for shrinking and growing buffers
4985 * with __GFP_ZERO::
4986 *
4987 * new bucket
4988 * 0 size size
4989 * |--------|----------------|
4990 * | keep | zero |
4991 *
4992 * Otherwise, the original allocation size 'orig_size' could be used to
4993 * precisely clear the requested size, and the new size will also be stored
4994 * as the new 'orig_size'.
4995 *
4996 * In any case, the contents of the object pointed to are preserved up to the
4997 * lesser of the new and old sizes.
4998 *
4999 * Return: pointer to the allocated memory or %NULL in case of error
5000 */
krealloc_noprof(const void * p,size_t new_size,gfp_t flags)5001 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
5002 {
5003 void *ret;
5004
5005 if (unlikely(!new_size)) {
5006 kfree(p);
5007 return ZERO_SIZE_PTR;
5008 }
5009
5010 ret = __do_krealloc(p, new_size, flags);
5011 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
5012 kfree(p);
5013
5014 return ret;
5015 }
5016 EXPORT_SYMBOL(krealloc_noprof);
5017
kmalloc_gfp_adjust(gfp_t flags,size_t size)5018 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
5019 {
5020 /*
5021 * We want to attempt a large physically contiguous block first because
5022 * it is less likely to fragment multiple larger blocks and therefore
5023 * contribute to a long term fragmentation less than vmalloc fallback.
5024 * However make sure that larger requests are not too disruptive - i.e.
5025 * do not direct reclaim unless physically continuous memory is preferred
5026 * (__GFP_RETRY_MAYFAIL mode). We still kick in kswapd/kcompactd to
5027 * start working in the background
5028 */
5029 if (size > PAGE_SIZE) {
5030 flags |= __GFP_NOWARN;
5031
5032 if (!(flags & __GFP_RETRY_MAYFAIL))
5033 flags &= ~__GFP_DIRECT_RECLAIM;
5034
5035 /* nofail semantic is implemented by the vmalloc fallback */
5036 flags &= ~__GFP_NOFAIL;
5037 }
5038
5039 return flags;
5040 }
5041
5042 /**
5043 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
5044 * failure, fall back to non-contiguous (vmalloc) allocation.
5045 * @size: size of the request.
5046 * @b: which set of kmalloc buckets to allocate from.
5047 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
5048 * @node: numa node to allocate from
5049 *
5050 * Uses kmalloc to get the memory but if the allocation fails then falls back
5051 * to the vmalloc allocator. Use kvfree for freeing the memory.
5052 *
5053 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
5054 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
5055 * preferable to the vmalloc fallback, due to visible performance drawbacks.
5056 *
5057 * Return: pointer to the allocated memory of %NULL in case of failure
5058 */
__kvmalloc_node_noprof(DECL_BUCKET_PARAMS (size,b),gfp_t flags,int node)5059 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
5060 {
5061 void *ret;
5062
5063 /*
5064 * It doesn't really make sense to fallback to vmalloc for sub page
5065 * requests
5066 */
5067 ret = __do_kmalloc_node(size, PASS_BUCKET_PARAM(b),
5068 kmalloc_gfp_adjust(flags, size),
5069 node, _RET_IP_);
5070 if (ret || size <= PAGE_SIZE)
5071 return ret;
5072
5073 /* non-sleeping allocations are not supported by vmalloc */
5074 if (!gfpflags_allow_blocking(flags))
5075 return NULL;
5076
5077 /* Don't even allow crazy sizes */
5078 if (unlikely(size > INT_MAX)) {
5079 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
5080 return NULL;
5081 }
5082
5083 /*
5084 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
5085 * since the callers already cannot assume anything
5086 * about the resulting pointer, and cannot play
5087 * protection games.
5088 */
5089 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
5090 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
5091 node, __builtin_return_address(0));
5092 }
5093 EXPORT_SYMBOL(__kvmalloc_node_noprof);
5094
5095 /**
5096 * kvfree() - Free memory.
5097 * @addr: Pointer to allocated memory.
5098 *
5099 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
5100 * It is slightly more efficient to use kfree() or vfree() if you are certain
5101 * that you know which one to use.
5102 *
5103 * Context: Either preemptible task context or not-NMI interrupt.
5104 */
kvfree(const void * addr)5105 void kvfree(const void *addr)
5106 {
5107 if (is_vmalloc_addr(addr))
5108 vfree(addr);
5109 else
5110 kfree(addr);
5111 }
5112 EXPORT_SYMBOL(kvfree);
5113
5114 /**
5115 * kvfree_sensitive - Free a data object containing sensitive information.
5116 * @addr: address of the data object to be freed.
5117 * @len: length of the data object.
5118 *
5119 * Use the special memzero_explicit() function to clear the content of a
5120 * kvmalloc'ed object containing sensitive data to make sure that the
5121 * compiler won't optimize out the data clearing.
5122 */
kvfree_sensitive(const void * addr,size_t len)5123 void kvfree_sensitive(const void *addr, size_t len)
5124 {
5125 if (likely(!ZERO_OR_NULL_PTR(addr))) {
5126 memzero_explicit((void *)addr, len);
5127 kvfree(addr);
5128 }
5129 }
5130 EXPORT_SYMBOL(kvfree_sensitive);
5131
5132 /**
5133 * kvrealloc - reallocate memory; contents remain unchanged
5134 * @p: object to reallocate memory for
5135 * @size: the size to reallocate
5136 * @flags: the flags for the page level allocator
5137 *
5138 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
5139 * and @p is not a %NULL pointer, the object pointed to is freed.
5140 *
5141 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
5142 * initial memory allocation, every subsequent call to this API for the same
5143 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
5144 * __GFP_ZERO is not fully honored by this API.
5145 *
5146 * In any case, the contents of the object pointed to are preserved up to the
5147 * lesser of the new and old sizes.
5148 *
5149 * This function must not be called concurrently with itself or kvfree() for the
5150 * same memory allocation.
5151 *
5152 * Return: pointer to the allocated memory or %NULL in case of error
5153 */
kvrealloc_noprof(const void * p,size_t size,gfp_t flags)5154 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
5155 {
5156 void *n;
5157
5158 if (is_vmalloc_addr(p))
5159 return vrealloc_noprof(p, size, flags);
5160
5161 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
5162 if (!n) {
5163 /* We failed to krealloc(), fall back to kvmalloc(). */
5164 n = kvmalloc_noprof(size, flags);
5165 if (!n)
5166 return NULL;
5167
5168 if (p) {
5169 /* We already know that `p` is not a vmalloc address. */
5170 kasan_disable_current();
5171 memcpy(n, kasan_reset_tag(p), ksize(p));
5172 kasan_enable_current();
5173
5174 kfree(p);
5175 }
5176 }
5177
5178 return n;
5179 }
5180 EXPORT_SYMBOL(kvrealloc_noprof);
5181
5182 struct detached_freelist {
5183 struct slab *slab;
5184 void *tail;
5185 void *freelist;
5186 int cnt;
5187 struct kmem_cache *s;
5188 };
5189
5190 /*
5191 * This function progressively scans the array with free objects (with
5192 * a limited look ahead) and extract objects belonging to the same
5193 * slab. It builds a detached freelist directly within the given
5194 * slab/objects. This can happen without any need for
5195 * synchronization, because the objects are owned by running process.
5196 * The freelist is build up as a single linked list in the objects.
5197 * The idea is, that this detached freelist can then be bulk
5198 * transferred to the real freelist(s), but only requiring a single
5199 * synchronization primitive. Look ahead in the array is limited due
5200 * to performance reasons.
5201 */
5202 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)5203 int build_detached_freelist(struct kmem_cache *s, size_t size,
5204 void **p, struct detached_freelist *df)
5205 {
5206 int lookahead = 3;
5207 void *object;
5208 struct folio *folio;
5209 size_t same;
5210
5211 object = p[--size];
5212 folio = virt_to_folio(object);
5213 if (!s) {
5214 /* Handle kalloc'ed objects */
5215 if (unlikely(!folio_test_slab(folio))) {
5216 free_large_kmalloc(folio, object);
5217 df->slab = NULL;
5218 return size;
5219 }
5220 /* Derive kmem_cache from object */
5221 df->slab = folio_slab(folio);
5222 df->s = df->slab->slab_cache;
5223 } else {
5224 df->slab = folio_slab(folio);
5225 df->s = cache_from_obj(s, object); /* Support for memcg */
5226 }
5227
5228 /* Start new detached freelist */
5229 df->tail = object;
5230 df->freelist = object;
5231 df->cnt = 1;
5232
5233 if (is_kfence_address(object))
5234 return size;
5235
5236 set_freepointer(df->s, object, NULL);
5237
5238 same = size;
5239 while (size) {
5240 object = p[--size];
5241 /* df->slab is always set at this point */
5242 if (df->slab == virt_to_slab(object)) {
5243 /* Opportunity build freelist */
5244 set_freepointer(df->s, object, df->freelist);
5245 df->freelist = object;
5246 df->cnt++;
5247 same--;
5248 if (size != same)
5249 swap(p[size], p[same]);
5250 continue;
5251 }
5252
5253 /* Limit look ahead search */
5254 if (!--lookahead)
5255 break;
5256 }
5257
5258 return same;
5259 }
5260
5261 /*
5262 * Internal bulk free of objects that were not initialised by the post alloc
5263 * hooks and thus should not be processed by the free hooks
5264 */
__kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5265 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5266 {
5267 if (!size)
5268 return;
5269
5270 do {
5271 struct detached_freelist df;
5272
5273 size = build_detached_freelist(s, size, p, &df);
5274 if (!df.slab)
5275 continue;
5276
5277 if (kfence_free(df.freelist))
5278 continue;
5279
5280 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
5281 _RET_IP_);
5282 } while (likely(size));
5283 }
5284
5285 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)5286 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
5287 {
5288 if (!size)
5289 return;
5290
5291 do {
5292 struct detached_freelist df;
5293
5294 size = build_detached_freelist(s, size, p, &df);
5295 if (!df.slab)
5296 continue;
5297
5298 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5299 df.cnt, _RET_IP_);
5300 } while (likely(size));
5301 }
5302 EXPORT_SYMBOL(kmem_cache_free_bulk);
5303
5304 #ifndef CONFIG_SLUB_TINY
5305 static inline
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5306 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5307 void **p)
5308 {
5309 struct kmem_cache_cpu *c;
5310 unsigned long irqflags;
5311 int i;
5312
5313 /*
5314 * Drain objects in the per cpu slab, while disabling local
5315 * IRQs, which protects against PREEMPT and interrupts
5316 * handlers invoking normal fastpath.
5317 */
5318 c = slub_get_cpu_ptr(s->cpu_slab);
5319 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5320
5321 for (i = 0; i < size; i++) {
5322 void *object = kfence_alloc(s, s->object_size, flags);
5323
5324 if (unlikely(object)) {
5325 p[i] = object;
5326 continue;
5327 }
5328
5329 object = c->freelist;
5330 if (unlikely(!object)) {
5331 /*
5332 * We may have removed an object from c->freelist using
5333 * the fastpath in the previous iteration; in that case,
5334 * c->tid has not been bumped yet.
5335 * Since ___slab_alloc() may reenable interrupts while
5336 * allocating memory, we should bump c->tid now.
