xref: /linux/fs/btrfs/send.c (revision 3fd6c59042dbba50391e30862beac979491145fe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2012 Alexander Block.  All rights reserved.
4  */
5 
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19 
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "print-tree.h"
29 #include "accessors.h"
30 #include "dir-item.h"
31 #include "file-item.h"
32 #include "ioctl.h"
33 #include "verity.h"
34 #include "lru_cache.h"
35 
36 /*
37  * Maximum number of references an extent can have in order for us to attempt to
38  * issue clone operations instead of write operations. This currently exists to
39  * avoid hitting limitations of the backreference walking code (taking a lot of
40  * time and using too much memory for extents with large number of references).
41  */
42 #define SEND_MAX_EXTENT_REFS	1024
43 
44 /*
45  * A fs_path is a helper to dynamically build path names with unknown size.
46  * It reallocates the internal buffer on demand.
47  * It allows fast adding of path elements on the right side (normal path) and
48  * fast adding to the left side (reversed path). A reversed path can also be
49  * unreversed if needed.
50  */
51 struct fs_path {
52 	union {
53 		struct {
54 			char *start;
55 			char *end;
56 
57 			char *buf;
58 			unsigned short buf_len:15;
59 			unsigned short reversed:1;
60 			char inline_buf[];
61 		};
62 		/*
63 		 * Average path length does not exceed 200 bytes, we'll have
64 		 * better packing in the slab and higher chance to satisfy
65 		 * an allocation later during send.
66 		 */
67 		char pad[256];
68 	};
69 };
70 #define FS_PATH_INLINE_SIZE \
71 	(sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72 
73 
74 /* reused for each extent */
75 struct clone_root {
76 	struct btrfs_root *root;
77 	u64 ino;
78 	u64 offset;
79 	u64 num_bytes;
80 	bool found_ref;
81 };
82 
83 #define SEND_MAX_NAME_CACHE_SIZE			256
84 
85 /*
86  * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87  * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88  * can be satisfied from the kmalloc-192 slab, without wasting any space.
89  * The most common case is to have a single root for cloning, which corresponds
90  * to the send root. Having the user specify more than 16 clone roots is not
91  * common, and in such rare cases we simply don't use caching if the number of
92  * cloning roots that lead down to a leaf is more than 17.
93  */
94 #define SEND_MAX_BACKREF_CACHE_ROOTS			17
95 
96 /*
97  * Max number of entries in the cache.
98  * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99  * maple tree's internal nodes, is 24K.
100  */
101 #define SEND_MAX_BACKREF_CACHE_SIZE 128
102 
103 /*
104  * A backref cache entry maps a leaf to a list of IDs of roots from which the
105  * leaf is accessible and we can use for clone operations.
106  * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107  * x86_64).
108  */
109 struct backref_cache_entry {
110 	struct btrfs_lru_cache_entry entry;
111 	u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 	/* Number of valid elements in the root_ids array. */
113 	int num_roots;
114 };
115 
116 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117 static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118 
119 /*
120  * Max number of entries in the cache that stores directories that were already
121  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124  */
125 #define SEND_MAX_DIR_CREATED_CACHE_SIZE			64
126 
127 /*
128  * Max number of entries in the cache that stores directories that were already
129  * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130  * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131  * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132  */
133 #define SEND_MAX_DIR_UTIMES_CACHE_SIZE			64
134 
135 struct send_ctx {
136 	struct file *send_filp;
137 	loff_t send_off;
138 	char *send_buf;
139 	u32 send_size;
140 	u32 send_max_size;
141 	/*
142 	 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 	 * command (since protocol v2, data must be the last attribute).
144 	 */
145 	bool put_data;
146 	struct page **send_buf_pages;
147 	u64 flags;	/* 'flags' member of btrfs_ioctl_send_args is u64 */
148 	/* Protocol version compatibility requested */
149 	u32 proto;
150 
151 	struct btrfs_root *send_root;
152 	struct btrfs_root *parent_root;
153 	struct clone_root *clone_roots;
154 	int clone_roots_cnt;
155 
156 	/* current state of the compare_tree call */
157 	struct btrfs_path *left_path;
158 	struct btrfs_path *right_path;
159 	struct btrfs_key *cmp_key;
160 
161 	/*
162 	 * Keep track of the generation of the last transaction that was used
163 	 * for relocating a block group. This is periodically checked in order
164 	 * to detect if a relocation happened since the last check, so that we
165 	 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 	 * stale disk_bytenr values of file extent items.
167 	 */
168 	u64 last_reloc_trans;
169 
170 	/*
171 	 * infos of the currently processed inode. In case of deleted inodes,
172 	 * these are the values from the deleted inode.
173 	 */
174 	u64 cur_ino;
175 	u64 cur_inode_gen;
176 	u64 cur_inode_size;
177 	u64 cur_inode_mode;
178 	u64 cur_inode_rdev;
179 	u64 cur_inode_last_extent;
180 	u64 cur_inode_next_write_offset;
181 	bool cur_inode_new;
182 	bool cur_inode_new_gen;
183 	bool cur_inode_deleted;
184 	bool ignore_cur_inode;
185 	bool cur_inode_needs_verity;
186 	void *verity_descriptor;
187 
188 	u64 send_progress;
189 
190 	struct list_head new_refs;
191 	struct list_head deleted_refs;
192 
193 	struct btrfs_lru_cache name_cache;
194 
195 	/*
196 	 * The inode we are currently processing. It's not NULL only when we
197 	 * need to issue write commands for data extents from this inode.
198 	 */
199 	struct inode *cur_inode;
200 	struct file_ra_state ra;
201 	u64 page_cache_clear_start;
202 	bool clean_page_cache;
203 
204 	/*
205 	 * We process inodes by their increasing order, so if before an
206 	 * incremental send we reverse the parent/child relationship of
207 	 * directories such that a directory with a lower inode number was
208 	 * the parent of a directory with a higher inode number, and the one
209 	 * becoming the new parent got renamed too, we can't rename/move the
210 	 * directory with lower inode number when we finish processing it - we
211 	 * must process the directory with higher inode number first, then
212 	 * rename/move it and then rename/move the directory with lower inode
213 	 * number. Example follows.
214 	 *
215 	 * Tree state when the first send was performed:
216 	 *
217 	 * .
218 	 * |-- a                   (ino 257)
219 	 *     |-- b               (ino 258)
220 	 *         |
221 	 *         |
222 	 *         |-- c           (ino 259)
223 	 *         |   |-- d       (ino 260)
224 	 *         |
225 	 *         |-- c2          (ino 261)
226 	 *
227 	 * Tree state when the second (incremental) send is performed:
228 	 *
229 	 * .
230 	 * |-- a                   (ino 257)
231 	 *     |-- b               (ino 258)
232 	 *         |-- c2          (ino 261)
233 	 *             |-- d2      (ino 260)
234 	 *                 |-- cc  (ino 259)
235 	 *
236 	 * The sequence of steps that lead to the second state was:
237 	 *
238 	 * mv /a/b/c/d /a/b/c2/d2
239 	 * mv /a/b/c /a/b/c2/d2/cc
240 	 *
241 	 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 	 * before we move "d", which has higher inode number.
243 	 *
244 	 * So we just memorize which move/rename operations must be performed
245 	 * later when their respective parent is processed and moved/renamed.
246 	 */
247 
248 	/* Indexed by parent directory inode number. */
249 	struct rb_root pending_dir_moves;
250 
251 	/*
252 	 * Reverse index, indexed by the inode number of a directory that
253 	 * is waiting for the move/rename of its immediate parent before its
254 	 * own move/rename can be performed.
255 	 */
256 	struct rb_root waiting_dir_moves;
257 
258 	/*
259 	 * A directory that is going to be rm'ed might have a child directory
260 	 * which is in the pending directory moves index above. In this case,
261 	 * the directory can only be removed after the move/rename of its child
262 	 * is performed. Example:
263 	 *
264 	 * Parent snapshot:
265 	 *
266 	 * .                        (ino 256)
267 	 * |-- a/                   (ino 257)
268 	 *     |-- b/               (ino 258)
269 	 *         |-- c/           (ino 259)
270 	 *         |   |-- x/       (ino 260)
271 	 *         |
272 	 *         |-- y/           (ino 261)
273 	 *
274 	 * Send snapshot:
275 	 *
276 	 * .                        (ino 256)
277 	 * |-- a/                   (ino 257)
278 	 *     |-- b/               (ino 258)
279 	 *         |-- YY/          (ino 261)
280 	 *              |-- x/      (ino 260)
281 	 *
282 	 * Sequence of steps that lead to the send snapshot:
283 	 * rm -f /a/b/c/foo.txt
284 	 * mv /a/b/y /a/b/YY
285 	 * mv /a/b/c/x /a/b/YY
286 	 * rmdir /a/b/c
287 	 *
288 	 * When the child is processed, its move/rename is delayed until its
289 	 * parent is processed (as explained above), but all other operations
290 	 * like update utimes, chown, chgrp, etc, are performed and the paths
291 	 * that it uses for those operations must use the orphanized name of
292 	 * its parent (the directory we're going to rm later), so we need to
293 	 * memorize that name.
294 	 *
295 	 * Indexed by the inode number of the directory to be deleted.
296 	 */
297 	struct rb_root orphan_dirs;
298 
299 	struct rb_root rbtree_new_refs;
300 	struct rb_root rbtree_deleted_refs;
301 
302 	struct btrfs_lru_cache backref_cache;
303 	u64 backref_cache_last_reloc_trans;
304 
305 	struct btrfs_lru_cache dir_created_cache;
306 	struct btrfs_lru_cache dir_utimes_cache;
307 };
308 
309 struct pending_dir_move {
310 	struct rb_node node;
311 	struct list_head list;
312 	u64 parent_ino;
313 	u64 ino;
314 	u64 gen;
315 	struct list_head update_refs;
316 };
317 
318 struct waiting_dir_move {
319 	struct rb_node node;
320 	u64 ino;
321 	/*
322 	 * There might be some directory that could not be removed because it
323 	 * was waiting for this directory inode to be moved first. Therefore
324 	 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325 	 */
326 	u64 rmdir_ino;
327 	u64 rmdir_gen;
328 	bool orphanized;
329 };
330 
331 struct orphan_dir_info {
332 	struct rb_node node;
333 	u64 ino;
334 	u64 gen;
335 	u64 last_dir_index_offset;
336 	u64 dir_high_seq_ino;
337 };
338 
339 struct name_cache_entry {
340 	/*
341 	 * The key in the entry is an inode number, and the generation matches
342 	 * the inode's generation.
343 	 */
344 	struct btrfs_lru_cache_entry entry;
345 	u64 parent_ino;
346 	u64 parent_gen;
347 	int ret;
348 	int need_later_update;
349 	/* Name length without NUL terminator. */
350 	int name_len;
351 	/* Not NUL terminated. */
352 	char name[] __counted_by(name_len) __nonstring;
353 };
354 
355 /* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
356 static_assert(offsetof(struct name_cache_entry, entry) == 0);
357 
358 #define ADVANCE							1
359 #define ADVANCE_ONLY_NEXT					-1
360 
361 enum btrfs_compare_tree_result {
362 	BTRFS_COMPARE_TREE_NEW,
363 	BTRFS_COMPARE_TREE_DELETED,
364 	BTRFS_COMPARE_TREE_CHANGED,
365 	BTRFS_COMPARE_TREE_SAME,
366 };
367 
368 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)369 static void inconsistent_snapshot_error(struct send_ctx *sctx,
370 					enum btrfs_compare_tree_result result,
371 					const char *what)
372 {
373 	const char *result_string;
374 
375 	switch (result) {
376 	case BTRFS_COMPARE_TREE_NEW:
377 		result_string = "new";
378 		break;
379 	case BTRFS_COMPARE_TREE_DELETED:
380 		result_string = "deleted";
381 		break;
382 	case BTRFS_COMPARE_TREE_CHANGED:
383 		result_string = "updated";
384 		break;
385 	case BTRFS_COMPARE_TREE_SAME:
386 		ASSERT(0);
387 		result_string = "unchanged";
388 		break;
389 	default:
390 		ASSERT(0);
391 		result_string = "unexpected";
392 	}
393 
394 	btrfs_err(sctx->send_root->fs_info,
395 		  "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
396 		  result_string, what, sctx->cmp_key->objectid,
397 		  btrfs_root_id(sctx->send_root),
398 		  (sctx->parent_root ?  btrfs_root_id(sctx->parent_root) : 0));
399 }
400 
401 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)402 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
403 {
404 	switch (sctx->proto) {
405 	case 1:	 return cmd <= BTRFS_SEND_C_MAX_V1;
406 	case 2:	 return cmd <= BTRFS_SEND_C_MAX_V2;
407 	case 3:	 return cmd <= BTRFS_SEND_C_MAX_V3;
408 	default: return false;
409 	}
410 }
411 
412 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
413 
414 static struct waiting_dir_move *
415 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
416 
417 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
418 
need_send_hole(struct send_ctx * sctx)419 static int need_send_hole(struct send_ctx *sctx)
420 {
421 	return (sctx->parent_root && !sctx->cur_inode_new &&
422 		!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
423 		S_ISREG(sctx->cur_inode_mode));
424 }
425 
fs_path_reset(struct fs_path * p)426 static void fs_path_reset(struct fs_path *p)
427 {
428 	if (p->reversed) {
429 		p->start = p->buf + p->buf_len - 1;
430 		p->end = p->start;
431 		*p->start = 0;
432 	} else {
433 		p->start = p->buf;
434 		p->end = p->start;
435 		*p->start = 0;
436 	}
437 }
438 
fs_path_alloc(void)439 static struct fs_path *fs_path_alloc(void)
440 {
441 	struct fs_path *p;
442 
443 	p = kmalloc(sizeof(*p), GFP_KERNEL);
444 	if (!p)
445 		return NULL;
446 	p->reversed = 0;
447 	p->buf = p->inline_buf;
448 	p->buf_len = FS_PATH_INLINE_SIZE;
449 	fs_path_reset(p);
450 	return p;
451 }
452 
fs_path_alloc_reversed(void)453 static struct fs_path *fs_path_alloc_reversed(void)
454 {
455 	struct fs_path *p;
456 
457 	p = fs_path_alloc();
458 	if (!p)
459 		return NULL;
460 	p->reversed = 1;
461 	fs_path_reset(p);
462 	return p;
463 }
464 
fs_path_free(struct fs_path * p)465 static void fs_path_free(struct fs_path *p)
466 {
467 	if (!p)
468 		return;
469 	if (p->buf != p->inline_buf)
470 		kfree(p->buf);
471 	kfree(p);
472 }
473 
fs_path_len(struct fs_path * p)474 static int fs_path_len(struct fs_path *p)
475 {
476 	return p->end - p->start;
477 }
478 
fs_path_ensure_buf(struct fs_path * p,int len)479 static int fs_path_ensure_buf(struct fs_path *p, int len)
480 {
481 	char *tmp_buf;
482 	int path_len;
483 	int old_buf_len;
484 
485 	len++;
486 
487 	if (p->buf_len >= len)
488 		return 0;
489 
490 	if (len > PATH_MAX) {
491 		WARN_ON(1);
492 		return -ENOMEM;
493 	}
494 
495 	path_len = p->end - p->start;
496 	old_buf_len = p->buf_len;
497 
498 	/*
499 	 * Allocate to the next largest kmalloc bucket size, to let
500 	 * the fast path happen most of the time.
501 	 */
502 	len = kmalloc_size_roundup(len);
503 	/*
504 	 * First time the inline_buf does not suffice
505 	 */
506 	if (p->buf == p->inline_buf) {
507 		tmp_buf = kmalloc(len, GFP_KERNEL);
508 		if (tmp_buf)
509 			memcpy(tmp_buf, p->buf, old_buf_len);
510 	} else {
511 		tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
512 	}
513 	if (!tmp_buf)
514 		return -ENOMEM;
515 	p->buf = tmp_buf;
516 	p->buf_len = len;
517 
518 	if (p->reversed) {
519 		tmp_buf = p->buf + old_buf_len - path_len - 1;
520 		p->end = p->buf + p->buf_len - 1;
521 		p->start = p->end - path_len;
522 		memmove(p->start, tmp_buf, path_len + 1);
523 	} else {
524 		p->start = p->buf;
525 		p->end = p->start + path_len;
526 	}
527 	return 0;
528 }
529 
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)530 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
531 				   char **prepared)
532 {
533 	int ret;
534 	int new_len;
535 
536 	new_len = p->end - p->start + name_len;
537 	if (p->start != p->end)
538 		new_len++;
539 	ret = fs_path_ensure_buf(p, new_len);
540 	if (ret < 0)
541 		goto out;
542 
543 	if (p->reversed) {
544 		if (p->start != p->end)
545 			*--p->start = '/';
546 		p->start -= name_len;
547 		*prepared = p->start;
548 	} else {
549 		if (p->start != p->end)
550 			*p->end++ = '/';
551 		*prepared = p->end;
552 		p->end += name_len;
553 		*p->end = 0;
554 	}
555 
556 out:
557 	return ret;
558 }
559 
fs_path_add(struct fs_path * p,const char * name,int name_len)560 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
561 {
562 	int ret;
563 	char *prepared;
564 
565 	ret = fs_path_prepare_for_add(p, name_len, &prepared);
566 	if (ret < 0)
567 		goto out;
568 	memcpy(prepared, name, name_len);
569 
570 out:
571 	return ret;
572 }
573 
fs_path_add_path(struct fs_path * p,struct fs_path * p2)574 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
575 {
576 	int ret;
577 	char *prepared;
578 
579 	ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
580 	if (ret < 0)
581 		goto out;
582 	memcpy(prepared, p2->start, p2->end - p2->start);
583 
584 out:
585 	return ret;
586 }
587 
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)588 static int fs_path_add_from_extent_buffer(struct fs_path *p,
589 					  struct extent_buffer *eb,
590 					  unsigned long off, int len)
591 {
592 	int ret;
593 	char *prepared;
594 
595 	ret = fs_path_prepare_for_add(p, len, &prepared);
596 	if (ret < 0)
597 		goto out;
598 
599 	read_extent_buffer(eb, prepared, off, len);
600 
601 out:
602 	return ret;
603 }
604 
fs_path_copy(struct fs_path * p,struct fs_path * from)605 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
606 {
607 	p->reversed = from->reversed;
608 	fs_path_reset(p);
609 
610 	return fs_path_add_path(p, from);
611 }
612 
fs_path_unreverse(struct fs_path * p)613 static void fs_path_unreverse(struct fs_path *p)
614 {
615 	char *tmp;
616 	int len;
617 
618 	if (!p->reversed)
619 		return;
620 
621 	tmp = p->start;
622 	len = p->end - p->start;
623 	p->start = p->buf;
624 	p->end = p->start + len;
625 	memmove(p->start, tmp, len + 1);
626 	p->reversed = 0;
627 }
628 
alloc_path_for_send(void)629 static struct btrfs_path *alloc_path_for_send(void)
630 {
631 	struct btrfs_path *path;
632 
633 	path = btrfs_alloc_path();
634 	if (!path)
635 		return NULL;
636 	path->search_commit_root = 1;
637 	path->skip_locking = 1;
638 	path->need_commit_sem = 1;
639 	return path;
640 }
641 
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)642 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
643 {
644 	int ret;
645 	u32 pos = 0;
646 
647 	while (pos < len) {
648 		ret = kernel_write(filp, buf + pos, len - pos, off);
649 		if (ret < 0)
650 			return ret;
651 		if (ret == 0)
652 			return -EIO;
653 		pos += ret;
654 	}
655 
656 	return 0;
657 }
658 
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)659 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
660 {
661 	struct btrfs_tlv_header *hdr;
662 	int total_len = sizeof(*hdr) + len;
663 	int left = sctx->send_max_size - sctx->send_size;
664 
665 	if (WARN_ON_ONCE(sctx->put_data))
666 		return -EINVAL;
667 
668 	if (unlikely(left < total_len))
669 		return -EOVERFLOW;
670 
671 	hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
672 	put_unaligned_le16(attr, &hdr->tlv_type);
673 	put_unaligned_le16(len, &hdr->tlv_len);
674 	memcpy(hdr + 1, data, len);
675 	sctx->send_size += total_len;
676 
677 	return 0;
678 }
679 
680 #define TLV_PUT_DEFINE_INT(bits) \
681 	static int tlv_put_u##bits(struct send_ctx *sctx,	 	\
682 			u##bits attr, u##bits value)			\
683 	{								\
684 		__le##bits __tmp = cpu_to_le##bits(value);		\
685 		return tlv_put(sctx, attr, &__tmp, sizeof(__tmp));	\
686 	}
687 
688 TLV_PUT_DEFINE_INT(8)
689 TLV_PUT_DEFINE_INT(32)
690 TLV_PUT_DEFINE_INT(64)
691 
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)692 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
693 			  const char *str, int len)
694 {
695 	if (len == -1)
696 		len = strlen(str);
697 	return tlv_put(sctx, attr, str, len);
698 }
699 
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)700 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
701 			const u8 *uuid)
702 {
703 	return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
704 }
705 
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)706 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
707 				  struct extent_buffer *eb,
708 				  struct btrfs_timespec *ts)
709 {
710 	struct btrfs_timespec bts;
711 	read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
712 	return tlv_put(sctx, attr, &bts, sizeof(bts));
713 }
714 
715 
716 #define TLV_PUT(sctx, attrtype, data, attrlen) \
717 	do { \
718 		ret = tlv_put(sctx, attrtype, data, attrlen); \
719 		if (ret < 0) \
720 			goto tlv_put_failure; \
721 	} while (0)
722 
723 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
724 	do { \
725 		ret = tlv_put_u##bits(sctx, attrtype, value); \
726 		if (ret < 0) \
727 			goto tlv_put_failure; \
728 	} while (0)
729 
730 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
731 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
732 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
733 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
734 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
735 	do { \
736 		ret = tlv_put_string(sctx, attrtype, str, len); \
737 		if (ret < 0) \
738 			goto tlv_put_failure; \
739 	} while (0)
740 #define TLV_PUT_PATH(sctx, attrtype, p) \
741 	do { \
742 		ret = tlv_put_string(sctx, attrtype, p->start, \
743 			p->end - p->start); \
744 		if (ret < 0) \
745 			goto tlv_put_failure; \
746 	} while(0)
747 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
748 	do { \
749 		ret = tlv_put_uuid(sctx, attrtype, uuid); \
750 		if (ret < 0) \
751 			goto tlv_put_failure; \
752 	} while (0)
753 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
754 	do { \
755 		ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
756 		if (ret < 0) \
757 			goto tlv_put_failure; \
758 	} while (0)
759 
send_header(struct send_ctx * sctx)760 static int send_header(struct send_ctx *sctx)
761 {
762 	struct btrfs_stream_header hdr;
763 
764 	strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
765 	hdr.version = cpu_to_le32(sctx->proto);
766 	return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
767 					&sctx->send_off);
768 }
769 
770 /*
771  * For each command/item we want to send to userspace, we call this function.
772  */
begin_cmd(struct send_ctx * sctx,int cmd)773 static int begin_cmd(struct send_ctx *sctx, int cmd)
774 {
775 	struct btrfs_cmd_header *hdr;
776 
777 	if (WARN_ON(!sctx->send_buf))
778 		return -EINVAL;
779 
780 	if (unlikely(sctx->send_size != 0)) {
781 		btrfs_err(sctx->send_root->fs_info,
782 			  "send: command header buffer not empty cmd %d offset %llu",
783 			  cmd, sctx->send_off);
784 		return -EINVAL;
785 	}
786 
787 	sctx->send_size += sizeof(*hdr);
788 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
789 	put_unaligned_le16(cmd, &hdr->cmd);
790 
791 	return 0;
792 }
793 
send_cmd(struct send_ctx * sctx)794 static int send_cmd(struct send_ctx *sctx)
795 {
796 	int ret;
797 	struct btrfs_cmd_header *hdr;
798 	u32 crc;
799 
800 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
801 	put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
802 	put_unaligned_le32(0, &hdr->crc);
803 
804 	crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
805 	put_unaligned_le32(crc, &hdr->crc);
806 
807 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
808 					&sctx->send_off);
809 
810 	sctx->send_size = 0;
811 	sctx->put_data = false;
812 
813 	return ret;
814 }
815 
816 /*
817  * Sends a move instruction to user space
818  */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)819 static int send_rename(struct send_ctx *sctx,
820 		     struct fs_path *from, struct fs_path *to)
821 {
822 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
823 	int ret;
824 
825 	btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
826 
827 	ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
828 	if (ret < 0)
829 		goto out;
830 
831 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
832 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
833 
834 	ret = send_cmd(sctx);
835 
836 tlv_put_failure:
837 out:
838 	return ret;
839 }
840 
841 /*
842  * Sends a link instruction to user space
843  */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)844 static int send_link(struct send_ctx *sctx,
845 		     struct fs_path *path, struct fs_path *lnk)
846 {
847 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
848 	int ret;
849 
850 	btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
851 
852 	ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
853 	if (ret < 0)
854 		goto out;
855 
856 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
857 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
858 
859 	ret = send_cmd(sctx);
860 
861 tlv_put_failure:
862 out:
863 	return ret;
864 }
865 
866 /*
867  * Sends an unlink instruction to user space
868  */
send_unlink(struct send_ctx * sctx,struct fs_path * path)869 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
870 {
871 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
872 	int ret;
873 
874 	btrfs_debug(fs_info, "send_unlink %s", path->start);
875 
876 	ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
877 	if (ret < 0)
878 		goto out;
879 
880 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
881 
882 	ret = send_cmd(sctx);
883 
884 tlv_put_failure:
885 out:
886 	return ret;
887 }
888 
889 /*
890  * Sends a rmdir instruction to user space
891  */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)892 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
893 {
894 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
895 	int ret;
896 
897 	btrfs_debug(fs_info, "send_rmdir %s", path->start);
898 
899 	ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
900 	if (ret < 0)
901 		goto out;
902 
903 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
904 
905 	ret = send_cmd(sctx);
906 
907 tlv_put_failure:
908 out:
909 	return ret;
910 }
911 
912 struct btrfs_inode_info {
913 	u64 size;
914 	u64 gen;
915 	u64 mode;
916 	u64 uid;
917 	u64 gid;
918 	u64 rdev;
919 	u64 fileattr;
920 	u64 nlink;
921 };
922 
923 /*
924  * Helper function to retrieve some fields from an inode item.
925  */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)926 static int get_inode_info(struct btrfs_root *root, u64 ino,
927 			  struct btrfs_inode_info *info)
928 {
929 	int ret;
930 	struct btrfs_path *path;
931 	struct btrfs_inode_item *ii;
932 	struct btrfs_key key;
933 
934 	path = alloc_path_for_send();
935 	if (!path)
936 		return -ENOMEM;
937 
938 	key.objectid = ino;
939 	key.type = BTRFS_INODE_ITEM_KEY;
940 	key.offset = 0;
941 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
942 	if (ret) {
943 		if (ret > 0)
944 			ret = -ENOENT;
945 		goto out;
946 	}
947 
948 	if (!info)
949 		goto out;
950 
951 	ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
952 			struct btrfs_inode_item);
953 	info->size = btrfs_inode_size(path->nodes[0], ii);
954 	info->gen = btrfs_inode_generation(path->nodes[0], ii);
955 	info->mode = btrfs_inode_mode(path->nodes[0], ii);
956 	info->uid = btrfs_inode_uid(path->nodes[0], ii);
957 	info->gid = btrfs_inode_gid(path->nodes[0], ii);
958 	info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
959 	info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
960 	/*
961 	 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
962 	 * otherwise logically split to 32/32 parts.
963 	 */
964 	info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
965 
966 out:
967 	btrfs_free_path(path);
968 	return ret;
969 }
970 
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)971 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
972 {
973 	int ret;
974 	struct btrfs_inode_info info = { 0 };
975 
976 	ASSERT(gen);
977 
978 	ret = get_inode_info(root, ino, &info);
979 	*gen = info.gen;
980 	return ret;
981 }
982 
983 typedef int (*iterate_inode_ref_t)(u64 dir, struct fs_path *p, void *ctx);
984 
985 /*
986  * Helper function to iterate the entries in ONE btrfs_inode_ref or
987  * btrfs_inode_extref.
988  * The iterate callback may return a non zero value to stop iteration. This can
989  * be a negative value for error codes or 1 to simply stop it.
990  *
991  * path must point to the INODE_REF or INODE_EXTREF when called.
992  */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)993 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
994 			     struct btrfs_key *found_key, int resolve,
995 			     iterate_inode_ref_t iterate, void *ctx)
996 {
997 	struct extent_buffer *eb = path->nodes[0];
998 	struct btrfs_inode_ref *iref;
999 	struct btrfs_inode_extref *extref;
1000 	struct btrfs_path *tmp_path;
1001 	struct fs_path *p;
1002 	u32 cur = 0;
1003 	u32 total;
1004 	int slot = path->slots[0];
1005 	u32 name_len;
1006 	char *start;
1007 	int ret = 0;
1008 	u64 dir;
1009 	unsigned long name_off;
1010 	unsigned long elem_size;
1011 	unsigned long ptr;
1012 
1013 	p = fs_path_alloc_reversed();
1014 	if (!p)
1015 		return -ENOMEM;
1016 
1017 	tmp_path = alloc_path_for_send();
1018 	if (!tmp_path) {
1019 		fs_path_free(p);
1020 		return -ENOMEM;
1021 	}
1022 
1023 
1024 	if (found_key->type == BTRFS_INODE_REF_KEY) {
1025 		ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1026 						    struct btrfs_inode_ref);
1027 		total = btrfs_item_size(eb, slot);
1028 		elem_size = sizeof(*iref);
1029 	} else {
1030 		ptr = btrfs_item_ptr_offset(eb, slot);
1031 		total = btrfs_item_size(eb, slot);
1032 		elem_size = sizeof(*extref);
1033 	}
1034 
1035 	while (cur < total) {
1036 		fs_path_reset(p);
1037 
1038 		if (found_key->type == BTRFS_INODE_REF_KEY) {
1039 			iref = (struct btrfs_inode_ref *)(ptr + cur);
1040 			name_len = btrfs_inode_ref_name_len(eb, iref);
1041 			name_off = (unsigned long)(iref + 1);
1042 			dir = found_key->offset;
1043 		} else {
1044 			extref = (struct btrfs_inode_extref *)(ptr + cur);
1045 			name_len = btrfs_inode_extref_name_len(eb, extref);
1046 			name_off = (unsigned long)&extref->name;
1047 			dir = btrfs_inode_extref_parent(eb, extref);
1048 		}
1049 
1050 		if (resolve) {
1051 			start = btrfs_ref_to_path(root, tmp_path, name_len,
1052 						  name_off, eb, dir,
1053 						  p->buf, p->buf_len);
1054 			if (IS_ERR(start)) {
1055 				ret = PTR_ERR(start);
1056 				goto out;
1057 			}
1058 			if (start < p->buf) {
1059 				/* overflow , try again with larger buffer */
1060 				ret = fs_path_ensure_buf(p,
1061 						p->buf_len + p->buf - start);
1062 				if (ret < 0)
1063 					goto out;
1064 				start = btrfs_ref_to_path(root, tmp_path,
1065 							  name_len, name_off,
1066 							  eb, dir,
1067 							  p->buf, p->buf_len);
1068 				if (IS_ERR(start)) {
1069 					ret = PTR_ERR(start);
1070 					goto out;
1071 				}
1072 				if (unlikely(start < p->buf)) {
1073 					btrfs_err(root->fs_info,
1074 			"send: path ref buffer underflow for key (%llu %u %llu)",
1075 						  found_key->objectid,
1076 						  found_key->type,
1077 						  found_key->offset);
1078 					ret = -EINVAL;
1079 					goto out;
1080 				}
1081 			}
1082 			p->start = start;
1083 		} else {
1084 			ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1085 							     name_len);
1086 			if (ret < 0)
1087 				goto out;
1088 		}
1089 
1090 		cur += elem_size + name_len;
1091 		ret = iterate(dir, p, ctx);
1092 		if (ret)
1093 			goto out;
1094 	}
1095 
1096 out:
1097 	btrfs_free_path(tmp_path);
1098 	fs_path_free(p);
1099 	return ret;
1100 }
1101 
1102 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1103 				  const char *name, int name_len,
1104 				  const char *data, int data_len,
1105 				  void *ctx);
1106 
1107 /*
1108  * Helper function to iterate the entries in ONE btrfs_dir_item.
1109  * The iterate callback may return a non zero value to stop iteration. This can
1110  * be a negative value for error codes or 1 to simply stop it.
1111  *
1112  * path must point to the dir item when called.
1113  */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1114 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1115 			    iterate_dir_item_t iterate, void *ctx)
1116 {
1117 	int ret = 0;
1118 	struct extent_buffer *eb;
1119 	struct btrfs_dir_item *di;
1120 	struct btrfs_key di_key;
1121 	char *buf = NULL;
1122 	int buf_len;
1123 	u32 name_len;
1124 	u32 data_len;
1125 	u32 cur;
1126 	u32 len;
1127 	u32 total;
1128 	int slot;
1129 	int num;
1130 
1131 	/*
1132 	 * Start with a small buffer (1 page). If later we end up needing more
1133 	 * space, which can happen for xattrs on a fs with a leaf size greater
1134 	 * than the page size, attempt to increase the buffer. Typically xattr
1135 	 * values are small.
