1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/fork.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * 'fork.c' contains the help-routines for the 'fork' system call 10 * (see also entry.S and others). 11 * Fork is rather simple, once you get the hang of it, but the memory 12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()' 13 */ 14 15 #include <linux/anon_inodes.h> 16 #include <linux/slab.h> 17 #include <linux/sched/autogroup.h> 18 #include <linux/sched/mm.h> 19 #include <linux/sched/user.h> 20 #include <linux/sched/numa_balancing.h> 21 #include <linux/sched/stat.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/sched/cputime.h> 25 #include <linux/sched/ext.h> 26 #include <linux/seq_file.h> 27 #include <linux/rtmutex.h> 28 #include <linux/init.h> 29 #include <linux/unistd.h> 30 #include <linux/module.h> 31 #include <linux/vmalloc.h> 32 #include <linux/completion.h> 33 #include <linux/personality.h> 34 #include <linux/mempolicy.h> 35 #include <linux/sem.h> 36 #include <linux/file.h> 37 #include <linux/fdtable.h> 38 #include <linux/iocontext.h> 39 #include <linux/key.h> 40 #include <linux/kmsan.h> 41 #include <linux/binfmts.h> 42 #include <linux/mman.h> 43 #include <linux/mmu_notifier.h> 44 #include <linux/fs.h> 45 #include <linux/mm.h> 46 #include <linux/mm_inline.h> 47 #include <linux/memblock.h> 48 #include <linux/nsproxy.h> 49 #include <linux/capability.h> 50 #include <linux/cpu.h> 51 #include <linux/cgroup.h> 52 #include <linux/security.h> 53 #include <linux/hugetlb.h> 54 #include <linux/seccomp.h> 55 #include <linux/swap.h> 56 #include <linux/syscalls.h> 57 #include <linux/syscall_user_dispatch.h> 58 #include <linux/jiffies.h> 59 #include <linux/futex.h> 60 #include <linux/compat.h> 61 #include <linux/kthread.h> 62 #include <linux/task_io_accounting_ops.h> 63 #include <linux/rcupdate.h> 64 #include <linux/ptrace.h> 65 #include <linux/mount.h> 66 #include <linux/audit.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/proc_fs.h> 70 #include <linux/profile.h> 71 #include <linux/rmap.h> 72 #include <linux/ksm.h> 73 #include <linux/acct.h> 74 #include <linux/userfaultfd_k.h> 75 #include <linux/tsacct_kern.h> 76 #include <linux/cn_proc.h> 77 #include <linux/freezer.h> 78 #include <linux/delayacct.h> 79 #include <linux/taskstats_kern.h> 80 #include <linux/tty.h> 81 #include <linux/fs_struct.h> 82 #include <linux/magic.h> 83 #include <linux/perf_event.h> 84 #include <linux/posix-timers.h> 85 #include <linux/user-return-notifier.h> 86 #include <linux/oom.h> 87 #include <linux/khugepaged.h> 88 #include <linux/signalfd.h> 89 #include <linux/uprobes.h> 90 #include <linux/aio.h> 91 #include <linux/compiler.h> 92 #include <linux/sysctl.h> 93 #include <linux/kcov.h> 94 #include <linux/livepatch.h> 95 #include <linux/thread_info.h> 96 #include <linux/kstack_erase.h> 97 #include <linux/kasan.h> 98 #include <linux/scs.h> 99 #include <linux/io_uring.h> 100 #include <linux/io_uring_types.h> 101 #include <linux/bpf.h> 102 #include <linux/stackprotector.h> 103 #include <linux/user_events.h> 104 #include <linux/iommu.h> 105 #include <linux/rseq.h> 106 #include <uapi/linux/pidfd.h> 107 #include <linux/pidfs.h> 108 #include <linux/tick.h> 109 #include <linux/unwind_deferred.h> 110 #include <linux/pgalloc.h> 111 #include <linux/uaccess.h> 112 113 #include <asm/mmu_context.h> 114 #include <asm/cacheflush.h> 115 #include <asm/tlbflush.h> 116 117 /* For dup_mmap(). */ 118 #include "../mm/internal.h" 119 120 #include <trace/events/sched.h> 121 122 #define CREATE_TRACE_POINTS 123 #include <trace/events/task.h> 124 125 #include <kunit/visibility.h> 126 127 /* 128 * Minimum number of threads to boot the kernel 129 */ 130 #define MIN_THREADS 20 131 132 /* 133 * Maximum number of threads 134 */ 135 #define MAX_THREADS FUTEX_TID_MASK 136 137 /* 138 * Protected counters by write_lock_irq(&tasklist_lock) 139 */ 140 unsigned long total_forks; /* Handle normal Linux uptimes. */ 141 int nr_threads; /* The idle threads do not count.. */ 142 143 static int max_threads; /* tunable limit on nr_threads */ 144 145 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x) 146 147 static const char * const resident_page_types[] = { 148 NAMED_ARRAY_INDEX(MM_FILEPAGES), 149 NAMED_ARRAY_INDEX(MM_ANONPAGES), 150 NAMED_ARRAY_INDEX(MM_SWAPENTS), 151 NAMED_ARRAY_INDEX(MM_SHMEMPAGES), 152 }; 153 154 DEFINE_PER_CPU(unsigned long, process_counts) = 0; 155 156 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */ 157 158 #ifdef CONFIG_PROVE_RCU 159 int lockdep_tasklist_lock_is_held(void) 160 { 161 return lockdep_is_held(&tasklist_lock); 162 } 163 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held); 164 #endif /* #ifdef CONFIG_PROVE_RCU */ 165 166 int nr_processes(void) 167 { 168 int cpu; 169 int total = 0; 170 171 for_each_possible_cpu(cpu) 172 total += per_cpu(process_counts, cpu); 173 174 return total; 175 } 176 177 void __weak arch_release_task_struct(struct task_struct *tsk) 178 { 179 } 180 181 static struct kmem_cache *task_struct_cachep; 182 183 static inline struct task_struct *alloc_task_struct_node(int node) 184 { 185 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node); 186 } 187 188 static inline void free_task_struct(struct task_struct *tsk) 189 { 190 kmem_cache_free(task_struct_cachep, tsk); 191 } 192 193 #ifdef CONFIG_VMAP_STACK 194 /* 195 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB 196 * flush. Try to minimize the number of calls by caching stacks. 197 */ 198 #define NR_CACHED_STACKS 2 199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]); 200 /* 201 * Allocated stacks are cached and later reused by new threads, so memcg 202 * accounting is performed by the code assigning/releasing stacks to tasks. 203 * We need a zeroed memory without __GFP_ACCOUNT. 204 */ 205 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO) 206 207 struct vm_stack { 208 struct rcu_head rcu; 209 struct vm_struct *stack_vm_area; 210 }; 211 212 static struct vm_struct *alloc_thread_stack_node_from_cache(struct task_struct *tsk, int node) 213 { 214 struct vm_struct *vm_area; 215 unsigned int i; 216 217 /* 218 * If the node has memory, we are guaranteed the stacks are backed by local pages. 219 * Otherwise the pages are arbitrary. 220 * 221 * Note that depending on cpuset it is possible we will get migrated to a different 222 * node immediately after allocating here, so this does *not* guarantee locality for 223 * arbitrary callers. 224 */ 225 scoped_guard(preempt) { 226 if (node != NUMA_NO_NODE && numa_node_id() != node) 227 return NULL; 228 229 for (i = 0; i < NR_CACHED_STACKS; i++) { 230 vm_area = this_cpu_xchg(cached_stacks[i], NULL); 231 if (vm_area) 232 return vm_area; 233 } 234 } 235 236 return NULL; 237 } 238 239 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area) 240 { 241 unsigned int i; 242 int nid; 243 244 /* 245 * Don't cache stacks if any of the pages don't match the local domain, unless 246 * there is no local memory to begin with. 247 * 248 * Note that lack of local memory does not automatically mean it makes no difference 249 * performance-wise which other domain backs the stack. In this case we are merely 250 * trying to avoid constantly going to vmalloc. 251 */ 252 scoped_guard(preempt) { 253 nid = numa_node_id(); 254 if (node_state(nid, N_MEMORY)) { 255 for (i = 0; i < vm_area->nr_pages; i++) { 256 struct page *page = vm_area->pages[i]; 257 if (page_to_nid(page) != nid) 258 return false; 259 } 260 } 261 262 for (i = 0; i < NR_CACHED_STACKS; i++) { 263 struct vm_struct *tmp = NULL; 264 265 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area)) 266 return true; 267 } 268 } 269 return false; 270 } 271 272 static void thread_stack_free_rcu(struct rcu_head *rh) 273 { 274 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu); 275 struct vm_struct *vm_area = vm_stack->stack_vm_area; 276 277 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area)) 278 return; 279 280 vfree(vm_area->addr); 281 } 282 283 static void thread_stack_delayed_free(struct task_struct *tsk) 284 { 285 struct vm_stack *vm_stack = tsk->stack; 286 287 vm_stack->stack_vm_area = tsk->stack_vm_area; 288 call_rcu(&vm_stack->rcu, thread_stack_free_rcu); 289 } 290 291 static int free_vm_stack_cache(unsigned int cpu) 292 { 293 struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu); 294 int i; 295 296 for (i = 0; i < NR_CACHED_STACKS; i++) { 297 struct vm_struct *vm_area = cached_vm_stack_areas[i]; 298 299 if (!vm_area) 300 continue; 301 302 vfree(vm_area->addr); 303 cached_vm_stack_areas[i] = NULL; 304 } 305 306 return 0; 307 } 308 309 static int memcg_charge_kernel_stack(struct vm_struct *vm_area) 310 { 311 int i; 312 int ret; 313 int nr_charged = 0; 314 315 BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE); 316 317 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) { 318 ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0); 319 if (ret) 320 goto err; 321 nr_charged++; 322 } 323 return 0; 324 err: 325 for (i = 0; i < nr_charged; i++) 326 memcg_kmem_uncharge_page(vm_area->pages[i], 0); 327 return ret; 328 } 329 330 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 331 { 332 struct vm_struct *vm_area; 333 void *stack; 334 335 vm_area = alloc_thread_stack_node_from_cache(tsk, node); 336 if (vm_area) { 337 if (memcg_charge_kernel_stack(vm_area)) { 338 vfree(vm_area->addr); 339 return -ENOMEM; 340 } 341 342 /* Reset stack metadata. */ 343 kasan_unpoison_range(vm_area->addr, THREAD_SIZE); 344 345 stack = kasan_reset_tag(vm_area->addr); 346 347 /* Clear stale pointers from reused stack. */ 348 memset(stack, 0, THREAD_SIZE); 349 350 tsk->stack_vm_area = vm_area; 351 tsk->stack = stack; 352 return 0; 353 } 354 355 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN, 356 GFP_VMAP_STACK, 357 node, __builtin_return_address(0)); 358 if (!stack) 359 return -ENOMEM; 360 361 vm_area = find_vm_area(stack); 362 if (memcg_charge_kernel_stack(vm_area)) { 363 vfree(stack); 364 return -ENOMEM; 365 } 366 /* 367 * We can't call find_vm_area() in interrupt context, and 368 * free_thread_stack() can be called in interrupt context, 369 * so cache the vm_struct. 370 */ 371 tsk->stack_vm_area = vm_area; 372 stack = kasan_reset_tag(stack); 373 tsk->stack = stack; 374 return 0; 375 } 376 377 static void free_thread_stack(struct task_struct *tsk) 378 { 379 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area)) 380 thread_stack_delayed_free(tsk); 381 382 tsk->stack = NULL; 383 tsk->stack_vm_area = NULL; 384 } 385 386 #else /* !CONFIG_VMAP_STACK */ 387 388 /* 389 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a 390 * kmemcache based allocator. 391 */ 392 #if THREAD_SIZE >= PAGE_SIZE 393 394 static void thread_stack_free_rcu(struct rcu_head *rh) 395 { 396 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER); 397 } 398 399 static void thread_stack_delayed_free(struct task_struct *tsk) 400 { 401 struct rcu_head *rh = tsk->stack; 402 403 call_rcu(rh, thread_stack_free_rcu); 404 } 405 406 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 407 { 408 struct page *page = alloc_pages_node(node, THREADINFO_GFP, 409 THREAD_SIZE_ORDER); 410 411 if (likely(page)) { 412 tsk->stack = kasan_reset_tag(page_address(page)); 413 return 0; 414 } 415 return -ENOMEM; 416 } 417 418 static void free_thread_stack(struct task_struct *tsk) 419 { 420 thread_stack_delayed_free(tsk); 421 tsk->stack = NULL; 422 } 423 424 #else /* !