xref: /linux/drivers/gpu/drm/panthor/panthor_sched.c (revision 237f1bbfe3d84a74ad8e6e207660bdb3e6d9a84d)
1 // SPDX-License-Identifier: GPL-2.0 or MIT
2 /* Copyright 2023 Collabora ltd. */
3 
4 #include <drm/drm_drv.h>
5 #include <drm/drm_exec.h>
6 #include <drm/drm_gem_shmem_helper.h>
7 #include <drm/drm_managed.h>
8 #include <drm/drm_print.h>
9 #include <drm/gpu_scheduler.h>
10 #include <drm/panthor_drm.h>
11 
12 #include <linux/build_bug.h>
13 #include <linux/cleanup.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dma-resv.h>
18 #include <linux/firmware.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/iopoll.h>
22 #include <linux/iosys-map.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 
27 #include "panthor_devfreq.h"
28 #include "panthor_device.h"
29 #include "panthor_fw.h"
30 #include "panthor_gem.h"
31 #include "panthor_gpu.h"
32 #include "panthor_heap.h"
33 #include "panthor_mmu.h"
34 #include "panthor_regs.h"
35 #include "panthor_sched.h"
36 
37 /**
38  * DOC: Scheduler
39  *
40  * Mali CSF hardware adopts a firmware-assisted scheduling model, where
41  * the firmware takes care of scheduling aspects, to some extent.
42  *
43  * The scheduling happens at the scheduling group level, each group
44  * contains 1 to N queues (N is FW/hardware dependent, and exposed
45  * through the firmware interface). Each queue is assigned a command
46  * stream ring buffer, which serves as a way to get jobs submitted to
47  * the GPU, among other things.
48  *
49  * The firmware can schedule a maximum of M groups (M is FW/hardware
50  * dependent, and exposed through the firmware interface). Passed
51  * this maximum number of groups, the kernel must take care of
52  * rotating the groups passed to the firmware so every group gets
53  * a chance to have his queues scheduled for execution.
54  *
55  * The current implementation only supports with kernel-mode queues.
56  * In other terms, userspace doesn't have access to the ring-buffer.
57  * Instead, userspace passes indirect command stream buffers that are
58  * called from the queue ring-buffer by the kernel using a pre-defined
59  * sequence of command stream instructions to ensure the userspace driver
60  * always gets consistent results (cache maintenance,
61  * synchronization, ...).
62  *
63  * We rely on the drm_gpu_scheduler framework to deal with job
64  * dependencies and submission. As any other driver dealing with a
65  * FW-scheduler, we use the 1:1 entity:scheduler mode, such that each
66  * entity has its own job scheduler. When a job is ready to be executed
67  * (all its dependencies are met), it is pushed to the appropriate
68  * queue ring-buffer, and the group is scheduled for execution if it
69  * wasn't already active.
70  *
71  * Kernel-side group scheduling is timeslice-based. When we have less
72  * groups than there are slots, the periodic tick is disabled and we
73  * just let the FW schedule the active groups. When there are more
74  * groups than slots, we let each group a chance to execute stuff for
75  * a given amount of time, and then re-evaluate and pick new groups
76  * to schedule. The group selection algorithm is based on
77  * priority+round-robin.
78  *
79  * Even though user-mode queues is out of the scope right now, the
80  * current design takes them into account by avoiding any guess on the
81  * group/queue state that would be based on information we wouldn't have
82  * if userspace was in charge of the ring-buffer. That's also one of the
83  * reason we don't do 'cooperative' scheduling (encoding FW group slot
84  * reservation as dma_fence that would be returned from the
85  * drm_gpu_scheduler::prepare_job() hook, and treating group rotation as
86  * a queue of waiters, ordered by job submission order). This approach
87  * would work for kernel-mode queues, but would make user-mode queues a
88  * lot more complicated to retrofit.
89  */
90 
91 #define JOB_TIMEOUT_MS				5000
92 
93 #define MAX_CSG_PRIO				0xf
94 
95 #define NUM_INSTRS_PER_CACHE_LINE		(64 / sizeof(u64))
96 #define MAX_INSTRS_PER_JOB			24
97 
98 struct panthor_group;
99 
100 /**
101  * struct panthor_csg_slot - Command stream group slot
102  *
103  * This represents a FW slot for a scheduling group.
104  */
105 struct panthor_csg_slot {
106 	/** @group: Scheduling group bound to this slot. */
107 	struct panthor_group *group;
108 
109 	/** @priority: Group priority. */
110 	u8 priority;
111 
112 	/**
113 	 * @idle: True if the group bound to this slot is idle.
114 	 *
115 	 * A group is idle when it has nothing waiting for execution on
116 	 * all its queues, or when queues are blocked waiting for something
117 	 * to happen (synchronization object).
118 	 */
119 	bool idle;
120 };
121 
122 /**
123  * enum panthor_csg_priority - Group priority
124  */
125 enum panthor_csg_priority {
126 	/** @PANTHOR_CSG_PRIORITY_LOW: Low priority group. */
127 	PANTHOR_CSG_PRIORITY_LOW = 0,
128 
129 	/** @PANTHOR_CSG_PRIORITY_MEDIUM: Medium priority group. */
130 	PANTHOR_CSG_PRIORITY_MEDIUM,
131 
132 	/** @PANTHOR_CSG_PRIORITY_HIGH: High priority group. */
133 	PANTHOR_CSG_PRIORITY_HIGH,
134 
135 	/**
136 	 * @PANTHOR_CSG_PRIORITY_RT: Real-time priority group.
137 	 *
138 	 * Real-time priority allows one to preempt scheduling of other
139 	 * non-real-time groups. When such a group becomes executable,
140 	 * it will evict the group with the lowest non-rt priority if
141 	 * there's no free group slot available.
142 	 */
143 	PANTHOR_CSG_PRIORITY_RT,
144 
145 	/** @PANTHOR_CSG_PRIORITY_COUNT: Number of priority levels. */
146 	PANTHOR_CSG_PRIORITY_COUNT,
147 };
148 
149 /**
150  * struct panthor_scheduler - Object used to manage the scheduler
151  */
152 struct panthor_scheduler {
153 	/** @ptdev: Device. */
154 	struct panthor_device *ptdev;
155 
156 	/**
157 	 * @wq: Workqueue used by our internal scheduler logic and
158 	 * drm_gpu_scheduler.
159 	 *
160 	 * Used for the scheduler tick, group update or other kind of FW
161 	 * event processing that can't be handled in the threaded interrupt
162 	 * path. Also passed to the drm_gpu_scheduler instances embedded
163 	 * in panthor_queue.
164 	 */
165 	struct workqueue_struct *wq;
166 
167 	/**
168 	 * @heap_alloc_wq: Workqueue used to schedule tiler_oom works.
169 	 *
170 	 * We have a queue dedicated to heap chunk allocation works to avoid
171 	 * blocking the rest of the scheduler if the allocation tries to
172 	 * reclaim memory.
173 	 */
174 	struct workqueue_struct *heap_alloc_wq;
175 
176 	/** @tick_work: Work executed on a scheduling tick. */
177 	struct delayed_work tick_work;
178 
179 	/**
180 	 * @sync_upd_work: Work used to process synchronization object updates.
181 	 *
182 	 * We use this work to unblock queues/groups that were waiting on a
183 	 * synchronization object.
184 	 */
185 	struct work_struct sync_upd_work;
186 
187 	/**
188 	 * @fw_events_work: Work used to process FW events outside the interrupt path.
189 	 *
190 	 * Even if the interrupt is threaded, we need any event processing
191 	 * that require taking the panthor_scheduler::lock to be processed
192 	 * outside the interrupt path so we don't block the tick logic when
193 	 * it calls panthor_fw_{csg,wait}_wait_acks(). Since most of the
194 	 * event processing requires taking this lock, we just delegate all
195 	 * FW event processing to the scheduler workqueue.
196 	 */
197 	struct work_struct fw_events_work;
198 
199 	/**
200 	 * @fw_events: Bitmask encoding pending FW events.
201 	 */
202 	atomic_t fw_events;
203 
204 	/**
205 	 * @resched_target: When the next tick should occur.
206 	 *
207 	 * Expressed in jiffies.
208 	 */
209 	u64 resched_target;
210 
211 	/**
212 	 * @last_tick: When the last tick occurred.
213 	 *
214 	 * Expressed in jiffies.
215 	 */
216 	u64 last_tick;
217 
218 	/** @tick_period: Tick period in jiffies. */
219 	u64 tick_period;
220 
221 	/**
222 	 * @lock: Lock protecting access to all the scheduler fields.
223 	 *
224 	 * Should be taken in the tick work, the irq handler, and anywhere the @groups
225 	 * fields are touched.
226 	 */
227 	struct mutex lock;
228 
229 	/** @groups: Various lists used to classify groups. */
230 	struct {
231 		/**
232 		 * @runnable: Runnable group lists.
233 		 *
234 		 * When a group has queues that want to execute something,
235 		 * its panthor_group::run_node should be inserted here.
236 		 *
237 		 * One list per-priority.
238 		 */
239 		struct list_head runnable[PANTHOR_CSG_PRIORITY_COUNT];
240 
241 		/**
242 		 * @idle: Idle group lists.
243 		 *
244 		 * When all queues of a group are idle (either because they
245 		 * have nothing to execute, or because they are blocked), the
246 		 * panthor_group::run_node field should be inserted here.
247 		 *
248 		 * One list per-priority.
249 		 */
250 		struct list_head idle[PANTHOR_CSG_PRIORITY_COUNT];
251 
252 		/**
253 		 * @waiting: List of groups whose queues are blocked on a
254 		 * synchronization object.
255 		 *
256 		 * Insert panthor_group::wait_node here when a group is waiting
257 		 * for synchronization objects to be signaled.
258 		 *
259 		 * This list is evaluated in the @sync_upd_work work.
260 		 */
261 		struct list_head waiting;
262 	} groups;
263 
264 	/**
265 	 * @csg_slots: FW command stream group slots.
266 	 */
267 	struct panthor_csg_slot csg_slots[MAX_CSGS];
268 
269 	/** @csg_slot_count: Number of command stream group slots exposed by the FW. */
270 	u32 csg_slot_count;
271 
272 	/** @cs_slot_count: Number of command stream slot per group slot exposed by the FW. */
273 	u32 cs_slot_count;
274 
275 	/** @as_slot_count: Number of address space slots supported by the MMU. */
276 	u32 as_slot_count;
277 
278 	/** @used_csg_slot_count: Number of command stream group slot currently used. */
279 	u32 used_csg_slot_count;
280 
281 	/** @sb_slot_count: Number of scoreboard slots. */
282 	u32 sb_slot_count;
283 
284 	/**
285 	 * @might_have_idle_groups: True if an active group might have become idle.
286 	 *
287 	 * This will force a tick, so other runnable groups can be scheduled if one
288 	 * or more active groups became idle.
289 	 */
290 	bool might_have_idle_groups;
291 
292 	/** @pm: Power management related fields. */
293 	struct {
294 		/** @has_ref: True if the scheduler owns a runtime PM reference. */
295 		bool has_ref;
296 	} pm;
297 
298 	/** @reset: Reset related fields. */
299 	struct {
300 		/** @lock: Lock protecting the other reset fields. */
301 		struct mutex lock;
302 
303 		/**
304 		 * @in_progress: True if a reset is in progress.
305 		 *
306 		 * Set to true in panthor_sched_pre_reset() and back to false in
307 		 * panthor_sched_post_reset().
308 		 */
309 		atomic_t in_progress;
310 
311 		/**
312 		 * @stopped_groups: List containing all groups that were stopped
313 		 * before a reset.
314 		 *
315 		 * Insert panthor_group::run_node in the pre_reset path.
316 		 */
317 		struct list_head stopped_groups;
318 	} reset;
319 };
320 
321 /**
322  * struct panthor_syncobj_32b - 32-bit FW synchronization object
323  */
324 struct panthor_syncobj_32b {
325 	/** @seqno: Sequence number. */
326 	u32 seqno;
327 
328 	/**
329 	 * @status: Status.
330 	 *
331 	 * Not zero on failure.
332 	 */
333 	u32 status;
334 };
335 
336 /**
337  * struct panthor_syncobj_64b - 64-bit FW synchronization object
338  */
339 struct panthor_syncobj_64b {
340 	/** @seqno: Sequence number. */
341 	u64 seqno;
342 
343 	/**
344 	 * @status: Status.
345 	 *
346 	 * Not zero on failure.
347 	 */
348 	u32 status;
349 
350 	/** @pad: MBZ. */
351 	u32 pad;
352 };
353 
354 /**
355  * struct panthor_queue - Execution queue
356  */
357 struct panthor_queue {
358 	/** @scheduler: DRM scheduler used for this queue. */
359 	struct drm_gpu_scheduler scheduler;
360 
361 	/** @entity: DRM scheduling entity used for this queue. */
362 	struct drm_sched_entity entity;
363 
364 	/** @name: DRM scheduler name for this queue. */
365 	char *name;
366 
367 	/** @timeout: Queue timeout related fields. */
368 	struct {
369 		/** @timeout.work: Work executed when a queue timeout occurs. */
370 		struct delayed_work work;
371 
372 		/**
373 		 * @timeout.remaining: Time remaining before a queue timeout.
374 		 *
375 		 * When the timer is running, this value is set to MAX_SCHEDULE_TIMEOUT.
376 		 * When the timer is suspended, it's set to the time remaining when the
377 		 * timer was suspended.
378 		 */
379 		unsigned long remaining;
380 	} timeout;
381 
382 	/**
383 	 * @doorbell_id: Doorbell assigned to this queue.
384 	 *
385 	 * Right now, all groups share the same doorbell, and the doorbell ID
386 	 * is assigned to group_slot + 1 when the group is assigned a slot. But
387 	 * we might decide to provide fine grained doorbell assignment at some
388 	 * point, so don't have to wake up all queues in a group every time one
389 	 * of them is updated.
390 	 */
391 	u8 doorbell_id;
392 
393 	/**
394 	 * @priority: Priority of the queue inside the group.
395 	 *
396 	 * Must be less than 16 (Only 4 bits available).
397 	 */
398 	u8 priority;
399 #define CSF_MAX_QUEUE_PRIO	GENMASK(3, 0)
400 
401 	/** @ringbuf: Command stream ring-buffer. */
402 	struct panthor_kernel_bo *ringbuf;
403 
404 	/** @iface: Firmware interface. */
405 	struct {
406 		/** @mem: FW memory allocated for this interface. */
407 		struct panthor_kernel_bo *mem;
408 
409 		/** @input: Input interface. */
410 		struct panthor_fw_ringbuf_input_iface *input;
411 
412 		/** @output: Output interface. */
413 		const struct panthor_fw_ringbuf_output_iface *output;
414 
415 		/** @input_fw_va: FW virtual address of the input interface buffer. */
416 		u32 input_fw_va;
417 
418 		/** @output_fw_va: FW virtual address of the output interface buffer. */
419 		u32 output_fw_va;
420 	} iface;
421 
422 	/**
423 	 * @syncwait: Stores information about the synchronization object this
424 	 * queue is waiting on.
425 	 */
426 	struct {
427 		/** @gpu_va: GPU address of the synchronization object. */
428 		u64 gpu_va;
429 
430 		/** @ref: Reference value to compare against. */
431 		u64 ref;
432 
433 		/** @gt: True if this is a greater-than test. */
434 		bool gt;
435 
436 		/** @sync64: True if this is a 64-bit sync object. */
437 		bool sync64;
438 
439 		/** @bo: Buffer object holding the synchronization object. */
440 		struct drm_gem_object *obj;
441 
442 		/** @offset: Offset of the synchronization object inside @bo. */
443 		u64 offset;
444 
445 		/**
446 		 * @kmap: Kernel mapping of the buffer object holding the
447 		 * synchronization object.
448 		 */
449 		void *kmap;
450 	} syncwait;
451 
452 	/** @fence_ctx: Fence context fields. */
453 	struct {
454 		/** @lock: Used to protect access to all fences allocated by this context. */
455 		spinlock_t lock;
456 
457 		/**
458 		 * @id: Fence context ID.
459 		 *
460 		 * Allocated with dma_fence_context_alloc().
461 		 */
462 		u64 id;
463 
464 		/** @seqno: Sequence number of the last initialized fence. */
465 		atomic64_t seqno;
466 
467 		/**
468 		 * @last_fence: Fence of the last submitted job.
469 		 *
470 		 * We return this fence when we get an empty command stream.
471 		 * This way, we are guaranteed that all earlier jobs have completed
472 		 * when drm_sched_job::s_fence::finished without having to feed
473 		 * the CS ring buffer with a dummy job that only signals the fence.
474 		 */
475 		struct dma_fence *last_fence;
476 
477 		/**
478 		 * @in_flight_jobs: List containing all in-flight jobs.
479 		 *
480 		 * Used to keep track and signal panthor_job::done_fence when the
481 		 * synchronization object attached to the queue is signaled.
482 		 */
483 		struct list_head in_flight_jobs;
484 	} fence_ctx;
485 
486 	/** @profiling: Job profiling data slots and access information. */
487 	struct {
488 		/** @slots: Kernel BO holding the slots. */
489 		struct panthor_kernel_bo *slots;
490 
491 		/** @slot_count: Number of jobs ringbuffer can hold at once. */
492 		u32 slot_count;
493 
494 		/** @seqno: Index of the next available profiling information slot. */
495 		u32 seqno;
496 	} profiling;
497 };
498 
499 /**
500  * enum panthor_group_state - Scheduling group state.
501  */
502 enum panthor_group_state {
503 	/** @PANTHOR_CS_GROUP_CREATED: Group was created, but not scheduled yet. */
504 	PANTHOR_CS_GROUP_CREATED,
505 
506 	/** @PANTHOR_CS_GROUP_ACTIVE: Group is currently scheduled. */
507 	PANTHOR_CS_GROUP_ACTIVE,
508 
509 	/**
510 	 * @PANTHOR_CS_GROUP_SUSPENDED: Group was scheduled at least once, but is
511 	 * inactive/suspended right now.
512 	 */
513 	PANTHOR_CS_GROUP_SUSPENDED,
514 
515 	/**
516 	 * @PANTHOR_CS_GROUP_TERMINATED: Group was terminated.
517 	 *
518 	 * Can no longer be scheduled. The only allowed action is a destruction.
519 	 */
520 	PANTHOR_CS_GROUP_TERMINATED,
521 
522 	/**
523 	 * @PANTHOR_CS_GROUP_UNKNOWN_STATE: Group is an unknown state.
524 	 *
525 	 * The FW returned an inconsistent state. The group is flagged unusable
526 	 * and can no longer be scheduled. The only allowed action is a
527 	 * destruction.
528 	 *
529 	 * When that happens, we also schedule a FW reset, to start from a fresh
530 	 * state.
531 	 */
532 	PANTHOR_CS_GROUP_UNKNOWN_STATE,
533 };
534 
535 /**
536  * struct panthor_group - Scheduling group object
537  */
538 struct panthor_group {
539 	/** @refcount: Reference count */
540 	struct kref refcount;
541 
542 	/** @ptdev: Device. */
543 	struct panthor_device *ptdev;
544 
545 	/** @vm: VM bound to the group. */
546 	struct panthor_vm *vm;
547 
548 	/** @compute_core_mask: Mask of shader cores that can be used for compute jobs. */
549 	u64 compute_core_mask;
550 
551 	/** @fragment_core_mask: Mask of shader cores that can be used for fragment jobs. */
552 	u64 fragment_core_mask;
553 
554 	/** @tiler_core_mask: Mask of tiler cores that can be used for tiler jobs. */
555 	u64 tiler_core_mask;
556 
557 	/** @max_compute_cores: Maximum number of shader cores used for compute jobs. */
558 	u8 max_compute_cores;
559 
560 	/** @max_fragment_cores: Maximum number of shader cores used for fragment jobs. */
561 	u8 max_fragment_cores;
562 
563 	/** @max_tiler_cores: Maximum number of tiler cores used for tiler jobs. */
564 	u8 max_tiler_cores;
565 
566 	/** @priority: Group priority (check panthor_csg_priority). */
567 	u8 priority;
568 
569 	/** @blocked_queues: Bitmask reflecting the blocked queues. */
570 	u32 blocked_queues;
571 
572 	/** @idle_queues: Bitmask reflecting the idle queues. */
573 	u32 idle_queues;
574 
575 	/** @fatal_lock: Lock used to protect access to fatal fields. */
576 	spinlock_t fatal_lock;
577 
578 	/** @fatal_queues: Bitmask reflecting the queues that hit a fatal exception. */
579 	u32 fatal_queues;
580 
581 	/** @tiler_oom: Mask of queues that have a tiler OOM event to process. */
582 	atomic_t tiler_oom;
583 
584 	/** @queue_count: Number of queues in this group. */
585 	u32 queue_count;
586 
587 	/** @queues: Queues owned by this group. */
588 	struct panthor_queue *queues[MAX_CS_PER_CSG];
589 
590 	/**
591 	 * @csg_id: ID of the FW group slot.
592 	 *
593 	 * -1 when the group is not scheduled/active.
594 	 */
595 	int csg_id;
596 
597 	/**
598 	 * @destroyed: True when the group has been destroyed.
599 	 *
600 	 * If a group is destroyed it becomes useless: no further jobs can be submitted
601 	 * to its queues. We simply wait for all references to be dropped so we can
602 	 * release the group object.
603 	 */
604 	bool destroyed;
605 
606 	/**
607 	 * @timedout: True when a timeout occurred on any of the queues owned by
608 	 * this group.
