1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swapfile.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
7 */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/sort.h>
41 #include <linux/completion.h>
42 #include <linux/suspend.h>
43 #include <linux/zswap.h>
44 #include <linux/plist.h>
45
46 #include <asm/tlbflush.h>
47 #include <linux/leafops.h>
48 #include <linux/swap_cgroup.h>
49 #include "swap_table.h"
50 #include "internal.h"
51 #include "swap.h"
52
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 static void swap_entries_free(struct swap_info_struct *si,
57 struct swap_cluster_info *ci,
58 swp_entry_t entry, unsigned int nr_pages);
59 static void swap_range_alloc(struct swap_info_struct *si,
60 unsigned int nr_entries);
61 static bool folio_swapcache_freeable(struct folio *folio);
62 static void move_cluster(struct swap_info_struct *si,
63 struct swap_cluster_info *ci, struct list_head *list,
64 enum swap_cluster_flags new_flags);
65
66 static DEFINE_SPINLOCK(swap_lock);
67 static unsigned int nr_swapfiles;
68 atomic_long_t nr_swap_pages;
69 /*
70 * Some modules use swappable objects and may try to swap them out under
71 * memory pressure (via the shrinker). Before doing so, they may wish to
72 * check to see if any swap space is available.
73 */
74 EXPORT_SYMBOL_GPL(nr_swap_pages);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages;
77 #define DEF_SWAP_PRIO -1
78 unsigned long swapfile_maximum_size;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported;
81 #endif /* CONFIG_MIGRATION */
82
83 static const char Bad_file[] = "Bad swap file entry ";
84 static const char Unused_file[] = "Unused swap file entry ";
85 static const char Bad_offset[] = "Bad swap offset entry ";
86 static const char Unused_offset[] = "Unused swap offset entry ";
87
88 /*
89 * all active swap_info_structs
90 * protected with swap_lock, and ordered by priority.
91 */
92 static PLIST_HEAD(swap_active_head);
93
94 /*
95 * all available (active, not full) swap_info_structs
96 * protected with swap_avail_lock, ordered by priority.
97 * This is used by folio_alloc_swap() instead of swap_active_head
98 * because swap_active_head includes all swap_info_structs,
99 * but folio_alloc_swap() doesn't need to look at full ones.
100 * This uses its own lock instead of swap_lock because when a
101 * swap_info_struct changes between not-full/full, it needs to
102 * add/remove itself to/from this list, but the swap_info_struct->lock
103 * is held and the locking order requires swap_lock to be taken
104 * before any swap_info_struct->lock.
105 */
106 static PLIST_HEAD(swap_avail_head);
107 static DEFINE_SPINLOCK(swap_avail_lock);
108
109 struct swap_info_struct *swap_info[MAX_SWAPFILES];
110
111 static struct kmem_cache *swap_table_cachep;
112
113 static DEFINE_MUTEX(swapon_mutex);
114
115 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
116 /* Activity counter to indicate that a swapon or swapoff has occurred */
117 static atomic_t proc_poll_event = ATOMIC_INIT(0);
118
119 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
120
121 struct percpu_swap_cluster {
122 struct swap_info_struct *si[SWAP_NR_ORDERS];
123 unsigned long offset[SWAP_NR_ORDERS];
124 local_lock_t lock;
125 };
126
127 static DEFINE_PER_CPU(struct percpu_swap_cluster, percpu_swap_cluster) = {
128 .si = { NULL },
129 .offset = { SWAP_ENTRY_INVALID },
130 .lock = INIT_LOCAL_LOCK(),
131 };
132
133 /* May return NULL on invalid type, caller must check for NULL return */
swap_type_to_info(int type)134 static struct swap_info_struct *swap_type_to_info(int type)
135 {
136 if (type >= MAX_SWAPFILES)
137 return NULL;
138 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
139 }
140
141 /* May return NULL on invalid entry, caller must check for NULL return */
swap_entry_to_info(swp_entry_t entry)142 static struct swap_info_struct *swap_entry_to_info(swp_entry_t entry)
143 {
144 return swap_type_to_info(swp_type(entry));
145 }
146
swap_count(unsigned char ent)147 static inline unsigned char swap_count(unsigned char ent)
148 {
149 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
150 }
151
152 /*
153 * Use the second highest bit of inuse_pages counter as the indicator
154 * if one swap device is on the available plist, so the atomic can
155 * still be updated arithmetically while having special data embedded.