5337 */
5338 c->tid = next_tid(c->tid);
5339
5340 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5341
5342 /*
5343 * Invoking slow path likely have side-effect
5344 * of re-populating per CPU c->freelist
5345 */
5346 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5347 _RET_IP_, c, s->object_size);
5348 if (unlikely(!p[i]))
5349 goto error;
5350
5351 c = this_cpu_ptr(s->cpu_slab);
5352 maybe_wipe_obj_freeptr(s, p[i]);
5353
5354 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5355
5356 continue; /* goto for-loop */
5357 }
5358 c->freelist = get_freepointer(s, object);
5359 p[i] = object;
5360 maybe_wipe_obj_freeptr(s, p[i]);
5361 stat(s, ALLOC_FASTPATH);
5362 }
5363 c->tid = next_tid(c->tid);
5364 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5365 slub_put_cpu_ptr(s->cpu_slab);
5366
5367 return i;
5368
5369 error:
5370 slub_put_cpu_ptr(s->cpu_slab);
5371 __kmem_cache_free_bulk(s, i, p);
5372 return 0;
5373
5374 }
5375 #else /* CONFIG_SLUB_TINY */
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5376 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5377 size_t size, void **p)
5378 {
5379 int i;
5380
5381 for (i = 0; i < size; i++) {
5382 void *object = kfence_alloc(s, s->object_size, flags);
5383
5384 if (unlikely(object)) {
5385 p[i] = object;
5386 continue;
5387 }
5388
5389 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5390 _RET_IP_, s->object_size);
5391 if (unlikely(!p[i]))
5392 goto error;
5393
5394 maybe_wipe_obj_freeptr(s, p[i]);
5395 }
5396
5397 return i;
5398
5399 error:
5400 __kmem_cache_free_bulk(s, i, p);
5401 return 0;
5402 }
5403 #endif /* CONFIG_SLUB_TINY */
5404
5405 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk_noprof(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)5406 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5407 void **p)
5408 {
5409 int i;
5410
5411 if (!size)
5412 return 0;
5413
5414 s = slab_pre_alloc_hook(s, flags);
5415 if (unlikely(!s))
5416 return 0;
5417
5418 i = __kmem_cache_alloc_bulk(s, flags, size, p);
5419 if (unlikely(i == 0))
5420 return 0;
5421
5422 /*
5423 * memcg and kmem_cache debug support and memory initialization.
5424 * Done outside of the IRQ disabled fastpath loop.
5425 */
5426 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5427 slab_want_init_on_alloc(flags, s), s->object_size))) {
5428 return 0;
5429 }
5430 return i;
5431 }
5432 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5433
5434
5435 /*
5436 * Object placement in a slab is made very easy because we always start at
5437 * offset 0. If we tune the size of the object to the alignment then we can
5438 * get the required alignment by putting one properly sized object after
5439 * another.
5440 *
5441 * Notice that the allocation order determines the sizes of the per cpu
5442 * caches. Each processor has always one slab available for allocations.
5443 * Increasing the allocation order reduces the number of times that slabs
5444 * must be moved on and off the partial lists and is therefore a factor in
5445 * locking overhead.
5446 */
5447
5448 /*
5449 * Minimum / Maximum order of slab pages. This influences locking overhead
5450 * and slab fragmentation. A higher order reduces the number of partial slabs
5451 * and increases the number of allocations possible without having to
5452 * take the list_lock.
5453 */
5454 static unsigned int slub_min_order;
5455 static unsigned int slub_max_order =
5456 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5457 static unsigned int slub_min_objects;
5458
5459 /*
5460 * Calculate the order of allocation given an slab object size.
5461 *
5462 * The order of allocation has significant impact on performance and other
5463 * system components. Generally order 0 allocations should be preferred since
5464 * order 0 does not cause fragmentation in the page allocator. Larger objects
5465 * be problematic to put into order 0 slabs because there may be too much
5466 * unused space left. We go to a higher order if more than 1/16th of the slab
5467 * would be wasted.
5468 *
5469 * In order to reach satisfactory performance we must ensure that a minimum
5470 * number of objects is in one slab. Otherwise we may generate too much
5471 * activity on the partial lists which requires taking the list_lock. This is
5472 * less a concern for large slabs though which are rarely used.
5473 *
5474 * slab_max_order specifies the order where we begin to stop considering the
5475 * number of objects in a slab as critical. If we reach slab_max_order then
5476 * we try to keep the page order as low as possible. So we accept more waste
5477 * of space in favor of a small page order.
5478 *
5479 * Higher order allocations also allow the placement of more objects in a
5480 * slab and thereby reduce object handling overhead. If the user has
5481 * requested a higher minimum order then we start with that one instead of
5482 * the smallest order which will fit the object.
5483 */
calc_slab_order(unsigned int size,unsigned int min_order,unsigned int max_order,unsigned int fract_leftover)5484 static inline unsigned int calc_slab_order(unsigned int size,
5485 unsigned int min_order, unsigned int max_order,
5486 unsigned int fract_leftover)
5487 {
5488 unsigned int order;
5489
5490 for (order = min_order; order <= max_order; order++) {
5491
5492 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5493 unsigned int rem;
5494
5495 rem = slab_size % size;
5496
5497 if (rem <= slab_size / fract_leftover)
5498 break;
5499 }
5500
5501 return order;
5502 }
5503
calculate_order(unsigned int size)5504 static inline int calculate_order(unsigned int size)
5505 {
5506 unsigned int order;
5507 unsigned int min_objects;
5508 unsigned int max_objects;
5509 unsigned int min_order;
5510
5511 min_objects = slub_min_objects;
5512 if (!min_objects) {
5513 /*
5514 * Some architectures will only update present cpus when
5515 * onlining them, so don't trust the number if it's just 1. But
5516 * we also don't want to use nr_cpu_ids always, as on some other
5517 * architectures, there can be many possible cpus, but never
5518 * onlined. Here we compromise between trying to avoid too high
5519 * order on systems that appear larger than they are, and too
5520 * low order on systems that appear smaller than they are.
5521 */
5522 unsigned int nr_cpus = num_present_cpus();
5523 if (nr_cpus <= 1)
5524 nr_cpus = nr_cpu_ids;
5525 min_objects = 4 * (fls(nr_cpus) + 1);
5526 }
5527 /* min_objects can't be 0 because get_order(0) is undefined */
5528 max_objects = max(order_objects(slub_max_order, size), 1U);
5529 min_objects = min(min_objects, max_objects);
5530
5531 min_order = max_t(unsigned int, slub_min_order,
5532 get_order(min_objects * size));
5533 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5534 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5535
5536 /*
5537 * Attempt to find best configuration for a slab. This works by first
5538 * attempting to generate a layout with the best possible configuration
5539 * and backing off gradually.
5540 *
5541 * We start with accepting at most 1/16 waste and try to find the
5542 * smallest order from min_objects-derived/slab_min_order up to
5543 * slab_max_order that will satisfy the constraint. Note that increasing
5544 * the order can only result in same or less fractional waste, not more.
5545 *
5546 * If that fails, we increase the acceptable fraction of waste and try
5547 * again. The last iteration with fraction of 1/2 would effectively
5548 * accept any waste and give us the order determined by min_objects, as
5549 * long as at least single object fits within slab_max_order.
5550 */
5551 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5552 order = calc_slab_order(size, min_order, slub_max_order,
5553 fraction);
5554 if (order <= slub_max_order)
5555 return order;
5556 }
5557
5558 /*
5559 * Doh this slab cannot be placed using slab_max_order.
5560 */
5561 order = get_order(size);
5562 if (order <= MAX_PAGE_ORDER)
5563 return order;
5564 return -ENOSYS;
5565 }
5566
5567 static void
init_kmem_cache_node(struct kmem_cache_node * n)5568 init_kmem_cache_node(struct kmem_cache_node *n)
5569 {
5570 n->nr_partial = 0;
5571 spin_lock_init(&n->list_lock);
5572 INIT_LIST_HEAD(&n->partial);
5573 #ifdef CONFIG_SLUB_DEBUG
5574 atomic_long_set(&n->nr_slabs, 0);
5575 atomic_long_set(&n->total_objects, 0);
5576 INIT_LIST_HEAD(&n->full);
5577 #endif
5578 }
5579
5580 #ifndef CONFIG_SLUB_TINY
alloc_kmem_cache_cpus(struct kmem_cache * s)5581 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5582 {
5583 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5584 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5585 sizeof(struct kmem_cache_cpu));
5586
5587 /*
5588 * Must align to double word boundary for the double cmpxchg
5589 * instructions to work; see __pcpu_double_call_return_bool().
5590 */
5591 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5592 2 * sizeof(void *));
5593
5594 if (!s->cpu_slab)
5595 return 0;
5596
5597 init_kmem_cache_cpus(s);
5598
5599 return 1;
5600 }
5601 #else
alloc_kmem_cache_cpus(struct kmem_cache * s)5602 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5603 {
5604 return 1;
5605 }
5606 #endif /* CONFIG_SLUB_TINY */
5607
5608 static struct kmem_cache *kmem_cache_node;
5609
5610 /*
5611 * No kmalloc_node yet so do it by hand. We know that this is the first
5612 * slab on the node for this slabcache. There are no concurrent accesses
5613 * possible.
5614 *
5615 * Note that this function only works on the kmem_cache_node
5616 * when allocating for the kmem_cache_node. This is used for bootstrapping
5617 * memory on a fresh node that has no slab structures yet.
5618 */
early_kmem_cache_node_alloc(int node)5619 static void early_kmem_cache_node_alloc(int node)
5620 {
5621 struct slab *slab;
5622 struct kmem_cache_node *n;
5623
5624 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5625
5626 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5627
5628 BUG_ON(!slab);
5629 if (slab_nid(slab) != node) {
5630 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5631 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5632 }
5633
5634 n = slab->freelist;
5635 BUG_ON(!n);
5636 #ifdef CONFIG_SLUB_DEBUG
5637 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5638 #endif
5639 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5640 slab->freelist = get_freepointer(kmem_cache_node, n);
5641 slab->inuse = 1;
5642 kmem_cache_node->node[node] = n;
5643 init_kmem_cache_node(n);
5644 inc_slabs_node(kmem_cache_node, node, slab->objects);
5645
5646 /*
5647 * No locks need to be taken here as it has just been
5648 * initialized and there is no concurrent access.
5649 */
5650 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5651 }
5652
free_kmem_cache_nodes(struct kmem_cache * s)5653 static void free_kmem_cache_nodes(struct kmem_cache *s)
5654 {
5655 int node;
5656 struct kmem_cache_node *n;
5657
5658 for_each_kmem_cache_node(s, node, n) {
5659 s->node[node] = NULL;
5660 kmem_cache_free(kmem_cache_node, n);
5661 }
5662 }
5663
__kmem_cache_release(struct kmem_cache * s)5664 void __kmem_cache_release(struct kmem_cache *s)
5665 {
5666 cache_random_seq_destroy(s);
5667 #ifndef CONFIG_SLUB_TINY
5668 free_percpu(s->cpu_slab);
5669 #endif
5670 free_kmem_cache_nodes(s);
5671 }
5672
init_kmem_cache_nodes(struct kmem_cache * s)5673 static int init_kmem_cache_nodes(struct kmem_cache *s)
5674 {
5675 int node;
5676
5677 for_each_node_mask(node, slab_nodes) {
5678 struct kmem_cache_node *n;
5679
5680 if (slab_state == DOWN) {
5681 early_kmem_cache_node_alloc(node);
5682 continue;
5683 }
5684 n = kmem_cache_alloc_node(kmem_cache_node,
5685 GFP_KERNEL, node);
5686
5687 if (!n) {
5688 free_kmem_cache_nodes(s);
5689 return 0;
5690 }
5691
5692 init_kmem_cache_node(n);
5693 s->node[node] = n;
5694 }
5695 return 1;
5696 }
5697
set_cpu_partial(struct kmem_cache * s)5698 static void set_cpu_partial(struct kmem_cache *s)
5699 {
5700 #ifdef CONFIG_SLUB_CPU_PARTIAL
5701 unsigned int nr_objects;
5702
5703 /*
5704 * cpu_partial determined the maximum number of objects kept in the
5705 * per cpu partial lists of a processor.