1136 	 */
1137 	buf_len = PATH_MAX;
1138 	buf = kmalloc(buf_len, GFP_KERNEL);
1139 	if (!buf) {
1140 		ret = -ENOMEM;
1141 		goto out;
1142 	}
1143 
1144 	eb = path->nodes[0];
1145 	slot = path->slots[0];
1146 	di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1147 	cur = 0;
1148 	len = 0;
1149 	total = btrfs_item_size(eb, slot);
1150 
1151 	num = 0;
1152 	while (cur < total) {
1153 		name_len = btrfs_dir_name_len(eb, di);
1154 		data_len = btrfs_dir_data_len(eb, di);
1155 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1156 
1157 		if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1158 			if (name_len > XATTR_NAME_MAX) {
1159 				ret = -ENAMETOOLONG;
1160 				goto out;
1161 			}
1162 			if (name_len + data_len >
1163 					BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1164 				ret = -E2BIG;
1165 				goto out;
1166 			}
1167 		} else {
1168 			/*
1169 			 * Path too long
1170 			 */
1171 			if (name_len + data_len > PATH_MAX) {
1172 				ret = -ENAMETOOLONG;
1173 				goto out;
1174 			}
1175 		}
1176 
1177 		if (name_len + data_len > buf_len) {
1178 			buf_len = name_len + data_len;
1179 			if (is_vmalloc_addr(buf)) {
1180 				vfree(buf);
1181 				buf = NULL;
1182 			} else {
1183 				char *tmp = krealloc(buf, buf_len,
1184 						GFP_KERNEL | __GFP_NOWARN);
1185 
1186 				if (!tmp)
1187 					kfree(buf);
1188 				buf = tmp;
1189 			}
1190 			if (!buf) {
1191 				buf = kvmalloc(buf_len, GFP_KERNEL);
1192 				if (!buf) {
1193 					ret = -ENOMEM;
1194 					goto out;
1195 				}
1196 			}
1197 		}
1198 
1199 		read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1200 				name_len + data_len);
1201 
1202 		len = sizeof(*di) + name_len + data_len;
1203 		di = (struct btrfs_dir_item *)((char *)di + len);
1204 		cur += len;
1205 
1206 		ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1207 			      data_len, ctx);
1208 		if (ret < 0)
1209 			goto out;
1210 		if (ret) {
1211 			ret = 0;
1212 			goto out;
1213 		}
1214 
1215 		num++;
1216 	}
1217 
1218 out:
1219 	kvfree(buf);
1220 	return ret;
1221 }
1222 
__copy_first_ref(u64 dir,struct fs_path * p,void * ctx)1223 static int __copy_first_ref(u64 dir, struct fs_path *p, void *ctx)
1224 {
1225 	int ret;
1226 	struct fs_path *pt = ctx;
1227 
1228 	ret = fs_path_copy(pt, p);
1229 	if (ret < 0)
1230 		return ret;
1231 
1232 	/* we want the first only */
1233 	return 1;
1234 }
1235 
1236 /*
1237  * Retrieve the first path of an inode. If an inode has more then one
1238  * ref/hardlink, this is ignored.
1239  */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1240 static int get_inode_path(struct btrfs_root *root,
1241 			  u64 ino, struct fs_path *path)
1242 {
1243 	int ret;
1244 	struct btrfs_key key, found_key;
1245 	struct btrfs_path *p;
1246 
1247 	p = alloc_path_for_send();
1248 	if (!p)
1249 		return -ENOMEM;
1250 
1251 	fs_path_reset(path);
1252 
1253 	key.objectid = ino;
1254 	key.type = BTRFS_INODE_REF_KEY;
1255 	key.offset = 0;
1256 
1257 	ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1258 	if (ret < 0)
1259 		goto out;
1260 	if (ret) {
1261 		ret = 1;
1262 		goto out;
1263 	}
1264 	btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1265 	if (found_key.objectid != ino ||
1266 	    (found_key.type != BTRFS_INODE_REF_KEY &&
1267 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1268 		ret = -ENOENT;
1269 		goto out;
1270 	}
1271 
1272 	ret = iterate_inode_ref(root, p, &found_key, 1,
1273 				__copy_first_ref, path);
1274 	if (ret < 0)
1275 		goto out;
1276 	ret = 0;
1277 
1278 out:
1279 	btrfs_free_path(p);
1280 	return ret;
1281 }
1282 
1283 struct backref_ctx {
1284 	struct send_ctx *sctx;
1285 
1286 	/* number of total found references */
1287 	u64 found;
1288 
1289 	/*
1290 	 * used for clones found in send_root. clones found behind cur_objectid
1291 	 * and cur_offset are not considered as allowed clones.
1292 	 */
1293 	u64 cur_objectid;
1294 	u64 cur_offset;
1295 
1296 	/* may be truncated in case it's the last extent in a file */
1297 	u64 extent_len;
1298 
1299 	/* The bytenr the file extent item we are processing refers to. */
1300 	u64 bytenr;
1301 	/* The owner (root id) of the data backref for the current extent. */
1302 	u64 backref_owner;
1303 	/* The offset of the data backref for the current extent. */
1304 	u64 backref_offset;
1305 };
1306 
__clone_root_cmp_bsearch(const void * key,const void * elt)1307 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1308 {
1309 	u64 root = (u64)(uintptr_t)key;
1310 	const struct clone_root *cr = elt;
1311 
1312 	if (root < btrfs_root_id(cr->root))
1313 		return -1;
1314 	if (root > btrfs_root_id(cr->root))
1315 		return 1;
1316 	return 0;
1317 }
1318 
__clone_root_cmp_sort(const void * e1,const void * e2)1319 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1320 {
1321 	const struct clone_root *cr1 = e1;
1322 	const struct clone_root *cr2 = e2;
1323 
1324 	if (btrfs_root_id(cr1->root) < btrfs_root_id(cr2->root))
1325 		return -1;
1326 	if (btrfs_root_id(cr1->root) > btrfs_root_id(cr2->root))
1327 		return 1;
1328 	return 0;
1329 }
1330 
1331 /*
1332  * Called for every backref that is found for the current extent.
1333  * Results are collected in sctx->clone_roots->ino/offset.
1334  */
iterate_backrefs(u64 ino,u64 offset,u64 num_bytes,u64 root_id,void * ctx_)1335 static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1336 			    void *ctx_)
1337 {
1338 	struct backref_ctx *bctx = ctx_;
1339 	struct clone_root *clone_root;
1340 
1341 	/* First check if the root is in the list of accepted clone sources */
1342 	clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1343 			     bctx->sctx->clone_roots_cnt,
1344 			     sizeof(struct clone_root),
1345 			     __clone_root_cmp_bsearch);
1346 	if (!clone_root)
1347 		return 0;
1348 
1349 	/* This is our own reference, bail out as we can't clone from it. */
1350 	if (clone_root->root == bctx->sctx->send_root &&
1351 	    ino == bctx->cur_objectid &&
1352 	    offset == bctx->cur_offset)
1353 		return 0;
1354 
1355 	/*
1356 	 * Make sure we don't consider clones from send_root that are
1357 	 * behind the current inode/offset.
1358 	 */
1359 	if (clone_root->root == bctx->sctx->send_root) {
1360 		/*
1361 		 * If the source inode was not yet processed we can't issue a
1362 		 * clone operation, as the source extent does not exist yet at
1363 		 * the destination of the stream.
1364 		 */
1365 		if (ino > bctx->cur_objectid)
1366 			return 0;
1367 		/*
1368 		 * We clone from the inode currently being sent as long as the
1369 		 * source extent is already processed, otherwise we could try
1370 		 * to clone from an extent that does not exist yet at the
1371 		 * destination of the stream.
1372 		 */
1373 		if (ino == bctx->cur_objectid &&
1374 		    offset + bctx->extent_len >
1375 		    bctx->sctx->cur_inode_next_write_offset)
1376 			return 0;
1377 	}
1378 
1379 	bctx->found++;
1380 	clone_root->found_ref = true;
1381 
1382 	/*
1383 	 * If the given backref refers to a file extent item with a larger
1384 	 * number of bytes than what we found before, use the new one so that
1385 	 * we clone more optimally and end up doing less writes and getting
1386 	 * less exclusive, non-shared extents at the destination.
1387 	 */
1388 	if (num_bytes > clone_root->num_bytes) {
1389 		clone_root->ino = ino;
1390 		clone_root->offset = offset;
1391 		clone_root->num_bytes = num_bytes;
1392 
1393 		/*
1394 		 * Found a perfect candidate, so there's no need to continue
1395 		 * backref walking.
1396 		 */
1397 		if (num_bytes >= bctx->extent_len)
1398 			return BTRFS_ITERATE_EXTENT_INODES_STOP;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
lookup_backref_cache(u64 leaf_bytenr,void * ctx,const u64 ** root_ids_ret,int * root_count_ret)1404 static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1405 				 const u64 **root_ids_ret, int *root_count_ret)
1406 {
1407 	struct backref_ctx *bctx = ctx;
1408 	struct send_ctx *sctx = bctx->sctx;
1409 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1410 	const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1411 	struct btrfs_lru_cache_entry *raw_entry;
1412 	struct backref_cache_entry *entry;
1413 
1414 	if (sctx->backref_cache.size == 0)
1415 		return false;
1416 
1417 	/*
1418 	 * If relocation happened since we first filled the cache, then we must
1419 	 * empty the cache and can not use it, because even though we operate on
1420 	 * read-only roots, their leaves and nodes may have been reallocated and
1421 	 * now be used for different nodes/leaves of the same tree or some other
1422 	 * tree.
1423 	 *
1424 	 * We are called from iterate_extent_inodes() while either holding a
1425 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1426 	 * to take any lock here.
1427 	 */
1428 	if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1429 		btrfs_lru_cache_clear(&sctx->backref_cache);
1430 		return false;
1431 	}
1432 
1433 	raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1434 	if (!raw_entry)
1435 		return false;
1436 
1437 	entry = container_of(raw_entry, struct backref_cache_entry, entry);
1438 	*root_ids_ret = entry->root_ids;
1439 	*root_count_ret = entry->num_roots;
1440 
1441 	return true;
1442 }
1443 
store_backref_cache(u64 leaf_bytenr,const struct ulist * root_ids,void * ctx)1444 static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1445 				void *ctx)
1446 {
1447 	struct backref_ctx *bctx = ctx;
1448 	struct send_ctx *sctx = bctx->sctx;
1449 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1450 	struct backref_cache_entry *new_entry;
1451 	struct ulist_iterator uiter;
1452 	struct ulist_node *node;
1453 	int ret;
1454 
1455 	/*
1456 	 * We're called while holding a transaction handle or while holding
1457 	 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1458 	 * NOFS allocation.
1459 	 */
1460 	new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1461 	/* No worries, cache is optional. */
1462 	if (!new_entry)
1463 		return;
1464 
1465 	new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1466 	new_entry->entry.gen = 0;
1467 	new_entry->num_roots = 0;
1468 	ULIST_ITER_INIT(&uiter);
1469 	while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1470 		const u64 root_id = node->val;
1471 		struct clone_root *root;
1472 
1473 		root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1474 			       sctx->clone_roots_cnt, sizeof(struct clone_root),
1475 			       __clone_root_cmp_bsearch);
1476 		if (!root)
1477 			continue;
1478 
1479 		/* Too many roots, just exit, no worries as caching is optional. */
1480 		if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1481 			kfree(new_entry);
1482 			return;
1483 		}
1484 
1485 		new_entry->root_ids[new_entry->num_roots] = root_id;
1486 		new_entry->num_roots++;
1487 	}
1488 
1489 	/*
1490 	 * We may have not added any roots to the new cache entry, which means
1491 	 * none of the roots is part of the list of roots from which we are
1492 	 * allowed to clone. Cache the new entry as it's still useful to avoid
1493 	 * backref walking to determine which roots have a path to the leaf.
1494 	 *
1495 	 * Also use GFP_NOFS because we're called while holding a transaction
1496 	 * handle or while holding fs_info->commit_root_sem.
1497 	 */
1498 	ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1499 				    GFP_NOFS);
1500 	ASSERT(ret == 0 || ret == -ENOMEM);
1501 	if (ret) {
1502 		/* Caching is optional, no worries. */
1503 		kfree(new_entry);
1504 		return;
1505 	}
1506 
1507 	/*
1508 	 * We are called from iterate_extent_inodes() while either holding a
1509 	 * transaction handle or holding fs_info->commit_root_sem, so no need
1510 	 * to take any lock here.
1511 	 */
1512 	if (sctx->backref_cache.size == 1)
1513 		sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1514 }
1515 
check_extent_item(u64 bytenr,const struct btrfs_extent_item * ei,const struct extent_buffer * leaf,void * ctx)1516 static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1517 			     const struct extent_buffer *leaf, void *ctx)
1518 {
1519 	const u64 refs = btrfs_extent_refs(leaf, ei);
1520 	const struct backref_ctx *bctx = ctx;
1521 	const struct send_ctx *sctx = bctx->sctx;
1522 
1523 	if (bytenr == bctx->bytenr) {
1524 		const u64 flags = btrfs_extent_flags(leaf, ei);
1525 
1526 		if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1527 			return -EUCLEAN;
1528 
1529 		/*
1530 		 * If we have only one reference and only the send root as a
1531 		 * clone source - meaning no clone roots were given in the
1532 		 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1533 		 * it's our reference and there's no point in doing backref
1534 		 * walking which is expensive, so exit early.
1535 		 */
1536 		if (refs == 1 && sctx->clone_roots_cnt == 1)
1537 			return -ENOENT;
1538 	}
1539 
1540 	/*
1541 	 * Backreference walking (iterate_extent_inodes() below) is currently
1542 	 * too expensive when an extent has a large number of references, both
1543 	 * in time spent and used memory. So for now just fallback to write
1544 	 * operations instead of clone operations when an extent has more than
1545 	 * a certain amount of references.
1546 	 */
1547 	if (refs > SEND_MAX_EXTENT_REFS)
1548 		return -ENOENT;
1549 
1550 	return 0;
1551 }
1552 
skip_self_data_ref(u64 root,u64 ino,u64 offset,void * ctx)1553 static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1554 {
1555 	const struct backref_ctx *bctx = ctx;
1556 
1557 	if (ino == bctx->cur_objectid &&
1558 	    root == bctx->backref_owner &&
1559 	    offset == bctx->backref_offset)
1560 		return true;
1561 
1562 	return false;
1563 }
1564 
1565 /*
1566  * Given an inode, offset and extent item, it finds a good clone for a clone
1567  * instruction. Returns -ENOENT when none could be found. The function makes
1568  * sure that the returned clone is usable at the point where sending is at the
1569  * moment. This means, that no clones are accepted which lie behind the current
1570  * inode+offset.
1571  *
1572  * path must point to the extent item when called.
1573  */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1574 static int find_extent_clone(struct send_ctx *sctx,
1575 			     struct btrfs_path *path,
1576 			     u64 ino, u64 data_offset,
1577 			     u64 ino_size,
1578 			     struct clone_root **found)
1579 {
1580 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1581 	int ret;
1582 	int extent_type;
1583 	u64 logical;
1584 	u64 disk_byte;
1585 	u64 num_bytes;
1586 	struct btrfs_file_extent_item *fi;
1587 	struct extent_buffer *eb = path->nodes[0];
1588 	struct backref_ctx backref_ctx = { 0 };
1589 	struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1590 	struct clone_root *cur_clone_root;
1591 	int compressed;
1592 	u32 i;
1593 
1594 	/*
1595 	 * With fallocate we can get prealloc extents beyond the inode's i_size,
1596 	 * so we don't do anything here because clone operations can not clone
1597 	 * to a range beyond i_size without increasing the i_size of the
1598 	 * destination inode.
1599 	 */
1600 	if (data_offset >= ino_size)
1601 		return 0;
1602 
1603 	fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1604 	extent_type = btrfs_file_extent_type(eb, fi);
1605 	if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1606 		return -ENOENT;
1607 
1608 	disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1609 	if (disk_byte == 0)
1610 		return -ENOENT;
1611 
1612 	compressed = btrfs_file_extent_compression(eb, fi);
1613 	num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1614 	logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1615 
1616 	/*
1617 	 * Setup the clone roots.
1618 	 */
1619 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1620 		cur_clone_root = sctx->clone_roots + i;
1621 		cur_clone_root->ino = (u64)-1;
1622 		cur_clone_root->offset = 0;
1623 		cur_clone_root->num_bytes = 0;
1624 		cur_clone_root->found_ref = false;
1625 	}
1626 
1627 	backref_ctx.sctx = sctx;
1628 	backref_ctx.cur_objectid = ino;
1629 	backref_ctx.cur_offset = data_offset;
1630 	backref_ctx.bytenr = disk_byte;
1631 	/*
1632 	 * Use the header owner and not the send root's id, because in case of a
1633 	 * snapshot we can have shared subtrees.
1634 	 */
1635 	backref_ctx.backref_owner = btrfs_header_owner(eb);
1636 	backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1637 
1638 	/*
1639 	 * The last extent of a file may be too large due to page alignment.
1640 	 * We need to adjust extent_len in this case so that the checks in
1641 	 * iterate_backrefs() work.
1642 	 */
1643 	if (data_offset + num_bytes >= ino_size)
1644 		backref_ctx.extent_len = ino_size - data_offset;
1645 	else
1646 		backref_ctx.extent_len = num_bytes;
1647 
1648 	/*
1649 	 * Now collect all backrefs.
1650 	 */
1651 	backref_walk_ctx.bytenr = disk_byte;
1652 	if (compressed == BTRFS_COMPRESS_NONE)
1653 		backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1654 	backref_walk_ctx.fs_info = fs_info;
1655 	backref_walk_ctx.cache_lookup = lookup_backref_cache;
1656 	backref_walk_ctx.cache_store = store_backref_cache;
1657 	backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1658 	backref_walk_ctx.check_extent_item = check_extent_item;
1659 	backref_walk_ctx.user_ctx = &backref_ctx;
1660 
1661 	/*
1662 	 * If have a single clone root, then it's the send root and we can tell
1663 	 * the backref walking code to skip our own backref and not resolve it,
1664 	 * since we can not use it for cloning - the source and destination
1665 	 * ranges can't overlap and in case the leaf is shared through a subtree
1666 	 * due to snapshots, we can't use those other roots since they are not
1667 	 * in the list of clone roots.
1668 	 */
1669 	if (sctx->clone_roots_cnt == 1)
1670 		backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1671 
1672 	ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1673 				    &backref_ctx);
1674 	if (ret < 0)
1675 		return ret;
1676 
1677 	down_read(&fs_info->commit_root_sem);
1678 	if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1679 		/*
1680 		 * A transaction commit for a transaction in which block group
1681 		 * relocation was done just happened.
1682 		 * The disk_bytenr of the file extent item we processed is
1683 		 * possibly stale, referring to the extent's location before
1684 		 * relocation. So act as if we haven't found any clone sources
1685 		 * and fallback to write commands, which will read the correct
1686 		 * data from the new extent location. Otherwise we will fail
1687 		 * below because we haven't found our own back reference or we
1688 		 * could be getting incorrect sources in case the old extent
1689 		 * was already reallocated after the relocation.
1690 		 */
1691 		up_read(&fs_info->commit_root_sem);
1692 		return -ENOENT;
1693 	}
1694 	up_read(&fs_info->commit_root_sem);
1695 
1696 	btrfs_debug(fs_info,
1697 		    "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1698 		    data_offset, ino, num_bytes, logical);
1699 
1700 	if (!backref_ctx.found) {
1701 		btrfs_debug(fs_info, "no clones found");
1702 		return -ENOENT;
1703 	}
1704 
1705 	cur_clone_root = NULL;
1706 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
1707 		struct clone_root *clone_root = &sctx->clone_roots[i];
1708 
1709 		if (!clone_root->found_ref)
1710 			continue;
1711 
1712 		/*
1713 		 * Choose the root from which we can clone more bytes, to
1714 		 * minimize write operations and therefore have more extent
1715 		 * sharing at the destination (the same as in the source).
1716 		 */
1717 		if (!cur_clone_root ||
1718 		    clone_root->num_bytes > cur_clone_root->num_bytes) {
1719 			cur_clone_root = clone_root;
1720 
1721 			/*
1722 			 * We found an optimal clone candidate (any inode from
1723 			 * any root is fine), so we're done.
1724 			 */
1725 			if (clone_root->num_bytes >= backref_ctx.extent_len)
1726 				break;
1727 		}
1728 	}
1729 
1730 	if (cur_clone_root) {
1731 		*found = cur_clone_root;
1732 		ret = 0;
1733 	} else {
1734 		ret = -ENOENT;
1735 	}
1736 
1737 	return ret;
1738 }
1739 
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1740 static int read_symlink(struct btrfs_root *root,
1741 			u64 ino,
1742 			struct fs_path *dest)
1743 {
1744 	int ret;
1745 	struct btrfs_path *path;
1746 	struct btrfs_key key;
1747 	struct btrfs_file_extent_item *ei;
1748 	u8 type;
1749 	u8 compression;
1750 	unsigned long off;
1751 	int len;
1752 
1753 	path = alloc_path_for_send();
1754 	if (!path)
1755 		return -ENOMEM;
1756 
1757 	key.objectid = ino;
1758 	key.type = BTRFS_EXTENT_DATA_KEY;
1759 	key.offset = 0;
1760 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1761 	if (ret < 0)
1762 		goto out;
1763 	if (ret) {
1764 		/*
1765 		 * An empty symlink inode. Can happen in rare error paths when
1766 		 * creating a symlink (transaction committed before the inode
1767 		 * eviction handler removed the symlink inode items and a crash
1768 		 * happened in between or the subvol was snapshoted in between).
1769 		 * Print an informative message to dmesg/syslog so that the user
1770 		 * can delete the symlink.
1771 		 */
1772 		btrfs_err(root->fs_info,
1773 			  "Found empty symlink inode %llu at root %llu",
1774 			  ino, btrfs_root_id(root));
1775 		ret = -EIO;
1776 		goto out;
1777 	}
1778 
1779 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1780 			struct btrfs_file_extent_item);
1781 	type = btrfs_file_extent_type(path->nodes[0], ei);
1782 	if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1783 		ret = -EUCLEAN;
1784 		btrfs_crit(root->fs_info,
1785 "send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1786 			   ino, btrfs_root_id(root), type);
1787 		goto out;
1788 	}
1789 	compression = btrfs_file_extent_compression(path->nodes[0], ei);
1790 	if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1791 		ret = -EUCLEAN;
1792 		btrfs_crit(root->fs_info,
1793 "send: found symlink extent with compression, ino %llu root %llu compression type %d",
1794 			   ino, btrfs_root_id(root), compression);
1795 		goto out;
1796 	}
1797 
1798 	off = btrfs_file_extent_inline_start(ei);
1799 	len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1800 
1801 	ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1802 
1803 out:
1804 	btrfs_free_path(path);
1805 	return ret;
1806 }
1807 
1808 /*
1809  * Helper function to generate a file name that is unique in the root of
1810  * send_root and parent_root. This is used to generate names for orphan inodes.
1811  */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1812 static int gen_unique_name(struct send_ctx *sctx,
1813 			   u64 ino, u64 gen,
1814 			   struct fs_path *dest)
1815 {
1816 	int ret = 0;
1817 	struct btrfs_path *path;
1818 	struct btrfs_dir_item *di;
1819 	char tmp[64];
1820 	int len;
1821 	u64 idx = 0;
1822 
1823 	path = alloc_path_for_send();
1824 	if (!path)
1825 		return -ENOMEM;
1826 
1827 	while (1) {
1828 		struct fscrypt_str tmp_name;
1829 
1830 		len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1831 				ino, gen, idx);
1832 		ASSERT(len < sizeof(tmp));
1833 		tmp_name.name = tmp;
1834 		tmp_name.len = strlen(tmp);
1835 
1836 		di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1837 				path, BTRFS_FIRST_FREE_OBJECTID,
1838 				&tmp_name, 0);
1839 		btrfs_release_path(path);
1840 		if (IS_ERR(di)) {
1841 			ret = PTR_ERR(di);
1842 			goto out;
1843 		}
1844 		if (di) {
1845 			/* not unique, try again */
1846 			idx++;
1847 			continue;
1848 		}
1849 
1850 		if (!sctx->parent_root) {
1851 			/* unique */
1852 			ret = 0;
1853 			break;
1854 		}
1855 
1856 		di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1857 				path, BTRFS_FIRST_FREE_OBJECTID,
1858 				&tmp_name, 0);
1859 		btrfs_release_path(path);
1860 		if (IS_ERR(di)) {
1861 			ret = PTR_ERR(di);
1862 			goto out;
1863 		}
1864 		if (di) {
1865 			/* not unique, try again */
1866 			idx++;
1867 			continue;
1868 		}
1869 		/* unique */
1870 		break;
1871 	}
1872 
1873 	ret = fs_path_add(dest, tmp, strlen(tmp));
1874 
1875 out:
1876 	btrfs_free_path(path);
1877 	return ret;
1878 }
1879 
1880 enum inode_state {
1881 	inode_state_no_change,
1882 	inode_state_will_create,
1883 	inode_state_did_create,
1884 	inode_state_will_delete,
1885 	inode_state_did_delete,
1886 };
1887 
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1888 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1889 			       u64 *send_gen, u64 *parent_gen)
1890 {
1891 	int ret;
1892 	int left_ret;
1893 	int right_ret;
1894 	u64 left_gen;
1895 	u64 right_gen = 0;
1896 	struct btrfs_inode_info info;
1897 
1898 	ret = get_inode_info(sctx->send_root, ino, &info);
1899 	if (ret < 0 && ret != -ENOENT)
1900 		goto out;
1901 	left_ret = (info.nlink == 0) ? -ENOENT : ret;
1902 	left_gen = info.gen;
1903 	if (send_gen)
1904 		*send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1905 
1906 	if (!sctx->parent_root) {
1907 		right_ret = -ENOENT;
1908 	} else {
1909 		ret = get_inode_info(sctx->parent_root, ino, &info);
1910 		if (ret < 0 && ret != -ENOENT)
1911 			goto out;
1912 		right_ret = (info.nlink == 0) ? -ENOENT : ret;
1913 		right_gen = info.gen;
1914 		if (parent_gen)
1915 			*parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1916 	}
1917 
1918 	if (!left_ret && !right_ret) {
1919 		if (left_gen == gen && right_gen == gen) {
1920 			ret = inode_state_no_change;
1921 		} else if (left_gen == gen) {
1922 			if (ino < sctx->send_progress)
1923 				ret = inode_state_did_create;
1924 			else
1925 				ret = inode_state_will_create;
1926 		} else if (right_gen == gen) {
1927 			if (ino < sctx->send_progress)
1928 				ret = inode_state_did_delete;
1929 			else
1930 				ret = inode_state_will_delete;
1931 		} else  {
1932 			ret = -ENOENT;
1933 		}
1934 	} else if (!left_ret) {
1935 		if (left_gen == gen) {
1936 			if (ino < sctx->send_progress)
1937 				ret = inode_state_did_create;
1938 			else
1939 				ret = inode_state_will_create;
1940 		} else {
1941 			ret = -ENOENT;
1942 		}
1943 	} else if (!right_ret) {
1944 		if (right_gen == gen) {
1945 			if (ino < sctx->send_progress)
1946 				ret = inode_state_did_delete;
1947 			else
1948 				ret = inode_state_will_delete;
1949 		} else {
1950 			ret = -ENOENT;
1951 		}
1952 	} else {
1953 		ret = -ENOENT;
1954 	}
1955 
1956 out:
1957 	return ret;
1958 }
1959 
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * send_gen,u64 * parent_gen)1960 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1961 			     u64 *send_gen, u64 *parent_gen)
1962 {
1963 	int ret;
1964 
1965 	if (ino == BTRFS_FIRST_FREE_OBJECTID)
1966 		return 1;
1967 
1968 	ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1969 	if (ret < 0)
1970 		goto out;
1971 
1972 	if (ret == inode_state_no_change ||
1973 	    ret == inode_state_did_create ||
1974 	    ret == inode_state_will_delete)
1975 		ret = 1;
1976 	else
1977 		ret = 0;
1978 
1979 out:
1980 	return ret;
1981 }
1982 
1983 /*
1984  * Helper function to lookup a dir item in a dir.
1985  */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1986 static int lookup_dir_item_inode(struct btrfs_root *root,
1987 				 u64 dir, const char *name, int name_len,
1988 				 u64 *found_inode)
1989 {
1990 	int ret = 0;
1991 	struct btrfs_dir_item *di;
1992 	struct btrfs_key key;
1993 	struct btrfs_path *path;
1994 	struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
1995 
1996 	path = alloc_path_for_send();
1997 	if (!path)
1998 		return -ENOMEM;
1999 
2000 	di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2001 	if (IS_ERR_OR_NULL(di)) {
2002 		ret = di ? PTR_ERR(di) : -ENOENT;
2003 		goto out;
2004 	}
2005 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2006 	if (key.type == BTRFS_ROOT_ITEM_KEY) {
2007 		ret = -ENOENT;
2008 		goto out;
2009 	}
2010 	*found_inode = key.objectid;
2011 
2012 out:
2013 	btrfs_free_path(path);
2014 	return ret;
2015 }
2016 
2017 /*
2018  * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2019  * generation of the parent dir and the name of the dir entry.
2020  */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)2021 static int get_first_ref(struct btrfs_root *root, u64 ino,
2022 			 u64 *dir, u64 *dir_gen, struct fs_path *name)
2023 {
2024 	int ret;
2025 	struct btrfs_key key;
2026 	struct btrfs_key found_key;
2027 	struct btrfs_path *path;
2028 	int len;
2029 	u64 parent_dir;
2030 
2031 	path = alloc_path_for_send();
2032 	if (!path)
2033 		return -ENOMEM;
2034 
2035 	key.objectid = ino;
2036 	key.type = BTRFS_INODE_REF_KEY;
2037 	key.offset = 0;
2038 
2039 	ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2040 	if (ret < 0)
2041 		goto out;
2042 	if (!ret)
2043 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2044 				path->slots[0]);
2045 	if (ret || found_key.objectid != ino ||
2046 	    (found_key.type != BTRFS_INODE_REF_KEY &&
2047 	     found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2048 		ret = -ENOENT;
2049 		goto out;
2050 	}
2051 
2052 	if (found_key.type == BTRFS_INODE_REF_KEY) {
2053 		struct btrfs_inode_ref *iref;
2054 		iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2055 				      struct btrfs_inode_ref);
2056 		len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2057 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2058 						     (unsigned long)(iref + 1),
2059 						     len);
2060 		parent_dir = found_key.offset;
2061 	} else {
2062 		struct btrfs_inode_extref *extref;
2063 		extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2064 					struct btrfs_inode_extref);
2065 		len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2066 		ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2067 					(unsigned long)&extref->name, len);
2068 		parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2069 	}
2070 	if (ret < 0)
2071 		goto out;
2072 	btrfs_release_path(path);
2073 
2074 	if (dir_gen) {
2075 		ret = get_inode_gen(root, parent_dir, dir_gen);
2076 		if (ret < 0)
2077 			goto out;
2078 	}
2079 
2080 	*dir = parent_dir;
2081 
2082 out:
2083 	btrfs_free_path(path);
2084 	return ret;
2085 }
2086 
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)2087 static int is_first_ref(struct btrfs_root *root,
2088 			u64 ino, u64 dir,
2089 			const char *name, int name_len)
2090 {
2091 	int ret;
2092 	struct fs_path *tmp_name;
2093 	u64 tmp_dir;
2094 
2095 	tmp_name = fs_path_alloc();
2096 	if (!tmp_name)
2097 		return -ENOMEM;
2098 
2099 	ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2100 	if (ret < 0)
2101 		goto out;
2102 
2103 	if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2104 		ret = 0;
2105 		goto out;
2106 	}
2107 
2108 	ret = !memcmp(tmp_name->start, name, name_len);
2109 
2110 out:
2111 	fs_path_free(tmp_name);
2112 	return ret;
2113 }
2114 
2115 /*
2116  * Used by process_recorded_refs to determine if a new ref would overwrite an
2117  * already existing ref. In case it detects an overwrite, it returns the
2118  * inode/gen in who_ino/who_gen.
2119  * When an overwrite is detected, process_recorded_refs does proper orphanizing
2120  * to make sure later references to the overwritten inode are possible.
2121  * Orphanizing is however only required for the first ref of an inode.
2122  * process_recorded_refs does an additional is_first_ref check to see if
2123  * orphanizing is really required.
2124  */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)2125 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2126 			      const char *name, int name_len,
2127 			      u64 *who_ino, u64 *who_gen, u64 *who_mode)
2128 {
2129 	int ret;
2130 	u64 parent_root_dir_gen;
2131 	u64 other_inode = 0;
2132 	struct btrfs_inode_info info;
2133 
2134 	if (!sctx->parent_root)
2135 		return 0;
2136 
2137 	ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2138 	if (ret <= 0)
2139 		return 0;
2140 
2141 	/*
2142 	 * If we have a parent root we need to verify that the parent dir was
2143 	 * not deleted and then re-created, if it was then we have no overwrite
2144 	 * and we can just unlink this entry.
2145 	 *
2146 	 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2147 	 * parent root.
2148 	 */
2149 	if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2150 	    parent_root_dir_gen != dir_gen)
2151 		return 0;
2152 
2153 	ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2154 				    &other_inode);
2155 	if (ret == -ENOENT)
2156 		return 0;
2157 	else if (ret < 0)
2158 		return ret;
2159 
2160 	/*
2161 	 * Check if the overwritten ref was already processed. If yes, the ref
2162 	 * was already unlinked/moved, so we can safely assume that we will not
2163 	 * overwrite anything at this point in time.
2164 	 */
2165 	if (other_inode > sctx->send_progress ||
2166 	    is_waiting_for_move(sctx, other_inode)) {
2167 		ret = get_inode_info(sctx->parent_root, other_inode, &info);
2168 		if (ret < 0)
2169 			return ret;
2170 
2171 		*who_ino = other_inode;
2172 		*who_gen = info.gen;
2173 		*who_mode = info.mode;
2174 		return 1;
2175 	}
2176 
2177 	return 0;
2178 }
2179 
2180 /*
2181  * Checks if the ref was overwritten by an already processed inode. This is
2182  * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2183  * thus the orphan name needs be used.
2184  * process_recorded_refs also uses it to avoid unlinking of refs that were
2185  * overwritten.
2186  */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)2187 static int did_overwrite_ref(struct send_ctx *sctx,
2188 			    u64 dir, u64 dir_gen,
2189 			    u64 ino, u64 ino_gen,
2190 			    const char *name, int name_len)
2191 {
2192 	int ret;
2193 	u64 ow_inode;
2194 	u64 ow_gen = 0;
2195 	u64 send_root_dir_gen;
2196 
2197 	if (!sctx->parent_root)
2198 		return 0;
2199 
2200 	ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2201 	if (ret <= 0)
2202 		return ret;
2203 
2204 	/*
2205 	 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2206 	 * send root.