609 	 *
610 	 * Timeouts can be reported by drm_sched or by the FW. If a reset is required,
611 	 * and the group can't be suspended, this also leads to a timeout. In any case,
612 	 * any timeout situation is unrecoverable, and the group becomes useless. We
613 	 * simply wait for all references to be dropped so we can release the group
614 	 * object.
615 	 */
616 	bool timedout;
617 
618 	/**
619 	 * @innocent: True when the group becomes unusable because the group suspension
620 	 * failed during a reset.
621 	 *
622 	 * Sometimes the FW was put in a bad state by other groups, causing the group
623 	 * suspension happening in the reset path to fail. In that case, we consider the
624 	 * group innocent.
625 	 */
626 	bool innocent;
627 
628 	/**
629 	 * @syncobjs: Pool of per-queue synchronization objects.
630 	 *
631 	 * One sync object per queue. The position of the sync object is
632 	 * determined by the queue index.
633 	 */
634 	struct panthor_kernel_bo *syncobjs;
635 
636 	/** @fdinfo: Per-file info exposed through /proc/<process>/fdinfo */
637 	struct {
638 		/** @data: Total sampled values for jobs in queues from this group. */
639 		struct panthor_gpu_usage data;
640 
641 		/**
642 		 * @fdinfo.lock: Spinlock to govern concurrent access from drm file's fdinfo
643 		 * callback and job post-completion processing function
644 		 */
645 		spinlock_t lock;
646 
647 		/** @fdinfo.kbo_sizes: Aggregate size of private kernel BO's held by the group. */
648 		size_t kbo_sizes;
649 	} fdinfo;
650 
651 	/** @task_info: Info of current->group_leader that created the group. */
652 	struct {
653 		/** @task_info.pid: pid of current->group_leader */
654 		pid_t pid;
655 
656 		/** @task_info.comm: comm of current->group_leader */
657 		char comm[TASK_COMM_LEN];
658 	} task_info;
659 
660 	/** @state: Group state. */
661 	enum panthor_group_state state;
662 
663 	/**
664 	 * @suspend_buf: Suspend buffer.
665 	 *
666 	 * Stores the state of the group and its queues when a group is suspended.
667 	 * Used at resume time to restore the group in its previous state.
668 	 *
669 	 * The size of the suspend buffer is exposed through the FW interface.
670 	 */
671 	struct panthor_kernel_bo *suspend_buf;
672 
673 	/**
674 	 * @protm_suspend_buf: Protection mode suspend buffer.
675 	 *
676 	 * Stores the state of the group and its queues when a group that's in
677 	 * protection mode is suspended.
678 	 *
679 	 * Used at resume time to restore the group in its previous state.
680 	 *
681 	 * The size of the protection mode suspend buffer is exposed through the
682 	 * FW interface.
683 	 */
684 	struct panthor_kernel_bo *protm_suspend_buf;
685 
686 	/** @sync_upd_work: Work used to check/signal job fences. */
687 	struct work_struct sync_upd_work;
688 
689 	/** @tiler_oom_work: Work used to process tiler OOM events happening on this group. */
690 	struct work_struct tiler_oom_work;
691 
692 	/** @term_work: Work used to finish the group termination procedure. */
693 	struct work_struct term_work;
694 
695 	/**
696 	 * @release_work: Work used to release group resources.
697 	 *
698 	 * We need to postpone the group release to avoid a deadlock when
699 	 * the last ref is released in the tick work.
700 	 */
701 	struct work_struct release_work;
702 
703 	/**
704 	 * @run_node: Node used to insert the group in the
705 	 * panthor_group::groups::{runnable,idle} and
706 	 * panthor_group::reset.stopped_groups lists.
707 	 */
708 	struct list_head run_node;
709 
710 	/**
711 	 * @wait_node: Node used to insert the group in the
712 	 * panthor_group::groups::waiting list.
713 	 */
714 	struct list_head wait_node;
715 };
716 
717 struct panthor_job_profiling_data {
718 	struct {
719 		u64 before;
720 		u64 after;
721 	} cycles;
722 
723 	struct {
724 		u64 before;
725 		u64 after;
726 	} time;
727 };
728 
729 /**
730  * group_queue_work() - Queue a group work
731  * @group: Group to queue the work for.
732  * @wname: Work name.
733  *
734  * Grabs a ref and queue a work item to the scheduler workqueue. If
735  * the work was already queued, we release the reference we grabbed.
736  *
737  * Work callbacks must release the reference we grabbed here.
738  */
739 #define group_queue_work(group, wname) \
740 	do { \
741 		group_get(group); \
742 		if (!queue_work((group)->ptdev->scheduler->wq, &(group)->wname ## _work)) \
743 			group_put(group); \
744 	} while (0)
745 
746 /**
747  * sched_queue_work() - Queue a scheduler work.
748  * @sched: Scheduler object.
749  * @wname: Work name.
750  *
751  * Conditionally queues a scheduler work if no reset is pending/in-progress.
752  */
753 #define sched_queue_work(sched, wname) \
754 	do { \
755 		if (!atomic_read(&(sched)->reset.in_progress) && \
756 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
757 			queue_work((sched)->wq, &(sched)->wname ## _work); \
758 	} while (0)
759 
760 /**
761  * sched_queue_delayed_work() - Queue a scheduler delayed work.
762  * @sched: Scheduler object.
763  * @wname: Work name.
764  * @delay: Work delay in jiffies.
765  *
766  * Conditionally queues a scheduler delayed work if no reset is
767  * pending/in-progress.
768  */
769 #define sched_queue_delayed_work(sched, wname, delay) \
770 	do { \
771 		if (!atomic_read(&sched->reset.in_progress) && \
772 		    !panthor_device_reset_is_pending((sched)->ptdev)) \
773 			mod_delayed_work((sched)->wq, &(sched)->wname ## _work, delay); \
774 	} while (0)
775 
776 /*
777  * We currently set the maximum of groups per file to an arbitrary low value.
778  * But this can be updated if we need more.
779  */
780 #define MAX_GROUPS_PER_POOL 128
781 
782 /*
783  * Mark added on an entry of group pool Xarray to identify if the group has
784  * been fully initialized and can be accessed elsewhere in the driver code.
785  */
786 #define GROUP_REGISTERED XA_MARK_1
787 
788 /**
789  * struct panthor_group_pool - Group pool
790  *
791  * Each file get assigned a group pool.
792  */
793 struct panthor_group_pool {
794 	/** @xa: Xarray used to manage group handles. */
795 	struct xarray xa;
796 };
797 
798 /**
799  * struct panthor_job - Used to manage GPU job
800  */
801 struct panthor_job {
802 	/** @base: Inherit from drm_sched_job. */
803 	struct drm_sched_job base;
804 
805 	/** @refcount: Reference count. */
806 	struct kref refcount;
807 
808 	/** @group: Group of the queue this job will be pushed to. */
809 	struct panthor_group *group;
810 
811 	/** @queue_idx: Index of the queue inside @group. */
812 	u32 queue_idx;
813 
814 	/** @call_info: Information about the userspace command stream call. */
815 	struct {
816 		/** @start: GPU address of the userspace command stream. */
817 		u64 start;
818 
819 		/** @size: Size of the userspace command stream. */
820 		u32 size;
821 
822 		/**
823 		 * @latest_flush: Flush ID at the time the userspace command
824 		 * stream was built.
825 		 *
826 		 * Needed for the flush reduction mechanism.
827 		 */
828 		u32 latest_flush;
829 	} call_info;
830 
831 	/** @ringbuf: Position of this job is in the ring buffer. */
832 	struct {
833 		/** @start: Start offset. */
834 		u64 start;
835 
836 		/** @end: End offset. */
837 		u64 end;
838 	} ringbuf;
839 
840 	/**
841 	 * @node: Used to insert the job in the panthor_queue::fence_ctx::in_flight_jobs
842 	 * list.
843 	 */
844 	struct list_head node;
845 
846 	/** @done_fence: Fence signaled when the job is finished or cancelled. */
847 	struct dma_fence *done_fence;
848 
849 	/** @profiling: Job profiling information. */
850 	struct {
851 		/** @mask: Current device job profiling enablement bitmask. */
852 		u32 mask;
853 
854 		/** @slot: Job index in the profiling slots BO. */
855 		u32 slot;
856 	} profiling;
857 };
858 
859 static void
panthor_queue_put_syncwait_obj(struct panthor_queue * queue)860 panthor_queue_put_syncwait_obj(struct panthor_queue *queue)
861 {
862 	if (queue->syncwait.kmap) {
863 		struct iosys_map map = IOSYS_MAP_INIT_VADDR(queue->syncwait.kmap);
864 
865 		drm_gem_vunmap(queue->syncwait.obj, &map);
866 		queue->syncwait.kmap = NULL;
867 	}
868 
869 	drm_gem_object_put(queue->syncwait.obj);
870 	queue->syncwait.obj = NULL;
871 }
872 
873 static void *
panthor_queue_get_syncwait_obj(struct panthor_group * group,struct panthor_queue * queue)874 panthor_queue_get_syncwait_obj(struct panthor_group *group, struct panthor_queue *queue)
875 {
876 	struct panthor_device *ptdev = group->ptdev;
877 	struct panthor_gem_object *bo;
878 	struct iosys_map map;
879 	int ret;
880 
881 	if (queue->syncwait.kmap)
882 		return queue->syncwait.kmap + queue->syncwait.offset;
883 
884 	bo = panthor_vm_get_bo_for_va(group->vm,
885 				      queue->syncwait.gpu_va,
886 				      &queue->syncwait.offset);
887 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(bo)))
888 		goto err_put_syncwait_obj;
889 
890 	queue->syncwait.obj = &bo->base.base;
891 	ret = drm_gem_vmap(queue->syncwait.obj, &map);
892 	if (drm_WARN_ON(&ptdev->base, ret))
893 		goto err_put_syncwait_obj;
894 
895 	queue->syncwait.kmap = map.vaddr;
896 	if (drm_WARN_ON(&ptdev->base, !queue->syncwait.kmap))
897 		goto err_put_syncwait_obj;
898 
899 	return queue->syncwait.kmap + queue->syncwait.offset;
900 
901 err_put_syncwait_obj:
902 	panthor_queue_put_syncwait_obj(queue);
903 	return NULL;
904 }
905 
group_free_queue(struct panthor_group * group,struct panthor_queue * queue)906 static void group_free_queue(struct panthor_group *group, struct panthor_queue *queue)
907 {
908 	if (IS_ERR_OR_NULL(queue))
909 		return;
910 
911 	/* This should have been disabled before that point. */
912 	drm_WARN_ON(&group->ptdev->base,
913 		    disable_delayed_work_sync(&queue->timeout.work));
914 
915 	if (queue->entity.fence_context)
916 		drm_sched_entity_destroy(&queue->entity);
917 
918 	if (queue->scheduler.ops)
919 		drm_sched_fini(&queue->scheduler);
920 
921 	kfree(queue->name);
922 
923 	panthor_queue_put_syncwait_obj(queue);
924 
925 	panthor_kernel_bo_destroy(queue->ringbuf);
926 	panthor_kernel_bo_destroy(queue->iface.mem);
927 	panthor_kernel_bo_destroy(queue->profiling.slots);
928 
929 	/* Release the last_fence we were holding, if any. */
930 	dma_fence_put(queue->fence_ctx.last_fence);
931 
932 	kfree(queue);
933 }
934 
group_release_work(struct work_struct * work)935 static void group_release_work(struct work_struct *work)
936 {
937 	struct panthor_group *group = container_of(work,
938 						   struct panthor_group,
939 						   release_work);
940 	u32 i;
941 
942 	for (i = 0; i < group->queue_count; i++)
943 		group_free_queue(group, group->queues[i]);
944 
945 	panthor_kernel_bo_destroy(group->suspend_buf);
946 	panthor_kernel_bo_destroy(group->protm_suspend_buf);
947 	panthor_kernel_bo_destroy(group->syncobjs);
948 
949 	panthor_vm_put(group->vm);
950 	kfree(group);
951 }
952 
group_release(struct kref * kref)953 static void group_release(struct kref *kref)
954 {
955 	struct panthor_group *group = container_of(kref,
956 						   struct panthor_group,
957 						   refcount);
958 	struct panthor_device *ptdev = group->ptdev;
959 
960 	drm_WARN_ON(&ptdev->base, group->csg_id >= 0);
961 	drm_WARN_ON(&ptdev->base, !list_empty(&group->run_node));
962 	drm_WARN_ON(&ptdev->base, !list_empty(&group->wait_node));
963 
964 	queue_work(panthor_cleanup_wq, &group->release_work);
965 }
966 
group_put(struct panthor_group * group)967 static void group_put(struct panthor_group *group)
968 {
969 	if (group)
970 		kref_put(&group->refcount, group_release);
971 }
972 
973 static struct panthor_group *
group_get(struct panthor_group * group)974 group_get(struct panthor_group *group)
975 {
976 	if (group)
977 		kref_get(&group->refcount);
978 
979 	return group;
980 }
981 
982 /**
983  * group_bind_locked() - Bind a group to a group slot
984  * @group: Group.
985  * @csg_id: Slot.
986  *
987  * Return: 0 on success, a negative error code otherwise.
988  */
989 static int
group_bind_locked(struct panthor_group * group,u32 csg_id)990 group_bind_locked(struct panthor_group *group, u32 csg_id)
991 {
992 	struct panthor_device *ptdev = group->ptdev;
993 	struct panthor_csg_slot *csg_slot;
994 	int ret;
995 
996 	lockdep_assert_held(&ptdev->scheduler->lock);
997 
998 	if (drm_WARN_ON(&ptdev->base, group->csg_id != -1 || csg_id >= MAX_CSGS ||
999 			ptdev->scheduler->csg_slots[csg_id].group))
1000 		return -EINVAL;
1001 
1002 	ret = panthor_vm_active(group->vm);
1003 	if (ret)
1004 		return ret;
1005 
1006 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1007 	group_get(group);
1008 	group->csg_id = csg_id;
1009 
1010 	/* Dummy doorbell allocation: doorbell is assigned to the group and
1011 	 * all queues use the same doorbell.
1012 	 *
1013 	 * TODO: Implement LRU-based doorbell assignment, so the most often
1014 	 * updated queues get their own doorbell, thus avoiding useless checks
1015 	 * on queues belonging to the same group that are rarely updated.
1016 	 */
1017 	for (u32 i = 0; i < group->queue_count; i++)
1018 		group->queues[i]->doorbell_id = csg_id + 1;
1019 
1020 	csg_slot->group = group;
1021 
1022 	return 0;
1023 }
1024 
1025 /**
1026  * group_unbind_locked() - Unbind a group from a slot.
1027  * @group: Group to unbind.
1028  *
1029  * Return: 0 on success, a negative error code otherwise.
1030  */
1031 static int
group_unbind_locked(struct panthor_group * group)1032 group_unbind_locked(struct panthor_group *group)
1033 {
1034 	struct panthor_device *ptdev = group->ptdev;
1035 	struct panthor_csg_slot *slot;
1036 
1037 	lockdep_assert_held(&ptdev->scheduler->lock);
1038 
1039 	if (drm_WARN_ON(&ptdev->base, group->csg_id < 0 || group->csg_id >= MAX_CSGS))
1040 		return -EINVAL;
1041 
1042 	if (drm_WARN_ON(&ptdev->base, group->state == PANTHOR_CS_GROUP_ACTIVE))
1043 		return -EINVAL;
1044 
1045 	slot = &ptdev->scheduler->csg_slots[group->csg_id];
1046 	panthor_vm_idle(group->vm);
1047 	group->csg_id = -1;
1048 
1049 	/* Tiler OOM events will be re-issued next time the group is scheduled. */
1050 	atomic_set(&group->tiler_oom, 0);
1051 	cancel_work(&group->tiler_oom_work);
1052 
1053 	for (u32 i = 0; i < group->queue_count; i++)
1054 		group->queues[i]->doorbell_id = -1;
1055 
1056 	slot->group = NULL;
1057 
1058 	group_put(group);
1059 	return 0;
1060 }
1061 
1062 static bool
group_is_idle(struct panthor_group * group)1063 group_is_idle(struct panthor_group *group)
1064 {
1065 	struct panthor_device *ptdev = group->ptdev;
1066 	u32 inactive_queues;
1067 
1068 	if (group->csg_id >= 0)
1069 		return ptdev->scheduler->csg_slots[group->csg_id].idle;
1070 
1071 	inactive_queues = group->idle_queues | group->blocked_queues;
1072 	return hweight32(inactive_queues) == group->queue_count;
1073 }
1074 
1075 static void
queue_reset_timeout_locked(struct panthor_queue * queue)1076 queue_reset_timeout_locked(struct panthor_queue *queue)
1077 {
1078 	lockdep_assert_held(&queue->fence_ctx.lock);
1079 
1080 	if (queue->timeout.remaining != MAX_SCHEDULE_TIMEOUT) {
1081 		mod_delayed_work(queue->scheduler.timeout_wq,
1082 				 &queue->timeout.work,
1083 				 msecs_to_jiffies(JOB_TIMEOUT_MS));
1084 	}
1085 }
1086 
1087 static bool
group_can_run(struct panthor_group * group)1088 group_can_run(struct panthor_group *group)
1089 {
1090 	return group->state != PANTHOR_CS_GROUP_TERMINATED &&
1091 	       group->state != PANTHOR_CS_GROUP_UNKNOWN_STATE &&
1092 	       !group->destroyed && group->fatal_queues == 0 &&
1093 	       !group->timedout;
1094 }
1095 
1096 static bool
queue_timeout_is_suspended(struct panthor_queue * queue)1097 queue_timeout_is_suspended(struct panthor_queue *queue)
1098 {
1099 	/* When running, the remaining time is set to MAX_SCHEDULE_TIMEOUT. */
1100 	return queue->timeout.remaining != MAX_SCHEDULE_TIMEOUT;
1101 }
1102 
1103 static void
queue_suspend_timeout_locked(struct panthor_queue * queue)1104 queue_suspend_timeout_locked(struct panthor_queue *queue)
1105 {
1106 	unsigned long qtimeout, now;
1107 	struct panthor_group *group;
1108 	struct panthor_job *job;
1109 	bool timer_was_active;
1110 
1111 	lockdep_assert_held(&queue->fence_ctx.lock);
1112 
1113 	/* Already suspended, nothing to do. */
1114 	if (queue_timeout_is_suspended(queue))
1115 		return;
1116 
1117 	job = list_first_entry_or_null(&queue->fence_ctx.in_flight_jobs,
1118 				       struct panthor_job, node);
1119 	group = job ? job->group : NULL;
1120 
1121 	/* If the queue is blocked and the group is idle, we want the timer to
1122 	 * keep running because the group can't be unblocked by other queues,
1123 	 * so it has to come from an external source, and we want to timebox
1124 	 * this external signalling.
1125 	 */
1126 	if (group && group_can_run(group) &&
1127 	    (group->blocked_queues & BIT(job->queue_idx)) &&
1128 	    group_is_idle(group))
1129 		return;
1130 
1131 	now = jiffies;
1132 	qtimeout = queue->timeout.work.timer.expires;
1133 
1134 	/* Cancel the timer. */
1135 	timer_was_active = cancel_delayed_work(&queue->timeout.work);
1136 	if (!timer_was_active || !job)
1137 		queue->timeout.remaining = msecs_to_jiffies(JOB_TIMEOUT_MS);
1138 	else if (time_after(qtimeout, now))
1139 		queue->timeout.remaining = qtimeout - now;
1140 	else
1141 		queue->timeout.remaining = 0;
1142 
1143 	if (WARN_ON_ONCE(queue->timeout.remaining > msecs_to_jiffies(JOB_TIMEOUT_MS)))
1144 		queue->timeout.remaining = msecs_to_jiffies(JOB_TIMEOUT_MS);
1145 }
1146 
1147 static void
queue_suspend_timeout(struct panthor_queue * queue)1148 queue_suspend_timeout(struct panthor_queue *queue)
1149 {
1150 	spin_lock(&queue->fence_ctx.lock);
1151 	queue_suspend_timeout_locked(queue);
1152 	spin_unlock(&queue->fence_ctx.lock);
1153 }
1154 
1155 static void
queue_resume_timeout(struct panthor_queue * queue)1156 queue_resume_timeout(struct panthor_queue *queue)
1157 {
1158 	spin_lock(&queue->fence_ctx.lock);
1159 
1160 	if (queue_timeout_is_suspended(queue)) {
1161 		mod_delayed_work(queue->scheduler.timeout_wq,
1162 				 &queue->timeout.work,
1163 				 queue->timeout.remaining);
1164 
1165 		queue->timeout.remaining = MAX_SCHEDULE_TIMEOUT;
1166 	}
1167 
1168 	spin_unlock(&queue->fence_ctx.lock);
1169 }
1170 
1171 /**
1172  * cs_slot_prog_locked() - Program a queue slot
1173  * @ptdev: Device.
1174  * @csg_id: Group slot ID.
1175  * @cs_id: Queue slot ID.
1176  *
1177  * Program a queue slot with the queue information so things can start being
1178  * executed on this queue.
1179  *
1180  * The group slot must have a group bound to it already (group_bind_locked()).