5706 *
5707 * Per cpu partial lists mainly contain slabs that just have one
5708 * object freed. If they are used for allocation then they can be
5709 * filled up again with minimal effort. The slab will never hit the
5710 * per node partial lists and therefore no locking will be required.
5711 *
5712 * For backwards compatibility reasons, this is determined as number
5713 * of objects, even though we now limit maximum number of pages, see
5714 * slub_set_cpu_partial()
5715 */
5716 if (!kmem_cache_has_cpu_partial(s))
5717 nr_objects = 0;
5718 else if (s->size >= PAGE_SIZE)
5719 nr_objects = 6;
5720 else if (s->size >= 1024)
5721 nr_objects = 24;
5722 else if (s->size >= 256)
5723 nr_objects = 52;
5724 else
5725 nr_objects = 120;
5726
5727 slub_set_cpu_partial(s, nr_objects);
5728 #endif
5729 }
5730
5731 /*
5732 * calculate_sizes() determines the order and the distribution of data within
5733 * a slab object.
5734 */
calculate_sizes(struct kmem_cache_args * args,struct kmem_cache * s)5735 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5736 {
5737 slab_flags_t flags = s->flags;
5738 unsigned int size = s->object_size;
5739 unsigned int order;
5740
5741 /*
5742 * Round up object size to the next word boundary. We can only
5743 * place the free pointer at word boundaries and this determines
5744 * the possible location of the free pointer.
5745 */
5746 size = ALIGN(size, sizeof(void *));
5747
5748 #ifdef CONFIG_SLUB_DEBUG
5749 /*
5750 * Determine if we can poison the object itself. If the user of
5751 * the slab may touch the object after free or before allocation
5752 * then we should never poison the object itself.
5753 */
5754 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5755 !s->ctor)
5756 s->flags |= __OBJECT_POISON;
5757 else
5758 s->flags &= ~__OBJECT_POISON;
5759
5760
5761 /*
5762 * If we are Redzoning then check if there is some space between the
5763 * end of the object and the free pointer. If not then add an
5764 * additional word to have some bytes to store Redzone information.
5765 */
5766 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5767 size += sizeof(void *);
5768 #endif
5769
5770 /*
5771 * With that we have determined the number of bytes in actual use
5772 * by the object and redzoning.
5773 */
5774 s->inuse = size;
5775
5776 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5777 (flags & SLAB_POISON) || s->ctor ||
5778 ((flags & SLAB_RED_ZONE) &&
5779 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5780 /*
5781 * Relocate free pointer after the object if it is not
5782 * permitted to overwrite the first word of the object on
5783 * kmem_cache_free.
5784 *
5785 * This is the case if we do RCU, have a constructor or
5786 * destructor, are poisoning the objects, or are
5787 * redzoning an object smaller than sizeof(void *) or are
5788 * redzoning an object with slub_debug_orig_size() enabled,
5789 * in which case the right redzone may be extended.
5790 *
5791 * The assumption that s->offset >= s->inuse means free
5792 * pointer is outside of the object is used in the
5793 * freeptr_outside_object() function. If that is no
5794 * longer true, the function needs to be modified.
5795 */
5796 s->offset = size;
5797 size += sizeof(void *);
5798 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5799 s->offset = args->freeptr_offset;
5800 } else {
5801 /*
5802 * Store freelist pointer near middle of object to keep
5803 * it away from the edges of the object to avoid small
5804 * sized over/underflows from neighboring allocations.
5805 */
5806 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5807 }
5808
5809 #ifdef CONFIG_SLUB_DEBUG
5810 if (flags & SLAB_STORE_USER) {
5811 /*
5812 * Need to store information about allocs and frees after
5813 * the object.
5814 */
5815 size += 2 * sizeof(struct track);
5816
5817 /* Save the original kmalloc request size */
5818 if (flags & SLAB_KMALLOC)
5819 size += sizeof(unsigned int);
5820 }
5821 #endif
5822
5823 kasan_cache_create(s, &size, &s->flags);
5824 #ifdef CONFIG_SLUB_DEBUG
5825 if (flags & SLAB_RED_ZONE) {
5826 /*
5827 * Add some empty padding so that we can catch
5828 * overwrites from earlier objects rather than let
5829 * tracking information or the free pointer be
5830 * corrupted if a user writes before the start
5831 * of the object.
5832 */
5833 size += sizeof(void *);
5834
5835 s->red_left_pad = sizeof(void *);
5836 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5837 size += s->red_left_pad;
5838 }
5839 #endif
5840
5841 /*
5842 * SLUB stores one object immediately after another beginning from
5843 * offset 0. In order to align the objects we have to simply size
5844 * each object to conform to the alignment.
5845 */
5846 size = ALIGN(size, s->align);
5847 s->size = size;
5848 s->reciprocal_size = reciprocal_value(size);
5849 order = calculate_order(size);
5850
5851 if ((int)order < 0)
5852 return 0;
5853
5854 s->allocflags = __GFP_COMP;
5855
5856 if (s->flags & SLAB_CACHE_DMA)
5857 s->allocflags |= GFP_DMA;
5858
5859 if (s->flags & SLAB_CACHE_DMA32)
5860 s->allocflags |= GFP_DMA32;
5861
5862 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5863 s->allocflags |= __GFP_RECLAIMABLE;
5864
5865 /*
5866 * Determine the number of objects per slab
5867 */
5868 s->oo = oo_make(order, size);
5869 s->min = oo_make(get_order(size), size);
5870
5871 return !!oo_objects(s->oo);
5872 }
5873
list_slab_objects(struct kmem_cache * s,struct slab * slab)5874 static void list_slab_objects(struct kmem_cache *s, struct slab *slab)
5875 {
5876 #ifdef CONFIG_SLUB_DEBUG
5877 void *addr = slab_address(slab);
5878 void *p;
5879
5880 if (!slab_add_kunit_errors())
5881 slab_bug(s, "Objects remaining on __kmem_cache_shutdown()");
5882
5883 spin_lock(&object_map_lock);
5884 __fill_map(object_map, s, slab);
5885
5886 for_each_object(p, s, addr, slab->objects) {
5887
5888 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5889 if (slab_add_kunit_errors())
5890 continue;
5891 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5892 print_tracking(s, p);
5893 }
5894 }
5895 spin_unlock(&object_map_lock);
5896
5897 __slab_err(slab);
5898 #endif
5899 }
5900
5901 /*
5902 * Attempt to free all partial slabs on a node.
5903 * This is called from __kmem_cache_shutdown(). We must take list_lock
5904 * because sysfs file might still access partial list after the shutdowning.
5905 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)5906 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5907 {
5908 LIST_HEAD(discard);
5909 struct slab *slab, *h;
5910
5911 BUG_ON(irqs_disabled());
5912 spin_lock_irq(&n->list_lock);
5913 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5914 if (!slab->inuse) {
5915 remove_partial(n, slab);
5916 list_add(&slab->slab_list, &discard);
5917 } else {
5918 list_slab_objects(s, slab);
5919 }
5920 }
5921 spin_unlock_irq(&n->list_lock);
5922
5923 list_for_each_entry_safe(slab, h, &discard, slab_list)
5924 discard_slab(s, slab);
5925 }
5926
__kmem_cache_empty(struct kmem_cache * s)5927 bool __kmem_cache_empty(struct kmem_cache *s)
5928 {
5929 int node;
5930 struct kmem_cache_node *n;
5931
5932 for_each_kmem_cache_node(s, node, n)
5933 if (n->nr_partial || node_nr_slabs(n))
5934 return false;
5935 return true;
5936 }
5937
5938 /*
5939 * Release all resources used by a slab cache.
5940 */
__kmem_cache_shutdown(struct kmem_cache * s)5941 int __kmem_cache_shutdown(struct kmem_cache *s)
5942 {
5943 int node;
5944 struct kmem_cache_node *n;
5945
5946 flush_all_cpus_locked(s);
5947 /* Attempt to free all objects */
5948 for_each_kmem_cache_node(s, node, n) {
5949 free_partial(s, n);
5950 if (n->nr_partial || node_nr_slabs(n))
5951 return 1;
5952 }
5953 return 0;
5954 }
5955
5956 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct slab * slab)5957 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5958 {
5959 void *base;
5960 int __maybe_unused i;
5961 unsigned int objnr;
5962 void *objp;
5963 void *objp0;
5964 struct kmem_cache *s = slab->slab_cache;
5965 struct track __maybe_unused *trackp;
5966
5967 kpp->kp_ptr = object;
5968 kpp->kp_slab = slab;
5969 kpp->kp_slab_cache = s;
5970 base = slab_address(slab);
5971 objp0 = kasan_reset_tag(object);
5972 #ifdef CONFIG_SLUB_DEBUG
5973 objp = restore_red_left(s, objp0);
5974 #else
5975 objp = objp0;
5976 #endif
5977 objnr = obj_to_index(s, slab, objp);
5978 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5979 objp = base + s->size * objnr;
5980 kpp->kp_objp = objp;
5981 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5982 || (objp - base) % s->size) ||
5983 !(s->flags & SLAB_STORE_USER))
5984 return;
5985 #ifdef CONFIG_SLUB_DEBUG
5986 objp = fixup_red_left(s, objp);
5987 trackp = get_track(s, objp, TRACK_ALLOC);
5988 kpp->kp_ret = (void *)trackp->addr;
5989 #ifdef CONFIG_STACKDEPOT
5990 {
5991 depot_stack_handle_t handle;
5992 unsigned long *entries;
5993 unsigned int nr_entries;
5994
5995 handle = READ_ONCE(trackp->handle);
5996 if (handle) {
5997 nr_entries = stack_depot_fetch(handle, &entries);
5998 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5999 kpp->kp_stack[i] = (void *)entries[i];
6000 }
6001
6002 trackp = get_track(s, objp, TRACK_FREE);
6003 handle = READ_ONCE(trackp->handle);
6004 if (handle) {
6005 nr_entries = stack_depot_fetch(handle, &entries);
6006 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
6007 kpp->kp_free_stack[i] = (void *)entries[i];
6008 }
6009 }
6010 #endif
6011 #endif
6012 }
6013 #endif
6014
6015 /********************************************************************
6016 * Kmalloc subsystem
6017 *******************************************************************/
6018
setup_slub_min_order(char * str)6019 static int __init setup_slub_min_order(char *str)
6020 {
6021 get_option(&str, (int *)&slub_min_order);
6022
6023 if (slub_min_order > slub_max_order)
6024 slub_max_order = slub_min_order;
6025
6026 return 1;
6027 }
6028
6029 __setup("slab_min_order=", setup_slub_min_order);
6030 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
6031
6032
setup_slub_max_order(char * str)6033 static int __init setup_slub_max_order(char *str)
6034 {
6035 get_option(&str, (int *)&slub_max_order);
6036 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
6037
6038 if (slub_min_order > slub_max_order)
6039 slub_min_order = slub_max_order;
6040
6041 return 1;
6042 }
6043
6044 __setup("slab_max_order=", setup_slub_max_order);
6045 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
6046
setup_slub_min_objects(char * str)6047 static int __init setup_slub_min_objects(char *str)
6048 {
6049 get_option(&str, (int *)&slub_min_objects);
6050
6051 return 1;
6052 }
6053
6054 __setup("slab_min_objects=", setup_slub_min_objects);
6055 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
6056
6057 #ifdef CONFIG_NUMA
setup_slab_strict_numa(char * str)6058 static int __init setup_slab_strict_numa(char *str)
6059 {
6060 if (nr_node_ids > 1) {
6061 static_branch_enable(&strict_numa);
6062 pr_info("SLUB: Strict NUMA enabled.\n");
6063 } else {
6064 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
6065 }
6066
6067 return 1;
6068 }
6069
6070 __setup("slab_strict_numa", setup_slab_strict_numa);
6071 #endif
6072
6073
6074 #ifdef CONFIG_HARDENED_USERCOPY
6075 /*
6076 * Rejects incorrectly sized objects and objects that are to be copied
6077 * to/from userspace but do not fall entirely within the containing slab
6078 * cache's usercopy region.