2207 	 */
2208 	if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2209 		return 0;
2210 
2211 	/* check if the ref was overwritten by another ref */
2212 	ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2213 				    &ow_inode);
2214 	if (ret == -ENOENT) {
2215 		/* was never and will never be overwritten */
2216 		return 0;
2217 	} else if (ret < 0) {
2218 		return ret;
2219 	}
2220 
2221 	if (ow_inode == ino) {
2222 		ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2223 		if (ret < 0)
2224 			return ret;
2225 
2226 		/* It's the same inode, so no overwrite happened. */
2227 		if (ow_gen == ino_gen)
2228 			return 0;
2229 	}
2230 
2231 	/*
2232 	 * We know that it is or will be overwritten. Check this now.
2233 	 * The current inode being processed might have been the one that caused
2234 	 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2235 	 * the current inode being processed.
2236 	 */
2237 	if (ow_inode < sctx->send_progress)
2238 		return 1;
2239 
2240 	if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2241 		if (ow_gen == 0) {
2242 			ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2243 			if (ret < 0)
2244 				return ret;
2245 		}
2246 		if (ow_gen == sctx->cur_inode_gen)
2247 			return 1;
2248 	}
2249 
2250 	return 0;
2251 }
2252 
2253 /*
2254  * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2255  * that got overwritten. This is used by process_recorded_refs to determine
2256  * if it has to use the path as returned by get_cur_path or the orphan name.
2257  */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2258 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2259 {
2260 	int ret = 0;
2261 	struct fs_path *name = NULL;
2262 	u64 dir;
2263 	u64 dir_gen;
2264 
2265 	if (!sctx->parent_root)
2266 		goto out;
2267 
2268 	name = fs_path_alloc();
2269 	if (!name)
2270 		return -ENOMEM;
2271 
2272 	ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2273 	if (ret < 0)
2274 		goto out;
2275 
2276 	ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2277 			name->start, fs_path_len(name));
2278 
2279 out:
2280 	fs_path_free(name);
2281 	return ret;
2282 }
2283 
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2284 static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2285 							 u64 ino, u64 gen)
2286 {
2287 	struct btrfs_lru_cache_entry *entry;
2288 
2289 	entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2290 	if (!entry)
2291 		return NULL;
2292 
2293 	return container_of(entry, struct name_cache_entry, entry);
2294 }
2295 
2296 /*
2297  * Used by get_cur_path for each ref up to the root.
2298  * Returns 0 if it succeeded.
2299  * Returns 1 if the inode is not existent or got overwritten. In that case, the
2300  * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2301  * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2302  * Returns <0 in case of error.
2303  */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2304 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2305 				     u64 ino, u64 gen,
2306 				     u64 *parent_ino,
2307 				     u64 *parent_gen,
2308 				     struct fs_path *dest)
2309 {
2310 	int ret;
2311 	int nce_ret;
2312 	struct name_cache_entry *nce;
2313 
2314 	/*
2315 	 * First check if we already did a call to this function with the same
2316 	 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2317 	 * return the cached result.
2318 	 */
2319 	nce = name_cache_search(sctx, ino, gen);
2320 	if (nce) {
2321 		if (ino < sctx->send_progress && nce->need_later_update) {
2322 			btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2323 			nce = NULL;
2324 		} else {
2325 			*parent_ino = nce->parent_ino;
2326 			*parent_gen = nce->parent_gen;
2327 			ret = fs_path_add(dest, nce->name, nce->name_len);
2328 			if (ret < 0)
2329 				goto out;
2330 			ret = nce->ret;
2331 			goto out;
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * If the inode is not existent yet, add the orphan name and return 1.
2337 	 * This should only happen for the parent dir that we determine in
2338 	 * record_new_ref_if_needed().
2339 	 */
2340 	ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2341 	if (ret < 0)
2342 		goto out;
2343 
2344 	if (!ret) {
2345 		ret = gen_unique_name(sctx, ino, gen, dest);
2346 		if (ret < 0)
2347 			goto out;
2348 		ret = 1;
2349 		goto out_cache;
2350 	}
2351 
2352 	/*
2353 	 * Depending on whether the inode was already processed or not, use
2354 	 * send_root or parent_root for ref lookup.
2355 	 */
2356 	if (ino < sctx->send_progress)
2357 		ret = get_first_ref(sctx->send_root, ino,
2358 				    parent_ino, parent_gen, dest);
2359 	else
2360 		ret = get_first_ref(sctx->parent_root, ino,
2361 				    parent_ino, parent_gen, dest);
2362 	if (ret < 0)
2363 		goto out;
2364 
2365 	/*
2366 	 * Check if the ref was overwritten by an inode's ref that was processed
2367 	 * earlier. If yes, treat as orphan and return 1.
2368 	 */
2369 	ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2370 			dest->start, dest->end - dest->start);
2371 	if (ret < 0)
2372 		goto out;
2373 	if (ret) {
2374 		fs_path_reset(dest);
2375 		ret = gen_unique_name(sctx, ino, gen, dest);
2376 		if (ret < 0)
2377 			goto out;
2378 		ret = 1;
2379 	}
2380 
2381 out_cache:
2382 	/*
2383 	 * Store the result of the lookup in the name cache.
2384 	 */
2385 	nce = kmalloc(sizeof(*nce) + fs_path_len(dest), GFP_KERNEL);
2386 	if (!nce) {
2387 		ret = -ENOMEM;
2388 		goto out;
2389 	}
2390 
2391 	nce->entry.key = ino;
2392 	nce->entry.gen = gen;
2393 	nce->parent_ino = *parent_ino;
2394 	nce->parent_gen = *parent_gen;
2395 	nce->name_len = fs_path_len(dest);
2396 	nce->ret = ret;
2397 	memcpy(nce->name, dest->start, nce->name_len);
2398 
2399 	if (ino < sctx->send_progress)
2400 		nce->need_later_update = 0;
2401 	else
2402 		nce->need_later_update = 1;
2403 
2404 	nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2405 	if (nce_ret < 0) {
2406 		kfree(nce);
2407 		ret = nce_ret;
2408 	}
2409 
2410 out:
2411 	return ret;
2412 }
2413 
2414 /*
2415  * Magic happens here. This function returns the first ref to an inode as it
2416  * would look like while receiving the stream at this point in time.
2417  * We walk the path up to the root. For every inode in between, we check if it
2418  * was already processed/sent. If yes, we continue with the parent as found
2419  * in send_root. If not, we continue with the parent as found in parent_root.
2420  * If we encounter an inode that was deleted at this point in time, we use the
2421  * inodes "orphan" name instead of the real name and stop. Same with new inodes
2422  * that were not created yet and overwritten inodes/refs.
2423  *
2424  * When do we have orphan inodes:
2425  * 1. When an inode is freshly created and thus no valid refs are available yet
2426  * 2. When a directory lost all it's refs (deleted) but still has dir items
2427  *    inside which were not processed yet (pending for move/delete). If anyone
2428  *    tried to get the path to the dir items, it would get a path inside that
2429  *    orphan directory.
2430  * 3. When an inode is moved around or gets new links, it may overwrite the ref
2431  *    of an unprocessed inode. If in that case the first ref would be
2432  *    overwritten, the overwritten inode gets "orphanized". Later when we
2433  *    process this overwritten inode, it is restored at a new place by moving
2434  *    the orphan inode.
2435  *
2436  * sctx->send_progress tells this function at which point in time receiving
2437  * would be.
2438  */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2439 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2440 			struct fs_path *dest)
2441 {
2442 	int ret = 0;
2443 	struct fs_path *name = NULL;
2444 	u64 parent_inode = 0;
2445 	u64 parent_gen = 0;
2446 	int stop = 0;
2447 
2448 	name = fs_path_alloc();
2449 	if (!name) {
2450 		ret = -ENOMEM;
2451 		goto out;
2452 	}
2453 
2454 	dest->reversed = 1;
2455 	fs_path_reset(dest);
2456 
2457 	while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2458 		struct waiting_dir_move *wdm;
2459 
2460 		fs_path_reset(name);
2461 
2462 		if (is_waiting_for_rm(sctx, ino, gen)) {
2463 			ret = gen_unique_name(sctx, ino, gen, name);
2464 			if (ret < 0)
2465 				goto out;
2466 			ret = fs_path_add_path(dest, name);
2467 			break;
2468 		}
2469 
2470 		wdm = get_waiting_dir_move(sctx, ino);
2471 		if (wdm && wdm->orphanized) {
2472 			ret = gen_unique_name(sctx, ino, gen, name);
2473 			stop = 1;
2474 		} else if (wdm) {
2475 			ret = get_first_ref(sctx->parent_root, ino,
2476 					    &parent_inode, &parent_gen, name);
2477 		} else {
2478 			ret = __get_cur_name_and_parent(sctx, ino, gen,
2479 							&parent_inode,
2480 							&parent_gen, name);
2481 			if (ret)
2482 				stop = 1;
2483 		}
2484 
2485 		if (ret < 0)
2486 			goto out;
2487 
2488 		ret = fs_path_add_path(dest, name);
2489 		if (ret < 0)
2490 			goto out;
2491 
2492 		ino = parent_inode;
2493 		gen = parent_gen;
2494 	}
2495 
2496 out:
2497 	fs_path_free(name);
2498 	if (!ret)
2499 		fs_path_unreverse(dest);
2500 	return ret;
2501 }
2502 
2503 /*
2504  * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2505  */
send_subvol_begin(struct send_ctx * sctx)2506 static int send_subvol_begin(struct send_ctx *sctx)
2507 {
2508 	int ret;
2509 	struct btrfs_root *send_root = sctx->send_root;
2510 	struct btrfs_root *parent_root = sctx->parent_root;
2511 	struct btrfs_path *path;
2512 	struct btrfs_key key;
2513 	struct btrfs_root_ref *ref;
2514 	struct extent_buffer *leaf;
2515 	char *name = NULL;
2516 	int namelen;
2517 
2518 	path = btrfs_alloc_path();
2519 	if (!path)
2520 		return -ENOMEM;
2521 
2522 	name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2523 	if (!name) {
2524 		btrfs_free_path(path);
2525 		return -ENOMEM;
2526 	}
2527 
2528 	key.objectid = btrfs_root_id(send_root);
2529 	key.type = BTRFS_ROOT_BACKREF_KEY;
2530 	key.offset = 0;
2531 
2532 	ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2533 				&key, path, 1, 0);
2534 	if (ret < 0)
2535 		goto out;
2536 	if (ret) {
2537 		ret = -ENOENT;
2538 		goto out;
2539 	}
2540 
2541 	leaf = path->nodes[0];
2542 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2543 	if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2544 	    key.objectid != btrfs_root_id(send_root)) {
2545 		ret = -ENOENT;
2546 		goto out;
2547 	}
2548 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2549 	namelen = btrfs_root_ref_name_len(leaf, ref);
2550 	read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2551 	btrfs_release_path(path);
2552 
2553 	if (parent_root) {
2554 		ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2555 		if (ret < 0)
2556 			goto out;
2557 	} else {
2558 		ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2559 		if (ret < 0)
2560 			goto out;
2561 	}
2562 
2563 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2564 
2565 	if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2566 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2567 			    sctx->send_root->root_item.received_uuid);
2568 	else
2569 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2570 			    sctx->send_root->root_item.uuid);
2571 
2572 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2573 		    btrfs_root_ctransid(&sctx->send_root->root_item));
2574 	if (parent_root) {
2575 		if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2576 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2577 				     parent_root->root_item.received_uuid);
2578 		else
2579 			TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2580 				     parent_root->root_item.uuid);
2581 		TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2582 			    btrfs_root_ctransid(&sctx->parent_root->root_item));
2583 	}
2584 
2585 	ret = send_cmd(sctx);
2586 
2587 tlv_put_failure:
2588 out:
2589 	btrfs_free_path(path);
2590 	kfree(name);
2591 	return ret;
2592 }
2593 
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2594 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2595 {
2596 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2597 	int ret = 0;
2598 	struct fs_path *p;
2599 
2600 	btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2601 
2602 	p = fs_path_alloc();
2603 	if (!p)
2604 		return -ENOMEM;
2605 
2606 	ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2607 	if (ret < 0)
2608 		goto out;
2609 
2610 	ret = get_cur_path(sctx, ino, gen, p);
2611 	if (ret < 0)
2612 		goto out;
2613 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2614 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2615 
2616 	ret = send_cmd(sctx);
2617 
2618 tlv_put_failure:
2619 out:
2620 	fs_path_free(p);
2621 	return ret;
2622 }
2623 
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2624 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2625 {
2626 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2627 	int ret = 0;
2628 	struct fs_path *p;
2629 
2630 	btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2631 
2632 	p = fs_path_alloc();
2633 	if (!p)
2634 		return -ENOMEM;
2635 
2636 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2637 	if (ret < 0)
2638 		goto out;
2639 
2640 	ret = get_cur_path(sctx, ino, gen, p);
2641 	if (ret < 0)
2642 		goto out;
2643 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2644 	TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2645 
2646 	ret = send_cmd(sctx);
2647 
2648 tlv_put_failure:
2649 out:
2650 	fs_path_free(p);
2651 	return ret;
2652 }
2653 
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2654 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2655 {
2656 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2657 	int ret = 0;
2658 	struct fs_path *p;
2659 
2660 	if (sctx->proto < 2)
2661 		return 0;
2662 
2663 	btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2664 
2665 	p = fs_path_alloc();
2666 	if (!p)
2667 		return -ENOMEM;
2668 
2669 	ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2670 	if (ret < 0)
2671 		goto out;
2672 
2673 	ret = get_cur_path(sctx, ino, gen, p);
2674 	if (ret < 0)
2675 		goto out;
2676 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2677 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2678 
2679 	ret = send_cmd(sctx);
2680 
2681 tlv_put_failure:
2682 out:
2683 	fs_path_free(p);
2684 	return ret;
2685 }
2686 
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2687 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2688 {
2689 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2690 	int ret = 0;
2691 	struct fs_path *p;
2692 
2693 	btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2694 		    ino, uid, gid);
2695 
2696 	p = fs_path_alloc();
2697 	if (!p)
2698 		return -ENOMEM;
2699 
2700 	ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2701 	if (ret < 0)
2702 		goto out;
2703 
2704 	ret = get_cur_path(sctx, ino, gen, p);
2705 	if (ret < 0)
2706 		goto out;
2707 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2708 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2709 	TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2710 
2711 	ret = send_cmd(sctx);
2712 
2713 tlv_put_failure:
2714 out:
2715 	fs_path_free(p);
2716 	return ret;
2717 }
2718 
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2719 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2720 {
2721 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2722 	int ret = 0;
2723 	struct fs_path *p = NULL;
2724 	struct btrfs_inode_item *ii;
2725 	struct btrfs_path *path = NULL;
2726 	struct extent_buffer *eb;
2727 	struct btrfs_key key;
2728 	int slot;
2729 
2730 	btrfs_debug(fs_info, "send_utimes %llu", ino);
2731 
2732 	p = fs_path_alloc();
2733 	if (!p)
2734 		return -ENOMEM;
2735 
2736 	path = alloc_path_for_send();
2737 	if (!path) {
2738 		ret = -ENOMEM;
2739 		goto out;
2740 	}
2741 
2742 	key.objectid = ino;
2743 	key.type = BTRFS_INODE_ITEM_KEY;
2744 	key.offset = 0;
2745 	ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2746 	if (ret > 0)
2747 		ret = -ENOENT;
2748 	if (ret < 0)
2749 		goto out;
2750 
2751 	eb = path->nodes[0];
2752 	slot = path->slots[0];
2753 	ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2754 
2755 	ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2756 	if (ret < 0)
2757 		goto out;
2758 
2759 	ret = get_cur_path(sctx, ino, gen, p);
2760 	if (ret < 0)
2761 		goto out;
2762 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2763 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2764 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2765 	TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2766 	if (sctx->proto >= 2)
2767 		TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2768 
2769 	ret = send_cmd(sctx);
2770 
2771 tlv_put_failure:
2772 out:
2773 	fs_path_free(p);
2774 	btrfs_free_path(path);
2775 	return ret;
2776 }
2777 
2778 /*
2779  * If the cache is full, we can't remove entries from it and do a call to
2780  * send_utimes() for each respective inode, because we might be finishing
2781  * processing an inode that is a directory and it just got renamed, and existing
2782  * entries in the cache may refer to inodes that have the directory in their
2783  * full path - in which case we would generate outdated paths (pre-rename)
2784  * for the inodes that the cache entries point to. Instead of prunning the
2785  * cache when inserting, do it after we finish processing each inode at
2786  * finish_inode_if_needed().
2787  */
cache_dir_utimes(struct send_ctx * sctx,u64 dir,u64 gen)2788 static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2789 {
2790 	struct btrfs_lru_cache_entry *entry;
2791 	int ret;
2792 
2793 	entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2794 	if (entry != NULL)
2795 		return 0;
2796 
2797 	/* Caching is optional, don't fail if we can't allocate memory. */
2798 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2799 	if (!entry)
2800 		return send_utimes(sctx, dir, gen);
2801 
2802 	entry->key = dir;
2803 	entry->gen = gen;
2804 
2805 	ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2806 	ASSERT(ret != -EEXIST);
2807 	if (ret) {
2808 		kfree(entry);
2809 		return send_utimes(sctx, dir, gen);
2810 	}
2811 
2812 	return 0;
2813 }
2814 
trim_dir_utimes_cache(struct send_ctx * sctx)2815 static int trim_dir_utimes_cache(struct send_ctx *sctx)
2816 {
2817 	while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2818 		struct btrfs_lru_cache_entry *lru;
2819 		int ret;
2820 
2821 		lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2822 		ASSERT(lru != NULL);
2823 
2824 		ret = send_utimes(sctx, lru->key, lru->gen);
2825 		if (ret)
2826 			return ret;
2827 
2828 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2829 	}
2830 
2831 	return 0;
2832 }
2833 
2834 /*
2835  * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2836  * a valid path yet because we did not process the refs yet. So, the inode
2837  * is created as orphan.
2838  */
send_create_inode(struct send_ctx * sctx,u64 ino)2839 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2840 {
2841 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2842 	int ret = 0;
2843 	struct fs_path *p;
2844 	int cmd;
2845 	struct btrfs_inode_info info;
2846 	u64 gen;
2847 	u64 mode;
2848 	u64 rdev;
2849 
2850 	btrfs_debug(fs_info, "send_create_inode %llu", ino);
2851 
2852 	p = fs_path_alloc();
2853 	if (!p)
2854 		return -ENOMEM;
2855 
2856 	if (ino != sctx->cur_ino) {
2857 		ret = get_inode_info(sctx->send_root, ino, &info);
2858 		if (ret < 0)
2859 			goto out;
2860 		gen = info.gen;
2861 		mode = info.mode;
2862 		rdev = info.rdev;
2863 	} else {
2864 		gen = sctx->cur_inode_gen;
2865 		mode = sctx->cur_inode_mode;
2866 		rdev = sctx->cur_inode_rdev;
2867 	}
2868 
2869 	if (S_ISREG(mode)) {
2870 		cmd = BTRFS_SEND_C_MKFILE;
2871 	} else if (S_ISDIR(mode)) {
2872 		cmd = BTRFS_SEND_C_MKDIR;
2873 	} else if (S_ISLNK(mode)) {
2874 		cmd = BTRFS_SEND_C_SYMLINK;
2875 	} else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2876 		cmd = BTRFS_SEND_C_MKNOD;
2877 	} else if (S_ISFIFO(mode)) {
2878 		cmd = BTRFS_SEND_C_MKFIFO;
2879 	} else if (S_ISSOCK(mode)) {
2880 		cmd = BTRFS_SEND_C_MKSOCK;
2881 	} else {
2882 		btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2883 				(int)(mode & S_IFMT));
2884 		ret = -EOPNOTSUPP;
2885 		goto out;
2886 	}
2887 
2888 	ret = begin_cmd(sctx, cmd);
2889 	if (ret < 0)
2890 		goto out;
2891 
2892 	ret = gen_unique_name(sctx, ino, gen, p);
2893 	if (ret < 0)
2894 		goto out;
2895 
2896 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2897 	TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2898 
2899 	if (S_ISLNK(mode)) {
2900 		fs_path_reset(p);
2901 		ret = read_symlink(sctx->send_root, ino, p);
2902 		if (ret < 0)
2903 			goto out;
2904 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2905 	} else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2906 		   S_ISFIFO(mode) || S_ISSOCK(mode)) {
2907 		TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2908 		TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2909 	}
2910 
2911 	ret = send_cmd(sctx);
2912 	if (ret < 0)
2913 		goto out;
2914 
2915 
2916 tlv_put_failure:
2917 out:
2918 	fs_path_free(p);
2919 	return ret;
2920 }
2921 
cache_dir_created(struct send_ctx * sctx,u64 dir)2922 static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2923 {
2924 	struct btrfs_lru_cache_entry *entry;
2925 	int ret;
2926 
2927 	/* Caching is optional, ignore any failures. */
2928 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2929 	if (!entry)
2930 		return;
2931 
2932 	entry->key = dir;
2933 	entry->gen = 0;
2934 	ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2935 	if (ret < 0)
2936 		kfree(entry);
2937 }
2938 
2939 /*
2940  * We need some special handling for inodes that get processed before the parent
2941  * directory got created. See process_recorded_refs for details.
2942  * This function does the check if we already created the dir out of order.
2943  */
did_create_dir(struct send_ctx * sctx,u64 dir)2944 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2945 {
2946 	int ret = 0;
2947 	int iter_ret = 0;
2948 	struct btrfs_path *path = NULL;
2949 	struct btrfs_key key;
2950 	struct btrfs_key found_key;
2951 	struct btrfs_key di_key;
2952 	struct btrfs_dir_item *di;
2953 
2954 	if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2955 		return 1;
2956 
2957 	path = alloc_path_for_send();
2958 	if (!path)
2959 		return -ENOMEM;
2960 
2961 	key.objectid = dir;
2962 	key.type = BTRFS_DIR_INDEX_KEY;
2963 	key.offset = 0;
2964 
2965 	btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2966 		struct extent_buffer *eb = path->nodes[0];
2967 
2968 		if (found_key.objectid != key.objectid ||
2969 		    found_key.type != key.type) {
2970 			ret = 0;
2971 			break;
2972 		}
2973 
2974 		di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2975 		btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2976 
2977 		if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2978 		    di_key.objectid < sctx->send_progress) {
2979 			ret = 1;
2980 			cache_dir_created(sctx, dir);
2981 			break;
2982 		}
2983 	}
2984 	/* Catch error found during iteration */
2985 	if (iter_ret < 0)
2986 		ret = iter_ret;
2987 
2988 	btrfs_free_path(path);
2989 	return ret;
2990 }
2991 
2992 /*
2993  * Only creates the inode if it is:
2994  * 1. Not a directory
2995  * 2. Or a directory which was not created already due to out of order
2996  *    directories. See did_create_dir and process_recorded_refs for details.
2997  */
send_create_inode_if_needed(struct send_ctx * sctx)2998 static int send_create_inode_if_needed(struct send_ctx *sctx)
2999 {
3000 	int ret;
3001 
3002 	if (S_ISDIR(sctx->cur_inode_mode)) {
3003 		ret = did_create_dir(sctx, sctx->cur_ino);
3004 		if (ret < 0)
3005 			return ret;
3006 		else if (ret > 0)
3007 			return 0;
3008 	}
3009 
3010 	ret = send_create_inode(sctx, sctx->cur_ino);
3011 
3012 	if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3013 		cache_dir_created(sctx, sctx->cur_ino);
3014 
3015 	return ret;
3016 }
3017 
3018 struct recorded_ref {
3019 	struct list_head list;
3020 	char *name;
3021 	struct fs_path *full_path;
3022 	u64 dir;
3023 	u64 dir_gen;
3024 	int name_len;
3025 	struct rb_node node;
3026 	struct rb_root *root;
3027 };
3028 
recorded_ref_alloc(void)3029 static struct recorded_ref *recorded_ref_alloc(void)
3030 {
3031 	struct recorded_ref *ref;
3032 
3033 	ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3034 	if (!ref)
3035 		return NULL;
3036 	RB_CLEAR_NODE(&ref->node);
3037 	INIT_LIST_HEAD(&ref->list);
3038 	return ref;
3039 }
3040 
recorded_ref_free(struct recorded_ref * ref)3041 static void recorded_ref_free(struct recorded_ref *ref)
3042 {
3043 	if (!ref)
3044 		return;
3045 	if (!RB_EMPTY_NODE(&ref->node))
3046 		rb_erase(&ref->node, ref->root);
3047 	list_del(&ref->list);
3048 	fs_path_free(ref->full_path);
3049 	kfree(ref);
3050 }
3051 
set_ref_path(struct recorded_ref * ref,struct fs_path * path)3052 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3053 {
3054 	ref->full_path = path;
3055 	ref->name = (char *)kbasename(ref->full_path->start);
3056 	ref->name_len = ref->full_path->end - ref->name;
3057 }
3058 
dup_ref(struct recorded_ref * ref,struct list_head * list)3059 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3060 {
3061 	struct recorded_ref *new;
3062 
3063 	new = recorded_ref_alloc();
3064 	if (!new)
3065 		return -ENOMEM;
3066 
3067 	new->dir = ref->dir;
3068 	new->dir_gen = ref->dir_gen;
3069 	list_add_tail(&new->list, list);
3070 	return 0;
3071 }
3072 
__free_recorded_refs(struct list_head * head)3073 static void __free_recorded_refs(struct list_head *head)
3074 {
3075 	struct recorded_ref *cur;
3076 
3077 	while (!list_empty(head)) {
3078 		cur = list_entry(head->next, struct recorded_ref, list);
3079 		recorded_ref_free(cur);
3080 	}
3081 }
3082 
free_recorded_refs(struct send_ctx * sctx)3083 static void free_recorded_refs(struct send_ctx *sctx)
3084 {
3085 	__free_recorded_refs(&sctx->new_refs);
3086 	__free_recorded_refs(&sctx->deleted_refs);
3087 }
3088 
3089 /*
3090  * Renames/moves a file/dir to its orphan name. Used when the first
3091  * ref of an unprocessed inode gets overwritten and for all non empty
3092  * directories.
3093  */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)3094 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3095 			  struct fs_path *path)
3096 {
3097 	int ret;
3098 	struct fs_path *orphan;
3099 
3100 	orphan = fs_path_alloc();
3101 	if (!orphan)
3102 		return -ENOMEM;
3103 
3104 	ret = gen_unique_name(sctx, ino, gen, orphan);
3105 	if (ret < 0)
3106 		goto out;
3107 
3108 	ret = send_rename(sctx, path, orphan);
3109 
3110 out:
3111 	fs_path_free(orphan);
3112 	return ret;
3113 }
3114 
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)3115 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3116 						   u64 dir_ino, u64 dir_gen)
3117 {
3118 	struct rb_node **p = &sctx->orphan_dirs.rb_node;
3119 	struct rb_node *parent = NULL;
3120 	struct orphan_dir_info *entry, *odi;
3121 
3122 	while (*p) {
3123 		parent = *p;
3124 		entry = rb_entry(parent, struct orphan_dir_info, node);
3125 		if (dir_ino < entry->ino)
3126 			p = &(*p)->rb_left;
3127 		else if (dir_ino > entry->ino)
3128 			p = &(*p)->rb_right;
3129 		else if (dir_gen < entry->gen)
3130 			p = &(*p)->rb_left;
3131 		else if (dir_gen > entry->gen)
3132 			p = &(*p)->rb_right;
3133 		else
3134 			return entry;
3135 	}
3136 
3137 	odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3138 	if (!odi)
3139 		return ERR_PTR(-ENOMEM);
3140 	odi->ino = dir_ino;
3141 	odi->gen = dir_gen;
3142 	odi->last_dir_index_offset = 0;
3143 	odi->dir_high_seq_ino = 0;
3144 
3145 	rb_link_node(&odi->node, parent, p);
3146 	rb_insert_color(&odi->node, &sctx->orphan_dirs);
3147 	return odi;
3148 }
3149 
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)3150 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3151 						   u64 dir_ino, u64 gen)
3152 {
3153 	struct rb_node *n = sctx->orphan_dirs.rb_node;
3154 	struct orphan_dir_info *entry;
3155 
3156 	while (n) {
3157 		entry = rb_entry(n, struct orphan_dir_info, node);
3158 		if (dir_ino < entry->ino)
3159 			n = n->rb_left;
3160 		else if (dir_ino > entry->ino)
3161 			n = n->rb_right;
3162 		else if (gen < entry->gen)
3163 			n = n->rb_left;
3164 		else if (gen > entry->gen)
3165 			n = n->rb_right;
3166 		else
3167 			return entry;
3168 	}
3169 	return NULL;
3170 }
3171 
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)3172 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3173 {
3174 	struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3175 
3176 	return odi != NULL;
3177 }
3178 
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)3179 static void free_orphan_dir_info(struct send_ctx *sctx,
3180 				 struct orphan_dir_info *odi)
3181 {
3182 	if (!odi)
3183 		return;
3184 	rb_erase(&odi->node, &sctx->orphan_dirs);
3185 	kfree(odi);
3186 }
3187 
3188 /*
3189  * Returns 1 if a directory can be removed at this point in time.
3190  * We check this by iterating all dir items and checking if the inode behind
3191  * the dir item was already processed.
3192  */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen)3193 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3194 {
3195 	int ret = 0;
3196 	int iter_ret = 0;
3197 	struct btrfs_root *root = sctx->parent_root;
3198 	struct btrfs_path *path;
3199 	struct btrfs_key key;
3200 	struct btrfs_key found_key;
3201 	struct btrfs_key loc;
3202 	struct btrfs_dir_item *di;
3203 	struct orphan_dir_info *odi = NULL;
3204 	u64 dir_high_seq_ino = 0;
3205 	u64 last_dir_index_offset = 0;
3206 
3207 	/*
3208 	 * Don't try to rmdir the top/root subvolume dir.
3209 	 */
3210 	if (dir == BTRFS_FIRST_FREE_OBJECTID)
3211 		return 0;
3212 
3213 	odi = get_orphan_dir_info(sctx, dir, dir_gen);
3214 	if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3215 		return 0;
3216 
3217 	path = alloc_path_for_send();
3218 	if (!path)
3219 		return -ENOMEM;
3220 
3221 	if (!odi) {
3222 		/*
3223 		 * Find the inode number associated with the last dir index
3224 		 * entry. This is very likely the inode with the highest number
3225 		 * of all inodes that have an entry in the directory. We can
3226 		 * then use it to avoid future calls to can_rmdir(), when
3227 		 * processing inodes with a lower number, from having to search
3228 		 * the parent root b+tree for dir index keys.