1181  */
1182 static void
cs_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1183 cs_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1184 {
1185 	struct panthor_queue *queue = ptdev->scheduler->csg_slots[csg_id].group->queues[cs_id];
1186 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1187 
1188 	lockdep_assert_held(&ptdev->scheduler->lock);
1189 
1190 	queue->iface.input->extract = queue->iface.output->extract;
1191 	drm_WARN_ON(&ptdev->base, queue->iface.input->insert < queue->iface.input->extract);
1192 
1193 	cs_iface->input->ringbuf_base = panthor_kernel_bo_gpuva(queue->ringbuf);
1194 	cs_iface->input->ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
1195 	cs_iface->input->ringbuf_input = queue->iface.input_fw_va;
1196 	cs_iface->input->ringbuf_output = queue->iface.output_fw_va;
1197 	cs_iface->input->config = CS_CONFIG_PRIORITY(queue->priority) |
1198 				  CS_CONFIG_DOORBELL(queue->doorbell_id);
1199 	cs_iface->input->ack_irq_mask = ~0;
1200 	panthor_fw_update_reqs(cs_iface, req,
1201 			       CS_IDLE_SYNC_WAIT |
1202 			       CS_IDLE_EMPTY |
1203 			       CS_STATE_START |
1204 			       CS_EXTRACT_EVENT,
1205 			       CS_IDLE_SYNC_WAIT |
1206 			       CS_IDLE_EMPTY |
1207 			       CS_STATE_MASK |
1208 			       CS_EXTRACT_EVENT);
1209 	if (queue->iface.input->insert != queue->iface.input->extract)
1210 		queue_resume_timeout(queue);
1211 }
1212 
1213 /**
1214  * cs_slot_reset_locked() - Reset a queue slot
1215  * @ptdev: Device.
1216  * @csg_id: Group slot.
1217  * @cs_id: Queue slot.
1218  *
1219  * Change the queue slot state to STOP and suspend the queue timeout if
1220  * the queue is not blocked.
1221  *
1222  * The group slot must have a group bound to it (group_bind_locked()).
1223  */
1224 static int
cs_slot_reset_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1225 cs_slot_reset_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1226 {
1227 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1228 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1229 	struct panthor_queue *queue = group->queues[cs_id];
1230 
1231 	lockdep_assert_held(&ptdev->scheduler->lock);
1232 
1233 	panthor_fw_update_reqs(cs_iface, req,
1234 			       CS_STATE_STOP,
1235 			       CS_STATE_MASK);
1236 
1237 	queue_suspend_timeout(queue);
1238 
1239 	return 0;
1240 }
1241 
1242 /**
1243  * csg_slot_sync_priority_locked() - Synchronize the group slot priority
1244  * @ptdev: Device.
1245  * @csg_id: Group slot ID.
1246  *
1247  * Group slot priority update happens asynchronously. When we receive a
1248  * %CSG_ENDPOINT_CONFIG, we know the update is effective, and can
1249  * reflect it to our panthor_csg_slot object.
1250  */
1251 static void
csg_slot_sync_priority_locked(struct panthor_device * ptdev,u32 csg_id)1252 csg_slot_sync_priority_locked(struct panthor_device *ptdev, u32 csg_id)
1253 {
1254 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1255 	struct panthor_fw_csg_iface *csg_iface;
1256 	u64 endpoint_req;
1257 
1258 	lockdep_assert_held(&ptdev->scheduler->lock);
1259 
1260 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1261 	endpoint_req = panthor_fw_csg_endpoint_req_get(ptdev, csg_iface);
1262 	csg_slot->priority = CSG_EP_REQ_PRIORITY_GET(endpoint_req);
1263 }
1264 
1265 /**
1266  * cs_slot_sync_queue_state_locked() - Synchronize the queue slot priority
1267  * @ptdev: Device.
1268  * @csg_id: Group slot.
1269  * @cs_id: Queue slot.
1270  *
1271  * Queue state is updated on group suspend or STATUS_UPDATE event.
1272  */
1273 static void
cs_slot_sync_queue_state_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1274 cs_slot_sync_queue_state_locked(struct panthor_device *ptdev, u32 csg_id, u32 cs_id)
1275 {
1276 	struct panthor_group *group = ptdev->scheduler->csg_slots[csg_id].group;
1277 	struct panthor_queue *queue = group->queues[cs_id];
1278 	struct panthor_fw_cs_iface *cs_iface =
1279 		panthor_fw_get_cs_iface(group->ptdev, csg_id, cs_id);
1280 
1281 	u32 status_wait_cond;
1282 
1283 	switch (cs_iface->output->status_blocked_reason) {
1284 	case CS_STATUS_BLOCKED_REASON_UNBLOCKED:
1285 		if (queue->iface.input->insert == queue->iface.output->extract &&
1286 		    cs_iface->output->status_scoreboards == 0)
1287 			group->idle_queues |= BIT(cs_id);
1288 		break;
1289 
1290 	case CS_STATUS_BLOCKED_REASON_SYNC_WAIT:
1291 		if (list_empty(&group->wait_node)) {
1292 			list_move_tail(&group->wait_node,
1293 				       &group->ptdev->scheduler->groups.waiting);
1294 		}
1295 
1296 		/* The queue is only blocked if there's no deferred operation
1297 		 * pending, which can be checked through the scoreboard status.
1298 		 */
1299 		if (!cs_iface->output->status_scoreboards)
1300 			group->blocked_queues |= BIT(cs_id);
1301 
1302 		queue->syncwait.gpu_va = cs_iface->output->status_wait_sync_ptr;
1303 		queue->syncwait.ref = cs_iface->output->status_wait_sync_value;
1304 		status_wait_cond = cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_COND_MASK;
1305 		queue->syncwait.gt = status_wait_cond == CS_STATUS_WAIT_SYNC_COND_GT;
1306 		if (cs_iface->output->status_wait & CS_STATUS_WAIT_SYNC_64B) {
1307 			u64 sync_val_hi = cs_iface->output->status_wait_sync_value_hi;
1308 
1309 			queue->syncwait.sync64 = true;
1310 			queue->syncwait.ref |= sync_val_hi << 32;
1311 		} else {
1312 			queue->syncwait.sync64 = false;
1313 		}
1314 		break;
1315 
1316 	default:
1317 		/* Other reasons are not blocking. Consider the queue as runnable
1318 		 * in those cases.
1319 		 */
1320 		break;
1321 	}
1322 }
1323 
1324 static void
csg_slot_sync_queues_state_locked(struct panthor_device * ptdev,u32 csg_id)1325 csg_slot_sync_queues_state_locked(struct panthor_device *ptdev, u32 csg_id)
1326 {
1327 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1328 	struct panthor_group *group = csg_slot->group;
1329 	u32 i;
1330 
1331 	lockdep_assert_held(&ptdev->scheduler->lock);
1332 
1333 	group->idle_queues = 0;
1334 	group->blocked_queues = 0;
1335 
1336 	for (i = 0; i < group->queue_count; i++) {
1337 		if (group->queues[i])
1338 			cs_slot_sync_queue_state_locked(ptdev, csg_id, i);
1339 	}
1340 }
1341 
1342 static void
csg_slot_sync_state_locked(struct panthor_device * ptdev,u32 csg_id)1343 csg_slot_sync_state_locked(struct panthor_device *ptdev, u32 csg_id)
1344 {
1345 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1346 	struct panthor_fw_csg_iface *csg_iface;
1347 	struct panthor_group *group;
1348 	enum panthor_group_state new_state, old_state;
1349 	u32 csg_state;
1350 
1351 	lockdep_assert_held(&ptdev->scheduler->lock);
1352 
1353 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1354 	group = csg_slot->group;
1355 
1356 	if (!group)
1357 		return;
1358 
1359 	old_state = group->state;
1360 	csg_state = csg_iface->output->ack & CSG_STATE_MASK;
1361 	switch (csg_state) {
1362 	case CSG_STATE_START:
1363 	case CSG_STATE_RESUME:
1364 		new_state = PANTHOR_CS_GROUP_ACTIVE;
1365 		break;
1366 	case CSG_STATE_TERMINATE:
1367 		new_state = PANTHOR_CS_GROUP_TERMINATED;
1368 		break;
1369 	case CSG_STATE_SUSPEND:
1370 		new_state = PANTHOR_CS_GROUP_SUSPENDED;
1371 		break;
1372 	default:
1373 		/* The unknown state might be caused by a FW state corruption,
1374 		 * which means the group metadata can't be trusted anymore, and
1375 		 * the SUSPEND operation might propagate the corruption to the
1376 		 * suspend buffers. Flag the group state as unknown to make
1377 		 * sure it's unusable after that point.
1378 		 */
1379 		drm_err(&ptdev->base, "Invalid state on CSG %d (state=%d)",
1380 			csg_id, csg_state);
1381 		new_state = PANTHOR_CS_GROUP_UNKNOWN_STATE;
1382 		break;
1383 	}
1384 
1385 	if (old_state == new_state)
1386 		return;
1387 
1388 	/* The unknown state might be caused by a FW issue, reset the FW to
1389 	 * take a fresh start.
1390 	 */
1391 	if (new_state == PANTHOR_CS_GROUP_UNKNOWN_STATE)
1392 		panthor_device_schedule_reset(ptdev);
1393 
1394 	if (new_state == PANTHOR_CS_GROUP_SUSPENDED)
1395 		csg_slot_sync_queues_state_locked(ptdev, csg_id);
1396 
1397 	if (old_state == PANTHOR_CS_GROUP_ACTIVE) {
1398 		u32 i;
1399 
1400 		/* Reset the queue slots so we start from a clean
1401 		 * state when starting/resuming a new group on this
1402 		 * CSG slot. No wait needed here, and no ringbell
1403 		 * either, since the CS slot will only be re-used
1404 		 * on the next CSG start operation.
1405 		 */
1406 		for (i = 0; i < group->queue_count; i++) {
1407 			if (group->queues[i])
1408 				cs_slot_reset_locked(ptdev, csg_id, i);
1409 		}
1410 	}
1411 
1412 	group->state = new_state;
1413 }
1414 
1415 static int
csg_slot_prog_locked(struct panthor_device * ptdev,u32 csg_id,u32 priority)1416 csg_slot_prog_locked(struct panthor_device *ptdev, u32 csg_id, u32 priority)
1417 {
1418 	struct panthor_fw_csg_iface *csg_iface;
1419 	struct panthor_csg_slot *csg_slot;
1420 	struct panthor_group *group;
1421 	u32 queue_mask = 0, i;
1422 	u64 endpoint_req;
1423 
1424 	lockdep_assert_held(&ptdev->scheduler->lock);
1425 
1426 	if (priority > MAX_CSG_PRIO)
1427 		return -EINVAL;
1428 
1429 	if (drm_WARN_ON(&ptdev->base, csg_id >= MAX_CSGS))
1430 		return -EINVAL;
1431 
1432 	csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1433 	group = csg_slot->group;
1434 	if (!group || group->state == PANTHOR_CS_GROUP_ACTIVE)
1435 		return 0;
1436 
1437 	csg_iface = panthor_fw_get_csg_iface(group->ptdev, csg_id);
1438 
1439 	for (i = 0; i < group->queue_count; i++) {
1440 		if (group->queues[i]) {
1441 			cs_slot_prog_locked(ptdev, csg_id, i);
1442 			queue_mask |= BIT(i);
1443 		}
1444 	}
1445 
1446 	csg_iface->input->allow_compute = group->compute_core_mask;
1447 	csg_iface->input->allow_fragment = group->fragment_core_mask;
1448 	csg_iface->input->allow_other = group->tiler_core_mask;
1449 	endpoint_req = CSG_EP_REQ_COMPUTE(group->max_compute_cores) |
1450 		       CSG_EP_REQ_FRAGMENT(group->max_fragment_cores) |
1451 		       CSG_EP_REQ_TILER(group->max_tiler_cores) |
1452 		       CSG_EP_REQ_PRIORITY(priority);
1453 	panthor_fw_csg_endpoint_req_set(ptdev, csg_iface, endpoint_req);
1454 
1455 	csg_iface->input->config = panthor_vm_as(group->vm);
1456 
1457 	if (group->suspend_buf)
1458 		csg_iface->input->suspend_buf = panthor_kernel_bo_gpuva(group->suspend_buf);
1459 	else
1460 		csg_iface->input->suspend_buf = 0;
1461 
1462 	if (group->protm_suspend_buf) {
1463 		csg_iface->input->protm_suspend_buf =
1464 			panthor_kernel_bo_gpuva(group->protm_suspend_buf);
1465 	} else {
1466 		csg_iface->input->protm_suspend_buf = 0;
1467 	}
1468 
1469 	csg_iface->input->ack_irq_mask = ~0;
1470 	panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, queue_mask);
1471 	return 0;
1472 }
1473 
1474 static void
cs_slot_process_fatal_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1475 cs_slot_process_fatal_event_locked(struct panthor_device *ptdev,
1476 				   u32 csg_id, u32 cs_id)
1477 {
1478 	struct panthor_scheduler *sched = ptdev->scheduler;
1479 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1480 	struct panthor_group *group = csg_slot->group;
1481 	struct panthor_fw_cs_iface *cs_iface;
1482 	u32 fatal;
1483 	u64 info;
1484 
1485 	lockdep_assert_held(&sched->lock);
1486 
1487 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1488 	fatal = cs_iface->output->fatal;
1489 	info = cs_iface->output->fatal_info;
1490 
1491 	if (group) {
1492 		drm_warn(&ptdev->base, "CS_FATAL: pid=%d, comm=%s\n",
1493 			 group->task_info.pid, group->task_info.comm);
1494 
1495 		group->fatal_queues |= BIT(cs_id);
1496 	}
1497 
1498 	if (CS_EXCEPTION_TYPE(fatal) == DRM_PANTHOR_EXCEPTION_CS_UNRECOVERABLE) {
1499 		/* If this exception is unrecoverable, queue a reset, and make
1500 		 * sure we stop scheduling groups until the reset has happened.
1501 		 */
1502 		panthor_device_schedule_reset(ptdev);
1503 		cancel_delayed_work(&sched->tick_work);
1504 	} else {
1505 		sched_queue_delayed_work(sched, tick, 0);
1506 	}
1507 
1508 	drm_warn(&ptdev->base,
1509 		 "CSG slot %d CS slot: %d\n"
1510 		 "CS_FATAL.EXCEPTION_TYPE: 0x%x (%s)\n"
1511 		 "CS_FATAL.EXCEPTION_DATA: 0x%x\n"
1512 		 "CS_FATAL_INFO.EXCEPTION_DATA: 0x%llx\n",
1513 		 csg_id, cs_id,
1514 		 (unsigned int)CS_EXCEPTION_TYPE(fatal),
1515 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fatal)),
1516 		 (unsigned int)CS_EXCEPTION_DATA(fatal),
1517 		 info);
1518 }
1519 
1520 static void
cs_slot_process_fault_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1521 cs_slot_process_fault_event_locked(struct panthor_device *ptdev,
1522 				   u32 csg_id, u32 cs_id)
1523 {
1524 	struct panthor_scheduler *sched = ptdev->scheduler;
1525 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1526 	struct panthor_group *group = csg_slot->group;
1527 	struct panthor_queue *queue = group && cs_id < group->queue_count ?
1528 				      group->queues[cs_id] : NULL;
1529 	struct panthor_fw_cs_iface *cs_iface;
1530 	u32 fault;
1531 	u64 info;
1532 
1533 	lockdep_assert_held(&sched->lock);
1534 
1535 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1536 	fault = cs_iface->output->fault;
1537 	info = cs_iface->output->fault_info;
1538 
1539 	if (queue) {
1540 		u64 cs_extract = queue->iface.output->extract;
1541 		struct panthor_job *job;
1542 
1543 		spin_lock(&queue->fence_ctx.lock);
1544 		list_for_each_entry(job, &queue->fence_ctx.in_flight_jobs, node) {
1545 			if (cs_extract >= job->ringbuf.end)
1546 				continue;
1547 
1548 			if (cs_extract < job->ringbuf.start)
1549 				break;
1550 
1551 			dma_fence_set_error(job->done_fence, -EINVAL);
1552 		}
1553 		spin_unlock(&queue->fence_ctx.lock);
1554 	}
1555 
1556 	if (group) {
1557 		drm_warn(&ptdev->base, "CS_FAULT: pid=%d, comm=%s\n",
1558 			 group->task_info.pid, group->task_info.comm);
1559 	}
1560 
1561 	drm_warn(&ptdev->base,
1562 		 "CSG slot %d CS slot: %d\n"
1563 		 "CS_FAULT.EXCEPTION_TYPE: 0x%x (%s)\n"
1564 		 "CS_FAULT.EXCEPTION_DATA: 0x%x\n"
1565 		 "CS_FAULT_INFO.EXCEPTION_DATA: 0x%llx\n",
1566 		 csg_id, cs_id,
1567 		 (unsigned int)CS_EXCEPTION_TYPE(fault),
1568 		 panthor_exception_name(ptdev, CS_EXCEPTION_TYPE(fault)),
1569 		 (unsigned int)CS_EXCEPTION_DATA(fault),
1570 		 info);
1571 }
1572 
group_process_tiler_oom(struct panthor_group * group,u32 cs_id)1573 static int group_process_tiler_oom(struct panthor_group *group, u32 cs_id)
1574 {
1575 	struct panthor_device *ptdev = group->ptdev;
1576 	struct panthor_scheduler *sched = ptdev->scheduler;
1577 	u32 renderpasses_in_flight, pending_frag_count;
1578 	struct panthor_heap_pool *heaps = NULL;
1579 	u64 heap_address, new_chunk_va = 0;
1580 	u32 vt_start, vt_end, frag_end;
1581 	int ret, csg_id;
1582 
1583 	mutex_lock(&sched->lock);
1584 	csg_id = group->csg_id;
1585 	if (csg_id >= 0) {
1586 		struct panthor_fw_cs_iface *cs_iface;
1587 
1588 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1589 		heaps = panthor_vm_get_heap_pool(group->vm, false);
1590 		heap_address = cs_iface->output->heap_address;
1591 		vt_start = cs_iface->output->heap_vt_start;
1592 		vt_end = cs_iface->output->heap_vt_end;
1593 		frag_end = cs_iface->output->heap_frag_end;
1594 		renderpasses_in_flight = vt_start - frag_end;
1595 		pending_frag_count = vt_end - frag_end;
1596 	}
1597 	mutex_unlock(&sched->lock);
1598 
1599 	/* The group got scheduled out, we stop here. We will get a new tiler OOM event
1600 	 * when it's scheduled again.
1601 	 */
1602 	if (unlikely(csg_id < 0))
1603 		return 0;
1604 
1605 	if (IS_ERR(heaps) || frag_end > vt_end || vt_end >= vt_start) {
1606 		ret = -EINVAL;
1607 	} else {
1608 		/* We do the allocation without holding the scheduler lock to avoid
1609 		 * blocking the scheduling.
1610 		 */
1611 		ret = panthor_heap_grow(heaps, heap_address,
1612 					renderpasses_in_flight,
1613 					pending_frag_count, &new_chunk_va);
1614 	}
1615 
1616 	/* If the heap context doesn't have memory for us, we want to let the
1617 	 * FW try to reclaim memory by waiting for fragment jobs to land or by
1618 	 * executing the tiler OOM exception handler, which is supposed to
1619 	 * implement incremental rendering.
1620 	 */
1621 	if (ret && ret != -ENOMEM) {
1622 		drm_warn(&ptdev->base, "Failed to extend the tiler heap\n");
1623 		group->fatal_queues |= BIT(cs_id);
1624 		sched_queue_delayed_work(sched, tick, 0);
1625 		goto out_put_heap_pool;
1626 	}
1627 
1628 	mutex_lock(&sched->lock);
1629 	csg_id = group->csg_id;
1630 	if (csg_id >= 0) {
1631 		struct panthor_fw_csg_iface *csg_iface;
1632 		struct panthor_fw_cs_iface *cs_iface;
1633 
1634 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1635 		cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1636 
1637 		cs_iface->input->heap_start = new_chunk_va;
1638 		cs_iface->input->heap_end = new_chunk_va;
1639 		panthor_fw_update_reqs(cs_iface, req, cs_iface->output->ack, CS_TILER_OOM);
1640 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, BIT(cs_id));
1641 		panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1642 	}
1643 	mutex_unlock(&sched->lock);
1644 
1645 	/* We allocated a chunck, but couldn't link it to the heap
1646 	 * context because the group was scheduled out while we were
1647 	 * allocating memory. We need to return this chunk to the heap.
1648 	 */
1649 	if (unlikely(csg_id < 0 && new_chunk_va))
1650 		panthor_heap_return_chunk(heaps, heap_address, new_chunk_va);
1651 
1652 	ret = 0;
1653 
1654 out_put_heap_pool:
1655 	panthor_heap_pool_put(heaps);
1656 	return ret;
1657 }
1658 
group_tiler_oom_work(struct work_struct * work)1659 static void group_tiler_oom_work(struct work_struct *work)
1660 {
1661 	struct panthor_group *group =
1662 		container_of(work, struct panthor_group, tiler_oom_work);
1663 	u32 tiler_oom = atomic_xchg(&group->tiler_oom, 0);
1664 
1665 	while (tiler_oom) {
1666 		u32 cs_id = ffs(tiler_oom) - 1;
1667 
1668 		group_process_tiler_oom(group, cs_id);
1669 		tiler_oom &= ~BIT(cs_id);
1670 	}
1671 
1672 	group_put(group);
1673 }
1674 
1675 static void
cs_slot_process_tiler_oom_event_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1676 cs_slot_process_tiler_oom_event_locked(struct panthor_device *ptdev,
1677 				       u32 csg_id, u32 cs_id)
1678 {
1679 	struct panthor_scheduler *sched = ptdev->scheduler;
1680 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1681 	struct panthor_group *group = csg_slot->group;
1682 
1683 	lockdep_assert_held(&sched->lock);
1684 
1685 	if (drm_WARN_ON(&ptdev->base, !group))
1686 		return;
1687 
1688 	atomic_or(BIT(cs_id), &group->tiler_oom);
1689 
1690 	/* We don't use group_queue_work() here because we want to queue the
1691 	 * work item to the heap_alloc_wq.