156 *
157 * inuse_pages counter is the only thing indicating if a device should
158 * be on avail_lists or not (except swapon / swapoff). By embedding the
159 * off-list bit in the atomic counter, updates no longer need any lock
160 * to check the list status.
161 *
162 * This bit will be set if the device is not on the plist and not
163 * usable, will be cleared if the device is on the plist.
164 */
165 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
166 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
swap_usage_in_pages(struct swap_info_struct * si)167 static long swap_usage_in_pages(struct swap_info_struct *si)
168 {
169 return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
170 }
171
172 /* Reclaim the swap entry anyway if possible */
173 #define TTRS_ANYWAY 0x1
174 /*
175 * Reclaim the swap entry if there are no more mappings of the
176 * corresponding page
177 */
178 #define TTRS_UNMAPPED 0x2
179 /* Reclaim the swap entry if swap is getting full */
180 #define TTRS_FULL 0x4
181
swap_only_has_cache(struct swap_info_struct * si,unsigned long offset,int nr_pages)182 static bool swap_only_has_cache(struct swap_info_struct *si,
183 unsigned long offset, int nr_pages)
184 {
185 unsigned char *map = si->swap_map + offset;
186 unsigned char *map_end = map + nr_pages;
187
188 do {
189 VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
190 if (*map != SWAP_HAS_CACHE)
191 return false;
192 } while (++map < map_end);
193
194 return true;
195 }
196
swap_is_last_map(struct swap_info_struct * si,unsigned long offset,int nr_pages,bool * has_cache)197 static bool swap_is_last_map(struct swap_info_struct *si,
198 unsigned long offset, int nr_pages, bool *has_cache)
199 {
200 unsigned char *map = si->swap_map + offset;
201 unsigned char *map_end = map + nr_pages;
202 unsigned char count = *map;
203
204 if (swap_count(count) != 1 && swap_count(count) != SWAP_MAP_SHMEM)
205 return false;
206
207 while (++map < map_end) {
208 if (*map != count)
209 return false;
210 }
211
212 *has_cache = !!(count & SWAP_HAS_CACHE);
213 return true;
214 }
215
216 /*
217 * returns number of pages in the folio that backs the swap entry. If positive,
218 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
219 * folio was associated with the swap entry.
220 */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)221 static int __try_to_reclaim_swap(struct swap_info_struct *si,
222 unsigned long offset, unsigned long flags)
223 {
224 const swp_entry_t entry = swp_entry(si->type, offset);
225 struct swap_cluster_info *ci;
226 struct folio *folio;
227 int ret, nr_pages;
228 bool need_reclaim;
229
230 again:
231 folio = swap_cache_get_folio(entry);
232 if (!folio)
233 return 0;
234
235 nr_pages = folio_nr_pages(folio);
236 ret = -nr_pages;
237
238 /*
239 * We hold a folio lock here. We have to use trylock for
240 * avoiding deadlock. This is a special case and you should
241 * use folio_free_swap() with explicit folio_lock() in usual
242 * operations.
243 */
244 if (!folio_trylock(folio))
245 goto out;
246
247 /*
248 * Offset could point to the middle of a large folio, or folio
249 * may no longer point to the expected offset before it's locked.