6079 *
6080 * Returns NULL if check passes, otherwise const char * to name of cache
6081 * to indicate an error.
6082 */
__check_heap_object(const void * ptr,unsigned long n,const struct slab * slab,bool to_user)6083 void __check_heap_object(const void *ptr, unsigned long n,
6084 const struct slab *slab, bool to_user)
6085 {
6086 struct kmem_cache *s;
6087 unsigned int offset;
6088 bool is_kfence = is_kfence_address(ptr);
6089
6090 ptr = kasan_reset_tag(ptr);
6091
6092 /* Find object and usable object size. */
6093 s = slab->slab_cache;
6094
6095 /* Reject impossible pointers. */
6096 if (ptr < slab_address(slab))
6097 usercopy_abort("SLUB object not in SLUB page?!", NULL,
6098 to_user, 0, n);
6099
6100 /* Find offset within object. */
6101 if (is_kfence)
6102 offset = ptr - kfence_object_start(ptr);
6103 else
6104 offset = (ptr - slab_address(slab)) % s->size;
6105
6106 /* Adjust for redzone and reject if within the redzone. */
6107 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
6108 if (offset < s->red_left_pad)
6109 usercopy_abort("SLUB object in left red zone",
6110 s->name, to_user, offset, n);
6111 offset -= s->red_left_pad;
6112 }
6113
6114 /* Allow address range falling entirely within usercopy region. */
6115 if (offset >= s->useroffset &&
6116 offset - s->useroffset <= s->usersize &&
6117 n <= s->useroffset - offset + s->usersize)
6118 return;
6119
6120 usercopy_abort("SLUB object", s->name, to_user, offset, n);
6121 }
6122 #endif /* CONFIG_HARDENED_USERCOPY */
6123
6124 #define SHRINK_PROMOTE_MAX 32
6125
6126 /*
6127 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
6128 * up most to the head of the partial lists. New allocations will then
6129 * fill those up and thus they can be removed from the partial lists.
6130 *
6131 * The slabs with the least items are placed last. This results in them
6132 * being allocated from last increasing the chance that the last objects
6133 * are freed in them.
6134 */
__kmem_cache_do_shrink(struct kmem_cache * s)6135 static int __kmem_cache_do_shrink(struct kmem_cache *s)
6136 {
6137 int node;
6138 int i;
6139 struct kmem_cache_node *n;
6140 struct slab *slab;
6141 struct slab *t;
6142 struct list_head discard;
6143 struct list_head promote[SHRINK_PROMOTE_MAX];
6144 unsigned long flags;
6145 int ret = 0;
6146
6147 for_each_kmem_cache_node(s, node, n) {
6148 INIT_LIST_HEAD(&discard);
6149 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
6150 INIT_LIST_HEAD(promote + i);
6151
6152 spin_lock_irqsave(&n->list_lock, flags);
6153
6154 /*
6155 * Build lists of slabs to discard or promote.
6156 *
6157 * Note that concurrent frees may occur while we hold the
6158 * list_lock. slab->inuse here is the upper limit.
6159 */
6160 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
6161 int free = slab->objects - slab->inuse;
6162
6163 /* Do not reread slab->inuse */
6164 barrier();
6165
6166 /* We do not keep full slabs on the list */
6167 BUG_ON(free <= 0);
6168
6169 if (free == slab->objects) {
6170 list_move(&slab->slab_list, &discard);
6171 slab_clear_node_partial(slab);
6172 n->nr_partial--;
6173 dec_slabs_node(s, node, slab->objects);
6174 } else if (free <= SHRINK_PROMOTE_MAX)
6175 list_move(&slab->slab_list, promote + free - 1);
6176 }
6177
6178 /*
6179 * Promote the slabs filled up most to the head of the
6180 * partial list.
6181 */
6182 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
6183 list_splice(promote + i, &n->partial);
6184
6185 spin_unlock_irqrestore(&n->list_lock, flags);
6186
6187 /* Release empty slabs */
6188 list_for_each_entry_safe(slab, t, &discard, slab_list)
6189 free_slab(s, slab);
6190
6191 if (node_nr_slabs(n))
6192 ret = 1;
6193 }
6194
6195 return ret;
6196 }
6197
__kmem_cache_shrink(struct kmem_cache * s)6198 int __kmem_cache_shrink(struct kmem_cache *s)
6199 {
6200 flush_all(s);
6201 return __kmem_cache_do_shrink(s);
6202 }
6203
slab_mem_going_offline_callback(void)6204 static int slab_mem_going_offline_callback(void)
6205 {
6206 struct kmem_cache *s;
6207
6208 mutex_lock(&slab_mutex);
6209 list_for_each_entry(s, &slab_caches, list) {
6210 flush_all_cpus_locked(s);
6211 __kmem_cache_do_shrink(s);
6212 }
6213 mutex_unlock(&slab_mutex);
6214
6215 return 0;
6216 }
6217
slab_mem_going_online_callback(int nid)6218 static int slab_mem_going_online_callback(int nid)
6219 {
6220 struct kmem_cache_node *n;
6221 struct kmem_cache *s;
6222 int ret = 0;
6223
6224 /*
6225 * We are bringing a node online. No memory is available yet. We must
6226 * allocate a kmem_cache_node structure in order to bring the node
6227 * online.
6228 */
6229 mutex_lock(&slab_mutex);
6230 list_for_each_entry(s, &slab_caches, list) {
6231 /*
6232 * The structure may already exist if the node was previously
6233 * onlined and offlined.
6234 */
6235 if (get_node(s, nid))
6236 continue;
6237 /*
6238 * XXX: kmem_cache_alloc_node will fallback to other nodes
6239 * since memory is not yet available from the node that
6240 * is brought up.
6241 */
6242 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
6243 if (!n) {
6244 ret = -ENOMEM;
6245 goto out;
6246 }
6247 init_kmem_cache_node(n);
6248 s->node[nid] = n;
6249 }
6250 /*
6251 * Any cache created after this point will also have kmem_cache_node
6252 * initialized for the new node.
6253 */
6254 node_set(nid, slab_nodes);
6255 out:
6256 mutex_unlock(&slab_mutex);
6257 return ret;
6258 }
6259
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)6260 static int slab_memory_callback(struct notifier_block *self,
6261 unsigned long action, void *arg)
6262 {
6263 struct node_notify *nn = arg;
6264 int nid = nn->nid;
6265 int ret = 0;
6266
6267 switch (action) {
6268 case NODE_ADDING_FIRST_MEMORY:
6269 ret = slab_mem_going_online_callback(nid);
6270 break;
6271 case NODE_REMOVING_LAST_MEMORY:
6272 ret = slab_mem_going_offline_callback();
6273 break;
6274 }
6275 if (ret)
6276 ret = notifier_from_errno(ret);
6277 else
6278 ret = NOTIFY_OK;
6279 return ret;
6280 }
6281
6282 /********************************************************************
6283 * Basic setup of slabs
6284 *******************************************************************/
6285
6286 /*
6287 * Used for early kmem_cache structures that were allocated using
6288 * the page allocator. Allocate them properly then fix up the pointers
6289 * that may be pointing to the wrong kmem_cache structure.
6290 */
6291
bootstrap(struct kmem_cache * static_cache)6292 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6293 {
6294 int node;
6295 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6296 struct kmem_cache_node *n;
6297
6298 memcpy(s, static_cache, kmem_cache->object_size);
6299
6300 /*
6301 * This runs very early, and only the boot processor is supposed to be
6302 * up. Even if it weren't true, IRQs are not up so we couldn't fire
6303 * IPIs around.
6304 */
6305 __flush_cpu_slab(s, smp_processor_id());
6306 for_each_kmem_cache_node(s, node, n) {
6307 struct slab *p;
6308
6309 list_for_each_entry(p, &n->partial, slab_list)
6310 p->slab_cache = s;
6311
6312 #ifdef CONFIG_SLUB_DEBUG
6313 list_for_each_entry(p, &n->full, slab_list)
6314 p->slab_cache = s;
6315 #endif
6316 }
6317 list_add(&s->list, &slab_caches);
6318 return s;
6319 }
6320
kmem_cache_init(void)6321 void __init kmem_cache_init(void)
6322 {
6323 static __initdata struct kmem_cache boot_kmem_cache,
6324 boot_kmem_cache_node;
6325 int node;
6326
6327 if (debug_guardpage_minorder())
6328 slub_max_order = 0;
6329
6330 /* Inform pointer hashing choice about slub debugging state. */
6331 hash_pointers_finalize(__slub_debug_enabled());
6332
6333 kmem_cache_node = &boot_kmem_cache_node;
6334 kmem_cache = &boot_kmem_cache;
6335
6336 /*
6337 * Initialize the nodemask for which we will allocate per node
6338 * structures. Here we don't need taking slab_mutex yet.
6339 */
6340 for_each_node_state(node, N_MEMORY)
6341 node_set(node, slab_nodes);
6342
6343 create_boot_cache(kmem_cache_node, "kmem_cache_node",
6344 sizeof(struct kmem_cache_node),
6345 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6346
6347 hotplug_node_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6348
6349 /* Able to allocate the per node structures */
6350 slab_state = PARTIAL;
6351
6352 create_boot_cache(kmem_cache, "kmem_cache",
6353 offsetof(struct kmem_cache, node) +
6354 nr_node_ids * sizeof(struct kmem_cache_node *),
6355 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6356
6357 kmem_cache = bootstrap(&boot_kmem_cache);
6358 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6359
6360 /* Now we can use the kmem_cache to allocate kmalloc slabs */
6361 setup_kmalloc_cache_index_table();
6362 create_kmalloc_caches();
6363
6364 /* Setup random freelists for each cache */
6365 init_freelist_randomization();
6366
6367 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6368 slub_cpu_dead);
6369
6370 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6371 cache_line_size(),
6372 slub_min_order, slub_max_order, slub_min_objects,
6373 nr_cpu_ids, nr_node_ids);
6374 }
6375
kmem_cache_init_late(void)6376 void __init kmem_cache_init_late(void)
6377 {
6378 #ifndef CONFIG_SLUB_TINY
6379 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6380 WARN_ON(!flushwq);
6381 #endif
6382 }
6383
6384 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))6385 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6386 slab_flags_t flags, void (*ctor)(void *))
6387 {
6388 struct kmem_cache *s;
6389
6390 s = find_mergeable(size, align, flags, name, ctor);
6391 if (s) {
6392 if (sysfs_slab_alias(s, name))
6393 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6394 name);
6395
6396 s->refcount++;
6397
6398 /*
6399 * Adjust the object sizes so that we clear
6400 * the complete object on kzalloc.