3229 		 */
3230 		key.objectid = dir;
3231 		key.type = BTRFS_DIR_INDEX_KEY;
3232 		key.offset = (u64)-1;
3233 
3234 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3235 		if (ret < 0) {
3236 			goto out;
3237 		} else if (ret > 0) {
3238 			/* Can't happen, the root is never empty. */
3239 			ASSERT(path->slots[0] > 0);
3240 			if (WARN_ON(path->slots[0] == 0)) {
3241 				ret = -EUCLEAN;
3242 				goto out;
3243 			}
3244 			path->slots[0]--;
3245 		}
3246 
3247 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3248 		if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3249 			/* No index keys, dir can be removed. */
3250 			ret = 1;
3251 			goto out;
3252 		}
3253 
3254 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3255 				    struct btrfs_dir_item);
3256 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3257 		dir_high_seq_ino = loc.objectid;
3258 		if (sctx->cur_ino < dir_high_seq_ino) {
3259 			ret = 0;
3260 			goto out;
3261 		}
3262 
3263 		btrfs_release_path(path);
3264 	}
3265 
3266 	key.objectid = dir;
3267 	key.type = BTRFS_DIR_INDEX_KEY;
3268 	key.offset = (odi ? odi->last_dir_index_offset : 0);
3269 
3270 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3271 		struct waiting_dir_move *dm;
3272 
3273 		if (found_key.objectid != key.objectid ||
3274 		    found_key.type != key.type)
3275 			break;
3276 
3277 		di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3278 				struct btrfs_dir_item);
3279 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3280 
3281 		dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3282 		last_dir_index_offset = found_key.offset;
3283 
3284 		dm = get_waiting_dir_move(sctx, loc.objectid);
3285 		if (dm) {
3286 			dm->rmdir_ino = dir;
3287 			dm->rmdir_gen = dir_gen;
3288 			ret = 0;
3289 			goto out;
3290 		}
3291 
3292 		if (loc.objectid > sctx->cur_ino) {
3293 			ret = 0;
3294 			goto out;
3295 		}
3296 	}
3297 	if (iter_ret < 0) {
3298 		ret = iter_ret;
3299 		goto out;
3300 	}
3301 	free_orphan_dir_info(sctx, odi);
3302 
3303 	ret = 1;
3304 
3305 out:
3306 	btrfs_free_path(path);
3307 
3308 	if (ret)
3309 		return ret;
3310 
3311 	if (!odi) {
3312 		odi = add_orphan_dir_info(sctx, dir, dir_gen);
3313 		if (IS_ERR(odi))
3314 			return PTR_ERR(odi);
3315 
3316 		odi->gen = dir_gen;
3317 	}
3318 
3319 	odi->last_dir_index_offset = last_dir_index_offset;
3320 	odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3321 
3322 	return 0;
3323 }
3324 
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3325 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3326 {
3327 	struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3328 
3329 	return entry != NULL;
3330 }
3331 
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3332 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3333 {
3334 	struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3335 	struct rb_node *parent = NULL;
3336 	struct waiting_dir_move *entry, *dm;
3337 
3338 	dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3339 	if (!dm)
3340 		return -ENOMEM;
3341 	dm->ino = ino;
3342 	dm->rmdir_ino = 0;
3343 	dm->rmdir_gen = 0;
3344 	dm->orphanized = orphanized;
3345 
3346 	while (*p) {
3347 		parent = *p;
3348 		entry = rb_entry(parent, struct waiting_dir_move, node);
3349 		if (ino < entry->ino) {
3350 			p = &(*p)->rb_left;
3351 		} else if (ino > entry->ino) {
3352 			p = &(*p)->rb_right;
3353 		} else {
3354 			kfree(dm);
3355 			return -EEXIST;
3356 		}
3357 	}
3358 
3359 	rb_link_node(&dm->node, parent, p);
3360 	rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3361 	return 0;
3362 }
3363 
3364 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3365 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3366 {
3367 	struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3368 	struct waiting_dir_move *entry;
3369 
3370 	while (n) {
3371 		entry = rb_entry(n, struct waiting_dir_move, node);
3372 		if (ino < entry->ino)
3373 			n = n->rb_left;
3374 		else if (ino > entry->ino)
3375 			n = n->rb_right;
3376 		else
3377 			return entry;
3378 	}
3379 	return NULL;
3380 }
3381 
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3382 static void free_waiting_dir_move(struct send_ctx *sctx,
3383 				  struct waiting_dir_move *dm)
3384 {
3385 	if (!dm)
3386 		return;
3387 	rb_erase(&dm->node, &sctx->waiting_dir_moves);
3388 	kfree(dm);
3389 }
3390 
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3391 static int add_pending_dir_move(struct send_ctx *sctx,
3392 				u64 ino,
3393 				u64 ino_gen,
3394 				u64 parent_ino,
3395 				struct list_head *new_refs,
3396 				struct list_head *deleted_refs,
3397 				const bool is_orphan)
3398 {
3399 	struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3400 	struct rb_node *parent = NULL;
3401 	struct pending_dir_move *entry = NULL, *pm;
3402 	struct recorded_ref *cur;
3403 	int exists = 0;
3404 	int ret;
3405 
3406 	pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3407 	if (!pm)
3408 		return -ENOMEM;
3409 	pm->parent_ino = parent_ino;
3410 	pm->ino = ino;
3411 	pm->gen = ino_gen;
3412 	INIT_LIST_HEAD(&pm->list);
3413 	INIT_LIST_HEAD(&pm->update_refs);
3414 	RB_CLEAR_NODE(&pm->node);
3415 
3416 	while (*p) {
3417 		parent = *p;
3418 		entry = rb_entry(parent, struct pending_dir_move, node);
3419 		if (parent_ino < entry->parent_ino) {
3420 			p = &(*p)->rb_left;
3421 		} else if (parent_ino > entry->parent_ino) {
3422 			p = &(*p)->rb_right;
3423 		} else {
3424 			exists = 1;
3425 			break;
3426 		}
3427 	}
3428 
3429 	list_for_each_entry(cur, deleted_refs, list) {
3430 		ret = dup_ref(cur, &pm->update_refs);
3431 		if (ret < 0)
3432 			goto out;
3433 	}
3434 	list_for_each_entry(cur, new_refs, list) {
3435 		ret = dup_ref(cur, &pm->update_refs);
3436 		if (ret < 0)
3437 			goto out;
3438 	}
3439 
3440 	ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3441 	if (ret)
3442 		goto out;
3443 
3444 	if (exists) {
3445 		list_add_tail(&pm->list, &entry->list);
3446 	} else {
3447 		rb_link_node(&pm->node, parent, p);
3448 		rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3449 	}
3450 	ret = 0;
3451 out:
3452 	if (ret) {
3453 		__free_recorded_refs(&pm->update_refs);
3454 		kfree(pm);
3455 	}
3456 	return ret;
3457 }
3458 
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3459 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3460 						      u64 parent_ino)
3461 {
3462 	struct rb_node *n = sctx->pending_dir_moves.rb_node;
3463 	struct pending_dir_move *entry;
3464 
3465 	while (n) {
3466 		entry = rb_entry(n, struct pending_dir_move, node);
3467 		if (parent_ino < entry->parent_ino)
3468 			n = n->rb_left;
3469 		else if (parent_ino > entry->parent_ino)
3470 			n = n->rb_right;
3471 		else
3472 			return entry;
3473 	}
3474 	return NULL;
3475 }
3476 
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3477 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3478 		     u64 ino, u64 gen, u64 *ancestor_ino)
3479 {
3480 	int ret = 0;
3481 	u64 parent_inode = 0;
3482 	u64 parent_gen = 0;
3483 	u64 start_ino = ino;
3484 
3485 	*ancestor_ino = 0;
3486 	while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3487 		fs_path_reset(name);
3488 
3489 		if (is_waiting_for_rm(sctx, ino, gen))
3490 			break;
3491 		if (is_waiting_for_move(sctx, ino)) {
3492 			if (*ancestor_ino == 0)
3493 				*ancestor_ino = ino;
3494 			ret = get_first_ref(sctx->parent_root, ino,
3495 					    &parent_inode, &parent_gen, name);
3496 		} else {
3497 			ret = __get_cur_name_and_parent(sctx, ino, gen,
3498 							&parent_inode,
3499 							&parent_gen, name);
3500 			if (ret > 0) {
3501 				ret = 0;
3502 				break;
3503 			}
3504 		}
3505 		if (ret < 0)
3506 			break;
3507 		if (parent_inode == start_ino) {
3508 			ret = 1;
3509 			if (*ancestor_ino == 0)
3510 				*ancestor_ino = ino;
3511 			break;
3512 		}
3513 		ino = parent_inode;
3514 		gen = parent_gen;
3515 	}
3516 	return ret;
3517 }
3518 
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3519 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3520 {
3521 	struct fs_path *from_path = NULL;
3522 	struct fs_path *to_path = NULL;
3523 	struct fs_path *name = NULL;
3524 	u64 orig_progress = sctx->send_progress;
3525 	struct recorded_ref *cur;
3526 	u64 parent_ino, parent_gen;
3527 	struct waiting_dir_move *dm = NULL;
3528 	u64 rmdir_ino = 0;
3529 	u64 rmdir_gen;
3530 	u64 ancestor;
3531 	bool is_orphan;
3532 	int ret;
3533 
3534 	name = fs_path_alloc();
3535 	from_path = fs_path_alloc();
3536 	if (!name || !from_path) {
3537 		ret = -ENOMEM;
3538 		goto out;
3539 	}
3540 
3541 	dm = get_waiting_dir_move(sctx, pm->ino);
3542 	ASSERT(dm);
3543 	rmdir_ino = dm->rmdir_ino;
3544 	rmdir_gen = dm->rmdir_gen;
3545 	is_orphan = dm->orphanized;
3546 	free_waiting_dir_move(sctx, dm);
3547 
3548 	if (is_orphan) {
3549 		ret = gen_unique_name(sctx, pm->ino,
3550 				      pm->gen, from_path);
3551 	} else {
3552 		ret = get_first_ref(sctx->parent_root, pm->ino,
3553 				    &parent_ino, &parent_gen, name);
3554 		if (ret < 0)
3555 			goto out;
3556 		ret = get_cur_path(sctx, parent_ino, parent_gen,
3557 				   from_path);
3558 		if (ret < 0)
3559 			goto out;
3560 		ret = fs_path_add_path(from_path, name);
3561 	}
3562 	if (ret < 0)
3563 		goto out;
3564 
3565 	sctx->send_progress = sctx->cur_ino + 1;
3566 	ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3567 	if (ret < 0)
3568 		goto out;
3569 	if (ret) {
3570 		LIST_HEAD(deleted_refs);
3571 		ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3572 		ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3573 					   &pm->update_refs, &deleted_refs,
3574 					   is_orphan);
3575 		if (ret < 0)
3576 			goto out;
3577 		if (rmdir_ino) {
3578 			dm = get_waiting_dir_move(sctx, pm->ino);
3579 			ASSERT(dm);
3580 			dm->rmdir_ino = rmdir_ino;
3581 			dm->rmdir_gen = rmdir_gen;
3582 		}
3583 		goto out;
3584 	}
3585 	fs_path_reset(name);
3586 	to_path = name;
3587 	name = NULL;
3588 	ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3589 	if (ret < 0)
3590 		goto out;
3591 
3592 	ret = send_rename(sctx, from_path, to_path);
3593 	if (ret < 0)
3594 		goto out;
3595 
3596 	if (rmdir_ino) {
3597 		struct orphan_dir_info *odi;
3598 		u64 gen;
3599 
3600 		odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3601 		if (!odi) {
3602 			/* already deleted */
3603 			goto finish;
3604 		}
3605 		gen = odi->gen;
3606 
3607 		ret = can_rmdir(sctx, rmdir_ino, gen);
3608 		if (ret < 0)
3609 			goto out;
3610 		if (!ret)
3611 			goto finish;
3612 
3613 		name = fs_path_alloc();
3614 		if (!name) {
3615 			ret = -ENOMEM;
3616 			goto out;
3617 		}
3618 		ret = get_cur_path(sctx, rmdir_ino, gen, name);
3619 		if (ret < 0)
3620 			goto out;
3621 		ret = send_rmdir(sctx, name);
3622 		if (ret < 0)
3623 			goto out;
3624 	}
3625 
3626 finish:
3627 	ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3628 	if (ret < 0)
3629 		goto out;
3630 
3631 	/*
3632 	 * After rename/move, need to update the utimes of both new parent(s)
3633 	 * and old parent(s).
3634 	 */
3635 	list_for_each_entry(cur, &pm->update_refs, list) {
3636 		/*
3637 		 * The parent inode might have been deleted in the send snapshot
3638 		 */
3639 		ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3640 		if (ret == -ENOENT) {
3641 			ret = 0;
3642 			continue;
3643 		}
3644 		if (ret < 0)
3645 			goto out;
3646 
3647 		ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3648 		if (ret < 0)
3649 			goto out;
3650 	}
3651 
3652 out:
3653 	fs_path_free(name);
3654 	fs_path_free(from_path);
3655 	fs_path_free(to_path);
3656 	sctx->send_progress = orig_progress;
3657 
3658 	return ret;
3659 }
3660 
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3661 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3662 {
3663 	if (!list_empty(&m->list))
3664 		list_del(&m->list);
3665 	if (!RB_EMPTY_NODE(&m->node))
3666 		rb_erase(&m->node, &sctx->pending_dir_moves);
3667 	__free_recorded_refs(&m->update_refs);
3668 	kfree(m);
3669 }
3670 
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3671 static void tail_append_pending_moves(struct send_ctx *sctx,
3672 				      struct pending_dir_move *moves,
3673 				      struct list_head *stack)
3674 {
3675 	if (list_empty(&moves->list)) {
3676 		list_add_tail(&moves->list, stack);
3677 	} else {
3678 		LIST_HEAD(list);
3679 		list_splice_init(&moves->list, &list);
3680 		list_add_tail(&moves->list, stack);
3681 		list_splice_tail(&list, stack);
3682 	}
3683 	if (!RB_EMPTY_NODE(&moves->node)) {
3684 		rb_erase(&moves->node, &sctx->pending_dir_moves);
3685 		RB_CLEAR_NODE(&moves->node);
3686 	}
3687 }
3688 
apply_children_dir_moves(struct send_ctx * sctx)3689 static int apply_children_dir_moves(struct send_ctx *sctx)
3690 {
3691 	struct pending_dir_move *pm;
3692 	LIST_HEAD(stack);
3693 	u64 parent_ino = sctx->cur_ino;
3694 	int ret = 0;
3695 
3696 	pm = get_pending_dir_moves(sctx, parent_ino);
3697 	if (!pm)
3698 		return 0;
3699 
3700 	tail_append_pending_moves(sctx, pm, &stack);
3701 
3702 	while (!list_empty(&stack)) {
3703 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3704 		parent_ino = pm->ino;
3705 		ret = apply_dir_move(sctx, pm);
3706 		free_pending_move(sctx, pm);
3707 		if (ret)
3708 			goto out;
3709 		pm = get_pending_dir_moves(sctx, parent_ino);
3710 		if (pm)
3711 			tail_append_pending_moves(sctx, pm, &stack);
3712 	}
3713 	return 0;
3714 
3715 out:
3716 	while (!list_empty(&stack)) {
3717 		pm = list_first_entry(&stack, struct pending_dir_move, list);
3718 		free_pending_move(sctx, pm);
3719 	}
3720 	return ret;
3721 }
3722 
3723 /*
3724  * We might need to delay a directory rename even when no ancestor directory
3725  * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3726  * renamed. This happens when we rename a directory to the old name (the name
3727  * in the parent root) of some other unrelated directory that got its rename
3728  * delayed due to some ancestor with higher number that got renamed.
3729  *
3730  * Example:
3731  *
3732  * Parent snapshot:
3733  * .                                       (ino 256)
3734  * |---- a/                                (ino 257)
3735  * |     |---- file                        (ino 260)
3736  * |
3737  * |---- b/                                (ino 258)
3738  * |---- c/                                (ino 259)
3739  *
3740  * Send snapshot:
3741  * .                                       (ino 256)
3742  * |---- a/                                (ino 258)
3743  * |---- x/                                (ino 259)
3744  *       |---- y/                          (ino 257)
3745  *             |----- file                 (ino 260)
3746  *
3747  * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3748  * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3749  * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3750  * must issue is:
3751  *
3752  * 1 - rename 259 from 'c' to 'x'
3753  * 2 - rename 257 from 'a' to 'x/y'
3754  * 3 - rename 258 from 'b' to 'a'
3755  *
3756  * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3757  * be done right away and < 0 on error.
3758  */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3759 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3760 				  struct recorded_ref *parent_ref,
3761 				  const bool is_orphan)
3762 {
3763 	struct btrfs_path *path;
3764 	struct btrfs_key key;
3765 	struct btrfs_key di_key;
3766 	struct btrfs_dir_item *di;
3767 	u64 left_gen;
3768 	u64 right_gen;
3769 	int ret = 0;
3770 	struct waiting_dir_move *wdm;
3771 
3772 	if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3773 		return 0;
3774 
3775 	path = alloc_path_for_send();
3776 	if (!path)
3777 		return -ENOMEM;
3778 
3779 	key.objectid = parent_ref->dir;
3780 	key.type = BTRFS_DIR_ITEM_KEY;
3781 	key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3782 
3783 	ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3784 	if (ret < 0) {
3785 		goto out;
3786 	} else if (ret > 0) {
3787 		ret = 0;
3788 		goto out;
3789 	}
3790 
3791 	di = btrfs_match_dir_item_name(path, parent_ref->name,
3792 				       parent_ref->name_len);
3793 	if (!di) {
3794 		ret = 0;
3795 		goto out;
3796 	}
3797 	/*
3798 	 * di_key.objectid has the number of the inode that has a dentry in the
3799 	 * parent directory with the same name that sctx->cur_ino is being
3800 	 * renamed to. We need to check if that inode is in the send root as
3801 	 * well and if it is currently marked as an inode with a pending rename,
3802 	 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3803 	 * that it happens after that other inode is renamed.
3804 	 */
3805 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3806 	if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3807 		ret = 0;
3808 		goto out;
3809 	}
3810 
3811 	ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3812 	if (ret < 0)
3813 		goto out;
3814 	ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3815 	if (ret < 0) {
3816 		if (ret == -ENOENT)
3817 			ret = 0;
3818 		goto out;
3819 	}
3820 
3821 	/* Different inode, no need to delay the rename of sctx->cur_ino */
3822 	if (right_gen != left_gen) {
3823 		ret = 0;
3824 		goto out;
3825 	}
3826 
3827 	wdm = get_waiting_dir_move(sctx, di_key.objectid);
3828 	if (wdm && !wdm->orphanized) {
3829 		ret = add_pending_dir_move(sctx,
3830 					   sctx->cur_ino,
3831 					   sctx->cur_inode_gen,
3832 					   di_key.objectid,
3833 					   &sctx->new_refs,
3834 					   &sctx->deleted_refs,
3835 					   is_orphan);
3836 		if (!ret)
3837 			ret = 1;
3838 	}
3839 out:
3840 	btrfs_free_path(path);
3841 	return ret;
3842 }
3843 
3844 /*
3845  * Check if inode ino2, or any of its ancestors, is inode ino1.
3846  * Return 1 if true, 0 if false and < 0 on error.
3847  */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3848 static int check_ino_in_path(struct btrfs_root *root,
3849 			     const u64 ino1,
3850 			     const u64 ino1_gen,
3851 			     const u64 ino2,
3852 			     const u64 ino2_gen,
3853 			     struct fs_path *fs_path)
3854 {
3855 	u64 ino = ino2;
3856 
3857 	if (ino1 == ino2)
3858 		return ino1_gen == ino2_gen;
3859 
3860 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3861 		u64 parent;
3862 		u64 parent_gen;
3863 		int ret;
3864 
3865 		fs_path_reset(fs_path);
3866 		ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3867 		if (ret < 0)
3868 			return ret;
3869 		if (parent == ino1)
3870 			return parent_gen == ino1_gen;
3871 		ino = parent;
3872 	}
3873 	return 0;
3874 }
3875 
3876 /*
3877  * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3878  * possible path (in case ino2 is not a directory and has multiple hard links).
3879  * Return 1 if true, 0 if false and < 0 on error.
3880  */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3881 static int is_ancestor(struct btrfs_root *root,
3882 		       const u64 ino1,
3883 		       const u64 ino1_gen,
3884 		       const u64 ino2,
3885 		       struct fs_path *fs_path)
3886 {
3887 	bool free_fs_path = false;
3888 	int ret = 0;
3889 	int iter_ret = 0;
3890 	struct btrfs_path *path = NULL;
3891 	struct btrfs_key key;
3892 
3893 	if (!fs_path) {
3894 		fs_path = fs_path_alloc();
3895 		if (!fs_path)
3896 			return -ENOMEM;
3897 		free_fs_path = true;
3898 	}
3899 
3900 	path = alloc_path_for_send();
3901 	if (!path) {
3902 		ret = -ENOMEM;
3903 		goto out;
3904 	}
3905 
3906 	key.objectid = ino2;
3907 	key.type = BTRFS_INODE_REF_KEY;
3908 	key.offset = 0;
3909 
3910 	btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3911 		struct extent_buffer *leaf = path->nodes[0];
3912 		int slot = path->slots[0];
3913 		u32 cur_offset = 0;
3914 		u32 item_size;
3915 
3916 		if (key.objectid != ino2)
3917 			break;
3918 		if (key.type != BTRFS_INODE_REF_KEY &&
3919 		    key.type != BTRFS_INODE_EXTREF_KEY)
3920 			break;
3921 
3922 		item_size = btrfs_item_size(leaf, slot);
3923 		while (cur_offset < item_size) {
3924 			u64 parent;
3925 			u64 parent_gen;
3926 
3927 			if (key.type == BTRFS_INODE_EXTREF_KEY) {
3928 				unsigned long ptr;
3929 				struct btrfs_inode_extref *extref;
3930 
3931 				ptr = btrfs_item_ptr_offset(leaf, slot);
3932 				extref = (struct btrfs_inode_extref *)
3933 					(ptr + cur_offset);
3934 				parent = btrfs_inode_extref_parent(leaf,
3935 								   extref);
3936 				cur_offset += sizeof(*extref);
3937 				cur_offset += btrfs_inode_extref_name_len(leaf,
3938 								  extref);
3939 			} else {
3940 				parent = key.offset;
3941 				cur_offset = item_size;
3942 			}
3943 
3944 			ret = get_inode_gen(root, parent, &parent_gen);
3945 			if (ret < 0)
3946 				goto out;
3947 			ret = check_ino_in_path(root, ino1, ino1_gen,
3948 						parent, parent_gen, fs_path);
3949 			if (ret)
3950 				goto out;
3951 		}
3952 	}
3953 	ret = 0;
3954 	if (iter_ret < 0)
3955 		ret = iter_ret;
3956 
3957 out:
3958 	btrfs_free_path(path);
3959 	if (free_fs_path)
3960 		fs_path_free(fs_path);
3961 	return ret;
3962 }
3963 
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3964 static int wait_for_parent_move(struct send_ctx *sctx,
3965 				struct recorded_ref *parent_ref,
3966 				const bool is_orphan)
3967 {
3968 	int ret = 0;
3969 	u64 ino = parent_ref->dir;
3970 	u64 ino_gen = parent_ref->dir_gen;
3971 	u64 parent_ino_before, parent_ino_after;
3972 	struct fs_path *path_before = NULL;
3973 	struct fs_path *path_after = NULL;
3974 	int len1, len2;
3975 
3976 	path_after = fs_path_alloc();
3977 	path_before = fs_path_alloc();
3978 	if (!path_after || !path_before) {
3979 		ret = -ENOMEM;
3980 		goto out;
3981 	}
3982 
3983 	/*
3984 	 * Our current directory inode may not yet be renamed/moved because some
3985 	 * ancestor (immediate or not) has to be renamed/moved first. So find if
3986 	 * such ancestor exists and make sure our own rename/move happens after
3987 	 * that ancestor is processed to avoid path build infinite loops (done
3988 	 * at get_cur_path()).
3989 	 */
3990 	while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3991 		u64 parent_ino_after_gen;
3992 
3993 		if (is_waiting_for_move(sctx, ino)) {
3994 			/*
3995 			 * If the current inode is an ancestor of ino in the
3996 			 * parent root, we need to delay the rename of the
3997 			 * current inode, otherwise don't delayed the rename
3998 			 * because we can end up with a circular dependency
3999 			 * of renames, resulting in some directories never
4000 			 * getting the respective rename operations issued in
4001 			 * the send stream or getting into infinite path build
4002 			 * loops.
4003 			 */
4004 			ret = is_ancestor(sctx->parent_root,
4005 					  sctx->cur_ino, sctx->cur_inode_gen,
4006 					  ino, path_before);
4007 			if (ret)
4008 				break;
4009 		}
4010 
4011 		fs_path_reset(path_before);
4012 		fs_path_reset(path_after);
4013 
4014 		ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4015 				    &parent_ino_after_gen, path_after);
4016 		if (ret < 0)
4017 			goto out;
4018 		ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4019 				    NULL, path_before);
4020 		if (ret < 0 && ret != -ENOENT) {
4021 			goto out;
4022 		} else if (ret == -ENOENT) {
4023 			ret = 0;
4024 			break;
4025 		}
4026 
4027 		len1 = fs_path_len(path_before);
4028 		len2 = fs_path_len(path_after);
4029 		if (ino > sctx->cur_ino &&
4030 		    (parent_ino_before != parent_ino_after || len1 != len2 ||
4031 		     memcmp(path_before->start, path_after->start, len1))) {
4032 			u64 parent_ino_gen;
4033 
4034 			ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4035 			if (ret < 0)
4036 				goto out;
4037 			if (ino_gen == parent_ino_gen) {
4038 				ret = 1;
4039 				break;
4040 			}
4041 		}
4042 		ino = parent_ino_after;
4043 		ino_gen = parent_ino_after_gen;
4044 	}
4045 
4046 out:
4047 	fs_path_free(path_before);
4048 	fs_path_free(path_after);
4049 
4050 	if (ret == 1) {
4051 		ret = add_pending_dir_move(sctx,
4052 					   sctx->cur_ino,
4053 					   sctx->cur_inode_gen,
4054 					   ino,
4055 					   &sctx->new_refs,
4056 					   &sctx->deleted_refs,
4057 					   is_orphan);
4058 		if (!ret)
4059 			ret = 1;
4060 	}
4061 
4062 	return ret;
4063 }
4064 
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4065 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4066 {
4067 	int ret;
4068 	struct fs_path *new_path;
4069 
4070 	/*
4071 	 * Our reference's name member points to its full_path member string, so
4072 	 * we use here a new path.
4073 	 */
4074 	new_path = fs_path_alloc();
4075 	if (!new_path)
4076 		return -ENOMEM;
4077 
4078 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4079 	if (ret < 0) {
4080 		fs_path_free(new_path);
4081 		return ret;
4082 	}
4083 	ret = fs_path_add(new_path, ref->name, ref->name_len);
4084 	if (ret < 0) {
4085 		fs_path_free(new_path);
4086 		return ret;
4087 	}
4088 
4089 	fs_path_free(ref->full_path);
4090 	set_ref_path(ref, new_path);
4091 
4092 	return 0;
4093 }
4094 
4095 /*
4096  * When processing the new references for an inode we may orphanize an existing
4097  * directory inode because its old name conflicts with one of the new references
4098  * of the current inode. Later, when processing another new reference of our
4099  * inode, we might need to orphanize another inode, but the path we have in the
4100  * reference reflects the pre-orphanization name of the directory we previously
4101  * orphanized. For example:
4102  *
4103  * parent snapshot looks like:
4104  *
4105  * .                                     (ino 256)
4106  * |----- f1                             (ino 257)
4107  * |----- f2                             (ino 258)
4108  * |----- d1/                            (ino 259)
4109  *        |----- d2/                     (ino 260)
4110  *
4111  * send snapshot looks like:
4112  *
4113  * .                                     (ino 256)
4114  * |----- d1                             (ino 258)
4115  * |----- f2/                            (ino 259)
4116  *        |----- f2_link/                (ino 260)
4117  *        |       |----- f1              (ino 257)
4118  *        |
4119  *        |----- d2                      (ino 258)
4120  *
4121  * When processing inode 257 we compute the name for inode 259 as "d1", and we
4122  * cache it in the name cache. Later when we start processing inode 258, when
4123  * collecting all its new references we set a full path of "d1/d2" for its new
4124  * reference with name "d2". When we start processing the new references we
4125  * start by processing the new reference with name "d1", and this results in
4126  * orphanizing inode 259, since its old reference causes a conflict. Then we
4127  * move on the next new reference, with name "d2", and we find out we must
4128  * orphanize inode 260, as its old reference conflicts with ours - but for the
4129  * orphanization we use a source path corresponding to the path we stored in the
4130  * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4131  * receiver fail since the path component "d1/" no longer exists, it was renamed
4132  * to "o259-6-0/" when processing the previous new reference. So in this case we
4133  * must recompute the path in the new reference and use it for the new
4134  * orphanization operation.
4135  */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)4136 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4137 {
4138 	char *name;
4139 	int ret;
4140 
4141 	name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4142 	if (!name)
4143 		return -ENOMEM;
4144 
4145 	fs_path_reset(ref->full_path);
4146 	ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4147 	if (ret < 0)
4148 		goto out;
4149 
4150 	ret = fs_path_add(ref->full_path, name, ref->name_len);
4151 	if (ret < 0)
4152 		goto out;
4153 
4154 	/* Update the reference's base name pointer. */
4155 	set_ref_path(ref, ref->full_path);
4156 out:
4157 	kfree(name);
4158 	return ret;
4159 }
4160 
4161 /*
4162  * This does all the move/link/unlink/rmdir magic.
4163  */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)4164 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4165 {
4166 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4167 	int ret = 0;
4168 	struct recorded_ref *cur;
4169 	struct recorded_ref *cur2;
4170 	LIST_HEAD(check_dirs);
4171 	struct fs_path *valid_path = NULL;
4172 	u64 ow_inode = 0;
4173 	u64 ow_gen;
4174 	u64 ow_mode;
4175 	int did_overwrite = 0;
4176 	int is_orphan = 0;
4177 	u64 last_dir_ino_rm = 0;
4178 	bool can_rename = true;
4179 	bool orphanized_dir = false;
4180 	bool orphanized_ancestor = false;
4181 
4182 	btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4183 
4184 	/*
4185 	 * This should never happen as the root dir always has the same ref
4186 	 * which is always '..'
4187 	 */
4188 	if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4189 		btrfs_err(fs_info,
4190 			  "send: unexpected inode %llu in process_recorded_refs()",
4191 			  sctx->cur_ino);
4192 		ret = -EINVAL;
4193 		goto out;
4194 	}
4195 
4196 	valid_path = fs_path_alloc();
4197 	if (!valid_path) {
4198 		ret = -ENOMEM;
4199 		goto out;
4200 	}
4201 
4202 	/*
4203 	 * First, check if the first ref of the current inode was overwritten
4204 	 * before. If yes, we know that the current inode was already orphanized
4205 	 * and thus use the orphan name. If not, we can use get_cur_path to
4206 	 * get the path of the first ref as it would like while receiving at
4207 	 * this point in time.
4208 	 * New inodes are always orphan at the beginning, so force to use the
4209 	 * orphan name in this case.
4210 	 * The first ref is stored in valid_path and will be updated if it
4211 	 * gets moved around.
4212 	 */
4213 	if (!sctx->cur_inode_new) {
4214 		ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4215 				sctx->cur_inode_gen);
4216 		if (ret < 0)
4217 			goto out;
4218 		if (ret)
4219 			did_overwrite = 1;
4220 	}
4221 	if (sctx->cur_inode_new || did_overwrite) {
4222 		ret = gen_unique_name(sctx, sctx->cur_ino,
4223 				sctx->cur_inode_gen, valid_path);
4224 		if (ret < 0)
4225 			goto out;
4226 		is_orphan = 1;
4227 	} else {
4228 		ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4229 				valid_path);
4230 		if (ret < 0)
4231 			goto out;
4232 	}
4233 
4234 	/*
4235 	 * Before doing any rename and link operations, do a first pass on the
4236 	 * new references to orphanize any unprocessed inodes that may have a
4237 	 * reference that conflicts with one of the new references of the current
4238 	 * inode. This needs to happen first because a new reference may conflict
4239 	 * with the old reference of a parent directory, so we must make sure
4240 	 * that the path used for link and rename commands don't use an
4241 	 * orphanized name when an ancestor was not yet orphanized.
4242 	 *
4243 	 * Example:
4244 	 *
4245 	 * Parent snapshot:
4246 	 *
4247 	 * .                                                      (ino 256)
4248 	 * |----- testdir/                                        (ino 259)
4249 	 * |          |----- a                                    (ino 257)
4250 	 * |
4251 	 * |----- b                                               (ino 258)
4252 	 *
4253 	 * Send snapshot:
4254 	 *
4255 	 * .                                                      (ino 256)
4256 	 * |----- testdir_2/                                      (ino 259)
4257 	 * |          |----- a                                    (ino 260)
4258 	 * |
4259 	 * |----- testdir                                         (ino 257)
4260 	 * |----- b                                               (ino 257)
4261 	 * |----- b2                                              (ino 258)
4262 	 *
4263 	 * Processing the new reference for inode 257 with name "b" may happen
4264 	 * before processing the new reference with name "testdir". If so, we
4265 	 * must make sure that by the time we send a link command to create the
4266 	 * hard link "b", inode 259 was already orphanized, since the generated
4267 	 * path in "valid_path" already contains the orphanized name for 259.
4268 	 * We are processing inode 257, so only later when processing 259 we do
4269 	 * the rename operation to change its temporary (orphanized) name to
4270 	 * "testdir_2".
4271 	 */
4272 	list_for_each_entry(cur, &sctx->new_refs, list) {
4273 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4274 		if (ret < 0)
4275 			goto out;
4276 		if (ret == inode_state_will_create)
4277 			continue;
4278 
4279 		/*
4280 		 * Check if this new ref would overwrite the first ref of another
4281 		 * unprocessed inode. If yes, orphanize the overwritten inode.
4282 		 * If we find an overwritten ref that is not the first ref,
4283 		 * simply unlink it.
4284 		 */
4285 		ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4286 				cur->name, cur->name_len,
4287 				&ow_inode, &ow_gen, &ow_mode);
4288 		if (ret < 0)
4289 			goto out;
4290 		if (ret) {
4291 			ret = is_first_ref(sctx->parent_root,
4292 					   ow_inode, cur->dir, cur->name,
4293 					   cur->name_len);
4294 			if (ret < 0)
4295 				goto out;
4296 			if (ret) {
4297 				struct name_cache_entry *nce;
4298 				struct waiting_dir_move *wdm;
4299 
4300 				if (orphanized_dir) {
4301 					ret = refresh_ref_path(sctx, cur);
4302 					if (ret < 0)
4303 						goto out;
4304 				}
4305 
4306 				ret = orphanize_inode(sctx, ow_inode, ow_gen,
4307 						cur->full_path);
4308 				if (ret < 0)
4309 					goto out;
4310 				if (S_ISDIR(ow_mode))
4311 					orphanized_dir = true;
4312 
4313 				/*
4314 				 * If ow_inode has its rename operation delayed
4315 				 * make sure that its orphanized name is used in
4316 				 * the source path when performing its rename
4317 				 * operation.
4318 				 */
4319 				wdm = get_waiting_dir_move(sctx, ow_inode);
4320 				if (wdm)
4321 					wdm->orphanized = true;
4322 
4323 				/*
4324 				 * Make sure we clear our orphanized inode's
4325 				 * name from the name cache. This is because the
4326 				 * inode ow_inode might be an ancestor of some
4327 				 * other inode that will be orphanized as well
4328 				 * later and has an inode number greater than
4329 				 * sctx->send_progress. We need to prevent
4330 				 * future name lookups from using the old name
4331 				 * and get instead the orphan name.
4332 				 */
4333 				nce = name_cache_search(sctx, ow_inode, ow_gen);
4334 				if (nce)
4335 					btrfs_lru_cache_remove(&sctx->name_cache,
4336 							       &nce->entry);
4337 
4338 				/*
4339 				 * ow_inode might currently be an ancestor of
4340 				 * cur_ino, therefore compute valid_path (the
4341 				 * current path of cur_ino) again because it
4342 				 * might contain the pre-orphanization name of
4343 				 * ow_inode, which is no longer valid.
4344 				 */
4345 				ret = is_ancestor(sctx->parent_root,
4346 						  ow_inode, ow_gen,
4347 						  sctx->cur_ino, NULL);
4348 				if (ret > 0) {
4349 					orphanized_ancestor = true;
4350 					fs_path_reset(valid_path);
4351 					ret = get_cur_path(sctx, sctx->cur_ino,
4352 							   sctx->cur_inode_gen,
4353 							   valid_path);
4354 				}
4355 				if (ret < 0)
4356 					goto out;
4357 			} else {
4358 				/*
4359 				 * If we previously orphanized a directory that
4360 				 * collided with a new reference that we already
4361 				 * processed, recompute the current path because
4362 				 * that directory may be part of the path.
4363 				 */
4364 				if (orphanized_dir) {
4365 					ret = refresh_ref_path(sctx, cur);
4366 					if (ret < 0)
4367 						goto out;
4368 				}
4369 				ret = send_unlink(sctx, cur->full_path);
4370 				if (ret < 0)
4371 					goto out;
4372 			}
4373 		}
4374 
4375 	}
4376 
4377 	list_for_each_entry(cur, &sctx->new_refs, list) {
4378 		/*
4379 		 * We may have refs where the parent directory does not exist
4380 		 * yet. This happens if the parent directories inum is higher
4381 		 * than the current inum. To handle this case, we create the
4382 		 * parent directory out of order. But we need to check if this
4383 		 * did already happen before due to other refs in the same dir.
4384 		 */
4385 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4386 		if (ret < 0)
4387 			goto out;
4388 		if (ret == inode_state_will_create) {
4389 			ret = 0;
4390 			/*
4391 			 * First check if any of the current inodes refs did
4392 			 * already create the dir.