250 */
251 if (!folio_matches_swap_entry(folio, entry)) {
252 folio_unlock(folio);
253 folio_put(folio);
254 goto again;
255 }
256 offset = swp_offset(folio->swap);
257
258 need_reclaim = ((flags & TTRS_ANYWAY) ||
259 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
260 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
261 if (!need_reclaim || !folio_swapcache_freeable(folio))
262 goto out_unlock;
263
264 /*
265 * It's safe to delete the folio from swap cache only if the folio's
266 * swap_map is HAS_CACHE only, which means the slots have no page table
267 * reference or pending writeback, and can't be allocated to others.
268 */
269 ci = swap_cluster_lock(si, offset);
270 need_reclaim = swap_only_has_cache(si, offset, nr_pages);
271 swap_cluster_unlock(ci);
272 if (!need_reclaim)
273 goto out_unlock;
274
275 swap_cache_del_folio(folio);
276 folio_set_dirty(folio);
277 ret = nr_pages;
278 out_unlock:
279 folio_unlock(folio);
280 out:
281 folio_put(folio);
282 return ret;
283 }
284
first_se(struct swap_info_struct * sis)285 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
286 {
287 struct rb_node *rb = rb_first(&sis->swap_extent_root);
288 return rb_entry(rb, struct swap_extent, rb_node);
289 }
290
next_se(struct swap_extent * se)291 static inline struct swap_extent *next_se(struct swap_extent *se)
292 {
293 struct rb_node *rb = rb_next(&se->rb_node);
294 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
295 }
296
297 /*
298 * swapon tell device that all the old swap contents can be discarded,
299 * to allow the swap device to optimize its wear-levelling.
300 */
discard_swap(struct swap_info_struct * si)301 static int discard_swap(struct swap_info_struct *si)
302 {
303 struct swap_extent *se;
304 sector_t start_block;
305 sector_t nr_blocks;
306 int err = 0;
307
308 /* Do not discard the swap header page! */
309 se = first_se(si);
310 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
311 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
312 if (nr_blocks) {
313 err = blkdev_issue_discard(si->bdev, start_block,
314 nr_blocks, GFP_KERNEL);
315 if (err)
316 return err;
317 cond_resched();
318 }
319
320 for (se = next_se(se); se; se = next_se(se)) {
321 start_block = se->start_block << (PAGE_SHIFT - 9);
322 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
323
324 err = blkdev_issue_discard(si->bdev, start_block,
325 nr_blocks, GFP_KERNEL);
326 if (err)
327 break;
328
329 cond_resched();
330 }
331 return err; /* That will often be -EOPNOTSUPP */
332 }
333
334 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)335 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
336 {
337 struct swap_extent *se;
338 struct rb_node *rb;
339
340 rb = sis->swap_extent_root.rb_node;
341 while (rb) {
342 se = rb_entry(rb, struct swap_extent, rb_node);
343 if (offset < se->start_page)
344 rb = rb->rb_left;
345 else if (offset >= se->start_page + se->nr_pages)
346 rb = rb->rb_right;
347 else
348 return se;
349 }
350 /* It *must* be present */
351 BUG();
352 }
353
swap_folio_sector(struct folio * folio)354 sector_t swap_folio_sector(struct folio *folio)
355 {
356 struct swap_info_struct *sis = __swap_entry_to_info(folio->swap);
357 struct swap_extent *se;
358 sector_t sector;
359 pgoff_t offset;
360
361 offset = swp_offset(folio->swap);
362 se = offset_to_swap_extent(sis, offset);
363 sector = se->start_block + (offset - se->start_page);
364 return sector << (PAGE_SHIFT - 9);
365 }
366
367 /*
368 * swap allocation tell device that a cluster of swap can now be discarded,
369 * to allow the swap device to optimize its wear-levelling.
