1
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9 /*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14 /*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25 /*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33 /*
34 * 05.04.94 - Multi-page memory management added for v1.1.
35 * Idea by Alex Bligh (alex@cconcepts.co.uk)
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * (Gerhard.Wichert@pdb.siemens.de)
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81
82 #include <trace/events/kmem.h>
83
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110
111 /*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 if (!userfaultfd_wp(vmf->vma))
118 return false;
119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
120 return false;
121
122 return pte_marker_uffd_wp(vmf->orig_pte);
123 }
124
125 /*
126 * A number of key systems in x86 including ioremap() rely on the assumption
127 * that high_memory defines the upper bound on direct map memory, then end
128 * of ZONE_NORMAL.
129 */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132
133 /*
134 * Randomize the address space (stacks, mmaps, brk, etc.).
135 *
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
138 */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 1;
142 #else
143 2;
144 #endif
145
146 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155 }
156 #endif
157
disable_randmaps(char * s)158 static int __init disable_randmaps(char *s)
159 {
160 randomize_va_space = 0;
161 return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167
168 unsigned long highest_memmap_pfn __read_mostly;
169
170 /*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
init_zero_pfn(void)173 static int __init init_zero_pfn(void)
174 {
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177 }
178 early_initcall(init_zero_pfn);
179
mm_trace_rss_stat(struct mm_struct * mm,int member)180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 trace_rss_stat(mm, member);
183 }
184
185 /*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
191 {
192 pgtable_t token = pmd_pgtable(*pmd);
193 pmd_clear(pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
196 }
197
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
201 {
202 pmd_t *pmd;
203 unsigned long next;
204 unsigned long start;
205
206 start = addr;
207 pmd = pmd_offset(pud, addr);
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
214
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
222 }
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
230 }
231
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235 {
236 pud_t *pud;
237 unsigned long next;
238 unsigned long start;
239
240 start = addr;
241 pud = pud_offset(p4d, addr);
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
248
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
264 }
265
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269 {
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
290 }
291 if (end - 1 > ceiling - 1)
292 return;
293
294 p4d = p4d_offset(pgd, start);
295 pgd_clear(pgd);
296 p4d_free_tlb(tlb, p4d, start);
297 }
298
299 /*
300 * This function frees user-level page tables of a process.
301 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)302 void free_pgd_range(struct mmu_gather *tlb,
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
305 {
306 pgd_t *pgd;
307 unsigned long next;
308
309 /*
310 * The next few lines have given us lots of grief...
311 *
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
315 *
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
323 *
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
328 *
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
333 */
334
335 addr &= PMD_MASK;
336 if (addr < floor) {
337 addr += PMD_SIZE;
338 if (!addr)
339 return;
340 }
341 if (ceiling) {
342 ceiling &= PMD_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 end -= PMD_SIZE;
348 if (addr > end - 1)
349 return;
350 /*
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
353 */
354 tlb_change_page_size(tlb, PAGE_SIZE);
355 pgd = pgd_offset(tlb->mm, addr);
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
362 }
363
free_pgtables(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long floor,unsigned long ceiling,bool mm_wr_locked)364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 struct vm_area_struct *vma, unsigned long floor,
366 unsigned long ceiling, bool mm_wr_locked)
367 {
368 struct unlink_vma_file_batch vb;
369
370 do {
371 unsigned long addr = vma->vm_start;
372 struct vm_area_struct *next;
373
374 /*
375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 * be 0. This will underflow and is okay.
377 */
378 next = mas_find(mas, ceiling - 1);
379 if (unlikely(xa_is_zero(next)))
380 next = NULL;
381
382 /*
383 * Hide vma from rmap and truncate_pagecache before freeing
384 * pgtables
385 */
386 if (mm_wr_locked)
387 vma_start_write(vma);
388 unlink_anon_vmas(vma);
389
390 if (is_vm_hugetlb_page(vma)) {
391 unlink_file_vma(vma);
392 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
393 floor, next ? next->vm_start : ceiling);
394 } else {
395 unlink_file_vma_batch_init(&vb);
396 unlink_file_vma_batch_add(&vb, vma);
397
398 /*
399 * Optimization: gather nearby vmas into one call down
400 */
401 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
402 && !is_vm_hugetlb_page(next)) {
403 vma = next;
404 next = mas_find(mas, ceiling - 1);
405 if (unlikely(xa_is_zero(next)))
406 next = NULL;
407 if (mm_wr_locked)
408 vma_start_write(vma);
409 unlink_anon_vmas(vma);
410 unlink_file_vma_batch_add(&vb, vma);
411 }
412 unlink_file_vma_batch_final(&vb);
413 free_pgd_range(tlb, addr, vma->vm_end,
414 floor, next ? next->vm_start : ceiling);
415 }
416 vma = next;
417 } while (vma);
418 }
419
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)420 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
421 {
422 spinlock_t *ptl = pmd_lock(mm, pmd);
423
424 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
425 mm_inc_nr_ptes(mm);
426 /*
427 * Ensure all pte setup (eg. pte page lock and page clearing) are
428 * visible before the pte is made visible to other CPUs by being
429 * put into page tables.
430 *
431 * The other side of the story is the pointer chasing in the page
432 * table walking code (when walking the page table without locking;
433 * ie. most of the time). Fortunately, these data accesses consist
434 * of a chain of data-dependent loads, meaning most CPUs (alpha
435 * being the notable exception) will already guarantee loads are
436 * seen in-order. See the alpha page table accessors for the
437 * smp_rmb() barriers in page table walking code.
438 */
439 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
440 pmd_populate(mm, pmd, *pte);
441 *pte = NULL;
442 }
443 spin_unlock(ptl);
444 }
445
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)446 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
447 {
448 pgtable_t new = pte_alloc_one(mm);
449 if (!new)
450 return -ENOMEM;
451
452 pmd_install(mm, pmd, &new);
453 if (new)
454 pte_free(mm, new);
455 return 0;
456 }
457
__pte_alloc_kernel(pmd_t * pmd)458 int __pte_alloc_kernel(pmd_t *pmd)
459 {
460 pte_t *new = pte_alloc_one_kernel(&init_mm);
461 if (!new)
462 return -ENOMEM;
463
464 spin_lock(&init_mm.page_table_lock);
465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
466 smp_wmb(); /* See comment in pmd_install() */
467 pmd_populate_kernel(&init_mm, pmd, new);
468 new = NULL;
469 }
470 spin_unlock(&init_mm.page_table_lock);
471 if (new)
472 pte_free_kernel(&init_mm, new);
473 return 0;
474 }
475
init_rss_vec(int * rss)476 static inline void init_rss_vec(int *rss)
477 {
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
add_mm_rss_vec(struct mm_struct * mm,int * rss)481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 int i;
484
485 for (i = 0; i < NR_MM_COUNTERS; i++)
486 if (rss[i])
487 add_mm_counter(mm, i, rss[i]);
488 }
489
490 /*
491 * This function is called to print an error when a bad pte
492 * is found. For example, we might have a PFN-mapped pte in
493 * a region that doesn't allow it.
494 *
495 * The calling function must still handle the error.
496 */
print_bad_pte(struct vm_area_struct * vma,unsigned long addr,pte_t pte,struct page * page)497 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
498 pte_t pte, struct page *page)
499 {
500 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
501 p4d_t *p4d = p4d_offset(pgd, addr);
502 pud_t *pud = pud_offset(p4d, addr);
503 pmd_t *pmd = pmd_offset(pud, addr);
504 struct address_space *mapping;
505 pgoff_t index;
506 static unsigned long resume;
507 static unsigned long nr_shown;
508 static unsigned long nr_unshown;
509
510 /*
511 * Allow a burst of 60 reports, then keep quiet for that minute;
512 * or allow a steady drip of one report per second.
513 */
514 if (nr_shown == 60) {
515 if (time_before(jiffies, resume)) {
516 nr_unshown++;
517 return;
518 }
519 if (nr_unshown) {
520 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
521 nr_unshown);
522 nr_unshown = 0;
523 }
524 nr_shown = 0;
525 }
526 if (nr_shown++ == 0)
527 resume = jiffies + 60 * HZ;
528
529 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
530 index = linear_page_index(vma, addr);
531
532 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
533 current->comm,
534 (long long)pte_val(pte), (long long)pmd_val(*pmd));
535 if (page)
536 dump_page(page, "bad pte");
537 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
538 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
539 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
540 vma->vm_file,
541 vma->vm_ops ? vma->vm_ops->fault : NULL,
542 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
543 mapping ? mapping->a_ops->read_folio : NULL);
544 dump_stack();
545 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
546 }
547
548 /*
549 * vm_normal_page -- This function gets the "struct page" associated with a pte.
550 *
551 * "Special" mappings do not wish to be associated with a "struct page" (either
552 * it doesn't exist, or it exists but they don't want to touch it). In this
553 * case, NULL is returned here. "Normal" mappings do have a struct page.
554 *
555 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
556 * pte bit, in which case this function is trivial. Secondly, an architecture
557 * may not have a spare pte bit, which requires a more complicated scheme,
558 * described below.
559 *
560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
561 * special mapping (even if there are underlying and valid "struct pages").
562 * COWed pages of a VM_PFNMAP are always normal.
563 *
564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
567 * mapping will always honor the rule
568 *
569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
570 *
571 * And for normal mappings this is false.
572 *
573 * This restricts such mappings to be a linear translation from virtual address
574 * to pfn. To get around this restriction, we allow arbitrary mappings so long
575 * as the vma is not a COW mapping; in that case, we know that all ptes are
576 * special (because none can have been COWed).
577 *
578 *
579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
580 *
581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
582 * page" backing, however the difference is that _all_ pages with a struct
583 * page (that is, those where pfn_valid is true) are refcounted and considered
584 * normal pages by the VM. The only exception are zeropages, which are
585 * *never* refcounted.
586 *
587 * The disadvantage is that pages are refcounted (which can be slower and
588 * simply not an option for some PFNMAP users). The advantage is that we
589 * don't have to follow the strict linearity rule of PFNMAP mappings in
590 * order to support COWable mappings.
591 *
592 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
594 pte_t pte)
595 {
596 unsigned long pfn = pte_pfn(pte);
597
598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
599 if (likely(!pte_special(pte)))
600 goto check_pfn;
601 if (vma->vm_ops && vma->vm_ops->find_special_page)
602 return vma->vm_ops->find_special_page(vma, addr);
603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
604 return NULL;
605 if (is_zero_pfn(pfn))
606 return NULL;
607 if (pte_devmap(pte))
608 /*
609 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
610 * and will have refcounts incremented on their struct pages
611 * when they are inserted into PTEs, thus they are safe to
612 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
613 * do not have refcounts. Example of legacy ZONE_DEVICE is
614 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
615 */
616 return NULL;
617
618 print_bad_pte(vma, addr, pte, NULL);
619 return NULL;
620 }
621
622 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
623
624 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
625 if (vma->vm_flags & VM_MIXEDMAP) {
626 if (!pfn_valid(pfn))
627 return NULL;
628 if (is_zero_pfn(pfn))
629 return NULL;
630 goto out;
631 } else {
632 unsigned long off;
633 off = (addr - vma->vm_start) >> PAGE_SHIFT;
634 if (pfn == vma->vm_pgoff + off)
635 return NULL;
636 if (!is_cow_mapping(vma->vm_flags))
637 return NULL;
638 }
639 }
640
641 if (is_zero_pfn(pfn))
642 return NULL;
643
644 check_pfn:
645 if (unlikely(pfn > highest_memmap_pfn)) {
646 print_bad_pte(vma, addr, pte, NULL);
647 return NULL;
648 }
649
650 /*
651 * NOTE! We still have PageReserved() pages in the page tables.
652 * eg. VDSO mappings can cause them to exist.
653 */
654 out:
655 VM_WARN_ON_ONCE(is_zero_pfn(pfn));
656 return pfn_to_page(pfn);
657 }
658
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)659 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte)
661 {
662 struct page *page = vm_normal_page(vma, addr, pte);
663
664 if (page)
665 return page_folio(page);
666 return NULL;
667 }
668
669 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)670 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
671 pmd_t pmd)
672 {
673 unsigned long pfn = pmd_pfn(pmd);
674
675 /* Currently it's only used for huge pfnmaps */
676 if (unlikely(pmd_special(pmd)))
677 return NULL;
678
679 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
680 if (vma->vm_flags & VM_MIXEDMAP) {
681 if (!pfn_valid(pfn))
682 return NULL;
683 goto out;
684 } else {
685 unsigned long off;
686 off = (addr - vma->vm_start) >> PAGE_SHIFT;
687 if (pfn == vma->vm_pgoff + off)
688 return NULL;
689 if (!is_cow_mapping(vma->vm_flags))
690 return NULL;
691 }
692 }
693
694 if (pmd_devmap(pmd))
695 return NULL;
696 if (is_huge_zero_pmd(pmd))
697 return NULL;
698 if (unlikely(pfn > highest_memmap_pfn))
699 return NULL;
700
701 /*
702 * NOTE! We still have PageReserved() pages in the page tables.
703 * eg. VDSO mappings can cause them to exist.
704 */
705 out:
706 return pfn_to_page(pfn);
707 }
708
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)709 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
710 unsigned long addr, pmd_t pmd)
711 {
712 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
713
714 if (page)
715 return page_folio(page);
716 return NULL;
717 }
718 #endif
719
restore_exclusive_pte(struct vm_area_struct * vma,struct page * page,unsigned long address,pte_t * ptep)720 static void restore_exclusive_pte(struct vm_area_struct *vma,
721 struct page *page, unsigned long address,
722 pte_t *ptep)
723 {
724 struct folio *folio = page_folio(page);
725 pte_t orig_pte;
726 pte_t pte;
727 swp_entry_t entry;
728
729 orig_pte = ptep_get(ptep);
730 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
731 if (pte_swp_soft_dirty(orig_pte))
732 pte = pte_mksoft_dirty(pte);
733
734 entry = pte_to_swp_entry(orig_pte);
735 if (pte_swp_uffd_wp(orig_pte))
736 pte = pte_mkuffd_wp(pte);
737 else if (is_writable_device_exclusive_entry(entry))
738 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
739
740 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
741 PageAnonExclusive(page)), folio);
742
743 /*
744 * No need to take a page reference as one was already
745 * created when the swap entry was made.
746 */
747 if (folio_test_anon(folio))
748 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
749 else
750 /*
751 * Currently device exclusive access only supports anonymous
752 * memory so the entry shouldn't point to a filebacked page.
753 */
754 WARN_ON_ONCE(1);
755
756 set_pte_at(vma->vm_mm, address, ptep, pte);
757
758 /*
759 * No need to invalidate - it was non-present before. However
760 * secondary CPUs may have mappings that need invalidating.
761 */
762 update_mmu_cache(vma, address, ptep);
763 }
764
765 /*
766 * Tries to restore an exclusive pte if the page lock can be acquired without
767 * sleeping.
768 */
769 static int
try_restore_exclusive_pte(pte_t * src_pte,struct vm_area_struct * vma,unsigned long addr)770 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
771 unsigned long addr)
772 {
773 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
774 struct page *page = pfn_swap_entry_to_page(entry);
775
776 if (trylock_page(page)) {
777 restore_exclusive_pte(vma, page, addr, src_pte);
778 unlock_page(page);
779 return 0;
780 }
781
782 return -EBUSY;
783 }
784
785 /*
786 * copy one vm_area from one task to the other. Assumes the page tables
787 * already present in the new task to be cleared in the whole range
788 * covered by this vma.
789 */
790
791 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)792 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
793 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
794 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
795 {
796 unsigned long vm_flags = dst_vma->vm_flags;
797 pte_t orig_pte = ptep_get(src_pte);
798 pte_t pte = orig_pte;
799 struct folio *folio;
800 struct page *page;
801 swp_entry_t entry = pte_to_swp_entry(orig_pte);
802
803 if (likely(!non_swap_entry(entry))) {
804 if (swap_duplicate(entry) < 0)
805 return -EIO;
806
807 /* make sure dst_mm is on swapoff's mmlist. */
808 if (unlikely(list_empty(&dst_mm->mmlist))) {
809 spin_lock(&mmlist_lock);
810 if (list_empty(&dst_mm->mmlist))
811 list_add(&dst_mm->mmlist,
812 &src_mm->mmlist);
813 spin_unlock(&mmlist_lock);
814 }
815 /* Mark the swap entry as shared. */
816 if (pte_swp_exclusive(orig_pte)) {
817 pte = pte_swp_clear_exclusive(orig_pte);
818 set_pte_at(src_mm, addr, src_pte, pte);
819 }
820 rss[MM_SWAPENTS]++;
821 } else if (is_migration_entry(entry)) {
822 folio = pfn_swap_entry_folio(entry);
823
824 rss[mm_counter(folio)]++;
825
826 if (!is_readable_migration_entry(entry) &&
827 is_cow_mapping(vm_flags)) {
828 /*
829 * COW mappings require pages in both parent and child
830 * to be set to read. A previously exclusive entry is
831 * now shared.
832 */
833 entry = make_readable_migration_entry(
834 swp_offset(entry));
835 pte = swp_entry_to_pte(entry);
836 if (pte_swp_soft_dirty(orig_pte))
837 pte = pte_swp_mksoft_dirty(pte);
838 if (pte_swp_uffd_wp(orig_pte))
839 pte = pte_swp_mkuffd_wp(pte);
840 set_pte_at(src_mm, addr, src_pte, pte);
841 }
842 } else if (is_device_private_entry(entry)) {
843 page = pfn_swap_entry_to_page(entry);
844 folio = page_folio(page);
845
846 /*
847 * Update rss count even for unaddressable pages, as
848 * they should treated just like normal pages in this
849 * respect.
850 *
851 * We will likely want to have some new rss counters
852 * for unaddressable pages, at some point. But for now
853 * keep things as they are.
854 */
855 folio_get(folio);
856 rss[mm_counter(folio)]++;
857 /* Cannot fail as these pages cannot get pinned. */
858 folio_try_dup_anon_rmap_pte(folio, page, src_vma);
859
860 /*
861 * We do not preserve soft-dirty information, because so
862 * far, checkpoint/restore is the only feature that
863 * requires that. And checkpoint/restore does not work
864 * when a device driver is involved (you cannot easily
865 * save and restore device driver state).
866 */
867 if (is_writable_device_private_entry(entry) &&
868 is_cow_mapping(vm_flags)) {
869 entry = make_readable_device_private_entry(
870 swp_offset(entry));
871 pte = swp_entry_to_pte(entry);
872 if (pte_swp_uffd_wp(orig_pte))
873 pte = pte_swp_mkuffd_wp(pte);
874 set_pte_at(src_mm, addr, src_pte, pte);
875 }
876 } else if (is_device_exclusive_entry(entry)) {
877 /*
878 * Make device exclusive entries present by restoring the
879 * original entry then copying as for a present pte. Device
880 * exclusive entries currently only support private writable
881 * (ie. COW) mappings.
882 */
883 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
884 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
885 return -EBUSY;
886 return -ENOENT;
887 } else if (is_pte_marker_entry(entry)) {
888 pte_marker marker = copy_pte_marker(entry, dst_vma);
889
890 if (marker)
891 set_pte_at(dst_mm, addr, dst_pte,
892 make_pte_marker(marker));
893 return 0;
894 }
895 if (!userfaultfd_wp(dst_vma))
896 pte = pte_swp_clear_uffd_wp(pte);
897 set_pte_at(dst_mm, addr, dst_pte, pte);
898 return 0;
899 }
900
901 /*
902 * Copy a present and normal page.
903 *
904 * NOTE! The usual case is that this isn't required;
905 * instead, the caller can just increase the page refcount
906 * and re-use the pte the traditional way.
907 *
908 * And if we need a pre-allocated page but don't yet have
909 * one, return a negative error to let the preallocation
910 * code know so that it can do so outside the page table
911 * lock.
912 */
913 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)914 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
915 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
916 struct folio **prealloc, struct page *page)
917 {
918 struct folio *new_folio;
919 pte_t pte;
920
921 new_folio = *prealloc;
922 if (!new_folio)
923 return -EAGAIN;
924
925 /*
926 * We have a prealloc page, all good! Take it
927 * over and copy the page & arm it.
928 */
929
930 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
931 return -EHWPOISON;
932
933 *prealloc = NULL;
934 __folio_mark_uptodate(new_folio);
935 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
936 folio_add_lru_vma(new_folio, dst_vma);
937 rss[MM_ANONPAGES]++;
938
939 /* All done, just insert the new page copy in the child */
940 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
941 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
942 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
943 /* Uffd-wp needs to be delivered to dest pte as well */
944 pte = pte_mkuffd_wp(pte);
945 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
946 return 0;
947 }
948
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)949 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
950 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
951 pte_t pte, unsigned long addr, int nr)
952 {
953 struct mm_struct *src_mm = src_vma->vm_mm;
954
955 /* If it's a COW mapping, write protect it both processes. */
956 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
957 wrprotect_ptes(src_mm, addr, src_pte, nr);
958 pte = pte_wrprotect(pte);
959 }
960
961 /* If it's a shared mapping, mark it clean in the child. */
962 if (src_vma->vm_flags & VM_SHARED)
963 pte = pte_mkclean(pte);
964 pte = pte_mkold(pte);
965
966 if (!userfaultfd_wp(dst_vma))
967 pte = pte_clear_uffd_wp(pte);
968
969 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
970 }
971
972 /*
973 * Copy one present PTE, trying to batch-process subsequent PTEs that map
974 * consecutive pages of the same folio by copying them as well.
975 *
976 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
977 * Otherwise, returns the number of copied PTEs (at least 1).
978 */
979 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)980 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
981 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
982 int max_nr, int *rss, struct folio **prealloc)
983 {
984 struct page *page;
985 struct folio *folio;
986 bool any_writable;
987 fpb_t flags = 0;
988 int err, nr;
989
990 page = vm_normal_page(src_vma, addr, pte);
991 if (unlikely(!page))
992 goto copy_pte;
993
994 folio = page_folio(page);
995
996 /*
997 * If we likely have to copy, just don't bother with batching. Make
998 * sure that the common "small folio" case is as fast as possible
999 * by keeping the batching logic separate.
1000 */
1001 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1002 if (src_vma->vm_flags & VM_SHARED)
1003 flags |= FPB_IGNORE_DIRTY;
1004 if (!vma_soft_dirty_enabled(src_vma))
1005 flags |= FPB_IGNORE_SOFT_DIRTY;
1006
1007 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1008 &any_writable, NULL, NULL);
1009 folio_ref_add(folio, nr);
1010 if (folio_test_anon(folio)) {
1011 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1012 nr, src_vma))) {
1013 folio_ref_sub(folio, nr);
1014 return -EAGAIN;
1015 }
1016 rss[MM_ANONPAGES] += nr;
1017 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1018 } else {
1019 folio_dup_file_rmap_ptes(folio, page, nr);
1020 rss[mm_counter_file(folio)] += nr;
1021 }
1022 if (any_writable)
1023 pte = pte_mkwrite(pte, src_vma);
1024 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1025 addr, nr);
1026 return nr;
1027 }
1028
1029 folio_get(folio);
1030 if (folio_test_anon(folio)) {
1031 /*
1032 * If this page may have been pinned by the parent process,
1033 * copy the page immediately for the child so that we'll always
1034 * guarantee the pinned page won't be randomly replaced in the
1035 * future.
1036 */
1037 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1038 /* Page may be pinned, we have to copy. */
1039 folio_put(folio);
1040 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1041 addr, rss, prealloc, page);
1042 return err ? err : 1;
1043 }
1044 rss[MM_ANONPAGES]++;
1045 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1046 } else {
1047 folio_dup_file_rmap_pte(folio, page);
1048 rss[mm_counter_file(folio)]++;
1049 }
1050
1051 copy_pte:
1052 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1053 return 1;
1054 }
1055
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1056 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1057 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1058 {
1059 struct folio *new_folio;
1060
1061 if (need_zero)
1062 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1063 else
1064 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
1065 addr, false);
1066
1067 if (!new_folio)
1068 return NULL;
1069
1070 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1071 folio_put(new_folio);
1072 return NULL;
1073 }
1074 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1075
1076 return new_folio;
1077 }
1078
1079 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1080 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1081 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1082 unsigned long end)
1083 {
1084 struct mm_struct *dst_mm = dst_vma->vm_mm;
1085 struct mm_struct *src_mm = src_vma->vm_mm;
1086 pte_t *orig_src_pte, *orig_dst_pte;
1087 pte_t *src_pte, *dst_pte;
1088 pte_t ptent;
1089 spinlock_t *src_ptl, *dst_ptl;
1090 int progress, max_nr, ret = 0;
1091 int rss[NR_MM_COUNTERS];
1092 swp_entry_t entry = (swp_entry_t){0};
1093 struct folio *prealloc = NULL;
1094 int nr;
1095
1096 again:
1097 progress = 0;
1098 init_rss_vec(rss);
1099
1100 /*
1101 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1102 * error handling here, assume that exclusive mmap_lock on dst and src
1103 * protects anon from unexpected THP transitions; with shmem and file
1104 * protected by mmap_lock-less collapse skipping areas with anon_vma
1105 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1106 * can remove such assumptions later, but this is good enough for now.
1107 */
1108 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1109 if (!dst_pte) {
1110 ret = -ENOMEM;
1111 goto out;
1112 }
1113 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1114 if (!src_pte) {
1115 pte_unmap_unlock(dst_pte, dst_ptl);
1116 /* ret == 0 */
1117 goto out;
1118 }
1119 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1120 orig_src_pte = src_pte;
1121 orig_dst_pte = dst_pte;
1122 arch_enter_lazy_mmu_mode();
1123
1124 do {
1125 nr = 1;
1126
1127 /*
1128 * We are holding two locks at this point - either of them
1129 * could generate latencies in another task on another CPU.