1692 	 */
1693 	group_get(group);
1694 	if (!queue_work(sched->heap_alloc_wq, &group->tiler_oom_work))
1695 		group_put(group);
1696 }
1697 
cs_slot_process_irq_locked(struct panthor_device * ptdev,u32 csg_id,u32 cs_id)1698 static bool cs_slot_process_irq_locked(struct panthor_device *ptdev,
1699 				       u32 csg_id, u32 cs_id)
1700 {
1701 	struct panthor_fw_cs_iface *cs_iface;
1702 	u32 req, ack, events;
1703 
1704 	lockdep_assert_held(&ptdev->scheduler->lock);
1705 
1706 	cs_iface = panthor_fw_get_cs_iface(ptdev, csg_id, cs_id);
1707 	req = cs_iface->input->req;
1708 	ack = cs_iface->output->ack;
1709 	events = (req ^ ack) & CS_EVT_MASK;
1710 
1711 	if (events & CS_FATAL)
1712 		cs_slot_process_fatal_event_locked(ptdev, csg_id, cs_id);
1713 
1714 	if (events & CS_FAULT)
1715 		cs_slot_process_fault_event_locked(ptdev, csg_id, cs_id);
1716 
1717 	if (events & CS_TILER_OOM)
1718 		cs_slot_process_tiler_oom_event_locked(ptdev, csg_id, cs_id);
1719 
1720 	/* We don't acknowledge the TILER_OOM event since its handling is
1721 	 * deferred to a separate work.
1722 	 */
1723 	panthor_fw_update_reqs(cs_iface, req, ack, CS_FATAL | CS_FAULT);
1724 
1725 	return (events & (CS_FAULT | CS_TILER_OOM)) != 0;
1726 }
1727 
csg_slot_sync_idle_state_locked(struct panthor_device * ptdev,u32 csg_id)1728 static void csg_slot_sync_idle_state_locked(struct panthor_device *ptdev, u32 csg_id)
1729 {
1730 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1731 	struct panthor_fw_csg_iface *csg_iface;
1732 
1733 	lockdep_assert_held(&ptdev->scheduler->lock);
1734 
1735 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1736 	csg_slot->idle = csg_iface->output->status_state & CSG_STATUS_STATE_IS_IDLE;
1737 }
1738 
csg_slot_process_idle_event_locked(struct panthor_device * ptdev,u32 csg_id)1739 static void csg_slot_process_idle_event_locked(struct panthor_device *ptdev, u32 csg_id)
1740 {
1741 	struct panthor_scheduler *sched = ptdev->scheduler;
1742 
1743 	lockdep_assert_held(&sched->lock);
1744 
1745 	sched->might_have_idle_groups = true;
1746 
1747 	/* Schedule a tick so we can evict idle groups and schedule non-idle
1748 	 * ones. This will also update runtime PM and devfreq busy/idle states,
1749 	 * so the device can lower its frequency or get suspended.
1750 	 */
1751 	sched_queue_delayed_work(sched, tick, 0);
1752 }
1753 
csg_slot_sync_update_locked(struct panthor_device * ptdev,u32 csg_id)1754 static void csg_slot_sync_update_locked(struct panthor_device *ptdev,
1755 					u32 csg_id)
1756 {
1757 	struct panthor_csg_slot *csg_slot = &ptdev->scheduler->csg_slots[csg_id];
1758 	struct panthor_group *group = csg_slot->group;
1759 
1760 	lockdep_assert_held(&ptdev->scheduler->lock);
1761 
1762 	if (group)
1763 		group_queue_work(group, sync_upd);
1764 
1765 	sched_queue_work(ptdev->scheduler, sync_upd);
1766 }
1767 
1768 static void
csg_slot_process_progress_timer_event_locked(struct panthor_device * ptdev,u32 csg_id)1769 csg_slot_process_progress_timer_event_locked(struct panthor_device *ptdev, u32 csg_id)
1770 {
1771 	struct panthor_scheduler *sched = ptdev->scheduler;
1772 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
1773 	struct panthor_group *group = csg_slot->group;
1774 
1775 	lockdep_assert_held(&sched->lock);
1776 
1777 	group = csg_slot->group;
1778 	if (!drm_WARN_ON(&ptdev->base, !group)) {
1779 		drm_warn(&ptdev->base, "CSG_PROGRESS_TIMER_EVENT: pid=%d, comm=%s\n",
1780 			 group->task_info.pid, group->task_info.comm);
1781 
1782 		group->timedout = true;
1783 	}
1784 
1785 	drm_warn(&ptdev->base, "CSG slot %d progress timeout\n", csg_id);
1786 
1787 	sched_queue_delayed_work(sched, tick, 0);
1788 }
1789 
sched_process_csg_irq_locked(struct panthor_device * ptdev,u32 csg_id)1790 static void sched_process_csg_irq_locked(struct panthor_device *ptdev, u32 csg_id)
1791 {
1792 	u32 req, ack, cs_irq_req, cs_irq_ack, cs_irqs, csg_events;
1793 	struct panthor_fw_csg_iface *csg_iface;
1794 	u32 ring_cs_db_mask = 0;
1795 
1796 	lockdep_assert_held(&ptdev->scheduler->lock);
1797 
1798 	if (drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1799 		return;
1800 
1801 	csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1802 	req = READ_ONCE(csg_iface->input->req);
1803 	ack = READ_ONCE(csg_iface->output->ack);
1804 	cs_irq_req = READ_ONCE(csg_iface->output->cs_irq_req);
1805 	cs_irq_ack = READ_ONCE(csg_iface->input->cs_irq_ack);
1806 	csg_events = (req ^ ack) & CSG_EVT_MASK;
1807 
1808 	/* There may not be any pending CSG/CS interrupts to process */
1809 	if (req == ack && cs_irq_req == cs_irq_ack)
1810 		return;
1811 
1812 	/* Immediately set IRQ_ACK bits to be same as the IRQ_REQ bits before
1813 	 * examining the CS_ACK & CS_REQ bits. This would ensure that Host
1814 	 * doesn't miss an interrupt for the CS in the race scenario where
1815 	 * whilst Host is servicing an interrupt for the CS, firmware sends
1816 	 * another interrupt for that CS.
1817 	 */
1818 	csg_iface->input->cs_irq_ack = cs_irq_req;
1819 
1820 	panthor_fw_update_reqs(csg_iface, req, ack,
1821 			       CSG_SYNC_UPDATE |
1822 			       CSG_IDLE |
1823 			       CSG_PROGRESS_TIMER_EVENT);
1824 
1825 	if (csg_events & CSG_IDLE)
1826 		csg_slot_process_idle_event_locked(ptdev, csg_id);
1827 
1828 	if (csg_events & CSG_PROGRESS_TIMER_EVENT)
1829 		csg_slot_process_progress_timer_event_locked(ptdev, csg_id);
1830 
1831 	cs_irqs = cs_irq_req ^ cs_irq_ack;
1832 	while (cs_irqs) {
1833 		u32 cs_id = ffs(cs_irqs) - 1;
1834 
1835 		if (cs_slot_process_irq_locked(ptdev, csg_id, cs_id))
1836 			ring_cs_db_mask |= BIT(cs_id);
1837 
1838 		cs_irqs &= ~BIT(cs_id);
1839 	}
1840 
1841 	if (csg_events & CSG_SYNC_UPDATE)
1842 		csg_slot_sync_update_locked(ptdev, csg_id);
1843 
1844 	if (ring_cs_db_mask)
1845 		panthor_fw_toggle_reqs(csg_iface, doorbell_req, doorbell_ack, ring_cs_db_mask);
1846 
1847 	panthor_fw_ring_csg_doorbells(ptdev, BIT(csg_id));
1848 }
1849 
sched_process_idle_event_locked(struct panthor_device * ptdev)1850 static void sched_process_idle_event_locked(struct panthor_device *ptdev)
1851 {
1852 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1853 
1854 	lockdep_assert_held(&ptdev->scheduler->lock);
1855 
1856 	/* Acknowledge the idle event and schedule a tick. */
1857 	panthor_fw_update_reqs(glb_iface, req, glb_iface->output->ack, GLB_IDLE);
1858 	sched_queue_delayed_work(ptdev->scheduler, tick, 0);
1859 }
1860 
1861 /**
1862  * sched_process_global_irq_locked() - Process the scheduling part of a global IRQ
1863  * @ptdev: Device.
1864  */
sched_process_global_irq_locked(struct panthor_device * ptdev)1865 static void sched_process_global_irq_locked(struct panthor_device *ptdev)
1866 {
1867 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
1868 	u32 req, ack, evts;
1869 
1870 	lockdep_assert_held(&ptdev->scheduler->lock);
1871 
1872 	req = READ_ONCE(glb_iface->input->req);
1873 	ack = READ_ONCE(glb_iface->output->ack);
1874 	evts = (req ^ ack) & GLB_EVT_MASK;
1875 
1876 	if (evts & GLB_IDLE)
1877 		sched_process_idle_event_locked(ptdev);
1878 }
1879 
process_fw_events_work(struct work_struct * work)1880 static void process_fw_events_work(struct work_struct *work)
1881 {
1882 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
1883 						      fw_events_work);
1884 	u32 events = atomic_xchg(&sched->fw_events, 0);
1885 	struct panthor_device *ptdev = sched->ptdev;
1886 
1887 	mutex_lock(&sched->lock);
1888 
1889 	if (events & JOB_INT_GLOBAL_IF) {
1890 		sched_process_global_irq_locked(ptdev);
1891 		events &= ~JOB_INT_GLOBAL_IF;
1892 	}
1893 
1894 	while (events) {
1895 		u32 csg_id = ffs(events) - 1;
1896 
1897 		sched_process_csg_irq_locked(ptdev, csg_id);
1898 		events &= ~BIT(csg_id);
1899 	}
1900 
1901 	mutex_unlock(&sched->lock);
1902 }
1903 
1904 /**
1905  * panthor_sched_report_fw_events() - Report FW events to the scheduler.
1906  */
panthor_sched_report_fw_events(struct panthor_device * ptdev,u32 events)1907 void panthor_sched_report_fw_events(struct panthor_device *ptdev, u32 events)
1908 {
1909 	if (!ptdev->scheduler)
1910 		return;
1911 
1912 	atomic_or(events, &ptdev->scheduler->fw_events);
1913 	sched_queue_work(ptdev->scheduler, fw_events);
1914 }
1915 
fence_get_driver_name(struct dma_fence * fence)1916 static const char *fence_get_driver_name(struct dma_fence *fence)
1917 {
1918 	return "panthor";
1919 }
1920 
queue_fence_get_timeline_name(struct dma_fence * fence)1921 static const char *queue_fence_get_timeline_name(struct dma_fence *fence)
1922 {
1923 	return "queue-fence";
1924 }
1925 
1926 static const struct dma_fence_ops panthor_queue_fence_ops = {
1927 	.get_driver_name = fence_get_driver_name,
1928 	.get_timeline_name = queue_fence_get_timeline_name,
1929 };
1930 
1931 struct panthor_csg_slots_upd_ctx {
1932 	u32 update_mask;
1933 	u32 timedout_mask;
1934 	struct {
1935 		u32 value;
1936 		u32 mask;
1937 	} requests[MAX_CSGS];
1938 };
1939 
csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx * ctx)1940 static void csgs_upd_ctx_init(struct panthor_csg_slots_upd_ctx *ctx)
1941 {
1942 	memset(ctx, 0, sizeof(*ctx));
1943 }
1944 
csgs_upd_ctx_queue_reqs(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx,u32 csg_id,u32 value,u32 mask)1945 static void csgs_upd_ctx_queue_reqs(struct panthor_device *ptdev,
1946 				    struct panthor_csg_slots_upd_ctx *ctx,
1947 				    u32 csg_id, u32 value, u32 mask)
1948 {
1949 	if (drm_WARN_ON(&ptdev->base, !mask) ||
1950 	    drm_WARN_ON(&ptdev->base, csg_id >= ptdev->scheduler->csg_slot_count))
1951 		return;
1952 
1953 	ctx->requests[csg_id].value = (ctx->requests[csg_id].value & ~mask) | (value & mask);
1954 	ctx->requests[csg_id].mask |= mask;
1955 	ctx->update_mask |= BIT(csg_id);
1956 }
1957 
csgs_upd_ctx_apply_locked(struct panthor_device * ptdev,struct panthor_csg_slots_upd_ctx * ctx)1958 static int csgs_upd_ctx_apply_locked(struct panthor_device *ptdev,
1959 				     struct panthor_csg_slots_upd_ctx *ctx)
1960 {
1961 	struct panthor_scheduler *sched = ptdev->scheduler;
1962 	u32 update_slots = ctx->update_mask;
1963 
1964 	lockdep_assert_held(&sched->lock);
1965 
1966 	if (!ctx->update_mask)
1967 		return 0;
1968 
1969 	while (update_slots) {
1970 		struct panthor_fw_csg_iface *csg_iface;
1971 		u32 csg_id = ffs(update_slots) - 1;
1972 
1973 		update_slots &= ~BIT(csg_id);
1974 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1975 		panthor_fw_update_reqs(csg_iface, req,
1976 				       ctx->requests[csg_id].value,
1977 				       ctx->requests[csg_id].mask);
1978 	}
1979 
1980 	panthor_fw_ring_csg_doorbells(ptdev, ctx->update_mask);
1981 
1982 	update_slots = ctx->update_mask;
1983 	while (update_slots) {
1984 		struct panthor_fw_csg_iface *csg_iface;
1985 		u32 csg_id = ffs(update_slots) - 1;
1986 		u32 req_mask = ctx->requests[csg_id].mask, acked;
1987 		int ret;
1988 
1989 		update_slots &= ~BIT(csg_id);
1990 		csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
1991 
1992 		ret = panthor_fw_csg_wait_acks(ptdev, csg_id, req_mask, &acked, 100);
1993 
1994 		if (acked & CSG_ENDPOINT_CONFIG)
1995 			csg_slot_sync_priority_locked(ptdev, csg_id);
1996 
1997 		if (acked & CSG_STATE_MASK)
1998 			csg_slot_sync_state_locked(ptdev, csg_id);
1999 
2000 		if (acked & CSG_STATUS_UPDATE) {
2001 			csg_slot_sync_queues_state_locked(ptdev, csg_id);
2002 			csg_slot_sync_idle_state_locked(ptdev, csg_id);
2003 		}
2004 
2005 		if (ret && acked != req_mask &&
2006 		    ((csg_iface->input->req ^ csg_iface->output->ack) & req_mask) != 0) {
2007 			drm_err(&ptdev->base, "CSG %d update request timedout", csg_id);
2008 			ctx->timedout_mask |= BIT(csg_id);
2009 		}
2010 	}
2011 
2012 	if (ctx->timedout_mask)
2013 		return -ETIMEDOUT;
2014 
2015 	return 0;
2016 }
2017 
2018 struct panthor_sched_tick_ctx {
2019 	struct list_head old_groups[PANTHOR_CSG_PRIORITY_COUNT];
2020 	struct list_head groups[PANTHOR_CSG_PRIORITY_COUNT];
2021 	u32 idle_group_count;
2022 	u32 group_count;
2023 	enum panthor_csg_priority min_priority;
2024 	struct panthor_vm *vms[MAX_CS_PER_CSG];
2025 	u32 as_count;
2026 	bool immediate_tick;
2027 	u32 csg_upd_failed_mask;
2028 };
2029 
2030 static bool
tick_ctx_is_full(const struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)2031 tick_ctx_is_full(const struct panthor_scheduler *sched,
2032 		 const struct panthor_sched_tick_ctx *ctx)
2033 {
2034 	return ctx->group_count == sched->csg_slot_count;
2035 }
2036 
2037 static void
tick_ctx_pick_groups_from_list(const struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct list_head * queue,bool skip_idle_groups,bool owned_by_tick_ctx)2038 tick_ctx_pick_groups_from_list(const struct panthor_scheduler *sched,
2039 			       struct panthor_sched_tick_ctx *ctx,
2040 			       struct list_head *queue,
2041 			       bool skip_idle_groups,
2042 			       bool owned_by_tick_ctx)
2043 {
2044 	struct panthor_group *group, *tmp;
2045 
2046 	if (tick_ctx_is_full(sched, ctx))
2047 		return;
2048 
2049 	list_for_each_entry_safe(group, tmp, queue, run_node) {
2050 		u32 i;
2051 
2052 		if (!group_can_run(group))
2053 			continue;
2054 
2055 		if (skip_idle_groups && group_is_idle(group))
2056 			continue;
2057 
2058 		for (i = 0; i < ctx->as_count; i++) {
2059 			if (ctx->vms[i] == group->vm)
2060 				break;
2061 		}
2062 
2063 		if (i == ctx->as_count && ctx->as_count == sched->as_slot_count)
2064 			continue;
2065 
2066 		if (!owned_by_tick_ctx)
2067 			group_get(group);
2068 
2069 		list_move_tail(&group->run_node, &ctx->groups[group->priority]);
2070 		ctx->group_count++;
2071 		if (group_is_idle(group))
2072 			ctx->idle_group_count++;
2073 
2074 		if (i == ctx->as_count)
2075 			ctx->vms[ctx->as_count++] = group->vm;
2076 
2077 		if (ctx->min_priority > group->priority)
2078 			ctx->min_priority = group->priority;
2079 
2080 		if (tick_ctx_is_full(sched, ctx))
2081 			return;
2082 	}
2083 }
2084 
2085 static void
tick_ctx_insert_old_group(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,struct panthor_group * group,bool full_tick)2086 tick_ctx_insert_old_group(struct panthor_scheduler *sched,
2087 			  struct panthor_sched_tick_ctx *ctx,
2088 			  struct panthor_group *group,
2089 			  bool full_tick)
2090 {
2091 	struct panthor_csg_slot *csg_slot = &sched->csg_slots[group->csg_id];
2092 	struct panthor_group *other_group;
2093 
2094 	if (!full_tick) {
2095 		list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
2096 		return;
2097 	}
2098 
2099 	/* Rotate to make sure groups with lower CSG slot
2100 	 * priorities have a chance to get a higher CSG slot
2101 	 * priority next time they get picked. This priority
2102 	 * has an impact on resource request ordering, so it's
2103 	 * important to make sure we don't let one group starve
2104 	 * all other groups with the same group priority.
2105 	 */
2106 	list_for_each_entry(other_group,
2107 			    &ctx->old_groups[csg_slot->group->priority],
2108 			    run_node) {
2109 		struct panthor_csg_slot *other_csg_slot = &sched->csg_slots[other_group->csg_id];
2110 
2111 		if (other_csg_slot->priority > csg_slot->priority) {
2112 			list_add_tail(&csg_slot->group->run_node, &other_group->run_node);
2113 			return;
2114 		}
2115 	}
2116 
2117 	list_add_tail(&group->run_node, &ctx->old_groups[group->priority]);
2118 }
2119 
2120 static void
tick_ctx_init(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx,bool full_tick)2121 tick_ctx_init(struct panthor_scheduler *sched,
2122 	      struct panthor_sched_tick_ctx *ctx,
2123 	      bool full_tick)
2124 {
2125 	struct panthor_device *ptdev = sched->ptdev;
2126 	struct panthor_csg_slots_upd_ctx upd_ctx;
2127 	int ret;
2128 	u32 i;
2129 
2130 	memset(ctx, 0, sizeof(*ctx));
2131 	csgs_upd_ctx_init(&upd_ctx);
2132 
2133 	ctx->min_priority = PANTHOR_CSG_PRIORITY_COUNT;
2134 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2135 		INIT_LIST_HEAD(&ctx->groups[i]);
2136 		INIT_LIST_HEAD(&ctx->old_groups[i]);
2137 	}
2138 
2139 	for (i = 0; i < sched->csg_slot_count; i++) {
2140 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2141 		struct panthor_group *group = csg_slot->group;
2142 		struct panthor_fw_csg_iface *csg_iface;
2143 
2144 		if (!group)
2145 			continue;
2146 
2147 		csg_iface = panthor_fw_get_csg_iface(ptdev, i);
2148 		group_get(group);
2149 
2150 		/* If there was unhandled faults on the VM, force processing of
2151 		 * CSG IRQs, so we can flag the faulty queue.