370 */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)371 static void discard_swap_cluster(struct swap_info_struct *si,
372 pgoff_t start_page, pgoff_t nr_pages)
373 {
374 struct swap_extent *se = offset_to_swap_extent(si, start_page);
375
376 while (nr_pages) {
377 pgoff_t offset = start_page - se->start_page;
378 sector_t start_block = se->start_block + offset;
379 sector_t nr_blocks = se->nr_pages - offset;
380
381 if (nr_blocks > nr_pages)
382 nr_blocks = nr_pages;
383 start_page += nr_blocks;
384 nr_pages -= nr_blocks;
385
386 start_block <<= PAGE_SHIFT - 9;
387 nr_blocks <<= PAGE_SHIFT - 9;
388 if (blkdev_issue_discard(si->bdev, start_block,
389 nr_blocks, GFP_NOIO))
390 break;
391
392 se = next_se(se);
393 }
394 }
395
396 #define LATENCY_LIMIT 256
397
cluster_is_empty(struct swap_cluster_info * info)398 static inline bool cluster_is_empty(struct swap_cluster_info *info)
399 {
400 return info->count == 0;
401 }
402
cluster_is_discard(struct swap_cluster_info * info)403 static inline bool cluster_is_discard(struct swap_cluster_info *info)
404 {
405 return info->flags == CLUSTER_FLAG_DISCARD;
406 }
407
cluster_table_is_alloced(struct swap_cluster_info * ci)408 static inline bool cluster_table_is_alloced(struct swap_cluster_info *ci)
409 {
410 return rcu_dereference_protected(ci->table, lockdep_is_held(&ci->lock));
411 }
412
cluster_is_usable(struct swap_cluster_info * ci,int order)413 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
414 {
415 if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
416 return false;
417 if (!cluster_table_is_alloced(ci))
418 return false;
419 if (!order)
420 return true;
421 return cluster_is_empty(ci) || order == ci->order;
422 }
423
cluster_index(struct swap_info_struct * si,struct swap_cluster_info * ci)424 static inline unsigned int cluster_index(struct swap_info_struct *si,
425 struct swap_cluster_info *ci)
426 {
427 return ci - si->cluster_info;
428 }
429
cluster_offset(struct swap_info_struct * si,struct swap_cluster_info * ci)430 static inline unsigned int cluster_offset(struct swap_info_struct *si,
431 struct swap_cluster_info *ci)
432 {
433 return cluster_index(si, ci) * SWAPFILE_CLUSTER;
434 }
435
swap_table_alloc(gfp_t gfp)436 static struct swap_table *swap_table_alloc(gfp_t gfp)
437 {
438 struct folio *folio;
439
440 if (!SWP_TABLE_USE_PAGE)
441 return kmem_cache_zalloc(swap_table_cachep, gfp);
442
443 folio = folio_alloc(gfp | __GFP_ZERO, 0);
444 if (folio)
445 return folio_address(folio);
446 return NULL;
447 }
448
swap_table_free_folio_rcu_cb(struct rcu_head * head)449 static void swap_table_free_folio_rcu_cb(struct rcu_head *head)
450 {
451 struct folio *folio;
452
453 folio = page_folio(container_of(head, struct page, rcu_head));
454 folio_put(folio);
455 }
456
swap_table_free(struct swap_table * table)457 static void swap_table_free(struct swap_table *table)
458 {
459 if (!SWP_TABLE_USE_PAGE) {
460 kmem_cache_free(swap_table_cachep, table);
461 return;
462 }
463
464 call_rcu(&(folio_page(virt_to_folio(table), 0)->rcu_head),
465 swap_table_free_folio_rcu_cb);
466 }
467
swap_cluster_free_table(struct swap_cluster_info * ci)468 static void swap_cluster_free_table(struct swap_cluster_info *ci)
469 {
470 unsigned int ci_off;
471 struct swap_table *table;
472
473 /* Only empty cluster's table is allow to be freed */
474 lockdep_assert_held(&ci->lock);
475 VM_WARN_ON_ONCE(!cluster_is_empty(ci));
476 for (ci_off = 0; ci_off < SWAPFILE_CLUSTER; ci_off++)
477 VM_WARN_ON_ONCE(!swp_tb_is_null(__swap_table_get(ci, ci_off)));
478 table = (void *)rcu_dereference_protected(ci->table, true);
479 rcu_assign_pointer(ci->table, NULL);
480
481 swap_table_free(table);
482 }
483
484 /*
485 * Allocate swap table for one cluster. Attempt an atomic allocation first,
486 * then fallback to sleeping allocation.