1130 */
1131 if (progress >= 32) {
1132 progress = 0;
1133 if (need_resched() ||
1134 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1135 break;
1136 }
1137 ptent = ptep_get(src_pte);
1138 if (pte_none(ptent)) {
1139 progress++;
1140 continue;
1141 }
1142 if (unlikely(!pte_present(ptent))) {
1143 ret = copy_nonpresent_pte(dst_mm, src_mm,
1144 dst_pte, src_pte,
1145 dst_vma, src_vma,
1146 addr, rss);
1147 if (ret == -EIO) {
1148 entry = pte_to_swp_entry(ptep_get(src_pte));
1149 break;
1150 } else if (ret == -EBUSY) {
1151 break;
1152 } else if (!ret) {
1153 progress += 8;
1154 continue;
1155 }
1156 ptent = ptep_get(src_pte);
1157 VM_WARN_ON_ONCE(!pte_present(ptent));
1158
1159 /*
1160 * Device exclusive entry restored, continue by copying
1161 * the now present pte.
1162 */
1163 WARN_ON_ONCE(ret != -ENOENT);
1164 }
1165 /* copy_present_ptes() will clear `*prealloc' if consumed */
1166 max_nr = (end - addr) / PAGE_SIZE;
1167 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1168 ptent, addr, max_nr, rss, &prealloc);
1169 /*
1170 * If we need a pre-allocated page for this pte, drop the
1171 * locks, allocate, and try again.
1172 * If copy failed due to hwpoison in source page, break out.
1173 */
1174 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1175 break;
1176 if (unlikely(prealloc)) {
1177 /*
1178 * pre-alloc page cannot be reused by next time so as
1179 * to strictly follow mempolicy (e.g., alloc_page_vma()
1180 * will allocate page according to address). This
1181 * could only happen if one pinned pte changed.
1182 */
1183 folio_put(prealloc);
1184 prealloc = NULL;
1185 }
1186 nr = ret;
1187 progress += 8 * nr;
1188 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1189 addr != end);
1190
1191 arch_leave_lazy_mmu_mode();
1192 pte_unmap_unlock(orig_src_pte, src_ptl);
1193 add_mm_rss_vec(dst_mm, rss);
1194 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1195 cond_resched();
1196
1197 if (ret == -EIO) {
1198 VM_WARN_ON_ONCE(!entry.val);
1199 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1200 ret = -ENOMEM;
1201 goto out;
1202 }
1203 entry.val = 0;
1204 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1205 goto out;
1206 } else if (ret == -EAGAIN) {
1207 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1208 if (!prealloc)
1209 return -ENOMEM;
1210 } else if (ret < 0) {
1211 VM_WARN_ON_ONCE(1);
1212 }
1213
1214 /* We've captured and resolved the error. Reset, try again. */
1215 ret = 0;
1216
1217 if (addr != end)
1218 goto again;
1219 out:
1220 if (unlikely(prealloc))
1221 folio_put(prealloc);
1222 return ret;
1223 }
1224
1225 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1226 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1227 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1228 unsigned long end)
1229 {
1230 struct mm_struct *dst_mm = dst_vma->vm_mm;
1231 struct mm_struct *src_mm = src_vma->vm_mm;
1232 pmd_t *src_pmd, *dst_pmd;
1233 unsigned long next;
1234
1235 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1236 if (!dst_pmd)
1237 return -ENOMEM;
1238 src_pmd = pmd_offset(src_pud, addr);
1239 do {
1240 next = pmd_addr_end(addr, end);
1241 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1242 || pmd_devmap(*src_pmd)) {
1243 int err;
1244 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1245 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1246 addr, dst_vma, src_vma);
1247 if (err == -ENOMEM)
1248 return -ENOMEM;
1249 if (!err)
1250 continue;
1251 /* fall through */
1252 }
1253 if (pmd_none_or_clear_bad(src_pmd))
1254 continue;
1255 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1256 addr, next))
1257 return -ENOMEM;
1258 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1259 return 0;
1260 }
1261
1262 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1263 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1264 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1265 unsigned long end)
1266 {
1267 struct mm_struct *dst_mm = dst_vma->vm_mm;
1268 struct mm_struct *src_mm = src_vma->vm_mm;
1269 pud_t *src_pud, *dst_pud;
1270 unsigned long next;
1271
1272 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1273 if (!dst_pud)
1274 return -ENOMEM;
1275 src_pud = pud_offset(src_p4d, addr);
1276 do {
1277 next = pud_addr_end(addr, end);
1278 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1279 int err;
1280
1281 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1282 err = copy_huge_pud(dst_mm, src_mm,
1283 dst_pud, src_pud, addr, src_vma);
1284 if (err == -ENOMEM)
1285 return -ENOMEM;
1286 if (!err)
1287 continue;
1288 /* fall through */
1289 }
1290 if (pud_none_or_clear_bad(src_pud))
1291 continue;
1292 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1293 addr, next))
1294 return -ENOMEM;
1295 } while (dst_pud++, src_pud++, addr = next, addr != end);
1296 return 0;
1297 }
1298
1299 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1300 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1301 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1302 unsigned long end)
1303 {
1304 struct mm_struct *dst_mm = dst_vma->vm_mm;
1305 p4d_t *src_p4d, *dst_p4d;
1306 unsigned long next;
1307
1308 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1309 if (!dst_p4d)
1310 return -ENOMEM;
1311 src_p4d = p4d_offset(src_pgd, addr);
1312 do {
1313 next = p4d_addr_end(addr, end);
1314 if (p4d_none_or_clear_bad(src_p4d))
1315 continue;
1316 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1317 addr, next))
1318 return -ENOMEM;
1319 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1320 return 0;
1321 }
1322
1323 /*
1324 * Return true if the vma needs to copy the pgtable during this fork(). Return
1325 * false when we can speed up fork() by allowing lazy page faults later until
1326 * when the child accesses the memory range.
1327 */
1328 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1329 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1330 {
1331 /*
1332 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1333 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1334 * contains uffd-wp protection information, that's something we can't
1335 * retrieve from page cache, and skip copying will lose those info.
1336 */
1337 if (userfaultfd_wp(dst_vma))
1338 return true;
1339
1340 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1341 return true;
1342
1343 if (src_vma->anon_vma)
1344 return true;
1345
1346 /*
1347 * Don't copy ptes where a page fault will fill them correctly. Fork
1348 * becomes much lighter when there are big shared or private readonly
1349 * mappings. The tradeoff is that copy_page_range is more efficient
1350 * than faulting.
1351 */
1352 return false;
1353 }
1354
1355 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1356 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1357 {
1358 pgd_t *src_pgd, *dst_pgd;
1359 unsigned long next;
1360 unsigned long addr = src_vma->vm_start;
1361 unsigned long end = src_vma->vm_end;
1362 struct mm_struct *dst_mm = dst_vma->vm_mm;
1363 struct mm_struct *src_mm = src_vma->vm_mm;
1364 struct mmu_notifier_range range;
1365 bool is_cow;
1366 int ret;
1367
1368 if (!vma_needs_copy(dst_vma, src_vma))
1369 return 0;
1370
1371 if (is_vm_hugetlb_page(src_vma))
1372 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1373
1374 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1375 /*
1376 * We do not free on error cases below as remove_vma
1377 * gets called on error from higher level routine
1378 */
1379 ret = track_pfn_copy(src_vma);
1380 if (ret)
1381 return ret;
1382 }
1383
1384 /*
1385 * We need to invalidate the secondary MMU mappings only when
1386 * there could be a permission downgrade on the ptes of the
1387 * parent mm. And a permission downgrade will only happen if
1388 * is_cow_mapping() returns true.
1389 */
1390 is_cow = is_cow_mapping(src_vma->vm_flags);
1391
1392 if (is_cow) {
1393 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1394 0, src_mm, addr, end);
1395 mmu_notifier_invalidate_range_start(&range);
1396 /*
1397 * Disabling preemption is not needed for the write side, as
1398 * the read side doesn't spin, but goes to the mmap_lock.
1399 *
1400 * Use the raw variant of the seqcount_t write API to avoid
1401 * lockdep complaining about preemptibility.
1402 */
1403 vma_assert_write_locked(src_vma);
1404 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1405 }
1406
1407 ret = 0;
1408 dst_pgd = pgd_offset(dst_mm, addr);
1409 src_pgd = pgd_offset(src_mm, addr);
1410 do {
1411 next = pgd_addr_end(addr, end);
1412 if (pgd_none_or_clear_bad(src_pgd))
1413 continue;
1414 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1415 addr, next))) {
1416 untrack_pfn_clear(dst_vma);
1417 ret = -ENOMEM;
1418 break;
1419 }
1420 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1421
1422 if (is_cow) {
1423 raw_write_seqcount_end(&src_mm->write_protect_seq);
1424 mmu_notifier_invalidate_range_end(&range);
1425 }
1426 return ret;
1427 }
1428
1429 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1430 static inline bool should_zap_cows(struct zap_details *details)
1431 {
1432 /* By default, zap all pages */
1433 if (!details)
1434 return true;
1435
1436 /* Or, we zap COWed pages only if the caller wants to */
1437 return details->even_cows;
1438 }
1439
1440 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1441 static inline bool should_zap_folio(struct zap_details *details,
1442 struct folio *folio)
1443 {
1444 /* If we can make a decision without *folio.. */
1445 if (should_zap_cows(details))
1446 return true;
1447
1448 /* Otherwise we should only zap non-anon folios */
1449 return !folio_test_anon(folio);
1450 }
1451
zap_drop_file_uffd_wp(struct zap_details * details)1452 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1453 {
1454 if (!details)
1455 return false;
1456
1457 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1458 }
1459
1460 /*
1461 * This function makes sure that we'll replace the none pte with an uffd-wp
1462 * swap special pte marker when necessary. Must be with the pgtable lock held.
1463 */
1464 static inline void
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1465 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1466 unsigned long addr, pte_t *pte, int nr,
1467 struct zap_details *details, pte_t pteval)
1468 {
1469 /* Zap on anonymous always means dropping everything */
1470 if (vma_is_anonymous(vma))
1471 return;
1472
1473 if (zap_drop_file_uffd_wp(details))
1474 return;
1475
1476 for (;;) {
1477 /* the PFN in the PTE is irrelevant. */
1478 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1479 if (--nr == 0)
1480 break;
1481 pte++;
1482 addr += PAGE_SIZE;
1483 }
1484 }
1485
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break)1486 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1487 struct vm_area_struct *vma, struct folio *folio,
1488 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1489 unsigned long addr, struct zap_details *details, int *rss,
1490 bool *force_flush, bool *force_break)
1491 {
1492 struct mm_struct *mm = tlb->mm;
1493 bool delay_rmap = false;
1494
1495 if (!folio_test_anon(folio)) {
1496 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1497 if (pte_dirty(ptent)) {
1498 folio_mark_dirty(folio);
1499 if (tlb_delay_rmap(tlb)) {
1500 delay_rmap = true;
1501 *force_flush = true;
1502 }
1503 }
1504 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1505 folio_mark_accessed(folio);
1506 rss[mm_counter(folio)] -= nr;
1507 } else {
1508 /* We don't need up-to-date accessed/dirty bits. */
1509 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1510 rss[MM_ANONPAGES] -= nr;
1511 }
1512 /* Checking a single PTE in a batch is sufficient. */
1513 arch_check_zapped_pte(vma, ptent);
1514 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1515 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1516 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1517 ptent);
1518
1519 if (!delay_rmap) {
1520 folio_remove_rmap_ptes(folio, page, nr, vma);
1521
1522 if (unlikely(folio_mapcount(folio) < 0))
1523 print_bad_pte(vma, addr, ptent, page);
1524 }
1525 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1526 *force_flush = true;
1527 *force_break = true;
1528 }
1529 }
1530
1531 /*
1532 * Zap or skip at least one present PTE, trying to batch-process subsequent
1533 * PTEs that map consecutive pages of the same folio.
1534 *
1535 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1536 */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break)1537 static inline int zap_present_ptes(struct mmu_gather *tlb,
1538 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1539 unsigned int max_nr, unsigned long addr,
1540 struct zap_details *details, int *rss, bool *force_flush,
1541 bool *force_break)
1542 {
1543 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1544 struct mm_struct *mm = tlb->mm;
1545 struct folio *folio;
1546 struct page *page;
1547 int nr;
1548
1549 page = vm_normal_page(vma, addr, ptent);
1550 if (!page) {
1551 /* We don't need up-to-date accessed/dirty bits. */
1552 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1553 arch_check_zapped_pte(vma, ptent);
1554 tlb_remove_tlb_entry(tlb, pte, addr);
1555 if (userfaultfd_pte_wp(vma, ptent))
1556 zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1557 details, ptent);
1558 ksm_might_unmap_zero_page(mm, ptent);
1559 return 1;
1560 }
1561
1562 folio = page_folio(page);
1563 if (unlikely(!should_zap_folio(details, folio)))
1564 return 1;
1565
1566 /*
1567 * Make sure that the common "small folio" case is as fast as possible
1568 * by keeping the batching logic separate.
1569 */
1570 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1571 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1572 NULL, NULL, NULL);
1573
1574 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1575 addr, details, rss, force_flush,
1576 force_break);
1577 return nr;
1578 }
1579 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1580 details, rss, force_flush, force_break);
1581 return 1;
1582 }
1583
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1584 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1585 struct vm_area_struct *vma, pmd_t *pmd,
1586 unsigned long addr, unsigned long end,
1587 struct zap_details *details)
1588 {
1589 bool force_flush = false, force_break = false;
1590 struct mm_struct *mm = tlb->mm;
1591 int rss[NR_MM_COUNTERS];
1592 spinlock_t *ptl;
1593 pte_t *start_pte;
1594 pte_t *pte;
1595 swp_entry_t entry;
1596 int nr;
1597
1598 tlb_change_page_size(tlb, PAGE_SIZE);
1599 init_rss_vec(rss);
1600 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1601 if (!pte)
1602 return addr;
1603
1604 flush_tlb_batched_pending(mm);
1605 arch_enter_lazy_mmu_mode();
1606 do {
1607 pte_t ptent = ptep_get(pte);
1608 struct folio *folio;
1609 struct page *page;
1610 int max_nr;
1611
1612 nr = 1;
1613 if (pte_none(ptent))
1614 continue;
1615
1616 if (need_resched())
1617 break;
1618
1619 if (pte_present(ptent)) {
1620 max_nr = (end - addr) / PAGE_SIZE;
1621 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1622 addr, details, rss, &force_flush,
1623 &force_break);
1624 if (unlikely(force_break)) {
1625 addr += nr * PAGE_SIZE;
1626 break;
1627 }
1628 continue;
1629 }
1630
1631 entry = pte_to_swp_entry(ptent);
1632 if (is_device_private_entry(entry) ||
1633 is_device_exclusive_entry(entry)) {
1634 page = pfn_swap_entry_to_page(entry);
1635 folio = page_folio(page);
1636 if (unlikely(!should_zap_folio(details, folio)))
1637 continue;
1638 /*
1639 * Both device private/exclusive mappings should only
1640 * work with anonymous page so far, so we don't need to
1641 * consider uffd-wp bit when zap. For more information,
1642 * see zap_install_uffd_wp_if_needed().
1643 */
1644 WARN_ON_ONCE(!vma_is_anonymous(vma));
1645 rss[mm_counter(folio)]--;
1646 if (is_device_private_entry(entry))
1647 folio_remove_rmap_pte(folio, page, vma);
1648 folio_put(folio);
1649 } else if (!non_swap_entry(entry)) {
1650 max_nr = (end - addr) / PAGE_SIZE;
1651 nr = swap_pte_batch(pte, max_nr, ptent);
1652 /* Genuine swap entries, hence a private anon pages */
1653 if (!should_zap_cows(details))
1654 continue;
1655 rss[MM_SWAPENTS] -= nr;
1656 free_swap_and_cache_nr(entry, nr);
1657 } else if (is_migration_entry(entry)) {
1658 folio = pfn_swap_entry_folio(entry);
1659 if (!should_zap_folio(details, folio))
1660 continue;
1661 rss[mm_counter(folio)]--;
1662 } else if (pte_marker_entry_uffd_wp(entry)) {
1663 /*
1664 * For anon: always drop the marker; for file: only
1665 * drop the marker if explicitly requested.
1666 */
1667 if (!vma_is_anonymous(vma) &&
1668 !zap_drop_file_uffd_wp(details))
1669 continue;
1670 } else if (is_hwpoison_entry(entry) ||
1671 is_poisoned_swp_entry(entry)) {
1672 if (!should_zap_cows(details))
1673 continue;
1674 } else {
1675 /* We should have covered all the swap entry types */
1676 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1677 WARN_ON_ONCE(1);
1678 }
1679 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1680 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1681 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1682
1683 add_mm_rss_vec(mm, rss);
1684 arch_leave_lazy_mmu_mode();
1685
1686 /* Do the actual TLB flush before dropping ptl */
1687 if (force_flush) {
1688 tlb_flush_mmu_tlbonly(tlb);
1689 tlb_flush_rmaps(tlb, vma);
1690 }
1691 pte_unmap_unlock(start_pte, ptl);
1692
1693 /*
1694 * If we forced a TLB flush (either due to running out of
1695 * batch buffers or because we needed to flush dirty TLB
1696 * entries before releasing the ptl), free the batched
1697 * memory too. Come back again if we didn't do everything.
1698 */
1699 if (force_flush)
1700 tlb_flush_mmu(tlb);
1701
1702 return addr;
1703 }
1704
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1705 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1706 struct vm_area_struct *vma, pud_t *pud,
1707 unsigned long addr, unsigned long end,
1708 struct zap_details *details)
1709 {
1710 pmd_t *pmd;
1711 unsigned long next;
1712
1713 pmd = pmd_offset(pud, addr);
1714 do {
1715 next = pmd_addr_end(addr, end);
1716 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1717 if (next - addr != HPAGE_PMD_SIZE)
1718 __split_huge_pmd(vma, pmd, addr, false, NULL);
1719 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1720 addr = next;
1721 continue;
1722 }
1723 /* fall through */
1724 } else if (details && details->single_folio &&
1725 folio_test_pmd_mappable(details->single_folio) &&
1726 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1727 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1728 /*
1729 * Take and drop THP pmd lock so that we cannot return
1730 * prematurely, while zap_huge_pmd() has cleared *pmd,
1731 * but not yet decremented compound_mapcount().
1732 */
1733 spin_unlock(ptl);
1734 }
1735 if (pmd_none(*pmd)) {
1736 addr = next;
1737 continue;
1738 }
1739 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1740 if (addr != next)
1741 pmd--;
1742 } while (pmd++, cond_resched(), addr != end);
1743
1744 return addr;
1745 }
1746
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)1747 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1748 struct vm_area_struct *vma, p4d_t *p4d,
1749 unsigned long addr, unsigned long end,
1750 struct zap_details *details)
1751 {
1752 pud_t *pud;
1753 unsigned long next;
1754
1755 pud = pud_offset(p4d, addr);
1756 do {
1757 next = pud_addr_end(addr, end);
1758 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1759 if (next - addr != HPAGE_PUD_SIZE) {
1760 mmap_assert_locked(tlb->mm);
1761 split_huge_pud(vma, pud, addr);
1762 } else if (zap_huge_pud(tlb, vma, pud, addr))
1763 goto next;
1764 /* fall through */
1765 }
1766 if (pud_none_or_clear_bad(pud))
1767 continue;
1768 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1769 next:
1770 cond_resched();
1771 } while (pud++, addr = next, addr != end);
1772
1773 return addr;
1774 }
1775
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)1776 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1777 struct vm_area_struct *vma, pgd_t *pgd,
1778 unsigned long addr, unsigned long end,
1779 struct zap_details *details)
1780 {
1781 p4d_t *p4d;
1782 unsigned long next;
1783
1784 p4d = p4d_offset(pgd, addr);
1785 do {
1786 next = p4d_addr_end(addr, end);
1787 if (p4d_none_or_clear_bad(p4d))
1788 continue;
1789 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1790 } while (p4d++, addr = next, addr != end);
1791
1792 return addr;
1793 }
1794
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)1795 void unmap_page_range(struct mmu_gather *tlb,
1796 struct vm_area_struct *vma,
1797 unsigned long addr, unsigned long end,
1798 struct zap_details *details)
1799 {
1800 pgd_t *pgd;
1801 unsigned long next;
1802
1803 BUG_ON(addr >= end);
1804 tlb_start_vma(tlb, vma);
1805 pgd = pgd_offset(vma->vm_mm, addr);
1806 do {
1807 next = pgd_addr_end(addr, end);
1808 if (pgd_none_or_clear_bad(pgd))
1809 continue;
1810 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1811 } while (pgd++, addr = next, addr != end);
1812 tlb_end_vma(tlb, vma);
1813 }
1814
1815
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details,bool mm_wr_locked)1816 static void unmap_single_vma(struct mmu_gather *tlb,
1817 struct vm_area_struct *vma, unsigned long start_addr,
1818 unsigned long end_addr,
1819 struct zap_details *details, bool mm_wr_locked)
1820 {
1821 unsigned long start = max(vma->vm_start, start_addr);
1822 unsigned long end;
1823
1824 if (start >= vma->vm_end)
1825 return;
1826 end = min(vma->vm_end, end_addr);
1827 if (end <= vma->vm_start)
1828 return;
1829
1830 if (vma->vm_file)
1831 uprobe_munmap(vma, start, end);
1832
1833 if (unlikely(vma->vm_flags & VM_PFNMAP))
1834 untrack_pfn(vma, 0, 0, mm_wr_locked);
1835
1836 if (start != end) {
1837 if (unlikely(is_vm_hugetlb_page(vma))) {
1838 /*
1839 * It is undesirable to test vma->vm_file as it
1840 * should be non-null for valid hugetlb area.
1841 * However, vm_file will be NULL in the error
1842 * cleanup path of mmap_region. When
1843 * hugetlbfs ->mmap method fails,
1844 * mmap_region() nullifies vma->vm_file
1845 * before calling this function to clean up.
1846 * Since no pte has actually been setup, it is
1847 * safe to do nothing in this case.
1848 */
1849 if (vma->vm_file) {
1850 zap_flags_t zap_flags = details ?
1851 details->zap_flags : 0;
1852 __unmap_hugepage_range(tlb, vma, start, end,
1853 NULL, zap_flags);
1854 }
1855 } else
1856 unmap_page_range(tlb, vma, start, end, details);
1857 }
1858 }
1859
1860 /**
1861 * unmap_vmas - unmap a range of memory covered by a list of vma's
1862 * @tlb: address of the caller's struct mmu_gather
1863 * @mas: the maple state
1864 * @vma: the starting vma
1865 * @start_addr: virtual address at which to start unmapping
1866 * @end_addr: virtual address at which to end unmapping
1867 * @tree_end: The maximum index to check
1868 * @mm_wr_locked: lock flag
1869 *
1870 * Unmap all pages in the vma list.
1871 *
1872 * Only addresses between `start' and `end' will be unmapped.
1873 *
1874 * The VMA list must be sorted in ascending virtual address order.
1875 *
1876 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1877 * range after unmap_vmas() returns. So the only responsibility here is to
1878 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1879 * drops the lock and schedules.
1880 */
unmap_vmas(struct mmu_gather * tlb,struct ma_state * mas,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,unsigned long tree_end,bool mm_wr_locked)1881 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1882 struct vm_area_struct *vma, unsigned long start_addr,
1883 unsigned long end_addr, unsigned long tree_end,
1884 bool mm_wr_locked)
1885 {
1886 struct mmu_notifier_range range;
1887 struct zap_details details = {
1888 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1889 /* Careful - we need to zap private pages too! */
1890 .even_cows = true,
1891 };
1892
1893 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1894 start_addr, end_addr);
1895 mmu_notifier_invalidate_range_start(&range);
1896 do {
1897 unsigned long start = start_addr;
1898 unsigned long end = end_addr;
1899 hugetlb_zap_begin(vma, &start, &end);
1900 unmap_single_vma(tlb, vma, start, end, &details,
1901 mm_wr_locked);
1902 hugetlb_zap_end(vma, &details);
1903 vma = mas_find(mas, tree_end - 1);
1904 } while (vma && likely(!xa_is_zero(vma)));
1905 mmu_notifier_invalidate_range_end(&range);
1906 }
1907
1908 /**
1909 * zap_page_range_single - remove user pages in a given range
1910 * @vma: vm_area_struct holding the applicable pages
1911 * @address: starting address of pages to zap
1912 * @size: number of bytes to zap
1913 * @details: details of shared cache invalidation
1914 *
1915 * The range must fit into one VMA.
1916 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)1917 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1918 unsigned long size, struct zap_details *details)
1919 {
1920 const unsigned long end = address + size;
1921 struct mmu_notifier_range range;
1922 struct mmu_gather tlb;
1923
1924 lru_add_drain();
1925 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1926 address, end);
1927 hugetlb_zap_begin(vma, &range.start, &range.end);
1928 tlb_gather_mmu(&tlb, vma->vm_mm);
1929 update_hiwater_rss(vma->vm_mm);
1930 mmu_notifier_invalidate_range_start(&range);
1931 /*
1932 * unmap 'address-end' not 'range.start-range.end' as range
1933 * could have been expanded for hugetlb pmd sharing.
1934 */
1935 unmap_single_vma(&tlb, vma, address, end, details, false);
1936 mmu_notifier_invalidate_range_end(&range);
1937 tlb_finish_mmu(&tlb);
1938 hugetlb_zap_end(vma, details);
1939 }
1940
1941 /**
1942 * zap_vma_ptes - remove ptes mapping the vma
1943 * @vma: vm_area_struct holding ptes to be zapped
1944 * @address: starting address of pages to zap
1945 * @size: number of bytes to zap
1946 *
1947 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1948 *
1949 * The entire address range must be fully contained within the vma.