(THREAD_SIZE >= PAGE_SIZE) */ 425 426 static struct kmem_cache *thread_stack_cache; 427 428 static void thread_stack_free_rcu(struct rcu_head *rh) 429 { 430 kmem_cache_free(thread_stack_cache, rh); 431 } 432 433 static void thread_stack_delayed_free(struct task_struct *tsk) 434 { 435 struct rcu_head *rh = tsk->stack; 436 437 call_rcu(rh, thread_stack_free_rcu); 438 } 439 440 static int alloc_thread_stack_node(struct task_struct *tsk, int node) 441 { 442 unsigned long *stack; 443 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node); 444 stack = kasan_reset_tag(stack); 445 tsk->stack = stack; 446 return stack ? 0 : -ENOMEM; 447 } 448 449 static void free_thread_stack(struct task_struct *tsk) 450 { 451 thread_stack_delayed_free(tsk); 452 tsk->stack = NULL; 453 } 454 455 void thread_stack_cache_init(void) 456 { 457 thread_stack_cache = kmem_cache_create_usercopy("thread_stack", 458 THREAD_SIZE, THREAD_SIZE, 0, 0, 459 THREAD_SIZE, NULL); 460 BUG_ON(thread_stack_cache == NULL); 461 } 462 463 #endif /* THREAD_SIZE >= PAGE_SIZE */ 464 #endif /* CONFIG_VMAP_STACK */ 465 466 /* SLAB cache for signal_struct structures (tsk->signal) */ 467 static struct kmem_cache *signal_cachep; 468 469 /* SLAB cache for sighand_struct structures (tsk->sighand) */ 470 struct kmem_cache *sighand_cachep; 471 472 /* SLAB cache for files_struct structures (tsk->files) */ 473 struct kmem_cache *files_cachep; 474 475 /* SLAB cache for fs_struct structures (tsk->fs) */ 476 struct kmem_cache *fs_cachep; 477 478 /* SLAB cache for mm_struct structures (tsk->mm) */ 479 static struct kmem_cache *mm_cachep; 480 481 static void account_kernel_stack(struct task_struct *tsk, int account) 482 { 483 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 484 struct vm_struct *vm_area = task_stack_vm_area(tsk); 485 int i; 486 487 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 488 mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB, 489 account * (PAGE_SIZE / 1024)); 490 } else { 491 void *stack = task_stack_page(tsk); 492 493 /* All stack pages are in the same node. */ 494 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB, 495 account * (THREAD_SIZE / 1024)); 496 } 497 } 498 499 void exit_task_stack_account(struct task_struct *tsk) 500 { 501 account_kernel_stack(tsk, -1); 502 503 if (IS_ENABLED(CONFIG_VMAP_STACK)) { 504 struct vm_struct *vm_area; 505 int i; 506 507 vm_area = task_stack_vm_area(tsk); 508 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) 509 memcg_kmem_uncharge_page(vm_area->pages[i], 0); 510 } 511 } 512 513 static void release_task_stack(struct task_struct *tsk) 514 { 515 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD)) 516 return; /* Better to leak the stack than to free prematurely */ 517 518 free_thread_stack(tsk); 519 } 520 521 #ifdef CONFIG_THREAD_INFO_IN_TASK 522 void put_task_stack(struct task_struct *tsk) 523 { 524 if (refcount_dec_and_test(&tsk->stack_refcount)) 525 release_task_stack(tsk); 526 } 527 #endif 528 529 void free_task(struct task_struct *tsk) 530 { 531 #ifdef CONFIG_SECCOMP 532 WARN_ON_ONCE(tsk->seccomp.filter); 533 #endif 534 release_user_cpus_ptr(tsk); 535 scs_release(tsk); 536 537 #ifndef CONFIG_THREAD_INFO_IN_TASK 538 /* 539 * The task is finally done with both the stack and thread_info, 540 * so free both. 541 */ 542 release_task_stack(tsk); 543 #else 544 /* 545 * If the task had a separate stack allocation, it should be gone 546 * by now. 547 */ 548 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0); 549 #endif 550 rt_mutex_debug_task_free(tsk); 551 ftrace_graph_exit_task(tsk); 552 arch_release_task_struct(tsk); 553 if (tsk->flags & PF_KTHREAD) 554 free_kthread_struct(tsk); 555 bpf_task_storage_free(tsk); 556 free_task_struct(tsk); 557 } 558 EXPORT_SYMBOL(free_task); 559 560 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm) 561 { 562 struct file *exe_file; 563 564 exe_file = get_mm_exe_file(oldmm); 565 RCU_INIT_POINTER(mm->exe_file, exe_file); 566 /* 567 * We depend on the oldmm having properly denied write access to the 568 * exe_file already. 569 */ 570 if (exe_file && exe_file_deny_write_access(exe_file)) 571 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__); 572 } 573 574 #ifdef CONFIG_MMU 575 static inline int mm_alloc_pgd(struct mm_struct *mm) 576 { 577 mm->pgd = pgd_alloc(mm); 578 if (unlikely(!mm->pgd)) 579 return -ENOMEM; 580 return 0; 581 } 582 583 static inline void mm_free_pgd(struct mm_struct *mm) 584 { 585 pgd_free(mm, mm->pgd); 586 } 587 #else 588 #define mm_alloc_pgd(mm) (0) 589 #define mm_free_pgd(mm) 590 #endif /* CONFIG_MMU */ 591 592 #ifdef CONFIG_MM_ID 593 static DEFINE_IDA(mm_ida); 594 595 static inline int mm_alloc_id(struct mm_struct *mm) 596 { 597 int ret; 598 599 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL); 600 if (ret < 0) 601 return ret; 602 mm->mm_id = ret; 603 return 0; 604 } 605 606 static inline void mm_free_id(struct mm_struct *mm) 607 { 608 const mm_id_t id = mm->mm_id; 609 610 mm->mm_id = MM_ID_DUMMY; 611 if (id == MM_ID_DUMMY) 612 return; 613 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX)) 614 return; 615 ida_free(&mm_ida, id); 616 } 617 #else /* !CONFIG_MM_ID */ 618 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; } 619 static inline void mm_free_id(struct mm_struct *mm) {} 620 #endif /* CONFIG_MM_ID */ 621 622 static void check_mm(struct mm_struct *mm) 623 { 624 int i; 625 626 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS, 627 "Please make sure 'struct resident_page_types[]' is updated as well"); 628 629 for (i = 0; i < NR_MM_COUNTERS; i++) { 630 long x = percpu_counter_sum(&mm->rss_stat[i]); 631 632 if (unlikely(x)) { 633 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n", 634 mm, resident_page_types[i], x, 635 current->comm, 636 task_pid_nr(current)); 637 } 638 } 639 640 if (mm_pgtables_bytes(mm)) 641 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n", 642 mm_pgtables_bytes(mm)); 643 644 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 645 VM_BUG_ON_MM(mm->pmd_huge_pte, mm); 646 #endif 647 } 648 649 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL)) 650 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm))) 651 652 static void do_check_lazy_tlb(void *arg) 653 { 654 struct mm_struct *mm = arg; 655 656 WARN_ON_ONCE(current->active_mm == mm); 657 } 658 659 static void do_shoot_lazy_tlb(void *arg) 660 { 661 struct mm_struct *mm = arg; 662 663 if (current->active_mm == mm) { 664 WARN_ON_ONCE(current->mm); 665 current->active_mm = &init_mm; 666 switch_mm(mm, &init_mm, current); 667 } 668 } 669 670 static void cleanup_lazy_tlbs(struct mm_struct *mm) 671 { 672 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) { 673 /* 674 * In this case, lazy tlb mms are refounted and would not reach 675 * __mmdrop until all CPUs have switched away and mmdrop()ed. 676 */ 677 return; 678 } 679 680 /* 681 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it 682 * requires lazy mm users to switch to another mm when the refcount 683 * drops to zero, before the mm is freed. This requires IPIs here to 684 * switch kernel threads to init_mm. 685 * 686 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm 687 * switch with the final userspace teardown TLB flush which leaves the 688 * mm lazy on this CPU but no others, reducing the need for additional 689 * IPIs here. There are cases where a final IPI is still required here, 690 * such as the final mmdrop being performed on a different CPU than the 691 * one exiting, or kernel threads using the mm when userspace exits. 692 * 693 * IPI overheads have not found to be expensive, but they could be 694 * reduced in a number of possible ways, for example (roughly 695 * increasing order of complexity): 696 * - The last lazy reference created by exit_mm() could instead switch 697 * to init_mm, however it's probable this will run on the same CPU 698 * immediately afterwards, so this may not reduce IPIs much. 699 * - A batch of mms requiring IPIs could be gathered and freed at once. 700 * - CPUs store active_mm where it can be remotely checked without a 701 * lock, to filter out false-positives in the cpumask. 702 * - After mm_users or mm_count reaches zero, switching away from the 703 * mm could clear mm_cpumask to reduce some IPIs, perhaps together 704 * with some batching or delaying of the final IPIs. 705 * - A delayed freeing and RCU-like quiescing sequence based on mm 706 * switching to avoid IPIs completely. 707 */ 708 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1); 709 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES)) 710 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1); 711 } 712 713 /* 714 * Called when the last reference to the mm 715 * is dropped: either by a lazy thread or by 716 * mmput. Free the page directory and the mm. 717 */ 718 void __mmdrop(struct mm_struct *mm) 719 { 720 BUG_ON(mm == &init_mm); 721 WARN_ON_ONCE(mm == current->mm); 722 723 /* Ensure no CPUs are using this as their lazy tlb mm */ 724 cleanup_lazy_tlbs(mm); 725 726 WARN_ON_ONCE(mm == current->active_mm); 727 mm_free_pgd(mm); 728 mm_free_id(mm); 729 destroy_context(mm); 730 mmu_notifier_subscriptions_destroy(mm); 731 check_mm(mm); 732 put_user_ns(mm->user_ns); 733 mm_pasid_drop(mm); 734 mm_destroy_cid(mm); 735 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS); 736 737 free_mm(mm); 738 } 739 EXPORT_SYMBOL_GPL(__mmdrop); 740 741 static void mmdrop_async_fn(struct work_struct *work) 742 { 743 struct mm_struct *mm; 744 745 mm = container_of(work, struct mm_struct, async_put_work); 746 __mmdrop(mm); 747 } 748 749 static void mmdrop_async(struct mm_struct *mm) 750 { 751 if (unlikely(atomic_dec_and_test(&mm->mm_count))) { 752 INIT_WORK(&mm->async_put_work, mmdrop_async_fn); 753 schedule_work(&mm->async_put_work); 754 } 755 } 756 757 static inline void free_signal_struct(struct signal_struct *sig) 758 { 759 taskstats_tgid_free(sig); 760 sched_autogroup_exit(sig); 761 /* 762 * __mmdrop is not safe to call from softirq context on x86 due to 763 * pgd_dtor so postpone it to the async context 764 */ 765 if (sig->oom_mm) 766 mmdrop_async(sig->oom_mm); 767 kmem_cache_free(signal_cachep, sig); 768 } 769 770 static inline void put_signal_struct(struct signal_struct *sig) 771 { 772 if (refcount_dec_and_test(&sig->sigcnt)) 773 free_signal_struct(sig); 774 } 775 776 void __put_task_struct(struct task_struct *tsk) 777 { 778 WARN_ON(!tsk->exit_state); 779 WARN_ON(refcount_read(&tsk->usage)); 780 WARN_ON(tsk == current); 781 782 unwind_task_free(tsk); 783 io_uring_free(tsk); 784 cgroup_task_free(tsk); 785 task_numa_free(tsk, true); 786 security_task_free(tsk); 787 exit_creds(tsk); 788 delayacct_tsk_free(tsk); 789 put_signal_struct(tsk->signal); 790 sched_core_free(tsk); 791 free_task(tsk); 792 } 793 EXPORT_SYMBOL_GPL(__put_task_struct); 794 795 void __put_task_struct_rcu_cb(struct rcu_head *rhp) 796 { 797 struct task_struct *task = container_of(rhp, struct task_struct, rcu); 798 799 __put_task_struct(task); 800 } 801 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb); 802 803 void __init __weak arch_task_cache_init(void) { } 804 805 /* 806 * set_max_threads 807 */ 808 static void __init set_max_threads(unsigned int max_threads_suggested) 809 { 810 u64 threads; 811 unsigned long nr_pages = memblock_estimated_nr_free_pages(); 812 813 /* 814 * The number of threads shall be limited such that the thread 815 * structures may only consume a small part of the available memory. 816 */ 817 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64) 818 threads = MAX_THREADS; 819 else 820 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE, 821 (u64) THREAD_SIZE * 8UL); 822 823 if (threads > max_threads_suggested) 824 threads = max_threads_suggested; 825 826 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS); 827 } 828 829 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT 830 /* Initialized by the architecture: */ 831 int arch_task_struct_size __read_mostly; 832 #endif 833 834 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size) 835 { 836 /* Fetch thread_struct whitelist for the architecture. */ 837 arch_thread_struct_whitelist(offset, size); 838 839 /* 840 * Handle zero-sized whitelist or empty thread_struct, otherwise 841 * adjust offset to position of thread_struct in task_struct. 