487 */
488 static struct swap_cluster_info *
swap_cluster_alloc_table(struct swap_info_struct * si,struct swap_cluster_info * ci)489 swap_cluster_alloc_table(struct swap_info_struct *si,
490 struct swap_cluster_info *ci)
491 {
492 struct swap_table *table;
493
494 /*
495 * Only cluster isolation from the allocator does table allocation.
496 * Swap allocator uses percpu clusters and holds the local lock.
497 */
498 lockdep_assert_held(&ci->lock);
499 lockdep_assert_held(&this_cpu_ptr(&percpu_swap_cluster)->lock);
500
501 /* The cluster must be free and was just isolated from the free list. */
502 VM_WARN_ON_ONCE(ci->flags || !cluster_is_empty(ci));
503
504 table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
505 if (table) {
506 rcu_assign_pointer(ci->table, table);
507 return ci;
508 }
509
510 /*
511 * Try a sleep allocation. Each isolated free cluster may cause
512 * a sleep allocation, but there is a limited number of them, so
513 * the potential recursive allocation is limited.
514 */
515 spin_unlock(&ci->lock);
516 if (!(si->flags & SWP_SOLIDSTATE))
517 spin_unlock(&si->global_cluster_lock);
518 local_unlock(&percpu_swap_cluster.lock);
519
520 table = swap_table_alloc(__GFP_HIGH | __GFP_NOMEMALLOC | GFP_KERNEL);
521
522 /*
523 * Back to atomic context. We might have migrated to a new CPU with a
524 * usable percpu cluster. But just keep using the isolated cluster to
525 * make things easier. Migration indicates a slight change of workload
526 * so using a new free cluster might not be a bad idea, and the worst
527 * could happen with ignoring the percpu cluster is fragmentation,
528 * which is acceptable since this fallback and race is rare.
529 */
530 local_lock(&percpu_swap_cluster.lock);
531 if (!(si->flags & SWP_SOLIDSTATE))
532 spin_lock(&si->global_cluster_lock);
533 spin_lock(&ci->lock);
534
535 /* Nothing except this helper should touch a dangling empty cluster. */
536 if (WARN_ON_ONCE(cluster_table_is_alloced(ci))) {
537 if (table)
538 swap_table_free(table);
539 return ci;
540 }
541
542 if (!table) {
543 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
544 spin_unlock(&ci->lock);
545 return NULL;
546 }
547
548 rcu_assign_pointer(ci->table, table);
549 return ci;
550 }
551
move_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,struct list_head * list,enum swap_cluster_flags new_flags)552 static void move_cluster(struct swap_info_struct *si,
553 struct swap_cluster_info *ci, struct list_head *list,
554 enum swap_cluster_flags new_flags)
555 {
556 VM_WARN_ON(ci->flags == new_flags);
557
558 BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
559 lockdep_assert_held(&ci->lock);
560
561 spin_lock(&si->lock);
562 if (ci->flags == CLUSTER_FLAG_NONE)
563 list_add_tail(&ci->list, list);
564 else
565 list_move_tail(&ci->list, list);
566 spin_unlock(&si->lock);
567 ci->flags = new_flags;
568 }
569
570 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,struct swap_cluster_info * ci)571 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
572 struct swap_cluster_info *ci)
573 {
574 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
575 move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
576 schedule_work(&si->discard_work);
577 }
578
__free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)579 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
580 {
581 swap_cluster_free_table(ci);
582 move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
583 ci->order = 0;
584 }
585
586 /*
587 * Isolate and lock the first cluster that is not contented on a list,
588 * clean its flag before taken off-list. Cluster flag must be in sync
589 * with list status, so cluster updaters can always know the cluster
590 * list status without touching si lock.