1950 *
1951 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)1952 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1953 unsigned long size)
1954 {
1955 if (!range_in_vma(vma, address, address + size) ||
1956 !(vma->vm_flags & VM_PFNMAP))
1957 return;
1958
1959 zap_page_range_single(vma, address, size, NULL);
1960 }
1961 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1962
walk_to_pmd(struct mm_struct * mm,unsigned long addr)1963 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1964 {
1965 pgd_t *pgd;
1966 p4d_t *p4d;
1967 pud_t *pud;
1968 pmd_t *pmd;
1969
1970 pgd = pgd_offset(mm, addr);
1971 p4d = p4d_alloc(mm, pgd, addr);
1972 if (!p4d)
1973 return NULL;
1974 pud = pud_alloc(mm, p4d, addr);
1975 if (!pud)
1976 return NULL;
1977 pmd = pmd_alloc(mm, pud, addr);
1978 if (!pmd)
1979 return NULL;
1980
1981 VM_BUG_ON(pmd_trans_huge(*pmd));
1982 return pmd;
1983 }
1984
__get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)1985 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1986 spinlock_t **ptl)
1987 {
1988 pmd_t *pmd = walk_to_pmd(mm, addr);
1989
1990 if (!pmd)
1991 return NULL;
1992 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1993 }
1994
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)1995 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
1996 {
1997 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
1998 /*
1999 * Whoever wants to forbid the zeropage after some zeropages
2000 * might already have been mapped has to scan the page tables and
2001 * bail out on any zeropages. Zeropages in COW mappings can
2002 * be unshared using FAULT_FLAG_UNSHARE faults.
2003 */
2004 if (mm_forbids_zeropage(vma->vm_mm))
2005 return false;
2006 /* zeropages in COW mappings are common and unproblematic. */
2007 if (is_cow_mapping(vma->vm_flags))
2008 return true;
2009 /* Mappings that do not allow for writable PTEs are unproblematic. */
2010 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2011 return true;
2012 /*
2013 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2014 * find the shared zeropage and longterm-pin it, which would
2015 * be problematic as soon as the zeropage gets replaced by a different
2016 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2017 * now differ to what GUP looked up. FSDAX is incompatible to
2018 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2019 * check_vma_flags).
2020 */
2021 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2022 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2023 }
2024
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2025 static int validate_page_before_insert(struct vm_area_struct *vma,
2026 struct page *page)
2027 {
2028 struct folio *folio = page_folio(page);
2029
2030 if (!folio_ref_count(folio))
2031 return -EINVAL;
2032 if (unlikely(is_zero_folio(folio))) {
2033 if (!vm_mixed_zeropage_allowed(vma))
2034 return -EINVAL;
2035 return 0;
2036 }
2037 if (folio_test_anon(folio) || folio_test_slab(folio) ||
2038 page_has_type(page))
2039 return -EINVAL;
2040 flush_dcache_folio(folio);
2041 return 0;
2042 }
2043
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2044 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2045 unsigned long addr, struct page *page, pgprot_t prot)
2046 {
2047 struct folio *folio = page_folio(page);
2048 pte_t pteval;
2049
2050 if (!pte_none(ptep_get(pte)))
2051 return -EBUSY;
2052 /* Ok, finally just insert the thing.. */
2053 pteval = mk_pte(page, prot);
2054 if (unlikely(is_zero_folio(folio))) {
2055 pteval = pte_mkspecial(pteval);
2056 } else {
2057 folio_get(folio);
2058 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2059 folio_add_file_rmap_pte(folio, page, vma);
2060 }
2061 set_pte_at(vma->vm_mm, addr, pte, pteval);
2062 return 0;
2063 }
2064
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot)2065 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2066 struct page *page, pgprot_t prot)
2067 {
2068 int retval;
2069 pte_t *pte;
2070 spinlock_t *ptl;
2071
2072 retval = validate_page_before_insert(vma, page);
2073 if (retval)
2074 goto out;
2075 retval = -ENOMEM;
2076 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2077 if (!pte)
2078 goto out;
2079 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2080 pte_unmap_unlock(pte, ptl);
2081 out:
2082 return retval;
2083 }
2084
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2085 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2086 unsigned long addr, struct page *page, pgprot_t prot)
2087 {
2088 int err;
2089
2090 err = validate_page_before_insert(vma, page);
2091 if (err)
2092 return err;
2093 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2094 }
2095
2096 /* insert_pages() amortizes the cost of spinlock operations
2097 * when inserting pages in a loop.
2098 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2099 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2100 struct page **pages, unsigned long *num, pgprot_t prot)
2101 {
2102 pmd_t *pmd = NULL;
2103 pte_t *start_pte, *pte;
2104 spinlock_t *pte_lock;
2105 struct mm_struct *const mm = vma->vm_mm;
2106 unsigned long curr_page_idx = 0;
2107 unsigned long remaining_pages_total = *num;
2108 unsigned long pages_to_write_in_pmd;
2109 int ret;
2110 more:
2111 ret = -EFAULT;
2112 pmd = walk_to_pmd(mm, addr);
2113 if (!pmd)
2114 goto out;
2115
2116 pages_to_write_in_pmd = min_t(unsigned long,
2117 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2118
2119 /* Allocate the PTE if necessary; takes PMD lock once only. */
2120 ret = -ENOMEM;
2121 if (pte_alloc(mm, pmd))
2122 goto out;
2123
2124 while (pages_to_write_in_pmd) {
2125 int pte_idx = 0;
2126 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2127
2128 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2129 if (!start_pte) {
2130 ret = -EFAULT;
2131 goto out;
2132 }
2133 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2134 int err = insert_page_in_batch_locked(vma, pte,
2135 addr, pages[curr_page_idx], prot);
2136 if (unlikely(err)) {
2137 pte_unmap_unlock(start_pte, pte_lock);
2138 ret = err;
2139 remaining_pages_total -= pte_idx;
2140 goto out;
2141 }
2142 addr += PAGE_SIZE;
2143 ++curr_page_idx;
2144 }
2145 pte_unmap_unlock(start_pte, pte_lock);
2146 pages_to_write_in_pmd -= batch_size;
2147 remaining_pages_total -= batch_size;
2148 }
2149 if (remaining_pages_total)
2150 goto more;
2151 ret = 0;
2152 out:
2153 *num = remaining_pages_total;
2154 return ret;
2155 }
2156
2157 /**
2158 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2159 * @vma: user vma to map to
2160 * @addr: target start user address of these pages
2161 * @pages: source kernel pages
2162 * @num: in: number of pages to map. out: number of pages that were *not*
2163 * mapped. (0 means all pages were successfully mapped).
2164 *
2165 * Preferred over vm_insert_page() when inserting multiple pages.
2166 *
2167 * In case of error, we may have mapped a subset of the provided
2168 * pages. It is the caller's responsibility to account for this case.
2169 *
2170 * The same restrictions apply as in vm_insert_page().
2171 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2172 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2173 struct page **pages, unsigned long *num)
2174 {
2175 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2176
2177 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2178 return -EFAULT;
2179 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2180 BUG_ON(mmap_read_trylock(vma->vm_mm));
2181 BUG_ON(vma->vm_flags & VM_PFNMAP);
2182 vm_flags_set(vma, VM_MIXEDMAP);
2183 }
2184 /* Defer page refcount checking till we're about to map that page. */
2185 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2186 }
2187 EXPORT_SYMBOL(vm_insert_pages);
2188
2189 /**
2190 * vm_insert_page - insert single page into user vma
2191 * @vma: user vma to map to
2192 * @addr: target user address of this page
2193 * @page: source kernel page
2194 *
2195 * This allows drivers to insert individual pages they've allocated
2196 * into a user vma. The zeropage is supported in some VMAs,
2197 * see vm_mixed_zeropage_allowed().
2198 *
2199 * The page has to be a nice clean _individual_ kernel allocation.
2200 * If you allocate a compound page, you need to have marked it as
2201 * such (__GFP_COMP), or manually just split the page up yourself
2202 * (see split_page()).
2203 *
2204 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2205 * took an arbitrary page protection parameter. This doesn't allow
2206 * that. Your vma protection will have to be set up correctly, which
2207 * means that if you want a shared writable mapping, you'd better
2208 * ask for a shared writable mapping!
2209 *
2210 * The page does not need to be reserved.
2211 *
2212 * Usually this function is called from f_op->mmap() handler
2213 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2214 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2215 * function from other places, for example from page-fault handler.
2216 *
2217 * Return: %0 on success, negative error code otherwise.
2218 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2219 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2220 struct page *page)
2221 {
2222 if (addr < vma->vm_start || addr >= vma->vm_end)
2223 return -EFAULT;
2224 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2225 BUG_ON(mmap_read_trylock(vma->vm_mm));
2226 BUG_ON(vma->vm_flags & VM_PFNMAP);
2227 vm_flags_set(vma, VM_MIXEDMAP);
2228 }
2229 return insert_page(vma, addr, page, vma->vm_page_prot);
2230 }
2231 EXPORT_SYMBOL(vm_insert_page);
2232
2233 /*
2234 * __vm_map_pages - maps range of kernel pages into user vma
2235 * @vma: user vma to map to
2236 * @pages: pointer to array of source kernel pages
2237 * @num: number of pages in page array
2238 * @offset: user's requested vm_pgoff
2239 *
2240 * This allows drivers to map range of kernel pages into a user vma.
2241 * The zeropage is supported in some VMAs, see
2242 * vm_mixed_zeropage_allowed().
2243 *
2244 * Return: 0 on success and error code otherwise.
2245 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2246 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2247 unsigned long num, unsigned long offset)
2248 {
2249 unsigned long count = vma_pages(vma);
2250 unsigned long uaddr = vma->vm_start;
2251 int ret, i;
2252
2253 /* Fail if the user requested offset is beyond the end of the object */
2254 if (offset >= num)
2255 return -ENXIO;
2256
2257 /* Fail if the user requested size exceeds available object size */
2258 if (count > num - offset)
2259 return -ENXIO;
2260
2261 for (i = 0; i < count; i++) {
2262 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2263 if (ret < 0)
2264 return ret;
2265 uaddr += PAGE_SIZE;
2266 }
2267
2268 return 0;
2269 }
2270
2271 /**
2272 * vm_map_pages - maps range of kernel pages starts with non zero offset
2273 * @vma: user vma to map to
2274 * @pages: pointer to array of source kernel pages
2275 * @num: number of pages in page array
2276 *
2277 * Maps an object consisting of @num pages, catering for the user's
2278 * requested vm_pgoff
2279 *
2280 * If we fail to insert any page into the vma, the function will return
2281 * immediately leaving any previously inserted pages present. Callers
2282 * from the mmap handler may immediately return the error as their caller
2283 * will destroy the vma, removing any successfully inserted pages. Other
2284 * callers should make their own arrangements for calling unmap_region().
2285 *
2286 * Context: Process context. Called by mmap handlers.
2287 * Return: 0 on success and error code otherwise.
2288 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2289 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2290 unsigned long num)
2291 {
2292 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2293 }
2294 EXPORT_SYMBOL(vm_map_pages);
2295
2296 /**
2297 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2298 * @vma: user vma to map to
2299 * @pages: pointer to array of source kernel pages
2300 * @num: number of pages in page array
2301 *
2302 * Similar to vm_map_pages(), except that it explicitly sets the offset
2303 * to 0. This function is intended for the drivers that did not consider
2304 * vm_pgoff.
2305 *
2306 * Context: Process context. Called by mmap handlers.
2307 * Return: 0 on success and error code otherwise.
2308 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2309 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2310 unsigned long num)
2311 {
2312 return __vm_map_pages(vma, pages, num, 0);
2313 }
2314 EXPORT_SYMBOL(vm_map_pages_zero);
2315
insert_pfn(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,pgprot_t prot,bool mkwrite)2316 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2317 pfn_t pfn, pgprot_t prot, bool mkwrite)
2318 {
2319 struct mm_struct *mm = vma->vm_mm;
2320 pte_t *pte, entry;
2321 spinlock_t *ptl;
2322
2323 pte = get_locked_pte(mm, addr, &ptl);
2324 if (!pte)
2325 return VM_FAULT_OOM;
2326 entry = ptep_get(pte);
2327 if (!pte_none(entry)) {
2328 if (mkwrite) {
2329 /*
2330 * For read faults on private mappings the PFN passed
2331 * in may not match the PFN we have mapped if the
2332 * mapped PFN is a writeable COW page. In the mkwrite
2333 * case we are creating a writable PTE for a shared
2334 * mapping and we expect the PFNs to match. If they
2335 * don't match, we are likely racing with block
2336 * allocation and mapping invalidation so just skip the
2337 * update.
2338 */
2339 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2340 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2341 goto out_unlock;
2342 }
2343 entry = pte_mkyoung(entry);
2344 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2345 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2346 update_mmu_cache(vma, addr, pte);
2347 }
2348 goto out_unlock;
2349 }
2350
2351 /* Ok, finally just insert the thing.. */
2352 if (pfn_t_devmap(pfn))
2353 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2354 else
2355 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2356
2357 if (mkwrite) {
2358 entry = pte_mkyoung(entry);
2359 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2360 }
2361
2362 set_pte_at(mm, addr, pte, entry);
2363 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2364
2365 out_unlock:
2366 pte_unmap_unlock(pte, ptl);
2367 return VM_FAULT_NOPAGE;
2368 }
2369
2370 /**
2371 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2372 * @vma: user vma to map to
2373 * @addr: target user address of this page
2374 * @pfn: source kernel pfn
2375 * @pgprot: pgprot flags for the inserted page
2376 *
2377 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2378 * to override pgprot on a per-page basis.
2379 *
2380 * This only makes sense for IO mappings, and it makes no sense for
2381 * COW mappings. In general, using multiple vmas is preferable;
2382 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2383 * impractical.
2384 *
2385 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2386 * caching- and encryption bits different than those of @vma->vm_page_prot,
2387 * because the caching- or encryption mode may not be known at mmap() time.
2388 *
2389 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2390 * to set caching and encryption bits for those vmas (except for COW pages).
2391 * This is ensured by core vm only modifying these page table entries using
2392 * functions that don't touch caching- or encryption bits, using pte_modify()
2393 * if needed. (See for example mprotect()).
2394 *
2395 * Also when new page-table entries are created, this is only done using the
2396 * fault() callback, and never using the value of vma->vm_page_prot,
2397 * except for page-table entries that point to anonymous pages as the result
2398 * of COW.
2399 *
2400 * Context: Process context. May allocate using %GFP_KERNEL.
2401 * Return: vm_fault_t value.
2402 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2403 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2404 unsigned long pfn, pgprot_t pgprot)
2405 {
2406 /*
2407 * Technically, architectures with pte_special can avoid all these
2408 * restrictions (same for remap_pfn_range). However we would like
2409 * consistency in testing and feature parity among all, so we should
2410 * try to keep these invariants in place for everybody.
2411 */
2412 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2413 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2414 (VM_PFNMAP|VM_MIXEDMAP));
2415 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2416 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2417
2418 if (addr < vma->vm_start || addr >= vma->vm_end)
2419 return VM_FAULT_SIGBUS;
2420
2421 if (!pfn_modify_allowed(pfn, pgprot))
2422 return VM_FAULT_SIGBUS;
2423
2424 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2425
2426 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2427 false);
2428 }
2429 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2430
2431 /**
2432 * vmf_insert_pfn - insert single pfn into user vma
2433 * @vma: user vma to map to
2434 * @addr: target user address of this page
2435 * @pfn: source kernel pfn
2436 *
2437 * Similar to vm_insert_page, this allows drivers to insert individual pages
2438 * they've allocated into a user vma. Same comments apply.
2439 *
2440 * This function should only be called from a vm_ops->fault handler, and
2441 * in that case the handler should return the result of this function.
2442 *
2443 * vma cannot be a COW mapping.
2444 *
2445 * As this is called only for pages that do not currently exist, we
2446 * do not need to flush old virtual caches or the TLB.
2447 *
2448 * Context: Process context. May allocate using %GFP_KERNEL.
2449 * Return: vm_fault_t value.
2450 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2451 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2452 unsigned long pfn)
2453 {
2454 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2455 }
2456 EXPORT_SYMBOL(vmf_insert_pfn);
2457
vm_mixed_ok(struct vm_area_struct * vma,pfn_t pfn,bool mkwrite)2458 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2459 {
2460 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2461 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2462 return false;
2463 /* these checks mirror the abort conditions in vm_normal_page */
2464 if (vma->vm_flags & VM_MIXEDMAP)
2465 return true;
2466 if (pfn_t_devmap(pfn))
2467 return true;
2468 if (pfn_t_special(pfn))
2469 return true;
2470 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2471 return true;
2472 return false;
2473 }
2474
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn,bool mkwrite)2475 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2476 unsigned long addr, pfn_t pfn, bool mkwrite)
2477 {
2478 pgprot_t pgprot = vma->vm_page_prot;
2479 int err;
2480
2481 if (!vm_mixed_ok(vma, pfn, mkwrite))
2482 return VM_FAULT_SIGBUS;
2483
2484 if (addr < vma->vm_start || addr >= vma->vm_end)
2485 return VM_FAULT_SIGBUS;
2486
2487 track_pfn_insert(vma, &pgprot, pfn);
2488
2489 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2490 return VM_FAULT_SIGBUS;
2491
2492 /*
2493 * If we don't have pte special, then we have to use the pfn_valid()
2494 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2495 * refcount the page if pfn_valid is true (hence insert_page rather
2496 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2497 * without pte special, it would there be refcounted as a normal page.
2498 */
2499 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2500 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2501 struct page *page;
2502
2503 /*
2504 * At this point we are committed to insert_page()
2505 * regardless of whether the caller specified flags that
2506 * result in pfn_t_has_page() == false.
2507 */
2508 page = pfn_to_page(pfn_t_to_pfn(pfn));
2509 err = insert_page(vma, addr, page, pgprot);
2510 } else {
2511 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2512 }
2513
2514 if (err == -ENOMEM)
2515 return VM_FAULT_OOM;
2516 if (err < 0 && err != -EBUSY)
2517 return VM_FAULT_SIGBUS;
2518
2519 return VM_FAULT_NOPAGE;
2520 }
2521
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2522 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2523 pfn_t pfn)
2524 {
2525 return __vm_insert_mixed(vma, addr, pfn, false);
2526 }
2527 EXPORT_SYMBOL(vmf_insert_mixed);
2528
2529 /*
2530 * If the insertion of PTE failed because someone else already added a
2531 * different entry in the mean time, we treat that as success as we assume
2532 * the same entry was actually inserted.
2533 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,pfn_t pfn)2534 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2535 unsigned long addr, pfn_t pfn)
2536 {
2537 return __vm_insert_mixed(vma, addr, pfn, true);
2538 }
2539
2540 /*
2541 * maps a range of physical memory into the requested pages. the old
2542 * mappings are removed. any references to nonexistent pages results
2543 * in null mappings (currently treated as "copy-on-access")
2544 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2545 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2546 unsigned long addr, unsigned long end,
2547 unsigned long pfn, pgprot_t prot)
2548 {
2549 pte_t *pte, *mapped_pte;
2550 spinlock_t *ptl;
2551 int err = 0;
2552
2553 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2554 if (!pte)
2555 return -ENOMEM;
2556 arch_enter_lazy_mmu_mode();
2557 do {
2558 BUG_ON(!pte_none(ptep_get(pte)));
2559 if (!pfn_modify_allowed(pfn, prot)) {
2560 err = -EACCES;
2561 break;
2562 }
2563 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2564 pfn++;
2565 } while (pte++, addr += PAGE_SIZE, addr != end);
2566 arch_leave_lazy_mmu_mode();
2567 pte_unmap_unlock(mapped_pte, ptl);
2568 return err;
2569 }
2570
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2571 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2572 unsigned long addr, unsigned long end,
2573 unsigned long pfn, pgprot_t prot)
2574 {
2575 pmd_t *pmd;
2576 unsigned long next;
2577 int err;
2578
2579 pfn -= addr >> PAGE_SHIFT;
2580 pmd = pmd_alloc(mm, pud, addr);
2581 if (!pmd)
2582 return -ENOMEM;
2583 VM_BUG_ON(pmd_trans_huge(*pmd));
2584 do {
2585 next = pmd_addr_end(addr, end);
2586 err = remap_pte_range(mm, pmd, addr, next,
2587 pfn + (addr >> PAGE_SHIFT), prot);
2588 if (err)
2589 return err;
2590 } while (pmd++, addr = next, addr != end);
2591 return 0;
2592 }
2593
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2594 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2595 unsigned long addr, unsigned long end,
2596 unsigned long pfn, pgprot_t prot)
2597 {
2598 pud_t *pud;
2599 unsigned long next;
2600 int err;
2601
2602 pfn -= addr >> PAGE_SHIFT;
2603 pud = pud_alloc(mm, p4d, addr);
2604 if (!pud)
2605 return -ENOMEM;
2606 do {
2607 next = pud_addr_end(addr, end);
2608 err = remap_pmd_range(mm, pud, addr, next,
2609 pfn + (addr >> PAGE_SHIFT), prot);
2610 if (err)
2611 return err;
2612 } while (pud++, addr = next, addr != end);
2613 return 0;
2614 }
2615
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2616 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2617 unsigned long addr, unsigned long end,
2618 unsigned long pfn, pgprot_t prot)
2619 {
2620 p4d_t *p4d;
2621 unsigned long next;
2622 int err;
2623
2624 pfn -= addr >> PAGE_SHIFT;
2625 p4d = p4d_alloc(mm, pgd, addr);
2626 if (!p4d)
2627 return -ENOMEM;
2628 do {
2629 next = p4d_addr_end(addr, end);
2630 err = remap_pud_range(mm, p4d, addr, next,
2631 pfn + (addr >> PAGE_SHIFT), prot);
2632 if (err)
2633 return err;
2634 } while (p4d++, addr = next, addr != end);
2635 return 0;
2636 }
2637
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2638 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2639 unsigned long pfn, unsigned long size, pgprot_t prot)
2640 {
2641 pgd_t *pgd;
2642 unsigned long next;
2643 unsigned long end = addr + PAGE_ALIGN(size);
2644 struct mm_struct *mm = vma->vm_mm;
2645 int err;
2646
2647 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2648 return -EINVAL;
2649
2650 /*
2651 * Physically remapped pages are special. Tell the
2652 * rest of the world about it:
2653 * VM_IO tells people not to look at these pages
2654 * (accesses can have side effects).
2655 * VM_PFNMAP tells the core MM that the base pages are just
2656 * raw PFN mappings, and do not have a "struct page" associated
2657 * with them.
2658 * VM_DONTEXPAND
2659 * Disable vma merging and expanding with mremap().
2660 * VM_DONTDUMP
2661 * Omit vma from core dump, even when VM_IO turned off.
2662 *
2663 * There's a horrible special case to handle copy-on-write
2664 * behaviour that some programs depend on. We mark the "original"
2665 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2666 * See vm_normal_page() for details.
2667 */
2668 if (is_cow_mapping(vma->vm_flags)) {
2669 if (addr != vma->vm_start || end != vma->vm_end)
2670 return -EINVAL;
2671 vma->vm_pgoff = pfn;
2672 }
2673
2674 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2675
2676 BUG_ON(addr >= end);
2677 pfn -= addr >> PAGE_SHIFT;
2678 pgd = pgd_offset(mm, addr);
2679 flush_cache_range(vma, addr, end);
2680 do {
2681 next = pgd_addr_end(addr, end);
2682 err = remap_p4d_range(mm, pgd, addr, next,
2683 pfn + (addr >> PAGE_SHIFT), prot);
2684 if (err)
2685 return err;
2686 } while (pgd++, addr = next, addr != end);
2687
2688 return 0;
2689 }
2690
2691 /*
2692 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2693 * must have pre-validated the caching bits of the pgprot_t.
2694 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2695 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2696 unsigned long pfn, unsigned long size, pgprot_t prot)
2697 {
2698 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2699
2700 if (!error)
2701 return 0;
2702
2703 /*
2704 * A partial pfn range mapping is dangerous: it does not
2705 * maintain page reference counts, and callers may free
2706 * pages due to the error. So zap it early.
2707 */
2708 zap_page_range_single(vma, addr, size, NULL);
2709 return error;
2710 }
2711
2712 /**
2713 * remap_pfn_range - remap kernel memory to userspace
2714 * @vma: user vma to map to
2715 * @addr: target page aligned user address to start at
2716 * @pfn: page frame number of kernel physical memory address
2717 * @size: size of mapping area
2718 * @prot: page protection flags for this mapping
2719 *
2720 * Note: this is only safe if the mm semaphore is held when called.
2721 *
2722 * Return: %0 on success, negative error code otherwise.
2723 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2724 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2725 unsigned long pfn, unsigned long size, pgprot_t prot)
2726 {
2727 int err;
2728
2729 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2730 if (err)
2731 return -EINVAL;
2732
2733 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2734 if (err)
2735 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2736 return err;
2737 }
2738 EXPORT_SYMBOL(remap_pfn_range);
2739
2740 /**
2741 * vm_iomap_memory - remap memory to userspace
2742 * @vma: user vma to map to
2743 * @start: start of the physical memory to be mapped
2744 * @len: size of area
2745 *
2746 * This is a simplified io_remap_pfn_range() for common driver use. The
2747 * driver just needs to give us the physical memory range to be mapped,
2748 * we'll figure out the rest from the vma information.
2749 *
2750 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2751 * whatever write-combining details or similar.
2752 *
2753 * Return: %0 on success, negative error code otherwise.
2754 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)2755 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2756 {
2757 unsigned long vm_len, pfn, pages;
2758
2759 /* Check that the physical memory area passed in looks valid */
2760 if (start + len < start)
2761 return -EINVAL;
2762 /*
2763 * You *really* shouldn't map things that aren't page-aligned,
2764 * but we've historically allowed it because IO memory might
2765 * just have smaller alignment.