6401 */
6402 s->object_size = max(s->object_size, size);
6403 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6404 }
6405
6406 return s;
6407 }
6408
do_kmem_cache_create(struct kmem_cache * s,const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)6409 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6410 unsigned int size, struct kmem_cache_args *args,
6411 slab_flags_t flags)
6412 {
6413 int err = -EINVAL;
6414
6415 s->name = name;
6416 s->size = s->object_size = size;
6417
6418 s->flags = kmem_cache_flags(flags, s->name);
6419 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6420 s->random = get_random_long();
6421 #endif
6422 s->align = args->align;
6423 s->ctor = args->ctor;
6424 #ifdef CONFIG_HARDENED_USERCOPY
6425 s->useroffset = args->useroffset;
6426 s->usersize = args->usersize;
6427 #endif
6428
6429 if (!calculate_sizes(args, s))
6430 goto out;
6431 if (disable_higher_order_debug) {
6432 /*
6433 * Disable debugging flags that store metadata if the min slab
6434 * order increased.
6435 */
6436 if (get_order(s->size) > get_order(s->object_size)) {
6437 s->flags &= ~DEBUG_METADATA_FLAGS;
6438 s->offset = 0;
6439 if (!calculate_sizes(args, s))
6440 goto out;
6441 }
6442 }
6443
6444 #ifdef system_has_freelist_aba
6445 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6446 /* Enable fast mode */
6447 s->flags |= __CMPXCHG_DOUBLE;
6448 }
6449 #endif
6450
6451 /*
6452 * The larger the object size is, the more slabs we want on the partial
6453 * list to avoid pounding the page allocator excessively.
6454 */
6455 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6456 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6457
6458 set_cpu_partial(s);
6459
6460 #ifdef CONFIG_NUMA
6461 s->remote_node_defrag_ratio = 1000;
6462 #endif
6463
6464 /* Initialize the pre-computed randomized freelist if slab is up */
6465 if (slab_state >= UP) {
6466 if (init_cache_random_seq(s))
6467 goto out;
6468 }
6469
6470 if (!init_kmem_cache_nodes(s))
6471 goto out;
6472
6473 if (!alloc_kmem_cache_cpus(s))
6474 goto out;
6475
6476 err = 0;
6477
6478 /* Mutex is not taken during early boot */
6479 if (slab_state <= UP)
6480 goto out;
6481
6482 /*
6483 * Failing to create sysfs files is not critical to SLUB functionality.
6484 * If it fails, proceed with cache creation without these files.
6485 */
6486 if (sysfs_slab_add(s))
6487 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6488
6489 if (s->flags & SLAB_STORE_USER)
6490 debugfs_slab_add(s);
6491
6492 out:
6493 if (err)
6494 __kmem_cache_release(s);
6495 return err;
6496 }
6497
6498 #ifdef SLAB_SUPPORTS_SYSFS
count_inuse(struct slab * slab)6499 static int count_inuse(struct slab *slab)
6500 {
6501 return slab->inuse;
6502 }
6503
count_total(struct slab * slab)6504 static int count_total(struct slab *slab)
6505 {
6506 return slab->objects;
6507 }
6508 #endif
6509
6510 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct slab * slab,unsigned long * obj_map)6511 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6512 unsigned long *obj_map)
6513 {
6514 void *p;
6515 void *addr = slab_address(slab);
6516
6517 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6518 return;
6519
6520 /* Now we know that a valid freelist exists */
6521 __fill_map(obj_map, s, slab);
6522 for_each_object(p, s, addr, slab->objects) {
6523 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6524 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6525
6526 if (!check_object(s, slab, p, val))
6527 break;
6528 }
6529 }
6530
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)6531 static int validate_slab_node(struct kmem_cache *s,
6532 struct kmem_cache_node *n, unsigned long *obj_map)
6533 {
6534 unsigned long count = 0;
6535 struct slab *slab;
6536 unsigned long flags;
6537
6538 spin_lock_irqsave(&n->list_lock, flags);
6539
6540 list_for_each_entry(slab, &n->partial, slab_list) {
6541 validate_slab(s, slab, obj_map);
6542 count++;
6543 }
6544 if (count != n->nr_partial) {
6545 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6546 s->name, count, n->nr_partial);
6547 slab_add_kunit_errors();
6548 }
6549
6550 if (!(s->flags & SLAB_STORE_USER))
6551 goto out;
6552
6553 list_for_each_entry(slab, &n->full, slab_list) {
6554 validate_slab(s, slab, obj_map);
6555 count++;
6556 }
6557 if (count != node_nr_slabs(n)) {
6558 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6559 s->name, count, node_nr_slabs(n));
6560 slab_add_kunit_errors();
6561 }
6562
6563 out:
6564 spin_unlock_irqrestore(&n->list_lock, flags);
6565 return count;
6566 }
6567
validate_slab_cache(struct kmem_cache * s)6568 long validate_slab_cache(struct kmem_cache *s)
6569 {
6570 int node;
6571 unsigned long count = 0;
6572 struct kmem_cache_node *n;
6573 unsigned long *obj_map;
6574
6575 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6576 if (!obj_map)
6577 return -ENOMEM;
6578
6579 flush_all(s);
6580 for_each_kmem_cache_node(s, node, n)
6581 count += validate_slab_node(s, n, obj_map);
6582
6583 bitmap_free(obj_map);
6584
6585 return count;
6586 }
6587 EXPORT_SYMBOL(validate_slab_cache);
6588
6589 #ifdef CONFIG_DEBUG_FS
6590 /*
6591 * Generate lists of code addresses where slabcache objects are allocated
6592 * and freed.
6593 */
6594
6595 struct location {
6596 depot_stack_handle_t handle;
6597 unsigned long count;
6598 unsigned long addr;
6599 unsigned long waste;
6600 long long sum_time;
6601 long min_time;
6602 long max_time;
6603 long min_pid;
6604 long max_pid;
6605 DECLARE_BITMAP(cpus, NR_CPUS);
6606 nodemask_t nodes;
6607 };
6608
6609 struct loc_track {
6610 unsigned long max;
6611 unsigned long count;
6612 struct location *loc;
6613 loff_t idx;
6614 };
6615
6616 static struct dentry *slab_debugfs_root;
6617
free_loc_track(struct loc_track * t)6618 static void free_loc_track(struct loc_track *t)
6619 {
6620 if (t->max)
6621 free_pages((unsigned long)t->loc,
6622 get_order(sizeof(struct location) * t->max));
6623 }
6624
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)6625 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6626 {
6627 struct location *l;
6628 int order;
6629
6630 order = get_order(sizeof(struct location) * max);
6631
6632 l = (void *)__get_free_pages(flags, order);
6633 if (!l)
6634 return 0;
6635
6636 if (t->count) {
6637 memcpy(l, t->loc, sizeof(struct location) * t->count);
6638 free_loc_track(t);
6639 }
6640 t->max = max;
6641 t->loc = l;
6642 return 1;
6643 }
6644
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track,unsigned int orig_size)6645 static int add_location(struct loc_track *t, struct kmem_cache *s,
6646 const struct track *track,
6647 unsigned int orig_size)
6648 {
6649 long start, end, pos;
6650 struct location *l;
6651 unsigned long caddr, chandle, cwaste;
6652 unsigned long age = jiffies - track->when;
6653 depot_stack_handle_t handle = 0;
6654 unsigned int waste = s->object_size - orig_size;
6655
6656 #ifdef CONFIG_STACKDEPOT
6657 handle = READ_ONCE(track->handle);
6658 #endif
6659 start = -1;
6660 end = t->count;
6661
6662 for ( ; ; ) {
6663 pos = start + (end - start + 1) / 2;
6664
6665 /*
6666 * There is nothing at "end". If we end up there
6667 * we need to add something to before end.
6668 */
6669 if (pos == end)
6670 break;
6671
6672 l = &t->loc[pos];
6673 caddr = l->addr;
6674 chandle = l->handle;
6675 cwaste = l->waste;
6676 if ((track->addr == caddr) && (handle == chandle) &&
6677 (waste == cwaste)) {
6678
6679 l->count++;
6680 if (track->when) {
6681 l->sum_time += age;
6682 if (age < l->min_time)
6683 l->min_time = age;
6684 if (age > l->max_time)
6685 l->max_time = age;
6686
6687 if (track->pid < l->min_pid)
6688 l->min_pid = track->pid;
6689 if (track->pid > l->max_pid)
6690 l->max_pid = track->pid;
6691
6692 cpumask_set_cpu(track->cpu,
6693 to_cpumask(l->cpus));
6694 }
6695 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6696 return 1;
6697 }
6698
6699 if (track->addr < caddr)
6700 end = pos;
6701 else if (track->addr == caddr && handle < chandle)
6702 end = pos;
6703 else if (track->addr == caddr && handle == chandle &&
6704 waste < cwaste)
6705 end = pos;
6706 else
6707 start = pos;
6708 }
6709
6710 /*
6711 * Not found. Insert new tracking element.