4393 			 */
4394 			list_for_each_entry(cur2, &sctx->new_refs, list) {
4395 				if (cur == cur2)
4396 					break;
4397 				if (cur2->dir == cur->dir) {
4398 					ret = 1;
4399 					break;
4400 				}
4401 			}
4402 
4403 			/*
4404 			 * If that did not happen, check if a previous inode
4405 			 * did already create the dir.
4406 			 */
4407 			if (!ret)
4408 				ret = did_create_dir(sctx, cur->dir);
4409 			if (ret < 0)
4410 				goto out;
4411 			if (!ret) {
4412 				ret = send_create_inode(sctx, cur->dir);
4413 				if (ret < 0)
4414 					goto out;
4415 				cache_dir_created(sctx, cur->dir);
4416 			}
4417 		}
4418 
4419 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4420 			ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4421 			if (ret < 0)
4422 				goto out;
4423 			if (ret == 1) {
4424 				can_rename = false;
4425 				*pending_move = 1;
4426 			}
4427 		}
4428 
4429 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4430 		    can_rename) {
4431 			ret = wait_for_parent_move(sctx, cur, is_orphan);
4432 			if (ret < 0)
4433 				goto out;
4434 			if (ret == 1) {
4435 				can_rename = false;
4436 				*pending_move = 1;
4437 			}
4438 		}
4439 
4440 		/*
4441 		 * link/move the ref to the new place. If we have an orphan
4442 		 * inode, move it and update valid_path. If not, link or move
4443 		 * it depending on the inode mode.
4444 		 */
4445 		if (is_orphan && can_rename) {
4446 			ret = send_rename(sctx, valid_path, cur->full_path);
4447 			if (ret < 0)
4448 				goto out;
4449 			is_orphan = 0;
4450 			ret = fs_path_copy(valid_path, cur->full_path);
4451 			if (ret < 0)
4452 				goto out;
4453 		} else if (can_rename) {
4454 			if (S_ISDIR(sctx->cur_inode_mode)) {
4455 				/*
4456 				 * Dirs can't be linked, so move it. For moved
4457 				 * dirs, we always have one new and one deleted
4458 				 * ref. The deleted ref is ignored later.
4459 				 */
4460 				ret = send_rename(sctx, valid_path,
4461 						  cur->full_path);
4462 				if (!ret)
4463 					ret = fs_path_copy(valid_path,
4464 							   cur->full_path);
4465 				if (ret < 0)
4466 					goto out;
4467 			} else {
4468 				/*
4469 				 * We might have previously orphanized an inode
4470 				 * which is an ancestor of our current inode,
4471 				 * so our reference's full path, which was
4472 				 * computed before any such orphanizations, must
4473 				 * be updated.
4474 				 */
4475 				if (orphanized_dir) {
4476 					ret = update_ref_path(sctx, cur);
4477 					if (ret < 0)
4478 						goto out;
4479 				}
4480 				ret = send_link(sctx, cur->full_path,
4481 						valid_path);
4482 				if (ret < 0)
4483 					goto out;
4484 			}
4485 		}
4486 		ret = dup_ref(cur, &check_dirs);
4487 		if (ret < 0)
4488 			goto out;
4489 	}
4490 
4491 	if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4492 		/*
4493 		 * Check if we can already rmdir the directory. If not,
4494 		 * orphanize it. For every dir item inside that gets deleted
4495 		 * later, we do this check again and rmdir it then if possible.
4496 		 * See the use of check_dirs for more details.
4497 		 */
4498 		ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4499 		if (ret < 0)
4500 			goto out;
4501 		if (ret) {
4502 			ret = send_rmdir(sctx, valid_path);
4503 			if (ret < 0)
4504 				goto out;
4505 		} else if (!is_orphan) {
4506 			ret = orphanize_inode(sctx, sctx->cur_ino,
4507 					sctx->cur_inode_gen, valid_path);
4508 			if (ret < 0)
4509 				goto out;
4510 			is_orphan = 1;
4511 		}
4512 
4513 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4514 			ret = dup_ref(cur, &check_dirs);
4515 			if (ret < 0)
4516 				goto out;
4517 		}
4518 	} else if (S_ISDIR(sctx->cur_inode_mode) &&
4519 		   !list_empty(&sctx->deleted_refs)) {
4520 		/*
4521 		 * We have a moved dir. Add the old parent to check_dirs
4522 		 */
4523 		cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4524 				list);
4525 		ret = dup_ref(cur, &check_dirs);
4526 		if (ret < 0)
4527 			goto out;
4528 	} else if (!S_ISDIR(sctx->cur_inode_mode)) {
4529 		/*
4530 		 * We have a non dir inode. Go through all deleted refs and
4531 		 * unlink them if they were not already overwritten by other
4532 		 * inodes.
4533 		 */
4534 		list_for_each_entry(cur, &sctx->deleted_refs, list) {
4535 			ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4536 					sctx->cur_ino, sctx->cur_inode_gen,
4537 					cur->name, cur->name_len);
4538 			if (ret < 0)
4539 				goto out;
4540 			if (!ret) {
4541 				/*
4542 				 * If we orphanized any ancestor before, we need
4543 				 * to recompute the full path for deleted names,
4544 				 * since any such path was computed before we
4545 				 * processed any references and orphanized any
4546 				 * ancestor inode.
4547 				 */
4548 				if (orphanized_ancestor) {
4549 					ret = update_ref_path(sctx, cur);
4550 					if (ret < 0)
4551 						goto out;
4552 				}
4553 				ret = send_unlink(sctx, cur->full_path);
4554 				if (ret < 0)
4555 					goto out;
4556 			}
4557 			ret = dup_ref(cur, &check_dirs);
4558 			if (ret < 0)
4559 				goto out;
4560 		}
4561 		/*
4562 		 * If the inode is still orphan, unlink the orphan. This may
4563 		 * happen when a previous inode did overwrite the first ref
4564 		 * of this inode and no new refs were added for the current
4565 		 * inode. Unlinking does not mean that the inode is deleted in
4566 		 * all cases. There may still be links to this inode in other
4567 		 * places.
4568 		 */
4569 		if (is_orphan) {
4570 			ret = send_unlink(sctx, valid_path);
4571 			if (ret < 0)
4572 				goto out;
4573 		}
4574 	}
4575 
4576 	/*
4577 	 * We did collect all parent dirs where cur_inode was once located. We
4578 	 * now go through all these dirs and check if they are pending for
4579 	 * deletion and if it's finally possible to perform the rmdir now.
4580 	 * We also update the inode stats of the parent dirs here.
4581 	 */
4582 	list_for_each_entry(cur, &check_dirs, list) {
4583 		/*
4584 		 * In case we had refs into dirs that were not processed yet,
4585 		 * we don't need to do the utime and rmdir logic for these dirs.
4586 		 * The dir will be processed later.
4587 		 */
4588 		if (cur->dir > sctx->cur_ino)
4589 			continue;
4590 
4591 		ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4592 		if (ret < 0)
4593 			goto out;
4594 
4595 		if (ret == inode_state_did_create ||
4596 		    ret == inode_state_no_change) {
4597 			ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4598 			if (ret < 0)
4599 				goto out;
4600 		} else if (ret == inode_state_did_delete &&
4601 			   cur->dir != last_dir_ino_rm) {
4602 			ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4603 			if (ret < 0)
4604 				goto out;
4605 			if (ret) {
4606 				ret = get_cur_path(sctx, cur->dir,
4607 						   cur->dir_gen, valid_path);
4608 				if (ret < 0)
4609 					goto out;
4610 				ret = send_rmdir(sctx, valid_path);
4611 				if (ret < 0)
4612 					goto out;
4613 				last_dir_ino_rm = cur->dir;
4614 			}
4615 		}
4616 	}
4617 
4618 	ret = 0;
4619 
4620 out:
4621 	__free_recorded_refs(&check_dirs);
4622 	free_recorded_refs(sctx);
4623 	fs_path_free(valid_path);
4624 	return ret;
4625 }
4626 
rbtree_ref_comp(const void * k,const struct rb_node * node)4627 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4628 {
4629 	const struct recorded_ref *data = k;
4630 	const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4631 	int result;
4632 
4633 	if (data->dir > ref->dir)
4634 		return 1;
4635 	if (data->dir < ref->dir)
4636 		return -1;
4637 	if (data->dir_gen > ref->dir_gen)
4638 		return 1;
4639 	if (data->dir_gen < ref->dir_gen)
4640 		return -1;
4641 	if (data->name_len > ref->name_len)
4642 		return 1;
4643 	if (data->name_len < ref->name_len)
4644 		return -1;
4645 	result = strcmp(data->name, ref->name);
4646 	if (result > 0)
4647 		return 1;
4648 	if (result < 0)
4649 		return -1;
4650 	return 0;
4651 }
4652 
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4653 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4654 {
4655 	const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4656 
4657 	return rbtree_ref_comp(entry, parent) < 0;
4658 }
4659 
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4660 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4661 			      struct fs_path *name, u64 dir, u64 dir_gen,
4662 			      struct send_ctx *sctx)
4663 {
4664 	int ret = 0;
4665 	struct fs_path *path = NULL;
4666 	struct recorded_ref *ref = NULL;
4667 
4668 	path = fs_path_alloc();
4669 	if (!path) {
4670 		ret = -ENOMEM;
4671 		goto out;
4672 	}
4673 
4674 	ref = recorded_ref_alloc();
4675 	if (!ref) {
4676 		ret = -ENOMEM;
4677 		goto out;
4678 	}
4679 
4680 	ret = get_cur_path(sctx, dir, dir_gen, path);
4681 	if (ret < 0)
4682 		goto out;
4683 	ret = fs_path_add_path(path, name);
4684 	if (ret < 0)
4685 		goto out;
4686 
4687 	ref->dir = dir;
4688 	ref->dir_gen = dir_gen;
4689 	set_ref_path(ref, path);
4690 	list_add_tail(&ref->list, refs);
4691 	rb_add(&ref->node, root, rbtree_ref_less);
4692 	ref->root = root;
4693 out:
4694 	if (ret) {
4695 		if (path && (!ref || !ref->full_path))
4696 			fs_path_free(path);
4697 		recorded_ref_free(ref);
4698 	}
4699 	return ret;
4700 }
4701 
record_new_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4702 static int record_new_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4703 {
4704 	int ret = 0;
4705 	struct send_ctx *sctx = ctx;
4706 	struct rb_node *node = NULL;
4707 	struct recorded_ref data;
4708 	struct recorded_ref *ref;
4709 	u64 dir_gen;
4710 
4711 	ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4712 	if (ret < 0)
4713 		goto out;
4714 
4715 	data.dir = dir;
4716 	data.dir_gen = dir_gen;
4717 	set_ref_path(&data, name);
4718 	node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4719 	if (node) {
4720 		ref = rb_entry(node, struct recorded_ref, node);
4721 		recorded_ref_free(ref);
4722 	} else {
4723 		ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4724 					 &sctx->new_refs, name, dir, dir_gen,
4725 					 sctx);
4726 	}
4727 out:
4728 	return ret;
4729 }
4730 
record_deleted_ref_if_needed(u64 dir,struct fs_path * name,void * ctx)4731 static int record_deleted_ref_if_needed(u64 dir, struct fs_path *name, void *ctx)
4732 {
4733 	int ret = 0;
4734 	struct send_ctx *sctx = ctx;
4735 	struct rb_node *node = NULL;
4736 	struct recorded_ref data;
4737 	struct recorded_ref *ref;
4738 	u64 dir_gen;
4739 
4740 	ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4741 	if (ret < 0)
4742 		goto out;
4743 
4744 	data.dir = dir;
4745 	data.dir_gen = dir_gen;
4746 	set_ref_path(&data, name);
4747 	node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4748 	if (node) {
4749 		ref = rb_entry(node, struct recorded_ref, node);
4750 		recorded_ref_free(ref);
4751 	} else {
4752 		ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4753 					 &sctx->deleted_refs, name, dir,
4754 					 dir_gen, sctx);
4755 	}
4756 out:
4757 	return ret;
4758 }
4759 
record_new_ref(struct send_ctx * sctx)4760 static int record_new_ref(struct send_ctx *sctx)
4761 {
4762 	int ret;
4763 
4764 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4765 				sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4766 	if (ret < 0)
4767 		goto out;
4768 	ret = 0;
4769 
4770 out:
4771 	return ret;
4772 }
4773 
record_deleted_ref(struct send_ctx * sctx)4774 static int record_deleted_ref(struct send_ctx *sctx)
4775 {
4776 	int ret;
4777 
4778 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4779 				sctx->cmp_key, 0, record_deleted_ref_if_needed,
4780 				sctx);
4781 	if (ret < 0)
4782 		goto out;
4783 	ret = 0;
4784 
4785 out:
4786 	return ret;
4787 }
4788 
record_changed_ref(struct send_ctx * sctx)4789 static int record_changed_ref(struct send_ctx *sctx)
4790 {
4791 	int ret = 0;
4792 
4793 	ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4794 			sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4795 	if (ret < 0)
4796 		goto out;
4797 	ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4798 			sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4799 	if (ret < 0)
4800 		goto out;
4801 	ret = 0;
4802 
4803 out:
4804 	return ret;
4805 }
4806 
4807 /*
4808  * Record and process all refs at once. Needed when an inode changes the
4809  * generation number, which means that it was deleted and recreated.
4810  */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4811 static int process_all_refs(struct send_ctx *sctx,
4812 			    enum btrfs_compare_tree_result cmd)
4813 {
4814 	int ret = 0;
4815 	int iter_ret = 0;
4816 	struct btrfs_root *root;
4817 	struct btrfs_path *path;
4818 	struct btrfs_key key;
4819 	struct btrfs_key found_key;
4820 	iterate_inode_ref_t cb;
4821 	int pending_move = 0;
4822 
4823 	path = alloc_path_for_send();
4824 	if (!path)
4825 		return -ENOMEM;
4826 
4827 	if (cmd == BTRFS_COMPARE_TREE_NEW) {
4828 		root = sctx->send_root;
4829 		cb = record_new_ref_if_needed;
4830 	} else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4831 		root = sctx->parent_root;
4832 		cb = record_deleted_ref_if_needed;
4833 	} else {
4834 		btrfs_err(sctx->send_root->fs_info,
4835 				"Wrong command %d in process_all_refs", cmd);
4836 		ret = -EINVAL;
4837 		goto out;
4838 	}
4839 
4840 	key.objectid = sctx->cmp_key->objectid;
4841 	key.type = BTRFS_INODE_REF_KEY;
4842 	key.offset = 0;
4843 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4844 		if (found_key.objectid != key.objectid ||
4845 		    (found_key.type != BTRFS_INODE_REF_KEY &&
4846 		     found_key.type != BTRFS_INODE_EXTREF_KEY))
4847 			break;
4848 
4849 		ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4850 		if (ret < 0)
4851 			goto out;
4852 	}
4853 	/* Catch error found during iteration */
4854 	if (iter_ret < 0) {
4855 		ret = iter_ret;
4856 		goto out;
4857 	}
4858 	btrfs_release_path(path);
4859 
4860 	/*
4861 	 * We don't actually care about pending_move as we are simply
4862 	 * re-creating this inode and will be rename'ing it into place once we
4863 	 * rename the parent directory.
4864 	 */
4865 	ret = process_recorded_refs(sctx, &pending_move);
4866 out:
4867 	btrfs_free_path(path);
4868 	return ret;
4869 }
4870 
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4871 static int send_set_xattr(struct send_ctx *sctx,
4872 			  struct fs_path *path,
4873 			  const char *name, int name_len,
4874 			  const char *data, int data_len)
4875 {
4876 	int ret = 0;
4877 
4878 	ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4879 	if (ret < 0)
4880 		goto out;
4881 
4882 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4883 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4884 	TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4885 
4886 	ret = send_cmd(sctx);
4887 
4888 tlv_put_failure:
4889 out:
4890 	return ret;
4891 }
4892 
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4893 static int send_remove_xattr(struct send_ctx *sctx,
4894 			  struct fs_path *path,
4895 			  const char *name, int name_len)
4896 {
4897 	int ret = 0;
4898 
4899 	ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4900 	if (ret < 0)
4901 		goto out;
4902 
4903 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4904 	TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4905 
4906 	ret = send_cmd(sctx);
4907 
4908 tlv_put_failure:
4909 out:
4910 	return ret;
4911 }
4912 
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4913 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4914 			       const char *name, int name_len, const char *data,
4915 			       int data_len, void *ctx)
4916 {
4917 	int ret;
4918 	struct send_ctx *sctx = ctx;
4919 	struct fs_path *p;
4920 	struct posix_acl_xattr_header dummy_acl;
4921 
4922 	/* Capabilities are emitted by finish_inode_if_needed */
4923 	if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4924 		return 0;
4925 
4926 	p = fs_path_alloc();
4927 	if (!p)
4928 		return -ENOMEM;
4929 
4930 	/*
4931 	 * This hack is needed because empty acls are stored as zero byte
4932 	 * data in xattrs. Problem with that is, that receiving these zero byte
4933 	 * acls will fail later. To fix this, we send a dummy acl list that
4934 	 * only contains the version number and no entries.
4935 	 */
4936 	if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4937 	    !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4938 		if (data_len == 0) {
4939 			dummy_acl.a_version =
4940 					cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4941 			data = (char *)&dummy_acl;
4942 			data_len = sizeof(dummy_acl);
4943 		}
4944 	}
4945 
4946 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4947 	if (ret < 0)
4948 		goto out;
4949 
4950 	ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4951 
4952 out:
4953 	fs_path_free(p);
4954 	return ret;
4955 }
4956 
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4957 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4958 				   const char *name, int name_len,
4959 				   const char *data, int data_len, void *ctx)
4960 {
4961 	int ret;
4962 	struct send_ctx *sctx = ctx;
4963 	struct fs_path *p;
4964 
4965 	p = fs_path_alloc();
4966 	if (!p)
4967 		return -ENOMEM;
4968 
4969 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4970 	if (ret < 0)
4971 		goto out;
4972 
4973 	ret = send_remove_xattr(sctx, p, name, name_len);
4974 
4975 out:
4976 	fs_path_free(p);
4977 	return ret;
4978 }
4979 
process_new_xattr(struct send_ctx * sctx)4980 static int process_new_xattr(struct send_ctx *sctx)
4981 {
4982 	int ret = 0;
4983 
4984 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4985 			       __process_new_xattr, sctx);
4986 
4987 	return ret;
4988 }
4989 
process_deleted_xattr(struct send_ctx * sctx)4990 static int process_deleted_xattr(struct send_ctx *sctx)
4991 {
4992 	return iterate_dir_item(sctx->parent_root, sctx->right_path,
4993 				__process_deleted_xattr, sctx);
4994 }
4995 
4996 struct find_xattr_ctx {
4997 	const char *name;
4998 	int name_len;
4999 	int found_idx;
5000 	char *found_data;
5001 	int found_data_len;
5002 };
5003 
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)5004 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5005 			int name_len, const char *data, int data_len, void *vctx)
5006 {
5007 	struct find_xattr_ctx *ctx = vctx;
5008 
5009 	if (name_len == ctx->name_len &&
5010 	    strncmp(name, ctx->name, name_len) == 0) {
5011 		ctx->found_idx = num;
5012 		ctx->found_data_len = data_len;
5013 		ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5014 		if (!ctx->found_data)
5015 			return -ENOMEM;
5016 		return 1;
5017 	}
5018 	return 0;
5019 }
5020 
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)5021 static int find_xattr(struct btrfs_root *root,
5022 		      struct btrfs_path *path,
5023 		      struct btrfs_key *key,
5024 		      const char *name, int name_len,
5025 		      char **data, int *data_len)
5026 {
5027 	int ret;
5028 	struct find_xattr_ctx ctx;
5029 
5030 	ctx.name = name;
5031 	ctx.name_len = name_len;
5032 	ctx.found_idx = -1;
5033 	ctx.found_data = NULL;
5034 	ctx.found_data_len = 0;
5035 
5036 	ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5037 	if (ret < 0)
5038 		return ret;
5039 
5040 	if (ctx.found_idx == -1)
5041 		return -ENOENT;
5042 	if (data) {
5043 		*data = ctx.found_data;
5044 		*data_len = ctx.found_data_len;
5045 	} else {
5046 		kfree(ctx.found_data);
5047 	}
5048 	return ctx.found_idx;
5049 }
5050 
5051 
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5052 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5053 				       const char *name, int name_len,
5054 				       const char *data, int data_len,
5055 				       void *ctx)
5056 {
5057 	int ret;
5058 	struct send_ctx *sctx = ctx;
5059 	char *found_data = NULL;
5060 	int found_data_len  = 0;
5061 
5062 	ret = find_xattr(sctx->parent_root, sctx->right_path,
5063 			 sctx->cmp_key, name, name_len, &found_data,
5064 			 &found_data_len);
5065 	if (ret == -ENOENT) {
5066 		ret = __process_new_xattr(num, di_key, name, name_len, data,
5067 					  data_len, ctx);
5068 	} else if (ret >= 0) {
5069 		if (data_len != found_data_len ||
5070 		    memcmp(data, found_data, data_len)) {
5071 			ret = __process_new_xattr(num, di_key, name, name_len,
5072 						  data, data_len, ctx);
5073 		} else {
5074 			ret = 0;
5075 		}
5076 	}
5077 
5078 	kfree(found_data);
5079 	return ret;
5080 }
5081 
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)5082 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5083 					   const char *name, int name_len,
5084 					   const char *data, int data_len,
5085 					   void *ctx)
5086 {
5087 	int ret;
5088 	struct send_ctx *sctx = ctx;
5089 
5090 	ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5091 			 name, name_len, NULL, NULL);
5092 	if (ret == -ENOENT)
5093 		ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5094 					      data_len, ctx);
5095 	else if (ret >= 0)
5096 		ret = 0;
5097 
5098 	return ret;
5099 }
5100 
process_changed_xattr(struct send_ctx * sctx)5101 static int process_changed_xattr(struct send_ctx *sctx)
5102 {
5103 	int ret = 0;
5104 
5105 	ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5106 			__process_changed_new_xattr, sctx);
5107 	if (ret < 0)
5108 		goto out;
5109 	ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5110 			__process_changed_deleted_xattr, sctx);
5111 
5112 out:
5113 	return ret;
5114 }
5115 
process_all_new_xattrs(struct send_ctx * sctx)5116 static int process_all_new_xattrs(struct send_ctx *sctx)
5117 {
5118 	int ret = 0;
5119 	int iter_ret = 0;
5120 	struct btrfs_root *root;
5121 	struct btrfs_path *path;
5122 	struct btrfs_key key;
5123 	struct btrfs_key found_key;
5124 
5125 	path = alloc_path_for_send();
5126 	if (!path)
5127 		return -ENOMEM;
5128 
5129 	root = sctx->send_root;
5130 
5131 	key.objectid = sctx->cmp_key->objectid;
5132 	key.type = BTRFS_XATTR_ITEM_KEY;
5133 	key.offset = 0;
5134 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5135 		if (found_key.objectid != key.objectid ||
5136 		    found_key.type != key.type) {
5137 			ret = 0;
5138 			break;
5139 		}
5140 
5141 		ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5142 		if (ret < 0)
5143 			break;
5144 	}
5145 	/* Catch error found during iteration */
5146 	if (iter_ret < 0)
5147 		ret = iter_ret;
5148 
5149 	btrfs_free_path(path);
5150 	return ret;
5151 }
5152 
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)5153 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5154 		       struct fsverity_descriptor *desc)
5155 {
5156 	int ret;
5157 
5158 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5159 	if (ret < 0)
5160 		goto out;
5161 
5162 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5163 	TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5164 			le8_to_cpu(desc->hash_algorithm));
5165 	TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5166 			1U << le8_to_cpu(desc->log_blocksize));
5167 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5168 			le8_to_cpu(desc->salt_size));
5169 	TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5170 			le32_to_cpu(desc->sig_size));
5171 
5172 	ret = send_cmd(sctx);
5173 
5174 tlv_put_failure:
5175 out:
5176 	return ret;
5177 }
5178 
process_verity(struct send_ctx * sctx)5179 static int process_verity(struct send_ctx *sctx)
5180 {
5181 	int ret = 0;
5182 	struct inode *inode;
5183 	struct fs_path *p;
5184 
5185 	inode = btrfs_iget(sctx->cur_ino, sctx->send_root);
5186 	if (IS_ERR(inode))
5187 		return PTR_ERR(inode);
5188 
5189 	ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5190 	if (ret < 0)
5191 		goto iput;
5192 
5193 	if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5194 		ret = -EMSGSIZE;
5195 		goto iput;
5196 	}
5197 	if (!sctx->verity_descriptor) {
5198 		sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5199 						   GFP_KERNEL);
5200 		if (!sctx->verity_descriptor) {
5201 			ret = -ENOMEM;
5202 			goto iput;
5203 		}
5204 	}
5205 
5206 	ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5207 	if (ret < 0)
5208 		goto iput;
5209 
5210 	p = fs_path_alloc();
5211 	if (!p) {
5212 		ret = -ENOMEM;
5213 		goto iput;
5214 	}
5215 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5216 	if (ret < 0)
5217 		goto free_path;
5218 
5219 	ret = send_verity(sctx, p, sctx->verity_descriptor);
5220 	if (ret < 0)
5221 		goto free_path;
5222 
5223 free_path:
5224 	fs_path_free(p);
5225 iput:
5226 	iput(inode);
5227 	return ret;
5228 }
5229 
max_send_read_size(const struct send_ctx * sctx)5230 static inline u64 max_send_read_size(const struct send_ctx *sctx)
5231 {
5232 	return sctx->send_max_size - SZ_16K;
5233 }
5234 
put_data_header(struct send_ctx * sctx,u32 len)5235 static int put_data_header(struct send_ctx *sctx, u32 len)
5236 {
5237 	if (WARN_ON_ONCE(sctx->put_data))
5238 		return -EINVAL;
5239 	sctx->put_data = true;
5240 	if (sctx->proto >= 2) {
5241 		/*
5242 		 * Since v2, the data attribute header doesn't include a length,
5243 		 * it is implicitly to the end of the command.
5244 		 */
5245 		if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5246 			return -EOVERFLOW;
5247 		put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5248 		sctx->send_size += sizeof(__le16);
5249 	} else {
5250 		struct btrfs_tlv_header *hdr;
5251 
5252 		if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5253 			return -EOVERFLOW;
5254 		hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5255 		put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5256 		put_unaligned_le16(len, &hdr->tlv_len);
5257 		sctx->send_size += sizeof(*hdr);
5258 	}
5259 	return 0;
5260 }
5261 
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5262 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5263 {
5264 	struct btrfs_root *root = sctx->send_root;
5265 	struct btrfs_fs_info *fs_info = root->fs_info;
5266 	struct folio *folio;
5267 	pgoff_t index = offset >> PAGE_SHIFT;
5268 	pgoff_t last_index;
5269 	unsigned pg_offset = offset_in_page(offset);
5270 	struct address_space *mapping = sctx->cur_inode->i_mapping;
5271 	int ret;
5272 
5273 	ret = put_data_header(sctx, len);
5274 	if (ret)
5275 		return ret;
5276 
5277 	last_index = (offset + len - 1) >> PAGE_SHIFT;
5278 
5279 	while (index <= last_index) {
5280 		unsigned cur_len = min_t(unsigned, len,
5281 					 PAGE_SIZE - pg_offset);
5282 
5283 		folio = filemap_lock_folio(mapping, index);
5284 		if (IS_ERR(folio)) {
5285 			page_cache_sync_readahead(mapping,
5286 						  &sctx->ra, NULL, index,
5287 						  last_index + 1 - index);
5288 
5289 	                folio = filemap_grab_folio(mapping, index);
5290 			if (IS_ERR(folio)) {
5291 				ret = PTR_ERR(folio);
5292 				break;
5293 			}
5294 		}
5295 
5296 		WARN_ON(folio_order(folio));
5297 
5298 		if (folio_test_readahead(folio))
5299 			page_cache_async_readahead(mapping, &sctx->ra, NULL, folio,
5300 						   last_index + 1 - index);
5301 
5302 		if (!folio_test_uptodate(folio)) {
5303 			btrfs_read_folio(NULL, folio);
5304 			folio_lock(folio);
5305 			if (!folio_test_uptodate(folio)) {
5306 				folio_unlock(folio);
5307 				btrfs_err(fs_info,
5308 			"send: IO error at offset %llu for inode %llu root %llu",
5309 					folio_pos(folio), sctx->cur_ino,
5310 					btrfs_root_id(sctx->send_root));
5311 				folio_put(folio);
5312 				ret = -EIO;
5313 				break;
5314 			}
5315 		}
5316 
5317 		memcpy_from_folio(sctx->send_buf + sctx->send_size, folio,
5318 				  pg_offset, cur_len);
5319 		folio_unlock(folio);
5320 		folio_put(folio);
5321 		index++;
5322 		pg_offset = 0;
5323 		len -= cur_len;
5324 		sctx->send_size += cur_len;
5325 	}
5326 
5327 	return ret;
5328 }
5329 
5330 /*
5331  * Read some bytes from the current inode/file and send a write command to
5332  * user space.
5333  */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5334 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5335 {
5336 	struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5337 	int ret = 0;
5338 	struct fs_path *p;
5339 
5340 	p = fs_path_alloc();
5341 	if (!p)
5342 		return -ENOMEM;
5343 
5344 	btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5345 
5346 	ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5347 	if (ret < 0)
5348 		goto out;
5349 
5350 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5351 	if (ret < 0)
5352 		goto out;
5353 
5354 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5355 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5356 	ret = put_file_data(sctx, offset, len);
5357 	if (ret < 0)
5358 		goto out;
5359 
5360 	ret = send_cmd(sctx);
5361 
5362 tlv_put_failure:
5363 out:
5364 	fs_path_free(p);
5365 	return ret;
5366 }
5367 
5368 /*
5369  * Send a clone command to user space.
5370  */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5371 static int send_clone(struct send_ctx *sctx,
5372 		      u64 offset, u32 len,
5373 		      struct clone_root *clone_root)
5374 {
5375 	int ret = 0;
5376 	struct fs_path *p;
5377 	u64 gen;
5378 
5379 	btrfs_debug(sctx->send_root->fs_info,
5380 		    "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5381 		    offset, len, btrfs_root_id(clone_root->root),
5382 		    clone_root->ino, clone_root->offset);
5383 
5384 	p = fs_path_alloc();
5385 	if (!p)
5386 		return -ENOMEM;
5387 
5388 	ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5389 	if (ret < 0)
5390 		goto out;
5391 
5392 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5393 	if (ret < 0)
5394 		goto out;
5395 
5396 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5397 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5398 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5399 
5400 	if (clone_root->root == sctx->send_root) {
5401 		ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5402 		if (ret < 0)
5403 			goto out;
5404 		ret = get_cur_path(sctx, clone_root->ino, gen, p);
5405 	} else {
5406 		ret = get_inode_path(clone_root->root, clone_root->ino, p);
5407 	}
5408 	if (ret < 0)
5409 		goto out;
5410 
5411 	/*
5412 	 * If the parent we're using has a received_uuid set then use that as
5413 	 * our clone source as that is what we will look for when doing a
5414 	 * receive.
5415 	 *
5416 	 * This covers the case that we create a snapshot off of a received
5417 	 * subvolume and then use that as the parent and try to receive on a
5418 	 * different host.
5419 	 */
5420 	if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5421 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5422 			     clone_root->root->root_item.received_uuid);
5423 	else
5424 		TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5425 			     clone_root->root->root_item.uuid);
5426 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5427 		    btrfs_root_ctransid(&clone_root->root->root_item));
5428 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5429 	TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5430 			clone_root->offset);
5431 
5432 	ret = send_cmd(sctx);
5433 
5434 tlv_put_failure:
5435 out:
5436 	fs_path_free(p);
5437 	return ret;
5438 }
5439 
5440 /*
5441  * Send an update extent command to user space.
5442  */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5443 static int send_update_extent(struct send_ctx *sctx,
5444 			      u64 offset, u32 len)
5445 {
5446 	int ret = 0;
5447 	struct fs_path *p;
5448 
5449 	p = fs_path_alloc();
5450 	if (!p)
5451 		return -ENOMEM;
5452 
5453 	ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5454 	if (ret < 0)
5455 		goto out;
5456 
5457 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5458 	if (ret < 0)
5459 		goto out;
5460 
5461 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5462 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5463 	TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5464 
5465 	ret = send_cmd(sctx);
5466 
5467 tlv_put_failure:
5468 out:
5469 	fs_path_free(p);
5470 	return ret;
5471 }
5472 
send_hole(struct send_ctx * sctx,u64 end)5473 static int send_hole(struct send_ctx *sctx, u64 end)
5474 {
5475 	struct fs_path *p = NULL;
5476 	u64 read_size = max_send_read_size(sctx);
5477 	u64 offset = sctx->cur_inode_last_extent;
5478 	int ret = 0;
5479 
5480 	/*
5481 	 * A hole that starts at EOF or beyond it. Since we do not yet support
5482 	 * fallocate (for extent preallocation and hole punching), sending a
5483 	 * write of zeroes starting at EOF or beyond would later require issuing
5484 	 * a truncate operation which would undo the write and achieve nothing.
5485 	 */
5486 	if (offset >= sctx->cur_inode_size)
5487 		return 0;
5488 
5489 	/*
5490 	 * Don't go beyond the inode's i_size due to prealloc extents that start
5491 	 * after the i_size.