2766 */
2767 len += start & ~PAGE_MASK;
2768 pfn = start >> PAGE_SHIFT;
2769 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2770 if (pfn + pages < pfn)
2771 return -EINVAL;
2772
2773 /* We start the mapping 'vm_pgoff' pages into the area */
2774 if (vma->vm_pgoff > pages)
2775 return -EINVAL;
2776 pfn += vma->vm_pgoff;
2777 pages -= vma->vm_pgoff;
2778
2779 /* Can we fit all of the mapping? */
2780 vm_len = vma->vm_end - vma->vm_start;
2781 if (vm_len >> PAGE_SHIFT > pages)
2782 return -EINVAL;
2783
2784 /* Ok, let it rip */
2785 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2786 }
2787 EXPORT_SYMBOL(vm_iomap_memory);
2788
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2789 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2790 unsigned long addr, unsigned long end,
2791 pte_fn_t fn, void *data, bool create,
2792 pgtbl_mod_mask *mask)
2793 {
2794 pte_t *pte, *mapped_pte;
2795 int err = 0;
2796 spinlock_t *ptl;
2797
2798 if (create) {
2799 mapped_pte = pte = (mm == &init_mm) ?
2800 pte_alloc_kernel_track(pmd, addr, mask) :
2801 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2802 if (!pte)
2803 return -ENOMEM;
2804 } else {
2805 mapped_pte = pte = (mm == &init_mm) ?
2806 pte_offset_kernel(pmd, addr) :
2807 pte_offset_map_lock(mm, pmd, addr, &ptl);
2808 if (!pte)
2809 return -EINVAL;
2810 }
2811
2812 arch_enter_lazy_mmu_mode();
2813
2814 if (fn) {
2815 do {
2816 if (create || !pte_none(ptep_get(pte))) {
2817 err = fn(pte++, addr, data);
2818 if (err)
2819 break;
2820 }
2821 } while (addr += PAGE_SIZE, addr != end);
2822 }
2823 *mask |= PGTBL_PTE_MODIFIED;
2824
2825 arch_leave_lazy_mmu_mode();
2826
2827 if (mm != &init_mm)
2828 pte_unmap_unlock(mapped_pte, ptl);
2829 return err;
2830 }
2831
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2832 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2833 unsigned long addr, unsigned long end,
2834 pte_fn_t fn, void *data, bool create,
2835 pgtbl_mod_mask *mask)
2836 {
2837 pmd_t *pmd;
2838 unsigned long next;
2839 int err = 0;
2840
2841 BUG_ON(pud_leaf(*pud));
2842
2843 if (create) {
2844 pmd = pmd_alloc_track(mm, pud, addr, mask);
2845 if (!pmd)
2846 return -ENOMEM;
2847 } else {
2848 pmd = pmd_offset(pud, addr);
2849 }
2850 do {
2851 next = pmd_addr_end(addr, end);
2852 if (pmd_none(*pmd) && !create)
2853 continue;
2854 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2855 return -EINVAL;
2856 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2857 if (!create)
2858 continue;
2859 pmd_clear_bad(pmd);
2860 }
2861 err = apply_to_pte_range(mm, pmd, addr, next,
2862 fn, data, create, mask);
2863 if (err)
2864 break;
2865 } while (pmd++, addr = next, addr != end);
2866
2867 return err;
2868 }
2869
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2870 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2871 unsigned long addr, unsigned long end,
2872 pte_fn_t fn, void *data, bool create,
2873 pgtbl_mod_mask *mask)
2874 {
2875 pud_t *pud;
2876 unsigned long next;
2877 int err = 0;
2878
2879 if (create) {
2880 pud = pud_alloc_track(mm, p4d, addr, mask);
2881 if (!pud)
2882 return -ENOMEM;
2883 } else {
2884 pud = pud_offset(p4d, addr);
2885 }
2886 do {
2887 next = pud_addr_end(addr, end);
2888 if (pud_none(*pud) && !create)
2889 continue;
2890 if (WARN_ON_ONCE(pud_leaf(*pud)))
2891 return -EINVAL;
2892 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2893 if (!create)
2894 continue;
2895 pud_clear_bad(pud);
2896 }
2897 err = apply_to_pmd_range(mm, pud, addr, next,
2898 fn, data, create, mask);
2899 if (err)
2900 break;
2901 } while (pud++, addr = next, addr != end);
2902
2903 return err;
2904 }
2905
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)2906 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2907 unsigned long addr, unsigned long end,
2908 pte_fn_t fn, void *data, bool create,
2909 pgtbl_mod_mask *mask)
2910 {
2911 p4d_t *p4d;
2912 unsigned long next;
2913 int err = 0;
2914
2915 if (create) {
2916 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2917 if (!p4d)
2918 return -ENOMEM;
2919 } else {
2920 p4d = p4d_offset(pgd, addr);
2921 }
2922 do {
2923 next = p4d_addr_end(addr, end);
2924 if (p4d_none(*p4d) && !create)
2925 continue;
2926 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2927 return -EINVAL;
2928 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2929 if (!create)
2930 continue;
2931 p4d_clear_bad(p4d);
2932 }
2933 err = apply_to_pud_range(mm, p4d, addr, next,
2934 fn, data, create, mask);
2935 if (err)
2936 break;
2937 } while (p4d++, addr = next, addr != end);
2938
2939 return err;
2940 }
2941
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)2942 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2943 unsigned long size, pte_fn_t fn,
2944 void *data, bool create)
2945 {
2946 pgd_t *pgd;
2947 unsigned long start = addr, next;
2948 unsigned long end = addr + size;
2949 pgtbl_mod_mask mask = 0;
2950 int err = 0;
2951
2952 if (WARN_ON(addr >= end))
2953 return -EINVAL;
2954
2955 pgd = pgd_offset(mm, addr);
2956 do {
2957 next = pgd_addr_end(addr, end);
2958 if (pgd_none(*pgd) && !create)
2959 continue;
2960 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2961 return -EINVAL;
2962 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2963 if (!create)
2964 continue;
2965 pgd_clear_bad(pgd);
2966 }
2967 err = apply_to_p4d_range(mm, pgd, addr, next,
2968 fn, data, create, &mask);
2969 if (err)
2970 break;
2971 } while (pgd++, addr = next, addr != end);
2972
2973 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2974 arch_sync_kernel_mappings(start, start + size);
2975
2976 return err;
2977 }
2978
2979 /*
2980 * Scan a region of virtual memory, filling in page tables as necessary
2981 * and calling a provided function on each leaf page table.
2982 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2983 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2984 unsigned long size, pte_fn_t fn, void *data)
2985 {
2986 return __apply_to_page_range(mm, addr, size, fn, data, true);
2987 }
2988 EXPORT_SYMBOL_GPL(apply_to_page_range);
2989
2990 /*
2991 * Scan a region of virtual memory, calling a provided function on
2992 * each leaf page table where it exists.
2993 *
2994 * Unlike apply_to_page_range, this does _not_ fill in page tables
2995 * where they are absent.
2996 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)2997 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2998 unsigned long size, pte_fn_t fn, void *data)
2999 {
3000 return __apply_to_page_range(mm, addr, size, fn, data, false);
3001 }
3002 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3003
3004 /*
3005 * handle_pte_fault chooses page fault handler according to an entry which was
3006 * read non-atomically. Before making any commitment, on those architectures
3007 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3008 * parts, do_swap_page must check under lock before unmapping the pte and
3009 * proceeding (but do_wp_page is only called after already making such a check;
3010 * and do_anonymous_page can safely check later on).
3011 */
pte_unmap_same(struct vm_fault * vmf)3012 static inline int pte_unmap_same(struct vm_fault *vmf)
3013 {
3014 int same = 1;
3015 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3016 if (sizeof(pte_t) > sizeof(unsigned long)) {
3017 spin_lock(vmf->ptl);
3018 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3019 spin_unlock(vmf->ptl);
3020 }
3021 #endif
3022 pte_unmap(vmf->pte);
3023 vmf->pte = NULL;
3024 return same;
3025 }
3026
3027 /*
3028 * Return:
3029 * 0: copied succeeded
3030 * -EHWPOISON: copy failed due to hwpoison in source page
3031 * -EAGAIN: copied failed (some other reason)
3032 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3033 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3034 struct vm_fault *vmf)
3035 {
3036 int ret;
3037 void *kaddr;
3038 void __user *uaddr;
3039 struct vm_area_struct *vma = vmf->vma;
3040 struct mm_struct *mm = vma->vm_mm;
3041 unsigned long addr = vmf->address;
3042
3043 if (likely(src)) {
3044 if (copy_mc_user_highpage(dst, src, addr, vma))
3045 return -EHWPOISON;
3046 return 0;
3047 }
3048
3049 /*
3050 * If the source page was a PFN mapping, we don't have
3051 * a "struct page" for it. We do a best-effort copy by
3052 * just copying from the original user address. If that
3053 * fails, we just zero-fill it. Live with it.
3054 */
3055 kaddr = kmap_local_page(dst);
3056 pagefault_disable();
3057 uaddr = (void __user *)(addr & PAGE_MASK);
3058
3059 /*
3060 * On architectures with software "accessed" bits, we would
3061 * take a double page fault, so mark it accessed here.
3062 */
3063 vmf->pte = NULL;
3064 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3065 pte_t entry;
3066
3067 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3068 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3069 /*
3070 * Other thread has already handled the fault
3071 * and update local tlb only
3072 */
3073 if (vmf->pte)
3074 update_mmu_tlb(vma, addr, vmf->pte);
3075 ret = -EAGAIN;
3076 goto pte_unlock;
3077 }
3078
3079 entry = pte_mkyoung(vmf->orig_pte);
3080 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3081 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3082 }
3083
3084 /*
3085 * This really shouldn't fail, because the page is there
3086 * in the page tables. But it might just be unreadable,
3087 * in which case we just give up and fill the result with
3088 * zeroes.
3089 */
3090 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3091 if (vmf->pte)
3092 goto warn;
3093
3094 /* Re-validate under PTL if the page is still mapped */
3095 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3096 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3097 /* The PTE changed under us, update local tlb */
3098 if (vmf->pte)
3099 update_mmu_tlb(vma, addr, vmf->pte);
3100 ret = -EAGAIN;
3101 goto pte_unlock;
3102 }
3103
3104 /*
3105 * The same page can be mapped back since last copy attempt.
3106 * Try to copy again under PTL.
3107 */
3108 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3109 /*
3110 * Give a warn in case there can be some obscure
3111 * use-case
3112 */
3113 warn:
3114 WARN_ON_ONCE(1);
3115 clear_page(kaddr);
3116 }
3117 }
3118
3119 ret = 0;
3120
3121 pte_unlock:
3122 if (vmf->pte)
3123 pte_unmap_unlock(vmf->pte, vmf->ptl);
3124 pagefault_enable();
3125 kunmap_local(kaddr);
3126 flush_dcache_page(dst);
3127
3128 return ret;
3129 }
3130
__get_fault_gfp_mask(struct vm_area_struct * vma)3131 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3132 {
3133 struct file *vm_file = vma->vm_file;
3134
3135 if (vm_file)
3136 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3137
3138 /*
3139 * Special mappings (e.g. VDSO) do not have any file so fake
3140 * a default GFP_KERNEL for them.
3141 */
3142 return GFP_KERNEL;
3143 }
3144
3145 /*
3146 * Notify the address space that the page is about to become writable so that
3147 * it can prohibit this or wait for the page to get into an appropriate state.
3148 *
3149 * We do this without the lock held, so that it can sleep if it needs to.
3150 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3151 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3152 {
3153 vm_fault_t ret;
3154 unsigned int old_flags = vmf->flags;
3155
3156 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3157
3158 if (vmf->vma->vm_file &&
3159 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3160 return VM_FAULT_SIGBUS;
3161
3162 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3163 /* Restore original flags so that caller is not surprised */
3164 vmf->flags = old_flags;
3165 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3166 return ret;
3167 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3168 folio_lock(folio);
3169 if (!folio->mapping) {
3170 folio_unlock(folio);
3171 return 0; /* retry */
3172 }
3173 ret |= VM_FAULT_LOCKED;
3174 } else
3175 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3176 return ret;
3177 }
3178
3179 /*
3180 * Handle dirtying of a page in shared file mapping on a write fault.
3181 *
3182 * The function expects the page to be locked and unlocks it.
3183 */
fault_dirty_shared_page(struct vm_fault * vmf)3184 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3185 {
3186 struct vm_area_struct *vma = vmf->vma;
3187 struct address_space *mapping;
3188 struct folio *folio = page_folio(vmf->page);
3189 bool dirtied;
3190 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3191
3192 dirtied = folio_mark_dirty(folio);
3193 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3194 /*
3195 * Take a local copy of the address_space - folio.mapping may be zeroed
3196 * by truncate after folio_unlock(). The address_space itself remains
3197 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3198 * release semantics to prevent the compiler from undoing this copying.
3199 */
3200 mapping = folio_raw_mapping(folio);
3201 folio_unlock(folio);
3202
3203 if (!page_mkwrite)
3204 file_update_time(vma->vm_file);
3205
3206 /*
3207 * Throttle page dirtying rate down to writeback speed.
3208 *
3209 * mapping may be NULL here because some device drivers do not
3210 * set page.mapping but still dirty their pages
3211 *
3212 * Drop the mmap_lock before waiting on IO, if we can. The file
3213 * is pinning the mapping, as per above.
3214 */
3215 if ((dirtied || page_mkwrite) && mapping) {
3216 struct file *fpin;
3217
3218 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3219 balance_dirty_pages_ratelimited(mapping);
3220 if (fpin) {
3221 fput(fpin);
3222 return VM_FAULT_COMPLETED;
3223 }
3224 }
3225
3226 return 0;
3227 }
3228
3229 /*
3230 * Handle write page faults for pages that can be reused in the current vma
3231 *
3232 * This can happen either due to the mapping being with the VM_SHARED flag,
3233 * or due to us being the last reference standing to the page. In either
3234 * case, all we need to do here is to mark the page as writable and update
3235 * any related book-keeping.
3236 */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3237 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3238 __releases(vmf->ptl)
3239 {
3240 struct vm_area_struct *vma = vmf->vma;
3241 pte_t entry;
3242
3243 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3244 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3245
3246 if (folio) {
3247 VM_BUG_ON(folio_test_anon(folio) &&
3248 !PageAnonExclusive(vmf->page));
3249 /*
3250 * Clear the folio's cpupid information as the existing
3251 * information potentially belongs to a now completely
3252 * unrelated process.
3253 */
3254 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3255 }
3256
3257 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3258 entry = pte_mkyoung(vmf->orig_pte);
3259 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3260 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3261 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3262 pte_unmap_unlock(vmf->pte, vmf->ptl);
3263 count_vm_event(PGREUSE);
3264 }
3265
3266 /*
3267 * We could add a bitflag somewhere, but for now, we know that all
3268 * vm_ops that have a ->map_pages have been audited and don't need
3269 * the mmap_lock to be held.
3270 */
vmf_can_call_fault(const struct vm_fault * vmf)3271 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3272 {
3273 struct vm_area_struct *vma = vmf->vma;
3274
3275 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3276 return 0;
3277 vma_end_read(vma);
3278 return VM_FAULT_RETRY;
3279 }
3280
3281 /**
3282 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3283 * @vmf: The vm_fault descriptor passed from the fault handler.
3284 *
3285 * When preparing to insert an anonymous page into a VMA from a
3286 * fault handler, call this function rather than anon_vma_prepare().
3287 * If this vma does not already have an associated anon_vma and we are
3288 * only protected by the per-VMA lock, the caller must retry with the
3289 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3290 * determine if this VMA can share its anon_vma, and that's not safe to
3291 * do with only the per-VMA lock held for this VMA.
3292 *
3293 * Return: 0 if fault handling can proceed. Any other value should be
3294 * returned to the caller.
3295 */
__vmf_anon_prepare(struct vm_fault * vmf)3296 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3297 {
3298 struct vm_area_struct *vma = vmf->vma;
3299 vm_fault_t ret = 0;
3300
3301 if (likely(vma->anon_vma))
3302 return 0;
3303 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3304 if (!mmap_read_trylock(vma->vm_mm))
3305 return VM_FAULT_RETRY;
3306 }
3307 if (__anon_vma_prepare(vma))
3308 ret = VM_FAULT_OOM;
3309 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3310 mmap_read_unlock(vma->vm_mm);
3311 return ret;
3312 }
3313
3314 /*
3315 * Handle the case of a page which we actually need to copy to a new page,
3316 * either due to COW or unsharing.
3317 *
3318 * Called with mmap_lock locked and the old page referenced, but
3319 * without the ptl held.
3320 *
3321 * High level logic flow:
3322 *
3323 * - Allocate a page, copy the content of the old page to the new one.
3324 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3325 * - Take the PTL. If the pte changed, bail out and release the allocated page
3326 * - If the pte is still the way we remember it, update the page table and all
3327 * relevant references. This includes dropping the reference the page-table
3328 * held to the old page, as well as updating the rmap.
3329 * - In any case, unlock the PTL and drop the reference we took to the old page.
3330 */
wp_page_copy(struct vm_fault * vmf)3331 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3332 {
3333 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3334 struct vm_area_struct *vma = vmf->vma;
3335 struct mm_struct *mm = vma->vm_mm;
3336 struct folio *old_folio = NULL;
3337 struct folio *new_folio = NULL;
3338 pte_t entry;
3339 int page_copied = 0;
3340 struct mmu_notifier_range range;
3341 vm_fault_t ret;
3342 bool pfn_is_zero;
3343
3344 delayacct_wpcopy_start();
3345
3346 if (vmf->page)
3347 old_folio = page_folio(vmf->page);
3348 ret = vmf_anon_prepare(vmf);
3349 if (unlikely(ret))
3350 goto out;
3351
3352 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3353 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3354 if (!new_folio)
3355 goto oom;
3356
3357 if (!pfn_is_zero) {
3358 int err;
3359
3360 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3361 if (err) {
3362 /*
3363 * COW failed, if the fault was solved by other,
3364 * it's fine. If not, userspace would re-fault on
3365 * the same address and we will handle the fault
3366 * from the second attempt.
3367 * The -EHWPOISON case will not be retried.
3368 */
3369 folio_put(new_folio);
3370 if (old_folio)
3371 folio_put(old_folio);
3372
3373 delayacct_wpcopy_end();
3374 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3375 }
3376 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3377 }
3378
3379 __folio_mark_uptodate(new_folio);
3380
3381 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3382 vmf->address & PAGE_MASK,
3383 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3384 mmu_notifier_invalidate_range_start(&range);
3385
3386 /*
3387 * Re-check the pte - we dropped the lock
3388 */
3389 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3390 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3391 if (old_folio) {
3392 if (!folio_test_anon(old_folio)) {
3393 dec_mm_counter(mm, mm_counter_file(old_folio));
3394 inc_mm_counter(mm, MM_ANONPAGES);
3395 }
3396 } else {
3397 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3398 inc_mm_counter(mm, MM_ANONPAGES);
3399 }
3400 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3401 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3402 entry = pte_sw_mkyoung(entry);
3403 if (unlikely(unshare)) {
3404 if (pte_soft_dirty(vmf->orig_pte))
3405 entry = pte_mksoft_dirty(entry);
3406 if (pte_uffd_wp(vmf->orig_pte))
3407 entry = pte_mkuffd_wp(entry);
3408 } else {
3409 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3410 }
3411
3412 /*
3413 * Clear the pte entry and flush it first, before updating the
3414 * pte with the new entry, to keep TLBs on different CPUs in
3415 * sync. This code used to set the new PTE then flush TLBs, but
3416 * that left a window where the new PTE could be loaded into
3417 * some TLBs while the old PTE remains in others.
3418 */
3419 ptep_clear_flush(vma, vmf->address, vmf->pte);
3420 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3421 folio_add_lru_vma(new_folio, vma);
3422 BUG_ON(unshare && pte_write(entry));
3423 set_pte_at(mm, vmf->address, vmf->pte, entry);
3424 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3425 if (old_folio) {
3426 /*
3427 * Only after switching the pte to the new page may
3428 * we remove the mapcount here. Otherwise another
3429 * process may come and find the rmap count decremented
3430 * before the pte is switched to the new page, and
3431 * "reuse" the old page writing into it while our pte
3432 * here still points into it and can be read by other
3433 * threads.
3434 *
3435 * The critical issue is to order this
3436 * folio_remove_rmap_pte() with the ptp_clear_flush
3437 * above. Those stores are ordered by (if nothing else,)
3438 * the barrier present in the atomic_add_negative
3439 * in folio_remove_rmap_pte();
3440 *
3441 * Then the TLB flush in ptep_clear_flush ensures that
3442 * no process can access the old page before the
3443 * decremented mapcount is visible. And the old page
3444 * cannot be reused until after the decremented
3445 * mapcount is visible. So transitively, TLBs to
3446 * old page will be flushed before it can be reused.
3447 */
3448 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3449 }
3450
3451 /* Free the old page.. */
3452 new_folio = old_folio;
3453 page_copied = 1;
3454 pte_unmap_unlock(vmf->pte, vmf->ptl);
3455 } else if (vmf->pte) {
3456 update_mmu_tlb(vma, vmf->address, vmf->pte);
3457 pte_unmap_unlock(vmf->pte, vmf->ptl);
3458 }
3459
3460 mmu_notifier_invalidate_range_end(&range);
3461
3462 if (new_folio)
3463 folio_put(new_folio);
3464 if (old_folio) {
3465 if (page_copied)
3466 free_swap_cache(old_folio);
3467 folio_put(old_folio);
3468 }
3469
3470 delayacct_wpcopy_end();
3471 return 0;
3472 oom:
3473 ret = VM_FAULT_OOM;
3474 out:
3475 if (old_folio)
3476 folio_put(old_folio);
3477
3478 delayacct_wpcopy_end();
3479 return ret;
3480 }
3481
3482 /**
3483 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3484 * writeable once the page is prepared
3485 *
3486 * @vmf: structure describing the fault
3487 * @folio: the folio of vmf->page
3488 *
3489 * This function handles all that is needed to finish a write page fault in a
3490 * shared mapping due to PTE being read-only once the mapped page is prepared.
3491 * It handles locking of PTE and modifying it.
3492 *
3493 * The function expects the page to be locked or other protection against
3494 * concurrent faults / writeback (such as DAX radix tree locks).
3495 *
3496 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3497 * we acquired PTE lock.
3498 */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3499 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3500 {
3501 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3502 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3503 &vmf->ptl);
3504 if (!vmf->pte)
3505 return VM_FAULT_NOPAGE;
3506 /*
3507 * We might have raced with another page fault while we released the
3508 * pte_offset_map_lock.
3509 */
3510 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3511 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3512 pte_unmap_unlock(vmf->pte, vmf->ptl);
3513 return VM_FAULT_NOPAGE;
3514 }
3515 wp_page_reuse(vmf, folio);
3516 return 0;
3517 }
3518
3519 /*
3520 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3521 * mapping
3522 */
wp_pfn_shared(struct vm_fault * vmf)3523 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3524 {
3525 struct vm_area_struct *vma = vmf->vma;
3526
3527 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3528 vm_fault_t ret;
3529
3530 pte_unmap_unlock(vmf->pte, vmf->ptl);
3531 ret = vmf_can_call_fault(vmf);
3532 if (ret)
3533 return ret;
3534
3535 vmf->flags |= FAULT_FLAG_MKWRITE;
3536 ret = vma->vm_ops->pfn_mkwrite(vmf);
3537 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3538 return ret;
3539 return finish_mkwrite_fault(vmf, NULL);
3540 }
3541 wp_page_reuse(vmf, NULL);
3542 return 0;
3543 }
3544
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3545 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3546 __releases(vmf->ptl)
3547 {
3548 struct vm_area_struct *vma = vmf->vma;
3549 vm_fault_t ret = 0;
3550
3551 folio_get(folio);
3552
3553 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3554 vm_fault_t tmp;
3555
3556 pte_unmap_unlock(vmf->pte, vmf->ptl);
3557 tmp = vmf_can_call_fault(vmf);
3558 if (tmp) {
3559 folio_put(folio);
3560 return tmp;
3561 }
3562
3563 tmp = do_page_mkwrite(vmf, folio);
3564 if (unlikely(!tmp || (tmp &
3565 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3566 folio_put(folio);
3567 return tmp;
3568 }
3569 tmp = finish_mkwrite_fault(vmf, folio);
3570 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3571 folio_unlock(folio);
3572 folio_put(folio);
3573 return tmp;
3574 }
3575 } else {
3576 wp_page_reuse(vmf, folio);
3577 folio_lock(folio);
3578 }
3579 ret |= fault_dirty_shared_page(vmf);
3580 folio_put(folio);
3581
3582 return ret;
3583 }
3584
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)3585 static bool wp_can_reuse_anon_folio(struct folio *folio,
3586 struct vm_area_struct *vma)
3587 {
3588 /*
3589 * We could currently only reuse a subpage of a large folio if no
3590 * other subpages of the large folios are still mapped. However,
3591 * let's just consistently not reuse subpages even if we could
3592 * reuse in that scenario, and give back a large folio a bit
3593 * sooner.
3594 */
3595 if (folio_test_large(folio))
3596 return false;
3597
3598 /*
3599 * We have to verify under folio lock: these early checks are
3600 * just an optimization to avoid locking the folio and freeing
3601 * the swapcache if there is little hope that we can reuse.
3602 *
3603 * KSM doesn't necessarily raise the folio refcount.
3604 */
3605 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3606 return false;
3607 if (!folio_test_lru(folio))
3608 /*
3609 * We cannot easily detect+handle references from
3610 * remote LRU caches or references to LRU folios.