591 *
592 * Note it's possible that all clusters on a list are contented so
593 * this returns NULL for an non-empty list.
594 */
isolate_lock_cluster(struct swap_info_struct * si,struct list_head * list)595 static struct swap_cluster_info *isolate_lock_cluster(
596 struct swap_info_struct *si, struct list_head *list)
597 {
598 struct swap_cluster_info *ci, *found = NULL;
599
600 spin_lock(&si->lock);
601 list_for_each_entry(ci, list, list) {
602 if (!spin_trylock(&ci->lock))
603 continue;
604
605 /* We may only isolate and clear flags of following lists */
606 VM_BUG_ON(!ci->flags);
607 VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
608 ci->flags != CLUSTER_FLAG_FULL);
609
610 list_del(&ci->list);
611 ci->flags = CLUSTER_FLAG_NONE;
612 found = ci;
613 break;
614 }
615 spin_unlock(&si->lock);
616
617 if (found && !cluster_table_is_alloced(found)) {
618 /* Only an empty free cluster's swap table can be freed. */
619 VM_WARN_ON_ONCE(list != &si->free_clusters);
620 VM_WARN_ON_ONCE(!cluster_is_empty(found));
621 return swap_cluster_alloc_table(si, found);
622 }
623
624 return found;
625 }
626
627 /*
628 * Doing discard actually. After a cluster discard is finished, the cluster
629 * will be added to free cluster list. Discard cluster is a bit special as
630 * they don't participate in allocation or reclaim, so clusters marked as
631 * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
632 */
swap_do_scheduled_discard(struct swap_info_struct * si)633 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
634 {
635 struct swap_cluster_info *ci;
636 bool ret = false;
637 unsigned int idx;
638
639 spin_lock(&si->lock);
640 while (!list_empty(&si->discard_clusters)) {
641 ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
642 /*
643 * Delete the cluster from list to prepare for discard, but keep
644 * the CLUSTER_FLAG_DISCARD flag, percpu_swap_cluster could be
645 * pointing to it, or ran into by relocate_cluster.
646 */
647 list_del(&ci->list);
648 idx = cluster_index(si, ci);
649 spin_unlock(&si->lock);
650 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
651 SWAPFILE_CLUSTER);
652
653 spin_lock(&ci->lock);
654 /*
655 * Discard is done, clear its flags as it's off-list, then
656 * return the cluster to allocation list.
657 */
658 ci->flags = CLUSTER_FLAG_NONE;
659 __free_cluster(si, ci);
660 spin_unlock(&ci->lock);
661 ret = true;
662 spin_lock(&si->lock);
663 }
664 spin_unlock(&si->lock);
665 return ret;
666 }
667
swap_discard_work(struct work_struct * work)668 static void swap_discard_work(struct work_struct *work)
669 {
670 struct swap_info_struct *si;
671
672 si = container_of(work, struct swap_info_struct, discard_work);
673
674 swap_do_scheduled_discard(si);
675 }
676
swap_users_ref_free(struct percpu_ref * ref)677 static void swap_users_ref_free(struct percpu_ref *ref)
678 {
679 struct swap_info_struct *si;
680
681 si = container_of(ref, struct swap_info_struct, users);
682 complete(&si->comp);
683 }
684
685 /*
686 * Must be called after freeing if ci->count == 0, moves the cluster to free
687 * or discard list.
688 */
free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)689 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
690 {
691 VM_BUG_ON(ci->count != 0);
692 VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
693 lockdep_assert_held(&ci->lock);
694
695 /*
696 * If the swap is discardable, prepare discard the cluster
697 * instead of free it immediately. The cluster will be freed
698 * after discard.