5492 	 */
5493 	end = min_t(u64, end, sctx->cur_inode_size);
5494 
5495 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5496 		return send_update_extent(sctx, offset, end - offset);
5497 
5498 	p = fs_path_alloc();
5499 	if (!p)
5500 		return -ENOMEM;
5501 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5502 	if (ret < 0)
5503 		goto tlv_put_failure;
5504 	while (offset < end) {
5505 		u64 len = min(end - offset, read_size);
5506 
5507 		ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5508 		if (ret < 0)
5509 			break;
5510 		TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5511 		TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5512 		ret = put_data_header(sctx, len);
5513 		if (ret < 0)
5514 			break;
5515 		memset(sctx->send_buf + sctx->send_size, 0, len);
5516 		sctx->send_size += len;
5517 		ret = send_cmd(sctx);
5518 		if (ret < 0)
5519 			break;
5520 		offset += len;
5521 	}
5522 	sctx->cur_inode_next_write_offset = offset;
5523 tlv_put_failure:
5524 	fs_path_free(p);
5525 	return ret;
5526 }
5527 
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5528 static int send_encoded_inline_extent(struct send_ctx *sctx,
5529 				      struct btrfs_path *path, u64 offset,
5530 				      u64 len)
5531 {
5532 	struct btrfs_root *root = sctx->send_root;
5533 	struct btrfs_fs_info *fs_info = root->fs_info;
5534 	struct inode *inode;
5535 	struct fs_path *fspath;
5536 	struct extent_buffer *leaf = path->nodes[0];
5537 	struct btrfs_key key;
5538 	struct btrfs_file_extent_item *ei;
5539 	u64 ram_bytes;
5540 	size_t inline_size;
5541 	int ret;
5542 
5543 	inode = btrfs_iget(sctx->cur_ino, root);
5544 	if (IS_ERR(inode))
5545 		return PTR_ERR(inode);
5546 
5547 	fspath = fs_path_alloc();
5548 	if (!fspath) {
5549 		ret = -ENOMEM;
5550 		goto out;
5551 	}
5552 
5553 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5554 	if (ret < 0)
5555 		goto out;
5556 
5557 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5558 	if (ret < 0)
5559 		goto out;
5560 
5561 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5562 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5563 	ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5564 	inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5565 
5566 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5567 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5568 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5569 		    min(key.offset + ram_bytes - offset, len));
5570 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5571 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5572 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5573 				btrfs_file_extent_compression(leaf, ei));
5574 	if (ret < 0)
5575 		goto out;
5576 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5577 
5578 	ret = put_data_header(sctx, inline_size);
5579 	if (ret < 0)
5580 		goto out;
5581 	read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5582 			   btrfs_file_extent_inline_start(ei), inline_size);
5583 	sctx->send_size += inline_size;
5584 
5585 	ret = send_cmd(sctx);
5586 
5587 tlv_put_failure:
5588 out:
5589 	fs_path_free(fspath);
5590 	iput(inode);
5591 	return ret;
5592 }
5593 
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5594 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5595 			       u64 offset, u64 len)
5596 {
5597 	struct btrfs_root *root = sctx->send_root;
5598 	struct btrfs_fs_info *fs_info = root->fs_info;
5599 	struct inode *inode;
5600 	struct fs_path *fspath;
5601 	struct extent_buffer *leaf = path->nodes[0];
5602 	struct btrfs_key key;
5603 	struct btrfs_file_extent_item *ei;
5604 	u64 disk_bytenr, disk_num_bytes;
5605 	u32 data_offset;
5606 	struct btrfs_cmd_header *hdr;
5607 	u32 crc;
5608 	int ret;
5609 
5610 	inode = btrfs_iget(sctx->cur_ino, root);
5611 	if (IS_ERR(inode))
5612 		return PTR_ERR(inode);
5613 
5614 	fspath = fs_path_alloc();
5615 	if (!fspath) {
5616 		ret = -ENOMEM;
5617 		goto out;
5618 	}
5619 
5620 	ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5621 	if (ret < 0)
5622 		goto out;
5623 
5624 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5625 	if (ret < 0)
5626 		goto out;
5627 
5628 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5629 	ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5630 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5631 	disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5632 
5633 	TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5634 	TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5635 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5636 		    min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5637 			len));
5638 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5639 		    btrfs_file_extent_ram_bytes(leaf, ei));
5640 	TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5641 		    offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5642 	ret = btrfs_encoded_io_compression_from_extent(fs_info,
5643 				btrfs_file_extent_compression(leaf, ei));
5644 	if (ret < 0)
5645 		goto out;
5646 	TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5647 	TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5648 
5649 	ret = put_data_header(sctx, disk_num_bytes);
5650 	if (ret < 0)
5651 		goto out;
5652 
5653 	/*
5654 	 * We want to do I/O directly into the send buffer, so get the next page
5655 	 * boundary in the send buffer. This means that there may be a gap
5656 	 * between the beginning of the command and the file data.
5657 	 */
5658 	data_offset = PAGE_ALIGN(sctx->send_size);
5659 	if (data_offset > sctx->send_max_size ||
5660 	    sctx->send_max_size - data_offset < disk_num_bytes) {
5661 		ret = -EOVERFLOW;
5662 		goto out;
5663 	}
5664 
5665 	/*
5666 	 * Note that send_buf is a mapping of send_buf_pages, so this is really
5667 	 * reading into send_buf.
5668 	 */
5669 	ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode),
5670 						    disk_bytenr, disk_num_bytes,
5671 						    sctx->send_buf_pages +
5672 						    (data_offset >> PAGE_SHIFT),
5673 						    NULL);
5674 	if (ret)
5675 		goto out;
5676 
5677 	hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5678 	hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5679 	hdr->crc = 0;
5680 	crc = crc32c(0, sctx->send_buf, sctx->send_size);
5681 	crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5682 	hdr->crc = cpu_to_le32(crc);
5683 
5684 	ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5685 			&sctx->send_off);
5686 	if (!ret) {
5687 		ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5688 				disk_num_bytes, &sctx->send_off);
5689 	}
5690 	sctx->send_size = 0;
5691 	sctx->put_data = false;
5692 
5693 tlv_put_failure:
5694 out:
5695 	fs_path_free(fspath);
5696 	iput(inode);
5697 	return ret;
5698 }
5699 
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5700 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5701 			    const u64 offset, const u64 len)
5702 {
5703 	const u64 end = offset + len;
5704 	struct extent_buffer *leaf = path->nodes[0];
5705 	struct btrfs_file_extent_item *ei;
5706 	u64 read_size = max_send_read_size(sctx);
5707 	u64 sent = 0;
5708 
5709 	if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5710 		return send_update_extent(sctx, offset, len);
5711 
5712 	ei = btrfs_item_ptr(leaf, path->slots[0],
5713 			    struct btrfs_file_extent_item);
5714 	if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5715 	    btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5716 		bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5717 				  BTRFS_FILE_EXTENT_INLINE);
5718 
5719 		/*
5720 		 * Send the compressed extent unless the compressed data is
5721 		 * larger than the decompressed data. This can happen if we're
5722 		 * not sending the entire extent, either because it has been
5723 		 * partially overwritten/truncated or because this is a part of
5724 		 * the extent that we couldn't clone in clone_range().
5725 		 */
5726 		if (is_inline &&
5727 		    btrfs_file_extent_inline_item_len(leaf,
5728 						      path->slots[0]) <= len) {
5729 			return send_encoded_inline_extent(sctx, path, offset,
5730 							  len);
5731 		} else if (!is_inline &&
5732 			   btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5733 			return send_encoded_extent(sctx, path, offset, len);
5734 		}
5735 	}
5736 
5737 	if (sctx->cur_inode == NULL) {
5738 		struct btrfs_root *root = sctx->send_root;
5739 
5740 		sctx->cur_inode = btrfs_iget(sctx->cur_ino, root);
5741 		if (IS_ERR(sctx->cur_inode)) {
5742 			int err = PTR_ERR(sctx->cur_inode);
5743 
5744 			sctx->cur_inode = NULL;
5745 			return err;
5746 		}
5747 		memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5748 		file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5749 
5750 		/*
5751 		 * It's very likely there are no pages from this inode in the page
5752 		 * cache, so after reading extents and sending their data, we clean
5753 		 * the page cache to avoid trashing the page cache (adding pressure
5754 		 * to the page cache and forcing eviction of other data more useful
5755 		 * for applications).
5756 		 *
5757 		 * We decide if we should clean the page cache simply by checking
5758 		 * if the inode's mapping nrpages is 0 when we first open it, and
5759 		 * not by using something like filemap_range_has_page() before
5760 		 * reading an extent because when we ask the readahead code to
5761 		 * read a given file range, it may (and almost always does) read
5762 		 * pages from beyond that range (see the documentation for
5763 		 * page_cache_sync_readahead()), so it would not be reliable,
5764 		 * because after reading the first extent future calls to
5765 		 * filemap_range_has_page() would return true because the readahead
5766 		 * on the previous extent resulted in reading pages of the current
5767 		 * extent as well.
5768 		 */
5769 		sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5770 		sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5771 	}
5772 
5773 	while (sent < len) {
5774 		u64 size = min(len - sent, read_size);
5775 		int ret;
5776 
5777 		ret = send_write(sctx, offset + sent, size);
5778 		if (ret < 0)
5779 			return ret;
5780 		sent += size;
5781 	}
5782 
5783 	if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5784 		/*
5785 		 * Always operate only on ranges that are a multiple of the page
5786 		 * size. This is not only to prevent zeroing parts of a page in
5787 		 * the case of subpage sector size, but also to guarantee we evict
5788 		 * pages, as passing a range that is smaller than page size does
5789 		 * not evict the respective page (only zeroes part of its content).
5790 		 *
5791 		 * Always start from the end offset of the last range cleared.
5792 		 * This is because the readahead code may (and very often does)
5793 		 * reads pages beyond the range we request for readahead. So if
5794 		 * we have an extent layout like this:
5795 		 *
5796 		 *            [ extent A ] [ extent B ] [ extent C ]
5797 		 *
5798 		 * When we ask page_cache_sync_readahead() to read extent A, it
5799 		 * may also trigger reads for pages of extent B. If we are doing
5800 		 * an incremental send and extent B has not changed between the
5801 		 * parent and send snapshots, some or all of its pages may end
5802 		 * up being read and placed in the page cache. So when truncating
5803 		 * the page cache we always start from the end offset of the
5804 		 * previously processed extent up to the end of the current
5805 		 * extent.
5806 		 */
5807 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
5808 					   sctx->page_cache_clear_start,
5809 					   end - 1);
5810 		sctx->page_cache_clear_start = end;
5811 	}
5812 
5813 	return 0;
5814 }
5815 
5816 /*
5817  * Search for a capability xattr related to sctx->cur_ino. If the capability is
5818  * found, call send_set_xattr function to emit it.
5819  *
5820  * Return 0 if there isn't a capability, or when the capability was emitted
5821  * successfully, or < 0 if an error occurred.
5822  */
send_capabilities(struct send_ctx * sctx)5823 static int send_capabilities(struct send_ctx *sctx)
5824 {
5825 	struct fs_path *fspath = NULL;
5826 	struct btrfs_path *path;
5827 	struct btrfs_dir_item *di;
5828 	struct extent_buffer *leaf;
5829 	unsigned long data_ptr;
5830 	char *buf = NULL;
5831 	int buf_len;
5832 	int ret = 0;
5833 
5834 	path = alloc_path_for_send();
5835 	if (!path)
5836 		return -ENOMEM;
5837 
5838 	di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5839 				XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5840 	if (!di) {
5841 		/* There is no xattr for this inode */
5842 		goto out;
5843 	} else if (IS_ERR(di)) {
5844 		ret = PTR_ERR(di);
5845 		goto out;
5846 	}
5847 
5848 	leaf = path->nodes[0];
5849 	buf_len = btrfs_dir_data_len(leaf, di);
5850 
5851 	fspath = fs_path_alloc();
5852 	buf = kmalloc(buf_len, GFP_KERNEL);
5853 	if (!fspath || !buf) {
5854 		ret = -ENOMEM;
5855 		goto out;
5856 	}
5857 
5858 	ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5859 	if (ret < 0)
5860 		goto out;
5861 
5862 	data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5863 	read_extent_buffer(leaf, buf, data_ptr, buf_len);
5864 
5865 	ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5866 			strlen(XATTR_NAME_CAPS), buf, buf_len);
5867 out:
5868 	kfree(buf);
5869 	fs_path_free(fspath);
5870 	btrfs_free_path(path);
5871 	return ret;
5872 }
5873 
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5874 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5875 		       struct clone_root *clone_root, const u64 disk_byte,
5876 		       u64 data_offset, u64 offset, u64 len)
5877 {
5878 	struct btrfs_path *path;
5879 	struct btrfs_key key;
5880 	int ret;
5881 	struct btrfs_inode_info info;
5882 	u64 clone_src_i_size = 0;
5883 
5884 	/*
5885 	 * Prevent cloning from a zero offset with a length matching the sector
5886 	 * size because in some scenarios this will make the receiver fail.
5887 	 *
5888 	 * For example, if in the source filesystem the extent at offset 0
5889 	 * has a length of sectorsize and it was written using direct IO, then
5890 	 * it can never be an inline extent (even if compression is enabled).
5891 	 * Then this extent can be cloned in the original filesystem to a non
5892 	 * zero file offset, but it may not be possible to clone in the
5893 	 * destination filesystem because it can be inlined due to compression
5894 	 * on the destination filesystem (as the receiver's write operations are
5895 	 * always done using buffered IO). The same happens when the original
5896 	 * filesystem does not have compression enabled but the destination
5897 	 * filesystem has.
5898 	 */
5899 	if (clone_root->offset == 0 &&
5900 	    len == sctx->send_root->fs_info->sectorsize)
5901 		return send_extent_data(sctx, dst_path, offset, len);
5902 
5903 	path = alloc_path_for_send();
5904 	if (!path)
5905 		return -ENOMEM;
5906 
5907 	/*
5908 	 * There are inodes that have extents that lie behind its i_size. Don't
5909 	 * accept clones from these extents.
5910 	 */
5911 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5912 	btrfs_release_path(path);
5913 	if (ret < 0)
5914 		goto out;
5915 	clone_src_i_size = info.size;
5916 
5917 	/*
5918 	 * We can't send a clone operation for the entire range if we find
5919 	 * extent items in the respective range in the source file that
5920 	 * refer to different extents or if we find holes.
5921 	 * So check for that and do a mix of clone and regular write/copy
5922 	 * operations if needed.
5923 	 *
5924 	 * Example:
5925 	 *
5926 	 * mkfs.btrfs -f /dev/sda
5927 	 * mount /dev/sda /mnt
5928 	 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5929 	 * cp --reflink=always /mnt/foo /mnt/bar
5930 	 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5931 	 * btrfs subvolume snapshot -r /mnt /mnt/snap
5932 	 *
5933 	 * If when we send the snapshot and we are processing file bar (which
5934 	 * has a higher inode number than foo) we blindly send a clone operation
5935 	 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5936 	 * a file bar that matches the content of file foo - iow, doesn't match
5937 	 * the content from bar in the original filesystem.
5938 	 */
5939 	key.objectid = clone_root->ino;
5940 	key.type = BTRFS_EXTENT_DATA_KEY;
5941 	key.offset = clone_root->offset;
5942 	ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5943 	if (ret < 0)
5944 		goto out;
5945 	if (ret > 0 && path->slots[0] > 0) {
5946 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5947 		if (key.objectid == clone_root->ino &&
5948 		    key.type == BTRFS_EXTENT_DATA_KEY)
5949 			path->slots[0]--;
5950 	}
5951 
5952 	while (true) {
5953 		struct extent_buffer *leaf = path->nodes[0];
5954 		int slot = path->slots[0];
5955 		struct btrfs_file_extent_item *ei;
5956 		u8 type;
5957 		u64 ext_len;
5958 		u64 clone_len;
5959 		u64 clone_data_offset;
5960 		bool crossed_src_i_size = false;
5961 
5962 		if (slot >= btrfs_header_nritems(leaf)) {
5963 			ret = btrfs_next_leaf(clone_root->root, path);
5964 			if (ret < 0)
5965 				goto out;
5966 			else if (ret > 0)
5967 				break;
5968 			continue;
5969 		}
5970 
5971 		btrfs_item_key_to_cpu(leaf, &key, slot);
5972 
5973 		/*
5974 		 * We might have an implicit trailing hole (NO_HOLES feature
5975 		 * enabled). We deal with it after leaving this loop.
5976 		 */
5977 		if (key.objectid != clone_root->ino ||
5978 		    key.type != BTRFS_EXTENT_DATA_KEY)
5979 			break;
5980 
5981 		ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5982 		type = btrfs_file_extent_type(leaf, ei);
5983 		if (type == BTRFS_FILE_EXTENT_INLINE) {
5984 			ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5985 			ext_len = PAGE_ALIGN(ext_len);
5986 		} else {
5987 			ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5988 		}
5989 
5990 		if (key.offset + ext_len <= clone_root->offset)
5991 			goto next;
5992 
5993 		if (key.offset > clone_root->offset) {
5994 			/* Implicit hole, NO_HOLES feature enabled. */
5995 			u64 hole_len = key.offset - clone_root->offset;
5996 
5997 			if (hole_len > len)
5998 				hole_len = len;
5999 			ret = send_extent_data(sctx, dst_path, offset,
6000 					       hole_len);
6001 			if (ret < 0)
6002 				goto out;
6003 
6004 			len -= hole_len;
6005 			if (len == 0)
6006 				break;
6007 			offset += hole_len;
6008 			clone_root->offset += hole_len;
6009 			data_offset += hole_len;
6010 		}
6011 
6012 		if (key.offset >= clone_root->offset + len)
6013 			break;
6014 
6015 		if (key.offset >= clone_src_i_size)
6016 			break;
6017 
6018 		if (key.offset + ext_len > clone_src_i_size) {
6019 			ext_len = clone_src_i_size - key.offset;
6020 			crossed_src_i_size = true;
6021 		}
6022 
6023 		clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6024 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6025 			clone_root->offset = key.offset;
6026 			if (clone_data_offset < data_offset &&
6027 				clone_data_offset + ext_len > data_offset) {
6028 				u64 extent_offset;
6029 
6030 				extent_offset = data_offset - clone_data_offset;
6031 				ext_len -= extent_offset;
6032 				clone_data_offset += extent_offset;
6033 				clone_root->offset += extent_offset;
6034 			}
6035 		}
6036 
6037 		clone_len = min_t(u64, ext_len, len);
6038 
6039 		if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6040 		    clone_data_offset == data_offset) {
6041 			const u64 src_end = clone_root->offset + clone_len;
6042 			const u64 sectorsize = SZ_64K;
6043 
6044 			/*
6045 			 * We can't clone the last block, when its size is not
6046 			 * sector size aligned, into the middle of a file. If we
6047 			 * do so, the receiver will get a failure (-EINVAL) when
6048 			 * trying to clone or will silently corrupt the data in
6049 			 * the destination file if it's on a kernel without the
6050 			 * fix introduced by commit ac765f83f1397646
6051 			 * ("Btrfs: fix data corruption due to cloning of eof
6052 			 * block).
6053 			 *
6054 			 * So issue a clone of the aligned down range plus a
6055 			 * regular write for the eof block, if we hit that case.
6056 			 *
6057 			 * Also, we use the maximum possible sector size, 64K,
6058 			 * because we don't know what's the sector size of the
6059 			 * filesystem that receives the stream, so we have to
6060 			 * assume the largest possible sector size.
6061 			 */
6062 			if (src_end == clone_src_i_size &&
6063 			    !IS_ALIGNED(src_end, sectorsize) &&
6064 			    offset + clone_len < sctx->cur_inode_size) {
6065 				u64 slen;
6066 
6067 				slen = ALIGN_DOWN(src_end - clone_root->offset,
6068 						  sectorsize);
6069 				if (slen > 0) {
6070 					ret = send_clone(sctx, offset, slen,
6071 							 clone_root);
6072 					if (ret < 0)
6073 						goto out;
6074 				}
6075 				ret = send_extent_data(sctx, dst_path,
6076 						       offset + slen,
6077 						       clone_len - slen);
6078 			} else {
6079 				ret = send_clone(sctx, offset, clone_len,
6080 						 clone_root);
6081 			}
6082 		} else if (crossed_src_i_size && clone_len < len) {
6083 			/*
6084 			 * If we are at i_size of the clone source inode and we
6085 			 * can not clone from it, terminate the loop. This is
6086 			 * to avoid sending two write operations, one with a
6087 			 * length matching clone_len and the final one after
6088 			 * this loop with a length of len - clone_len.
6089 			 *
6090 			 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6091 			 * was passed to the send ioctl), this helps avoid
6092 			 * sending an encoded write for an offset that is not
6093 			 * sector size aligned, in case the i_size of the source
6094 			 * inode is not sector size aligned. That will make the
6095 			 * receiver fallback to decompression of the data and
6096 			 * writing it using regular buffered IO, therefore while
6097 			 * not incorrect, it's not optimal due decompression and
6098 			 * possible re-compression at the receiver.
6099 			 */
6100 			break;
6101 		} else {
6102 			ret = send_extent_data(sctx, dst_path, offset,
6103 					       clone_len);
6104 		}
6105 
6106 		if (ret < 0)
6107 			goto out;
6108 
6109 		len -= clone_len;
6110 		if (len == 0)
6111 			break;
6112 		offset += clone_len;
6113 		clone_root->offset += clone_len;
6114 
6115 		/*
6116 		 * If we are cloning from the file we are currently processing,
6117 		 * and using the send root as the clone root, we must stop once
6118 		 * the current clone offset reaches the current eof of the file
6119 		 * at the receiver, otherwise we would issue an invalid clone
6120 		 * operation (source range going beyond eof) and cause the
6121 		 * receiver to fail. So if we reach the current eof, bail out
6122 		 * and fallback to a regular write.
6123 		 */
6124 		if (clone_root->root == sctx->send_root &&
6125 		    clone_root->ino == sctx->cur_ino &&
6126 		    clone_root->offset >= sctx->cur_inode_next_write_offset)
6127 			break;
6128 
6129 		data_offset += clone_len;
6130 next:
6131 		path->slots[0]++;
6132 	}
6133 
6134 	if (len > 0)
6135 		ret = send_extent_data(sctx, dst_path, offset, len);
6136 	else
6137 		ret = 0;
6138 out:
6139 	btrfs_free_path(path);
6140 	return ret;
6141 }
6142 
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)6143 static int send_write_or_clone(struct send_ctx *sctx,
6144 			       struct btrfs_path *path,
6145 			       struct btrfs_key *key,
6146 			       struct clone_root *clone_root)
6147 {
6148 	int ret = 0;
6149 	u64 offset = key->offset;
6150 	u64 end;
6151 	u64 bs = sctx->send_root->fs_info->sectorsize;
6152 	struct btrfs_file_extent_item *ei;
6153 	u64 disk_byte;
6154 	u64 data_offset;
6155 	u64 num_bytes;
6156 	struct btrfs_inode_info info = { 0 };
6157 
6158 	end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6159 	if (offset >= end)
6160 		return 0;
6161 
6162 	num_bytes = end - offset;
6163 
6164 	if (!clone_root)
6165 		goto write_data;
6166 
6167 	if (IS_ALIGNED(end, bs))
6168 		goto clone_data;
6169 
6170 	/*
6171 	 * If the extent end is not aligned, we can clone if the extent ends at
6172 	 * the i_size of the inode and the clone range ends at the i_size of the
6173 	 * source inode, otherwise the clone operation fails with -EINVAL.
6174 	 */
6175 	if (end != sctx->cur_inode_size)
6176 		goto write_data;
6177 
6178 	ret = get_inode_info(clone_root->root, clone_root->ino, &info);
6179 	if (ret < 0)
6180 		return ret;
6181 
6182 	if (clone_root->offset + num_bytes == info.size) {
6183 		/*
6184 		 * The final size of our file matches the end offset, but it may
6185 		 * be that its current size is larger, so we have to truncate it
6186 		 * to any value between the start offset of the range and the
6187 		 * final i_size, otherwise the clone operation is invalid
6188 		 * because it's unaligned and it ends before the current EOF.
6189 		 * We do this truncate to the final i_size when we finish
6190 		 * processing the inode, but it's too late by then. And here we
6191 		 * truncate to the start offset of the range because it's always
6192 		 * sector size aligned while if it were the final i_size it
6193 		 * would result in dirtying part of a page, filling part of a
6194 		 * page with zeroes and then having the clone operation at the
6195 		 * receiver trigger IO and wait for it due to the dirty page.
6196 		 */
6197 		if (sctx->parent_root != NULL) {
6198 			ret = send_truncate(sctx, sctx->cur_ino,
6199 					    sctx->cur_inode_gen, offset);
6200 			if (ret < 0)
6201 				return ret;
6202 		}
6203 		goto clone_data;
6204 	}
6205 
6206 write_data:
6207 	ret = send_extent_data(sctx, path, offset, num_bytes);
6208 	sctx->cur_inode_next_write_offset = end;
6209 	return ret;
6210 
6211 clone_data:
6212 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6213 			    struct btrfs_file_extent_item);
6214 	disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6215 	data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6216 	ret = clone_range(sctx, path, clone_root, disk_byte, data_offset, offset,
6217 			  num_bytes);
6218 	sctx->cur_inode_next_write_offset = end;
6219 	return ret;
6220 }
6221 
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)6222 static int is_extent_unchanged(struct send_ctx *sctx,
6223 			       struct btrfs_path *left_path,
6224 			       struct btrfs_key *ekey)
6225 {
6226 	int ret = 0;
6227 	struct btrfs_key key;
6228 	struct btrfs_path *path = NULL;
6229 	struct extent_buffer *eb;
6230 	int slot;
6231 	struct btrfs_key found_key;
6232 	struct btrfs_file_extent_item *ei;
6233 	u64 left_disknr;
6234 	u64 right_disknr;
6235 	u64 left_offset;
6236 	u64 right_offset;
6237 	u64 left_offset_fixed;
6238 	u64 left_len;
6239 	u64 right_len;
6240 	u64 left_gen;
6241 	u64 right_gen;
6242 	u8 left_type;
6243 	u8 right_type;
6244 
6245 	path = alloc_path_for_send();
6246 	if (!path)
6247 		return -ENOMEM;
6248 
6249 	eb = left_path->nodes[0];
6250 	slot = left_path->slots[0];
6251 	ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6252 	left_type = btrfs_file_extent_type(eb, ei);
6253 
6254 	if (left_type != BTRFS_FILE_EXTENT_REG) {
6255 		ret = 0;
6256 		goto out;
6257 	}
6258 	left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6259 	left_len = btrfs_file_extent_num_bytes(eb, ei);
6260 	left_offset = btrfs_file_extent_offset(eb, ei);
6261 	left_gen = btrfs_file_extent_generation(eb, ei);
6262 
6263 	/*
6264 	 * Following comments will refer to these graphics. L is the left
6265 	 * extents which we are checking at the moment. 1-8 are the right
6266 	 * extents that we iterate.
6267 	 *
6268 	 *       |-----L-----|
6269 	 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6270 	 *
6271 	 *       |-----L-----|
6272 	 * |--1--|-2b-|...(same as above)
6273 	 *
6274 	 * Alternative situation. Happens on files where extents got split.
6275 	 *       |-----L-----|
6276 	 * |-----------7-----------|-6-|
6277 	 *
6278 	 * Alternative situation. Happens on files which got larger.
6279 	 *       |-----L-----|
6280 	 * |-8-|
6281 	 * Nothing follows after 8.
6282 	 */
6283 
6284 	key.objectid = ekey->objectid;
6285 	key.type = BTRFS_EXTENT_DATA_KEY;
6286 	key.offset = ekey->offset;
6287 	ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6288 	if (ret < 0)
6289 		goto out;
6290 	if (ret) {
6291 		ret = 0;
6292 		goto out;
6293 	}
6294 
6295 	/*
6296 	 * Handle special case where the right side has no extents at all.
6297 	 */
6298 	eb = path->nodes[0];
6299 	slot = path->slots[0];
6300 	btrfs_item_key_to_cpu(eb, &found_key, slot);
6301 	if (found_key.objectid != key.objectid ||
6302 	    found_key.type != key.type) {
6303 		/* If we're a hole then just pretend nothing changed */
6304 		ret = (left_disknr) ? 0 : 1;
6305 		goto out;
6306 	}
6307 
6308 	/*
6309 	 * We're now on 2a, 2b or 7.
6310 	 */
6311 	key = found_key;
6312 	while (key.offset < ekey->offset + left_len) {
6313 		ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6314 		right_type = btrfs_file_extent_type(eb, ei);
6315 		if (right_type != BTRFS_FILE_EXTENT_REG &&
6316 		    right_type != BTRFS_FILE_EXTENT_INLINE) {
6317 			ret = 0;
6318 			goto out;
6319 		}
6320 
6321 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6322 			right_len = btrfs_file_extent_ram_bytes(eb, ei);
6323 			right_len = PAGE_ALIGN(right_len);
6324 		} else {
6325 			right_len = btrfs_file_extent_num_bytes(eb, ei);
6326 		}
6327 
6328 		/*
6329 		 * Are we at extent 8? If yes, we know the extent is changed.
6330 		 * This may only happen on the first iteration.
6331 		 */
6332 		if (found_key.offset + right_len <= ekey->offset) {
6333 			/* If we're a hole just pretend nothing changed */
6334 			ret = (left_disknr) ? 0 : 1;
6335 			goto out;
6336 		}
6337 
6338 		/*
6339 		 * We just wanted to see if when we have an inline extent, what
6340 		 * follows it is a regular extent (wanted to check the above
6341 		 * condition for inline extents too). This should normally not
6342 		 * happen but it's possible for example when we have an inline
6343 		 * compressed extent representing data with a size matching
6344 		 * the page size (currently the same as sector size).
6345 		 */
6346 		if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6347 			ret = 0;
6348 			goto out;
6349 		}
6350 
6351 		right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6352 		right_offset = btrfs_file_extent_offset(eb, ei);
6353 		right_gen = btrfs_file_extent_generation(eb, ei);
6354 
6355 		left_offset_fixed = left_offset;
6356 		if (key.offset < ekey->offset) {
6357 			/* Fix the right offset for 2a and 7. */
6358 			right_offset += ekey->offset - key.offset;
6359 		} else {
6360 			/* Fix the left offset for all behind 2a and 2b */
6361 			left_offset_fixed += key.offset - ekey->offset;
6362 		}
6363 
6364 		/*
6365 		 * Check if we have the same extent.
6366 		 */
6367 		if (left_disknr != right_disknr ||
6368 		    left_offset_fixed != right_offset ||
6369 		    left_gen != right_gen) {
6370 			ret = 0;
6371 			goto out;
6372 		}
6373 
6374 		/*
6375 		 * Go to the next extent.
6376 		 */
6377 		ret = btrfs_next_item(sctx->parent_root, path);
6378 		if (ret < 0)
6379 			goto out;
6380 		if (!ret) {
6381 			eb = path->nodes[0];
6382 			slot = path->slots[0];
6383 			btrfs_item_key_to_cpu(eb, &found_key, slot);
6384 		}
6385 		if (ret || found_key.objectid != key.objectid ||
6386 		    found_key.type != key.type) {
6387 			key.offset += right_len;
6388 			break;
6389 		}
6390 		if (found_key.offset != key.offset + right_len) {
6391 			ret = 0;
6392 			goto out;
6393 		}
6394 		key = found_key;
6395 	}
6396 
6397 	/*
6398 	 * We're now behind the left extent (treat as unchanged) or at the end
6399 	 * of the right side (treat as changed).
6400 	 */
6401 	if (key.offset >= ekey->offset + left_len)
6402 		ret = 1;
6403 	else
6404 		ret = 0;
6405 
6406 
6407 out:
6408 	btrfs_free_path(path);
6409 	return ret;
6410 }
6411 
get_last_extent(struct send_ctx * sctx,u64 offset)6412 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6413 {
6414 	struct btrfs_path *path;
6415 	struct btrfs_root *root = sctx->send_root;
6416 	struct btrfs_key key;
6417 	int ret;
6418 
6419 	path = alloc_path_for_send();
6420 	if (!path)
6421 		return -ENOMEM;
6422 
6423 	sctx->cur_inode_last_extent = 0;
6424 
6425 	key.objectid = sctx->cur_ino;
6426 	key.type = BTRFS_EXTENT_DATA_KEY;
6427 	key.offset = offset;
6428 	ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6429 	if (ret < 0)
6430 		goto out;
6431 	ret = 0;
6432 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6433 	if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6434 		goto out;
6435 
6436 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6437 out:
6438 	btrfs_free_path(path);
6439 	return ret;
6440 }
6441 
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6442 static int range_is_hole_in_parent(struct send_ctx *sctx,
6443 				   const u64 start,
6444 				   const u64 end)
6445 {
6446 	struct btrfs_path *path;
6447 	struct btrfs_key key;
6448 	struct btrfs_root *root = sctx->parent_root;
6449 	u64 search_start = start;
6450 	int ret;
6451 
6452 	path = alloc_path_for_send();
6453 	if (!path)
6454 		return -ENOMEM;
6455 
6456 	key.objectid = sctx->cur_ino;
6457 	key.type = BTRFS_EXTENT_DATA_KEY;
6458 	key.offset = search_start;
6459 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6460 	if (ret < 0)
6461 		goto out;
6462 	if (ret > 0 && path->slots[0] > 0)
6463 		path->slots[0]--;
6464 
6465 	while (search_start < end) {
6466 		struct extent_buffer *leaf = path->nodes[0];
6467 		int slot = path->slots[0];
6468 		struct btrfs_file_extent_item *fi;
6469 		u64 extent_end;
6470 
6471 		if (slot >= btrfs_header_nritems(leaf)) {
6472 			ret = btrfs_next_leaf(root, path);
6473 			if (ret < 0)
6474 				goto out;
6475 			else if (ret > 0)
6476 				break;
6477 			continue;
6478 		}
6479 
6480 		btrfs_item_key_to_cpu(leaf, &key, slot);
6481 		if (key.objectid < sctx->cur_ino ||
6482 		    key.type < BTRFS_EXTENT_DATA_KEY)
6483 			goto next;
6484 		if (key.objectid > sctx->cur_ino ||
6485 		    key.type > BTRFS_EXTENT_DATA_KEY ||
6486 		    key.offset >= end)
6487 			break;
6488 
6489 		fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6490 		extent_end = btrfs_file_extent_end(path);
6491 		if (extent_end <= start)
6492 			goto next;
6493 		if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6494 			search_start = extent_end;
6495 			goto next;
6496 		}
6497 		ret = 0;
6498 		goto out;
6499 next:
6500 		path->slots[0]++;
6501 	}
6502 	ret = 1;
6503 out:
6504 	btrfs_free_path(path);
6505 	return ret;
6506 }
6507 
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6508 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6509 			   struct btrfs_key *key)
6510 {
6511 	int ret = 0;
6512 
6513 	if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6514 		return 0;
6515 
6516 	/*
6517 	 * Get last extent's end offset (exclusive) if we haven't determined it
6518 	 * yet (we're processing the first file extent item that is new), or if
6519 	 * we're at the first slot of a leaf and the last extent's end is less
6520 	 * than the current extent's offset, because we might have skipped
6521 	 * entire leaves that contained only file extent items for our current
6522 	 * inode. These leaves have a generation number smaller (older) than the
6523 	 * one in the current leaf and the leaf our last extent came from, and
6524 	 * are located between these 2 leaves.