3611 */
3612 lru_add_drain();
3613 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3614 return false;
3615 if (!folio_trylock(folio))
3616 return false;
3617 if (folio_test_swapcache(folio))
3618 folio_free_swap(folio);
3619 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3620 folio_unlock(folio);
3621 return false;
3622 }
3623 /*
3624 * Ok, we've got the only folio reference from our mapping
3625 * and the folio is locked, it's dark out, and we're wearing
3626 * sunglasses. Hit it.
3627 */
3628 folio_move_anon_rmap(folio, vma);
3629 folio_unlock(folio);
3630 return true;
3631 }
3632
3633 /*
3634 * This routine handles present pages, when
3635 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3636 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3637 * (FAULT_FLAG_UNSHARE)
3638 *
3639 * It is done by copying the page to a new address and decrementing the
3640 * shared-page counter for the old page.
3641 *
3642 * Note that this routine assumes that the protection checks have been
3643 * done by the caller (the low-level page fault routine in most cases).
3644 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3645 * done any necessary COW.
3646 *
3647 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3648 * though the page will change only once the write actually happens. This
3649 * avoids a few races, and potentially makes it more efficient.
3650 *
3651 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3652 * but allow concurrent faults), with pte both mapped and locked.
3653 * We return with mmap_lock still held, but pte unmapped and unlocked.
3654 */
do_wp_page(struct vm_fault * vmf)3655 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3656 __releases(vmf->ptl)
3657 {
3658 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3659 struct vm_area_struct *vma = vmf->vma;
3660 struct folio *folio = NULL;
3661 pte_t pte;
3662
3663 if (likely(!unshare)) {
3664 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3665 if (!userfaultfd_wp_async(vma)) {
3666 pte_unmap_unlock(vmf->pte, vmf->ptl);
3667 return handle_userfault(vmf, VM_UFFD_WP);
3668 }
3669
3670 /*
3671 * Nothing needed (cache flush, TLB invalidations,
3672 * etc.) because we're only removing the uffd-wp bit,
3673 * which is completely invisible to the user.
3674 */
3675 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3676
3677 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3678 /*
3679 * Update this to be prepared for following up CoW
3680 * handling
3681 */
3682 vmf->orig_pte = pte;
3683 }
3684
3685 /*
3686 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3687 * is flushed in this case before copying.
3688 */
3689 if (unlikely(userfaultfd_wp(vmf->vma) &&
3690 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3691 flush_tlb_page(vmf->vma, vmf->address);
3692 }
3693
3694 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3695
3696 if (vmf->page)
3697 folio = page_folio(vmf->page);
3698
3699 /*
3700 * Shared mapping: we are guaranteed to have VM_WRITE and
3701 * FAULT_FLAG_WRITE set at this point.
3702 */
3703 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3704 /*
3705 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3706 * VM_PFNMAP VMA.
3707 *
3708 * We should not cow pages in a shared writeable mapping.
3709 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3710 */
3711 if (!vmf->page)
3712 return wp_pfn_shared(vmf);
3713 return wp_page_shared(vmf, folio);
3714 }
3715
3716 /*
3717 * Private mapping: create an exclusive anonymous page copy if reuse
3718 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3719 *
3720 * If we encounter a page that is marked exclusive, we must reuse
3721 * the page without further checks.
3722 */
3723 if (folio && folio_test_anon(folio) &&
3724 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3725 if (!PageAnonExclusive(vmf->page))
3726 SetPageAnonExclusive(vmf->page);
3727 if (unlikely(unshare)) {
3728 pte_unmap_unlock(vmf->pte, vmf->ptl);
3729 return 0;
3730 }
3731 wp_page_reuse(vmf, folio);
3732 return 0;
3733 }
3734 /*
3735 * Ok, we need to copy. Oh, well..
3736 */
3737 if (folio)
3738 folio_get(folio);
3739
3740 pte_unmap_unlock(vmf->pte, vmf->ptl);
3741 #ifdef CONFIG_KSM
3742 if (folio && folio_test_ksm(folio))
3743 count_vm_event(COW_KSM);
3744 #endif
3745 return wp_page_copy(vmf);
3746 }
3747
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)3748 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3749 unsigned long start_addr, unsigned long end_addr,
3750 struct zap_details *details)
3751 {
3752 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3753 }
3754
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)3755 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3756 pgoff_t first_index,
3757 pgoff_t last_index,
3758 struct zap_details *details)
3759 {
3760 struct vm_area_struct *vma;
3761 pgoff_t vba, vea, zba, zea;
3762
3763 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3764 vba = vma->vm_pgoff;
3765 vea = vba + vma_pages(vma) - 1;
3766 zba = max(first_index, vba);
3767 zea = min(last_index, vea);
3768
3769 unmap_mapping_range_vma(vma,
3770 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3771 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3772 details);
3773 }
3774 }
3775
3776 /**
3777 * unmap_mapping_folio() - Unmap single folio from processes.
3778 * @folio: The locked folio to be unmapped.
3779 *
3780 * Unmap this folio from any userspace process which still has it mmaped.
3781 * Typically, for efficiency, the range of nearby pages has already been
3782 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3783 * truncation or invalidation holds the lock on a folio, it may find that
3784 * the page has been remapped again: and then uses unmap_mapping_folio()
3785 * to unmap it finally.
3786 */
unmap_mapping_folio(struct folio * folio)3787 void unmap_mapping_folio(struct folio *folio)
3788 {
3789 struct address_space *mapping = folio->mapping;
3790 struct zap_details details = { };
3791 pgoff_t first_index;
3792 pgoff_t last_index;
3793
3794 VM_BUG_ON(!folio_test_locked(folio));
3795
3796 first_index = folio->index;
3797 last_index = folio_next_index(folio) - 1;
3798
3799 details.even_cows = false;
3800 details.single_folio = folio;
3801 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3802
3803 i_mmap_lock_read(mapping);
3804 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3805 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3806 last_index, &details);
3807 i_mmap_unlock_read(mapping);
3808 }
3809
3810 /**
3811 * unmap_mapping_pages() - Unmap pages from processes.
3812 * @mapping: The address space containing pages to be unmapped.
3813 * @start: Index of first page to be unmapped.
3814 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3815 * @even_cows: Whether to unmap even private COWed pages.
3816 *
3817 * Unmap the pages in this address space from any userspace process which
3818 * has them mmaped. Generally, you want to remove COWed pages as well when
3819 * a file is being truncated, but not when invalidating pages from the page
3820 * cache.
3821 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)3822 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3823 pgoff_t nr, bool even_cows)
3824 {
3825 struct zap_details details = { };
3826 pgoff_t first_index = start;
3827 pgoff_t last_index = start + nr - 1;
3828
3829 details.even_cows = even_cows;
3830 if (last_index < first_index)
3831 last_index = ULONG_MAX;
3832
3833 i_mmap_lock_read(mapping);
3834 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3835 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3836 last_index, &details);
3837 i_mmap_unlock_read(mapping);
3838 }
3839 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3840
3841 /**
3842 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3843 * address_space corresponding to the specified byte range in the underlying
3844 * file.
3845 *
3846 * @mapping: the address space containing mmaps to be unmapped.
3847 * @holebegin: byte in first page to unmap, relative to the start of
3848 * the underlying file. This will be rounded down to a PAGE_SIZE
3849 * boundary. Note that this is different from truncate_pagecache(), which
3850 * must keep the partial page. In contrast, we must get rid of
3851 * partial pages.
3852 * @holelen: size of prospective hole in bytes. This will be rounded
3853 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3854 * end of the file.
3855 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3856 * but 0 when invalidating pagecache, don't throw away private data.
3857 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)3858 void unmap_mapping_range(struct address_space *mapping,
3859 loff_t const holebegin, loff_t const holelen, int even_cows)
3860 {
3861 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3862 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3863
3864 /* Check for overflow. */
3865 if (sizeof(holelen) > sizeof(hlen)) {
3866 long long holeend =
3867 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3868 if (holeend & ~(long long)ULONG_MAX)
3869 hlen = ULONG_MAX - hba + 1;
3870 }
3871
3872 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3873 }
3874 EXPORT_SYMBOL(unmap_mapping_range);
3875
3876 /*
3877 * Restore a potential device exclusive pte to a working pte entry
3878 */
remove_device_exclusive_entry(struct vm_fault * vmf)3879 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3880 {
3881 struct folio *folio = page_folio(vmf->page);
3882 struct vm_area_struct *vma = vmf->vma;
3883 struct mmu_notifier_range range;
3884 vm_fault_t ret;
3885
3886 /*
3887 * We need a reference to lock the folio because we don't hold
3888 * the PTL so a racing thread can remove the device-exclusive
3889 * entry and unmap it. If the folio is free the entry must
3890 * have been removed already. If it happens to have already
3891 * been re-allocated after being freed all we do is lock and
3892 * unlock it.
3893 */
3894 if (!folio_try_get(folio))
3895 return 0;
3896
3897 ret = folio_lock_or_retry(folio, vmf);
3898 if (ret) {
3899 folio_put(folio);
3900 return ret;
3901 }
3902 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3903 vma->vm_mm, vmf->address & PAGE_MASK,
3904 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3905 mmu_notifier_invalidate_range_start(&range);
3906
3907 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3908 &vmf->ptl);
3909 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3910 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3911
3912 if (vmf->pte)
3913 pte_unmap_unlock(vmf->pte, vmf->ptl);
3914 folio_unlock(folio);
3915 folio_put(folio);
3916
3917 mmu_notifier_invalidate_range_end(&range);
3918 return 0;
3919 }
3920
should_try_to_free_swap(struct folio * folio,struct vm_area_struct * vma,unsigned int fault_flags)3921 static inline bool should_try_to_free_swap(struct folio *folio,
3922 struct vm_area_struct *vma,
3923 unsigned int fault_flags)
3924 {
3925 if (!folio_test_swapcache(folio))
3926 return false;
3927 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3928 folio_test_mlocked(folio))
3929 return true;
3930 /*
3931 * If we want to map a page that's in the swapcache writable, we
3932 * have to detect via the refcount if we're really the exclusive
3933 * user. Try freeing the swapcache to get rid of the swapcache
3934 * reference only in case it's likely that we'll be the exlusive user.
3935 */
3936 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3937 folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3938 }
3939
pte_marker_clear(struct vm_fault * vmf)3940 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3941 {
3942 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3943 vmf->address, &vmf->ptl);
3944 if (!vmf->pte)
3945 return 0;
3946 /*
3947 * Be careful so that we will only recover a special uffd-wp pte into a
3948 * none pte. Otherwise it means the pte could have changed, so retry.
3949 *
3950 * This should also cover the case where e.g. the pte changed
3951 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3952 * So is_pte_marker() check is not enough to safely drop the pte.
3953 */
3954 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3955 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3956 pte_unmap_unlock(vmf->pte, vmf->ptl);
3957 return 0;
3958 }
3959
do_pte_missing(struct vm_fault * vmf)3960 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3961 {
3962 if (vma_is_anonymous(vmf->vma))
3963 return do_anonymous_page(vmf);
3964 else
3965 return do_fault(vmf);
3966 }
3967
3968 /*
3969 * This is actually a page-missing access, but with uffd-wp special pte
3970 * installed. It means this pte was wr-protected before being unmapped.
3971 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)3972 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3973 {
3974 /*
3975 * Just in case there're leftover special ptes even after the region
3976 * got unregistered - we can simply clear them.
3977 */
3978 if (unlikely(!userfaultfd_wp(vmf->vma)))
3979 return pte_marker_clear(vmf);
3980
3981 return do_pte_missing(vmf);
3982 }
3983
handle_pte_marker(struct vm_fault * vmf)3984 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3985 {
3986 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3987 unsigned long marker = pte_marker_get(entry);
3988
3989 /*
3990 * PTE markers should never be empty. If anything weird happened,
3991 * the best thing to do is to kill the process along with its mm.
3992 */
3993 if (WARN_ON_ONCE(!marker))
3994 return VM_FAULT_SIGBUS;
3995
3996 /* Higher priority than uffd-wp when data corrupted */
3997 if (marker & PTE_MARKER_POISONED)
3998 return VM_FAULT_HWPOISON;
3999
4000 if (pte_marker_entry_uffd_wp(entry))
4001 return pte_marker_handle_uffd_wp(vmf);
4002
4003 /* This is an unknown pte marker */
4004 return VM_FAULT_SIGBUS;
4005 }
4006
__alloc_swap_folio(struct vm_fault * vmf)4007 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4008 {
4009 struct vm_area_struct *vma = vmf->vma;
4010 struct folio *folio;
4011 swp_entry_t entry;
4012
4013 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
4014 vmf->address, false);
4015 if (!folio)
4016 return NULL;
4017
4018 entry = pte_to_swp_entry(vmf->orig_pte);
4019 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4020 GFP_KERNEL, entry)) {
4021 folio_put(folio);
4022 return NULL;
4023 }
4024
4025 return folio;
4026 }
4027
4028 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
non_swapcache_batch(swp_entry_t entry,int max_nr)4029 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4030 {
4031 struct swap_info_struct *si = swp_swap_info(entry);
4032 pgoff_t offset = swp_offset(entry);
4033 int i;
4034
4035 /*
4036 * While allocating a large folio and doing swap_read_folio, which is
4037 * the case the being faulted pte doesn't have swapcache. We need to
4038 * ensure all PTEs have no cache as well, otherwise, we might go to
4039 * swap devices while the content is in swapcache.
4040 */
4041 for (i = 0; i < max_nr; i++) {
4042 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4043 return i;
4044 }
4045
4046 return i;
4047 }
4048
4049 /*
4050 * Check if the PTEs within a range are contiguous swap entries
4051 * and have consistent swapcache, zeromap.
4052 */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4053 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4054 {
4055 unsigned long addr;
4056 swp_entry_t entry;
4057 int idx;
4058 pte_t pte;
4059
4060 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4061 idx = (vmf->address - addr) / PAGE_SIZE;
4062 pte = ptep_get(ptep);
4063
4064 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4065 return false;
4066 entry = pte_to_swp_entry(pte);
4067 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4068 return false;
4069
4070 /*
4071 * swap_read_folio() can't handle the case a large folio is hybridly
4072 * from different backends. And they are likely corner cases. Similar
4073 * things might be added once zswap support large folios.
4074 */
4075 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4076 return false;
4077 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4078 return false;
4079
4080 return true;
4081 }
4082
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4083 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4084 unsigned long addr,
4085 unsigned long orders)
4086 {
4087 int order, nr;
4088
4089 order = highest_order(orders);
4090
4091 /*
4092 * To swap in a THP with nr pages, we require that its first swap_offset
4093 * is aligned with that number, as it was when the THP was swapped out.
4094 * This helps filter out most invalid entries.
4095 */
4096 while (orders) {
4097 nr = 1 << order;
4098 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4099 break;
4100 order = next_order(&orders, order);
4101 }
4102
4103 return orders;
4104 }
4105
alloc_swap_folio(struct vm_fault * vmf)4106 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4107 {
4108 struct vm_area_struct *vma = vmf->vma;
4109 unsigned long orders;
4110 struct folio *folio;
4111 unsigned long addr;
4112 swp_entry_t entry;
4113 spinlock_t *ptl;
4114 pte_t *pte;
4115 gfp_t gfp;
4116 int order;
4117
4118 /*
4119 * If uffd is active for the vma we need per-page fault fidelity to
4120 * maintain the uffd semantics.
4121 */
4122 if (unlikely(userfaultfd_armed(vma)))
4123 goto fallback;
4124
4125 /*
4126 * A large swapped out folio could be partially or fully in zswap. We
4127 * lack handling for such cases, so fallback to swapping in order-0
4128 * folio.
4129 */
4130 if (!zswap_never_enabled())
4131 goto fallback;
4132
4133 entry = pte_to_swp_entry(vmf->orig_pte);
4134 /*
4135 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4136 * and suitable for swapping THP.
4137 */
4138 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4139 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4140 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4141 orders = thp_swap_suitable_orders(swp_offset(entry),
4142 vmf->address, orders);
4143
4144 if (!orders)
4145 goto fallback;
4146
4147 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4148 vmf->address & PMD_MASK, &ptl);
4149 if (unlikely(!pte))
4150 goto fallback;
4151
4152 /*
4153 * For do_swap_page, find the highest order where the aligned range is
4154 * completely swap entries with contiguous swap offsets.
4155 */
4156 order = highest_order(orders);
4157 while (orders) {
4158 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4159 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4160 break;
4161 order = next_order(&orders, order);
4162 }
4163
4164 pte_unmap_unlock(pte, ptl);
4165
4166 /* Try allocating the highest of the remaining orders. */
4167 gfp = vma_thp_gfp_mask(vma);
4168 while (orders) {
4169 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4170 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4171 if (folio) {
4172 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4173 gfp, entry))
4174 return folio;
4175 folio_put(folio);
4176 }
4177 order = next_order(&orders, order);
4178 }
4179
4180 fallback:
4181 return __alloc_swap_folio(vmf);
4182 }
4183 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4184 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4185 {
4186 return __alloc_swap_folio(vmf);
4187 }
4188 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4189
4190 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4191
4192 /*
4193 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4194 * but allow concurrent faults), and pte mapped but not yet locked.
4195 * We return with pte unmapped and unlocked.
4196 *
4197 * We return with the mmap_lock locked or unlocked in the same cases
4198 * as does filemap_fault().
4199 */
do_swap_page(struct vm_fault * vmf)4200 vm_fault_t do_swap_page(struct vm_fault *vmf)
4201 {
4202 struct vm_area_struct *vma = vmf->vma;
4203 struct folio *swapcache, *folio = NULL;
4204 DECLARE_WAITQUEUE(wait, current);
4205 struct page *page;
4206 struct swap_info_struct *si = NULL;
4207 rmap_t rmap_flags = RMAP_NONE;
4208 bool need_clear_cache = false;
4209 bool exclusive = false;
4210 swp_entry_t entry;
4211 pte_t pte;
4212 vm_fault_t ret = 0;
4213 void *shadow = NULL;
4214 int nr_pages;
4215 unsigned long page_idx;
4216 unsigned long address;
4217 pte_t *ptep;
4218
4219 if (!pte_unmap_same(vmf))
4220 goto out;
4221
4222 entry = pte_to_swp_entry(vmf->orig_pte);
4223 if (unlikely(non_swap_entry(entry))) {
4224 if (is_migration_entry(entry)) {
4225 migration_entry_wait(vma->vm_mm, vmf->pmd,
4226 vmf->address);
4227 } else if (is_device_exclusive_entry(entry)) {
4228 vmf->page = pfn_swap_entry_to_page(entry);
4229 ret = remove_device_exclusive_entry(vmf);
4230 } else if (is_device_private_entry(entry)) {
4231 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4232 /*
4233 * migrate_to_ram is not yet ready to operate
4234 * under VMA lock.
4235 */
4236 vma_end_read(vma);
4237 ret = VM_FAULT_RETRY;
4238 goto out;
4239 }
4240
4241 vmf->page = pfn_swap_entry_to_page(entry);
4242 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4243 vmf->address, &vmf->ptl);
4244 if (unlikely(!vmf->pte ||
4245 !pte_same(ptep_get(vmf->pte),
4246 vmf->orig_pte)))
4247 goto unlock;
4248
4249 /*
4250 * Get a page reference while we know the page can't be
4251 * freed.
4252 */
4253 get_page(vmf->page);
4254 pte_unmap_unlock(vmf->pte, vmf->ptl);
4255 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4256 put_page(vmf->page);
4257 } else if (is_hwpoison_entry(entry)) {
4258 ret = VM_FAULT_HWPOISON;
4259 } else if (is_pte_marker_entry(entry)) {
4260 ret = handle_pte_marker(vmf);
4261 } else {
4262 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4263 ret = VM_FAULT_SIGBUS;
4264 }
4265 goto out;
4266 }
4267
4268 /* Prevent swapoff from happening to us. */
4269 si = get_swap_device(entry);
4270 if (unlikely(!si))
4271 goto out;
4272
4273 folio = swap_cache_get_folio(entry, vma, vmf->address);
4274 if (folio)
4275 page = folio_file_page(folio, swp_offset(entry));
4276 swapcache = folio;
4277
4278 if (!folio) {
4279 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4280 __swap_count(entry) == 1) {
4281 /* skip swapcache */
4282 folio = alloc_swap_folio(vmf);
4283 if (folio) {
4284 __folio_set_locked(folio);
4285 __folio_set_swapbacked(folio);
4286
4287 nr_pages = folio_nr_pages(folio);
4288 if (folio_test_large(folio))
4289 entry.val = ALIGN_DOWN(entry.val, nr_pages);
4290 /*
4291 * Prevent parallel swapin from proceeding with
4292 * the cache flag. Otherwise, another thread
4293 * may finish swapin first, free the entry, and
4294 * swapout reusing the same entry. It's
4295 * undetectable as pte_same() returns true due
4296 * to entry reuse.
4297 */
4298 if (swapcache_prepare(entry, nr_pages)) {
4299 /*
4300 * Relax a bit to prevent rapid
4301 * repeated page faults.
4302 */
4303 add_wait_queue(&swapcache_wq, &wait);
4304 schedule_timeout_uninterruptible(1);
4305 remove_wait_queue(&swapcache_wq, &wait);
4306 goto out_page;
4307 }
4308 need_clear_cache = true;
4309
4310 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4311
4312 shadow = get_shadow_from_swap_cache(entry);
4313 if (shadow)
4314 workingset_refault(folio, shadow);
4315
4316 folio_add_lru(folio);
4317
4318 /* To provide entry to swap_read_folio() */
4319 folio->swap = entry;
4320 swap_read_folio(folio, NULL);
4321 folio->private = NULL;
4322 }
4323 } else {
4324 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4325 vmf);
4326 swapcache = folio;
4327 }
4328
4329 if (!folio) {
4330 /*
4331 * Back out if somebody else faulted in this pte
4332 * while we released the pte lock.
4333 */
4334 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4335 vmf->address, &vmf->ptl);
4336 if (likely(vmf->pte &&
4337 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4338 ret = VM_FAULT_OOM;
4339 goto unlock;
4340 }
4341
4342 /* Had to read the page from swap area: Major fault */
4343 ret = VM_FAULT_MAJOR;
4344 count_vm_event(PGMAJFAULT);
4345 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4346 page = folio_file_page(folio, swp_offset(entry));
4347 } else if (PageHWPoison(page)) {
4348 /*
4349 * hwpoisoned dirty swapcache pages are kept for killing
4350 * owner processes (which may be unknown at hwpoison time)
4351 */
4352 ret = VM_FAULT_HWPOISON;
4353 goto out_release;
4354 }
4355
4356 ret |= folio_lock_or_retry(folio, vmf);
4357 if (ret & VM_FAULT_RETRY)
4358 goto out_release;
4359
4360 if (swapcache) {
4361 /*
4362 * Make sure folio_free_swap() or swapoff did not release the
4363 * swapcache from under us. The page pin, and pte_same test
4364 * below, are not enough to exclude that. Even if it is still
4365 * swapcache, we need to check that the page's swap has not
4366 * changed.
4367 */
4368 if (unlikely(!folio_test_swapcache(folio) ||
4369 page_swap_entry(page).val != entry.val))
4370 goto out_page;
4371
4372 /*
4373 * KSM sometimes has to copy on read faults, for example, if
4374 * page->index of !PageKSM() pages would be nonlinear inside the
4375 * anon VMA -- PageKSM() is lost on actual swapout.
4376 */
4377 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4378 if (unlikely(!folio)) {
4379 ret = VM_FAULT_OOM;
4380 folio = swapcache;
4381 goto out_page;
4382 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4383 ret = VM_FAULT_HWPOISON;
4384 folio = swapcache;
4385 goto out_page;
4386 }
4387 if (folio != swapcache)
4388 page = folio_page(folio, 0);
4389
4390 /*
4391 * If we want to map a page that's in the swapcache writable, we
4392 * have to detect via the refcount if we're really the exclusive
4393 * owner. Try removing the extra reference from the local LRU
4394 * caches if required.
4395 */
4396 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4397 !folio_test_ksm(folio) && !folio_test_lru(folio))
4398 lru_add_drain();
4399 }
4400
4401 folio_throttle_swaprate(folio, GFP_KERNEL);
4402
4403 /*
4404 * Back out if somebody else already faulted in this pte.
4405 */
4406 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4407 &vmf->ptl);
4408 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4409 goto out_nomap;
4410
4411 if (unlikely(!folio_test_uptodate(folio))) {
4412 ret = VM_FAULT_SIGBUS;
4413 goto out_nomap;
4414 }
4415
4416 /* allocated large folios for SWP_SYNCHRONOUS_IO */
4417 if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4418 unsigned long nr = folio_nr_pages(folio);
4419 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4420 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4421 pte_t *folio_ptep = vmf->pte - idx;
4422 pte_t folio_pte = ptep_get(folio_ptep);
4423
4424 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4425 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4426 goto out_nomap;
4427
4428 page_idx = idx;
4429 address = folio_start;
4430 ptep = folio_ptep;
4431 goto check_folio;
4432 }
4433
4434 nr_pages = 1;
4435 page_idx = 0;
4436 address = vmf->address;
4437 ptep = vmf->pte;
4438 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4439 int nr = folio_nr_pages(folio);
4440 unsigned long idx = folio_page_idx(folio, page);
4441 unsigned long folio_start = address - idx * PAGE_SIZE;
4442 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4443 pte_t *folio_ptep;
4444 pte_t folio_pte;
4445
4446 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4447 goto check_folio;
4448 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4449 goto check_folio;
4450
4451 folio_ptep = vmf->pte - idx;
4452 folio_pte = ptep_get(folio_ptep);
4453 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4454 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4455 goto check_folio;
4456
4457 page_idx = idx;
4458 address = folio_start;
4459 ptep = folio_ptep;
4460 nr_pages = nr;
4461 entry = folio->swap;
4462 page = &folio->page;
4463 }
4464
4465 check_folio:
4466 /*
4467 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4468 * must never point at an anonymous page in the swapcache that is
4469 * PG_anon_exclusive. Sanity check that this holds and especially, that
4470 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4471 * check after taking the PT lock and making sure that nobody
4472 * concurrently faulted in this page and set PG_anon_exclusive.