842 */ 843 if (unlikely(*size == 0)) 844 *offset = 0; 845 else 846 *offset += offsetof(struct task_struct, thread); 847 } 848 849 void __init fork_init(void) 850 { 851 int i; 852 #ifndef ARCH_MIN_TASKALIGN 853 #define ARCH_MIN_TASKALIGN 0 854 #endif 855 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN); 856 unsigned long useroffset, usersize; 857 858 /* create a slab on which task_structs can be allocated */ 859 task_struct_whitelist(&useroffset, &usersize); 860 task_struct_cachep = kmem_cache_create_usercopy("task_struct", 861 arch_task_struct_size, align, 862 SLAB_PANIC|SLAB_ACCOUNT, 863 useroffset, usersize, NULL); 864 865 /* do the arch specific task caches init */ 866 arch_task_cache_init(); 867 868 set_max_threads(MAX_THREADS); 869 870 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2; 871 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2; 872 init_task.signal->rlim[RLIMIT_SIGPENDING] = 873 init_task.signal->rlim[RLIMIT_NPROC]; 874 875 for (i = 0; i < UCOUNT_COUNTS; i++) 876 init_user_ns.ucount_max[i] = max_threads/2; 877 878 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY); 879 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY); 880 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY); 881 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY); 882 883 #ifdef CONFIG_VMAP_STACK 884 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache", 885 NULL, free_vm_stack_cache); 886 #endif 887 888 scs_init(); 889 890 lockdep_init_task(&init_task); 891 uprobes_init(); 892 } 893 894 int __weak arch_dup_task_struct(struct task_struct *dst, 895 struct task_struct *src) 896 { 897 *dst = *src; 898 return 0; 899 } 900 901 void set_task_stack_end_magic(struct task_struct *tsk) 902 { 903 unsigned long *stackend; 904 905 stackend = end_of_stack(tsk); 906 *stackend = STACK_END_MAGIC; /* for overflow detection */ 907 } 908 909 static struct task_struct *dup_task_struct(struct task_struct *orig, int node) 910 { 911 struct task_struct *tsk; 912 int err; 913 914 if (node == NUMA_NO_NODE) 915 node = tsk_fork_get_node(orig); 916 tsk = alloc_task_struct_node(node); 917 if (!tsk) 918 return NULL; 919 920 err = arch_dup_task_struct(tsk, orig); 921 if (err) 922 goto free_tsk; 923 924 err = alloc_thread_stack_node(tsk, node); 925 if (err) 926 goto free_tsk; 927 928 #ifdef CONFIG_THREAD_INFO_IN_TASK 929 refcount_set(&tsk->stack_refcount, 1); 930 #endif 931 account_kernel_stack(tsk, 1); 932 933 err = scs_prepare(tsk, node); 934 if (err) 935 goto free_stack; 936 937 #ifdef CONFIG_SECCOMP 938 /* 939 * We must handle setting up seccomp filters once we're under 940 * the sighand lock in case orig has changed between now and 941 * then. Until then, filter must be NULL to avoid messing up 942 * the usage counts on the error path calling free_task. 943 */ 944 tsk->seccomp.filter = NULL; 945 #endif 946 947 setup_thread_stack(tsk, orig); 948 clear_user_return_notifier(tsk); 949 clear_tsk_need_resched(tsk); 950 set_task_stack_end_magic(tsk); 951 clear_syscall_work_syscall_user_dispatch(tsk); 952 953 #ifdef CONFIG_STACKPROTECTOR 954 tsk->stack_canary = get_random_canary(); 955 #endif 956 if (orig->cpus_ptr == &orig->cpus_mask) 957 tsk->cpus_ptr = &tsk->cpus_mask; 958 dup_user_cpus_ptr(tsk, orig, node); 959 960 /* 961 * One for the user space visible state that goes away when reaped. 962 * One for the scheduler. 963 */ 964 refcount_set(&tsk->rcu_users, 2); 965 /* One for the rcu users */ 966 refcount_set(&tsk->usage, 1); 967 #ifdef CONFIG_BLK_DEV_IO_TRACE 968 tsk->btrace_seq = 0; 969 #endif 970 tsk->splice_pipe = NULL; 971 tsk->task_frag.page = NULL; 972 tsk->wake_q.next = NULL; 973 tsk->worker_private = NULL; 974 975 kcov_task_init(tsk); 976 kmsan_task_create(tsk); 977 kmap_local_fork(tsk); 978 979 #ifdef CONFIG_FAULT_INJECTION 980 tsk->fail_nth = 0; 981 #endif 982 983 #ifdef CONFIG_BLK_CGROUP 984 tsk->throttle_disk = NULL; 985 tsk->use_memdelay = 0; 986 #endif 987 988 #ifdef CONFIG_ARCH_HAS_CPU_PASID 989 tsk->pasid_activated = 0; 990 #endif 991 992 #ifdef CONFIG_MEMCG 993 tsk->active_memcg = NULL; 994 #endif 995 996 #ifdef CONFIG_X86_BUS_LOCK_DETECT 997 tsk->reported_split_lock = 0; 998 #endif 999 1000 #ifdef CONFIG_SCHED_MM_CID 1001 tsk->mm_cid.cid = MM_CID_UNSET; 1002 tsk->mm_cid.active = 0; 1003 #endif 1004 return tsk; 1005 1006 free_stack: 1007 exit_task_stack_account(tsk); 1008 free_thread_stack(tsk); 1009 free_tsk: 1010 free_task_struct(tsk); 1011 return NULL; 1012 } 1013 1014 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock); 1015 1016 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT; 1017 1018 static int __init coredump_filter_setup(char *s) 1019 { 1020 default_dump_filter = 1021 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) & 1022 MMF_DUMP_FILTER_MASK; 1023 return 1; 1024 } 1025 1026 __setup("coredump_filter=", coredump_filter_setup); 1027 1028 #include <linux/init_task.h> 1029 1030 static void mm_init_aio(struct mm_struct *mm) 1031 { 1032 #ifdef CONFIG_AIO 1033 spin_lock_init(&mm->ioctx_lock); 1034 mm->ioctx_table = NULL; 1035 #endif 1036 } 1037 1038 static __always_inline void mm_clear_owner(struct mm_struct *mm, 1039 struct task_struct *p) 1040 { 1041 #ifdef CONFIG_MEMCG 1042 if (mm->owner == p) 1043 WRITE_ONCE(mm->owner, NULL); 1044 #endif 1045 } 1046 1047 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p) 1048 { 1049 #ifdef CONFIG_MEMCG 1050 mm->owner = p; 1051 #endif 1052 } 1053 1054 static void mm_init_uprobes_state(struct mm_struct *mm) 1055 { 1056 #ifdef CONFIG_UPROBES 1057 mm->uprobes_state.xol_area = NULL; 1058 arch_uprobe_init_state(mm); 1059 #endif 1060 } 1061 1062 static void mmap_init_lock(struct mm_struct *mm) 1063 { 1064 init_rwsem(&mm->mmap_lock); 1065 mm_lock_seqcount_init(mm); 1066 #ifdef CONFIG_PER_VMA_LOCK 1067 rcuwait_init(&mm->vma_writer_wait); 1068 #endif 1069 } 1070 1071 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p, 1072 struct user_namespace *user_ns) 1073 { 1074 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS); 1075 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock); 1076 atomic_set(&mm->mm_users, 1); 1077 atomic_set(&mm->mm_count, 1); 1078 seqcount_init(&mm->write_protect_seq); 1079 mmap_init_lock(mm); 1080 INIT_LIST_HEAD(&mm->mmlist); 1081 mm_pgtables_bytes_init(mm); 1082 mm->map_count = 0; 1083 mm->locked_vm = 0; 1084 atomic64_set(&mm->pinned_vm, 0); 1085 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat)); 1086 spin_lock_init(&mm->page_table_lock); 1087 spin_lock_init(&mm->arg_lock); 1088 mm_init_cpumask(mm); 1089 mm_init_aio(mm); 1090 mm_init_owner(mm, p); 1091 mm_pasid_init(mm); 1092 RCU_INIT_POINTER(mm->exe_file, NULL); 1093 mmu_notifier_subscriptions_init(mm); 1094 init_tlb_flush_pending(mm); 1095 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS) 1096 mm->pmd_huge_pte = NULL; 1097 #endif 1098 mm_init_uprobes_state(mm); 1099 hugetlb_count_init(mm); 1100 1101 mm_flags_clear_all(mm); 1102 if (current->mm) { 1103 unsigned long flags = __mm_flags_get_word(current->mm); 1104 1105 __mm_flags_overwrite_word(mm, mmf_init_legacy_flags(flags)); 1106 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK; 1107 } else { 1108 __mm_flags_overwrite_word(mm, default_dump_filter); 1109 mm->def_flags = 0; 1110 } 1111 1112 if (futex_mm_init(mm)) 1113 goto fail_mm_init; 1114 1115 if (mm_alloc_pgd(mm)) 1116 goto fail_nopgd; 1117 1118 if (mm_alloc_id(mm)) 1119 goto fail_noid; 1120 1121 if (init_new_context(p, mm)) 1122 goto fail_nocontext; 1123 1124 if (mm_alloc_cid(mm, p)) 1125 goto fail_cid; 1126 1127 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT, 1128 NR_MM_COUNTERS)) 1129 goto fail_pcpu; 1130 1131 mm->user_ns = get_user_ns(user_ns); 1132 lru_gen_init_mm(mm); 1133 return mm; 1134 1135 fail_pcpu: 1136 mm_destroy_cid(mm); 1137 fail_cid: 1138 destroy_context(mm); 1139 fail_nocontext: 1140 mm_free_id(mm); 1141 fail_noid: 1142 mm_free_pgd(mm); 1143 fail_nopgd: 1144 futex_hash_free(mm); 1145 fail_mm_init: 1146 free_mm(mm); 1147 return NULL; 1148 } 1149 1150 /* 1151 * Allocate and initialize an mm_struct. 1152 */ 1153 struct mm_struct *mm_alloc(void) 1154 { 1155 struct mm_struct *mm; 1156 1157 mm = allocate_mm(); 1158 if (!mm) 1159 return NULL; 1160 1161 memset(mm, 0, sizeof(*mm)); 1162 return mm_init(mm, current, current_user_ns()); 1163 } 1164 EXPORT_SYMBOL_IF_KUNIT(mm_alloc); 1165 1166 static inline void __mmput(struct mm_struct *mm) 1167 { 1168 VM_BUG_ON(atomic_read(&mm->mm_users)); 1169 1170 uprobe_clear_state(mm); 1171 exit_aio(mm); 1172 ksm_exit(mm); 1173 khugepaged_exit(mm); /* must run before exit_mmap */ 1174 exit_mmap(mm); 1175 mm_put_huge_zero_folio(mm); 1176 set_mm_exe_file(mm, NULL); 1177 if (!list_empty(&mm->mmlist)) { 1178 spin_lock(&mmlist_lock); 1179 list_del(&mm->mmlist); 1180 spin_unlock(&mmlist_lock); 1181 } 1182 if (mm->binfmt) 1183 module_put(mm->binfmt->module); 1184 lru_gen_del_mm(mm); 1185 futex_hash_free(mm); 1186 mmdrop(mm); 1187 } 1188 1189 /* 1190 * Decrement the use count and release all resources for an mm. 1191 */ 1192 void mmput(struct mm_struct *mm) 1193 { 1194 might_sleep(); 1195 1196 if (atomic_dec_and_test(&mm->mm_users)) 1197 __mmput(mm); 1198 } 1199 EXPORT_SYMBOL_GPL(mmput); 1200 1201 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH) 1202 static void mmput_async_fn(struct work_struct *work) 1203 { 1204 struct mm_struct *mm = container_of(work, struct mm_struct, 1205 async_put_work); 1206 1207 __mmput(mm); 1208 } 1209 1210 void mmput_async(struct mm_struct *mm) 1211 { 1212 if (atomic_dec_and_test(&mm->mm_users)) { 1213 INIT_WORK(&mm->async_put_work, mmput_async_fn); 1214 schedule_work(&mm->async_put_work); 1215 } 1216 } 1217 EXPORT_SYMBOL_GPL(mmput_async); 1218 #endif 1219 1220 /** 1221 * set_mm_exe_file - change a reference to the mm's executable file 1222 * @mm: The mm to change. 1223 * @new_exe_file: The new file to use. 1224 * 1225 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1226 * 1227 * Main users are mmput() and sys_execve(). Callers prevent concurrent 1228 * invocations: in mmput() nobody alive left, in execve it happens before 1229 * the new mm is made visible to anyone. 1230 * 1231 * Can only fail if new_exe_file != NULL. 1232 */ 1233 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1234 { 1235 struct file *old_exe_file; 1236 1237 /* 1238 * It is safe to dereference the exe_file without RCU as 1239 * this function is only called if nobody else can access 1240 * this mm -- see comment above for justification. 1241 */ 1242 old_exe_file = rcu_dereference_raw(mm->exe_file); 1243 1244 if (new_exe_file) { 1245 /* 1246 * We expect the caller (i.e., sys_execve) to already denied 1247 * write access, so this is unlikely to fail. 1248 */ 1249 if (unlikely(exe_file_deny_write_access(new_exe_file))) 1250 return -EACCES; 1251 get_file(new_exe_file); 1252 } 1253 rcu_assign_pointer(mm->exe_file, new_exe_file); 1254 if (old_exe_file) { 1255 exe_file_allow_write_access(old_exe_file); 1256 fput(old_exe_file); 1257 } 1258 return 0; 1259 } 1260 1261 /** 1262 * replace_mm_exe_file - replace a reference to the mm's executable file 1263 * @mm: The mm to change. 1264 * @new_exe_file: The new file to use. 1265 * 1266 * This changes mm's executable file (shown as symlink /proc/[pid]/exe). 