699 */
700 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
701 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
702 swap_cluster_schedule_discard(si, ci);
703 return;
704 }
705
706 __free_cluster(si, ci);
707 }
708
709 /*
710 * Must be called after freeing if ci->count != 0, moves the cluster to
711 * nonfull list.
712 */
partial_free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)713 static void partial_free_cluster(struct swap_info_struct *si,
714 struct swap_cluster_info *ci)
715 {
716 VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
717 lockdep_assert_held(&ci->lock);
718
719 if (ci->flags != CLUSTER_FLAG_NONFULL)
720 move_cluster(si, ci, &si->nonfull_clusters[ci->order],
721 CLUSTER_FLAG_NONFULL);
722 }
723
724 /*
725 * Must be called after allocation, moves the cluster to full or frag list.
726 * Note: allocation doesn't acquire si lock, and may drop the ci lock for
727 * reclaim, so the cluster could be any where when called.
728 */
relocate_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)729 static void relocate_cluster(struct swap_info_struct *si,
730 struct swap_cluster_info *ci)
731 {
732 lockdep_assert_held(&ci->lock);
733
734 /* Discard cluster must remain off-list or on discard list */
735 if (cluster_is_discard(ci))
736 return;
737
738 if (!ci->count) {
739 if (ci->flags != CLUSTER_FLAG_FREE)
740 free_cluster(si, ci);
741 } else if (ci->count != SWAPFILE_CLUSTER) {
742 if (ci->flags != CLUSTER_FLAG_FRAG)
743 move_cluster(si, ci, &si->frag_clusters[ci->order],
744 CLUSTER_FLAG_FRAG);
745 } else {
746 if (ci->flags != CLUSTER_FLAG_FULL)
747 move_cluster(si, ci, &si->full_clusters,
748 CLUSTER_FLAG_FULL);
749 }
750 }
751
752 /*
753 * The cluster corresponding to @offset will be accounted as having one bad
754 * slot. The cluster will not be added to the free cluster list, and its
755 * usage counter will be increased by 1. Only used for initialization.
756 */
swap_cluster_setup_bad_slot(struct swap_cluster_info * cluster_info,unsigned long offset)757 static int swap_cluster_setup_bad_slot(struct swap_cluster_info *cluster_info,
758 unsigned long offset)
759 {
760 unsigned long idx = offset / SWAPFILE_CLUSTER;
761 struct swap_table *table;
762 struct swap_cluster_info *ci;
763
764 ci = cluster_info + idx;
765 if (!ci->table) {
766 table = swap_table_alloc(GFP_KERNEL);
767 if (!table)
768 return -ENOMEM;
769 rcu_assign_pointer(ci->table, table);
770 }
771
772 ci->count++;
773
774 WARN_ON(ci->count > SWAPFILE_CLUSTER);
775 WARN_ON(ci->flags);
776
777 return 0;
778 }
779
cluster_reclaim_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned long end)780 static bool cluster_reclaim_range(struct swap_info_struct *si,
781 struct swap_cluster_info *ci,
782 unsigned long start, unsigned long end)
783 {
784 unsigned char *map = si->swap_map;
785 unsigned long offset = start;
786 int nr_reclaim;
787
788 spin_unlock(&ci->lock);
789 do {
790 switch (READ_ONCE(map[offset])) {
791 case 0:
792 offset++;
793 break;
794 case SWAP_HAS_CACHE:
795 nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
796 if (nr_reclaim > 0)
797 offset += nr_reclaim;
798 else
799 goto out;
800 break;
801 default:
802 goto out;
803 }
804 } while (offset < end);
805 out:
806 spin_lock(&ci->lock);
807 /*
808 * Recheck the range no matter reclaim succeeded or not, the slot
809 * could have been be freed while we are not holding the lock.