4473 */
4474 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4475 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4476
4477 /*
4478 * Check under PT lock (to protect against concurrent fork() sharing
4479 * the swap entry concurrently) for certainly exclusive pages.
4480 */
4481 if (!folio_test_ksm(folio)) {
4482 exclusive = pte_swp_exclusive(vmf->orig_pte);
4483 if (folio != swapcache) {
4484 /*
4485 * We have a fresh page that is not exposed to the
4486 * swapcache -> certainly exclusive.
4487 */
4488 exclusive = true;
4489 } else if (exclusive && folio_test_writeback(folio) &&
4490 data_race(si->flags & SWP_STABLE_WRITES)) {
4491 /*
4492 * This is tricky: not all swap backends support
4493 * concurrent page modifications while under writeback.
4494 *
4495 * So if we stumble over such a page in the swapcache
4496 * we must not set the page exclusive, otherwise we can
4497 * map it writable without further checks and modify it
4498 * while still under writeback.
4499 *
4500 * For these problematic swap backends, simply drop the
4501 * exclusive marker: this is perfectly fine as we start
4502 * writeback only if we fully unmapped the page and
4503 * there are no unexpected references on the page after
4504 * unmapping succeeded. After fully unmapped, no
4505 * further GUP references (FOLL_GET and FOLL_PIN) can
4506 * appear, so dropping the exclusive marker and mapping
4507 * it only R/O is fine.
4508 */
4509 exclusive = false;
4510 }
4511 }
4512
4513 /*
4514 * Some architectures may have to restore extra metadata to the page
4515 * when reading from swap. This metadata may be indexed by swap entry
4516 * so this must be called before swap_free().
4517 */
4518 arch_swap_restore(folio_swap(entry, folio), folio);
4519
4520 /*
4521 * Remove the swap entry and conditionally try to free up the swapcache.
4522 * We're already holding a reference on the page but haven't mapped it
4523 * yet.
4524 */
4525 swap_free_nr(entry, nr_pages);
4526 if (should_try_to_free_swap(folio, vma, vmf->flags))
4527 folio_free_swap(folio);
4528
4529 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4530 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4531 pte = mk_pte(page, vma->vm_page_prot);
4532 if (pte_swp_soft_dirty(vmf->orig_pte))
4533 pte = pte_mksoft_dirty(pte);
4534 if (pte_swp_uffd_wp(vmf->orig_pte))
4535 pte = pte_mkuffd_wp(pte);
4536
4537 /*
4538 * Same logic as in do_wp_page(); however, optimize for pages that are
4539 * certainly not shared either because we just allocated them without
4540 * exposing them to the swapcache or because the swap entry indicates
4541 * exclusivity.
4542 */
4543 if (!folio_test_ksm(folio) &&
4544 (exclusive || folio_ref_count(folio) == 1)) {
4545 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4546 !pte_needs_soft_dirty_wp(vma, pte)) {
4547 pte = pte_mkwrite(pte, vma);
4548 if (vmf->flags & FAULT_FLAG_WRITE) {
4549 pte = pte_mkdirty(pte);
4550 vmf->flags &= ~FAULT_FLAG_WRITE;
4551 }
4552 }
4553 rmap_flags |= RMAP_EXCLUSIVE;
4554 }
4555 folio_ref_add(folio, nr_pages - 1);
4556 flush_icache_pages(vma, page, nr_pages);
4557 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4558
4559 /* ksm created a completely new copy */
4560 if (unlikely(folio != swapcache && swapcache)) {
4561 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4562 folio_add_lru_vma(folio, vma);
4563 } else if (!folio_test_anon(folio)) {
4564 /*
4565 * We currently only expect small !anon folios which are either
4566 * fully exclusive or fully shared, or new allocated large
4567 * folios which are fully exclusive. If we ever get large
4568 * folios within swapcache here, we have to be careful.
4569 */
4570 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4571 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4572 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4573 } else {
4574 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4575 rmap_flags);
4576 }
4577
4578 VM_BUG_ON(!folio_test_anon(folio) ||
4579 (pte_write(pte) && !PageAnonExclusive(page)));
4580 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4581 arch_do_swap_page_nr(vma->vm_mm, vma, address,
4582 pte, pte, nr_pages);
4583
4584 folio_unlock(folio);
4585 if (folio != swapcache && swapcache) {
4586 /*
4587 * Hold the lock to avoid the swap entry to be reused
4588 * until we take the PT lock for the pte_same() check
4589 * (to avoid false positives from pte_same). For
4590 * further safety release the lock after the swap_free
4591 * so that the swap count won't change under a
4592 * parallel locked swapcache.
4593 */
4594 folio_unlock(swapcache);
4595 folio_put(swapcache);
4596 }
4597
4598 if (vmf->flags & FAULT_FLAG_WRITE) {
4599 ret |= do_wp_page(vmf);
4600 if (ret & VM_FAULT_ERROR)
4601 ret &= VM_FAULT_ERROR;
4602 goto out;
4603 }
4604
4605 /* No need to invalidate - it was non-present before */
4606 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4607 unlock:
4608 if (vmf->pte)
4609 pte_unmap_unlock(vmf->pte, vmf->ptl);
4610 out:
4611 /* Clear the swap cache pin for direct swapin after PTL unlock */
4612 if (need_clear_cache) {
4613 swapcache_clear(si, entry, nr_pages);
4614 if (waitqueue_active(&swapcache_wq))
4615 wake_up(&swapcache_wq);
4616 }
4617 if (si)
4618 put_swap_device(si);
4619 return ret;
4620 out_nomap:
4621 if (vmf->pte)
4622 pte_unmap_unlock(vmf->pte, vmf->ptl);
4623 out_page:
4624 folio_unlock(folio);
4625 out_release:
4626 folio_put(folio);
4627 if (folio != swapcache && swapcache) {
4628 folio_unlock(swapcache);
4629 folio_put(swapcache);
4630 }
4631 if (need_clear_cache) {
4632 swapcache_clear(si, entry, nr_pages);
4633 if (waitqueue_active(&swapcache_wq))
4634 wake_up(&swapcache_wq);
4635 }
4636 if (si)
4637 put_swap_device(si);
4638 return ret;
4639 }
4640
pte_range_none(pte_t * pte,int nr_pages)4641 static bool pte_range_none(pte_t *pte, int nr_pages)
4642 {
4643 int i;
4644
4645 for (i = 0; i < nr_pages; i++) {
4646 if (!pte_none(ptep_get_lockless(pte + i)))
4647 return false;
4648 }
4649
4650 return true;
4651 }
4652
alloc_anon_folio(struct vm_fault * vmf)4653 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4654 {
4655 struct vm_area_struct *vma = vmf->vma;
4656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4657 unsigned long orders;
4658 struct folio *folio;
4659 unsigned long addr;
4660 pte_t *pte;
4661 gfp_t gfp;
4662 int order;
4663
4664 /*
4665 * If uffd is active for the vma we need per-page fault fidelity to
4666 * maintain the uffd semantics.
4667 */
4668 if (unlikely(userfaultfd_armed(vma)))
4669 goto fallback;
4670
4671 /*
4672 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4673 * for this vma. Then filter out the orders that can't be allocated over
4674 * the faulting address and still be fully contained in the vma.
4675 */
4676 orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4677 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4678 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4679
4680 if (!orders)
4681 goto fallback;
4682
4683 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4684 if (!pte)
4685 return ERR_PTR(-EAGAIN);
4686
4687 /*
4688 * Find the highest order where the aligned range is completely
4689 * pte_none(). Note that all remaining orders will be completely
4690 * pte_none().
4691 */
4692 order = highest_order(orders);
4693 while (orders) {
4694 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4695 if (pte_range_none(pte + pte_index(addr), 1 << order))
4696 break;
4697 order = next_order(&orders, order);
4698 }
4699
4700 pte_unmap(pte);
4701
4702 if (!orders)
4703 goto fallback;
4704
4705 /* Try allocating the highest of the remaining orders. */
4706 gfp = vma_thp_gfp_mask(vma);
4707 while (orders) {
4708 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4709 folio = vma_alloc_folio(gfp, order, vma, addr, true);
4710 if (folio) {
4711 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4712 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4713 folio_put(folio);
4714 goto next;
4715 }
4716 folio_throttle_swaprate(folio, gfp);
4717 folio_zero_user(folio, vmf->address);
4718 return folio;
4719 }
4720 next:
4721 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4722 order = next_order(&orders, order);
4723 }
4724
4725 fallback:
4726 #endif
4727 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4728 }
4729
4730 /*
4731 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4732 * but allow concurrent faults), and pte mapped but not yet locked.
4733 * We return with mmap_lock still held, but pte unmapped and unlocked.
4734 */
do_anonymous_page(struct vm_fault * vmf)4735 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4736 {
4737 struct vm_area_struct *vma = vmf->vma;
4738 unsigned long addr = vmf->address;
4739 struct folio *folio;
4740 vm_fault_t ret = 0;
4741 int nr_pages = 1;
4742 pte_t entry;
4743
4744 /* File mapping without ->vm_ops ? */
4745 if (vma->vm_flags & VM_SHARED)
4746 return VM_FAULT_SIGBUS;
4747
4748 /*
4749 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4750 * be distinguished from a transient failure of pte_offset_map().
4751 */
4752 if (pte_alloc(vma->vm_mm, vmf->pmd))
4753 return VM_FAULT_OOM;
4754
4755 /* Use the zero-page for reads */
4756 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4757 !mm_forbids_zeropage(vma->vm_mm)) {
4758 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4759 vma->vm_page_prot));
4760 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4761 vmf->address, &vmf->ptl);
4762 if (!vmf->pte)
4763 goto unlock;
4764 if (vmf_pte_changed(vmf)) {
4765 update_mmu_tlb(vma, vmf->address, vmf->pte);
4766 goto unlock;
4767 }
4768 ret = check_stable_address_space(vma->vm_mm);
4769 if (ret)
4770 goto unlock;
4771 /* Deliver the page fault to userland, check inside PT lock */
4772 if (userfaultfd_missing(vma)) {
4773 pte_unmap_unlock(vmf->pte, vmf->ptl);
4774 return handle_userfault(vmf, VM_UFFD_MISSING);
4775 }
4776 goto setpte;
4777 }
4778
4779 /* Allocate our own private page. */
4780 ret = vmf_anon_prepare(vmf);
4781 if (ret)
4782 return ret;
4783 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4784 folio = alloc_anon_folio(vmf);
4785 if (IS_ERR(folio))
4786 return 0;
4787 if (!folio)
4788 goto oom;
4789
4790 nr_pages = folio_nr_pages(folio);
4791 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4792
4793 /*
4794 * The memory barrier inside __folio_mark_uptodate makes sure that
4795 * preceding stores to the page contents become visible before
4796 * the set_pte_at() write.
4797 */
4798 __folio_mark_uptodate(folio);
4799
4800 entry = mk_pte(&folio->page, vma->vm_page_prot);
4801 entry = pte_sw_mkyoung(entry);
4802 if (vma->vm_flags & VM_WRITE)
4803 entry = pte_mkwrite(pte_mkdirty(entry), vma);
4804
4805 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4806 if (!vmf->pte)
4807 goto release;
4808 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4809 update_mmu_tlb(vma, addr, vmf->pte);
4810 goto release;
4811 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4812 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4813 goto release;
4814 }
4815
4816 ret = check_stable_address_space(vma->vm_mm);
4817 if (ret)
4818 goto release;
4819
4820 /* Deliver the page fault to userland, check inside PT lock */
4821 if (userfaultfd_missing(vma)) {
4822 pte_unmap_unlock(vmf->pte, vmf->ptl);
4823 folio_put(folio);
4824 return handle_userfault(vmf, VM_UFFD_MISSING);
4825 }
4826
4827 folio_ref_add(folio, nr_pages - 1);
4828 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4829 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4830 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4831 folio_add_lru_vma(folio, vma);
4832 setpte:
4833 if (vmf_orig_pte_uffd_wp(vmf))
4834 entry = pte_mkuffd_wp(entry);
4835 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4836
4837 /* No need to invalidate - it was non-present before */
4838 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4839 unlock:
4840 if (vmf->pte)
4841 pte_unmap_unlock(vmf->pte, vmf->ptl);
4842 return ret;
4843 release:
4844 folio_put(folio);
4845 goto unlock;
4846 oom:
4847 return VM_FAULT_OOM;
4848 }
4849
4850 /*
4851 * The mmap_lock must have been held on entry, and may have been
4852 * released depending on flags and vma->vm_ops->fault() return value.
4853 * See filemap_fault() and __lock_page_retry().
4854 */
__do_fault(struct vm_fault * vmf)4855 static vm_fault_t __do_fault(struct vm_fault *vmf)
4856 {
4857 struct vm_area_struct *vma = vmf->vma;
4858 struct folio *folio;
4859 vm_fault_t ret;
4860
4861 /*
4862 * Preallocate pte before we take page_lock because this might lead to
4863 * deadlocks for memcg reclaim which waits for pages under writeback:
4864 * lock_page(A)
4865 * SetPageWriteback(A)
4866 * unlock_page(A)
4867 * lock_page(B)
4868 * lock_page(B)
4869 * pte_alloc_one
4870 * shrink_folio_list
4871 * wait_on_page_writeback(A)
4872 * SetPageWriteback(B)
4873 * unlock_page(B)
4874 * # flush A, B to clear the writeback
4875 */
4876 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4877 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4878 if (!vmf->prealloc_pte)
4879 return VM_FAULT_OOM;
4880 }
4881
4882 ret = vma->vm_ops->fault(vmf);
4883 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4884 VM_FAULT_DONE_COW)))
4885 return ret;
4886
4887 folio = page_folio(vmf->page);
4888 if (unlikely(PageHWPoison(vmf->page))) {
4889 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4890 if (ret & VM_FAULT_LOCKED) {
4891 if (page_mapped(vmf->page))
4892 unmap_mapping_folio(folio);
4893 /* Retry if a clean folio was removed from the cache. */
4894 if (mapping_evict_folio(folio->mapping, folio))
4895 poisonret = VM_FAULT_NOPAGE;
4896 folio_unlock(folio);
4897 }
4898 folio_put(folio);
4899 vmf->page = NULL;
4900 return poisonret;
4901 }
4902
4903 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4904 folio_lock(folio);
4905 else
4906 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4907
4908 return ret;
4909 }
4910
4911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)4912 static void deposit_prealloc_pte(struct vm_fault *vmf)
4913 {
4914 struct vm_area_struct *vma = vmf->vma;
4915
4916 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4917 /*
4918 * We are going to consume the prealloc table,
4919 * count that as nr_ptes.
4920 */
4921 mm_inc_nr_ptes(vma->vm_mm);
4922 vmf->prealloc_pte = NULL;
4923 }
4924
do_set_pmd(struct vm_fault * vmf,struct page * page)4925 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4926 {
4927 struct folio *folio = page_folio(page);
4928 struct vm_area_struct *vma = vmf->vma;
4929 bool write = vmf->flags & FAULT_FLAG_WRITE;
4930 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4931 pmd_t entry;
4932 vm_fault_t ret = VM_FAULT_FALLBACK;
4933
4934 /*
4935 * It is too late to allocate a small folio, we already have a large
4936 * folio in the pagecache: especially s390 KVM cannot tolerate any
4937 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4938 * PMD mappings if THPs are disabled.
4939 */
4940 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4941 return ret;
4942
4943 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4944 return ret;
4945
4946 if (folio_order(folio) != HPAGE_PMD_ORDER)
4947 return ret;
4948 page = &folio->page;
4949
4950 /*
4951 * Just backoff if any subpage of a THP is corrupted otherwise
4952 * the corrupted page may mapped by PMD silently to escape the
4953 * check. This kind of THP just can be PTE mapped. Access to
4954 * the corrupted subpage should trigger SIGBUS as expected.
4955 */
4956 if (unlikely(folio_test_has_hwpoisoned(folio)))
4957 return ret;
4958
4959 /*
4960 * Archs like ppc64 need additional space to store information
4961 * related to pte entry. Use the preallocated table for that.
4962 */
4963 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4964 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4965 if (!vmf->prealloc_pte)
4966 return VM_FAULT_OOM;
4967 }
4968
4969 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4970 if (unlikely(!pmd_none(*vmf->pmd)))
4971 goto out;
4972
4973 flush_icache_pages(vma, page, HPAGE_PMD_NR);
4974
4975 entry = mk_huge_pmd(page, vma->vm_page_prot);
4976 if (write)
4977 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4978
4979 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
4980 folio_add_file_rmap_pmd(folio, page, vma);
4981
4982 /*
4983 * deposit and withdraw with pmd lock held
4984 */
4985 if (arch_needs_pgtable_deposit())
4986 deposit_prealloc_pte(vmf);
4987
4988 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4989
4990 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4991
4992 /* fault is handled */
4993 ret = 0;
4994 count_vm_event(THP_FILE_MAPPED);
4995 out:
4996 spin_unlock(vmf->ptl);
4997 return ret;
4998 }
4999 #else
do_set_pmd(struct vm_fault * vmf,struct page * page)5000 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5001 {
5002 return VM_FAULT_FALLBACK;
5003 }
5004 #endif
5005
5006 /**
5007 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5008 * @vmf: Fault decription.
5009 * @folio: The folio that contains @page.
5010 * @page: The first page to create a PTE for.
5011 * @nr: The number of PTEs to create.
5012 * @addr: The first address to create a PTE for.
5013 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5014 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5015 struct page *page, unsigned int nr, unsigned long addr)
5016 {
5017 struct vm_area_struct *vma = vmf->vma;
5018 bool write = vmf->flags & FAULT_FLAG_WRITE;
5019 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5020 pte_t entry;
5021
5022 flush_icache_pages(vma, page, nr);
5023 entry = mk_pte(page, vma->vm_page_prot);
5024
5025 if (prefault && arch_wants_old_prefaulted_pte())
5026 entry = pte_mkold(entry);
5027 else
5028 entry = pte_sw_mkyoung(entry);
5029
5030 if (write)
5031 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5032 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5033 entry = pte_mkuffd_wp(entry);
5034 /* copy-on-write page */
5035 if (write && !(vma->vm_flags & VM_SHARED)) {
5036 VM_BUG_ON_FOLIO(nr != 1, folio);
5037 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5038 folio_add_lru_vma(folio, vma);
5039 } else {
5040 folio_add_file_rmap_ptes(folio, page, nr, vma);
5041 }
5042 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5043
5044 /* no need to invalidate: a not-present page won't be cached */
5045 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5046 }
5047
vmf_pte_changed(struct vm_fault * vmf)5048 static bool vmf_pte_changed(struct vm_fault *vmf)
5049 {
5050 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5051 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5052
5053 return !pte_none(ptep_get(vmf->pte));
5054 }
5055
5056 /**
5057 * finish_fault - finish page fault once we have prepared the page to fault
5058 *
5059 * @vmf: structure describing the fault
5060 *
5061 * This function handles all that is needed to finish a page fault once the
5062 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5063 * given page, adds reverse page mapping, handles memcg charges and LRU
5064 * addition.
5065 *
5066 * The function expects the page to be locked and on success it consumes a
5067 * reference of a page being mapped (for the PTE which maps it).
5068 *
5069 * Return: %0 on success, %VM_FAULT_ code in case of error.
5070 */
finish_fault(struct vm_fault * vmf)5071 vm_fault_t finish_fault(struct vm_fault *vmf)
5072 {
5073 struct vm_area_struct *vma = vmf->vma;
5074 struct page *page;
5075 struct folio *folio;
5076 vm_fault_t ret;
5077 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5078 !(vma->vm_flags & VM_SHARED);
5079 int type, nr_pages;
5080 unsigned long addr = vmf->address;
5081
5082 /* Did we COW the page? */
5083 if (is_cow)
5084 page = vmf->cow_page;
5085 else
5086 page = vmf->page;
5087
5088 /*
5089 * check even for read faults because we might have lost our CoWed
5090 * page
5091 */
5092 if (!(vma->vm_flags & VM_SHARED)) {
5093 ret = check_stable_address_space(vma->vm_mm);
5094 if (ret)
5095 return ret;
5096 }
5097
5098 if (pmd_none(*vmf->pmd)) {
5099 if (PageTransCompound(page)) {
5100 ret = do_set_pmd(vmf, page);
5101 if (ret != VM_FAULT_FALLBACK)
5102 return ret;
5103 }
5104
5105 if (vmf->prealloc_pte)
5106 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5107 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5108 return VM_FAULT_OOM;
5109 }
5110
5111 folio = page_folio(page);
5112 nr_pages = folio_nr_pages(folio);
5113
5114 /*
5115 * Using per-page fault to maintain the uffd semantics, and same
5116 * approach also applies to non-anonymous-shmem faults to avoid
5117 * inflating the RSS of the process.
5118 */
5119 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5120 nr_pages = 1;
5121 } else if (nr_pages > 1) {
5122 pgoff_t idx = folio_page_idx(folio, page);
5123 /* The page offset of vmf->address within the VMA. */
5124 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5125 /* The index of the entry in the pagetable for fault page. */
5126 pgoff_t pte_off = pte_index(vmf->address);
5127
5128 /*
5129 * Fallback to per-page fault in case the folio size in page
5130 * cache beyond the VMA limits and PMD pagetable limits.
5131 */
5132 if (unlikely(vma_off < idx ||
5133 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5134 pte_off < idx ||
5135 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5136 nr_pages = 1;
5137 } else {
5138 /* Now we can set mappings for the whole large folio. */
5139 addr = vmf->address - idx * PAGE_SIZE;
5140 page = &folio->page;
5141 }
5142 }
5143
5144 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5145 addr, &vmf->ptl);
5146 if (!vmf->pte)
5147 return VM_FAULT_NOPAGE;
5148
5149 /* Re-check under ptl */
5150 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5151 update_mmu_tlb(vma, addr, vmf->pte);
5152 ret = VM_FAULT_NOPAGE;
5153 goto unlock;
5154 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5155 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5156 ret = VM_FAULT_NOPAGE;
5157 goto unlock;
5158 }
5159
5160 folio_ref_add(folio, nr_pages - 1);
5161 set_pte_range(vmf, folio, page, nr_pages, addr);
5162 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5163 add_mm_counter(vma->vm_mm, type, nr_pages);
5164 ret = 0;
5165
5166 unlock:
5167 pte_unmap_unlock(vmf->pte, vmf->ptl);
5168 return ret;
5169 }
5170
5171 static unsigned long fault_around_pages __read_mostly =
5172 65536 >> PAGE_SHIFT;
5173
5174 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5175 static int fault_around_bytes_get(void *data, u64 *val)
5176 {
5177 *val = fault_around_pages << PAGE_SHIFT;
5178 return 0;
5179 }
5180
5181 /*
5182 * fault_around_bytes must be rounded down to the nearest page order as it's
5183 * what do_fault_around() expects to see.
5184 */
fault_around_bytes_set(void * data,u64 val)5185 static int fault_around_bytes_set(void *data, u64 val)
5186 {
5187 if (val / PAGE_SIZE > PTRS_PER_PTE)
5188 return -EINVAL;
5189
5190 /*
5191 * The minimum value is 1 page, however this results in no fault-around
5192 * at all. See should_fault_around().
5193 */
5194 val = max(val, PAGE_SIZE);
5195 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5196
5197 return 0;
5198 }
5199 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5200 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5201
fault_around_debugfs(void)5202 static int __init fault_around_debugfs(void)
5203 {
5204 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5205 &fault_around_bytes_fops);
5206 return 0;
5207 }
5208 late_initcall(fault_around_debugfs);
5209 #endif
5210
5211 /*
5212 * do_fault_around() tries to map few pages around the fault address. The hope
5213 * is that the pages will be needed soon and this will lower the number of
5214 * faults to handle.
5215 *
5216 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5217 * not ready to be mapped: not up-to-date, locked, etc.
5218 *
5219 * This function doesn't cross VMA or page table boundaries, in order to call
5220 * map_pages() and acquire a PTE lock only once.
5221 *
5222 * fault_around_pages defines how many pages we'll try to map.
5223 * do_fault_around() expects it to be set to a power of two less than or equal
5224 * to PTRS_PER_PTE.
5225 *
5226 * The virtual address of the area that we map is naturally aligned to
5227 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5228 * (and therefore to page order). This way it's easier to guarantee
5229 * that we don't cross page table boundaries.
5230 */
do_fault_around(struct vm_fault * vmf)5231 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5232 {
5233 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5234 pgoff_t pte_off = pte_index(vmf->address);
5235 /* The page offset of vmf->address within the VMA. */
5236 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5237 pgoff_t from_pte, to_pte;
5238 vm_fault_t ret;
5239
5240 /* The PTE offset of the start address, clamped to the VMA. */
5241 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5242 pte_off - min(pte_off, vma_off));
5243
5244 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5245 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5246 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5247
5248 if (pmd_none(*vmf->pmd)) {
5249 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5250 if (!vmf->prealloc_pte)
5251 return VM_FAULT_OOM;
5252 }
5253
5254 rcu_read_lock();
5255 ret = vmf->vma->vm_ops->map_pages(vmf,
5256 vmf->pgoff + from_pte - pte_off,
5257 vmf->pgoff + to_pte - pte_off);
5258 rcu_read_unlock();
5259
5260 return ret;
5261 }
5262
5263 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5264 static inline bool should_fault_around(struct vm_fault *vmf)
5265 {
5266 /* No ->map_pages? No way to fault around... */
5267 if (!vmf->vma->vm_ops->map_pages)
5268 return false;
5269
5270 if (uffd_disable_fault_around(vmf->vma))
5271 return false;
5272
5273 /* A single page implies no faulting 'around' at all. */
5274 return fault_around_pages > 1;
5275 }
5276
do_read_fault(struct vm_fault * vmf)5277 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5278 {
5279 vm_fault_t ret = 0;
5280 struct folio *folio;
5281
5282 /*
5283 * Let's call ->map_pages() first and use ->fault() as fallback
5284 * if page by the offset is not ready to be mapped (cold cache or
5285 * something).