1267 * 1268 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE). 1269 */ 1270 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file) 1271 { 1272 struct vm_area_struct *vma; 1273 struct file *old_exe_file; 1274 int ret = 0; 1275 1276 /* Forbid mm->exe_file change if old file still mapped. */ 1277 old_exe_file = get_mm_exe_file(mm); 1278 if (old_exe_file) { 1279 VMA_ITERATOR(vmi, mm, 0); 1280 mmap_read_lock(mm); 1281 for_each_vma(vmi, vma) { 1282 if (!vma->vm_file) 1283 continue; 1284 if (path_equal(&vma->vm_file->f_path, 1285 &old_exe_file->f_path)) { 1286 ret = -EBUSY; 1287 break; 1288 } 1289 } 1290 mmap_read_unlock(mm); 1291 fput(old_exe_file); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 ret = exe_file_deny_write_access(new_exe_file); 1297 if (ret) 1298 return -EACCES; 1299 get_file(new_exe_file); 1300 1301 /* set the new file */ 1302 mmap_write_lock(mm); 1303 old_exe_file = rcu_dereference_raw(mm->exe_file); 1304 rcu_assign_pointer(mm->exe_file, new_exe_file); 1305 mmap_write_unlock(mm); 1306 1307 if (old_exe_file) { 1308 exe_file_allow_write_access(old_exe_file); 1309 fput(old_exe_file); 1310 } 1311 return 0; 1312 } 1313 1314 /** 1315 * get_mm_exe_file - acquire a reference to the mm's executable file 1316 * @mm: The mm of interest. 1317 * 1318 * Returns %NULL if mm has no associated executable file. 1319 * User must release file via fput(). 1320 */ 1321 struct file *get_mm_exe_file(struct mm_struct *mm) 1322 { 1323 struct file *exe_file; 1324 1325 rcu_read_lock(); 1326 exe_file = get_file_rcu(&mm->exe_file); 1327 rcu_read_unlock(); 1328 return exe_file; 1329 } 1330 1331 /** 1332 * get_task_exe_file - acquire a reference to the task's executable file 1333 * @task: The task. 1334 * 1335 * Returns %NULL if task's mm (if any) has no associated executable file or 1336 * this is a kernel thread with borrowed mm (see the comment above get_task_mm). 1337 * User must release file via fput(). 1338 */ 1339 struct file *get_task_exe_file(struct task_struct *task) 1340 { 1341 struct file *exe_file = NULL; 1342 struct mm_struct *mm; 1343 1344 if (task->flags & PF_KTHREAD) 1345 return NULL; 1346 1347 task_lock(task); 1348 mm = task->mm; 1349 if (mm) 1350 exe_file = get_mm_exe_file(mm); 1351 task_unlock(task); 1352 return exe_file; 1353 } 1354 1355 /** 1356 * get_task_mm - acquire a reference to the task's mm 1357 * @task: The task. 1358 * 1359 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning 1360 * this kernel workthread has transiently adopted a user mm with use_mm, 1361 * to do its AIO) is not set and if so returns a reference to it, after 1362 * bumping up the use count. User must release the mm via mmput() 1363 * after use. Typically used by /proc and ptrace. 1364 */ 1365 struct mm_struct *get_task_mm(struct task_struct *task) 1366 { 1367 struct mm_struct *mm; 1368 1369 if (task->flags & PF_KTHREAD) 1370 return NULL; 1371 1372 task_lock(task); 1373 mm = task->mm; 1374 if (mm) 1375 mmget(mm); 1376 task_unlock(task); 1377 return mm; 1378 } 1379 EXPORT_SYMBOL_GPL(get_task_mm); 1380 1381 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode) 1382 { 1383 if (mm == current->mm) 1384 return true; 1385 if (ptrace_may_access(task, mode)) 1386 return true; 1387 if ((mode & PTRACE_MODE_READ) && perfmon_capable()) 1388 return true; 1389 return false; 1390 } 1391 1392 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode) 1393 { 1394 struct mm_struct *mm; 1395 int err; 1396 1397 err = down_read_killable(&task->signal->exec_update_lock); 1398 if (err) 1399 return ERR_PTR(err); 1400 1401 mm = get_task_mm(task); 1402 if (!mm) { 1403 mm = ERR_PTR(-ESRCH); 1404 } else if (!may_access_mm(mm, task, mode)) { 1405 mmput(mm); 1406 mm = ERR_PTR(-EACCES); 1407 } 1408 up_read(&task->signal->exec_update_lock); 1409 1410 return mm; 1411 } 1412 1413 static void complete_vfork_done(struct task_struct *tsk) 1414 { 1415 struct completion *vfork; 1416 1417 task_lock(tsk); 1418 vfork = tsk->vfork_done; 1419 if (likely(vfork)) { 1420 tsk->vfork_done = NULL; 1421 complete(vfork); 1422 } 1423 task_unlock(tsk); 1424 } 1425 1426 static int wait_for_vfork_done(struct task_struct *child, 1427 struct completion *vfork) 1428 { 1429 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE; 1430 int killed; 1431 1432 cgroup_enter_frozen(); 1433 killed = wait_for_completion_state(vfork, state); 1434 cgroup_leave_frozen(false); 1435 1436 if (killed) { 1437 task_lock(child); 1438 child->vfork_done = NULL; 1439 task_unlock(child); 1440 } 1441 1442 put_task_struct(child); 1443 return killed; 1444 } 1445 1446 /* Please note the differences between mmput and mm_release. 1447 * mmput is called whenever we stop holding onto a mm_struct, 1448 * error success whatever. 1449 * 1450 * mm_release is called after a mm_struct has been removed 1451 * from the current process. 1452 * 1453 * This difference is important for error handling, when we 1454 * only half set up a mm_struct for a new process and need to restore 1455 * the old one. Because we mmput the new mm_struct before 1456 * restoring the old one. . . 1457 * Eric Biederman 10 January 1998 1458 */ 1459 static void mm_release(struct task_struct *tsk, struct mm_struct *mm) 1460 { 1461 uprobe_free_utask(tsk); 1462 1463 /* Get rid of any cached register state */ 1464 deactivate_mm(tsk, mm); 1465 1466 /* 1467 * Signal userspace if we're not exiting with a core dump 1468 * because we want to leave the value intact for debugging 1469 * purposes. 1470 */ 1471 if (tsk->clear_child_tid) { 1472 if (atomic_read(&mm->mm_users) > 1) { 1473 /* 1474 * We don't check the error code - if userspace has 1475 * not set up a proper pointer then tough luck. 1476 */ 1477 put_user(0, tsk->clear_child_tid); 1478 do_futex(tsk->clear_child_tid, FUTEX_WAKE, 1479 1, NULL, NULL, 0, 0); 1480 } 1481 tsk->clear_child_tid = NULL; 1482 } 1483 1484 /* 1485 * All done, finally we can wake up parent and return this mm to him. 1486 * Also kthread_stop() uses this completion for synchronization. 1487 */ 1488 if (tsk->vfork_done) 1489 complete_vfork_done(tsk); 1490 } 1491 1492 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1493 { 1494 futex_exit_release(tsk); 1495 mm_release(tsk, mm); 1496 } 1497 1498 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm) 1499 { 1500 futex_exec_release(tsk); 1501 mm_release(tsk, mm); 1502 } 1503 1504 /** 1505 * dup_mm() - duplicates an existing mm structure 1506 * @tsk: the task_struct with which the new mm will be associated. 1507 * @oldmm: the mm to duplicate. 1508 * 1509 * Allocates a new mm structure and duplicates the provided @oldmm structure 1510 * content into it. 1511 * 1512 * Return: the duplicated mm or NULL on failure. 1513 */ 1514 static struct mm_struct *dup_mm(struct task_struct *tsk, 1515 struct mm_struct *oldmm) 1516 { 1517 struct mm_struct *mm; 1518 int err; 1519 1520 mm = allocate_mm(); 1521 if (!mm) 1522 goto fail_nomem; 1523 1524 memcpy(mm, oldmm, sizeof(*mm)); 1525 1526 if (!mm_init(mm, tsk, mm->user_ns)) 1527 goto fail_nomem; 1528 1529 uprobe_start_dup_mmap(); 1530 err = dup_mmap(mm, oldmm); 1531 if (err) 1532 goto free_pt; 1533 uprobe_end_dup_mmap(); 1534 1535 mm->hiwater_rss = get_mm_rss(mm); 1536 mm->hiwater_vm = mm->total_vm; 1537 1538 if (mm->binfmt && !try_module_get(mm->binfmt->module)) 1539 goto free_pt; 1540 1541 return mm; 1542 1543 free_pt: 1544 /* don't put binfmt in mmput, we haven't got module yet */ 1545 mm->binfmt = NULL; 1546 mm_init_owner(mm, NULL); 1547 mmput(mm); 1548 if (err) 1549 uprobe_end_dup_mmap(); 1550 1551 fail_nomem: 1552 return NULL; 1553 } 1554 1555 static int copy_mm(u64 clone_flags, struct task_struct *tsk) 1556 { 1557 struct mm_struct *mm, *oldmm; 1558 1559 tsk->min_flt = tsk->maj_flt = 0; 1560 tsk->nvcsw = tsk->nivcsw = 0; 1561 #ifdef CONFIG_DETECT_HUNG_TASK 1562 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw; 1563 tsk->last_switch_time = 0; 1564 #endif 1565 1566 tsk->mm = NULL; 1567 tsk->active_mm = NULL; 1568 1569 /* 1570 * Are we cloning a kernel thread? 1571 * 1572 * We need to steal a active VM for that.. 1573 */ 1574 oldmm = current->mm; 1575 if (!oldmm) 1576 return 0; 1577 1578 if (clone_flags & CLONE_VM) { 1579 mmget(oldmm); 1580 mm = oldmm; 1581 } else { 1582 mm = dup_mm(tsk, current->mm); 1583 if (!mm) 1584 return -ENOMEM; 1585 } 1586 1587 tsk->mm = mm; 1588 tsk->active_mm = mm; 1589 sched_mm_cid_fork(tsk); 1590 return 0; 1591 } 1592 1593 static int copy_fs(u64 clone_flags, struct task_struct *tsk) 1594 { 1595 struct fs_struct *fs = current->fs; 1596 if (clone_flags & CLONE_FS) { 1597 /* tsk->fs is already what we want */ 1598 read_seqlock_excl(&fs->seq); 1599 /* "users" and "in_exec" locked for check_unsafe_exec() */ 1600 if (fs->in_exec) { 1601 read_sequnlock_excl(&fs->seq); 1602 return -EAGAIN; 1603 } 1604 fs->users++; 1605 read_sequnlock_excl(&fs->seq); 1606 return 0; 1607 } 1608 tsk->fs = copy_fs_struct(fs); 1609 if (!tsk->fs) 1610 return -ENOMEM; 1611 return 0; 1612 } 1613 1614 static int copy_files(u64 clone_flags, struct task_struct *tsk, 1615 int no_files) 1616 { 1617 struct files_struct *oldf, *newf; 1618 1619 /* 1620 * A background process may not have any files ... 1621 */ 1622 oldf = current->files; 1623 if (!oldf) 1624 return 0; 1625 1626 if (no_files) { 1627 tsk->files = NULL; 1628 return 0; 1629 } 1630 1631 if (clone_flags & CLONE_FILES) { 1632 atomic_inc(&oldf->count); 1633 return 0; 1634 } 1635 1636 newf = dup_fd(oldf, NULL); 1637 if (IS_ERR(newf)) 1638 return PTR_ERR(newf); 1639 1640 tsk->files = newf; 1641 return 0; 1642 } 1643 1644 static int copy_sighand(u64 clone_flags, struct task_struct *tsk) 1645 { 1646 struct sighand_struct *sig; 1647 1648 if (clone_flags & CLONE_SIGHAND) { 1649 refcount_inc(¤t->sighand->count); 1650 return 0; 1651 } 1652 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1653 RCU_INIT_POINTER(tsk->sighand, sig); 1654 if (!sig) 1655 return -ENOMEM; 1656 1657 refcount_set(&sig->count, 1); 1658 spin_lock_irq(¤t->sighand->siglock); 1659 memcpy(sig->action, current->sighand->action, sizeof(sig->action)); 1660 spin_unlock_irq(¤t->sighand->siglock); 1661 1662 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */ 1663 if (clone_flags & CLONE_CLEAR_SIGHAND) 1664 flush_signal_handlers(tsk, 0); 1665 1666 return 0; 1667 } 1668 1669 void __cleanup_sighand(struct sighand_struct *sighand) 1670 { 1671 if (refcount_dec_and_test(&sighand->count)) { 1672 signalfd_cleanup(sighand); 1673 /* 1674 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it 1675 * without an RCU grace period, see __lock_task_sighand(). 1676 */ 1677 kmem_cache_free(sighand_cachep, sighand); 1678 } 1679 } 1680 1681 /* 1682 * Initialize POSIX timer handling for a thread group. 