2152 		 */
2153 		if (panthor_vm_has_unhandled_faults(group->vm)) {
2154 			sched_process_csg_irq_locked(ptdev, i);
2155 
2156 			/* No fatal fault reported, flag all queues as faulty. */
2157 			if (!group->fatal_queues)
2158 				group->fatal_queues |= GENMASK(group->queue_count - 1, 0);
2159 		}
2160 
2161 		tick_ctx_insert_old_group(sched, ctx, group, full_tick);
2162 		csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2163 					csg_iface->output->ack ^ CSG_STATUS_UPDATE,
2164 					CSG_STATUS_UPDATE);
2165 	}
2166 
2167 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2168 	if (ret) {
2169 		panthor_device_schedule_reset(ptdev);
2170 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2171 	}
2172 }
2173 
2174 static void
group_term_post_processing(struct panthor_group * group)2175 group_term_post_processing(struct panthor_group *group)
2176 {
2177 	struct panthor_job *job, *tmp;
2178 	LIST_HEAD(faulty_jobs);
2179 	bool cookie;
2180 	u32 i = 0;
2181 
2182 	if (drm_WARN_ON(&group->ptdev->base, group_can_run(group)))
2183 		return;
2184 
2185 	cookie = dma_fence_begin_signalling();
2186 	for (i = 0; i < group->queue_count; i++) {
2187 		struct panthor_queue *queue = group->queues[i];
2188 		struct panthor_syncobj_64b *syncobj;
2189 		int err;
2190 
2191 		if (group->fatal_queues & BIT(i))
2192 			err = -EINVAL;
2193 		else if (group->timedout)
2194 			err = -ETIMEDOUT;
2195 		else
2196 			err = -ECANCELED;
2197 
2198 		if (!queue)
2199 			continue;
2200 
2201 		spin_lock(&queue->fence_ctx.lock);
2202 		list_for_each_entry_safe(job, tmp, &queue->fence_ctx.in_flight_jobs, node) {
2203 			list_move_tail(&job->node, &faulty_jobs);
2204 			dma_fence_set_error(job->done_fence, err);
2205 			dma_fence_signal_locked(job->done_fence);
2206 		}
2207 		spin_unlock(&queue->fence_ctx.lock);
2208 
2209 		/* Manually update the syncobj seqno to unblock waiters. */
2210 		syncobj = group->syncobjs->kmap + (i * sizeof(*syncobj));
2211 		syncobj->status = ~0;
2212 		syncobj->seqno = atomic64_read(&queue->fence_ctx.seqno);
2213 		sched_queue_work(group->ptdev->scheduler, sync_upd);
2214 	}
2215 	dma_fence_end_signalling(cookie);
2216 
2217 	list_for_each_entry_safe(job, tmp, &faulty_jobs, node) {
2218 		list_del_init(&job->node);
2219 		panthor_job_put(&job->base);
2220 	}
2221 }
2222 
group_term_work(struct work_struct * work)2223 static void group_term_work(struct work_struct *work)
2224 {
2225 	struct panthor_group *group =
2226 		container_of(work, struct panthor_group, term_work);
2227 
2228 	group_term_post_processing(group);
2229 	group_put(group);
2230 }
2231 
2232 static void
tick_ctx_cleanup(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2233 tick_ctx_cleanup(struct panthor_scheduler *sched,
2234 		 struct panthor_sched_tick_ctx *ctx)
2235 {
2236 	struct panthor_device *ptdev = sched->ptdev;
2237 	struct panthor_group *group, *tmp;
2238 	u32 i;
2239 
2240 	for (i = 0; i < ARRAY_SIZE(ctx->old_groups); i++) {
2241 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[i], run_node) {
2242 			/* If everything went fine, we should only have groups
2243 			 * to be terminated in the old_groups lists.
2244 			 */
2245 			drm_WARN_ON(&ptdev->base, !ctx->csg_upd_failed_mask &&
2246 				    group_can_run(group));
2247 
2248 			if (!group_can_run(group)) {
2249 				list_del_init(&group->run_node);
2250 				list_del_init(&group->wait_node);
2251 				group_queue_work(group, term);
2252 			} else if (group->csg_id >= 0) {
2253 				list_del_init(&group->run_node);
2254 			} else {
2255 				list_move(&group->run_node,
2256 					  group_is_idle(group) ?
2257 					  &sched->groups.idle[group->priority] :
2258 					  &sched->groups.runnable[group->priority]);
2259 			}
2260 			group_put(group);
2261 		}
2262 	}
2263 
2264 	for (i = 0; i < ARRAY_SIZE(ctx->groups); i++) {
2265 		/* If everything went fine, the groups to schedule lists should
2266 		 * be empty.
2267 		 */
2268 		drm_WARN_ON(&ptdev->base,
2269 			    !ctx->csg_upd_failed_mask && !list_empty(&ctx->groups[i]));
2270 
2271 		list_for_each_entry_safe(group, tmp, &ctx->groups[i], run_node) {
2272 			if (group->csg_id >= 0) {
2273 				list_del_init(&group->run_node);
2274 			} else {
2275 				list_move(&group->run_node,
2276 					  group_is_idle(group) ?
2277 					  &sched->groups.idle[group->priority] :
2278 					  &sched->groups.runnable[group->priority]);
2279 			}
2280 			group_put(group);
2281 		}
2282 	}
2283 }
2284 
2285 static void
tick_ctx_apply(struct panthor_scheduler * sched,struct panthor_sched_tick_ctx * ctx)2286 tick_ctx_apply(struct panthor_scheduler *sched, struct panthor_sched_tick_ctx *ctx)
2287 {
2288 	struct panthor_group *group, *tmp;
2289 	struct panthor_device *ptdev = sched->ptdev;
2290 	struct panthor_csg_slot *csg_slot;
2291 	int prio, new_csg_prio = MAX_CSG_PRIO, i;
2292 	u32 free_csg_slots = 0;
2293 	struct panthor_csg_slots_upd_ctx upd_ctx;
2294 	int ret;
2295 
2296 	csgs_upd_ctx_init(&upd_ctx);
2297 
2298 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2299 		/* Suspend or terminate evicted groups. */
2300 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2301 			bool term = !group_can_run(group);
2302 			int csg_id = group->csg_id;
2303 
2304 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2305 				continue;
2306 
2307 			csg_slot = &sched->csg_slots[csg_id];
2308 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2309 						term ? CSG_STATE_TERMINATE : CSG_STATE_SUSPEND,
2310 						CSG_STATE_MASK);
2311 		}
2312 
2313 		/* Update priorities on already running groups. */
2314 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2315 			struct panthor_fw_csg_iface *csg_iface;
2316 			int csg_id = group->csg_id;
2317 
2318 			if (csg_id < 0) {
2319 				new_csg_prio--;
2320 				continue;
2321 			}
2322 
2323 			csg_slot = &sched->csg_slots[csg_id];
2324 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2325 			if (csg_slot->priority == new_csg_prio) {
2326 				new_csg_prio--;
2327 				continue;
2328 			}
2329 
2330 			panthor_fw_csg_endpoint_req_update(ptdev, csg_iface,
2331 							   CSG_EP_REQ_PRIORITY(new_csg_prio),
2332 							   CSG_EP_REQ_PRIORITY_MASK);
2333 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2334 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2335 						CSG_ENDPOINT_CONFIG);
2336 			new_csg_prio--;
2337 		}
2338 	}
2339 
2340 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2341 	if (ret) {
2342 		panthor_device_schedule_reset(ptdev);
2343 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2344 		return;
2345 	}
2346 
2347 	/* Unbind evicted groups. */
2348 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2349 		list_for_each_entry(group, &ctx->old_groups[prio], run_node) {
2350 			/* This group is gone. Process interrupts to clear
2351 			 * any pending interrupts before we start the new
2352 			 * group.
2353 			 */
2354 			if (group->csg_id >= 0)
2355 				sched_process_csg_irq_locked(ptdev, group->csg_id);
2356 
2357 			group_unbind_locked(group);
2358 		}
2359 	}
2360 
2361 	for (i = 0; i < sched->csg_slot_count; i++) {
2362 		if (!sched->csg_slots[i].group)
2363 			free_csg_slots |= BIT(i);
2364 	}
2365 
2366 	csgs_upd_ctx_init(&upd_ctx);
2367 	new_csg_prio = MAX_CSG_PRIO;
2368 
2369 	/* Start new groups. */
2370 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2371 		list_for_each_entry(group, &ctx->groups[prio], run_node) {
2372 			int csg_id = group->csg_id;
2373 			struct panthor_fw_csg_iface *csg_iface;
2374 
2375 			if (csg_id >= 0) {
2376 				new_csg_prio--;
2377 				continue;
2378 			}
2379 
2380 			csg_id = ffs(free_csg_slots) - 1;
2381 			if (drm_WARN_ON(&ptdev->base, csg_id < 0))
2382 				break;
2383 
2384 			csg_iface = panthor_fw_get_csg_iface(ptdev, csg_id);
2385 			csg_slot = &sched->csg_slots[csg_id];
2386 			group_bind_locked(group, csg_id);
2387 			csg_slot_prog_locked(ptdev, csg_id, new_csg_prio--);
2388 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2389 						group->state == PANTHOR_CS_GROUP_SUSPENDED ?
2390 						CSG_STATE_RESUME : CSG_STATE_START,
2391 						CSG_STATE_MASK);
2392 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2393 						csg_iface->output->ack ^ CSG_ENDPOINT_CONFIG,
2394 						CSG_ENDPOINT_CONFIG);
2395 			free_csg_slots &= ~BIT(csg_id);
2396 		}
2397 	}
2398 
2399 	ret = csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2400 	if (ret) {
2401 		panthor_device_schedule_reset(ptdev);
2402 		ctx->csg_upd_failed_mask |= upd_ctx.timedout_mask;
2403 		return;
2404 	}
2405 
2406 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
2407 		list_for_each_entry_safe(group, tmp, &ctx->groups[prio], run_node) {
2408 			list_del_init(&group->run_node);
2409 
2410 			/* If the group has been destroyed while we were
2411 			 * scheduling, ask for an immediate tick to
2412 			 * re-evaluate as soon as possible and get rid of
2413 			 * this dangling group.
2414 			 */
2415 			if (group->destroyed)
2416 				ctx->immediate_tick = true;
2417 			group_put(group);
2418 		}
2419 
2420 		/* Return evicted groups to the idle or run queues. Groups
2421 		 * that can no longer be run (because they've been destroyed
2422 		 * or experienced an unrecoverable error) will be scheduled
2423 		 * for destruction in tick_ctx_cleanup().
2424 		 */
2425 		list_for_each_entry_safe(group, tmp, &ctx->old_groups[prio], run_node) {
2426 			if (!group_can_run(group))
2427 				continue;
2428 
2429 			if (group_is_idle(group))
2430 				list_move_tail(&group->run_node, &sched->groups.idle[prio]);
2431 			else
2432 				list_move_tail(&group->run_node, &sched->groups.runnable[prio]);
2433 			group_put(group);
2434 		}
2435 	}
2436 
2437 	sched->used_csg_slot_count = ctx->group_count;
2438 	sched->might_have_idle_groups = ctx->idle_group_count > 0;
2439 }
2440 
2441 static u64
tick_ctx_update_resched_target(struct panthor_scheduler * sched,const struct panthor_sched_tick_ctx * ctx)2442 tick_ctx_update_resched_target(struct panthor_scheduler *sched,
2443 			       const struct panthor_sched_tick_ctx *ctx)
2444 {
2445 	/* We had space left, no need to reschedule until some external event happens. */
2446 	if (!tick_ctx_is_full(sched, ctx))
2447 		goto no_tick;
2448 
2449 	/* If idle groups were scheduled, no need to wake up until some external
2450 	 * event happens (group unblocked, new job submitted, ...).
2451 	 */
2452 	if (ctx->idle_group_count)
2453 		goto no_tick;
2454 
2455 	if (drm_WARN_ON(&sched->ptdev->base, ctx->min_priority >= PANTHOR_CSG_PRIORITY_COUNT))
2456 		goto no_tick;
2457 
2458 	/* If there are groups of the same priority waiting, we need to
2459 	 * keep the scheduler ticking, otherwise, we'll just wait for
2460 	 * new groups with higher priority to be queued.
2461 	 */
2462 	if (!list_empty(&sched->groups.runnable[ctx->min_priority])) {
2463 		u64 resched_target = sched->last_tick + sched->tick_period;
2464 
2465 		if (time_before64(sched->resched_target, sched->last_tick) ||
2466 		    time_before64(resched_target, sched->resched_target))
2467 			sched->resched_target = resched_target;
2468 
2469 		return sched->resched_target - sched->last_tick;
2470 	}
2471 
2472 no_tick:
2473 	sched->resched_target = U64_MAX;
2474 	return U64_MAX;
2475 }
2476 
tick_work(struct work_struct * work)2477 static void tick_work(struct work_struct *work)
2478 {
2479 	struct panthor_scheduler *sched = container_of(work, struct panthor_scheduler,
2480 						      tick_work.work);
2481 	struct panthor_device *ptdev = sched->ptdev;
2482 	struct panthor_sched_tick_ctx ctx;
2483 	u64 remaining_jiffies = 0, resched_delay;
2484 	u64 now = get_jiffies_64();
2485 	int prio, ret, cookie;
2486 
2487 	if (!drm_dev_enter(&ptdev->base, &cookie))
2488 		return;
2489 
2490 	ret = panthor_device_resume_and_get(ptdev);
2491 	if (drm_WARN_ON(&ptdev->base, ret))
2492 		goto out_dev_exit;
2493 
2494 	if (time_before64(now, sched->resched_target))
2495 		remaining_jiffies = sched->resched_target - now;
2496 
2497 	mutex_lock(&sched->lock);
2498 	if (panthor_device_reset_is_pending(sched->ptdev))
2499 		goto out_unlock;
2500 
2501 	tick_ctx_init(sched, &ctx, remaining_jiffies != 0);
2502 	if (ctx.csg_upd_failed_mask)
2503 		goto out_cleanup_ctx;
2504 
2505 	if (remaining_jiffies) {
2506 		/* Scheduling forced in the middle of a tick. Only RT groups
2507 		 * can preempt non-RT ones. Currently running RT groups can't be
2508 		 * preempted.
2509 		 */
2510 		for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2511 		     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2512 		     prio--) {
2513 			tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio],
2514 						       true, true);
2515 			if (prio == PANTHOR_CSG_PRIORITY_RT) {
2516 				tick_ctx_pick_groups_from_list(sched, &ctx,
2517 							       &sched->groups.runnable[prio],
2518 							       true, false);
2519 			}
2520 		}
2521 	}
2522 
2523 	/* First pick non-idle groups */
2524 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2525 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2526 	     prio--) {
2527 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.runnable[prio],
2528 					       true, false);
2529 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], true, true);
2530 	}
2531 
2532 	/* If we have free CSG slots left, pick idle groups */
2533 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1;
2534 	     prio >= 0 && !tick_ctx_is_full(sched, &ctx);
2535 	     prio--) {
2536 		/* Check the old_group queue first to avoid reprogramming the slots */
2537 		tick_ctx_pick_groups_from_list(sched, &ctx, &ctx.old_groups[prio], false, true);
2538 		tick_ctx_pick_groups_from_list(sched, &ctx, &sched->groups.idle[prio],
2539 					       false, false);
2540 	}
2541 
2542 	tick_ctx_apply(sched, &ctx);
2543 	if (ctx.csg_upd_failed_mask)
2544 		goto out_cleanup_ctx;
2545 
2546 	if (ctx.idle_group_count == ctx.group_count) {
2547 		panthor_devfreq_record_idle(sched->ptdev);
2548 		if (sched->pm.has_ref) {
2549 			pm_runtime_put_autosuspend(ptdev->base.dev);
2550 			sched->pm.has_ref = false;
2551 		}
2552 	} else {
2553 		panthor_devfreq_record_busy(sched->ptdev);
2554 		if (!sched->pm.has_ref) {
2555 			pm_runtime_get(ptdev->base.dev);
2556 			sched->pm.has_ref = true;
2557 		}
2558 	}
2559 
2560 	sched->last_tick = now;
2561 	resched_delay = tick_ctx_update_resched_target(sched, &ctx);
2562 	if (ctx.immediate_tick)
2563 		resched_delay = 0;
2564 
2565 	if (resched_delay != U64_MAX)
2566 		sched_queue_delayed_work(sched, tick, resched_delay);
2567 
2568 out_cleanup_ctx:
2569 	tick_ctx_cleanup(sched, &ctx);
2570 
2571 out_unlock:
2572 	mutex_unlock(&sched->lock);
2573 	pm_runtime_mark_last_busy(ptdev->base.dev);
2574 	pm_runtime_put_autosuspend(ptdev->base.dev);
2575 
2576 out_dev_exit:
2577 	drm_dev_exit(cookie);
2578 }
2579 
panthor_queue_eval_syncwait(struct panthor_group * group,u8 queue_idx)2580 static int panthor_queue_eval_syncwait(struct panthor_group *group, u8 queue_idx)
2581 {
2582 	struct panthor_queue *queue = group->queues[queue_idx];
2583 	union {
2584 		struct panthor_syncobj_64b sync64;
2585 		struct panthor_syncobj_32b sync32;
2586 	} *syncobj;
2587 	bool result;
2588 	u64 value;
2589 
2590 	syncobj = panthor_queue_get_syncwait_obj(group, queue);
2591 	if (!syncobj)
2592 		return -EINVAL;
2593 
2594 	value = queue->syncwait.sync64 ?
2595 		syncobj->sync64.seqno :
2596 		syncobj->sync32.seqno;
2597 
2598 	if (queue->syncwait.gt)
2599 		result = value > queue->syncwait.ref;
2600 	else
2601 		result = value <= queue->syncwait.ref;
2602 
2603 	if (result)
2604 		panthor_queue_put_syncwait_obj(queue);
2605 
2606 	return result;
2607 }
2608 
sync_upd_work(struct work_struct * work)2609 static void sync_upd_work(struct work_struct *work)
2610 {
2611 	struct panthor_scheduler *sched = container_of(work,
2612 						      struct panthor_scheduler,
2613 						      sync_upd_work);
2614 	struct panthor_group *group, *tmp;
2615 	bool immediate_tick = false;
2616 
2617 	mutex_lock(&sched->lock);
2618 	list_for_each_entry_safe(group, tmp, &sched->groups.waiting, wait_node) {
2619 		u32 tested_queues = group->blocked_queues;
2620 		u32 unblocked_queues = 0;
2621 
2622 		while (tested_queues) {
2623 			u32 cs_id = ffs(tested_queues) - 1;
2624 			int ret;
2625 
2626 			ret = panthor_queue_eval_syncwait(group, cs_id);
2627 			drm_WARN_ON(&group->ptdev->base, ret < 0);
2628 			if (ret)
2629 				unblocked_queues |= BIT(cs_id);
2630 
2631 			tested_queues &= ~BIT(cs_id);
2632 		}
2633 
2634 		if (unblocked_queues) {
2635 			group->blocked_queues &= ~unblocked_queues;
2636 
2637 			if (group->csg_id < 0) {
2638 				list_move(&group->run_node,
2639 					  &sched->groups.runnable[group->priority]);
2640 				if (group->priority == PANTHOR_CSG_PRIORITY_RT)
2641 					immediate_tick = true;
2642 			}
2643 		}
2644 
2645 		if (!group->blocked_queues)
2646 			list_del_init(&group->wait_node);
2647 	}
2648 	mutex_unlock(&sched->lock);
2649 
2650 	if (immediate_tick)
2651 		sched_queue_delayed_work(sched, tick, 0);
2652 }
2653 
group_schedule_locked(struct panthor_group * group,u32 queue_mask)2654 static void group_schedule_locked(struct panthor_group *group, u32 queue_mask)
2655 {
2656 	struct panthor_device *ptdev = group->ptdev;
2657 	struct panthor_scheduler *sched = ptdev->scheduler;
2658 	struct list_head *queue = &sched->groups.runnable[group->priority];
2659 	u64 delay_jiffies = 0;
2660 	bool was_idle;
2661 	u64 now;
2662 
2663 	if (!group_can_run(group))
2664 		return;
2665 
2666 	/* All updated queues are blocked, no need to wake up the scheduler. */
2667 	if ((queue_mask & group->blocked_queues) == queue_mask)
2668 		return;
2669 
2670 	was_idle = group_is_idle(group);
2671 	group->idle_queues &= ~queue_mask;
2672 
2673 	/* Don't mess up with the lists if we're in a middle of a reset. */
2674 	if (atomic_read(&sched->reset.in_progress))
2675 		return;
2676 
2677 	if (was_idle && !group_is_idle(group))
2678 		list_move_tail(&group->run_node, queue);
2679 
2680 	/* RT groups are preemptive. */
2681 	if (group->priority == PANTHOR_CSG_PRIORITY_RT) {
2682 		sched_queue_delayed_work(sched, tick, 0);
2683 		return;
2684 	}
2685 
2686 	/* Some groups might be idle, force an immediate tick to
2687 	 * re-evaluate.
2688 	 */
2689 	if (sched->might_have_idle_groups) {
2690 		sched_queue_delayed_work(sched, tick, 0);
2691 		return;
2692 	}
2693 
2694 	/* Scheduler is ticking, nothing to do. */
2695 	if (sched->resched_target != U64_MAX) {
2696 		/* If there are free slots, force immediating ticking. */
2697 		if (sched->used_csg_slot_count < sched->csg_slot_count)
2698 			sched_queue_delayed_work(sched, tick, 0);
2699 
2700 		return;
2701 	}
2702 
2703 	/* Scheduler tick was off, recalculate the resched_target based on the
2704 	 * last tick event, and queue the scheduler work.