5286 */
5287 if (should_fault_around(vmf)) {
5288 ret = do_fault_around(vmf);
5289 if (ret)
5290 return ret;
5291 }
5292
5293 ret = vmf_can_call_fault(vmf);
5294 if (ret)
5295 return ret;
5296
5297 ret = __do_fault(vmf);
5298 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5299 return ret;
5300
5301 ret |= finish_fault(vmf);
5302 folio = page_folio(vmf->page);
5303 folio_unlock(folio);
5304 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5305 folio_put(folio);
5306 return ret;
5307 }
5308
do_cow_fault(struct vm_fault * vmf)5309 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5310 {
5311 struct vm_area_struct *vma = vmf->vma;
5312 struct folio *folio;
5313 vm_fault_t ret;
5314
5315 ret = vmf_can_call_fault(vmf);
5316 if (!ret)
5317 ret = vmf_anon_prepare(vmf);
5318 if (ret)
5319 return ret;
5320
5321 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5322 if (!folio)
5323 return VM_FAULT_OOM;
5324
5325 vmf->cow_page = &folio->page;
5326
5327 ret = __do_fault(vmf);
5328 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5329 goto uncharge_out;
5330 if (ret & VM_FAULT_DONE_COW)
5331 return ret;
5332
5333 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5334 ret = VM_FAULT_HWPOISON;
5335 goto unlock;
5336 }
5337 __folio_mark_uptodate(folio);
5338
5339 ret |= finish_fault(vmf);
5340 unlock:
5341 unlock_page(vmf->page);
5342 put_page(vmf->page);
5343 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5344 goto uncharge_out;
5345 return ret;
5346 uncharge_out:
5347 folio_put(folio);
5348 return ret;
5349 }
5350
do_shared_fault(struct vm_fault * vmf)5351 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5352 {
5353 struct vm_area_struct *vma = vmf->vma;
5354 vm_fault_t ret, tmp;
5355 struct folio *folio;
5356
5357 ret = vmf_can_call_fault(vmf);
5358 if (ret)
5359 return ret;
5360
5361 ret = __do_fault(vmf);
5362 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5363 return ret;
5364
5365 folio = page_folio(vmf->page);
5366
5367 /*
5368 * Check if the backing address space wants to know that the page is
5369 * about to become writable
5370 */
5371 if (vma->vm_ops->page_mkwrite) {
5372 folio_unlock(folio);
5373 tmp = do_page_mkwrite(vmf, folio);
5374 if (unlikely(!tmp ||
5375 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5376 folio_put(folio);
5377 return tmp;
5378 }
5379 }
5380
5381 ret |= finish_fault(vmf);
5382 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5383 VM_FAULT_RETRY))) {
5384 folio_unlock(folio);
5385 folio_put(folio);
5386 return ret;
5387 }
5388
5389 ret |= fault_dirty_shared_page(vmf);
5390 return ret;
5391 }
5392
5393 /*
5394 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5395 * but allow concurrent faults).
5396 * The mmap_lock may have been released depending on flags and our
5397 * return value. See filemap_fault() and __folio_lock_or_retry().
5398 * If mmap_lock is released, vma may become invalid (for example
5399 * by other thread calling munmap()).
5400 */
do_fault(struct vm_fault * vmf)5401 static vm_fault_t do_fault(struct vm_fault *vmf)
5402 {
5403 struct vm_area_struct *vma = vmf->vma;
5404 struct mm_struct *vm_mm = vma->vm_mm;
5405 vm_fault_t ret;
5406
5407 /*
5408 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5409 */
5410 if (!vma->vm_ops->fault) {
5411 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5412 vmf->address, &vmf->ptl);
5413 if (unlikely(!vmf->pte))
5414 ret = VM_FAULT_SIGBUS;
5415 else {
5416 /*
5417 * Make sure this is not a temporary clearing of pte
5418 * by holding ptl and checking again. A R/M/W update
5419 * of pte involves: take ptl, clearing the pte so that
5420 * we don't have concurrent modification by hardware
5421 * followed by an update.
5422 */
5423 if (unlikely(pte_none(ptep_get(vmf->pte))))
5424 ret = VM_FAULT_SIGBUS;
5425 else
5426 ret = VM_FAULT_NOPAGE;
5427
5428 pte_unmap_unlock(vmf->pte, vmf->ptl);
5429 }
5430 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5431 ret = do_read_fault(vmf);
5432 else if (!(vma->vm_flags & VM_SHARED))
5433 ret = do_cow_fault(vmf);
5434 else
5435 ret = do_shared_fault(vmf);
5436
5437 /* preallocated pagetable is unused: free it */
5438 if (vmf->prealloc_pte) {
5439 pte_free(vm_mm, vmf->prealloc_pte);
5440 vmf->prealloc_pte = NULL;
5441 }
5442 return ret;
5443 }
5444
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5445 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5446 unsigned long addr, int *flags,
5447 bool writable, int *last_cpupid)
5448 {
5449 struct vm_area_struct *vma = vmf->vma;
5450
5451 /*
5452 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5453 * much anyway since they can be in shared cache state. This misses
5454 * the case where a mapping is writable but the process never writes
5455 * to it but pte_write gets cleared during protection updates and
5456 * pte_dirty has unpredictable behaviour between PTE scan updates,
5457 * background writeback, dirty balancing and application behaviour.
5458 */
5459 if (!writable)
5460 *flags |= TNF_NO_GROUP;
5461
5462 /*
5463 * Flag if the folio is shared between multiple address spaces. This
5464 * is later used when determining whether to group tasks together
5465 */
5466 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5467 *flags |= TNF_SHARED;
5468 /*
5469 * For memory tiering mode, cpupid of slow memory page is used
5470 * to record page access time. So use default value.
5471 */
5472 if (folio_use_access_time(folio))
5473 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5474 else
5475 *last_cpupid = folio_last_cpupid(folio);
5476
5477 /* Record the current PID acceesing VMA */
5478 vma_set_access_pid_bit(vma);
5479
5480 count_vm_numa_event(NUMA_HINT_FAULTS);
5481 #ifdef CONFIG_NUMA_BALANCING
5482 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5483 #endif
5484 if (folio_nid(folio) == numa_node_id()) {
5485 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5486 *flags |= TNF_FAULT_LOCAL;
5487 }
5488
5489 return mpol_misplaced(folio, vmf, addr);
5490 }
5491
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5492 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5493 unsigned long fault_addr, pte_t *fault_pte,
5494 bool writable)
5495 {
5496 pte_t pte, old_pte;
5497
5498 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5499 pte = pte_modify(old_pte, vma->vm_page_prot);
5500 pte = pte_mkyoung(pte);
5501 if (writable)
5502 pte = pte_mkwrite(pte, vma);
5503 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5504 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5505 }
5506
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)5507 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5508 struct folio *folio, pte_t fault_pte,
5509 bool ignore_writable, bool pte_write_upgrade)
5510 {
5511 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5512 unsigned long start, end, addr = vmf->address;
5513 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5514 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5515 pte_t *start_ptep;
5516
5517 /* Stay within the VMA and within the page table. */
5518 start = max3(addr_start, pt_start, vma->vm_start);
5519 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5520 vma->vm_end);
5521 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5522
5523 /* Restore all PTEs' mapping of the large folio */
5524 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5525 pte_t ptent = ptep_get(start_ptep);
5526 bool writable = false;
5527
5528 if (!pte_present(ptent) || !pte_protnone(ptent))
5529 continue;
5530
5531 if (pfn_folio(pte_pfn(ptent)) != folio)
5532 continue;
5533
5534 if (!ignore_writable) {
5535 ptent = pte_modify(ptent, vma->vm_page_prot);
5536 writable = pte_write(ptent);
5537 if (!writable && pte_write_upgrade &&
5538 can_change_pte_writable(vma, addr, ptent))
5539 writable = true;
5540 }
5541
5542 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5543 }
5544 }
5545
do_numa_page(struct vm_fault * vmf)5546 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5547 {
5548 struct vm_area_struct *vma = vmf->vma;
5549 struct folio *folio = NULL;
5550 int nid = NUMA_NO_NODE;
5551 bool writable = false, ignore_writable = false;
5552 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5553 int last_cpupid;
5554 int target_nid;
5555 pte_t pte, old_pte;
5556 int flags = 0, nr_pages;
5557
5558 /*
5559 * The pte cannot be used safely until we verify, while holding the page
5560 * table lock, that its contents have not changed during fault handling.
5561 */
5562 spin_lock(vmf->ptl);
5563 /* Read the live PTE from the page tables: */
5564 old_pte = ptep_get(vmf->pte);
5565
5566 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5567 pte_unmap_unlock(vmf->pte, vmf->ptl);
5568 return 0;
5569 }
5570
5571 pte = pte_modify(old_pte, vma->vm_page_prot);
5572
5573 /*
5574 * Detect now whether the PTE could be writable; this information
5575 * is only valid while holding the PT lock.
5576 */
5577 writable = pte_write(pte);
5578 if (!writable && pte_write_upgrade &&
5579 can_change_pte_writable(vma, vmf->address, pte))
5580 writable = true;
5581
5582 folio = vm_normal_folio(vma, vmf->address, pte);
5583 if (!folio || folio_is_zone_device(folio))
5584 goto out_map;
5585
5586 nid = folio_nid(folio);
5587 nr_pages = folio_nr_pages(folio);
5588
5589 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5590 writable, &last_cpupid);
5591 if (target_nid == NUMA_NO_NODE)
5592 goto out_map;
5593 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5594 flags |= TNF_MIGRATE_FAIL;
5595 goto out_map;
5596 }
5597 /* The folio is isolated and isolation code holds a folio reference. */
5598 pte_unmap_unlock(vmf->pte, vmf->ptl);
5599 writable = false;
5600 ignore_writable = true;
5601
5602 /* Migrate to the requested node */
5603 if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5604 nid = target_nid;
5605 flags |= TNF_MIGRATED;
5606 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5607 return 0;
5608 }
5609
5610 flags |= TNF_MIGRATE_FAIL;
5611 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5612 vmf->address, &vmf->ptl);
5613 if (unlikely(!vmf->pte))
5614 return 0;
5615 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5616 pte_unmap_unlock(vmf->pte, vmf->ptl);
5617 return 0;
5618 }
5619 out_map:
5620 /*
5621 * Make it present again, depending on how arch implements
5622 * non-accessible ptes, some can allow access by kernel mode.
5623 */
5624 if (folio && folio_test_large(folio))
5625 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5626 pte_write_upgrade);
5627 else
5628 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5629 writable);
5630 pte_unmap_unlock(vmf->pte, vmf->ptl);
5631
5632 if (nid != NUMA_NO_NODE)
5633 task_numa_fault(last_cpupid, nid, nr_pages, flags);
5634 return 0;
5635 }
5636
create_huge_pmd(struct vm_fault * vmf)5637 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5638 {
5639 struct vm_area_struct *vma = vmf->vma;
5640 if (vma_is_anonymous(vma))
5641 return do_huge_pmd_anonymous_page(vmf);
5642 if (vma->vm_ops->huge_fault)
5643 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5644 return VM_FAULT_FALLBACK;
5645 }
5646
5647 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)5648 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5649 {
5650 struct vm_area_struct *vma = vmf->vma;
5651 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5652 vm_fault_t ret;
5653
5654 if (vma_is_anonymous(vma)) {
5655 if (likely(!unshare) &&
5656 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5657 if (userfaultfd_wp_async(vmf->vma))
5658 goto split;
5659 return handle_userfault(vmf, VM_UFFD_WP);
5660 }
5661 return do_huge_pmd_wp_page(vmf);
5662 }
5663
5664 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5665 if (vma->vm_ops->huge_fault) {
5666 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5667 if (!(ret & VM_FAULT_FALLBACK))
5668 return ret;
5669 }
5670 }
5671
5672 split:
5673 /* COW or write-notify handled on pte level: split pmd. */
5674 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5675
5676 return VM_FAULT_FALLBACK;
5677 }
5678
create_huge_pud(struct vm_fault * vmf)5679 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5680 {
5681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5682 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5683 struct vm_area_struct *vma = vmf->vma;
5684 /* No support for anonymous transparent PUD pages yet */
5685 if (vma_is_anonymous(vma))
5686 return VM_FAULT_FALLBACK;
5687 if (vma->vm_ops->huge_fault)
5688 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5689 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5690 return VM_FAULT_FALLBACK;
5691 }
5692
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)5693 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5694 {
5695 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
5696 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5697 struct vm_area_struct *vma = vmf->vma;
5698 vm_fault_t ret;
5699
5700 /* No support for anonymous transparent PUD pages yet */
5701 if (vma_is_anonymous(vma))
5702 goto split;
5703 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5704 if (vma->vm_ops->huge_fault) {
5705 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5706 if (!(ret & VM_FAULT_FALLBACK))
5707 return ret;
5708 }
5709 }
5710 split:
5711 /* COW or write-notify not handled on PUD level: split pud.*/
5712 __split_huge_pud(vma, vmf->pud, vmf->address);
5713 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5714 return VM_FAULT_FALLBACK;
5715 }
5716
5717 /*
5718 * These routines also need to handle stuff like marking pages dirty
5719 * and/or accessed for architectures that don't do it in hardware (most
5720 * RISC architectures). The early dirtying is also good on the i386.
5721 *
5722 * There is also a hook called "update_mmu_cache()" that architectures
5723 * with external mmu caches can use to update those (ie the Sparc or
5724 * PowerPC hashed page tables that act as extended TLBs).
5725 *
5726 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5727 * concurrent faults).
5728 *
5729 * The mmap_lock may have been released depending on flags and our return value.
5730 * See filemap_fault() and __folio_lock_or_retry().
5731 */
handle_pte_fault(struct vm_fault * vmf)5732 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5733 {
5734 pte_t entry;
5735
5736 if (unlikely(pmd_none(*vmf->pmd))) {
5737 /*
5738 * Leave __pte_alloc() until later: because vm_ops->fault may
5739 * want to allocate huge page, and if we expose page table
5740 * for an instant, it will be difficult to retract from
5741 * concurrent faults and from rmap lookups.
5742 */
5743 vmf->pte = NULL;
5744 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5745 } else {
5746 /*
5747 * A regular pmd is established and it can't morph into a huge
5748 * pmd by anon khugepaged, since that takes mmap_lock in write
5749 * mode; but shmem or file collapse to THP could still morph
5750 * it into a huge pmd: just retry later if so.
5751 */
5752 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5753 vmf->address, &vmf->ptl);
5754 if (unlikely(!vmf->pte))
5755 return 0;
5756 vmf->orig_pte = ptep_get_lockless(vmf->pte);
5757 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5758
5759 if (pte_none(vmf->orig_pte)) {
5760 pte_unmap(vmf->pte);
5761 vmf->pte = NULL;
5762 }
5763 }
5764
5765 if (!vmf->pte)
5766 return do_pte_missing(vmf);
5767
5768 if (!pte_present(vmf->orig_pte))
5769 return do_swap_page(vmf);
5770
5771 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5772 return do_numa_page(vmf);
5773
5774 spin_lock(vmf->ptl);
5775 entry = vmf->orig_pte;
5776 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5777 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5778 goto unlock;
5779 }
5780 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5781 if (!pte_write(entry))
5782 return do_wp_page(vmf);
5783 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5784 entry = pte_mkdirty(entry);
5785 }
5786 entry = pte_mkyoung(entry);
5787 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5788 vmf->flags & FAULT_FLAG_WRITE)) {
5789 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5790 vmf->pte, 1);
5791 } else {
5792 /* Skip spurious TLB flush for retried page fault */
5793 if (vmf->flags & FAULT_FLAG_TRIED)
5794 goto unlock;
5795 /*
5796 * This is needed only for protection faults but the arch code
5797 * is not yet telling us if this is a protection fault or not.
5798 * This still avoids useless tlb flushes for .text page faults
5799 * with threads.
5800 */
5801 if (vmf->flags & FAULT_FLAG_WRITE)
5802 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5803 vmf->pte);
5804 }
5805 unlock:
5806 pte_unmap_unlock(vmf->pte, vmf->ptl);
5807 return 0;
5808 }
5809
5810 /*
5811 * On entry, we hold either the VMA lock or the mmap_lock
5812 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5813 * the result, the mmap_lock is not held on exit. See filemap_fault()
5814 * and __folio_lock_or_retry().
5815 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)5816 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5817 unsigned long address, unsigned int flags)
5818 {
5819 struct vm_fault vmf = {
5820 .vma = vma,
5821 .address = address & PAGE_MASK,
5822 .real_address = address,
5823 .flags = flags,
5824 .pgoff = linear_page_index(vma, address),
5825 .gfp_mask = __get_fault_gfp_mask(vma),
5826 };
5827 struct mm_struct *mm = vma->vm_mm;
5828 unsigned long vm_flags = vma->vm_flags;
5829 pgd_t *pgd;
5830 p4d_t *p4d;
5831 vm_fault_t ret;
5832
5833 pgd = pgd_offset(mm, address);
5834 p4d = p4d_alloc(mm, pgd, address);
5835 if (!p4d)
5836 return VM_FAULT_OOM;
5837
5838 vmf.pud = pud_alloc(mm, p4d, address);
5839 if (!vmf.pud)
5840 return VM_FAULT_OOM;
5841 retry_pud:
5842 if (pud_none(*vmf.pud) &&
5843 thp_vma_allowable_order(vma, vm_flags,
5844 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5845 ret = create_huge_pud(&vmf);
5846 if (!(ret & VM_FAULT_FALLBACK))
5847 return ret;
5848 } else {
5849 pud_t orig_pud = *vmf.pud;
5850
5851 barrier();
5852 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5853
5854 /*
5855 * TODO once we support anonymous PUDs: NUMA case and
5856 * FAULT_FLAG_UNSHARE handling.
5857 */
5858 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5859 ret = wp_huge_pud(&vmf, orig_pud);
5860 if (!(ret & VM_FAULT_FALLBACK))
5861 return ret;
5862 } else {
5863 huge_pud_set_accessed(&vmf, orig_pud);
5864 return 0;
5865 }
5866 }
5867 }
5868
5869 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5870 if (!vmf.pmd)
5871 return VM_FAULT_OOM;
5872
5873 /* Huge pud page fault raced with pmd_alloc? */
5874 if (pud_trans_unstable(vmf.pud))
5875 goto retry_pud;
5876
5877 if (pmd_none(*vmf.pmd) &&
5878 thp_vma_allowable_order(vma, vm_flags,
5879 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5880 ret = create_huge_pmd(&vmf);
5881 if (!(ret & VM_FAULT_FALLBACK))
5882 return ret;
5883 } else {
5884 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5885
5886 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5887 VM_BUG_ON(thp_migration_supported() &&
5888 !is_pmd_migration_entry(vmf.orig_pmd));
5889 if (is_pmd_migration_entry(vmf.orig_pmd))
5890 pmd_migration_entry_wait(mm, vmf.pmd);
5891 return 0;
5892 }
5893 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5894 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5895 return do_huge_pmd_numa_page(&vmf);
5896
5897 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5898 !pmd_write(vmf.orig_pmd)) {
5899 ret = wp_huge_pmd(&vmf);
5900 if (!(ret & VM_FAULT_FALLBACK))
5901 return ret;
5902 } else {
5903 huge_pmd_set_accessed(&vmf);
5904 return 0;
5905 }
5906 }
5907 }
5908
5909 return handle_pte_fault(&vmf);
5910 }
5911
5912 /**
5913 * mm_account_fault - Do page fault accounting
5914 * @mm: mm from which memcg should be extracted. It can be NULL.
5915 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5916 * of perf event counters, but we'll still do the per-task accounting to
5917 * the task who triggered this page fault.
5918 * @address: the faulted address.
5919 * @flags: the fault flags.
5920 * @ret: the fault retcode.
5921 *
5922 * This will take care of most of the page fault accounting. Meanwhile, it
5923 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5924 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5925 * still be in per-arch page fault handlers at the entry of page fault.
5926 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)5927 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5928 unsigned long address, unsigned int flags,
5929 vm_fault_t ret)
5930 {
5931 bool major;
5932
5933 /* Incomplete faults will be accounted upon completion. */
5934 if (ret & VM_FAULT_RETRY)
5935 return;
5936
5937 /*
5938 * To preserve the behavior of older kernels, PGFAULT counters record
5939 * both successful and failed faults, as opposed to perf counters,
5940 * which ignore failed cases.
5941 */
5942 count_vm_event(PGFAULT);
5943 count_memcg_event_mm(mm, PGFAULT);
5944
5945 /*
5946 * Do not account for unsuccessful faults (e.g. when the address wasn't
5947 * valid). That includes arch_vma_access_permitted() failing before
5948 * reaching here. So this is not a "this many hardware page faults"
5949 * counter. We should use the hw profiling for that.
5950 */
5951 if (ret & VM_FAULT_ERROR)
5952 return;
5953
5954 /*
5955 * We define the fault as a major fault when the final successful fault
5956 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5957 * handle it immediately previously).
5958 */
5959 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5960
5961 if (major)
5962 current->maj_flt++;
5963 else
5964 current->min_flt++;
5965
5966 /*
5967 * If the fault is done for GUP, regs will be NULL. We only do the
5968 * accounting for the per thread fault counters who triggered the
5969 * fault, and we skip the perf event updates.
5970 */
5971 if (!regs)
5972 return;
5973
5974 if (major)
5975 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5976 else
5977 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5978 }
5979
5980 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)5981 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5982 {
5983 /* the LRU algorithm only applies to accesses with recency */
5984 current->in_lru_fault = vma_has_recency(vma);
5985 }
5986
lru_gen_exit_fault(void)5987 static void lru_gen_exit_fault(void)
5988 {
5989 current->in_lru_fault = false;
5990 }
5991 #else
lru_gen_enter_fault(struct vm_area_struct * vma)5992 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5993 {
5994 }
5995
lru_gen_exit_fault(void)5996 static void lru_gen_exit_fault(void)
5997 {
5998 }
5999 #endif /* CONFIG_LRU_GEN */
6000
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6001 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6002 unsigned int *flags)
6003 {
6004 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6005 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6006 return VM_FAULT_SIGSEGV;
6007 /*
6008 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6009 * just treat it like an ordinary read-fault otherwise.
6010 */
6011 if (!is_cow_mapping(vma->vm_flags))
6012 *flags &= ~FAULT_FLAG_UNSHARE;
6013 } else if (*flags & FAULT_FLAG_WRITE) {
6014 /* Write faults on read-only mappings are impossible ... */
6015 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6016 return VM_FAULT_SIGSEGV;
6017 /* ... and FOLL_FORCE only applies to COW mappings. */
6018 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6019 !is_cow_mapping(vma->vm_flags)))
6020 return VM_FAULT_SIGSEGV;
6021 }
6022 #ifdef CONFIG_PER_VMA_LOCK
6023 /*
6024 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6025 * the assumption that lock is dropped on VM_FAULT_RETRY.
6026 */
6027 if (WARN_ON_ONCE((*flags &
6028 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6029 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6030 return VM_FAULT_SIGSEGV;
6031 #endif
6032
6033 return 0;
6034 }
6035
6036 /*
6037 * By the time we get here, we already hold the mm semaphore
6038 *
6039 * The mmap_lock may have been released depending on flags and our
6040 * return value. See filemap_fault() and __folio_lock_or_retry().
6041 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6042 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6043 unsigned int flags, struct pt_regs *regs)
6044 {
6045 /* If the fault handler drops the mmap_lock, vma may be freed */
6046 struct mm_struct *mm = vma->vm_mm;
6047 vm_fault_t ret;
6048 bool is_droppable;
6049
6050 __set_current_state(TASK_RUNNING);
6051
6052 ret = sanitize_fault_flags(vma, &flags);
6053 if (ret)
6054 goto out;
6055
6056 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6057 flags & FAULT_FLAG_INSTRUCTION,
6058 flags & FAULT_FLAG_REMOTE)) {
6059 ret = VM_FAULT_SIGSEGV;
6060 goto out;
6061 }
6062
6063 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6064
6065 /*
6066 * Enable the memcg OOM handling for faults triggered in user
6067 * space. Kernel faults are handled more gracefully.
6068 */
6069 if (flags & FAULT_FLAG_USER)
6070 mem_cgroup_enter_user_fault();
6071
6072 lru_gen_enter_fault(vma);
6073
6074 if (unlikely(is_vm_hugetlb_page(vma)))
6075 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6076 else
6077 ret = __handle_mm_fault(vma, address, flags);
6078
6079 /*
6080 * Warning: It is no longer safe to dereference vma-> after this point,
6081 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6082 * vma might be destroyed from underneath us.
6083 */
6084
6085 lru_gen_exit_fault();
6086
6087 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6088 if (is_droppable)
6089 ret &= ~VM_FAULT_OOM;
6090
6091 if (flags & FAULT_FLAG_USER) {
6092 mem_cgroup_exit_user_fault();
6093 /*
6094 * The task may have entered a memcg OOM situation but
6095 * if the allocation error was handled gracefully (no
6096 * VM_FAULT_OOM), there is no need to kill anything.
6097 * Just clean up the OOM state peacefully.