1683 */ 1684 static void posix_cpu_timers_init_group(struct signal_struct *sig) 1685 { 1686 struct posix_cputimers *pct = &sig->posix_cputimers; 1687 unsigned long cpu_limit; 1688 1689 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur); 1690 posix_cputimers_group_init(pct, cpu_limit); 1691 } 1692 1693 static int copy_signal(u64 clone_flags, struct task_struct *tsk) 1694 { 1695 struct signal_struct *sig; 1696 1697 if (clone_flags & CLONE_THREAD) 1698 return 0; 1699 1700 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL); 1701 tsk->signal = sig; 1702 if (!sig) 1703 return -ENOMEM; 1704 1705 sig->nr_threads = 1; 1706 sig->quick_threads = 1; 1707 atomic_set(&sig->live, 1); 1708 refcount_set(&sig->sigcnt, 1); 1709 1710 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */ 1711 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node); 1712 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head); 1713 1714 init_waitqueue_head(&sig->wait_chldexit); 1715 sig->curr_target = tsk; 1716 init_sigpending(&sig->shared_pending); 1717 INIT_HLIST_HEAD(&sig->multiprocess); 1718 seqlock_init(&sig->stats_lock); 1719 prev_cputime_init(&sig->prev_cputime); 1720 1721 #ifdef CONFIG_POSIX_TIMERS 1722 INIT_HLIST_HEAD(&sig->posix_timers); 1723 INIT_HLIST_HEAD(&sig->ignored_posix_timers); 1724 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1725 #endif 1726 1727 task_lock(current->group_leader); 1728 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim); 1729 task_unlock(current->group_leader); 1730 1731 posix_cpu_timers_init_group(sig); 1732 1733 tty_audit_fork(sig); 1734 sched_autogroup_fork(sig); 1735 1736 #ifdef CONFIG_CGROUPS 1737 init_rwsem(&sig->cgroup_threadgroup_rwsem); 1738 #endif 1739 1740 sig->oom_score_adj = current->signal->oom_score_adj; 1741 sig->oom_score_adj_min = current->signal->oom_score_adj_min; 1742 1743 mutex_init(&sig->cred_guard_mutex); 1744 init_rwsem(&sig->exec_update_lock); 1745 1746 return 0; 1747 } 1748 1749 static void copy_seccomp(struct task_struct *p) 1750 { 1751 #ifdef CONFIG_SECCOMP 1752 /* 1753 * Must be called with sighand->lock held, which is common to 1754 * all threads in the group. Holding cred_guard_mutex is not 1755 * needed because this new task is not yet running and cannot 1756 * be racing exec. 1757 */ 1758 assert_spin_locked(¤t->sighand->siglock); 1759 1760 /* Ref-count the new filter user, and assign it. */ 1761 get_seccomp_filter(current); 1762 p->seccomp = current->seccomp; 1763 1764 /* 1765 * Explicitly enable no_new_privs here in case it got set 1766 * between the task_struct being duplicated and holding the 1767 * sighand lock. The seccomp state and nnp must be in sync. 1768 */ 1769 if (task_no_new_privs(current)) 1770 task_set_no_new_privs(p); 1771 1772 /* 1773 * If the parent gained a seccomp mode after copying thread 1774 * flags and between before we held the sighand lock, we have 1775 * to manually enable the seccomp thread flag here. 1776 */ 1777 if (p->seccomp.mode != SECCOMP_MODE_DISABLED) 1778 set_task_syscall_work(p, SECCOMP); 1779 #endif 1780 } 1781 1782 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr) 1783 { 1784 current->clear_child_tid = tidptr; 1785 1786 return task_pid_vnr(current); 1787 } 1788 1789 static void rt_mutex_init_task(struct task_struct *p) 1790 { 1791 raw_spin_lock_init(&p->pi_lock); 1792 #ifdef CONFIG_RT_MUTEXES 1793 p->pi_waiters = RB_ROOT_CACHED; 1794 p->pi_top_task = NULL; 1795 p->pi_blocked_on = NULL; 1796 #endif 1797 } 1798 1799 static inline void init_task_pid_links(struct task_struct *task) 1800 { 1801 enum pid_type type; 1802 1803 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) 1804 INIT_HLIST_NODE(&task->pid_links[type]); 1805 } 1806 1807 static inline void 1808 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid) 1809 { 1810 if (type == PIDTYPE_PID) 1811 task->thread_pid = pid; 1812 else 1813 task->signal->pids[type] = pid; 1814 } 1815 1816 static inline void rcu_copy_process(struct task_struct *p) 1817 { 1818 #ifdef CONFIG_PREEMPT_RCU 1819 p->rcu_read_lock_nesting = 0; 1820 p->rcu_read_unlock_special.s = 0; 1821 p->rcu_blocked_node = NULL; 1822 INIT_LIST_HEAD(&p->rcu_node_entry); 1823 #endif /* #ifdef CONFIG_PREEMPT_RCU */ 1824 #ifdef CONFIG_TASKS_RCU 1825 p->rcu_tasks_holdout = false; 1826 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); 1827 p->rcu_tasks_idle_cpu = -1; 1828 INIT_LIST_HEAD(&p->rcu_tasks_exit_list); 1829 #endif /* #ifdef CONFIG_TASKS_RCU */ 1830 #ifdef CONFIG_TASKS_TRACE_RCU 1831 p->trc_reader_nesting = 0; 1832 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 1833 } 1834 1835 /** 1836 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd 1837 * @pid: the struct pid for which to create a pidfd 1838 * @flags: flags of the new @pidfd 1839 * @ret_file: return the new pidfs file 1840 * 1841 * Allocate a new file that stashes @pid and reserve a new pidfd number in the 1842 * caller's file descriptor table. The pidfd is reserved but not installed yet. 1843 * 1844 * The helper verifies that @pid is still in use, without PIDFD_THREAD the 1845 * task identified by @pid must be a thread-group leader. 1846 * 1847 * If this function returns successfully the caller is responsible to either 1848 * call fd_install() passing the returned pidfd and pidfd file as arguments in 1849 * order to install the pidfd into its file descriptor table or they must use 1850 * put_unused_fd() and fput() on the returned pidfd and pidfd file 1851 * respectively. 1852 * 1853 * This function is useful when a pidfd must already be reserved but there 1854 * might still be points of failure afterwards and the caller wants to ensure 1855 * that no pidfd is leaked into its file descriptor table. 1856 * 1857 * Return: On success, a reserved pidfd is returned from the function and a new 1858 * pidfd file is returned in the last argument to the function. On 1859 * error, a negative error code is returned from the function and the 1860 * last argument remains unchanged. 1861 */ 1862 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file) 1863 { 1864 struct file *pidfs_file; 1865 1866 /* 1867 * PIDFD_STALE is only allowed to be passed if the caller knows 1868 * that @pid is already registered in pidfs and thus 1869 * PIDFD_INFO_EXIT information is guaranteed to be available. 1870 */ 1871 if (!(flags & PIDFD_STALE)) { 1872 /* 1873 * While holding the pidfd waitqueue lock removing the 1874 * task linkage for the thread-group leader pid 1875 * (PIDTYPE_TGID) isn't possible. Thus, if there's still 1876 * task linkage for PIDTYPE_PID not having thread-group 1877 * leader linkage for the pid means it wasn't a 1878 * thread-group leader in the first place. 1879 */ 1880 guard(spinlock_irq)(&pid->wait_pidfd.lock); 1881 1882 /* Task has already been reaped. */ 1883 if (!pid_has_task(pid, PIDTYPE_PID)) 1884 return -ESRCH; 1885 /* 1886 * If this struct pid isn't used as a thread-group 1887 * leader but the caller requested to create a 1888 * thread-group leader pidfd then report ENOENT. 1889 */ 1890 if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID)) 1891 return -ENOENT; 1892 } 1893 1894 CLASS(get_unused_fd, pidfd)(O_CLOEXEC); 1895 if (pidfd < 0) 1896 return pidfd; 1897 1898 pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR); 1899 if (IS_ERR(pidfs_file)) 1900 return PTR_ERR(pidfs_file); 1901 1902 *ret_file = pidfs_file; 1903 return take_fd(pidfd); 1904 } 1905 1906 static void __delayed_free_task(struct rcu_head *rhp) 1907 { 1908 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu); 1909 1910 free_task(tsk); 1911 } 1912 1913 static __always_inline void delayed_free_task(struct task_struct *tsk) 1914 { 1915 if (IS_ENABLED(CONFIG_MEMCG)) 1916 call_rcu(&tsk->rcu, __delayed_free_task); 1917 else 1918 free_task(tsk); 1919 } 1920 1921 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk) 1922 { 1923 /* Skip if kernel thread */ 1924 if (!tsk->mm) 1925 return; 1926 1927 /* Skip if spawning a thread or using vfork */ 1928 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM) 1929 return; 1930 1931 /* We need to synchronize with __set_oom_adj */ 1932 mutex_lock(&oom_adj_mutex); 1933 mm_flags_set(MMF_MULTIPROCESS, tsk->mm); 1934 /* Update the values in case they were changed after copy_signal */ 1935 tsk->signal->oom_score_adj = current->signal->oom_score_adj; 1936 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min; 1937 mutex_unlock(&oom_adj_mutex); 1938 } 1939 1940 #ifdef CONFIG_RV 1941 static void rv_task_fork(struct task_struct *p) 1942 { 1943 memset(&p->rv, 0, sizeof(p->rv)); 1944 } 1945 #else 1946 #define rv_task_fork(p) do {} while (0) 1947 #endif 1948 1949 static bool need_futex_hash_allocate_default(u64 clone_flags) 1950 { 1951 if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM)) 1952 return false; 1953 return true; 1954 } 1955 1956 /* 1957 * This creates a new process as a copy of the old one, 1958 * but does not actually start it yet. 1959 * 1960 * It copies the registers, and all the appropriate 1961 * parts of the process environment (as per the clone 1962 * flags). The actual kick-off is left to the caller. 1963 */ 1964 __latent_entropy struct task_struct *copy_process( 1965 struct pid *pid, 1966 int trace, 1967 int node, 1968 struct kernel_clone_args *args) 1969 { 1970 int pidfd = -1, retval; 1971 struct task_struct *p; 1972 struct multiprocess_signals delayed; 1973 struct file *pidfile = NULL; 1974 const u64 clone_flags = args->flags; 1975 struct nsproxy *nsp = current->nsproxy; 1976 1977 /* 1978 * Don't allow sharing the root directory with processes in a different 1979 * namespace 1980 */ 1981 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)) 1982 return ERR_PTR(-EINVAL); 1983 1984 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS)) 1985 return ERR_PTR(-EINVAL); 1986 1987 /* 1988 * Thread groups must share signals as well, and detached threads 1989 * can only be started up within the thread group. 1990 */ 1991 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)) 1992 return ERR_PTR(-EINVAL); 1993 1994 /* 1995 * Shared signal handlers imply shared VM. By way of the above, 1996 * thread groups also imply shared VM. Blocking this case allows 1997 * for various simplifications in other code. 1998 */ 1999 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)) 2000 return ERR_PTR(-EINVAL); 2001 2002 /* 2003 * Siblings of global init remain as zombies on exit since they are 2004 * not reaped by their parent (swapper). To solve this and to avoid 2005 * multi-rooted process trees, prevent global and container-inits 2006 * from creating siblings. 2007 */ 2008 if ((clone_flags & CLONE_PARENT) && 2009 current->signal->flags & SIGNAL_UNKILLABLE) 2010 return ERR_PTR(-EINVAL); 2011 2012 /* 2013 * If the new process will be in a different pid or user namespace 2014 * do not allow it to share a thread group with the forking task. 2015 */ 2016 if (clone_flags & CLONE_THREAD) { 2017 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) || 2018 (task_active_pid_ns(current) != nsp->pid_ns_for_children)) 2019 return ERR_PTR(-EINVAL); 2020 } 2021 2022 if (clone_flags & CLONE_PIDFD) { 2023 /* 2024 * - CLONE_DETACHED is blocked so that we can potentially 2025 * reuse it later for CLONE_PIDFD. 2026 */ 2027 if (clone_flags & CLONE_DETACHED) 2028 return ERR_PTR(-EINVAL); 2029 } 2030 2031 /* 2032 * Force any signals received before this point to be delivered 2033 * before the fork happens. Collect up signals sent to multiple 2034 * processes that happen during the fork and delay them so that 2035 * they appear to happen after the fork. 2036 */ 2037 sigemptyset(&delayed.signal); 2038 INIT_HLIST_NODE(&delayed.node); 2039 2040 spin_lock_irq(¤t->sighand->siglock); 2041 if (!(clone_flags & CLONE_THREAD)) 2042 hlist_add_head(&delayed.node, ¤t->signal->multiprocess); 2043 recalc_sigpending(); 2044 spin_unlock_irq(¤t->sighand->siglock); 2045 retval = -ERESTARTNOINTR; 2046 if (task_sigpending(current)) 2047 goto fork_out; 2048 2049 retval = -ENOMEM; 2050 p = dup_task_struct(current, node); 2051 if (!p) 2052 goto fork_out; 2053 p->flags &= ~PF_KTHREAD; 2054 if (args->kthread) 2055 p->flags |= PF_KTHREAD; 2056 if (args->user_worker) { 2057 /* 2058 * Mark us a user worker, and block any signal that isn't 2059 * fatal or STOP 2060 */ 2061 p->flags |= PF_USER_WORKER; 2062 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2063 } 2064 if (args->io_thread) 2065 p->flags |= PF_IO_WORKER; 2066 2067 if (args->name) 2068 strscpy_pad(p->comm, args->name, sizeof(p->comm)); 2069 2070 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL; 2071 /* 2072 * Clear TID on mm_release()? 