6712 */
6713 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6714 return 0;
6715
6716 l = t->loc + pos;
6717 if (pos < t->count)
6718 memmove(l + 1, l,
6719 (t->count - pos) * sizeof(struct location));
6720 t->count++;
6721 l->count = 1;
6722 l->addr = track->addr;
6723 l->sum_time = age;
6724 l->min_time = age;
6725 l->max_time = age;
6726 l->min_pid = track->pid;
6727 l->max_pid = track->pid;
6728 l->handle = handle;
6729 l->waste = waste;
6730 cpumask_clear(to_cpumask(l->cpus));
6731 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6732 nodes_clear(l->nodes);
6733 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6734 return 1;
6735 }
6736
process_slab(struct loc_track * t,struct kmem_cache * s,struct slab * slab,enum track_item alloc,unsigned long * obj_map)6737 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6738 struct slab *slab, enum track_item alloc,
6739 unsigned long *obj_map)
6740 {
6741 void *addr = slab_address(slab);
6742 bool is_alloc = (alloc == TRACK_ALLOC);
6743 void *p;
6744
6745 __fill_map(obj_map, s, slab);
6746
6747 for_each_object(p, s, addr, slab->objects)
6748 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6749 add_location(t, s, get_track(s, p, alloc),
6750 is_alloc ? get_orig_size(s, p) :
6751 s->object_size);
6752 }
6753 #endif /* CONFIG_DEBUG_FS */
6754 #endif /* CONFIG_SLUB_DEBUG */
6755
6756 #ifdef SLAB_SUPPORTS_SYSFS
6757 enum slab_stat_type {
6758 SL_ALL, /* All slabs */
6759 SL_PARTIAL, /* Only partially allocated slabs */
6760 SL_CPU, /* Only slabs used for cpu caches */
6761 SL_OBJECTS, /* Determine allocated objects not slabs */
6762 SL_TOTAL /* Determine object capacity not slabs */
6763 };
6764
6765 #define SO_ALL (1 << SL_ALL)
6766 #define SO_PARTIAL (1 << SL_PARTIAL)
6767 #define SO_CPU (1 << SL_CPU)
6768 #define SO_OBJECTS (1 << SL_OBJECTS)
6769 #define SO_TOTAL (1 << SL_TOTAL)
6770
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)6771 static ssize_t show_slab_objects(struct kmem_cache *s,
6772 char *buf, unsigned long flags)
6773 {
6774 unsigned long total = 0;
6775 int node;
6776 int x;
6777 unsigned long *nodes;
6778 int len = 0;
6779
6780 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6781 if (!nodes)
6782 return -ENOMEM;
6783
6784 if (flags & SO_CPU) {
6785 int cpu;
6786
6787 for_each_possible_cpu(cpu) {
6788 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6789 cpu);
6790 int node;
6791 struct slab *slab;
6792
6793 slab = READ_ONCE(c->slab);
6794 if (!slab)
6795 continue;
6796
6797 node = slab_nid(slab);
6798 if (flags & SO_TOTAL)
6799 x = slab->objects;
6800 else if (flags & SO_OBJECTS)
6801 x = slab->inuse;
6802 else
6803 x = 1;
6804
6805 total += x;
6806 nodes[node] += x;
6807
6808 #ifdef CONFIG_SLUB_CPU_PARTIAL
6809 slab = slub_percpu_partial_read_once(c);
6810 if (slab) {
6811 node = slab_nid(slab);
6812 if (flags & SO_TOTAL)
6813 WARN_ON_ONCE(1);
6814 else if (flags & SO_OBJECTS)
6815 WARN_ON_ONCE(1);
6816 else
6817 x = data_race(slab->slabs);
6818 total += x;
6819 nodes[node] += x;
6820 }
6821 #endif
6822 }
6823 }
6824
6825 /*
6826 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6827 * already held which will conflict with an existing lock order:
6828 *
6829 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6830 *
6831 * We don't really need mem_hotplug_lock (to hold off
6832 * slab_mem_going_offline_callback) here because slab's memory hot
6833 * unplug code doesn't destroy the kmem_cache->node[] data.
6834 */
6835
6836 #ifdef CONFIG_SLUB_DEBUG
6837 if (flags & SO_ALL) {
6838 struct kmem_cache_node *n;
6839
6840 for_each_kmem_cache_node(s, node, n) {
6841
6842 if (flags & SO_TOTAL)
6843 x = node_nr_objs(n);
6844 else if (flags & SO_OBJECTS)
6845 x = node_nr_objs(n) - count_partial(n, count_free);
6846 else
6847 x = node_nr_slabs(n);
6848 total += x;
6849 nodes[node] += x;
6850 }
6851
6852 } else
6853 #endif
6854 if (flags & SO_PARTIAL) {
6855 struct kmem_cache_node *n;
6856
6857 for_each_kmem_cache_node(s, node, n) {
6858 if (flags & SO_TOTAL)
6859 x = count_partial(n, count_total);
6860 else if (flags & SO_OBJECTS)
6861 x = count_partial(n, count_inuse);
6862 else
6863 x = n->nr_partial;
6864 total += x;
6865 nodes[node] += x;
6866 }
6867 }
6868
6869 len += sysfs_emit_at(buf, len, "%lu", total);
6870 #ifdef CONFIG_NUMA
6871 for (node = 0; node < nr_node_ids; node++) {
6872 if (nodes[node])
6873 len += sysfs_emit_at(buf, len, " N%d=%lu",
6874 node, nodes[node]);
6875 }
6876 #endif
6877 len += sysfs_emit_at(buf, len, "\n");
6878 kfree(nodes);
6879
6880 return len;
6881 }
6882
6883 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6884 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6885
6886 struct slab_attribute {
6887 struct attribute attr;
6888 ssize_t (*show)(struct kmem_cache *s, char *buf);
6889 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6890 };
6891
6892 #define SLAB_ATTR_RO(_name) \
6893 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6894
6895 #define SLAB_ATTR(_name) \
6896 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6897
slab_size_show(struct kmem_cache * s,char * buf)6898 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6899 {
6900 return sysfs_emit(buf, "%u\n", s->size);
6901 }
6902 SLAB_ATTR_RO(slab_size);
6903
align_show(struct kmem_cache * s,char * buf)6904 static ssize_t align_show(struct kmem_cache *s, char *buf)
6905 {
6906 return sysfs_emit(buf, "%u\n", s->align);
6907 }
6908 SLAB_ATTR_RO(align);
6909
object_size_show(struct kmem_cache * s,char * buf)6910 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6911 {
6912 return sysfs_emit(buf, "%u\n", s->object_size);
6913 }
6914 SLAB_ATTR_RO(object_size);
6915
objs_per_slab_show(struct kmem_cache * s,char * buf)6916 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6917 {
6918 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6919 }
6920 SLAB_ATTR_RO(objs_per_slab);
6921
order_show(struct kmem_cache * s,char * buf)6922 static ssize_t order_show(struct kmem_cache *s, char *buf)
6923 {
6924 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6925 }
6926 SLAB_ATTR_RO(order);
6927
min_partial_show(struct kmem_cache * s,char * buf)6928 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6929 {
6930 return sysfs_emit(buf, "%lu\n", s->min_partial);
6931 }
6932
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)6933 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6934 size_t length)
6935 {
6936 unsigned long min;
6937 int err;
6938
6939 err = kstrtoul(buf, 10, &min);
6940 if (err)
6941 return err;
6942
6943 s->min_partial = min;
6944 return length;
6945 }
6946 SLAB_ATTR(min_partial);
6947
cpu_partial_show(struct kmem_cache * s,char * buf)6948 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6949 {
6950 unsigned int nr_partial = 0;
6951 #ifdef CONFIG_SLUB_CPU_PARTIAL
6952 nr_partial = s->cpu_partial;
6953 #endif
6954
6955 return sysfs_emit(buf, "%u\n", nr_partial);
6956 }
6957
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)6958 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6959 size_t length)
6960 {
6961 unsigned int objects;
6962 int err;
6963
6964 err = kstrtouint(buf, 10, &objects);
6965 if (err)
6966 return err;
6967 if (objects && !kmem_cache_has_cpu_partial(s))
6968 return -EINVAL;
6969
6970 slub_set_cpu_partial(s, objects);
6971 flush_all(s);
6972 return length;
6973 }
6974 SLAB_ATTR(cpu_partial);
6975
ctor_show(struct kmem_cache * s,char * buf)6976 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6977 {
6978 if (!s->ctor)
6979 return 0;
6980 return sysfs_emit(buf, "%pS\n", s->ctor);
6981 }
6982 SLAB_ATTR_RO(ctor);
6983
aliases_show(struct kmem_cache * s,char * buf)6984 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6985 {
6986 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6987 }
6988 SLAB_ATTR_RO(aliases);
6989
partial_show(struct kmem_cache * s,char * buf)6990 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6991 {
6992 return show_slab_objects(s, buf, SO_PARTIAL);
6993 }
6994 SLAB_ATTR_RO(partial);
6995
cpu_slabs_show(struct kmem_cache * s,char * buf)6996 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6997 {
6998 return show_slab_objects(s, buf, SO_CPU);
6999 }
7000 SLAB_ATTR_RO(cpu_slabs);
7001
objects_partial_show(struct kmem_cache * s,char * buf)7002 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
7003 {
7004 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
7005 }
7006 SLAB_ATTR_RO(objects_partial);
7007
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)7008 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
7009 {
7010 int objects = 0;
7011 int slabs = 0;
7012 int cpu __maybe_unused;
7013 int len = 0;
7014
7015 #ifdef CONFIG_SLUB_CPU_PARTIAL
7016 for_each_online_cpu(cpu) {
7017 struct slab *slab;
7018
7019 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7020
7021 if (slab)
7022 slabs += data_race(slab->slabs);
7023 }
7024 #endif
7025
7026 /* Approximate half-full slabs, see slub_set_cpu_partial() */
7027 objects = (slabs * oo_objects(s->oo)) / 2;
7028 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
7029
7030 #ifdef CONFIG_SLUB_CPU_PARTIAL
7031 for_each_online_cpu(cpu) {
7032 struct slab *slab;
7033
7034 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
7035 if (slab) {
7036 slabs = data_race(slab->slabs);
7037 objects = (slabs * oo_objects(s->oo)) / 2;
7038 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
7039 cpu, objects, slabs);
7040 }
7041 }
7042 #endif
7043 len += sysfs_emit_at(buf, len, "\n");
7044
7045 return len;
7046 }
7047 SLAB_ATTR_RO(slabs_cpu_partial);
7048
reclaim_account_show(struct kmem_cache * s,char * buf)7049 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
7050 {
7051 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
7052 }
7053 SLAB_ATTR_RO(reclaim_account);
7054
hwcache_align_show(struct kmem_cache * s,char * buf)7055 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
7056 {
7057 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
7058 }
7059 SLAB_ATTR_RO(hwcache_align);
7060
7061 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)7062 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
7063 {
7064 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
7065 }
7066 SLAB_ATTR_RO(cache_dma);
7067 #endif
7068
7069 #ifdef CONFIG_HARDENED_USERCOPY
usersize_show(struct kmem_cache * s,char * buf)7070 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
7071 {
7072 return sysfs_emit(buf, "%u\n", s->usersize);
7073 }
7074 SLAB_ATTR_RO(usersize);
7075 #endif
7076
destroy_by_rcu_show(struct kmem_cache * s,char * buf)7077 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
7078 {
7079 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
7080 }
7081 SLAB_ATTR_RO(destroy_by_rcu);
7082
7083 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)7084 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
7085 {
7086 return show_slab_objects(s, buf, SO_ALL);
7087 }
7088 SLAB_ATTR_RO(slabs);
7089
total_objects_show(struct kmem_cache * s,char * buf)7090 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
7091 {
7092 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
7093 }
7094 SLAB_ATTR_RO(total_objects);
7095
objects_show(struct kmem_cache * s,char * buf)7096 static ssize_t objects_show(struct kmem_cache *s, char *buf)
7097 {
7098 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
7099 }
7100 SLAB_ATTR_RO(objects);
7101
sanity_checks_show(struct kmem_cache * s,char * buf)7102 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
7103 {
7104 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
7105 }
7106 SLAB_ATTR_RO(sanity_checks);
7107
trace_show(struct kmem_cache * s,char * buf)7108 static ssize_t trace_show(struct kmem_cache *s, char *buf)
7109 {
7110 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
7111 }
7112 SLAB_ATTR_RO(trace);
7113