2705 	 */
2706 	now = get_jiffies_64();
2707 	sched->resched_target = sched->last_tick + sched->tick_period;
2708 	if (sched->used_csg_slot_count == sched->csg_slot_count &&
2709 	    time_before64(now, sched->resched_target))
2710 		delay_jiffies = min_t(unsigned long, sched->resched_target - now, ULONG_MAX);
2711 
2712 	sched_queue_delayed_work(sched, tick, delay_jiffies);
2713 }
2714 
queue_stop(struct panthor_queue * queue,struct panthor_job * bad_job)2715 static void queue_stop(struct panthor_queue *queue,
2716 		       struct panthor_job *bad_job)
2717 {
2718 	disable_delayed_work_sync(&queue->timeout.work);
2719 	drm_sched_stop(&queue->scheduler, bad_job ? &bad_job->base : NULL);
2720 }
2721 
queue_start(struct panthor_queue * queue)2722 static void queue_start(struct panthor_queue *queue)
2723 {
2724 	struct panthor_job *job;
2725 
2726 	/* Re-assign the parent fences. */
2727 	list_for_each_entry(job, &queue->scheduler.pending_list, base.list)
2728 		job->base.s_fence->parent = dma_fence_get(job->done_fence);
2729 
2730 	enable_delayed_work(&queue->timeout.work);
2731 	drm_sched_start(&queue->scheduler, 0);
2732 }
2733 
panthor_group_stop(struct panthor_group * group)2734 static void panthor_group_stop(struct panthor_group *group)
2735 {
2736 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2737 
2738 	lockdep_assert_held(&sched->reset.lock);
2739 
2740 	for (u32 i = 0; i < group->queue_count; i++)
2741 		queue_stop(group->queues[i], NULL);
2742 
2743 	group_get(group);
2744 	list_move_tail(&group->run_node, &sched->reset.stopped_groups);
2745 }
2746 
panthor_group_start(struct panthor_group * group)2747 static void panthor_group_start(struct panthor_group *group)
2748 {
2749 	struct panthor_scheduler *sched = group->ptdev->scheduler;
2750 
2751 	lockdep_assert_held(&group->ptdev->scheduler->reset.lock);
2752 
2753 	for (u32 i = 0; i < group->queue_count; i++)
2754 		queue_start(group->queues[i]);
2755 
2756 	if (group_can_run(group)) {
2757 		list_move_tail(&group->run_node,
2758 			       group_is_idle(group) ?
2759 			       &sched->groups.idle[group->priority] :
2760 			       &sched->groups.runnable[group->priority]);
2761 	} else {
2762 		list_del_init(&group->run_node);
2763 		list_del_init(&group->wait_node);
2764 		group_queue_work(group, term);
2765 	}
2766 
2767 	group_put(group);
2768 }
2769 
panthor_sched_immediate_tick(struct panthor_device * ptdev)2770 static void panthor_sched_immediate_tick(struct panthor_device *ptdev)
2771 {
2772 	struct panthor_scheduler *sched = ptdev->scheduler;
2773 
2774 	sched_queue_delayed_work(sched, tick, 0);
2775 }
2776 
2777 /**
2778  * panthor_sched_report_mmu_fault() - Report MMU faults to the scheduler.
2779  */
panthor_sched_report_mmu_fault(struct panthor_device * ptdev)2780 void panthor_sched_report_mmu_fault(struct panthor_device *ptdev)
2781 {
2782 	/* Force a tick to immediately kill faulty groups. */
2783 	if (ptdev->scheduler)
2784 		panthor_sched_immediate_tick(ptdev);
2785 }
2786 
panthor_sched_resume(struct panthor_device * ptdev)2787 void panthor_sched_resume(struct panthor_device *ptdev)
2788 {
2789 	/* Force a tick to re-evaluate after a resume. */
2790 	panthor_sched_immediate_tick(ptdev);
2791 }
2792 
panthor_sched_suspend(struct panthor_device * ptdev)2793 void panthor_sched_suspend(struct panthor_device *ptdev)
2794 {
2795 	struct panthor_scheduler *sched = ptdev->scheduler;
2796 	struct panthor_csg_slots_upd_ctx upd_ctx;
2797 	u32 suspended_slots;
2798 	u32 i;
2799 
2800 	mutex_lock(&sched->lock);
2801 	csgs_upd_ctx_init(&upd_ctx);
2802 	for (i = 0; i < sched->csg_slot_count; i++) {
2803 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2804 
2805 		if (csg_slot->group) {
2806 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, i,
2807 						group_can_run(csg_slot->group) ?
2808 						CSG_STATE_SUSPEND : CSG_STATE_TERMINATE,
2809 						CSG_STATE_MASK);
2810 		}
2811 	}
2812 
2813 	suspended_slots = upd_ctx.update_mask;
2814 
2815 	csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2816 	suspended_slots &= ~upd_ctx.timedout_mask;
2817 
2818 	if (upd_ctx.timedout_mask) {
2819 		u32 slot_mask = upd_ctx.timedout_mask;
2820 
2821 		drm_err(&ptdev->base, "CSG suspend failed, escalating to termination");
2822 		csgs_upd_ctx_init(&upd_ctx);
2823 		while (slot_mask) {
2824 			u32 csg_id = ffs(slot_mask) - 1;
2825 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2826 
2827 			/* If the group was still usable before that point, we consider
2828 			 * it innocent.
2829 			 */
2830 			if (group_can_run(csg_slot->group))
2831 				csg_slot->group->innocent = true;
2832 
2833 			/* We consider group suspension failures as fatal and flag the
2834 			 * group as unusable by setting timedout=true.
2835 			 */
2836 			csg_slot->group->timedout = true;
2837 
2838 			csgs_upd_ctx_queue_reqs(ptdev, &upd_ctx, csg_id,
2839 						CSG_STATE_TERMINATE,
2840 						CSG_STATE_MASK);
2841 			slot_mask &= ~BIT(csg_id);
2842 		}
2843 
2844 		csgs_upd_ctx_apply_locked(ptdev, &upd_ctx);
2845 
2846 		slot_mask = upd_ctx.timedout_mask;
2847 		while (slot_mask) {
2848 			u32 csg_id = ffs(slot_mask) - 1;
2849 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2850 			struct panthor_group *group = csg_slot->group;
2851 
2852 			/* Terminate command timedout, but the soft-reset will
2853 			 * automatically terminate all active groups, so let's
2854 			 * force the state to halted here.
2855 			 */
2856 			if (group->state != PANTHOR_CS_GROUP_TERMINATED) {
2857 				group->state = PANTHOR_CS_GROUP_TERMINATED;
2858 
2859 				/* Reset the queue slots manually if the termination
2860 				 * request failed.
2861 				 */
2862 				for (i = 0; i < group->queue_count; i++) {
2863 					if (group->queues[i])
2864 						cs_slot_reset_locked(ptdev, csg_id, i);
2865 				}
2866 			}
2867 			slot_mask &= ~BIT(csg_id);
2868 		}
2869 	}
2870 
2871 	/* Flush L2 and LSC caches to make sure suspend state is up-to-date.
2872 	 * If the flush fails, flag all queues for termination.
2873 	 */
2874 	if (suspended_slots) {
2875 		bool flush_caches_failed = false;
2876 		u32 slot_mask = suspended_slots;
2877 
2878 		if (panthor_gpu_flush_caches(ptdev, CACHE_CLEAN, CACHE_CLEAN, 0))
2879 			flush_caches_failed = true;
2880 
2881 		while (slot_mask) {
2882 			u32 csg_id = ffs(slot_mask) - 1;
2883 			struct panthor_csg_slot *csg_slot = &sched->csg_slots[csg_id];
2884 
2885 			if (flush_caches_failed)
2886 				csg_slot->group->state = PANTHOR_CS_GROUP_TERMINATED;
2887 			else
2888 				csg_slot_sync_update_locked(ptdev, csg_id);
2889 
2890 			slot_mask &= ~BIT(csg_id);
2891 		}
2892 	}
2893 
2894 	for (i = 0; i < sched->csg_slot_count; i++) {
2895 		struct panthor_csg_slot *csg_slot = &sched->csg_slots[i];
2896 		struct panthor_group *group = csg_slot->group;
2897 
2898 		if (!group)
2899 			continue;
2900 
2901 		group_get(group);
2902 
2903 		if (group->csg_id >= 0)
2904 			sched_process_csg_irq_locked(ptdev, group->csg_id);
2905 
2906 		group_unbind_locked(group);
2907 
2908 		drm_WARN_ON(&group->ptdev->base, !list_empty(&group->run_node));
2909 
2910 		if (group_can_run(group)) {
2911 			list_add(&group->run_node,
2912 				 &sched->groups.idle[group->priority]);
2913 		} else {
2914 			/* We don't bother stopping the scheduler if the group is
2915 			 * faulty, the group termination work will finish the job.
2916 			 */
2917 			list_del_init(&group->wait_node);
2918 			group_queue_work(group, term);
2919 		}
2920 		group_put(group);
2921 	}
2922 	mutex_unlock(&sched->lock);
2923 }
2924 
panthor_sched_pre_reset(struct panthor_device * ptdev)2925 void panthor_sched_pre_reset(struct panthor_device *ptdev)
2926 {
2927 	struct panthor_scheduler *sched = ptdev->scheduler;
2928 	struct panthor_group *group, *group_tmp;
2929 	u32 i;
2930 
2931 	mutex_lock(&sched->reset.lock);
2932 	atomic_set(&sched->reset.in_progress, true);
2933 
2934 	/* Cancel all scheduler works. Once this is done, these works can't be
2935 	 * scheduled again until the reset operation is complete.
2936 	 */
2937 	cancel_work_sync(&sched->sync_upd_work);
2938 	cancel_delayed_work_sync(&sched->tick_work);
2939 
2940 	panthor_sched_suspend(ptdev);
2941 
2942 	/* Stop all groups that might still accept jobs, so we don't get passed
2943 	 * new jobs while we're resetting.
2944 	 */
2945 	for (i = 0; i < ARRAY_SIZE(sched->groups.runnable); i++) {
2946 		/* All groups should be in the idle lists. */
2947 		drm_WARN_ON(&ptdev->base, !list_empty(&sched->groups.runnable[i]));
2948 		list_for_each_entry_safe(group, group_tmp, &sched->groups.runnable[i], run_node)
2949 			panthor_group_stop(group);
2950 	}
2951 
2952 	for (i = 0; i < ARRAY_SIZE(sched->groups.idle); i++) {
2953 		list_for_each_entry_safe(group, group_tmp, &sched->groups.idle[i], run_node)
2954 			panthor_group_stop(group);
2955 	}
2956 
2957 	mutex_unlock(&sched->reset.lock);
2958 }
2959 
panthor_sched_post_reset(struct panthor_device * ptdev,bool reset_failed)2960 void panthor_sched_post_reset(struct panthor_device *ptdev, bool reset_failed)
2961 {
2962 	struct panthor_scheduler *sched = ptdev->scheduler;
2963 	struct panthor_group *group, *group_tmp;
2964 
2965 	mutex_lock(&sched->reset.lock);
2966 
2967 	list_for_each_entry_safe(group, group_tmp, &sched->reset.stopped_groups, run_node) {
2968 		/* Consider all previously running group as terminated if the
2969 		 * reset failed.
2970 		 */
2971 		if (reset_failed)
2972 			group->state = PANTHOR_CS_GROUP_TERMINATED;
2973 
2974 		panthor_group_start(group);
2975 	}
2976 
2977 	/* We're done resetting the GPU, clear the reset.in_progress bit so we can
2978 	 * kick the scheduler.
2979 	 */
2980 	atomic_set(&sched->reset.in_progress, false);
2981 	mutex_unlock(&sched->reset.lock);
2982 
2983 	/* No need to queue a tick and update syncs if the reset failed. */
2984 	if (!reset_failed) {
2985 		sched_queue_delayed_work(sched, tick, 0);
2986 		sched_queue_work(sched, sync_upd);
2987 	}
2988 }
2989 
update_fdinfo_stats(struct panthor_job * job)2990 static void update_fdinfo_stats(struct panthor_job *job)
2991 {
2992 	struct panthor_group *group = job->group;
2993 	struct panthor_queue *queue = group->queues[job->queue_idx];
2994 	struct panthor_gpu_usage *fdinfo = &group->fdinfo.data;
2995 	struct panthor_job_profiling_data *slots = queue->profiling.slots->kmap;
2996 	struct panthor_job_profiling_data *data = &slots[job->profiling.slot];
2997 
2998 	scoped_guard(spinlock, &group->fdinfo.lock) {
2999 		if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_CYCLES)
3000 			fdinfo->cycles += data->cycles.after - data->cycles.before;
3001 		if (job->profiling.mask & PANTHOR_DEVICE_PROFILING_TIMESTAMP)
3002 			fdinfo->time += data->time.after - data->time.before;
3003 	}
3004 }
3005 
panthor_fdinfo_gather_group_samples(struct panthor_file * pfile)3006 void panthor_fdinfo_gather_group_samples(struct panthor_file *pfile)
3007 {
3008 	struct panthor_group_pool *gpool = pfile->groups;
3009 	struct panthor_group *group;
3010 	unsigned long i;
3011 
3012 	if (IS_ERR_OR_NULL(gpool))
3013 		return;
3014 
3015 	xa_lock(&gpool->xa);
3016 	xa_for_each_marked(&gpool->xa, i, group, GROUP_REGISTERED) {
3017 		guard(spinlock)(&group->fdinfo.lock);
3018 		pfile->stats.cycles += group->fdinfo.data.cycles;
3019 		pfile->stats.time += group->fdinfo.data.time;
3020 		group->fdinfo.data.cycles = 0;
3021 		group->fdinfo.data.time = 0;
3022 	}
3023 	xa_unlock(&gpool->xa);
3024 }
3025 
queue_check_job_completion(struct panthor_queue * queue)3026 static bool queue_check_job_completion(struct panthor_queue *queue)
3027 {
3028 	struct panthor_syncobj_64b *syncobj = NULL;
3029 	struct panthor_job *job, *job_tmp;
3030 	bool cookie, progress = false;
3031 	LIST_HEAD(done_jobs);
3032 
3033 	cookie = dma_fence_begin_signalling();
3034 	spin_lock(&queue->fence_ctx.lock);
3035 	list_for_each_entry_safe(job, job_tmp, &queue->fence_ctx.in_flight_jobs, node) {
3036 		if (!syncobj) {
3037 			struct panthor_group *group = job->group;
3038 
3039 			syncobj = group->syncobjs->kmap +
3040 				  (job->queue_idx * sizeof(*syncobj));
3041 		}
3042 
3043 		if (syncobj->seqno < job->done_fence->seqno)
3044 			break;
3045 
3046 		list_move_tail(&job->node, &done_jobs);
3047 		dma_fence_signal_locked(job->done_fence);
3048 	}
3049 
3050 	if (list_empty(&queue->fence_ctx.in_flight_jobs)) {
3051 		/* If we have no job left, we cancel the timer, and reset remaining
3052 		 * time to its default so it can be restarted next time
3053 		 * queue_resume_timeout() is called.
3054 		 */
3055 		queue_suspend_timeout_locked(queue);
3056 
3057 		/* If there's no job pending, we consider it progress to avoid a
3058 		 * spurious timeout if the timeout handler and the sync update
3059 		 * handler raced.
3060 		 */
3061 		progress = true;
3062 	} else if (!list_empty(&done_jobs)) {
3063 		queue_reset_timeout_locked(queue);
3064 		progress = true;
3065 	}
3066 	spin_unlock(&queue->fence_ctx.lock);
3067 	dma_fence_end_signalling(cookie);
3068 
3069 	list_for_each_entry_safe(job, job_tmp, &done_jobs, node) {
3070 		if (job->profiling.mask)
3071 			update_fdinfo_stats(job);
3072 		list_del_init(&job->node);
3073 		panthor_job_put(&job->base);
3074 	}
3075 
3076 	return progress;
3077 }
3078 
group_sync_upd_work(struct work_struct * work)3079 static void group_sync_upd_work(struct work_struct *work)
3080 {
3081 	struct panthor_group *group =
3082 		container_of(work, struct panthor_group, sync_upd_work);
3083 	u32 queue_idx;
3084 	bool cookie;
3085 
3086 	cookie = dma_fence_begin_signalling();
3087 	for (queue_idx = 0; queue_idx < group->queue_count; queue_idx++) {
3088 		struct panthor_queue *queue = group->queues[queue_idx];
3089 
3090 		if (!queue)
3091 			continue;
3092 
3093 		queue_check_job_completion(queue);
3094 	}
3095 	dma_fence_end_signalling(cookie);
3096 
3097 	group_put(group);
3098 }
3099 
3100 struct panthor_job_ringbuf_instrs {
3101 	u64 buffer[MAX_INSTRS_PER_JOB];
3102 	u32 count;
3103 };
3104 
3105 struct panthor_job_instr {
3106 	u32 profile_mask;
3107 	u64 instr;
3108 };
3109 
3110 #define JOB_INSTR(__prof, __instr) \
3111 	{ \
3112 		.profile_mask = __prof, \
3113 		.instr = __instr, \
3114 	}
3115 
3116 static void
copy_instrs_to_ringbuf(struct panthor_queue * queue,struct panthor_job * job,struct panthor_job_ringbuf_instrs * instrs)3117 copy_instrs_to_ringbuf(struct panthor_queue *queue,
3118 		       struct panthor_job *job,
3119 		       struct panthor_job_ringbuf_instrs *instrs)
3120 {
3121 	u64 ringbuf_size = panthor_kernel_bo_size(queue->ringbuf);
3122 	u64 start = job->ringbuf.start & (ringbuf_size - 1);
3123 	u64 size, written;
3124 
3125 	/*
3126 	 * We need to write a whole slot, including any trailing zeroes
3127 	 * that may come at the end of it. Also, because instrs.buffer has
3128 	 * been zero-initialised, there's no need to pad it with 0's
3129 	 */
3130 	instrs->count = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3131 	size = instrs->count * sizeof(u64);
3132 	WARN_ON(size > ringbuf_size);
3133 	written = min(ringbuf_size - start, size);
3134 
3135 	memcpy(queue->ringbuf->kmap + start, instrs->buffer, written);
3136 
3137 	if (written < size)
3138 		memcpy(queue->ringbuf->kmap,
3139 		       &instrs->buffer[written / sizeof(u64)],
3140 		       size - written);
3141 }
3142 
3143 struct panthor_job_cs_params {
3144 	u32 profile_mask;
3145 	u64 addr_reg; u64 val_reg;
3146 	u64 cycle_reg; u64 time_reg;
3147 	u64 sync_addr; u64 times_addr;
3148 	u64 cs_start; u64 cs_size;
3149 	u32 last_flush; u32 waitall_mask;
3150 };
3151 
3152 static void
get_job_cs_params(struct panthor_job * job,struct panthor_job_cs_params * params)3153 get_job_cs_params(struct panthor_job *job, struct panthor_job_cs_params *params)
3154 {
3155 	struct panthor_group *group = job->group;
3156 	struct panthor_queue *queue = group->queues[job->queue_idx];
3157 	struct panthor_device *ptdev = group->ptdev;
3158 	struct panthor_scheduler *sched = ptdev->scheduler;
3159 
3160 	params->addr_reg = ptdev->csif_info.cs_reg_count -
3161 			   ptdev->csif_info.unpreserved_cs_reg_count;
3162 	params->val_reg = params->addr_reg + 2;
3163 	params->cycle_reg = params->addr_reg;
3164 	params->time_reg = params->val_reg;
3165 
3166 	params->sync_addr = panthor_kernel_bo_gpuva(group->syncobjs) +
3167 			    job->queue_idx * sizeof(struct panthor_syncobj_64b);
3168 	params->times_addr = panthor_kernel_bo_gpuva(queue->profiling.slots) +
3169 			     (job->profiling.slot * sizeof(struct panthor_job_profiling_data));
3170 	params->waitall_mask = GENMASK(sched->sb_slot_count - 1, 0);
3171 
3172 	params->cs_start = job->call_info.start;
3173 	params->cs_size = job->call_info.size;
3174 	params->last_flush = job->call_info.latest_flush;
3175 
3176 	params->profile_mask = job->profiling.mask;
3177 }
3178 
3179 #define JOB_INSTR_ALWAYS(instr) \
3180 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_DISABLED, (instr))
3181 #define JOB_INSTR_TIMESTAMP(instr) \
3182 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_TIMESTAMP, (instr))
3183 #define JOB_INSTR_CYCLES(instr) \
3184 	JOB_INSTR(PANTHOR_DEVICE_PROFILING_CYCLES, (instr))
3185 
3186 static void
prepare_job_instrs(const struct panthor_job_cs_params * params,struct panthor_job_ringbuf_instrs * instrs)3187 prepare_job_instrs(const struct panthor_job_cs_params *params,
3188 		   struct panthor_job_ringbuf_instrs *instrs)
3189 {
3190 	const struct panthor_job_instr instr_seq[] = {
3191 		/* MOV32 rX+2, cs.latest_flush */
3192 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->last_flush),
3193 		/* FLUSH_CACHE2.clean_inv_all.no_wait.signal(0) rX+2 */
3194 		JOB_INSTR_ALWAYS((36ull << 56) | (0ull << 48) | (params->val_reg << 40) |
3195 				 (0 << 16) | 0x233),
3196 		/* MOV48 rX:rX+1, cycles_offset */
3197 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3198 				 (params->times_addr +
3199 				  offsetof(struct panthor_job_profiling_data, cycles.before))),
3200 		/* STORE_STATE cycles */
3201 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3202 		/* MOV48 rX:rX+1, time_offset */
3203 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3204 				    (params->times_addr +
3205 				     offsetof(struct panthor_job_profiling_data, time.before))),
3206 		/* STORE_STATE timer */
3207 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3208 		/* MOV48 rX:rX+1, cs.start */
3209 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->cs_start),
3210 		/* MOV32 rX+2, cs.size */
3211 		JOB_INSTR_ALWAYS((2ull << 56) | (params->val_reg << 48) | params->cs_size),
3212 		/* WAIT(0) => waits for FLUSH_CACHE2 instruction */
3213 		JOB_INSTR_ALWAYS((3ull << 56) | (1 << 16)),
3214 		/* CALL rX:rX+1, rX+2 */
3215 		JOB_INSTR_ALWAYS((32ull << 56) | (params->addr_reg << 40) |
3216 				 (params->val_reg << 32)),
3217 		/* MOV48 rX:rX+1, cycles_offset */
3218 		JOB_INSTR_CYCLES((1ull << 56) | (params->cycle_reg << 48) |
3219 				 (params->times_addr +
3220 				  offsetof(struct panthor_job_profiling_data, cycles.after))),
3221 		/* STORE_STATE cycles */
3222 		JOB_INSTR_CYCLES((40ull << 56) | (params->cycle_reg << 40) | (1ll << 32)),
3223 		/* MOV48 rX:rX+1, time_offset */
3224 		JOB_INSTR_TIMESTAMP((1ull << 56) | (params->time_reg << 48) |
3225 			  (params->times_addr +
3226 			   offsetof(struct panthor_job_profiling_data, time.after))),
3227 		/* STORE_STATE timer */
3228 		JOB_INSTR_TIMESTAMP((40ull << 56) | (params->time_reg << 40) | (0ll << 32)),
3229 		/* MOV48 rX:rX+1, sync_addr */
3230 		JOB_INSTR_ALWAYS((1ull << 56) | (params->addr_reg << 48) | params->sync_addr),
3231 		/* MOV48 rX+2, #1 */
3232 		JOB_INSTR_ALWAYS((1ull << 56) | (params->val_reg << 48) | 1),
3233 		/* WAIT(all) */
3234 		JOB_INSTR_ALWAYS((3ull << 56) | (params->waitall_mask << 16)),
3235 		/* SYNC_ADD64.system_scope.propage_err.nowait rX:rX+1, rX+2*/
3236 		JOB_INSTR_ALWAYS((51ull << 56) | (0ull << 48) | (params->addr_reg << 40) |
3237 				 (params->val_reg << 32) | (0 << 16) | 1),
3238 		/* ERROR_BARRIER, so we can recover from faults at job boundaries. */
3239 		JOB_INSTR_ALWAYS((47ull << 56)),
3240 	};
3241 	u32 pad;
3242 
3243 	instrs->count = 0;
3244 
3245 	/* NEED to be cacheline aligned to please the prefetcher. */
3246 	static_assert(sizeof(instrs->buffer) % 64 == 0,
3247 		      "panthor_job_ringbuf_instrs::buffer is not aligned on a cacheline");
3248 
3249 	/* Make sure we have enough storage to store the whole sequence. */
3250 	static_assert(ALIGN(ARRAY_SIZE(instr_seq), NUM_INSTRS_PER_CACHE_LINE) ==
3251 		      ARRAY_SIZE(instrs->buffer),
3252 		      "instr_seq vs panthor_job_ringbuf_instrs::buffer size mismatch");
3253 
3254 	for (u32 i = 0; i < ARRAY_SIZE(instr_seq); i++) {
3255 		/* If the profile mask of this instruction is not enabled, skip it. */
3256 		if (instr_seq[i].profile_mask &&
3257 		    !(instr_seq[i].profile_mask & params->profile_mask))
3258 			continue;
3259 
3260 		instrs->buffer[instrs->count++] = instr_seq[i].instr;
3261 	}
3262 
3263 	pad = ALIGN(instrs->count, NUM_INSTRS_PER_CACHE_LINE);
3264 	memset(&instrs->buffer[instrs->count], 0,
3265 	       (pad - instrs->count) * sizeof(instrs->buffer[0]));
3266 	instrs->count = pad;
3267 }
3268 
calc_job_credits(u32 profile_mask)3269 static u32 calc_job_credits(u32 profile_mask)
3270 {
3271 	struct panthor_job_ringbuf_instrs instrs;
3272 	struct panthor_job_cs_params params = {
3273 		.profile_mask = profile_mask,
3274 	};
3275 
3276 	prepare_job_instrs(&params, &instrs);
3277 	return instrs.count;
3278 }
3279 
3280 static struct dma_fence *
queue_run_job(struct drm_sched_job * sched_job)3281 queue_run_job(struct drm_sched_job *sched_job)
3282 {
3283 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3284 	struct panthor_group *group = job->group;
3285 	struct panthor_queue *queue = group->queues[job->queue_idx];
3286 	struct panthor_device *ptdev = group->ptdev;
3287 	struct panthor_scheduler *sched = ptdev->scheduler;
3288 	struct panthor_job_ringbuf_instrs instrs;
3289 	struct panthor_job_cs_params cs_params;
3290 	struct dma_fence *done_fence;
3291 	int ret;
3292 
3293 	/* Stream size is zero, nothing to do except making sure all previously
3294 	 * submitted jobs are done before we signal the
3295 	 * drm_sched_job::s_fence::finished fence.