2073 */ 2074 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL; 2075 2076 ftrace_graph_init_task(p); 2077 2078 rt_mutex_init_task(p); 2079 2080 lockdep_assert_irqs_enabled(); 2081 #ifdef CONFIG_PROVE_LOCKING 2082 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled); 2083 #endif 2084 retval = copy_creds(p, clone_flags); 2085 if (retval < 0) 2086 goto bad_fork_free; 2087 2088 retval = -EAGAIN; 2089 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) { 2090 if (p->real_cred->user != INIT_USER && 2091 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) 2092 goto bad_fork_cleanup_count; 2093 } 2094 current->flags &= ~PF_NPROC_EXCEEDED; 2095 2096 /* 2097 * If multiple threads are within copy_process(), then this check 2098 * triggers too late. This doesn't hurt, the check is only there 2099 * to stop root fork bombs. 2100 */ 2101 retval = -EAGAIN; 2102 if (data_race(nr_threads >= max_threads)) 2103 goto bad_fork_cleanup_count; 2104 2105 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */ 2106 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY); 2107 p->flags |= PF_FORKNOEXEC; 2108 INIT_LIST_HEAD(&p->children); 2109 INIT_LIST_HEAD(&p->sibling); 2110 rcu_copy_process(p); 2111 p->vfork_done = NULL; 2112 spin_lock_init(&p->alloc_lock); 2113 2114 init_sigpending(&p->pending); 2115 2116 p->utime = p->stime = p->gtime = 0; 2117 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 2118 p->utimescaled = p->stimescaled = 0; 2119 #endif 2120 prev_cputime_init(&p->prev_cputime); 2121 2122 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 2123 seqcount_init(&p->vtime.seqcount); 2124 p->vtime.starttime = 0; 2125 p->vtime.state = VTIME_INACTIVE; 2126 #endif 2127 2128 #ifdef CONFIG_IO_URING 2129 p->io_uring = NULL; 2130 retval = io_uring_fork(p); 2131 if (unlikely(retval)) 2132 goto bad_fork_cleanup_delayacct; 2133 retval = -EAGAIN; 2134 #endif 2135 2136 p->default_timer_slack_ns = current->timer_slack_ns; 2137 2138 #ifdef CONFIG_PSI 2139 p->psi_flags = 0; 2140 #endif 2141 2142 task_io_accounting_init(&p->ioac); 2143 acct_clear_integrals(p); 2144 2145 posix_cputimers_init(&p->posix_cputimers); 2146 tick_dep_init_task(p); 2147 2148 p->io_context = NULL; 2149 audit_set_context(p, NULL); 2150 cgroup_fork(p); 2151 if (args->kthread) { 2152 if (!set_kthread_struct(p)) 2153 goto bad_fork_cleanup_delayacct; 2154 } 2155 #ifdef CONFIG_NUMA 2156 p->mempolicy = mpol_dup(p->mempolicy); 2157 if (IS_ERR(p->mempolicy)) { 2158 retval = PTR_ERR(p->mempolicy); 2159 p->mempolicy = NULL; 2160 goto bad_fork_cleanup_delayacct; 2161 } 2162 #endif 2163 #ifdef CONFIG_CPUSETS 2164 p->cpuset_mem_spread_rotor = NUMA_NO_NODE; 2165 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock); 2166 #endif 2167 #ifdef CONFIG_TRACE_IRQFLAGS 2168 memset(&p->irqtrace, 0, sizeof(p->irqtrace)); 2169 p->irqtrace.hardirq_disable_ip = _THIS_IP_; 2170 p->irqtrace.softirq_enable_ip = _THIS_IP_; 2171 p->softirqs_enabled = 1; 2172 p->softirq_context = 0; 2173 #endif 2174 2175 p->pagefault_disabled = 0; 2176 2177 lockdep_init_task(p); 2178 2179 p->blocked_on = NULL; /* not blocked yet */ 2180 2181 #ifdef CONFIG_BCACHE 2182 p->sequential_io = 0; 2183 p->sequential_io_avg = 0; 2184 #endif 2185 #ifdef CONFIG_BPF_SYSCALL 2186 RCU_INIT_POINTER(p->bpf_storage, NULL); 2187 p->bpf_ctx = NULL; 2188 #endif 2189 2190 unwind_task_init(p); 2191 2192 /* Perform scheduler related setup. Assign this task to a CPU. */ 2193 retval = sched_fork(clone_flags, p); 2194 if (retval) 2195 goto bad_fork_cleanup_policy; 2196 2197 retval = perf_event_init_task(p, clone_flags); 2198 if (retval) 2199 goto bad_fork_sched_cancel_fork; 2200 retval = audit_alloc(p); 2201 if (retval) 2202 goto bad_fork_cleanup_perf; 2203 /* copy all the process information */ 2204 shm_init_task(p); 2205 retval = security_task_alloc(p, clone_flags); 2206 if (retval) 2207 goto bad_fork_cleanup_audit; 2208 retval = copy_semundo(clone_flags, p); 2209 if (retval) 2210 goto bad_fork_cleanup_security; 2211 retval = copy_files(clone_flags, p, args->no_files); 2212 if (retval) 2213 goto bad_fork_cleanup_semundo; 2214 retval = copy_fs(clone_flags, p); 2215 if (retval) 2216 goto bad_fork_cleanup_files; 2217 retval = copy_sighand(clone_flags, p); 2218 if (retval) 2219 goto bad_fork_cleanup_fs; 2220 retval = copy_signal(clone_flags, p); 2221 if (retval) 2222 goto bad_fork_cleanup_sighand; 2223 retval = copy_mm(clone_flags, p); 2224 if (retval) 2225 goto bad_fork_cleanup_signal; 2226 retval = copy_namespaces(clone_flags, p); 2227 if (retval) 2228 goto bad_fork_cleanup_mm; 2229 retval = copy_io(clone_flags, p); 2230 if (retval) 2231 goto bad_fork_cleanup_namespaces; 2232 retval = copy_thread(p, args); 2233 if (retval) 2234 goto bad_fork_cleanup_io; 2235 2236 stackleak_task_init(p); 2237 2238 if (pid != &init_struct_pid) { 2239 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid, 2240 args->set_tid_size); 2241 if (IS_ERR(pid)) { 2242 retval = PTR_ERR(pid); 2243 goto bad_fork_cleanup_thread; 2244 } 2245 } 2246 2247 /* 2248 * This has to happen after we've potentially unshared the file 2249 * descriptor table (so that the pidfd doesn't leak into the child 2250 * if the fd table isn't shared). 2251 */ 2252 if (clone_flags & CLONE_PIDFD) { 2253 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0; 2254 2255 /* 2256 * Note that no task has been attached to @pid yet indicate 2257 * that via CLONE_PIDFD. 2258 */ 2259 retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile); 2260 if (retval < 0) 2261 goto bad_fork_free_pid; 2262 pidfd = retval; 2263 2264 retval = put_user(pidfd, args->pidfd); 2265 if (retval) 2266 goto bad_fork_put_pidfd; 2267 } 2268 2269 #ifdef CONFIG_BLOCK 2270 p->plug = NULL; 2271 #endif 2272 futex_init_task(p); 2273 2274 /* 2275 * sigaltstack should be cleared when sharing the same VM 2276 */ 2277 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM) 2278 sas_ss_reset(p); 2279 2280 /* 2281 * Syscall tracing and stepping should be turned off in the 2282 * child regardless of CLONE_PTRACE. 2283 */ 2284 user_disable_single_step(p); 2285 clear_task_syscall_work(p, SYSCALL_TRACE); 2286 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU) 2287 clear_task_syscall_work(p, SYSCALL_EMU); 2288 #endif 2289 clear_tsk_latency_tracing(p); 2290 2291 /* ok, now we should be set up.. */ 2292 p->pid = pid_nr(pid); 2293 if (clone_flags & CLONE_THREAD) { 2294 p->group_leader = current->group_leader; 2295 p->tgid = current->tgid; 2296 } else { 2297 p->group_leader = p; 2298 p->tgid = p->pid; 2299 } 2300 2301 p->nr_dirtied = 0; 2302 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); 2303 p->dirty_paused_when = 0; 2304 2305 p->pdeath_signal = 0; 2306 p->task_works = NULL; 2307 clear_posix_cputimers_work(p); 2308 2309 #ifdef CONFIG_KRETPROBES 2310 p->kretprobe_instances.first = NULL; 2311 #endif 2312 #ifdef CONFIG_RETHOOK 2313 p->rethooks.first = NULL; 2314 #endif 2315 2316 /* 2317 * Ensure that the cgroup subsystem policies allow the new process to be 2318 * forked. It should be noted that the new process's css_set can be changed 2319 * between here and cgroup_post_fork() if an organisation operation is in 2320 * progress. 2321 */ 2322 retval = cgroup_can_fork(p, args); 2323 if (retval) 2324 goto bad_fork_put_pidfd; 2325 2326 /* 2327 * Now that the cgroups are pinned, re-clone the parent cgroup and put 2328 * the new task on the correct runqueue. All this *before* the task 2329 * becomes visible. 2330 * 2331 * This isn't part of ->can_fork() because while the re-cloning is 2332 * cgroup specific, it unconditionally needs to place the task on a 2333 * runqueue. 2334 */ 2335 retval = sched_cgroup_fork(p, args); 2336 if (retval) 2337 goto bad_fork_cancel_cgroup; 2338 2339 /* 2340 * Allocate a default futex hash for the user process once the first 2341 * thread spawns. 2342 */ 2343 if (need_futex_hash_allocate_default(clone_flags)) { 2344 retval = futex_hash_allocate_default(); 2345 if (retval) 2346 goto bad_fork_cancel_cgroup; 2347 /* 2348 * If we fail beyond this point we don't free the allocated 2349 * futex hash map. We assume that another thread will be created 2350 * and makes use of it. The hash map will be freed once the main 2351 * thread terminates. 2352 */ 2353 } 2354 /* 2355 * From this point on we must avoid any synchronous user-space 2356 * communication until we take the tasklist-lock. In particular, we do 2357 * not want user-space to be able to predict the process start-time by 2358 * stalling fork(2) after we recorded the start_time but before it is 2359 * visible to the system. 2360 */ 2361 2362 p->start_time = ktime_get_ns(); 2363 p->start_boottime = ktime_get_boottime_ns(); 2364 2365 /* 2366 * Make it visible to the rest of the system, but dont wake it up yet. 2367 * Need tasklist lock for parent etc handling! 2368 */ 2369 write_lock_irq(&tasklist_lock); 2370 2371 /* CLONE_PARENT re-uses the old parent */ 2372 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) { 2373 p->real_parent = current->real_parent; 2374 p->parent_exec_id = current->parent_exec_id; 2375 if (clone_flags & CLONE_THREAD) 2376 p->exit_signal = -1; 2377 else 2378 p->exit_signal = current->group_leader->exit_signal; 2379 } else { 2380 p->real_parent = current; 2381 p->parent_exec_id = current->self_exec_id; 2382 p->exit_signal = args->exit_signal; 2383 } 2384 2385 klp_copy_process(p); 2386 2387 sched_core_fork(p); 2388 2389 spin_lock(¤t->sighand->siglock); 2390 2391 rv_task_fork(p); 2392 2393 rseq_fork(p, clone_flags); 2394 2395 /* Don't start children in a dying pid namespace */ 2396 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) { 2397 retval = -ENOMEM; 2398 goto bad_fork_core_free; 2399 } 2400 2401 /* Let kill terminate clone/fork in the middle */ 2402 if (fatal_signal_pending(current)) { 2403 retval = -EINTR; 2404 goto bad_fork_core_free; 2405 } 2406 2407 /* No more failure paths after this point. */ 2408 2409 /* 2410 * Copy seccomp details explicitly here, in case they were changed 2411 * before holding sighand lock. 2412 */ 2413 copy_seccomp(p); 2414 2415 init_task_pid_links(p); 2416 if (likely(p->pid)) { 2417 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace); 2418 2419 init_task_pid(p, PIDTYPE_PID, pid); 2420 if (thread_group_leader(p)) { 2421 init_task_pid(p, PIDTYPE_TGID, pid); 2422 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current)); 2423 init_task_pid(p, PIDTYPE_SID, task_session(current)); 2424 2425 if (is_child_reaper(pid)) { 2426 ns_of_pid(pid)->child_reaper = p; 2427 p->signal->flags |= SIGNAL_UNKILLABLE; 2428 } 2429 p->signal->shared_pending.signal = delayed.signal; 2430 p->signal->tty = tty_kref_get(current->signal->tty); 2431 /* 2432 * Inherit has_child_subreaper flag under the same 2433 * tasklist_lock with adding child to the process tree 2434 * for propagate_has_child_subreaper optimization. 