red_zone_show(struct kmem_cache * s,char * buf)7114 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
7115 {
7116 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
7117 }
7118
7119 SLAB_ATTR_RO(red_zone);
7120
poison_show(struct kmem_cache * s,char * buf)7121 static ssize_t poison_show(struct kmem_cache *s, char *buf)
7122 {
7123 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
7124 }
7125
7126 SLAB_ATTR_RO(poison);
7127
store_user_show(struct kmem_cache * s,char * buf)7128 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
7129 {
7130 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
7131 }
7132
7133 SLAB_ATTR_RO(store_user);
7134
validate_show(struct kmem_cache * s,char * buf)7135 static ssize_t validate_show(struct kmem_cache *s, char *buf)
7136 {
7137 return 0;
7138 }
7139
validate_store(struct kmem_cache * s,const char * buf,size_t length)7140 static ssize_t validate_store(struct kmem_cache *s,
7141 const char *buf, size_t length)
7142 {
7143 int ret = -EINVAL;
7144
7145 if (buf[0] == '1' && kmem_cache_debug(s)) {
7146 ret = validate_slab_cache(s);
7147 if (ret >= 0)
7148 ret = length;
7149 }
7150 return ret;
7151 }
7152 SLAB_ATTR(validate);
7153
7154 #endif /* CONFIG_SLUB_DEBUG */
7155
7156 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)7157 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
7158 {
7159 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
7160 }
7161
failslab_store(struct kmem_cache * s,const char * buf,size_t length)7162 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
7163 size_t length)
7164 {
7165 if (s->refcount > 1)
7166 return -EINVAL;
7167
7168 if (buf[0] == '1')
7169 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
7170 else
7171 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
7172
7173 return length;
7174 }
7175 SLAB_ATTR(failslab);
7176 #endif
7177
shrink_show(struct kmem_cache * s,char * buf)7178 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
7179 {
7180 return 0;
7181 }
7182
shrink_store(struct kmem_cache * s,const char * buf,size_t length)7183 static ssize_t shrink_store(struct kmem_cache *s,
7184 const char *buf, size_t length)
7185 {
7186 if (buf[0] == '1')
7187 kmem_cache_shrink(s);
7188 else
7189 return -EINVAL;
7190 return length;
7191 }
7192 SLAB_ATTR(shrink);
7193
7194 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)7195 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
7196 {
7197 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
7198 }
7199
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)7200 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
7201 const char *buf, size_t length)
7202 {
7203 unsigned int ratio;
7204 int err;
7205
7206 err = kstrtouint(buf, 10, &ratio);
7207 if (err)
7208 return err;
7209 if (ratio > 100)
7210 return -ERANGE;
7211
7212 s->remote_node_defrag_ratio = ratio * 10;
7213
7214 return length;
7215 }
7216 SLAB_ATTR(remote_node_defrag_ratio);
7217 #endif
7218
7219 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)7220 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
7221 {
7222 unsigned long sum = 0;
7223 int cpu;
7224 int len = 0;
7225 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
7226
7227 if (!data)
7228 return -ENOMEM;
7229
7230 for_each_online_cpu(cpu) {
7231 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
7232
7233 data[cpu] = x;
7234 sum += x;
7235 }
7236
7237 len += sysfs_emit_at(buf, len, "%lu", sum);
7238
7239 #ifdef CONFIG_SMP
7240 for_each_online_cpu(cpu) {
7241 if (data[cpu])
7242 len += sysfs_emit_at(buf, len, " C%d=%u",
7243 cpu, data[cpu]);
7244 }
7245 #endif
7246 kfree(data);
7247 len += sysfs_emit_at(buf, len, "\n");
7248
7249 return len;
7250 }
7251
clear_stat(struct kmem_cache * s,enum stat_item si)7252 static void clear_stat(struct kmem_cache *s, enum stat_item si)
7253 {
7254 int cpu;
7255
7256 for_each_online_cpu(cpu)
7257 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7258 }
7259
7260 #define STAT_ATTR(si, text) \
7261 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
7262 { \
7263 return show_stat(s, buf, si); \
7264 } \
7265 static ssize_t text##_store(struct kmem_cache *s, \
7266 const char *buf, size_t length) \
7267 { \
7268 if (buf[0] != '0') \
7269 return -EINVAL; \
7270 clear_stat(s, si); \
7271 return length; \
7272 } \
7273 SLAB_ATTR(text); \
7274
7275 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7276 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7277 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7278 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7279 STAT_ATTR(FREE_FROZEN, free_frozen);
7280 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7281 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7282 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7283 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7284 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7285 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7286 STAT_ATTR(FREE_SLAB, free_slab);
7287 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7288 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7289 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7290 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7291 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7292 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7293 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7294 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7295 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7296 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7297 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7298 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7299 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7300 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7301 #endif /* CONFIG_SLUB_STATS */
7302
7303 #ifdef CONFIG_KFENCE
skip_kfence_show(struct kmem_cache * s,char * buf)7304 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7305 {
7306 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7307 }
7308
skip_kfence_store(struct kmem_cache * s,const char * buf,size_t length)7309 static ssize_t skip_kfence_store(struct kmem_cache *s,
7310 const char *buf, size_t length)
7311 {
7312 int ret = length;
7313
7314 if (buf[0] == '0')
7315 s->flags &= ~SLAB_SKIP_KFENCE;
7316 else if (buf[0] == '1')
7317 s->flags |= SLAB_SKIP_KFENCE;
7318 else
7319 ret = -EINVAL;
7320
7321 return ret;
7322 }
7323 SLAB_ATTR(skip_kfence);
7324 #endif
7325
7326 static struct attribute *slab_attrs[] = {
7327 &slab_size_attr.attr,
7328 &object_size_attr.attr,
7329 &objs_per_slab_attr.attr,
7330 &order_attr.attr,
7331 &min_partial_attr.attr,
7332 &cpu_partial_attr.attr,
7333 &objects_partial_attr.attr,
7334 &partial_attr.attr,
7335 &cpu_slabs_attr.attr,
7336 &ctor_attr.attr,
7337 &aliases_attr.attr,
7338 &align_attr.attr,
7339 &hwcache_align_attr.attr,
7340 &reclaim_account_attr.attr,
7341 &destroy_by_rcu_attr.attr,
7342 &shrink_attr.attr,
7343 &slabs_cpu_partial_attr.attr,
7344 #ifdef CONFIG_SLUB_DEBUG
7345 &total_objects_attr.attr,
7346 &objects_attr.attr,
7347 &slabs_attr.attr,
7348 &sanity_checks_attr.attr,
7349 &trace_attr.attr,
7350 &red_zone_attr.attr,
7351 &poison_attr.attr,
7352 &store_user_attr.attr,
7353 &validate_attr.attr,
7354 #endif
7355 #ifdef CONFIG_ZONE_DMA
7356 &cache_dma_attr.attr,
7357 #endif
7358 #ifdef CONFIG_NUMA
7359 &remote_node_defrag_ratio_attr.attr,
7360 #endif
7361 #ifdef CONFIG_SLUB_STATS
7362 &alloc_fastpath_attr.attr,
7363 &alloc_slowpath_attr.attr,
7364 &free_fastpath_attr.attr,
7365 &free_slowpath_attr.attr,
7366 &free_frozen_attr.attr,
7367 &free_add_partial_attr.attr,
7368 &free_remove_partial_attr.attr,
7369 &alloc_from_partial_attr.attr,
7370 &alloc_slab_attr.attr,
7371 &alloc_refill_attr.attr,
7372 &alloc_node_mismatch_attr.attr,
7373 &free_slab_attr.attr,
7374 &cpuslab_flush_attr.attr,
7375 &deactivate_full_attr.attr,
7376 &deactivate_empty_attr.attr,
7377 &deactivate_to_head_attr.attr,
7378 &deactivate_to_tail_attr.attr,
7379 &deactivate_remote_frees_attr.attr,
7380 &deactivate_bypass_attr.attr,
7381 &order_fallback_attr.attr,
7382 &cmpxchg_double_fail_attr.attr,
7383 &cmpxchg_double_cpu_fail_attr.attr,
7384 &cpu_partial_alloc_attr.attr,
7385 &cpu_partial_free_attr.attr,
7386 &cpu_partial_node_attr.attr,
7387 &cpu_partial_drain_attr.attr,
7388 #endif
7389 #ifdef CONFIG_FAILSLAB
7390 &failslab_attr.attr,
7391 #endif
7392 #ifdef CONFIG_HARDENED_USERCOPY
7393 &usersize_attr.attr,
7394 #endif
7395 #ifdef CONFIG_KFENCE
7396 &skip_kfence_attr.attr,
7397 #endif
7398
7399 NULL
7400 };
7401
7402 static const struct attribute_group slab_attr_group = {
7403 .attrs = slab_attrs,
7404 };
7405
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)7406 static ssize_t slab_attr_show(struct kobject *kobj,
7407 struct attribute *attr,
7408 char *buf)
7409 {
7410 struct slab_attribute *attribute;
7411 struct kmem_cache *s;
7412
7413 attribute = to_slab_attr(attr);
7414 s = to_slab(kobj);
7415
7416 if (!attribute->show)
7417 return -EIO;
7418
7419 return attribute->show(s, buf);
7420 }
7421
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)7422 static ssize_t slab_attr_store(struct kobject *kobj,
7423 struct attribute *attr,
7424 const char *buf, size_t len)
7425 {
7426 struct slab_attribute *attribute;
7427 struct kmem_cache *s;
7428
7429 attribute = to_slab_attr(attr);
7430 s = to_slab(kobj);
7431
7432 if (!attribute->store)
7433 return -EIO;
7434
7435 return attribute->store(s, buf, len);
7436 }
7437
kmem_cache_release(struct kobject * k)7438 static void kmem_cache_release(struct kobject *k)
7439 {
7440 slab_kmem_cache_release(to_slab(k));
7441 }
7442
7443 static const struct sysfs_ops slab_sysfs_ops = {
7444 .show = slab_attr_show,
7445 .store = slab_attr_store,
7446 };
7447
7448 static const struct kobj_type slab_ktype = {
7449 .sysfs_ops = &slab_sysfs_ops,
7450 .release = kmem_cache_release,
7451 };
7452
7453 static struct kset *slab_kset;
7454
cache_kset(struct kmem_cache * s)7455 static inline struct kset *cache_kset(struct kmem_cache *s)
7456 {
7457 return slab_kset;
7458 }
7459
7460 #define ID_STR_LENGTH 32
7461
7462 /* Create a unique string id for a slab cache:
7463 *
7464 * Format :[flags-]size
7465 */
create_unique_id(struct kmem_cache * s)7466 static char *create_unique_id(struct kmem_cache *s)
7467 {
7468 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7469 char *p = name;
7470
7471 if (!name)
7472 return ERR_PTR(-ENOMEM);
7473
7474 *p++ = ':';
7475 /*
7476 * First flags affecting slabcache operations. We will only
7477 * get here for aliasable slabs so we do not need to support
7478 * too many flags. The flags here must cover all flags that
7479 * are matched during merging to guarantee that the id is
7480 * unique.
7481 */
7482 if (s->flags & SLAB_CACHE_DMA)
7483 *p++ = 'd';
7484 if (s->flags & SLAB_CACHE_DMA32)
7485 *p++ = 'D';
7486 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7487 *p++ = 'a';
7488 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7489 *p++ = 'F';
7490 if (s->flags & SLAB_ACCOUNT)
7491 *p++ = 'A';
7492 if (p != name + 1)
7493 *p++ = '-';
7494 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7495
7496 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7497 kfree(name);
7498 return ERR_PTR(-EINVAL);
7499 }
7500 kmsan_unpoison_memory(name, p - name);
7501 return name;
7502 }
7503
sysfs_slab_add(struct kmem_cache * s)7504 static int sysfs_slab_add(struct kmem_cache *s)
7505 {
7506 int err;
7507 const char *name;
7508 struct kset *kset = cache_kset(s);
7509 int unmergeable = slab_unmergeable(s);
7510
7511 if (!unmergeable && disable_higher_order_debug &&
7512 (slub_debug & DEBUG_METADATA_FLAGS))
7513 unmergeable = 1;
7514
7515 if (unmergeable) {
7516 /*
7517 * Slabcache can never be merged so we can use the name proper.