3296 	 */
3297 	if (!job->call_info.size) {
3298 		job->done_fence = dma_fence_get(queue->fence_ctx.last_fence);
3299 		return dma_fence_get(job->done_fence);
3300 	}
3301 
3302 	ret = panthor_device_resume_and_get(ptdev);
3303 	if (drm_WARN_ON(&ptdev->base, ret))
3304 		return ERR_PTR(ret);
3305 
3306 	mutex_lock(&sched->lock);
3307 	if (!group_can_run(group)) {
3308 		done_fence = ERR_PTR(-ECANCELED);
3309 		goto out_unlock;
3310 	}
3311 
3312 	dma_fence_init(job->done_fence,
3313 		       &panthor_queue_fence_ops,
3314 		       &queue->fence_ctx.lock,
3315 		       queue->fence_ctx.id,
3316 		       atomic64_inc_return(&queue->fence_ctx.seqno));
3317 
3318 	job->profiling.slot = queue->profiling.seqno++;
3319 	if (queue->profiling.seqno == queue->profiling.slot_count)
3320 		queue->profiling.seqno = 0;
3321 
3322 	job->ringbuf.start = queue->iface.input->insert;
3323 
3324 	get_job_cs_params(job, &cs_params);
3325 	prepare_job_instrs(&cs_params, &instrs);
3326 	copy_instrs_to_ringbuf(queue, job, &instrs);
3327 
3328 	job->ringbuf.end = job->ringbuf.start + (instrs.count * sizeof(u64));
3329 
3330 	panthor_job_get(&job->base);
3331 	spin_lock(&queue->fence_ctx.lock);
3332 	list_add_tail(&job->node, &queue->fence_ctx.in_flight_jobs);
3333 	spin_unlock(&queue->fence_ctx.lock);
3334 
3335 	/* Make sure the ring buffer is updated before the INSERT
3336 	 * register.
3337 	 */
3338 	wmb();
3339 
3340 	queue->iface.input->extract = queue->iface.output->extract;
3341 	queue->iface.input->insert = job->ringbuf.end;
3342 
3343 	if (group->csg_id < 0) {
3344 		group_schedule_locked(group, BIT(job->queue_idx));
3345 	} else {
3346 		gpu_write(ptdev, CSF_DOORBELL(queue->doorbell_id), 1);
3347 		if (!sched->pm.has_ref &&
3348 		    !(group->blocked_queues & BIT(job->queue_idx))) {
3349 			pm_runtime_get(ptdev->base.dev);
3350 			sched->pm.has_ref = true;
3351 		}
3352 		queue_resume_timeout(queue);
3353 		panthor_devfreq_record_busy(sched->ptdev);
3354 	}
3355 
3356 	/* Update the last fence. */
3357 	dma_fence_put(queue->fence_ctx.last_fence);
3358 	queue->fence_ctx.last_fence = dma_fence_get(job->done_fence);
3359 
3360 	done_fence = dma_fence_get(job->done_fence);
3361 
3362 out_unlock:
3363 	mutex_unlock(&sched->lock);
3364 	pm_runtime_mark_last_busy(ptdev->base.dev);
3365 	pm_runtime_put_autosuspend(ptdev->base.dev);
3366 
3367 	return done_fence;
3368 }
3369 
3370 static enum drm_gpu_sched_stat
queue_timedout_job(struct drm_sched_job * sched_job)3371 queue_timedout_job(struct drm_sched_job *sched_job)
3372 {
3373 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3374 	struct panthor_group *group = job->group;
3375 	struct panthor_device *ptdev = group->ptdev;
3376 	struct panthor_scheduler *sched = ptdev->scheduler;
3377 	struct panthor_queue *queue = group->queues[job->queue_idx];
3378 
3379 	drm_warn(&ptdev->base, "job timeout: pid=%d, comm=%s, seqno=%llu\n",
3380 		 group->task_info.pid, group->task_info.comm, job->done_fence->seqno);
3381 
3382 	drm_WARN_ON(&ptdev->base, atomic_read(&sched->reset.in_progress));
3383 
3384 	queue_stop(queue, job);
3385 
3386 	mutex_lock(&sched->lock);
3387 	group->timedout = true;
3388 	if (group->csg_id >= 0) {
3389 		sched_queue_delayed_work(ptdev->scheduler, tick, 0);
3390 	} else {
3391 		/* Remove from the run queues, so the scheduler can't
3392 		 * pick the group on the next tick.
3393 		 */
3394 		list_del_init(&group->run_node);
3395 		list_del_init(&group->wait_node);
3396 
3397 		group_queue_work(group, term);
3398 	}
3399 	mutex_unlock(&sched->lock);
3400 
3401 	queue_start(queue);
3402 	return DRM_GPU_SCHED_STAT_RESET;
3403 }
3404 
queue_free_job(struct drm_sched_job * sched_job)3405 static void queue_free_job(struct drm_sched_job *sched_job)
3406 {
3407 	drm_sched_job_cleanup(sched_job);
3408 	panthor_job_put(sched_job);
3409 }
3410 
3411 static const struct drm_sched_backend_ops panthor_queue_sched_ops = {
3412 	.run_job = queue_run_job,
3413 	.timedout_job = queue_timedout_job,
3414 	.free_job = queue_free_job,
3415 };
3416 
calc_profiling_ringbuf_num_slots(struct panthor_device * ptdev,u32 cs_ringbuf_size)3417 static u32 calc_profiling_ringbuf_num_slots(struct panthor_device *ptdev,
3418 					    u32 cs_ringbuf_size)
3419 {
3420 	u32 min_profiled_job_instrs = U32_MAX;
3421 	u32 last_flag = fls(PANTHOR_DEVICE_PROFILING_ALL);
3422 
3423 	/*
3424 	 * We want to calculate the minimum size of a profiled job's CS,
3425 	 * because since they need additional instructions for the sampling
3426 	 * of performance metrics, they might take up further slots in
3427 	 * the queue's ringbuffer. This means we might not need as many job
3428 	 * slots for keeping track of their profiling information. What we
3429 	 * need is the maximum number of slots we should allocate to this end,
3430 	 * which matches the maximum number of profiled jobs we can place
3431 	 * simultaneously in the queue's ring buffer.
3432 	 * That has to be calculated separately for every single job profiling
3433 	 * flag, but not in the case job profiling is disabled, since unprofiled
3434 	 * jobs don't need to keep track of this at all.
3435 	 */
3436 	for (u32 i = 0; i < last_flag; i++) {
3437 		min_profiled_job_instrs =
3438 			min(min_profiled_job_instrs, calc_job_credits(BIT(i)));
3439 	}
3440 
3441 	return DIV_ROUND_UP(cs_ringbuf_size, min_profiled_job_instrs * sizeof(u64));
3442 }
3443 
queue_timeout_work(struct work_struct * work)3444 static void queue_timeout_work(struct work_struct *work)
3445 {
3446 	struct panthor_queue *queue = container_of(work, struct panthor_queue,
3447 						   timeout.work.work);
3448 	bool progress;
3449 
3450 	progress = queue_check_job_completion(queue);
3451 	if (!progress)
3452 		drm_sched_fault(&queue->scheduler);
3453 }
3454 
3455 static struct panthor_queue *
group_create_queue(struct panthor_group * group,const struct drm_panthor_queue_create * args,u64 drm_client_id,u32 gid,u32 qid)3456 group_create_queue(struct panthor_group *group,
3457 		   const struct drm_panthor_queue_create *args,
3458 		   u64 drm_client_id, u32 gid, u32 qid)
3459 {
3460 	struct drm_sched_init_args sched_args = {
3461 		.ops = &panthor_queue_sched_ops,
3462 		.submit_wq = group->ptdev->scheduler->wq,
3463 		.num_rqs = 1,
3464 		/*
3465 		 * The credit limit argument tells us the total number of
3466 		 * instructions across all CS slots in the ringbuffer, with
3467 		 * some jobs requiring twice as many as others, depending on
3468 		 * their profiling status.
3469 		 */
3470 		.credit_limit = args->ringbuf_size / sizeof(u64),
3471 		.timeout = MAX_SCHEDULE_TIMEOUT,
3472 		.timeout_wq = group->ptdev->reset.wq,
3473 		.dev = group->ptdev->base.dev,
3474 	};
3475 	struct drm_gpu_scheduler *drm_sched;
3476 	struct panthor_queue *queue;
3477 	int ret;
3478 
3479 	if (args->pad[0] || args->pad[1] || args->pad[2])
3480 		return ERR_PTR(-EINVAL);
3481 
3482 	if (args->ringbuf_size < SZ_4K || args->ringbuf_size > SZ_64K ||
3483 	    !is_power_of_2(args->ringbuf_size))
3484 		return ERR_PTR(-EINVAL);
3485 
3486 	if (args->priority > CSF_MAX_QUEUE_PRIO)
3487 		return ERR_PTR(-EINVAL);
3488 
3489 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
3490 	if (!queue)
3491 		return ERR_PTR(-ENOMEM);
3492 
3493 	queue->timeout.remaining = msecs_to_jiffies(JOB_TIMEOUT_MS);
3494 	INIT_DELAYED_WORK(&queue->timeout.work, queue_timeout_work);
3495 	queue->fence_ctx.id = dma_fence_context_alloc(1);
3496 	spin_lock_init(&queue->fence_ctx.lock);
3497 	INIT_LIST_HEAD(&queue->fence_ctx.in_flight_jobs);
3498 
3499 	queue->priority = args->priority;
3500 
3501 	queue->ringbuf = panthor_kernel_bo_create(group->ptdev, group->vm,
3502 						  args->ringbuf_size,
3503 						  DRM_PANTHOR_BO_NO_MMAP,
3504 						  DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3505 						  DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3506 						  PANTHOR_VM_KERNEL_AUTO_VA,
3507 						  "CS ring buffer");
3508 	if (IS_ERR(queue->ringbuf)) {
3509 		ret = PTR_ERR(queue->ringbuf);
3510 		goto err_free_queue;
3511 	}
3512 
3513 	ret = panthor_kernel_bo_vmap(queue->ringbuf);
3514 	if (ret)
3515 		goto err_free_queue;
3516 
3517 	queue->iface.mem = panthor_fw_alloc_queue_iface_mem(group->ptdev,
3518 							    &queue->iface.input,
3519 							    &queue->iface.output,
3520 							    &queue->iface.input_fw_va,
3521 							    &queue->iface.output_fw_va);
3522 	if (IS_ERR(queue->iface.mem)) {
3523 		ret = PTR_ERR(queue->iface.mem);
3524 		goto err_free_queue;
3525 	}
3526 
3527 	queue->profiling.slot_count =
3528 		calc_profiling_ringbuf_num_slots(group->ptdev, args->ringbuf_size);
3529 
3530 	queue->profiling.slots =
3531 		panthor_kernel_bo_create(group->ptdev, group->vm,
3532 					 queue->profiling.slot_count *
3533 					 sizeof(struct panthor_job_profiling_data),
3534 					 DRM_PANTHOR_BO_NO_MMAP,
3535 					 DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3536 					 DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3537 					 PANTHOR_VM_KERNEL_AUTO_VA,
3538 					 "Group job stats");
3539 
3540 	if (IS_ERR(queue->profiling.slots)) {
3541 		ret = PTR_ERR(queue->profiling.slots);
3542 		goto err_free_queue;
3543 	}
3544 
3545 	ret = panthor_kernel_bo_vmap(queue->profiling.slots);
3546 	if (ret)
3547 		goto err_free_queue;
3548 
3549 	/* assign a unique name */
3550 	queue->name = kasprintf(GFP_KERNEL, "panthor-queue-%llu-%u-%u", drm_client_id, gid, qid);
3551 	if (!queue->name) {
3552 		ret = -ENOMEM;
3553 		goto err_free_queue;
3554 	}
3555 
3556 	sched_args.name = queue->name;
3557 
3558 	ret = drm_sched_init(&queue->scheduler, &sched_args);
3559 	if (ret)
3560 		goto err_free_queue;
3561 
3562 	drm_sched = &queue->scheduler;
3563 	ret = drm_sched_entity_init(&queue->entity, 0, &drm_sched, 1, NULL);
3564 	if (ret)
3565 		goto err_free_queue;
3566 
3567 	return queue;
3568 
3569 err_free_queue:
3570 	group_free_queue(group, queue);
3571 	return ERR_PTR(ret);
3572 }
3573 
group_init_task_info(struct panthor_group * group)3574 static void group_init_task_info(struct panthor_group *group)
3575 {
3576 	struct task_struct *task = current->group_leader;
3577 
3578 	group->task_info.pid = task->pid;
3579 	get_task_comm(group->task_info.comm, task);
3580 }
3581 
add_group_kbo_sizes(struct panthor_device * ptdev,struct panthor_group * group)3582 static void add_group_kbo_sizes(struct panthor_device *ptdev,
3583 				struct panthor_group *group)
3584 {
3585 	struct panthor_queue *queue;
3586 	int i;
3587 
3588 	if (drm_WARN_ON(&ptdev->base, IS_ERR_OR_NULL(group)))
3589 		return;
3590 	if (drm_WARN_ON(&ptdev->base, ptdev != group->ptdev))
3591 		return;
3592 
3593 	group->fdinfo.kbo_sizes += group->suspend_buf->obj->size;
3594 	group->fdinfo.kbo_sizes += group->protm_suspend_buf->obj->size;
3595 	group->fdinfo.kbo_sizes += group->syncobjs->obj->size;
3596 
3597 	for (i = 0; i < group->queue_count; i++) {
3598 		queue =	group->queues[i];
3599 		group->fdinfo.kbo_sizes += queue->ringbuf->obj->size;
3600 		group->fdinfo.kbo_sizes += queue->iface.mem->obj->size;
3601 		group->fdinfo.kbo_sizes += queue->profiling.slots->obj->size;
3602 	}
3603 }
3604 
3605 #define MAX_GROUPS_PER_POOL		128
3606 
panthor_group_create(struct panthor_file * pfile,const struct drm_panthor_group_create * group_args,const struct drm_panthor_queue_create * queue_args,u64 drm_client_id)3607 int panthor_group_create(struct panthor_file *pfile,
3608 			 const struct drm_panthor_group_create *group_args,
3609 			 const struct drm_panthor_queue_create *queue_args,
3610 			 u64 drm_client_id)
3611 {
3612 	struct panthor_device *ptdev = pfile->ptdev;
3613 	struct panthor_group_pool *gpool = pfile->groups;
3614 	struct panthor_scheduler *sched = ptdev->scheduler;
3615 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
3616 	struct panthor_group *group = NULL;
3617 	u32 gid, i, suspend_size;
3618 	int ret;
3619 
3620 	if (group_args->pad)
3621 		return -EINVAL;
3622 
3623 	if (group_args->priority >= PANTHOR_CSG_PRIORITY_COUNT)
3624 		return -EINVAL;
3625 
3626 	if ((group_args->compute_core_mask & ~ptdev->gpu_info.shader_present) ||
3627 	    (group_args->fragment_core_mask & ~ptdev->gpu_info.shader_present) ||
3628 	    (group_args->tiler_core_mask & ~ptdev->gpu_info.tiler_present))
3629 		return -EINVAL;
3630 
3631 	if (hweight64(group_args->compute_core_mask) < group_args->max_compute_cores ||
3632 	    hweight64(group_args->fragment_core_mask) < group_args->max_fragment_cores ||
3633 	    hweight64(group_args->tiler_core_mask) < group_args->max_tiler_cores)
3634 		return -EINVAL;
3635 
3636 	group = kzalloc(sizeof(*group), GFP_KERNEL);
3637 	if (!group)
3638 		return -ENOMEM;
3639 
3640 	spin_lock_init(&group->fatal_lock);
3641 	kref_init(&group->refcount);
3642 	group->state = PANTHOR_CS_GROUP_CREATED;
3643 	group->csg_id = -1;
3644 
3645 	group->ptdev = ptdev;
3646 	group->max_compute_cores = group_args->max_compute_cores;
3647 	group->compute_core_mask = group_args->compute_core_mask;
3648 	group->max_fragment_cores = group_args->max_fragment_cores;
3649 	group->fragment_core_mask = group_args->fragment_core_mask;
3650 	group->max_tiler_cores = group_args->max_tiler_cores;
3651 	group->tiler_core_mask = group_args->tiler_core_mask;
3652 	group->priority = group_args->priority;
3653 
3654 	INIT_LIST_HEAD(&group->wait_node);
3655 	INIT_LIST_HEAD(&group->run_node);
3656 	INIT_WORK(&group->term_work, group_term_work);
3657 	INIT_WORK(&group->sync_upd_work, group_sync_upd_work);
3658 	INIT_WORK(&group->tiler_oom_work, group_tiler_oom_work);
3659 	INIT_WORK(&group->release_work, group_release_work);
3660 
3661 	group->vm = panthor_vm_pool_get_vm(pfile->vms, group_args->vm_id);
3662 	if (!group->vm) {
3663 		ret = -EINVAL;
3664 		goto err_put_group;
3665 	}
3666 
3667 	suspend_size = csg_iface->control->suspend_size;
3668 	group->suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3669 	if (IS_ERR(group->suspend_buf)) {
3670 		ret = PTR_ERR(group->suspend_buf);
3671 		group->suspend_buf = NULL;
3672 		goto err_put_group;
3673 	}
3674 
3675 	suspend_size = csg_iface->control->protm_suspend_size;
3676 	group->protm_suspend_buf = panthor_fw_alloc_suspend_buf_mem(ptdev, suspend_size);
3677 	if (IS_ERR(group->protm_suspend_buf)) {
3678 		ret = PTR_ERR(group->protm_suspend_buf);
3679 		group->protm_suspend_buf = NULL;
3680 		goto err_put_group;
3681 	}
3682 
3683 	group->syncobjs = panthor_kernel_bo_create(ptdev, group->vm,
3684 						   group_args->queues.count *
3685 						   sizeof(struct panthor_syncobj_64b),
3686 						   DRM_PANTHOR_BO_NO_MMAP,
3687 						   DRM_PANTHOR_VM_BIND_OP_MAP_NOEXEC |
3688 						   DRM_PANTHOR_VM_BIND_OP_MAP_UNCACHED,
3689 						   PANTHOR_VM_KERNEL_AUTO_VA,
3690 						   "Group sync objects");
3691 	if (IS_ERR(group->syncobjs)) {
3692 		ret = PTR_ERR(group->syncobjs);
3693 		goto err_put_group;
3694 	}
3695 
3696 	ret = panthor_kernel_bo_vmap(group->syncobjs);
3697 	if (ret)
3698 		goto err_put_group;
3699 
3700 	memset(group->syncobjs->kmap, 0,
3701 	       group_args->queues.count * sizeof(struct panthor_syncobj_64b));
3702 
3703 	ret = xa_alloc(&gpool->xa, &gid, group, XA_LIMIT(1, MAX_GROUPS_PER_POOL), GFP_KERNEL);
3704 	if (ret)
3705 		goto err_put_group;
3706 
3707 	for (i = 0; i < group_args->queues.count; i++) {
3708 		group->queues[i] = group_create_queue(group, &queue_args[i], drm_client_id, gid, i);
3709 		if (IS_ERR(group->queues[i])) {
3710 			ret = PTR_ERR(group->queues[i]);
3711 			group->queues[i] = NULL;
3712 			goto err_erase_gid;
3713 		}
3714 
3715 		group->queue_count++;
3716 	}
3717 
3718 	group->idle_queues = GENMASK(group->queue_count - 1, 0);
3719 
3720 	mutex_lock(&sched->reset.lock);
3721 	if (atomic_read(&sched->reset.in_progress)) {
3722 		panthor_group_stop(group);
3723 	} else {
3724 		mutex_lock(&sched->lock);
3725 		list_add_tail(&group->run_node,
3726 			      &sched->groups.idle[group->priority]);
3727 		mutex_unlock(&sched->lock);
3728 	}
3729 	mutex_unlock(&sched->reset.lock);
3730 
3731 	add_group_kbo_sizes(group->ptdev, group);
3732 	spin_lock_init(&group->fdinfo.lock);
3733 
3734 	group_init_task_info(group);
3735 
3736 	xa_set_mark(&gpool->xa, gid, GROUP_REGISTERED);
3737 
3738 	return gid;
3739 
3740 err_erase_gid:
3741 	xa_erase(&gpool->xa, gid);
3742 
3743 err_put_group:
3744 	group_put(group);
3745 	return ret;
3746 }
3747 
panthor_group_destroy(struct panthor_file * pfile,u32 group_handle)3748 int panthor_group_destroy(struct panthor_file *pfile, u32 group_handle)
3749 {
3750 	struct panthor_group_pool *gpool = pfile->groups;
3751 	struct panthor_device *ptdev = pfile->ptdev;
3752 	struct panthor_scheduler *sched = ptdev->scheduler;
3753 	struct panthor_group *group;
3754 
3755 	if (!xa_get_mark(&gpool->xa, group_handle, GROUP_REGISTERED))
3756 		return -EINVAL;
3757 
3758 	group = xa_erase(&gpool->xa, group_handle);
3759 	if (!group)
3760 		return -EINVAL;
3761 
3762 	mutex_lock(&sched->reset.lock);
3763 	mutex_lock(&sched->lock);
3764 	group->destroyed = true;
3765 	if (group->csg_id >= 0) {
3766 		sched_queue_delayed_work(sched, tick, 0);
3767 	} else if (!atomic_read(&sched->reset.in_progress)) {
3768 		/* Remove from the run queues, so the scheduler can't
3769 		 * pick the group on the next tick.