2435 */ 2436 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper || 2437 p->real_parent->signal->is_child_subreaper; 2438 list_add_tail(&p->sibling, &p->real_parent->children); 2439 list_add_tail_rcu(&p->tasks, &init_task.tasks); 2440 attach_pid(p, PIDTYPE_TGID); 2441 attach_pid(p, PIDTYPE_PGID); 2442 attach_pid(p, PIDTYPE_SID); 2443 __this_cpu_inc(process_counts); 2444 } else { 2445 current->signal->nr_threads++; 2446 current->signal->quick_threads++; 2447 atomic_inc(¤t->signal->live); 2448 refcount_inc(¤t->signal->sigcnt); 2449 task_join_group_stop(p); 2450 list_add_tail_rcu(&p->thread_node, 2451 &p->signal->thread_head); 2452 } 2453 attach_pid(p, PIDTYPE_PID); 2454 nr_threads++; 2455 } 2456 total_forks++; 2457 hlist_del_init(&delayed.node); 2458 spin_unlock(¤t->sighand->siglock); 2459 syscall_tracepoint_update(p); 2460 write_unlock_irq(&tasklist_lock); 2461 2462 if (pidfile) 2463 fd_install(pidfd, pidfile); 2464 2465 proc_fork_connector(p); 2466 sched_post_fork(p); 2467 cgroup_post_fork(p, args); 2468 perf_event_fork(p); 2469 2470 trace_task_newtask(p, clone_flags); 2471 uprobe_copy_process(p, clone_flags); 2472 user_events_fork(p, clone_flags); 2473 2474 copy_oom_score_adj(clone_flags, p); 2475 2476 return p; 2477 2478 bad_fork_core_free: 2479 sched_core_free(p); 2480 spin_unlock(¤t->sighand->siglock); 2481 write_unlock_irq(&tasklist_lock); 2482 bad_fork_cancel_cgroup: 2483 cgroup_cancel_fork(p, args); 2484 bad_fork_put_pidfd: 2485 if (clone_flags & CLONE_PIDFD) { 2486 fput(pidfile); 2487 put_unused_fd(pidfd); 2488 } 2489 bad_fork_free_pid: 2490 if (pid != &init_struct_pid) 2491 free_pid(pid); 2492 bad_fork_cleanup_thread: 2493 exit_thread(p); 2494 bad_fork_cleanup_io: 2495 if (p->io_context) 2496 exit_io_context(p); 2497 bad_fork_cleanup_namespaces: 2498 exit_nsproxy_namespaces(p); 2499 bad_fork_cleanup_mm: 2500 if (p->mm) { 2501 sched_mm_cid_exit(p); 2502 mm_clear_owner(p->mm, p); 2503 mmput(p->mm); 2504 } 2505 bad_fork_cleanup_signal: 2506 if (!(clone_flags & CLONE_THREAD)) 2507 free_signal_struct(p->signal); 2508 bad_fork_cleanup_sighand: 2509 __cleanup_sighand(p->sighand); 2510 bad_fork_cleanup_fs: 2511 exit_fs(p); /* blocking */ 2512 bad_fork_cleanup_files: 2513 exit_files(p); /* blocking */ 2514 bad_fork_cleanup_semundo: 2515 exit_sem(p); 2516 bad_fork_cleanup_security: 2517 security_task_free(p); 2518 bad_fork_cleanup_audit: 2519 audit_free(p); 2520 bad_fork_cleanup_perf: 2521 perf_event_free_task(p); 2522 bad_fork_sched_cancel_fork: 2523 sched_cancel_fork(p); 2524 bad_fork_cleanup_policy: 2525 lockdep_free_task(p); 2526 #ifdef CONFIG_NUMA 2527 mpol_put(p->mempolicy); 2528 #endif 2529 bad_fork_cleanup_delayacct: 2530 io_uring_free(p); 2531 delayacct_tsk_free(p); 2532 bad_fork_cleanup_count: 2533 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1); 2534 exit_cred_namespaces(p); 2535 exit_creds(p); 2536 bad_fork_free: 2537 WRITE_ONCE(p->__state, TASK_DEAD); 2538 exit_task_stack_account(p); 2539 put_task_stack(p); 2540 delayed_free_task(p); 2541 fork_out: 2542 spin_lock_irq(¤t->sighand->siglock); 2543 hlist_del_init(&delayed.node); 2544 spin_unlock_irq(¤t->sighand->siglock); 2545 return ERR_PTR(retval); 2546 } 2547 2548 static inline void init_idle_pids(struct task_struct *idle) 2549 { 2550 enum pid_type type; 2551 2552 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) { 2553 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */ 2554 init_task_pid(idle, type, &init_struct_pid); 2555 } 2556 } 2557 2558 static int idle_dummy(void *dummy) 2559 { 2560 /* This function is never called */ 2561 return 0; 2562 } 2563 2564 struct task_struct * __init fork_idle(int cpu) 2565 { 2566 struct task_struct *task; 2567 struct kernel_clone_args args = { 2568 .flags = CLONE_VM, 2569 .fn = &idle_dummy, 2570 .fn_arg = NULL, 2571 .kthread = 1, 2572 .idle = 1, 2573 }; 2574 2575 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args); 2576 if (!IS_ERR(task)) { 2577 init_idle_pids(task); 2578 init_idle(task, cpu); 2579 } 2580 2581 return task; 2582 } 2583 2584 /* 2585 * This is like kernel_clone(), but shaved down and tailored to just 2586 * creating io_uring workers. It returns a created task, or an error pointer. 2587 * The returned task is inactive, and the caller must fire it up through 2588 * wake_up_new_task(p). All signals are blocked in the created task. 2589 */ 2590 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node) 2591 { 2592 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD| 2593 CLONE_IO|CLONE_VM|CLONE_UNTRACED; 2594 struct kernel_clone_args args = { 2595 .flags = flags, 2596 .fn = fn, 2597 .fn_arg = arg, 2598 .io_thread = 1, 2599 .user_worker = 1, 2600 }; 2601 2602 return copy_process(NULL, 0, node, &args); 2603 } 2604 2605 /* 2606 * Ok, this is the main fork-routine. 2607 * 2608 * It copies the process, and if successful kick-starts 2609 * it and waits for it to finish using the VM if required. 2610 * 2611 * args->exit_signal is expected to be checked for sanity by the caller. 2612 */ 2613 pid_t kernel_clone(struct kernel_clone_args *args) 2614 { 2615 u64 clone_flags = args->flags; 2616 struct completion vfork; 2617 struct pid *pid; 2618 struct task_struct *p; 2619 int trace = 0; 2620 pid_t nr; 2621 2622 /* 2623 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument 2624 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are 2625 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate 2626 * field in struct clone_args and it still doesn't make sense to have 2627 * them both point at the same memory location. Performing this check 2628 * here has the advantage that we don't need to have a separate helper 2629 * to check for legacy clone(). 2630 */ 2631 if ((clone_flags & CLONE_PIDFD) && 2632 (clone_flags & CLONE_PARENT_SETTID) && 2633 (args->pidfd == args->parent_tid)) 2634 return -EINVAL; 2635 2636 /* 2637 * Determine whether and which event to report to ptracer. When 2638 * called from kernel_thread or CLONE_UNTRACED is explicitly 2639 * requested, no event is reported; otherwise, report if the event 2640 * for the type of forking is enabled. 2641 */ 2642 if (!(clone_flags & CLONE_UNTRACED)) { 2643 if (clone_flags & CLONE_VFORK) 2644 trace = PTRACE_EVENT_VFORK; 2645 else if (args->exit_signal != SIGCHLD) 2646 trace = PTRACE_EVENT_CLONE; 2647 else 2648 trace = PTRACE_EVENT_FORK; 2649 2650 if (likely(!ptrace_event_enabled(current, trace))) 2651 trace = 0; 2652 } 2653 2654 p = copy_process(NULL, trace, NUMA_NO_NODE, args); 2655 add_latent_entropy(); 2656 2657 if (IS_ERR(p)) 2658 return PTR_ERR(p); 2659 2660 /* 2661 * Do this prior waking up the new thread - the thread pointer 2662 * might get invalid after that point, if the thread exits quickly. 2663 */ 2664 trace_sched_process_fork(current, p); 2665 2666 pid = get_task_pid(p, PIDTYPE_PID); 2667 nr = pid_vnr(pid); 2668 2669 if (clone_flags & CLONE_PARENT_SETTID) 2670 put_user(nr, args->parent_tid); 2671 2672 if (clone_flags & CLONE_VFORK) { 2673 p->vfork_done = &vfork; 2674 init_completion(&vfork); 2675 get_task_struct(p); 2676 } 2677 2678 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) { 2679 /* lock the task to synchronize with memcg migration */ 2680 task_lock(p); 2681 lru_gen_add_mm(p->mm); 2682 task_unlock(p); 2683 } 2684 2685 wake_up_new_task(p); 2686 2687 /* forking complete and child started to run, tell ptracer */ 2688 if (unlikely(trace)) 2689 ptrace_event_pid(trace, pid); 2690 2691 if (clone_flags & CLONE_VFORK) { 2692 if (!wait_for_vfork_done(p, &vfork)) 2693 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid); 2694 } 2695 2696 put_pid(pid); 2697 return nr; 2698 } 2699 2700 /* 2701 * Create a kernel thread. 2702 */ 2703 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, 2704 unsigned long flags) 2705 { 2706 struct kernel_clone_args args = { 2707 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 2708 .exit_signal = (flags & CSIGNAL), 2709 .fn = fn, 2710 .fn_arg = arg, 2711 .name = name, 2712 .kthread = 1, 2713 }; 2714 2715 return kernel_clone(&args); 2716 } 2717 2718 /* 2719 * Create a user mode thread. 2720 */ 2721 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags) 2722 { 2723 struct kernel_clone_args args = { 2724 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 2725 .exit_signal = (flags & CSIGNAL), 2726 .fn = fn, 2727 .fn_arg = arg, 2728 }; 2729 2730 return kernel_clone(&args); 2731 } 2732 2733 #ifdef __ARCH_WANT_SYS_FORK 2734 SYSCALL_DEFINE0(fork) 2735 { 2736 #ifdef CONFIG_MMU 2737 struct kernel_clone_args args = { 2738 .exit_signal = SIGCHLD, 2739 }; 2740 2741 return kernel_clone(&args); 2742 #else 2743 /* can not support in nommu mode */ 2744 return -EINVAL; 2745 #endif 2746 } 2747 #endif 2748 2749 #ifdef __ARCH_WANT_SYS_VFORK 2750 SYSCALL_DEFINE0(vfork) 2751 { 2752 struct kernel_clone_args args = { 2753 .flags = CLONE_VFORK | CLONE_VM, 2754 .exit_signal = SIGCHLD, 2755 }; 2756 2757 return kernel_clone(&args); 2758 } 2759 #endif 2760 2761 #ifdef __ARCH_WANT_SYS_CLONE 2762 #ifdef CONFIG_CLONE_BACKWARDS 2763 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2764 int __user *, parent_tidptr, 2765 unsigned long, tls, 2766 int __user *, child_tidptr) 2767 #elif defined(CONFIG_CLONE_BACKWARDS2) 2768 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags, 2769 int __user *, parent_tidptr, 2770 int __user *, child_tidptr, 2771 unsigned long, tls) 2772 #elif defined(CONFIG_CLONE_BACKWARDS3) 2773 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp, 2774 int, stack_size, 2775 int __user *, parent_tidptr, 2776 int __user *, child_tidptr, 2777 unsigned long, tls) 2778 #else 2779 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp, 2780 int __user *, parent_tidptr, 2781 int __user *, child_tidptr, 2782 unsigned long, tls) 2783 #endif 2784 { 2785 struct kernel_clone_args args = { 2786 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL), 2787 .pidfd = parent_tidptr, 2788 .child_tid = child_tidptr, 2789 .parent_tid = parent_tidptr, 2790 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL), 2791 .stack = newsp, 2792 .tls = tls, 2793 }; 2794 2795 return kernel_clone(&args); 2796 } 2797 #endif 2798 2799 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs, 2800 struct clone_args __user *uargs, 2801 size_t usize) 2802 { 2803 int err; 2804 struct clone_args args; 2805 pid_t *kset_tid = kargs->set_tid; 2806 2807 BUILD_BUG_ON(offsetofend(struct clone_args, tls) != 2808 CLONE_ARGS_SIZE_VER0); 2809 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) != 2810 CLONE_ARGS_SIZE_VER1); 2811 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) != 2812 CLONE_ARGS_SIZE_VER2); 2813 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2); 2814 2815 if (unlikely(usize > PAGE_SIZE)) 2816 return -E2BIG; 2817 if (unlikely(usize < CLONE_ARGS_SIZE_VER0)) 2818 return -EINVAL; 2819 2820 err = copy_struct_from_user(&args, sizeof(args), uargs, usize); 2821 if (err) 2822 return err; 2823 2824 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL)) 2825 return -EINVAL; 2826 2827 if (unlikely(!args.set_tid && args.set_tid_size > 0)) 2828 return -EINVAL; 2829 2830 if (unlikely(args.set_tid && args.set_tid_size == 0)) 2831 return -EINVAL; 2832 2833 /* 2834 * Verify that higher 32bits of exit_signal are unset and that 2835 * it is a valid signal 2836 */ 2837 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) || 2838 !valid_signal(args.exit_signal))) 2839 return -EINVAL; 2840 2841 if ((args.flags & CLONE_INTO_CGROUP) && 2842 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2)) 2843 return -EINVAL; 2844 2845 *kargs = (struct kernel_clone_args){ 2846 .flags = args.flags, 2847 .pidfd = u64_to_user_ptr(args.pidfd), 2848 .child_tid = u64_to_user_ptr(args.child_tid), 2849 .parent_tid = u64_to_user_ptr(args.parent_tid), 2850 .exit_signal = args.exit_signal, 2851 .stack = args.stack, 2852 .stack_size = args.stack_size, 2853 .tls = args.tls, 2854 .set_tid_size = args.set_tid_size, 2855 .cgroup = args.cgroup, 2856 }; 2857 2858 if (args.set_tid && 2859 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid), 2860 (kargs->set_tid_size * sizeof(pid_t)))) 2861 return -EFAULT; 2862 2863 kargs->set_tid = kset_tid; 2864 2865 return 0; 2866 } 2867 2868 /** 2869 * clone3_stack_valid - check and prepare stack 2870 * @kargs: kernel clone args 2871 * 2872 * Verify that the stack arguments userspace gave us are sane. 2873 * In addition, set the stack direction for userspace since it's easy for us to 2874 * determine. 