6098 */
6099 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6100 mem_cgroup_oom_synchronize(false);
6101 }
6102 out:
6103 mm_account_fault(mm, regs, address, flags, ret);
6104
6105 return ret;
6106 }
6107 EXPORT_SYMBOL_GPL(handle_mm_fault);
6108
6109 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6110 #include <linux/extable.h>
6111
get_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)6112 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6113 {
6114 if (likely(mmap_read_trylock(mm)))
6115 return true;
6116
6117 if (regs && !user_mode(regs)) {
6118 unsigned long ip = exception_ip(regs);
6119 if (!search_exception_tables(ip))
6120 return false;
6121 }
6122
6123 return !mmap_read_lock_killable(mm);
6124 }
6125
mmap_upgrade_trylock(struct mm_struct * mm)6126 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6127 {
6128 /*
6129 * We don't have this operation yet.
6130 *
6131 * It should be easy enough to do: it's basically a
6132 * atomic_long_try_cmpxchg_acquire()
6133 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6134 * it also needs the proper lockdep magic etc.
6135 */
6136 return false;
6137 }
6138
upgrade_mmap_lock_carefully(struct mm_struct * mm,struct pt_regs * regs)6139 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6140 {
6141 mmap_read_unlock(mm);
6142 if (regs && !user_mode(regs)) {
6143 unsigned long ip = exception_ip(regs);
6144 if (!search_exception_tables(ip))
6145 return false;
6146 }
6147 return !mmap_write_lock_killable(mm);
6148 }
6149
6150 /*
6151 * Helper for page fault handling.
6152 *
6153 * This is kind of equivalend to "mmap_read_lock()" followed
6154 * by "find_extend_vma()", except it's a lot more careful about
6155 * the locking (and will drop the lock on failure).
6156 *
6157 * For example, if we have a kernel bug that causes a page
6158 * fault, we don't want to just use mmap_read_lock() to get
6159 * the mm lock, because that would deadlock if the bug were
6160 * to happen while we're holding the mm lock for writing.
6161 *
6162 * So this checks the exception tables on kernel faults in
6163 * order to only do this all for instructions that are actually
6164 * expected to fault.
6165 *
6166 * We can also actually take the mm lock for writing if we
6167 * need to extend the vma, which helps the VM layer a lot.
6168 */
lock_mm_and_find_vma(struct mm_struct * mm,unsigned long addr,struct pt_regs * regs)6169 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6170 unsigned long addr, struct pt_regs *regs)
6171 {
6172 struct vm_area_struct *vma;
6173
6174 if (!get_mmap_lock_carefully(mm, regs))
6175 return NULL;
6176
6177 vma = find_vma(mm, addr);
6178 if (likely(vma && (vma->vm_start <= addr)))
6179 return vma;
6180
6181 /*
6182 * Well, dang. We might still be successful, but only
6183 * if we can extend a vma to do so.
6184 */
6185 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6186 mmap_read_unlock(mm);
6187 return NULL;
6188 }
6189
6190 /*
6191 * We can try to upgrade the mmap lock atomically,
6192 * in which case we can continue to use the vma
6193 * we already looked up.
6194 *
6195 * Otherwise we'll have to drop the mmap lock and
6196 * re-take it, and also look up the vma again,
6197 * re-checking it.
6198 */
6199 if (!mmap_upgrade_trylock(mm)) {
6200 if (!upgrade_mmap_lock_carefully(mm, regs))
6201 return NULL;
6202
6203 vma = find_vma(mm, addr);
6204 if (!vma)
6205 goto fail;
6206 if (vma->vm_start <= addr)
6207 goto success;
6208 if (!(vma->vm_flags & VM_GROWSDOWN))
6209 goto fail;
6210 }
6211
6212 if (expand_stack_locked(vma, addr))
6213 goto fail;
6214
6215 success:
6216 mmap_write_downgrade(mm);
6217 return vma;
6218
6219 fail:
6220 mmap_write_unlock(mm);
6221 return NULL;
6222 }
6223 #endif
6224
6225 #ifdef CONFIG_PER_VMA_LOCK
6226 /*
6227 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6228 * stable and not isolated. If the VMA is not found or is being modified the
6229 * function returns NULL.
6230 */
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)6231 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6232 unsigned long address)
6233 {
6234 MA_STATE(mas, &mm->mm_mt, address, address);
6235 struct vm_area_struct *vma;
6236
6237 rcu_read_lock();
6238 retry:
6239 vma = mas_walk(&mas);
6240 if (!vma)
6241 goto inval;
6242
6243 if (!vma_start_read(vma))
6244 goto inval;
6245
6246 /* Check if the VMA got isolated after we found it */
6247 if (vma->detached) {
6248 vma_end_read(vma);
6249 count_vm_vma_lock_event(VMA_LOCK_MISS);
6250 /* The area was replaced with another one */
6251 goto retry;
6252 }
6253 /*
6254 * At this point, we have a stable reference to a VMA: The VMA is
6255 * locked and we know it hasn't already been isolated.
6256 * From here on, we can access the VMA without worrying about which
6257 * fields are accessible for RCU readers.
6258 */
6259
6260 /* Check since vm_start/vm_end might change before we lock the VMA */
6261 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6262 goto inval_end_read;
6263
6264 rcu_read_unlock();
6265 return vma;
6266
6267 inval_end_read:
6268 vma_end_read(vma);
6269 inval:
6270 rcu_read_unlock();
6271 count_vm_vma_lock_event(VMA_LOCK_ABORT);
6272 return NULL;
6273 }
6274 #endif /* CONFIG_PER_VMA_LOCK */
6275
6276 #ifndef __PAGETABLE_P4D_FOLDED
6277 /*
6278 * Allocate p4d page table.
6279 * We've already handled the fast-path in-line.
6280 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6281 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6282 {
6283 p4d_t *new = p4d_alloc_one(mm, address);
6284 if (!new)
6285 return -ENOMEM;
6286
6287 spin_lock(&mm->page_table_lock);
6288 if (pgd_present(*pgd)) { /* Another has populated it */
6289 p4d_free(mm, new);
6290 } else {
6291 smp_wmb(); /* See comment in pmd_install() */
6292 pgd_populate(mm, pgd, new);
6293 }
6294 spin_unlock(&mm->page_table_lock);
6295 return 0;
6296 }
6297 #endif /* __PAGETABLE_P4D_FOLDED */
6298
6299 #ifndef __PAGETABLE_PUD_FOLDED
6300 /*
6301 * Allocate page upper directory.
6302 * We've already handled the fast-path in-line.
6303 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6304 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6305 {
6306 pud_t *new = pud_alloc_one(mm, address);
6307 if (!new)
6308 return -ENOMEM;
6309
6310 spin_lock(&mm->page_table_lock);
6311 if (!p4d_present(*p4d)) {
6312 mm_inc_nr_puds(mm);
6313 smp_wmb(); /* See comment in pmd_install() */
6314 p4d_populate(mm, p4d, new);
6315 } else /* Another has populated it */
6316 pud_free(mm, new);
6317 spin_unlock(&mm->page_table_lock);
6318 return 0;
6319 }
6320 #endif /* __PAGETABLE_PUD_FOLDED */
6321
6322 #ifndef __PAGETABLE_PMD_FOLDED
6323 /*
6324 * Allocate page middle directory.
6325 * We've already handled the fast-path in-line.
6326 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6327 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6328 {
6329 spinlock_t *ptl;
6330 pmd_t *new = pmd_alloc_one(mm, address);
6331 if (!new)
6332 return -ENOMEM;
6333
6334 ptl = pud_lock(mm, pud);
6335 if (!pud_present(*pud)) {
6336 mm_inc_nr_pmds(mm);
6337 smp_wmb(); /* See comment in pmd_install() */
6338 pud_populate(mm, pud, new);
6339 } else { /* Another has populated it */
6340 pmd_free(mm, new);
6341 }
6342 spin_unlock(ptl);
6343 return 0;
6344 }
6345 #endif /* __PAGETABLE_PMD_FOLDED */
6346
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6347 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6348 spinlock_t *lock, pte_t *ptep,
6349 pgprot_t pgprot, unsigned long pfn_base,
6350 unsigned long addr_mask, bool writable,
6351 bool special)
6352 {
6353 args->lock = lock;
6354 args->ptep = ptep;
6355 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6356 args->pgprot = pgprot;
6357 args->writable = writable;
6358 args->special = special;
6359 }
6360
pfnmap_lockdep_assert(struct vm_area_struct * vma)6361 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6362 {
6363 #ifdef CONFIG_LOCKDEP
6364 struct file *file = vma->vm_file;
6365 struct address_space *mapping = file ? file->f_mapping : NULL;
6366
6367 if (mapping)
6368 lockdep_assert(lockdep_is_held(&vma->vm_file->f_mapping->i_mmap_rwsem) ||
6369 lockdep_is_held(&vma->vm_mm->mmap_lock));
6370 else
6371 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6372 #endif
6373 }
6374
6375 /**
6376 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6377 * @args: Pointer to struct @follow_pfnmap_args
6378 *
6379 * The caller needs to setup args->vma and args->address to point to the
6380 * virtual address as the target of such lookup. On a successful return,
6381 * the results will be put into other output fields.
6382 *
6383 * After the caller finished using the fields, the caller must invoke
6384 * another follow_pfnmap_end() to proper releases the locks and resources
6385 * of such look up request.
6386 *
6387 * During the start() and end() calls, the results in @args will be valid
6388 * as proper locks will be held. After the end() is called, all the fields
6389 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6390 * use of such information after end() may require proper synchronizations
6391 * by the caller with page table updates, otherwise it can create a
6392 * security bug.
6393 *
6394 * If the PTE maps a refcounted page, callers are responsible to protect
6395 * against invalidation with MMU notifiers; otherwise access to the PFN at
6396 * a later point in time can trigger use-after-free.
6397 *
6398 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6399 * should be taken for read, and the mmap semaphore cannot be released
6400 * before the end() is invoked.
6401 *
6402 * This function must not be used to modify PTE content.
6403 *
6404 * Return: zero on success, negative otherwise.
6405 */
follow_pfnmap_start(struct follow_pfnmap_args * args)6406 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6407 {
6408 struct vm_area_struct *vma = args->vma;
6409 unsigned long address = args->address;
6410 struct mm_struct *mm = vma->vm_mm;
6411 spinlock_t *lock;
6412 pgd_t *pgdp;
6413 p4d_t *p4dp, p4d;
6414 pud_t *pudp, pud;
6415 pmd_t *pmdp, pmd;
6416 pte_t *ptep, pte;
6417
6418 pfnmap_lockdep_assert(vma);
6419
6420 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6421 goto out;
6422
6423 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6424 goto out;
6425 retry:
6426 pgdp = pgd_offset(mm, address);
6427 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6428 goto out;
6429
6430 p4dp = p4d_offset(pgdp, address);
6431 p4d = READ_ONCE(*p4dp);
6432 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6433 goto out;
6434
6435 pudp = pud_offset(p4dp, address);
6436 pud = READ_ONCE(*pudp);
6437 if (pud_none(pud))
6438 goto out;
6439 if (pud_leaf(pud)) {
6440 lock = pud_lock(mm, pudp);
6441 if (!unlikely(pud_leaf(pud))) {
6442 spin_unlock(lock);
6443 goto retry;
6444 }
6445 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6446 pud_pfn(pud), PUD_MASK, pud_write(pud),
6447 pud_special(pud));
6448 return 0;
6449 }
6450
6451 pmdp = pmd_offset(pudp, address);
6452 pmd = pmdp_get_lockless(pmdp);
6453 if (pmd_leaf(pmd)) {
6454 lock = pmd_lock(mm, pmdp);
6455 if (!unlikely(pmd_leaf(pmd))) {
6456 spin_unlock(lock);
6457 goto retry;
6458 }
6459 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6460 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6461 pmd_special(pmd));
6462 return 0;
6463 }
6464
6465 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6466 if (!ptep)
6467 goto out;
6468 pte = ptep_get(ptep);
6469 if (!pte_present(pte))
6470 goto unlock;
6471 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6472 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6473 pte_special(pte));
6474 return 0;
6475 unlock:
6476 pte_unmap_unlock(ptep, lock);
6477 out:
6478 return -EINVAL;
6479 }
6480 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6481
6482 /**
6483 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6484 * @args: Pointer to struct @follow_pfnmap_args
6485 *
6486 * Must be used in pair of follow_pfnmap_start(). See the start() function
6487 * above for more information.
6488 */
follow_pfnmap_end(struct follow_pfnmap_args * args)6489 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6490 {
6491 if (args->lock)
6492 spin_unlock(args->lock);
6493 if (args->ptep)
6494 pte_unmap(args->ptep);
6495 }
6496 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6497
6498 #ifdef CONFIG_HAVE_IOREMAP_PROT
6499 /**
6500 * generic_access_phys - generic implementation for iomem mmap access
6501 * @vma: the vma to access
6502 * @addr: userspace address, not relative offset within @vma
6503 * @buf: buffer to read/write
6504 * @len: length of transfer
6505 * @write: set to FOLL_WRITE when writing, otherwise reading
6506 *
6507 * This is a generic implementation for &vm_operations_struct.access for an
6508 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6509 * not page based.
6510 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6511 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6512 void *buf, int len, int write)
6513 {
6514 resource_size_t phys_addr;
6515 unsigned long prot = 0;
6516 void __iomem *maddr;
6517 int offset = offset_in_page(addr);
6518 int ret = -EINVAL;
6519 bool writable;
6520 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6521
6522 retry:
6523 if (follow_pfnmap_start(&args))
6524 return -EINVAL;
6525 prot = pgprot_val(args.pgprot);
6526 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6527 writable = args.writable;
6528 follow_pfnmap_end(&args);
6529
6530 if ((write & FOLL_WRITE) && !writable)
6531 return -EINVAL;
6532
6533 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6534 if (!maddr)
6535 return -ENOMEM;
6536
6537 if (follow_pfnmap_start(&args))
6538 goto out_unmap;
6539
6540 if ((prot != pgprot_val(args.pgprot)) ||
6541 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6542 (writable != args.writable)) {
6543 follow_pfnmap_end(&args);
6544 iounmap(maddr);
6545 goto retry;
6546 }
6547
6548 if (write)
6549 memcpy_toio(maddr + offset, buf, len);
6550 else
6551 memcpy_fromio(buf, maddr + offset, len);
6552 ret = len;
6553 follow_pfnmap_end(&args);
6554 out_unmap:
6555 iounmap(maddr);
6556
6557 return ret;
6558 }
6559 EXPORT_SYMBOL_GPL(generic_access_phys);
6560 #endif
6561
6562 /*
6563 * Access another process' address space as given in mm.
6564 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6565 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6566 void *buf, int len, unsigned int gup_flags)
6567 {
6568 void *old_buf = buf;
6569 int write = gup_flags & FOLL_WRITE;
6570
6571 if (mmap_read_lock_killable(mm))
6572 return 0;
6573
6574 /* Untag the address before looking up the VMA */
6575 addr = untagged_addr_remote(mm, addr);
6576
6577 /* Avoid triggering the temporary warning in __get_user_pages */
6578 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6579 return 0;
6580
6581 /* ignore errors, just check how much was successfully transferred */
6582 while (len) {
6583 int bytes, offset;
6584 void *maddr;
6585 struct vm_area_struct *vma = NULL;
6586 struct page *page = get_user_page_vma_remote(mm, addr,
6587 gup_flags, &vma);
6588
6589 if (IS_ERR(page)) {
6590 /* We might need to expand the stack to access it */
6591 vma = vma_lookup(mm, addr);
6592 if (!vma) {
6593 vma = expand_stack(mm, addr);
6594
6595 /* mmap_lock was dropped on failure */
6596 if (!vma)
6597 return buf - old_buf;
6598
6599 /* Try again if stack expansion worked */
6600 continue;
6601 }
6602
6603 /*
6604 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6605 * we can access using slightly different code.
6606 */
6607 bytes = 0;
6608 #ifdef CONFIG_HAVE_IOREMAP_PROT
6609 if (vma->vm_ops && vma->vm_ops->access)
6610 bytes = vma->vm_ops->access(vma, addr, buf,
6611 len, write);
6612 #endif
6613 if (bytes <= 0)
6614 break;
6615 } else {
6616 bytes = len;
6617 offset = addr & (PAGE_SIZE-1);
6618 if (bytes > PAGE_SIZE-offset)
6619 bytes = PAGE_SIZE-offset;
6620
6621 maddr = kmap_local_page(page);
6622 if (write) {
6623 copy_to_user_page(vma, page, addr,
6624 maddr + offset, buf, bytes);
6625 set_page_dirty_lock(page);
6626 } else {
6627 copy_from_user_page(vma, page, addr,
6628 buf, maddr + offset, bytes);
6629 }
6630 unmap_and_put_page(page, maddr);
6631 }
6632 len -= bytes;
6633 buf += bytes;
6634 addr += bytes;
6635 }
6636 mmap_read_unlock(mm);
6637
6638 return buf - old_buf;
6639 }
6640
6641 /**
6642 * access_remote_vm - access another process' address space
6643 * @mm: the mm_struct of the target address space
6644 * @addr: start address to access
6645 * @buf: source or destination buffer
6646 * @len: number of bytes to transfer
6647 * @gup_flags: flags modifying lookup behaviour
6648 *
6649 * The caller must hold a reference on @mm.
6650 *
6651 * Return: number of bytes copied from source to destination.
6652 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6653 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6654 void *buf, int len, unsigned int gup_flags)
6655 {
6656 return __access_remote_vm(mm, addr, buf, len, gup_flags);
6657 }
6658
6659 /*
6660 * Access another process' address space.
6661 * Source/target buffer must be kernel space,
6662 * Do not walk the page table directly, use get_user_pages
6663 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)6664 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6665 void *buf, int len, unsigned int gup_flags)
6666 {
6667 struct mm_struct *mm;
6668 int ret;
6669
6670 mm = get_task_mm(tsk);
6671 if (!mm)
6672 return 0;
6673
6674 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6675
6676 mmput(mm);
6677
6678 return ret;
6679 }
6680 EXPORT_SYMBOL_GPL(access_process_vm);
6681
6682 /*
6683 * Print the name of a VMA.
6684 */
print_vma_addr(char * prefix,unsigned long ip)6685 void print_vma_addr(char *prefix, unsigned long ip)
6686 {
6687 struct mm_struct *mm = current->mm;
6688 struct vm_area_struct *vma;
6689
6690 /*
6691 * we might be running from an atomic context so we cannot sleep
6692 */
6693 if (!mmap_read_trylock(mm))
6694 return;
6695
6696 vma = vma_lookup(mm, ip);
6697 if (vma && vma->vm_file) {
6698 struct file *f = vma->vm_file;
6699 ip -= vma->vm_start;
6700 ip += vma->vm_pgoff << PAGE_SHIFT;
6701 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6702 vma->vm_start,
6703 vma->vm_end - vma->vm_start);
6704 }
6705 mmap_read_unlock(mm);
6706 }
6707
6708 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)6709 void __might_fault(const char *file, int line)
6710 {
6711 if (pagefault_disabled())
6712 return;
6713 __might_sleep(file, line);
6714 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6715 if (current->mm)
6716 might_lock_read(¤t->mm->mmap_lock);
6717 #endif
6718 }
6719 EXPORT_SYMBOL(__might_fault);
6720 #endif
6721
6722 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6723 /*
6724 * Process all subpages of the specified huge page with the specified
6725 * operation. The target subpage will be processed last to keep its
6726 * cache lines hot.
6727 */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)6728 static inline int process_huge_page(
6729 unsigned long addr_hint, unsigned int nr_pages,
6730 int (*process_subpage)(unsigned long addr, int idx, void *arg),
6731 void *arg)
6732 {
6733 int i, n, base, l, ret;
6734 unsigned long addr = addr_hint &
6735 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6736
6737 /* Process target subpage last to keep its cache lines hot */
6738 might_sleep();
6739 n = (addr_hint - addr) / PAGE_SIZE;
6740 if (2 * n <= nr_pages) {
6741 /* If target subpage in first half of huge page */
6742 base = 0;
6743 l = n;
6744 /* Process subpages at the end of huge page */
6745 for (i = nr_pages - 1; i >= 2 * n; i--) {
6746 cond_resched();
6747 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6748 if (ret)
6749 return ret;
6750 }
6751 } else {
6752 /* If target subpage in second half of huge page */
6753 base = nr_pages - 2 * (nr_pages - n);
6754 l = nr_pages - n;
6755 /* Process subpages at the begin of huge page */
6756 for (i = 0; i < base; i++) {
6757 cond_resched();
6758 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6759 if (ret)
6760 return ret;
6761 }
6762 }
6763 /*
6764 * Process remaining subpages in left-right-left-right pattern
6765 * towards the target subpage
6766 */
6767 for (i = 0; i < l; i++) {
6768 int left_idx = base + i;
6769 int right_idx = base + 2 * l - 1 - i;
6770
6771 cond_resched();
6772 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6773 if (ret)
6774 return ret;
6775 cond_resched();
6776 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6777 if (ret)
6778 return ret;
6779 }
6780 return 0;
6781 }
6782
clear_gigantic_page(struct folio * folio,unsigned long addr,unsigned int nr_pages)6783 static void clear_gigantic_page(struct folio *folio, unsigned long addr,
6784 unsigned int nr_pages)
6785 {
6786 int i;
6787
6788 might_sleep();
6789 for (i = 0; i < nr_pages; i++) {
6790 cond_resched();
6791 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6792 }
6793 }
6794
clear_subpage(unsigned long addr,int idx,void * arg)6795 static int clear_subpage(unsigned long addr, int idx, void *arg)
6796 {
6797 struct folio *folio = arg;
6798
6799 clear_user_highpage(folio_page(folio, idx), addr);
6800 return 0;
6801 }
6802
6803 /**
6804 * folio_zero_user - Zero a folio which will be mapped to userspace.
6805 * @folio: The folio to zero.
6806 * @addr_hint: The address will be accessed or the base address if uncelar.
6807 */
folio_zero_user(struct folio * folio,unsigned long addr_hint)6808 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6809 {
6810 unsigned int nr_pages = folio_nr_pages(folio);
6811
6812 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6813 clear_gigantic_page(folio, addr_hint, nr_pages);
6814 else
6815 process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6816 }
6817
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr,struct vm_area_struct * vma,unsigned int nr_pages)6818 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6819 unsigned long addr,
6820 struct vm_area_struct *vma,
6821 unsigned int nr_pages)
6822 {
6823 int i;
6824 struct page *dst_page;
6825 struct page *src_page;
6826
6827 for (i = 0; i < nr_pages; i++) {
6828 dst_page = folio_page(dst, i);
6829 src_page = folio_page(src, i);
6830
6831 cond_resched();
6832 if (copy_mc_user_highpage(dst_page, src_page,
6833 addr + i*PAGE_SIZE, vma))
6834 return -EHWPOISON;
6835 }
6836 return 0;
6837 }
6838
6839 struct copy_subpage_arg {
6840 struct folio *dst;
6841 struct folio *src;
6842 struct vm_area_struct *vma;
6843 };
6844
copy_subpage(unsigned long addr,int idx,void * arg)6845 static int copy_subpage(unsigned long addr, int idx, void *arg)
6846 {
6847 struct copy_subpage_arg *copy_arg = arg;
6848 struct page *dst = folio_page(copy_arg->dst, idx);
6849 struct page *src = folio_page(copy_arg->src, idx);
6850
6851 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6852 return -EHWPOISON;
6853 return 0;
6854 }
6855
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)6856 int copy_user_large_folio(struct folio *dst, struct folio *src,
6857 unsigned long addr_hint, struct vm_area_struct *vma)
6858 {
6859 unsigned int nr_pages = folio_nr_pages(dst);
6860 struct copy_subpage_arg arg = {
6861 .dst = dst,
6862 .src = src,
6863 .vma = vma,
6864 };
6865
6866 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6867 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6868
6869 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6870 }
6871
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)6872 long copy_folio_from_user(struct folio *dst_folio,
6873 const void __user *usr_src,
6874 bool allow_pagefault)
6875 {
6876 void *kaddr;
6877 unsigned long i, rc = 0;
6878 unsigned int nr_pages = folio_nr_pages(dst_folio);
6879 unsigned long ret_val = nr_pages * PAGE_SIZE;
6880 struct page *subpage;
6881
6882 for (i = 0; i < nr_pages; i++) {
6883 subpage = folio_page(dst_folio, i);
6884 kaddr = kmap_local_page(subpage);
6885 if (!allow_pagefault)
6886 pagefault_disable();
6887 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6888 if (!allow_pagefault)
6889 pagefault_enable();
6890 kunmap_local(kaddr);
6891
6892 ret_val -= (PAGE_SIZE - rc);
6893 if (rc)
6894 break;
6895
6896 flush_dcache_page(subpage);
6897
6898 cond_resched();
6899 }
6900 return ret_val;
6901 }
6902 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6903
6904 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
6905
6906 static struct kmem_cache *page_ptl_cachep;
6907
ptlock_cache_init(void)6908 void __init ptlock_cache_init(void)
6909 {
6910 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6911 SLAB_PANIC, NULL);
6912 }
6913
ptlock_alloc(struct ptdesc * ptdesc)6914 bool ptlock_alloc(struct ptdesc *ptdesc)
6915 {
6916 spinlock_t *ptl;
6917
6918 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6919 if (!ptl)
6920 return false;
6921 ptdesc->ptl = ptl;
6922 return true;
6923 }
6924
ptlock_free(struct ptdesc * ptdesc)6925 void ptlock_free(struct ptdesc *ptdesc)
6926 {
6927 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6928 }
6929 #endif
6930
vma_pgtable_walk_begin(struct vm_area_struct * vma)6931 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6932 {
6933 if (is_vm_hugetlb_page(vma))
6934 hugetlb_vma_lock_read(vma);
6935 }
6936
vma_pgtable_walk_end(struct vm_area_struct * vma)6937 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6938 {
6939 if (is_vm_hugetlb_page(vma))
6940 hugetlb_vma_unlock_read(vma);
6941 }
6942