6525 	 */
6526 	if ((sctx->cur_inode_last_extent == (u64)-1) ||
6527 	    (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6528 		ret = get_last_extent(sctx, key->offset - 1);
6529 		if (ret)
6530 			return ret;
6531 	}
6532 
6533 	if (sctx->cur_inode_last_extent < key->offset) {
6534 		ret = range_is_hole_in_parent(sctx,
6535 					      sctx->cur_inode_last_extent,
6536 					      key->offset);
6537 		if (ret < 0)
6538 			return ret;
6539 		else if (ret == 0)
6540 			ret = send_hole(sctx, key->offset);
6541 		else
6542 			ret = 0;
6543 	}
6544 	sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6545 	return ret;
6546 }
6547 
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6548 static int process_extent(struct send_ctx *sctx,
6549 			  struct btrfs_path *path,
6550 			  struct btrfs_key *key)
6551 {
6552 	struct clone_root *found_clone = NULL;
6553 	int ret = 0;
6554 
6555 	if (S_ISLNK(sctx->cur_inode_mode))
6556 		return 0;
6557 
6558 	if (sctx->parent_root && !sctx->cur_inode_new) {
6559 		ret = is_extent_unchanged(sctx, path, key);
6560 		if (ret < 0)
6561 			goto out;
6562 		if (ret) {
6563 			ret = 0;
6564 			goto out_hole;
6565 		}
6566 	} else {
6567 		struct btrfs_file_extent_item *ei;
6568 		u8 type;
6569 
6570 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6571 				    struct btrfs_file_extent_item);
6572 		type = btrfs_file_extent_type(path->nodes[0], ei);
6573 		if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6574 		    type == BTRFS_FILE_EXTENT_REG) {
6575 			/*
6576 			 * The send spec does not have a prealloc command yet,
6577 			 * so just leave a hole for prealloc'ed extents until
6578 			 * we have enough commands queued up to justify rev'ing
6579 			 * the send spec.
6580 			 */
6581 			if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6582 				ret = 0;
6583 				goto out;
6584 			}
6585 
6586 			/* Have a hole, just skip it. */
6587 			if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6588 				ret = 0;
6589 				goto out;
6590 			}
6591 		}
6592 	}
6593 
6594 	ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6595 			sctx->cur_inode_size, &found_clone);
6596 	if (ret != -ENOENT && ret < 0)
6597 		goto out;
6598 
6599 	ret = send_write_or_clone(sctx, path, key, found_clone);
6600 	if (ret)
6601 		goto out;
6602 out_hole:
6603 	ret = maybe_send_hole(sctx, path, key);
6604 out:
6605 	return ret;
6606 }
6607 
process_all_extents(struct send_ctx * sctx)6608 static int process_all_extents(struct send_ctx *sctx)
6609 {
6610 	int ret = 0;
6611 	int iter_ret = 0;
6612 	struct btrfs_root *root;
6613 	struct btrfs_path *path;
6614 	struct btrfs_key key;
6615 	struct btrfs_key found_key;
6616 
6617 	root = sctx->send_root;
6618 	path = alloc_path_for_send();
6619 	if (!path)
6620 		return -ENOMEM;
6621 
6622 	key.objectid = sctx->cmp_key->objectid;
6623 	key.type = BTRFS_EXTENT_DATA_KEY;
6624 	key.offset = 0;
6625 	btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6626 		if (found_key.objectid != key.objectid ||
6627 		    found_key.type != key.type) {
6628 			ret = 0;
6629 			break;
6630 		}
6631 
6632 		ret = process_extent(sctx, path, &found_key);
6633 		if (ret < 0)
6634 			break;
6635 	}
6636 	/* Catch error found during iteration */
6637 	if (iter_ret < 0)
6638 		ret = iter_ret;
6639 
6640 	btrfs_free_path(path);
6641 	return ret;
6642 }
6643 
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6644 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6645 					   int *pending_move,
6646 					   int *refs_processed)
6647 {
6648 	int ret = 0;
6649 
6650 	if (sctx->cur_ino == 0)
6651 		goto out;
6652 	if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6653 	    sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6654 		goto out;
6655 	if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6656 		goto out;
6657 
6658 	ret = process_recorded_refs(sctx, pending_move);
6659 	if (ret < 0)
6660 		goto out;
6661 
6662 	*refs_processed = 1;
6663 out:
6664 	return ret;
6665 }
6666 
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6667 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6668 {
6669 	int ret = 0;
6670 	struct btrfs_inode_info info;
6671 	u64 left_mode;
6672 	u64 left_uid;
6673 	u64 left_gid;
6674 	u64 left_fileattr;
6675 	u64 right_mode;
6676 	u64 right_uid;
6677 	u64 right_gid;
6678 	u64 right_fileattr;
6679 	int need_chmod = 0;
6680 	int need_chown = 0;
6681 	bool need_fileattr = false;
6682 	int need_truncate = 1;
6683 	int pending_move = 0;
6684 	int refs_processed = 0;
6685 
6686 	if (sctx->ignore_cur_inode)
6687 		return 0;
6688 
6689 	ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6690 					      &refs_processed);
6691 	if (ret < 0)
6692 		goto out;
6693 
6694 	/*
6695 	 * We have processed the refs and thus need to advance send_progress.
6696 	 * Now, calls to get_cur_xxx will take the updated refs of the current
6697 	 * inode into account.
6698 	 *
6699 	 * On the other hand, if our current inode is a directory and couldn't
6700 	 * be moved/renamed because its parent was renamed/moved too and it has
6701 	 * a higher inode number, we can only move/rename our current inode
6702 	 * after we moved/renamed its parent. Therefore in this case operate on
6703 	 * the old path (pre move/rename) of our current inode, and the
6704 	 * move/rename will be performed later.
6705 	 */
6706 	if (refs_processed && !pending_move)
6707 		sctx->send_progress = sctx->cur_ino + 1;
6708 
6709 	if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6710 		goto out;
6711 	if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6712 		goto out;
6713 	ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6714 	if (ret < 0)
6715 		goto out;
6716 	left_mode = info.mode;
6717 	left_uid = info.uid;
6718 	left_gid = info.gid;
6719 	left_fileattr = info.fileattr;
6720 
6721 	if (!sctx->parent_root || sctx->cur_inode_new) {
6722 		need_chown = 1;
6723 		if (!S_ISLNK(sctx->cur_inode_mode))
6724 			need_chmod = 1;
6725 		if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6726 			need_truncate = 0;
6727 	} else {
6728 		u64 old_size;
6729 
6730 		ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6731 		if (ret < 0)
6732 			goto out;
6733 		old_size = info.size;
6734 		right_mode = info.mode;
6735 		right_uid = info.uid;
6736 		right_gid = info.gid;
6737 		right_fileattr = info.fileattr;
6738 
6739 		if (left_uid != right_uid || left_gid != right_gid)
6740 			need_chown = 1;
6741 		if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6742 			need_chmod = 1;
6743 		if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6744 			need_fileattr = true;
6745 		if ((old_size == sctx->cur_inode_size) ||
6746 		    (sctx->cur_inode_size > old_size &&
6747 		     sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6748 			need_truncate = 0;
6749 	}
6750 
6751 	if (S_ISREG(sctx->cur_inode_mode)) {
6752 		if (need_send_hole(sctx)) {
6753 			if (sctx->cur_inode_last_extent == (u64)-1 ||
6754 			    sctx->cur_inode_last_extent <
6755 			    sctx->cur_inode_size) {
6756 				ret = get_last_extent(sctx, (u64)-1);
6757 				if (ret)
6758 					goto out;
6759 			}
6760 			if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6761 				ret = range_is_hole_in_parent(sctx,
6762 						      sctx->cur_inode_last_extent,
6763 						      sctx->cur_inode_size);
6764 				if (ret < 0) {
6765 					goto out;
6766 				} else if (ret == 0) {
6767 					ret = send_hole(sctx, sctx->cur_inode_size);
6768 					if (ret < 0)
6769 						goto out;
6770 				} else {
6771 					/* Range is already a hole, skip. */
6772 					ret = 0;
6773 				}
6774 			}
6775 		}
6776 		if (need_truncate) {
6777 			ret = send_truncate(sctx, sctx->cur_ino,
6778 					    sctx->cur_inode_gen,
6779 					    sctx->cur_inode_size);
6780 			if (ret < 0)
6781 				goto out;
6782 		}
6783 	}
6784 
6785 	if (need_chown) {
6786 		ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6787 				left_uid, left_gid);
6788 		if (ret < 0)
6789 			goto out;
6790 	}
6791 	if (need_chmod) {
6792 		ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6793 				left_mode);
6794 		if (ret < 0)
6795 			goto out;
6796 	}
6797 	if (need_fileattr) {
6798 		ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6799 				    left_fileattr);
6800 		if (ret < 0)
6801 			goto out;
6802 	}
6803 
6804 	if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6805 	    && sctx->cur_inode_needs_verity) {
6806 		ret = process_verity(sctx);
6807 		if (ret < 0)
6808 			goto out;
6809 	}
6810 
6811 	ret = send_capabilities(sctx);
6812 	if (ret < 0)
6813 		goto out;
6814 
6815 	/*
6816 	 * If other directory inodes depended on our current directory
6817 	 * inode's move/rename, now do their move/rename operations.
6818 	 */
6819 	if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6820 		ret = apply_children_dir_moves(sctx);
6821 		if (ret)
6822 			goto out;
6823 		/*
6824 		 * Need to send that every time, no matter if it actually
6825 		 * changed between the two trees as we have done changes to
6826 		 * the inode before. If our inode is a directory and it's
6827 		 * waiting to be moved/renamed, we will send its utimes when
6828 		 * it's moved/renamed, therefore we don't need to do it here.
6829 		 */
6830 		sctx->send_progress = sctx->cur_ino + 1;
6831 
6832 		/*
6833 		 * If the current inode is a non-empty directory, delay issuing
6834 		 * the utimes command for it, as it's very likely we have inodes
6835 		 * with an higher number inside it. We want to issue the utimes
6836 		 * command only after adding all dentries to it.
6837 		 */
6838 		if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6839 			ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6840 		else
6841 			ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6842 
6843 		if (ret < 0)
6844 			goto out;
6845 	}
6846 
6847 out:
6848 	if (!ret)
6849 		ret = trim_dir_utimes_cache(sctx);
6850 
6851 	return ret;
6852 }
6853 
close_current_inode(struct send_ctx * sctx)6854 static void close_current_inode(struct send_ctx *sctx)
6855 {
6856 	u64 i_size;
6857 
6858 	if (sctx->cur_inode == NULL)
6859 		return;
6860 
6861 	i_size = i_size_read(sctx->cur_inode);
6862 
6863 	/*
6864 	 * If we are doing an incremental send, we may have extents between the
6865 	 * last processed extent and the i_size that have not been processed
6866 	 * because they haven't changed but we may have read some of their pages
6867 	 * through readahead, see the comments at send_extent_data().
6868 	 */
6869 	if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6870 		truncate_inode_pages_range(&sctx->cur_inode->i_data,
6871 					   sctx->page_cache_clear_start,
6872 					   round_up(i_size, PAGE_SIZE) - 1);
6873 
6874 	iput(sctx->cur_inode);
6875 	sctx->cur_inode = NULL;
6876 }
6877 
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6878 static int changed_inode(struct send_ctx *sctx,
6879 			 enum btrfs_compare_tree_result result)
6880 {
6881 	int ret = 0;
6882 	struct btrfs_key *key = sctx->cmp_key;
6883 	struct btrfs_inode_item *left_ii = NULL;
6884 	struct btrfs_inode_item *right_ii = NULL;
6885 	u64 left_gen = 0;
6886 	u64 right_gen = 0;
6887 
6888 	close_current_inode(sctx);
6889 
6890 	sctx->cur_ino = key->objectid;
6891 	sctx->cur_inode_new_gen = false;
6892 	sctx->cur_inode_last_extent = (u64)-1;
6893 	sctx->cur_inode_next_write_offset = 0;
6894 	sctx->ignore_cur_inode = false;
6895 
6896 	/*
6897 	 * Set send_progress to current inode. This will tell all get_cur_xxx
6898 	 * functions that the current inode's refs are not updated yet. Later,
6899 	 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6900 	 */
6901 	sctx->send_progress = sctx->cur_ino;
6902 
6903 	if (result == BTRFS_COMPARE_TREE_NEW ||
6904 	    result == BTRFS_COMPARE_TREE_CHANGED) {
6905 		left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6906 				sctx->left_path->slots[0],
6907 				struct btrfs_inode_item);
6908 		left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6909 				left_ii);
6910 	} else {
6911 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6912 				sctx->right_path->slots[0],
6913 				struct btrfs_inode_item);
6914 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6915 				right_ii);
6916 	}
6917 	if (result == BTRFS_COMPARE_TREE_CHANGED) {
6918 		right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6919 				sctx->right_path->slots[0],
6920 				struct btrfs_inode_item);
6921 
6922 		right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6923 				right_ii);
6924 
6925 		/*
6926 		 * The cur_ino = root dir case is special here. We can't treat
6927 		 * the inode as deleted+reused because it would generate a
6928 		 * stream that tries to delete/mkdir the root dir.
6929 		 */
6930 		if (left_gen != right_gen &&
6931 		    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6932 			sctx->cur_inode_new_gen = true;
6933 	}
6934 
6935 	/*
6936 	 * Normally we do not find inodes with a link count of zero (orphans)
6937 	 * because the most common case is to create a snapshot and use it
6938 	 * for a send operation. However other less common use cases involve
6939 	 * using a subvolume and send it after turning it to RO mode just
6940 	 * after deleting all hard links of a file while holding an open
6941 	 * file descriptor against it or turning a RO snapshot into RW mode,
6942 	 * keep an open file descriptor against a file, delete it and then
6943 	 * turn the snapshot back to RO mode before using it for a send
6944 	 * operation. The former is what the receiver operation does.
6945 	 * Therefore, if we want to send these snapshots soon after they're
6946 	 * received, we need to handle orphan inodes as well. Moreover, orphans
6947 	 * can appear not only in the send snapshot but also in the parent
6948 	 * snapshot. Here are several cases:
6949 	 *
6950 	 * Case 1: BTRFS_COMPARE_TREE_NEW
6951 	 *       |  send snapshot  | action
6952 	 * --------------------------------
6953 	 * nlink |        0        | ignore
6954 	 *
6955 	 * Case 2: BTRFS_COMPARE_TREE_DELETED
6956 	 *       | parent snapshot | action
6957 	 * ----------------------------------
6958 	 * nlink |        0        | as usual
6959 	 * Note: No unlinks will be sent because there're no paths for it.
6960 	 *
6961 	 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6962 	 *           |       | parent snapshot | send snapshot | action
6963 	 * -----------------------------------------------------------------------
6964 	 * subcase 1 | nlink |        0        |       0       | ignore
6965 	 * subcase 2 | nlink |       >0        |       0       | new_gen(deletion)
6966 	 * subcase 3 | nlink |        0        |      >0       | new_gen(creation)
6967 	 *
6968 	 */
6969 	if (result == BTRFS_COMPARE_TREE_NEW) {
6970 		if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6971 			sctx->ignore_cur_inode = true;
6972 			goto out;
6973 		}
6974 		sctx->cur_inode_gen = left_gen;
6975 		sctx->cur_inode_new = true;
6976 		sctx->cur_inode_deleted = false;
6977 		sctx->cur_inode_size = btrfs_inode_size(
6978 				sctx->left_path->nodes[0], left_ii);
6979 		sctx->cur_inode_mode = btrfs_inode_mode(
6980 				sctx->left_path->nodes[0], left_ii);
6981 		sctx->cur_inode_rdev = btrfs_inode_rdev(
6982 				sctx->left_path->nodes[0], left_ii);
6983 		if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6984 			ret = send_create_inode_if_needed(sctx);
6985 	} else if (result == BTRFS_COMPARE_TREE_DELETED) {
6986 		sctx->cur_inode_gen = right_gen;
6987 		sctx->cur_inode_new = false;
6988 		sctx->cur_inode_deleted = true;
6989 		sctx->cur_inode_size = btrfs_inode_size(
6990 				sctx->right_path->nodes[0], right_ii);
6991 		sctx->cur_inode_mode = btrfs_inode_mode(
6992 				sctx->right_path->nodes[0], right_ii);
6993 	} else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6994 		u32 new_nlinks, old_nlinks;
6995 
6996 		new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6997 		old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6998 		if (new_nlinks == 0 && old_nlinks == 0) {
6999 			sctx->ignore_cur_inode = true;
7000 			goto out;
7001 		} else if (new_nlinks == 0 || old_nlinks == 0) {
7002 			sctx->cur_inode_new_gen = 1;
7003 		}
7004 		/*
7005 		 * We need to do some special handling in case the inode was
7006 		 * reported as changed with a changed generation number. This
7007 		 * means that the original inode was deleted and new inode
7008 		 * reused the same inum. So we have to treat the old inode as
7009 		 * deleted and the new one as new.
7010 		 */
7011 		if (sctx->cur_inode_new_gen) {
7012 			/*
7013 			 * First, process the inode as if it was deleted.
7014 			 */
7015 			if (old_nlinks > 0) {
7016 				sctx->cur_inode_gen = right_gen;
7017 				sctx->cur_inode_new = false;
7018 				sctx->cur_inode_deleted = true;
7019 				sctx->cur_inode_size = btrfs_inode_size(
7020 						sctx->right_path->nodes[0], right_ii);
7021 				sctx->cur_inode_mode = btrfs_inode_mode(
7022 						sctx->right_path->nodes[0], right_ii);
7023 				ret = process_all_refs(sctx,
7024 						BTRFS_COMPARE_TREE_DELETED);
7025 				if (ret < 0)
7026 					goto out;
7027 			}
7028 
7029 			/*
7030 			 * Now process the inode as if it was new.
7031 			 */
7032 			if (new_nlinks > 0) {
7033 				sctx->cur_inode_gen = left_gen;
7034 				sctx->cur_inode_new = true;
7035 				sctx->cur_inode_deleted = false;
7036 				sctx->cur_inode_size = btrfs_inode_size(
7037 						sctx->left_path->nodes[0],
7038 						left_ii);
7039 				sctx->cur_inode_mode = btrfs_inode_mode(
7040 						sctx->left_path->nodes[0],
7041 						left_ii);
7042 				sctx->cur_inode_rdev = btrfs_inode_rdev(
7043 						sctx->left_path->nodes[0],
7044 						left_ii);
7045 				ret = send_create_inode_if_needed(sctx);
7046 				if (ret < 0)
7047 					goto out;
7048 
7049 				ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7050 				if (ret < 0)
7051 					goto out;
7052 				/*
7053 				 * Advance send_progress now as we did not get
7054 				 * into process_recorded_refs_if_needed in the
7055 				 * new_gen case.
7056 				 */
7057 				sctx->send_progress = sctx->cur_ino + 1;
7058 
7059 				/*
7060 				 * Now process all extents and xattrs of the
7061 				 * inode as if they were all new.
7062 				 */
7063 				ret = process_all_extents(sctx);
7064 				if (ret < 0)
7065 					goto out;
7066 				ret = process_all_new_xattrs(sctx);
7067 				if (ret < 0)
7068 					goto out;
7069 			}
7070 		} else {
7071 			sctx->cur_inode_gen = left_gen;
7072 			sctx->cur_inode_new = false;
7073 			sctx->cur_inode_new_gen = false;
7074 			sctx->cur_inode_deleted = false;
7075 			sctx->cur_inode_size = btrfs_inode_size(
7076 					sctx->left_path->nodes[0], left_ii);
7077 			sctx->cur_inode_mode = btrfs_inode_mode(
7078 					sctx->left_path->nodes[0], left_ii);
7079 		}
7080 	}
7081 
7082 out:
7083 	return ret;
7084 }
7085 
7086 /*
7087  * We have to process new refs before deleted refs, but compare_trees gives us
7088  * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7089  * first and later process them in process_recorded_refs.
7090  * For the cur_inode_new_gen case, we skip recording completely because
7091  * changed_inode did already initiate processing of refs. The reason for this is
7092  * that in this case, compare_tree actually compares the refs of 2 different
7093  * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7094  * refs of the right tree as deleted and all refs of the left tree as new.
7095  */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7096 static int changed_ref(struct send_ctx *sctx,
7097 		       enum btrfs_compare_tree_result result)
7098 {
7099 	int ret = 0;
7100 
7101 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7102 		inconsistent_snapshot_error(sctx, result, "reference");
7103 		return -EIO;
7104 	}
7105 
7106 	if (!sctx->cur_inode_new_gen &&
7107 	    sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7108 		if (result == BTRFS_COMPARE_TREE_NEW)
7109 			ret = record_new_ref(sctx);
7110 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7111 			ret = record_deleted_ref(sctx);
7112 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7113 			ret = record_changed_ref(sctx);
7114 	}
7115 
7116 	return ret;
7117 }
7118 
7119 /*
7120  * Process new/deleted/changed xattrs. We skip processing in the
7121  * cur_inode_new_gen case because changed_inode did already initiate processing
7122  * of xattrs. The reason is the same as in changed_ref
7123  */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7124 static int changed_xattr(struct send_ctx *sctx,
7125 			 enum btrfs_compare_tree_result result)
7126 {
7127 	int ret = 0;
7128 
7129 	if (sctx->cur_ino != sctx->cmp_key->objectid) {
7130 		inconsistent_snapshot_error(sctx, result, "xattr");
7131 		return -EIO;
7132 	}
7133 
7134 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7135 		if (result == BTRFS_COMPARE_TREE_NEW)
7136 			ret = process_new_xattr(sctx);
7137 		else if (result == BTRFS_COMPARE_TREE_DELETED)
7138 			ret = process_deleted_xattr(sctx);
7139 		else if (result == BTRFS_COMPARE_TREE_CHANGED)
7140 			ret = process_changed_xattr(sctx);
7141 	}
7142 
7143 	return ret;
7144 }
7145 
7146 /*
7147  * Process new/deleted/changed extents. We skip processing in the
7148  * cur_inode_new_gen case because changed_inode did already initiate processing
7149  * of extents. The reason is the same as in changed_ref
7150  */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7151 static int changed_extent(struct send_ctx *sctx,
7152 			  enum btrfs_compare_tree_result result)
7153 {
7154 	int ret = 0;
7155 
7156 	/*
7157 	 * We have found an extent item that changed without the inode item
7158 	 * having changed. This can happen either after relocation (where the
7159 	 * disk_bytenr of an extent item is replaced at
7160 	 * relocation.c:replace_file_extents()) or after deduplication into a
7161 	 * file in both the parent and send snapshots (where an extent item can
7162 	 * get modified or replaced with a new one). Note that deduplication
7163 	 * updates the inode item, but it only changes the iversion (sequence
7164 	 * field in the inode item) of the inode, so if a file is deduplicated
7165 	 * the same amount of times in both the parent and send snapshots, its
7166 	 * iversion becomes the same in both snapshots, whence the inode item is
7167 	 * the same on both snapshots.
7168 	 */
7169 	if (sctx->cur_ino != sctx->cmp_key->objectid)
7170 		return 0;
7171 
7172 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7173 		if (result != BTRFS_COMPARE_TREE_DELETED)
7174 			ret = process_extent(sctx, sctx->left_path,
7175 					sctx->cmp_key);
7176 	}
7177 
7178 	return ret;
7179 }
7180 
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)7181 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7182 {
7183 	if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7184 		if (result == BTRFS_COMPARE_TREE_NEW)
7185 			sctx->cur_inode_needs_verity = true;
7186 	}
7187 	return 0;
7188 }
7189 
dir_changed(struct send_ctx * sctx,u64 dir)7190 static int dir_changed(struct send_ctx *sctx, u64 dir)
7191 {
7192 	u64 orig_gen, new_gen;
7193 	int ret;
7194 
7195 	ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7196 	if (ret)
7197 		return ret;
7198 
7199 	ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7200 	if (ret)
7201 		return ret;
7202 
7203 	return (orig_gen != new_gen) ? 1 : 0;
7204 }
7205 
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)7206 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7207 			struct btrfs_key *key)
7208 {
7209 	struct btrfs_inode_extref *extref;
7210 	struct extent_buffer *leaf;
7211 	u64 dirid = 0, last_dirid = 0;
7212 	unsigned long ptr;
7213 	u32 item_size;
7214 	u32 cur_offset = 0;
7215 	int ref_name_len;
7216 	int ret = 0;
7217 
7218 	/* Easy case, just check this one dirid */
7219 	if (key->type == BTRFS_INODE_REF_KEY) {
7220 		dirid = key->offset;
7221 
7222 		ret = dir_changed(sctx, dirid);
7223 		goto out;
7224 	}
7225 
7226 	leaf = path->nodes[0];
7227 	item_size = btrfs_item_size(leaf, path->slots[0]);
7228 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7229 	while (cur_offset < item_size) {
7230 		extref = (struct btrfs_inode_extref *)(ptr +
7231 						       cur_offset);
7232 		dirid = btrfs_inode_extref_parent(leaf, extref);
7233 		ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7234 		cur_offset += ref_name_len + sizeof(*extref);
7235 		if (dirid == last_dirid)
7236 			continue;
7237 		ret = dir_changed(sctx, dirid);
7238 		if (ret)
7239 			break;
7240 		last_dirid = dirid;
7241 	}
7242 out:
7243 	return ret;
7244 }
7245 
7246 /*
7247  * Updates compare related fields in sctx and simply forwards to the actual
7248  * changed_xxx functions.
7249  */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)7250 static int changed_cb(struct btrfs_path *left_path,
7251 		      struct btrfs_path *right_path,
7252 		      struct btrfs_key *key,
7253 		      enum btrfs_compare_tree_result result,
7254 		      struct send_ctx *sctx)
7255 {
7256 	int ret = 0;
7257 
7258 	/*
7259 	 * We can not hold the commit root semaphore here. This is because in
7260 	 * the case of sending and receiving to the same filesystem, using a
7261 	 * pipe, could result in a deadlock:
7262 	 *
7263 	 * 1) The task running send blocks on the pipe because it's full;
7264 	 *
7265 	 * 2) The task running receive, which is the only consumer of the pipe,
7266 	 *    is waiting for a transaction commit (for example due to a space
7267 	 *    reservation when doing a write or triggering a transaction commit
7268 	 *    when creating a subvolume);
7269 	 *
7270 	 * 3) The transaction is waiting to write lock the commit root semaphore,
7271 	 *    but can not acquire it since it's being held at 1).
7272 	 *
7273 	 * Down this call chain we write to the pipe through kernel_write().
7274 	 * The same type of problem can also happen when sending to a file that
7275 	 * is stored in the same filesystem - when reserving space for a write
7276 	 * into the file, we can trigger a transaction commit.
7277 	 *
7278 	 * Our caller has supplied us with clones of leaves from the send and
7279 	 * parent roots, so we're safe here from a concurrent relocation and
7280 	 * further reallocation of metadata extents while we are here. Below we
7281 	 * also assert that the leaves are clones.
7282 	 */
7283 	lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7284 
7285 	/*
7286 	 * We always have a send root, so left_path is never NULL. We will not
7287 	 * have a leaf when we have reached the end of the send root but have
7288 	 * not yet reached the end of the parent root.
7289 	 */
7290 	if (left_path->nodes[0])
7291 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7292 				&left_path->nodes[0]->bflags));
7293 	/*
7294 	 * When doing a full send we don't have a parent root, so right_path is
7295 	 * NULL. When doing an incremental send, we may have reached the end of
7296 	 * the parent root already, so we don't have a leaf at right_path.
7297 	 */
7298 	if (right_path && right_path->nodes[0])
7299 		ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7300 				&right_path->nodes[0]->bflags));
7301 
7302 	if (result == BTRFS_COMPARE_TREE_SAME) {
7303 		if (key->type == BTRFS_INODE_REF_KEY ||
7304 		    key->type == BTRFS_INODE_EXTREF_KEY) {
7305 			ret = compare_refs(sctx, left_path, key);
7306 			if (!ret)
7307 				return 0;
7308 			if (ret < 0)
7309 				return ret;
7310 		} else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7311 			return maybe_send_hole(sctx, left_path, key);
7312 		} else {
7313 			return 0;
7314 		}
7315 		result = BTRFS_COMPARE_TREE_CHANGED;
7316 		ret = 0;
7317 	}
7318 
7319 	sctx->left_path = left_path;
7320 	sctx->right_path = right_path;
7321 	sctx->cmp_key = key;
7322 
7323 	ret = finish_inode_if_needed(sctx, 0);
7324 	if (ret < 0)
7325 		goto out;
7326 
7327 	/* Ignore non-FS objects */
7328 	if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7329 	    key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7330 		goto out;
7331 
7332 	if (key->type == BTRFS_INODE_ITEM_KEY) {
7333 		ret = changed_inode(sctx, result);
7334 	} else if (!sctx->ignore_cur_inode) {
7335 		if (key->type == BTRFS_INODE_REF_KEY ||
7336 		    key->type == BTRFS_INODE_EXTREF_KEY)
7337 			ret = changed_ref(sctx, result);
7338 		else if (key->type == BTRFS_XATTR_ITEM_KEY)
7339 			ret = changed_xattr(sctx, result);
7340 		else if (key->type == BTRFS_EXTENT_DATA_KEY)
7341 			ret = changed_extent(sctx, result);
7342 		else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7343 			 key->offset == 0)
7344 			ret = changed_verity(sctx, result);
7345 	}
7346 
7347 out:
7348 	return ret;
7349 }
7350 
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7351 static int search_key_again(const struct send_ctx *sctx,
7352 			    struct btrfs_root *root,
7353 			    struct btrfs_path *path,
7354 			    const struct btrfs_key *key)
7355 {
7356 	int ret;
7357 
7358 	if (!path->need_commit_sem)
7359 		lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7360 
7361 	/*
7362 	 * Roots used for send operations are readonly and no one can add,
7363 	 * update or remove keys from them, so we should be able to find our
7364 	 * key again. The only exception is deduplication, which can operate on
7365 	 * readonly roots and add, update or remove keys to/from them - but at
7366 	 * the moment we don't allow it to run in parallel with send.
7367 	 */
7368 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7369 	ASSERT(ret <= 0);
7370 	if (ret > 0) {
7371 		btrfs_print_tree(path->nodes[path->lowest_level], false);
7372 		btrfs_err(root->fs_info,
7373 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7374 			  key->objectid, key->type, key->offset,
7375 			  (root == sctx->parent_root ? "parent" : "send"),
7376 			  btrfs_root_id(root), path->lowest_level,
7377 			  path->slots[path->lowest_level]);
7378 		return -EUCLEAN;
7379 	}
7380 
7381 	return ret;
7382 }
7383 
full_send_tree(struct send_ctx * sctx)7384 static int full_send_tree(struct send_ctx *sctx)
7385 {
7386 	int ret;
7387 	struct btrfs_root *send_root = sctx->send_root;
7388 	struct btrfs_key key;
7389 	struct btrfs_fs_info *fs_info = send_root->fs_info;
7390 	struct btrfs_path *path;
7391 
7392 	path = alloc_path_for_send();
7393 	if (!path)
7394 		return -ENOMEM;
7395 	path->reada = READA_FORWARD_ALWAYS;
7396 
7397 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7398 	key.type = BTRFS_INODE_ITEM_KEY;
7399 	key.offset = 0;
7400 
7401 	down_read(&fs_info->commit_root_sem);
7402 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7403 	up_read(&fs_info->commit_root_sem);
7404 
7405 	ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7406 	if (ret < 0)
7407 		goto out;
7408 	if (ret)
7409 		goto out_finish;
7410 
7411 	while (1) {
7412 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7413 
7414 		ret = changed_cb(path, NULL, &key,
7415 				 BTRFS_COMPARE_TREE_NEW, sctx);
7416 		if (ret < 0)
7417 			goto out;
7418 
7419 		down_read(&fs_info->commit_root_sem);
7420 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7421 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7422 			up_read(&fs_info->commit_root_sem);
7423 			/*
7424 			 * A transaction used for relocating a block group was
7425 			 * committed or is about to finish its commit. Release
7426 			 * our path (leaf) and restart the search, so that we
7427 			 * avoid operating on any file extent items that are
7428 			 * stale, with a disk_bytenr that reflects a pre
7429 			 * relocation value. This way we avoid as much as
7430 			 * possible to fallback to regular writes when checking
7431 			 * if we can clone file ranges.
7432 			 */
7433 			btrfs_release_path(path);
7434 			ret = search_key_again(sctx, send_root, path, &key);
7435 			if (ret < 0)
7436 				goto out;
7437 		} else {
7438 			up_read(&fs_info->commit_root_sem);
7439 		}
7440 
7441 		ret = btrfs_next_item(send_root, path);
7442 		if (ret < 0)
7443 			goto out;
7444 		if (ret) {
7445 			ret  = 0;
7446 			break;
7447 		}
7448 	}
7449 
7450 out_finish:
7451 	ret = finish_inode_if_needed(sctx, 1);
7452 
7453 out:
7454 	btrfs_free_path(path);
7455 	return ret;
7456 }
7457 
replace_node_with_clone(struct btrfs_path * path,int level)7458 static int replace_node_with_clone(struct btrfs_path *path, int level)
7459 {
7460 	struct extent_buffer *clone;
7461 
7462 	clone = btrfs_clone_extent_buffer(path->nodes[level]);
7463 	if (!clone)
7464 		return -ENOMEM;
7465 
7466 	free_extent_buffer(path->nodes[level]);
7467 	path->nodes[level] = clone;
7468 
7469 	return 0;
7470 }
7471 
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7472 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7473 {
7474 	struct extent_buffer *eb;
7475 	struct extent_buffer *parent = path->nodes[*level];
7476 	int slot = path->slots[*level];
7477 	const int nritems = btrfs_header_nritems(parent);
7478 	u64 reada_max;
7479 	u64 reada_done = 0;
7480 
7481 	lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7482 	ASSERT(*level != 0);
7483 
7484 	eb = btrfs_read_node_slot(parent, slot);
7485 	if (IS_ERR(eb))
7486 		return PTR_ERR(eb);
7487 
7488 	/*
7489 	 * Trigger readahead for the next leaves we will process, so that it is
7490 	 * very likely that when we need them they are already in memory and we
7491 	 * will not block on disk IO. For nodes we only do readahead for one,
7492 	 * since the time window between processing nodes is typically larger.