7518 * This is typically the case for debug situations. In that
7519 * case we can catch duplicate names easily.
7520 */
7521 sysfs_remove_link(&slab_kset->kobj, s->name);
7522 name = s->name;
7523 } else {
7524 /*
7525 * Create a unique name for the slab as a target
7526 * for the symlinks.
7527 */
7528 name = create_unique_id(s);
7529 if (IS_ERR(name))
7530 return PTR_ERR(name);
7531 }
7532
7533 s->kobj.kset = kset;
7534 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7535 if (err)
7536 goto out;
7537
7538 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7539 if (err)
7540 goto out_del_kobj;
7541
7542 if (!unmergeable) {
7543 /* Setup first alias */
7544 sysfs_slab_alias(s, s->name);
7545 }
7546 out:
7547 if (!unmergeable)
7548 kfree(name);
7549 return err;
7550 out_del_kobj:
7551 kobject_del(&s->kobj);
7552 goto out;
7553 }
7554
sysfs_slab_unlink(struct kmem_cache * s)7555 void sysfs_slab_unlink(struct kmem_cache *s)
7556 {
7557 if (s->kobj.state_in_sysfs)
7558 kobject_del(&s->kobj);
7559 }
7560
sysfs_slab_release(struct kmem_cache * s)7561 void sysfs_slab_release(struct kmem_cache *s)
7562 {
7563 kobject_put(&s->kobj);
7564 }
7565
7566 /*
7567 * Need to buffer aliases during bootup until sysfs becomes
7568 * available lest we lose that information.
7569 */
7570 struct saved_alias {
7571 struct kmem_cache *s;
7572 const char *name;
7573 struct saved_alias *next;
7574 };
7575
7576 static struct saved_alias *alias_list;
7577
sysfs_slab_alias(struct kmem_cache * s,const char * name)7578 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7579 {
7580 struct saved_alias *al;
7581
7582 if (slab_state == FULL) {
7583 /*
7584 * If we have a leftover link then remove it.
7585 */
7586 sysfs_remove_link(&slab_kset->kobj, name);
7587 /*
7588 * The original cache may have failed to generate sysfs file.
7589 * In that case, sysfs_create_link() returns -ENOENT and
7590 * symbolic link creation is skipped.
7591 */
7592 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7593 }
7594
7595 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7596 if (!al)
7597 return -ENOMEM;
7598
7599 al->s = s;
7600 al->name = name;
7601 al->next = alias_list;
7602 alias_list = al;
7603 kmsan_unpoison_memory(al, sizeof(*al));
7604 return 0;
7605 }
7606
slab_sysfs_init(void)7607 static int __init slab_sysfs_init(void)
7608 {
7609 struct kmem_cache *s;
7610 int err;
7611
7612 mutex_lock(&slab_mutex);
7613
7614 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7615 if (!slab_kset) {
7616 mutex_unlock(&slab_mutex);
7617 pr_err("Cannot register slab subsystem.\n");
7618 return -ENOMEM;
7619 }
7620
7621 slab_state = FULL;
7622
7623 list_for_each_entry(s, &slab_caches, list) {
7624 err = sysfs_slab_add(s);
7625 if (err)
7626 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7627 s->name);
7628 }
7629
7630 while (alias_list) {
7631 struct saved_alias *al = alias_list;
7632
7633 alias_list = alias_list->next;
7634 err = sysfs_slab_alias(al->s, al->name);
7635 if (err)
7636 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7637 al->name);
7638 kfree(al);
7639 }
7640
7641 mutex_unlock(&slab_mutex);
7642 return 0;
7643 }
7644 late_initcall(slab_sysfs_init);
7645 #endif /* SLAB_SUPPORTS_SYSFS */
7646
7647 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)7648 static int slab_debugfs_show(struct seq_file *seq, void *v)
7649 {
7650 struct loc_track *t = seq->private;
7651 struct location *l;
7652 unsigned long idx;
7653
7654 idx = (unsigned long) t->idx;
7655 if (idx < t->count) {
7656 l = &t->loc[idx];
7657
7658 seq_printf(seq, "%7ld ", l->count);
7659
7660 if (l->addr)
7661 seq_printf(seq, "%pS", (void *)l->addr);
7662 else
7663 seq_puts(seq, "<not-available>");
7664
7665 if (l->waste)
7666 seq_printf(seq, " waste=%lu/%lu",
7667 l->count * l->waste, l->waste);
7668
7669 if (l->sum_time != l->min_time) {
7670 seq_printf(seq, " age=%ld/%llu/%ld",
7671 l->min_time, div_u64(l->sum_time, l->count),
7672 l->max_time);
7673 } else
7674 seq_printf(seq, " age=%ld", l->min_time);
7675
7676 if (l->min_pid != l->max_pid)
7677 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7678 else
7679 seq_printf(seq, " pid=%ld",
7680 l->min_pid);
7681
7682 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7683 seq_printf(seq, " cpus=%*pbl",
7684 cpumask_pr_args(to_cpumask(l->cpus)));
7685
7686 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7687 seq_printf(seq, " nodes=%*pbl",
7688 nodemask_pr_args(&l->nodes));
7689
7690 #ifdef CONFIG_STACKDEPOT
7691 {
7692 depot_stack_handle_t handle;
7693 unsigned long *entries;
7694 unsigned int nr_entries, j;
7695
7696 handle = READ_ONCE(l->handle);
7697 if (handle) {
7698 nr_entries = stack_depot_fetch(handle, &entries);
7699 seq_puts(seq, "\n");
7700 for (j = 0; j < nr_entries; j++)
7701 seq_printf(seq, " %pS\n", (void *)entries[j]);
7702 }
7703 }
7704 #endif
7705 seq_puts(seq, "\n");
7706 }
7707
7708 if (!idx && !t->count)
7709 seq_puts(seq, "No data\n");
7710
7711 return 0;
7712 }
7713
slab_debugfs_stop(struct seq_file * seq,void * v)7714 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7715 {
7716 }
7717
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)7718 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7719 {
7720 struct loc_track *t = seq->private;
7721
7722 t->idx = ++(*ppos);
7723 if (*ppos <= t->count)
7724 return ppos;
7725
7726 return NULL;
7727 }
7728
cmp_loc_by_count(const void * a,const void * b,const void * data)7729 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7730 {
7731 struct location *loc1 = (struct location *)a;
7732 struct location *loc2 = (struct location *)b;
7733
7734 if (loc1->count > loc2->count)
7735 return -1;
7736 else
7737 return 1;
7738 }
7739
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)7740 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7741 {
7742 struct loc_track *t = seq->private;
7743
7744 t->idx = *ppos;
7745 return ppos;
7746 }
7747
7748 static const struct seq_operations slab_debugfs_sops = {
7749 .start = slab_debugfs_start,
7750 .next = slab_debugfs_next,
7751 .stop = slab_debugfs_stop,
7752 .show = slab_debugfs_show,
7753 };
7754
slab_debug_trace_open(struct inode * inode,struct file * filep)7755 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7756 {
7757
7758 struct kmem_cache_node *n;
7759 enum track_item alloc;
7760 int node;
7761 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7762 sizeof(struct loc_track));
7763 struct kmem_cache *s = file_inode(filep)->i_private;
7764 unsigned long *obj_map;
7765
7766 if (!t)
7767 return -ENOMEM;
7768
7769 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7770 if (!obj_map) {
7771 seq_release_private(inode, filep);
7772 return -ENOMEM;
7773 }
7774
7775 alloc = debugfs_get_aux_num(filep);
7776
7777 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7778 bitmap_free(obj_map);
7779 seq_release_private(inode, filep);
7780 return -ENOMEM;
7781 }
7782
7783 for_each_kmem_cache_node(s, node, n) {
7784 unsigned long flags;
7785 struct slab *slab;
7786
7787 if (!node_nr_slabs(n))
7788 continue;
7789
7790 spin_lock_irqsave(&n->list_lock, flags);
7791 list_for_each_entry(slab, &n->partial, slab_list)
7792 process_slab(t, s, slab, alloc, obj_map);
7793 list_for_each_entry(slab, &n->full, slab_list)
7794 process_slab(t, s, slab, alloc, obj_map);
7795 spin_unlock_irqrestore(&n->list_lock, flags);
7796 }
7797
7798 /* Sort locations by count */
7799 sort_r(t->loc, t->count, sizeof(struct location),
7800 cmp_loc_by_count, NULL, NULL);
7801
7802 bitmap_free(obj_map);
7803 return 0;
7804 }
7805
slab_debug_trace_release(struct inode * inode,struct file * file)7806 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7807 {
7808 struct seq_file *seq = file->private_data;
7809 struct loc_track *t = seq->private;
7810
7811 free_loc_track(t);
7812 return seq_release_private(inode, file);
7813 }
7814
7815 static const struct file_operations slab_debugfs_fops = {
7816 .open = slab_debug_trace_open,
7817 .read = seq_read,
7818 .llseek = seq_lseek,
7819 .release = slab_debug_trace_release,
7820 };
7821
debugfs_slab_add(struct kmem_cache * s)7822 static void debugfs_slab_add(struct kmem_cache *s)
7823 {
7824 struct dentry *slab_cache_dir;
7825
7826 if (unlikely(!slab_debugfs_root))
7827 return;
7828
7829 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7830
7831 debugfs_create_file_aux_num("alloc_traces", 0400, slab_cache_dir, s,
7832 TRACK_ALLOC, &slab_debugfs_fops);
7833
7834 debugfs_create_file_aux_num("free_traces", 0400, slab_cache_dir, s,
7835 TRACK_FREE, &slab_debugfs_fops);
7836 }
7837
debugfs_slab_release(struct kmem_cache * s)7838 void debugfs_slab_release(struct kmem_cache *s)
7839 {
7840 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7841 }
7842
slab_debugfs_init(void)7843 static int __init slab_debugfs_init(void)
7844 {
7845 struct kmem_cache *s;
7846
7847 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7848
7849 list_for_each_entry(s, &slab_caches, list)
7850 if (s->flags & SLAB_STORE_USER)
7851 debugfs_slab_add(s);
7852
7853 return 0;
7854
7855 }
7856 __initcall(slab_debugfs_init);
7857 #endif
7858 /*
7859 * The /proc/slabinfo ABI
7860 */
7861 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)7862 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7863 {
7864 unsigned long nr_slabs = 0;
7865 unsigned long nr_objs = 0;
7866 unsigned long nr_free = 0;
7867 int node;
7868 struct kmem_cache_node *n;
7869
7870 for_each_kmem_cache_node(s, node, n) {
7871 nr_slabs += node_nr_slabs(n);
7872 nr_objs += node_nr_objs(n);
7873 nr_free += count_partial_free_approx(n);
7874 }
7875
7876 sinfo->active_objs = nr_objs - nr_free;
7877 sinfo->num_objs = nr_objs;
7878 sinfo->active_slabs = nr_slabs;
7879 sinfo->num_slabs = nr_slabs;
7880 sinfo->objects_per_slab = oo_objects(s->oo);
7881 sinfo->cache_order = oo_order(s->oo);
7882 }
7883 #endif /* CONFIG_SLUB_DEBUG */
7884