3770 		 */
3771 		list_del_init(&group->run_node);
3772 		list_del_init(&group->wait_node);
3773 		group_queue_work(group, term);
3774 	}
3775 	mutex_unlock(&sched->lock);
3776 	mutex_unlock(&sched->reset.lock);
3777 
3778 	group_put(group);
3779 	return 0;
3780 }
3781 
group_from_handle(struct panthor_group_pool * pool,unsigned long group_handle)3782 static struct panthor_group *group_from_handle(struct panthor_group_pool *pool,
3783 					       unsigned long group_handle)
3784 {
3785 	struct panthor_group *group;
3786 
3787 	xa_lock(&pool->xa);
3788 	group = group_get(xa_find(&pool->xa, &group_handle, group_handle, GROUP_REGISTERED));
3789 	xa_unlock(&pool->xa);
3790 
3791 	return group;
3792 }
3793 
panthor_group_get_state(struct panthor_file * pfile,struct drm_panthor_group_get_state * get_state)3794 int panthor_group_get_state(struct panthor_file *pfile,
3795 			    struct drm_panthor_group_get_state *get_state)
3796 {
3797 	struct panthor_group_pool *gpool = pfile->groups;
3798 	struct panthor_device *ptdev = pfile->ptdev;
3799 	struct panthor_scheduler *sched = ptdev->scheduler;
3800 	struct panthor_group *group;
3801 
3802 	if (get_state->pad)
3803 		return -EINVAL;
3804 
3805 	group = group_from_handle(gpool, get_state->group_handle);
3806 	if (!group)
3807 		return -EINVAL;
3808 
3809 	memset(get_state, 0, sizeof(*get_state));
3810 
3811 	mutex_lock(&sched->lock);
3812 	if (group->timedout)
3813 		get_state->state |= DRM_PANTHOR_GROUP_STATE_TIMEDOUT;
3814 	if (group->fatal_queues) {
3815 		get_state->state |= DRM_PANTHOR_GROUP_STATE_FATAL_FAULT;
3816 		get_state->fatal_queues = group->fatal_queues;
3817 	}
3818 	if (group->innocent)
3819 		get_state->state |= DRM_PANTHOR_GROUP_STATE_INNOCENT;
3820 	mutex_unlock(&sched->lock);
3821 
3822 	group_put(group);
3823 	return 0;
3824 }
3825 
panthor_group_pool_create(struct panthor_file * pfile)3826 int panthor_group_pool_create(struct panthor_file *pfile)
3827 {
3828 	struct panthor_group_pool *gpool;
3829 
3830 	gpool = kzalloc(sizeof(*gpool), GFP_KERNEL);
3831 	if (!gpool)
3832 		return -ENOMEM;
3833 
3834 	xa_init_flags(&gpool->xa, XA_FLAGS_ALLOC1);
3835 	pfile->groups = gpool;
3836 	return 0;
3837 }
3838 
panthor_group_pool_destroy(struct panthor_file * pfile)3839 void panthor_group_pool_destroy(struct panthor_file *pfile)
3840 {
3841 	struct panthor_group_pool *gpool = pfile->groups;
3842 	struct panthor_group *group;
3843 	unsigned long i;
3844 
3845 	if (IS_ERR_OR_NULL(gpool))
3846 		return;
3847 
3848 	xa_for_each(&gpool->xa, i, group)
3849 		panthor_group_destroy(pfile, i);
3850 
3851 	xa_destroy(&gpool->xa);
3852 	kfree(gpool);
3853 	pfile->groups = NULL;
3854 }
3855 
3856 /**
3857  * panthor_fdinfo_gather_group_mem_info() - Retrieve aggregate size of all private kernel BO's
3858  * belonging to all the groups owned by an open Panthor file
3859  * @pfile: File.
3860  * @stats: Memory statistics to be updated.
3861  *
3862  */
3863 void
panthor_fdinfo_gather_group_mem_info(struct panthor_file * pfile,struct drm_memory_stats * stats)3864 panthor_fdinfo_gather_group_mem_info(struct panthor_file *pfile,
3865 				     struct drm_memory_stats *stats)
3866 {
3867 	struct panthor_group_pool *gpool = pfile->groups;
3868 	struct panthor_group *group;
3869 	unsigned long i;
3870 
3871 	if (IS_ERR_OR_NULL(gpool))
3872 		return;
3873 
3874 	xa_lock(&gpool->xa);
3875 	xa_for_each_marked(&gpool->xa, i, group, GROUP_REGISTERED) {
3876 		stats->resident += group->fdinfo.kbo_sizes;
3877 		if (group->csg_id >= 0)
3878 			stats->active += group->fdinfo.kbo_sizes;
3879 	}
3880 	xa_unlock(&gpool->xa);
3881 }
3882 
job_release(struct kref * ref)3883 static void job_release(struct kref *ref)
3884 {
3885 	struct panthor_job *job = container_of(ref, struct panthor_job, refcount);
3886 
3887 	drm_WARN_ON(&job->group->ptdev->base, !list_empty(&job->node));
3888 
3889 	if (job->base.s_fence)
3890 		drm_sched_job_cleanup(&job->base);
3891 
3892 	if (job->done_fence && job->done_fence->ops)
3893 		dma_fence_put(job->done_fence);
3894 	else
3895 		dma_fence_free(job->done_fence);
3896 
3897 	group_put(job->group);
3898 
3899 	kfree(job);
3900 }
3901 
panthor_job_get(struct drm_sched_job * sched_job)3902 struct drm_sched_job *panthor_job_get(struct drm_sched_job *sched_job)
3903 {
3904 	if (sched_job) {
3905 		struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3906 
3907 		kref_get(&job->refcount);
3908 	}
3909 
3910 	return sched_job;
3911 }
3912 
panthor_job_put(struct drm_sched_job * sched_job)3913 void panthor_job_put(struct drm_sched_job *sched_job)
3914 {
3915 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3916 
3917 	if (sched_job)
3918 		kref_put(&job->refcount, job_release);
3919 }
3920 
panthor_job_vm(struct drm_sched_job * sched_job)3921 struct panthor_vm *panthor_job_vm(struct drm_sched_job *sched_job)
3922 {
3923 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
3924 
3925 	return job->group->vm;
3926 }
3927 
3928 struct drm_sched_job *
panthor_job_create(struct panthor_file * pfile,u16 group_handle,const struct drm_panthor_queue_submit * qsubmit,u64 drm_client_id)3929 panthor_job_create(struct panthor_file *pfile,
3930 		   u16 group_handle,
3931 		   const struct drm_panthor_queue_submit *qsubmit,
3932 		   u64 drm_client_id)
3933 {
3934 	struct panthor_group_pool *gpool = pfile->groups;
3935 	struct panthor_job *job;
3936 	u32 credits;
3937 	int ret;
3938 
3939 	if (qsubmit->pad)
3940 		return ERR_PTR(-EINVAL);
3941 
3942 	/* If stream_addr is zero, so stream_size should be. */
3943 	if ((qsubmit->stream_size == 0) != (qsubmit->stream_addr == 0))
3944 		return ERR_PTR(-EINVAL);
3945 
3946 	/* Make sure the address is aligned on 64-byte (cacheline) and the size is
3947 	 * aligned on 8-byte (instruction size).
3948 	 */
3949 	if ((qsubmit->stream_addr & 63) || (qsubmit->stream_size & 7))
3950 		return ERR_PTR(-EINVAL);
3951 
3952 	/* bits 24:30 must be zero. */
3953 	if (qsubmit->latest_flush & GENMASK(30, 24))
3954 		return ERR_PTR(-EINVAL);
3955 
3956 	job = kzalloc(sizeof(*job), GFP_KERNEL);
3957 	if (!job)
3958 		return ERR_PTR(-ENOMEM);
3959 
3960 	kref_init(&job->refcount);
3961 	job->queue_idx = qsubmit->queue_index;
3962 	job->call_info.size = qsubmit->stream_size;
3963 	job->call_info.start = qsubmit->stream_addr;
3964 	job->call_info.latest_flush = qsubmit->latest_flush;
3965 	INIT_LIST_HEAD(&job->node);
3966 
3967 	job->group = group_from_handle(gpool, group_handle);
3968 	if (!job->group) {
3969 		ret = -EINVAL;
3970 		goto err_put_job;
3971 	}
3972 
3973 	if (!group_can_run(job->group)) {
3974 		ret = -EINVAL;
3975 		goto err_put_job;
3976 	}
3977 
3978 	if (job->queue_idx >= job->group->queue_count ||
3979 	    !job->group->queues[job->queue_idx]) {
3980 		ret = -EINVAL;
3981 		goto err_put_job;
3982 	}
3983 
3984 	/* Empty command streams don't need a fence, they'll pick the one from
3985 	 * the previously submitted job.
3986 	 */
3987 	if (job->call_info.size) {
3988 		job->done_fence = kzalloc(sizeof(*job->done_fence), GFP_KERNEL);
3989 		if (!job->done_fence) {
3990 			ret = -ENOMEM;
3991 			goto err_put_job;
3992 		}
3993 	}
3994 
3995 	job->profiling.mask = pfile->ptdev->profile_mask;
3996 	credits = calc_job_credits(job->profiling.mask);
3997 	if (credits == 0) {
3998 		ret = -EINVAL;
3999 		goto err_put_job;
4000 	}
4001 
4002 	ret = drm_sched_job_init(&job->base,
4003 				 &job->group->queues[job->queue_idx]->entity,
4004 				 credits, job->group, drm_client_id);
4005 	if (ret)
4006 		goto err_put_job;
4007 
4008 	return &job->base;
4009 
4010 err_put_job:
4011 	panthor_job_put(&job->base);
4012 	return ERR_PTR(ret);
4013 }
4014 
panthor_job_update_resvs(struct drm_exec * exec,struct drm_sched_job * sched_job)4015 void panthor_job_update_resvs(struct drm_exec *exec, struct drm_sched_job *sched_job)
4016 {
4017 	struct panthor_job *job = container_of(sched_job, struct panthor_job, base);
4018 
4019 	panthor_vm_update_resvs(job->group->vm, exec, &sched_job->s_fence->finished,
4020 				DMA_RESV_USAGE_BOOKKEEP, DMA_RESV_USAGE_BOOKKEEP);
4021 }
4022 
panthor_sched_unplug(struct panthor_device * ptdev)4023 void panthor_sched_unplug(struct panthor_device *ptdev)
4024 {
4025 	struct panthor_scheduler *sched = ptdev->scheduler;
4026 
4027 	disable_delayed_work_sync(&sched->tick_work);
4028 	disable_work_sync(&sched->fw_events_work);
4029 	disable_work_sync(&sched->sync_upd_work);
4030 
4031 	mutex_lock(&sched->lock);
4032 	if (sched->pm.has_ref) {
4033 		pm_runtime_put(ptdev->base.dev);
4034 		sched->pm.has_ref = false;
4035 	}
4036 	mutex_unlock(&sched->lock);
4037 }
4038 
panthor_sched_fini(struct drm_device * ddev,void * res)4039 static void panthor_sched_fini(struct drm_device *ddev, void *res)
4040 {
4041 	struct panthor_scheduler *sched = res;
4042 	int prio;
4043 
4044 	if (!sched || !sched->csg_slot_count)
4045 		return;
4046 
4047 	if (sched->wq)
4048 		destroy_workqueue(sched->wq);
4049 
4050 	if (sched->heap_alloc_wq)
4051 		destroy_workqueue(sched->heap_alloc_wq);
4052 
4053 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
4054 		drm_WARN_ON(ddev, !list_empty(&sched->groups.runnable[prio]));
4055 		drm_WARN_ON(ddev, !list_empty(&sched->groups.idle[prio]));
4056 	}
4057 
4058 	drm_WARN_ON(ddev, !list_empty(&sched->groups.waiting));
4059 }
4060 
panthor_sched_init(struct panthor_device * ptdev)4061 int panthor_sched_init(struct panthor_device *ptdev)
4062 {
4063 	struct panthor_fw_global_iface *glb_iface = panthor_fw_get_glb_iface(ptdev);
4064 	struct panthor_fw_csg_iface *csg_iface = panthor_fw_get_csg_iface(ptdev, 0);
4065 	struct panthor_fw_cs_iface *cs_iface = panthor_fw_get_cs_iface(ptdev, 0, 0);
4066 	struct panthor_scheduler *sched;
4067 	u32 gpu_as_count, num_groups;
4068 	int prio, ret;
4069 
4070 	sched = drmm_kzalloc(&ptdev->base, sizeof(*sched), GFP_KERNEL);
4071 	if (!sched)
4072 		return -ENOMEM;
4073 
4074 	/* The highest bit in JOB_INT_* is reserved for globabl IRQs. That
4075 	 * leaves 31 bits for CSG IRQs, hence the MAX_CSGS clamp here.
4076 	 */
4077 	num_groups = min_t(u32, MAX_CSGS, glb_iface->control->group_num);
4078 
4079 	/* The FW-side scheduler might deadlock if two groups with the same
4080 	 * priority try to access a set of resources that overlaps, with part
4081 	 * of the resources being allocated to one group and the other part to
4082 	 * the other group, both groups waiting for the remaining resources to
4083 	 * be allocated. To avoid that, it is recommended to assign each CSG a
4084 	 * different priority. In theory we could allow several groups to have
4085 	 * the same CSG priority if they don't request the same resources, but
4086 	 * that makes the scheduling logic more complicated, so let's clamp
4087 	 * the number of CSG slots to MAX_CSG_PRIO + 1 for now.
4088 	 */
4089 	num_groups = min_t(u32, MAX_CSG_PRIO + 1, num_groups);
4090 
4091 	/* We need at least one AS for the MCU and one for the GPU contexts. */
4092 	gpu_as_count = hweight32(ptdev->gpu_info.as_present & GENMASK(31, 1));
4093 	if (!gpu_as_count) {
4094 		drm_err(&ptdev->base, "Not enough AS (%d, expected at least 2)",
4095 			gpu_as_count + 1);
4096 		return -EINVAL;
4097 	}
4098 
4099 	sched->ptdev = ptdev;
4100 	sched->sb_slot_count = CS_FEATURES_SCOREBOARDS(cs_iface->control->features);
4101 	sched->csg_slot_count = num_groups;
4102 	sched->cs_slot_count = csg_iface->control->stream_num;
4103 	sched->as_slot_count = gpu_as_count;
4104 	ptdev->csif_info.csg_slot_count = sched->csg_slot_count;
4105 	ptdev->csif_info.cs_slot_count = sched->cs_slot_count;
4106 	ptdev->csif_info.scoreboard_slot_count = sched->sb_slot_count;
4107 
4108 	sched->last_tick = 0;
4109 	sched->resched_target = U64_MAX;
4110 	sched->tick_period = msecs_to_jiffies(10);
4111 	INIT_DELAYED_WORK(&sched->tick_work, tick_work);
4112 	INIT_WORK(&sched->sync_upd_work, sync_upd_work);
4113 	INIT_WORK(&sched->fw_events_work, process_fw_events_work);
4114 
4115 	ret = drmm_mutex_init(&ptdev->base, &sched->lock);
4116 	if (ret)
4117 		return ret;
4118 
4119 	for (prio = PANTHOR_CSG_PRIORITY_COUNT - 1; prio >= 0; prio--) {
4120 		INIT_LIST_HEAD(&sched->groups.runnable[prio]);
4121 		INIT_LIST_HEAD(&sched->groups.idle[prio]);
4122 	}
4123 	INIT_LIST_HEAD(&sched->groups.waiting);
4124 
4125 	ret = drmm_mutex_init(&ptdev->base, &sched->reset.lock);
4126 	if (ret)
4127 		return ret;
4128 
4129 	INIT_LIST_HEAD(&sched->reset.stopped_groups);
4130 
4131 	/* sched->heap_alloc_wq will be used for heap chunk allocation on
4132 	 * tiler OOM events, which means we can't use the same workqueue for
4133 	 * the scheduler because works queued by the scheduler are in
4134 	 * the dma-signalling path. Allocate a dedicated heap_alloc_wq to
4135 	 * work around this limitation.
4136 	 *
4137 	 * FIXME: Ultimately, what we need is a failable/non-blocking GEM
4138 	 * allocation path that we can call when a heap OOM is reported. The
4139 	 * FW is smart enough to fall back on other methods if the kernel can't
4140 	 * allocate memory, and fail the tiling job if none of these
4141 	 * countermeasures worked.
4142 	 *
4143 	 * Set WQ_MEM_RECLAIM on sched->wq to unblock the situation when the
4144 	 * system is running out of memory.
4145 	 */
4146 	sched->heap_alloc_wq = alloc_workqueue("panthor-heap-alloc", WQ_UNBOUND, 0);
4147 	sched->wq = alloc_workqueue("panthor-csf-sched", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
4148 	if (!sched->wq || !sched->heap_alloc_wq) {
4149 		panthor_sched_fini(&ptdev->base, sched);
4150 		drm_err(&ptdev->base, "Failed to allocate the workqueues");
4151 		return -ENOMEM;
4152 	}
4153 
4154 	ret = drmm_add_action_or_reset(&ptdev->base, panthor_sched_fini, sched);
4155 	if (ret)
4156 		return ret;
4157 
4158 	ptdev->scheduler = sched;
4159 	return 0;
4160 }
4161