7493 	 */
7494 	reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7495 
7496 	for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7497 		if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7498 			btrfs_readahead_node_child(parent, slot);
7499 			reada_done += eb->fs_info->nodesize;
7500 		}
7501 	}
7502 
7503 	path->nodes[*level - 1] = eb;
7504 	path->slots[*level - 1] = 0;
7505 	(*level)--;
7506 
7507 	if (*level == 0)
7508 		return replace_node_with_clone(path, 0);
7509 
7510 	return 0;
7511 }
7512 
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7513 static int tree_move_next_or_upnext(struct btrfs_path *path,
7514 				    int *level, int root_level)
7515 {
7516 	int ret = 0;
7517 	int nritems;
7518 	nritems = btrfs_header_nritems(path->nodes[*level]);
7519 
7520 	path->slots[*level]++;
7521 
7522 	while (path->slots[*level] >= nritems) {
7523 		if (*level == root_level) {
7524 			path->slots[*level] = nritems - 1;
7525 			return -1;
7526 		}
7527 
7528 		/* move upnext */
7529 		path->slots[*level] = 0;
7530 		free_extent_buffer(path->nodes[*level]);
7531 		path->nodes[*level] = NULL;
7532 		(*level)++;
7533 		path->slots[*level]++;
7534 
7535 		nritems = btrfs_header_nritems(path->nodes[*level]);
7536 		ret = 1;
7537 	}
7538 	return ret;
7539 }
7540 
7541 /*
7542  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7543  * or down.
7544  */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7545 static int tree_advance(struct btrfs_path *path,
7546 			int *level, int root_level,
7547 			int allow_down,
7548 			struct btrfs_key *key,
7549 			u64 reada_min_gen)
7550 {
7551 	int ret;
7552 
7553 	if (*level == 0 || !allow_down) {
7554 		ret = tree_move_next_or_upnext(path, level, root_level);
7555 	} else {
7556 		ret = tree_move_down(path, level, reada_min_gen);
7557 	}
7558 
7559 	/*
7560 	 * Even if we have reached the end of a tree, ret is -1, update the key
7561 	 * anyway, so that in case we need to restart due to a block group
7562 	 * relocation, we can assert that the last key of the root node still
7563 	 * exists in the tree.
7564 	 */
7565 	if (*level == 0)
7566 		btrfs_item_key_to_cpu(path->nodes[*level], key,
7567 				      path->slots[*level]);
7568 	else
7569 		btrfs_node_key_to_cpu(path->nodes[*level], key,
7570 				      path->slots[*level]);
7571 
7572 	return ret;
7573 }
7574 
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7575 static int tree_compare_item(struct btrfs_path *left_path,
7576 			     struct btrfs_path *right_path,
7577 			     char *tmp_buf)
7578 {
7579 	int cmp;
7580 	int len1, len2;
7581 	unsigned long off1, off2;
7582 
7583 	len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7584 	len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7585 	if (len1 != len2)
7586 		return 1;
7587 
7588 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7589 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7590 				right_path->slots[0]);
7591 
7592 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7593 
7594 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7595 	if (cmp)
7596 		return 1;
7597 	return 0;
7598 }
7599 
7600 /*
7601  * A transaction used for relocating a block group was committed or is about to
7602  * finish its commit. Release our paths and restart the search, so that we are
7603  * not using stale extent buffers:
7604  *
7605  * 1) For levels > 0, we are only holding references of extent buffers, without
7606  *    any locks on them, which does not prevent them from having been relocated
7607  *    and reallocated after the last time we released the commit root semaphore.
7608  *    The exception are the root nodes, for which we always have a clone, see
7609  *    the comment at btrfs_compare_trees();
7610  *
7611  * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7612  *    we are safe from the concurrent relocation and reallocation. However they
7613  *    can have file extent items with a pre relocation disk_bytenr value, so we
7614  *    restart the start from the current commit roots and clone the new leaves so
7615  *    that we get the post relocation disk_bytenr values. Not doing so, could
7616  *    make us clone the wrong data in case there are new extents using the old
7617  *    disk_bytenr that happen to be shared.
7618  */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7619 static int restart_after_relocation(struct btrfs_path *left_path,
7620 				    struct btrfs_path *right_path,
7621 				    const struct btrfs_key *left_key,
7622 				    const struct btrfs_key *right_key,
7623 				    int left_level,
7624 				    int right_level,
7625 				    const struct send_ctx *sctx)
7626 {
7627 	int root_level;
7628 	int ret;
7629 
7630 	lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7631 
7632 	btrfs_release_path(left_path);
7633 	btrfs_release_path(right_path);
7634 
7635 	/*
7636 	 * Since keys can not be added or removed to/from our roots because they
7637 	 * are readonly and we do not allow deduplication to run in parallel
7638 	 * (which can add, remove or change keys), the layout of the trees should
7639 	 * not change.
7640 	 */
7641 	left_path->lowest_level = left_level;
7642 	ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7643 	if (ret < 0)
7644 		return ret;
7645 
7646 	right_path->lowest_level = right_level;
7647 	ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7648 	if (ret < 0)
7649 		return ret;
7650 
7651 	/*
7652 	 * If the lowest level nodes are leaves, clone them so that they can be
7653 	 * safely used by changed_cb() while not under the protection of the
7654 	 * commit root semaphore, even if relocation and reallocation happens in
7655 	 * parallel.
7656 	 */
7657 	if (left_level == 0) {
7658 		ret = replace_node_with_clone(left_path, 0);
7659 		if (ret < 0)
7660 			return ret;
7661 	}
7662 
7663 	if (right_level == 0) {
7664 		ret = replace_node_with_clone(right_path, 0);
7665 		if (ret < 0)
7666 			return ret;
7667 	}
7668 
7669 	/*
7670 	 * Now clone the root nodes (unless they happen to be the leaves we have
7671 	 * already cloned). This is to protect against concurrent snapshotting of
7672 	 * the send and parent roots (see the comment at btrfs_compare_trees()).
7673 	 */
7674 	root_level = btrfs_header_level(sctx->send_root->commit_root);
7675 	if (root_level > 0) {
7676 		ret = replace_node_with_clone(left_path, root_level);
7677 		if (ret < 0)
7678 			return ret;
7679 	}
7680 
7681 	root_level = btrfs_header_level(sctx->parent_root->commit_root);
7682 	if (root_level > 0) {
7683 		ret = replace_node_with_clone(right_path, root_level);
7684 		if (ret < 0)
7685 			return ret;
7686 	}
7687 
7688 	return 0;
7689 }
7690 
7691 /*
7692  * This function compares two trees and calls the provided callback for
7693  * every changed/new/deleted item it finds.
7694  * If shared tree blocks are encountered, whole subtrees are skipped, making
7695  * the compare pretty fast on snapshotted subvolumes.
7696  *
7697  * This currently works on commit roots only. As commit roots are read only,
7698  * we don't do any locking. The commit roots are protected with transactions.
7699  * Transactions are ended and rejoined when a commit is tried in between.
7700  *
7701  * This function checks for modifications done to the trees while comparing.
7702  * If it detects a change, it aborts immediately.
7703  */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7704 static int btrfs_compare_trees(struct btrfs_root *left_root,
7705 			struct btrfs_root *right_root, struct send_ctx *sctx)
7706 {
7707 	struct btrfs_fs_info *fs_info = left_root->fs_info;
7708 	int ret;
7709 	int cmp;
7710 	struct btrfs_path *left_path = NULL;
7711 	struct btrfs_path *right_path = NULL;
7712 	struct btrfs_key left_key;
7713 	struct btrfs_key right_key;
7714 	char *tmp_buf = NULL;
7715 	int left_root_level;
7716 	int right_root_level;
7717 	int left_level;
7718 	int right_level;
7719 	int left_end_reached = 0;
7720 	int right_end_reached = 0;
7721 	int advance_left = 0;
7722 	int advance_right = 0;
7723 	u64 left_blockptr;
7724 	u64 right_blockptr;
7725 	u64 left_gen;
7726 	u64 right_gen;
7727 	u64 reada_min_gen;
7728 
7729 	left_path = btrfs_alloc_path();
7730 	if (!left_path) {
7731 		ret = -ENOMEM;
7732 		goto out;
7733 	}
7734 	right_path = btrfs_alloc_path();
7735 	if (!right_path) {
7736 		ret = -ENOMEM;
7737 		goto out;
7738 	}
7739 
7740 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7741 	if (!tmp_buf) {
7742 		ret = -ENOMEM;
7743 		goto out;
7744 	}
7745 
7746 	left_path->search_commit_root = 1;
7747 	left_path->skip_locking = 1;
7748 	right_path->search_commit_root = 1;
7749 	right_path->skip_locking = 1;
7750 
7751 	/*
7752 	 * Strategy: Go to the first items of both trees. Then do
7753 	 *
7754 	 * If both trees are at level 0
7755 	 *   Compare keys of current items
7756 	 *     If left < right treat left item as new, advance left tree
7757 	 *       and repeat
7758 	 *     If left > right treat right item as deleted, advance right tree
7759 	 *       and repeat
7760 	 *     If left == right do deep compare of items, treat as changed if
7761 	 *       needed, advance both trees and repeat
7762 	 * If both trees are at the same level but not at level 0
7763 	 *   Compare keys of current nodes/leafs
7764 	 *     If left < right advance left tree and repeat
7765 	 *     If left > right advance right tree and repeat
7766 	 *     If left == right compare blockptrs of the next nodes/leafs
7767 	 *       If they match advance both trees but stay at the same level
7768 	 *         and repeat
7769 	 *       If they don't match advance both trees while allowing to go
7770 	 *         deeper and repeat
7771 	 * If tree levels are different
7772 	 *   Advance the tree that needs it and repeat
7773 	 *
7774 	 * Advancing a tree means:
7775 	 *   If we are at level 0, try to go to the next slot. If that's not
7776 	 *   possible, go one level up and repeat. Stop when we found a level
7777 	 *   where we could go to the next slot. We may at this point be on a
7778 	 *   node or a leaf.
7779 	 *
7780 	 *   If we are not at level 0 and not on shared tree blocks, go one
7781 	 *   level deeper.
7782 	 *
7783 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
7784 	 *   the right if possible or go up and right.
7785 	 */
7786 
7787 	down_read(&fs_info->commit_root_sem);
7788 	left_level = btrfs_header_level(left_root->commit_root);
7789 	left_root_level = left_level;
7790 	/*
7791 	 * We clone the root node of the send and parent roots to prevent races
7792 	 * with snapshot creation of these roots. Snapshot creation COWs the
7793 	 * root node of a tree, so after the transaction is committed the old
7794 	 * extent can be reallocated while this send operation is still ongoing.
7795 	 * So we clone them, under the commit root semaphore, to be race free.
7796 	 */
7797 	left_path->nodes[left_level] =
7798 			btrfs_clone_extent_buffer(left_root->commit_root);
7799 	if (!left_path->nodes[left_level]) {
7800 		ret = -ENOMEM;
7801 		goto out_unlock;
7802 	}
7803 
7804 	right_level = btrfs_header_level(right_root->commit_root);
7805 	right_root_level = right_level;
7806 	right_path->nodes[right_level] =
7807 			btrfs_clone_extent_buffer(right_root->commit_root);
7808 	if (!right_path->nodes[right_level]) {
7809 		ret = -ENOMEM;
7810 		goto out_unlock;
7811 	}
7812 	/*
7813 	 * Our right root is the parent root, while the left root is the "send"
7814 	 * root. We know that all new nodes/leaves in the left root must have
7815 	 * a generation greater than the right root's generation, so we trigger
7816 	 * readahead for those nodes and leaves of the left root, as we know we
7817 	 * will need to read them at some point.
7818 	 */
7819 	reada_min_gen = btrfs_header_generation(right_root->commit_root);
7820 
7821 	if (left_level == 0)
7822 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
7823 				&left_key, left_path->slots[left_level]);
7824 	else
7825 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
7826 				&left_key, left_path->slots[left_level]);
7827 	if (right_level == 0)
7828 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
7829 				&right_key, right_path->slots[right_level]);
7830 	else
7831 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
7832 				&right_key, right_path->slots[right_level]);
7833 
7834 	sctx->last_reloc_trans = fs_info->last_reloc_trans;
7835 
7836 	while (1) {
7837 		if (need_resched() ||
7838 		    rwsem_is_contended(&fs_info->commit_root_sem)) {
7839 			up_read(&fs_info->commit_root_sem);
7840 			cond_resched();
7841 			down_read(&fs_info->commit_root_sem);
7842 		}
7843 
7844 		if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7845 			ret = restart_after_relocation(left_path, right_path,
7846 						       &left_key, &right_key,
7847 						       left_level, right_level,
7848 						       sctx);
7849 			if (ret < 0)
7850 				goto out_unlock;
7851 			sctx->last_reloc_trans = fs_info->last_reloc_trans;
7852 		}
7853 
7854 		if (advance_left && !left_end_reached) {
7855 			ret = tree_advance(left_path, &left_level,
7856 					left_root_level,
7857 					advance_left != ADVANCE_ONLY_NEXT,
7858 					&left_key, reada_min_gen);
7859 			if (ret == -1)
7860 				left_end_reached = ADVANCE;
7861 			else if (ret < 0)
7862 				goto out_unlock;
7863 			advance_left = 0;
7864 		}
7865 		if (advance_right && !right_end_reached) {
7866 			ret = tree_advance(right_path, &right_level,
7867 					right_root_level,
7868 					advance_right != ADVANCE_ONLY_NEXT,
7869 					&right_key, reada_min_gen);
7870 			if (ret == -1)
7871 				right_end_reached = ADVANCE;
7872 			else if (ret < 0)
7873 				goto out_unlock;
7874 			advance_right = 0;
7875 		}
7876 
7877 		if (left_end_reached && right_end_reached) {
7878 			ret = 0;
7879 			goto out_unlock;
7880 		} else if (left_end_reached) {
7881 			if (right_level == 0) {
7882 				up_read(&fs_info->commit_root_sem);
7883 				ret = changed_cb(left_path, right_path,
7884 						&right_key,
7885 						BTRFS_COMPARE_TREE_DELETED,
7886 						sctx);
7887 				if (ret < 0)
7888 					goto out;
7889 				down_read(&fs_info->commit_root_sem);
7890 			}
7891 			advance_right = ADVANCE;
7892 			continue;
7893 		} else if (right_end_reached) {
7894 			if (left_level == 0) {
7895 				up_read(&fs_info->commit_root_sem);
7896 				ret = changed_cb(left_path, right_path,
7897 						&left_key,
7898 						BTRFS_COMPARE_TREE_NEW,
7899 						sctx);
7900 				if (ret < 0)
7901 					goto out;
7902 				down_read(&fs_info->commit_root_sem);
7903 			}
7904 			advance_left = ADVANCE;
7905 			continue;
7906 		}
7907 
7908 		if (left_level == 0 && right_level == 0) {
7909 			up_read(&fs_info->commit_root_sem);
7910 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7911 			if (cmp < 0) {
7912 				ret = changed_cb(left_path, right_path,
7913 						&left_key,
7914 						BTRFS_COMPARE_TREE_NEW,
7915 						sctx);
7916 				advance_left = ADVANCE;
7917 			} else if (cmp > 0) {
7918 				ret = changed_cb(left_path, right_path,
7919 						&right_key,
7920 						BTRFS_COMPARE_TREE_DELETED,
7921 						sctx);
7922 				advance_right = ADVANCE;
7923 			} else {
7924 				enum btrfs_compare_tree_result result;
7925 
7926 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7927 				ret = tree_compare_item(left_path, right_path,
7928 							tmp_buf);
7929 				if (ret)
7930 					result = BTRFS_COMPARE_TREE_CHANGED;
7931 				else
7932 					result = BTRFS_COMPARE_TREE_SAME;
7933 				ret = changed_cb(left_path, right_path,
7934 						 &left_key, result, sctx);
7935 				advance_left = ADVANCE;
7936 				advance_right = ADVANCE;
7937 			}
7938 
7939 			if (ret < 0)
7940 				goto out;
7941 			down_read(&fs_info->commit_root_sem);
7942 		} else if (left_level == right_level) {
7943 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7944 			if (cmp < 0) {
7945 				advance_left = ADVANCE;
7946 			} else if (cmp > 0) {
7947 				advance_right = ADVANCE;
7948 			} else {
7949 				left_blockptr = btrfs_node_blockptr(
7950 						left_path->nodes[left_level],
7951 						left_path->slots[left_level]);
7952 				right_blockptr = btrfs_node_blockptr(
7953 						right_path->nodes[right_level],
7954 						right_path->slots[right_level]);
7955 				left_gen = btrfs_node_ptr_generation(
7956 						left_path->nodes[left_level],
7957 						left_path->slots[left_level]);
7958 				right_gen = btrfs_node_ptr_generation(
7959 						right_path->nodes[right_level],
7960 						right_path->slots[right_level]);
7961 				if (left_blockptr == right_blockptr &&
7962 				    left_gen == right_gen) {
7963 					/*
7964 					 * As we're on a shared block, don't
7965 					 * allow to go deeper.
7966 					 */
7967 					advance_left = ADVANCE_ONLY_NEXT;
7968 					advance_right = ADVANCE_ONLY_NEXT;
7969 				} else {
7970 					advance_left = ADVANCE;
7971 					advance_right = ADVANCE;
7972 				}
7973 			}
7974 		} else if (left_level < right_level) {
7975 			advance_right = ADVANCE;
7976 		} else {
7977 			advance_left = ADVANCE;
7978 		}
7979 	}
7980 
7981 out_unlock:
7982 	up_read(&fs_info->commit_root_sem);
7983 out:
7984 	btrfs_free_path(left_path);
7985 	btrfs_free_path(right_path);
7986 	kvfree(tmp_buf);
7987 	return ret;
7988 }
7989 
send_subvol(struct send_ctx * sctx)7990 static int send_subvol(struct send_ctx *sctx)
7991 {
7992 	int ret;
7993 
7994 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7995 		ret = send_header(sctx);
7996 		if (ret < 0)
7997 			goto out;
7998 	}
7999 
8000 	ret = send_subvol_begin(sctx);
8001 	if (ret < 0)
8002 		goto out;
8003 
8004 	if (sctx->parent_root) {
8005 		ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
8006 		if (ret < 0)
8007 			goto out;
8008 		ret = finish_inode_if_needed(sctx, 1);
8009 		if (ret < 0)
8010 			goto out;
8011 	} else {
8012 		ret = full_send_tree(sctx);
8013 		if (ret < 0)
8014 			goto out;
8015 	}
8016 
8017 out:
8018 	free_recorded_refs(sctx);
8019 	return ret;
8020 }
8021 
8022 /*
8023  * If orphan cleanup did remove any orphans from a root, it means the tree
8024  * was modified and therefore the commit root is not the same as the current
8025  * root anymore. This is a problem, because send uses the commit root and
8026  * therefore can see inode items that don't exist in the current root anymore,
8027  * and for example make calls to btrfs_iget, which will do tree lookups based
8028  * on the current root and not on the commit root. Those lookups will fail,
8029  * returning a -ESTALE error, and making send fail with that error. So make
8030  * sure a send does not see any orphans we have just removed, and that it will
8031  * see the same inodes regardless of whether a transaction commit happened
8032  * before it started (meaning that the commit root will be the same as the
8033  * current root) or not.
8034  */
ensure_commit_roots_uptodate(struct send_ctx * sctx)8035 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8036 {
8037 	struct btrfs_root *root = sctx->parent_root;
8038 
8039 	if (root && root->node != root->commit_root)
8040 		return btrfs_commit_current_transaction(root);
8041 
8042 	for (int i = 0; i < sctx->clone_roots_cnt; i++) {
8043 		root = sctx->clone_roots[i].root;
8044 		if (root->node != root->commit_root)
8045 			return btrfs_commit_current_transaction(root);
8046 	}
8047 
8048 	return 0;
8049 }
8050 
8051 /*
8052  * Make sure any existing dellaloc is flushed for any root used by a send
8053  * operation so that we do not miss any data and we do not race with writeback
8054  * finishing and changing a tree while send is using the tree. This could
8055  * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8056  * a send operation then uses the subvolume.
8057  * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8058  */
flush_delalloc_roots(struct send_ctx * sctx)8059 static int flush_delalloc_roots(struct send_ctx *sctx)
8060 {
8061 	struct btrfs_root *root = sctx->parent_root;
8062 	int ret;
8063 	int i;
8064 
8065 	if (root) {
8066 		ret = btrfs_start_delalloc_snapshot(root, false);
8067 		if (ret)
8068 			return ret;
8069 		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8070 	}
8071 
8072 	for (i = 0; i < sctx->clone_roots_cnt; i++) {
8073 		root = sctx->clone_roots[i].root;
8074 		ret = btrfs_start_delalloc_snapshot(root, false);
8075 		if (ret)
8076 			return ret;
8077 		btrfs_wait_ordered_extents(root, U64_MAX, NULL);
8078 	}
8079 
8080 	return 0;
8081 }
8082 
btrfs_root_dec_send_in_progress(struct btrfs_root * root)8083 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8084 {
8085 	spin_lock(&root->root_item_lock);
8086 	root->send_in_progress--;
8087 	/*
8088 	 * Not much left to do, we don't know why it's unbalanced and
8089 	 * can't blindly reset it to 0.
8090 	 */
8091 	if (root->send_in_progress < 0)
8092 		btrfs_err(root->fs_info,
8093 			  "send_in_progress unbalanced %d root %llu",
8094 			  root->send_in_progress, btrfs_root_id(root));
8095 	spin_unlock(&root->root_item_lock);
8096 }
8097 
dedupe_in_progress_warn(const struct btrfs_root * root)8098 static void dedupe_in_progress_warn(const struct btrfs_root *root)
8099 {
8100 	btrfs_warn_rl(root->fs_info,
8101 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8102 		      btrfs_root_id(root), root->dedupe_in_progress);
8103 }
8104 
btrfs_ioctl_send(struct btrfs_inode * inode,const struct btrfs_ioctl_send_args * arg)8105 long btrfs_ioctl_send(struct btrfs_inode *inode, const struct btrfs_ioctl_send_args *arg)
8106 {
8107 	int ret = 0;
8108 	struct btrfs_root *send_root = inode->root;
8109 	struct btrfs_fs_info *fs_info = send_root->fs_info;
8110 	struct btrfs_root *clone_root;
8111 	struct send_ctx *sctx = NULL;
8112 	u32 i;
8113 	u64 *clone_sources_tmp = NULL;
8114 	int clone_sources_to_rollback = 0;
8115 	size_t alloc_size;
8116 	int sort_clone_roots = 0;
8117 	struct btrfs_lru_cache_entry *entry;
8118 	struct btrfs_lru_cache_entry *tmp;
8119 
8120 	if (!capable(CAP_SYS_ADMIN))
8121 		return -EPERM;
8122 
8123 	/*
8124 	 * The subvolume must remain read-only during send, protect against
8125 	 * making it RW. This also protects against deletion.
8126 	 */
8127 	spin_lock(&send_root->root_item_lock);
8128 	/*
8129 	 * Unlikely but possible, if the subvolume is marked for deletion but
8130 	 * is slow to remove the directory entry, send can still be started.
8131 	 */
8132 	if (btrfs_root_dead(send_root)) {
8133 		spin_unlock(&send_root->root_item_lock);
8134 		return -EPERM;
8135 	}
8136 	/* Userspace tools do the checks and warn the user if it's not RO. */
8137 	if (!btrfs_root_readonly(send_root)) {
8138 		spin_unlock(&send_root->root_item_lock);
8139 		return -EPERM;
8140 	}
8141 	if (send_root->dedupe_in_progress) {
8142 		dedupe_in_progress_warn(send_root);
8143 		spin_unlock(&send_root->root_item_lock);
8144 		return -EAGAIN;
8145 	}
8146 	send_root->send_in_progress++;
8147 	spin_unlock(&send_root->root_item_lock);
8148 
8149 	/*
8150 	 * Check that we don't overflow at later allocations, we request
8151 	 * clone_sources_count + 1 items, and compare to unsigned long inside
8152 	 * access_ok. Also set an upper limit for allocation size so this can't
8153 	 * easily exhaust memory. Max number of clone sources is about 200K.
8154 	 */
8155 	if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8156 		ret = -EINVAL;
8157 		goto out;
8158 	}
8159 
8160 	if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8161 		ret = -EOPNOTSUPP;
8162 		goto out;
8163 	}
8164 
8165 	sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8166 	if (!sctx) {
8167 		ret = -ENOMEM;
8168 		goto out;
8169 	}
8170 
8171 	INIT_LIST_HEAD(&sctx->new_refs);
8172 	INIT_LIST_HEAD(&sctx->deleted_refs);
8173 
8174 	btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8175 	btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8176 	btrfs_lru_cache_init(&sctx->dir_created_cache,
8177 			     SEND_MAX_DIR_CREATED_CACHE_SIZE);
8178 	/*
8179 	 * This cache is periodically trimmed to a fixed size elsewhere, see
8180 	 * cache_dir_utimes() and trim_dir_utimes_cache().
8181 	 */
8182 	btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8183 
8184 	sctx->pending_dir_moves = RB_ROOT;
8185 	sctx->waiting_dir_moves = RB_ROOT;
8186 	sctx->orphan_dirs = RB_ROOT;
8187 	sctx->rbtree_new_refs = RB_ROOT;
8188 	sctx->rbtree_deleted_refs = RB_ROOT;
8189 
8190 	sctx->flags = arg->flags;
8191 
8192 	if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8193 		if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8194 			ret = -EPROTO;
8195 			goto out;
8196 		}
8197 		/* Zero means "use the highest version" */
8198 		sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8199 	} else {
8200 		sctx->proto = 1;
8201 	}
8202 	if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8203 		ret = -EINVAL;
8204 		goto out;
8205 	}
8206 
8207 	sctx->send_filp = fget(arg->send_fd);
8208 	if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8209 		ret = -EBADF;
8210 		goto out;
8211 	}
8212 
8213 	sctx->send_root = send_root;
8214 	sctx->clone_roots_cnt = arg->clone_sources_count;
8215 
8216 	if (sctx->proto >= 2) {
8217 		u32 send_buf_num_pages;
8218 
8219 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8220 		sctx->send_buf = vmalloc(sctx->send_max_size);
8221 		if (!sctx->send_buf) {
8222 			ret = -ENOMEM;
8223 			goto out;
8224 		}
8225 		send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8226 		sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8227 					       sizeof(*sctx->send_buf_pages),
8228 					       GFP_KERNEL);
8229 		if (!sctx->send_buf_pages) {
8230 			ret = -ENOMEM;
8231 			goto out;
8232 		}
8233 		for (i = 0; i < send_buf_num_pages; i++) {
8234 			sctx->send_buf_pages[i] =
8235 				vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8236 		}
8237 	} else {
8238 		sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8239 		sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8240 	}
8241 	if (!sctx->send_buf) {
8242 		ret = -ENOMEM;
8243 		goto out;
8244 	}
8245 
8246 	sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8247 				     sizeof(*sctx->clone_roots),
8248 				     GFP_KERNEL);
8249 	if (!sctx->clone_roots) {
8250 		ret = -ENOMEM;
8251 		goto out;
8252 	}
8253 
8254 	alloc_size = array_size(sizeof(*arg->clone_sources),
8255 				arg->clone_sources_count);
8256 
8257 	if (arg->clone_sources_count) {
8258 		clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8259 		if (!clone_sources_tmp) {
8260 			ret = -ENOMEM;
8261 			goto out;
8262 		}
8263 
8264 		ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8265 				alloc_size);
8266 		if (ret) {
8267 			ret = -EFAULT;
8268 			goto out;
8269 		}
8270 
8271 		for (i = 0; i < arg->clone_sources_count; i++) {
8272 			clone_root = btrfs_get_fs_root(fs_info,
8273 						clone_sources_tmp[i], true);
8274 			if (IS_ERR(clone_root)) {
8275 				ret = PTR_ERR(clone_root);
8276 				goto out;
8277 			}
8278 			spin_lock(&clone_root->root_item_lock);
8279 			if (!btrfs_root_readonly(clone_root) ||
8280 			    btrfs_root_dead(clone_root)) {
8281 				spin_unlock(&clone_root->root_item_lock);
8282 				btrfs_put_root(clone_root);
8283 				ret = -EPERM;
8284 				goto out;
8285 			}
8286 			if (clone_root->dedupe_in_progress) {
8287 				dedupe_in_progress_warn(clone_root);
8288 				spin_unlock(&clone_root->root_item_lock);
8289 				btrfs_put_root(clone_root);
8290 				ret = -EAGAIN;
8291 				goto out;
8292 			}
8293 			clone_root->send_in_progress++;
8294 			spin_unlock(&clone_root->root_item_lock);
8295 
8296 			sctx->clone_roots[i].root = clone_root;
8297 			clone_sources_to_rollback = i + 1;
8298 		}
8299 		kvfree(clone_sources_tmp);
8300 		clone_sources_tmp = NULL;
8301 	}
8302 
8303 	if (arg->parent_root) {
8304 		sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8305 						      true);
8306 		if (IS_ERR(sctx->parent_root)) {
8307 			ret = PTR_ERR(sctx->parent_root);
8308 			goto out;
8309 		}
8310 
8311 		spin_lock(&sctx->parent_root->root_item_lock);
8312 		sctx->parent_root->send_in_progress++;
8313 		if (!btrfs_root_readonly(sctx->parent_root) ||
8314 				btrfs_root_dead(sctx->parent_root)) {
8315 			spin_unlock(&sctx->parent_root->root_item_lock);
8316 			ret = -EPERM;
8317 			goto out;
8318 		}
8319 		if (sctx->parent_root->dedupe_in_progress) {
8320 			dedupe_in_progress_warn(sctx->parent_root);
8321 			spin_unlock(&sctx->parent_root->root_item_lock);
8322 			ret = -EAGAIN;
8323 			goto out;
8324 		}
8325 		spin_unlock(&sctx->parent_root->root_item_lock);
8326 	}
8327 
8328 	/*
8329 	 * Clones from send_root are allowed, but only if the clone source
8330 	 * is behind the current send position. This is checked while searching
8331 	 * for possible clone sources.
8332 	 */
8333 	sctx->clone_roots[sctx->clone_roots_cnt++].root =
8334 		btrfs_grab_root(sctx->send_root);
8335 
8336 	/* We do a bsearch later */
8337 	sort(sctx->clone_roots, sctx->clone_roots_cnt,
8338 			sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8339 			NULL);
8340 	sort_clone_roots = 1;
8341 
8342 	ret = flush_delalloc_roots(sctx);
8343 	if (ret)
8344 		goto out;
8345 
8346 	ret = ensure_commit_roots_uptodate(sctx);
8347 	if (ret)
8348 		goto out;
8349 
8350 	ret = send_subvol(sctx);
8351 	if (ret < 0)
8352 		goto out;
8353 
8354 	btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8355 		ret = send_utimes(sctx, entry->key, entry->gen);
8356 		if (ret < 0)
8357 			goto out;
8358 		btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8359 	}
8360 
8361 	if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8362 		ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8363 		if (ret < 0)
8364 			goto out;
8365 		ret = send_cmd(sctx);
8366 		if (ret < 0)
8367 			goto out;
8368 	}
8369 
8370 out:
8371 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8372 	while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8373 		struct rb_node *n;
8374 		struct pending_dir_move *pm;
8375 
8376 		n = rb_first(&sctx->pending_dir_moves);
8377 		pm = rb_entry(n, struct pending_dir_move, node);
8378 		while (!list_empty(&pm->list)) {
8379 			struct pending_dir_move *pm2;
8380 
8381 			pm2 = list_first_entry(&pm->list,
8382 					       struct pending_dir_move, list);
8383 			free_pending_move(sctx, pm2);
8384 		}
8385 		free_pending_move(sctx, pm);
8386 	}
8387 
8388 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8389 	while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8390 		struct rb_node *n;
8391 		struct waiting_dir_move *dm;
8392 
8393 		n = rb_first(&sctx->waiting_dir_moves);
8394 		dm = rb_entry(n, struct waiting_dir_move, node);
8395 		rb_erase(&dm->node, &sctx->waiting_dir_moves);
8396 		kfree(dm);
8397 	}
8398 
8399 	WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8400 	while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8401 		struct rb_node *n;
8402 		struct orphan_dir_info *odi;
8403 
8404 		n = rb_first(&sctx->orphan_dirs);
8405 		odi = rb_entry(n, struct orphan_dir_info, node);
8406 		free_orphan_dir_info(sctx, odi);
8407 	}
8408 
8409 	if (sort_clone_roots) {
8410 		for (i = 0; i < sctx->clone_roots_cnt; i++) {
8411 			btrfs_root_dec_send_in_progress(
8412 					sctx->clone_roots[i].root);
8413 			btrfs_put_root(sctx->clone_roots[i].root);
8414 		}
8415 	} else {
8416 		for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8417 			btrfs_root_dec_send_in_progress(
8418 					sctx->clone_roots[i].root);
8419 			btrfs_put_root(sctx->clone_roots[i].root);
8420 		}
8421 
8422 		btrfs_root_dec_send_in_progress(send_root);
8423 	}
8424 	if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8425 		btrfs_root_dec_send_in_progress(sctx->parent_root);
8426 		btrfs_put_root(sctx->parent_root);
8427 	}
8428 
8429 	kvfree(clone_sources_tmp);
8430 
8431 	if (sctx) {
8432 		if (sctx->send_filp)
8433 			fput(sctx->send_filp);
8434 
8435 		kvfree(sctx->clone_roots);
8436 		kfree(sctx->send_buf_pages);
8437 		kvfree(sctx->send_buf);
8438 		kvfree(sctx->verity_descriptor);
8439 
8440 		close_current_inode(sctx);
8441 
8442 		btrfs_lru_cache_clear(&sctx->name_cache);
8443 		btrfs_lru_cache_clear(&sctx->backref_cache);
8444 		btrfs_lru_cache_clear(&sctx->dir_created_cache);
8445 		btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8446 
8447 		kfree(sctx);
8448 	}
8449 
8450 	return ret;
8451 }
8452