2875 */ 2876 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs) 2877 { 2878 if (kargs->stack == 0) { 2879 if (kargs->stack_size > 0) 2880 return false; 2881 } else { 2882 if (kargs->stack_size == 0) 2883 return false; 2884 2885 if (!access_ok((void __user *)kargs->stack, kargs->stack_size)) 2886 return false; 2887 2888 #if !defined(CONFIG_STACK_GROWSUP) 2889 kargs->stack += kargs->stack_size; 2890 #endif 2891 } 2892 2893 return true; 2894 } 2895 2896 static bool clone3_args_valid(struct kernel_clone_args *kargs) 2897 { 2898 /* Verify that no unknown flags are passed along. */ 2899 if (kargs->flags & 2900 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP)) 2901 return false; 2902 2903 /* 2904 * - make the CLONE_DETACHED bit reusable for clone3 2905 * - make the CSIGNAL bits reusable for clone3 2906 */ 2907 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME)))) 2908 return false; 2909 2910 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) == 2911 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) 2912 return false; 2913 2914 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) && 2915 kargs->exit_signal) 2916 return false; 2917 2918 if (!clone3_stack_valid(kargs)) 2919 return false; 2920 2921 return true; 2922 } 2923 2924 /** 2925 * sys_clone3 - create a new process with specific properties 2926 * @uargs: argument structure 2927 * @size: size of @uargs 2928 * 2929 * clone3() is the extensible successor to clone()/clone2(). 2930 * It takes a struct as argument that is versioned by its size. 2931 * 2932 * Return: On success, a positive PID for the child process. 2933 * On error, a negative errno number. 2934 */ 2935 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size) 2936 { 2937 int err; 2938 2939 struct kernel_clone_args kargs; 2940 pid_t set_tid[MAX_PID_NS_LEVEL]; 2941 2942 #ifdef __ARCH_BROKEN_SYS_CLONE3 2943 #warning clone3() entry point is missing, please fix 2944 return -ENOSYS; 2945 #endif 2946 2947 kargs.set_tid = set_tid; 2948 2949 err = copy_clone_args_from_user(&kargs, uargs, size); 2950 if (err) 2951 return err; 2952 2953 if (!clone3_args_valid(&kargs)) 2954 return -EINVAL; 2955 2956 return kernel_clone(&kargs); 2957 } 2958 2959 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data) 2960 { 2961 struct task_struct *leader, *parent, *child; 2962 int res; 2963 2964 read_lock(&tasklist_lock); 2965 leader = top = top->group_leader; 2966 down: 2967 for_each_thread(leader, parent) { 2968 list_for_each_entry(child, &parent->children, sibling) { 2969 res = visitor(child, data); 2970 if (res) { 2971 if (res < 0) 2972 goto out; 2973 leader = child; 2974 goto down; 2975 } 2976 up: 2977 ; 2978 } 2979 } 2980 2981 if (leader != top) { 2982 child = leader; 2983 parent = child->real_parent; 2984 leader = parent->group_leader; 2985 goto up; 2986 } 2987 out: 2988 read_unlock(&tasklist_lock); 2989 } 2990 2991 #ifndef ARCH_MIN_MMSTRUCT_ALIGN 2992 #define ARCH_MIN_MMSTRUCT_ALIGN 0 2993 #endif 2994 2995 static void sighand_ctor(void *data) 2996 { 2997 struct sighand_struct *sighand = data; 2998 2999 spin_lock_init(&sighand->siglock); 3000 init_waitqueue_head(&sighand->signalfd_wqh); 3001 } 3002 3003 void __init mm_cache_init(void) 3004 { 3005 unsigned int mm_size; 3006 3007 /* 3008 * The mm_cpumask is located at the end of mm_struct, and is 3009 * dynamically sized based on the maximum CPU number this system 3010 * can have, taking hotplug into account (nr_cpu_ids). 3011 */ 3012 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size(); 3013 3014 mm_cachep = kmem_cache_create_usercopy("mm_struct", 3015 mm_size, ARCH_MIN_MMSTRUCT_ALIGN, 3016 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3017 offsetof(struct mm_struct, saved_auxv), 3018 sizeof_field(struct mm_struct, saved_auxv), 3019 NULL); 3020 } 3021 3022 void __init proc_caches_init(void) 3023 { 3024 sighand_cachep = kmem_cache_create("sighand_cache", 3025 sizeof(struct sighand_struct), 0, 3026 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU| 3027 SLAB_ACCOUNT, sighand_ctor); 3028 signal_cachep = kmem_cache_create("signal_cache", 3029 sizeof(struct signal_struct), 0, 3030 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3031 NULL); 3032 files_cachep = kmem_cache_create("files_cache", 3033 sizeof(struct files_struct), 0, 3034 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3035 NULL); 3036 fs_cachep = kmem_cache_create("fs_cache", 3037 sizeof(struct fs_struct), 0, 3038 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, 3039 NULL); 3040 mmap_init(); 3041 nsproxy_cache_init(); 3042 } 3043 3044 /* 3045 * Check constraints on flags passed to the unshare system call. 3046 */ 3047 static int check_unshare_flags(unsigned long unshare_flags) 3048 { 3049 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND| 3050 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM| 3051 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET| 3052 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP| 3053 CLONE_NEWTIME)) 3054 return -EINVAL; 3055 /* 3056 * Not implemented, but pretend it works if there is nothing 3057 * to unshare. Note that unsharing the address space or the 3058 * signal handlers also need to unshare the signal queues (aka 3059 * CLONE_THREAD). 3060 */ 3061 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) { 3062 if (!thread_group_empty(current)) 3063 return -EINVAL; 3064 } 3065 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) { 3066 if (refcount_read(¤t->sighand->count) > 1) 3067 return -EINVAL; 3068 } 3069 if (unshare_flags & CLONE_VM) { 3070 if (!current_is_single_threaded()) 3071 return -EINVAL; 3072 } 3073 3074 return 0; 3075 } 3076 3077 /* 3078 * Unshare the filesystem structure if it is being shared 3079 */ 3080 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp) 3081 { 3082 struct fs_struct *fs = current->fs; 3083 3084 if (!(unshare_flags & CLONE_FS) || !fs) 3085 return 0; 3086 3087 /* don't need lock here; in the worst case we'll do useless copy */ 3088 if (fs->users == 1) 3089 return 0; 3090 3091 *new_fsp = copy_fs_struct(fs); 3092 if (!*new_fsp) 3093 return -ENOMEM; 3094 3095 return 0; 3096 } 3097 3098 /* 3099 * Unshare file descriptor table if it is being shared 3100 */ 3101 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp) 3102 { 3103 struct files_struct *fd = current->files; 3104 3105 if ((unshare_flags & CLONE_FILES) && 3106 (fd && atomic_read(&fd->count) > 1)) { 3107 fd = dup_fd(fd, NULL); 3108 if (IS_ERR(fd)) 3109 return PTR_ERR(fd); 3110 *new_fdp = fd; 3111 } 3112 3113 return 0; 3114 } 3115 3116 /* 3117 * unshare allows a process to 'unshare' part of the process 3118 * context which was originally shared using clone. copy_* 3119 * functions used by kernel_clone() cannot be used here directly 3120 * because they modify an inactive task_struct that is being 3121 * constructed. Here we are modifying the current, active, 3122 * task_struct. 3123 */ 3124 int ksys_unshare(unsigned long unshare_flags) 3125 { 3126 struct fs_struct *fs, *new_fs = NULL; 3127 struct files_struct *new_fd = NULL; 3128 struct cred *new_cred = NULL; 3129 struct nsproxy *new_nsproxy = NULL; 3130 int do_sysvsem = 0; 3131 int err; 3132 3133 /* 3134 * If unsharing a user namespace must also unshare the thread group 3135 * and unshare the filesystem root and working directories. 3136 */ 3137 if (unshare_flags & CLONE_NEWUSER) 3138 unshare_flags |= CLONE_THREAD | CLONE_FS; 3139 /* 3140 * If unsharing vm, must also unshare signal handlers. 3141 */ 3142 if (unshare_flags & CLONE_VM) 3143 unshare_flags |= CLONE_SIGHAND; 3144 /* 3145 * If unsharing a signal handlers, must also unshare the signal queues. 3146 */ 3147 if (unshare_flags & CLONE_SIGHAND) 3148 unshare_flags |= CLONE_THREAD; 3149 /* 3150 * If unsharing namespace, must also unshare filesystem information. 3151 */ 3152 if (unshare_flags & CLONE_NEWNS) 3153 unshare_flags |= CLONE_FS; 3154 3155 err = check_unshare_flags(unshare_flags); 3156 if (err) 3157 goto bad_unshare_out; 3158 /* 3159 * CLONE_NEWIPC must also detach from the undolist: after switching 3160 * to a new ipc namespace, the semaphore arrays from the old 3161 * namespace are unreachable. 3162 */ 3163 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM)) 3164 do_sysvsem = 1; 3165 err = unshare_fs(unshare_flags, &new_fs); 3166 if (err) 3167 goto bad_unshare_out; 3168 err = unshare_fd(unshare_flags, &new_fd); 3169 if (err) 3170 goto bad_unshare_cleanup_fs; 3171 err = unshare_userns(unshare_flags, &new_cred); 3172 if (err) 3173 goto bad_unshare_cleanup_fd; 3174 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, 3175 new_cred, new_fs); 3176 if (err) 3177 goto bad_unshare_cleanup_cred; 3178 3179 if (new_cred) { 3180 err = set_cred_ucounts(new_cred); 3181 if (err) 3182 goto bad_unshare_cleanup_cred; 3183 } 3184 3185 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) { 3186 if (do_sysvsem) { 3187 /* 3188 * CLONE_SYSVSEM is equivalent to sys_exit(). 3189 */ 3190 exit_sem(current); 3191 } 3192 if (unshare_flags & CLONE_NEWIPC) { 3193 /* Orphan segments in old ns (see sem above). */ 3194 exit_shm(current); 3195 shm_init_task(current); 3196 } 3197 3198 if (new_nsproxy) 3199 switch_task_namespaces(current, new_nsproxy); 3200 3201 task_lock(current); 3202 3203 if (new_fs) { 3204 fs = current->fs; 3205 read_seqlock_excl(&fs->seq); 3206 current->fs = new_fs; 3207 if (--fs->users) 3208 new_fs = NULL; 3209 else 3210 new_fs = fs; 3211 read_sequnlock_excl(&fs->seq); 3212 } 3213 3214 if (new_fd) 3215 swap(current->files, new_fd); 3216 3217 task_unlock(current); 3218 3219 if (new_cred) { 3220 /* Install the new user namespace */ 3221 commit_creds(new_cred); 3222 new_cred = NULL; 3223 } 3224 } 3225 3226 perf_event_namespaces(current); 3227 3228 bad_unshare_cleanup_cred: 3229 if (new_cred) 3230 put_cred(new_cred); 3231 bad_unshare_cleanup_fd: 3232 if (new_fd) 3233 put_files_struct(new_fd); 3234 3235 bad_unshare_cleanup_fs: 3236 if (new_fs) 3237 free_fs_struct(new_fs); 3238 3239 bad_unshare_out: 3240 return err; 3241 } 3242 3243 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags) 3244 { 3245 return ksys_unshare(unshare_flags); 3246 } 3247 3248 /* 3249 * Helper to unshare the files of the current task. 3250 * We don't want to expose copy_files internals to 3251 * the exec layer of the kernel. 3252 */ 3253 3254 int unshare_files(void) 3255 { 3256 struct task_struct *task = current; 3257 struct files_struct *old, *copy = NULL; 3258 int error; 3259 3260 error = unshare_fd(CLONE_FILES, ©); 3261 if (error || !copy) 3262 return error; 3263 3264 old = task->files; 3265 task_lock(task); 3266 task->files = copy; 3267 task_unlock(task); 3268 put_files_struct(old); 3269 return 0; 3270 } 3271 3272 static int sysctl_max_threads(const struct ctl_table *table, int write, 3273 void *buffer, size_t *lenp, loff_t *ppos) 3274 { 3275 struct ctl_table t; 3276 int ret; 3277 int threads = max_threads; 3278 int min = 1; 3279 int max = MAX_THREADS; 3280 3281 t = *table; 3282 t.data = &threads; 3283 t.extra1 = &min; 3284 t.extra2 = &max; 3285 3286 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 3287 if (ret || !write) 3288 return ret; 3289 3290 max_threads = threads; 3291 3292 return 0; 3293 } 3294 3295 static const struct ctl_table fork_sysctl_table[] = { 3296 { 3297 .procname = "threads-max", 3298 .data = NULL, 3299 .maxlen = sizeof(int), 3300 .mode = 0644, 3301 .proc_handler = sysctl_max_threads, 3302 }, 3303 }; 3304 3305 static int __init init_fork_sysctl(void) 3306 { 3307 register_sysctl_init("kernel", fork_sysctl_table); 3308 return 0; 3309 } 3310 3311 subsys_initcall(init_fork_sysctl); 3312