810 */
811 for (offset = start; offset < end; offset++)
812 if (READ_ONCE(map[offset]))
813 return false;
814
815 return true;
816 }
817
cluster_scan_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned int nr_pages,bool * need_reclaim)818 static bool cluster_scan_range(struct swap_info_struct *si,
819 struct swap_cluster_info *ci,
820 unsigned long start, unsigned int nr_pages,
821 bool *need_reclaim)
822 {
823 unsigned long offset, end = start + nr_pages;
824 unsigned char *map = si->swap_map;
825
826 if (cluster_is_empty(ci))
827 return true;
828
829 for (offset = start; offset < end; offset++) {
830 switch (READ_ONCE(map[offset])) {
831 case 0:
832 continue;
833 case SWAP_HAS_CACHE:
834 if (!vm_swap_full())
835 return false;
836 *need_reclaim = true;
837 continue;
838 default:
839 return false;
840 }
841 }
842
843 return true;
844 }
845
846 /*
847 * Currently, the swap table is not used for count tracking, just
848 * do a sanity check here to ensure nothing leaked, so the swap
849 * table should be empty upon freeing.
850 */
swap_cluster_assert_table_empty(struct swap_cluster_info * ci,unsigned int start,unsigned int nr)851 static void swap_cluster_assert_table_empty(struct swap_cluster_info *ci,
852 unsigned int start, unsigned int nr)
853 {
854 unsigned int ci_off = start % SWAPFILE_CLUSTER;
855 unsigned int ci_end = ci_off + nr;
856 unsigned long swp_tb;
857
858 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
859 do {
860 swp_tb = __swap_table_get(ci, ci_off);
861 VM_WARN_ON_ONCE(!swp_tb_is_null(swp_tb));
862 } while (++ci_off < ci_end);
863 }
864 }
865
cluster_alloc_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned int start,unsigned char usage,unsigned int order)866 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
867 unsigned int start, unsigned char usage,
868 unsigned int order)
869 {
870 unsigned int nr_pages = 1 << order;
871
872 lockdep_assert_held(&ci->lock);
873
874 if (!(si->flags & SWP_WRITEOK))
875 return false;
876
877 /*
878 * The first allocation in a cluster makes the
879 * cluster exclusive to this order
880 */
881 if (cluster_is_empty(ci))
882 ci->order = order;
883
884 memset(si->swap_map + start, usage, nr_pages);
885 swap_cluster_assert_table_empty(ci, start, nr_pages);
886 swap_range_alloc(si, nr_pages);
887 ci->count += nr_pages;
888
889 return true;
890 }
891
892 /* Try use a new cluster for current CPU and allocate from it. */
alloc_swap_scan_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long offset,unsigned int order,unsigned char usage)893 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
894 struct swap_cluster_info *ci,
895 unsigned long offset,
896 unsigned int order,
897 unsigned char usage)
898 {
899 unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
900 unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
901 unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
902 unsigned int nr_pages = 1 << order;
903 bool need_reclaim, ret;
904
905 lockdep_assert_held(&ci->lock);
906
907 if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
908 goto out;
909
910 for (end -= nr_pages; offset <= end; offset += nr_pages) {
911 need_reclaim = false;
912 if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
913 continue;
914 if (need_reclaim) {
915 ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
916 /*
917 * Reclaim drops ci->lock and cluster could be used
918 * by another order. Not checking flag as off-list
919 * cluster has no flag set, and change of list
920 * won't cause fragmentation.
921 */
922 if (!cluster_is_usable(ci, order))
923 goto out;
924 if (cluster_is_empty(ci))
925 offset = start;
926 /* Reclaim failed but cluster is usable, try next */
927 if (!ret)
928 continue;
929 }
930 if (!cluster_alloc_range(si, ci, offset, usage, order))
931 break;
932 found = offset;
933 offset += nr_pages;
934 if (ci->count < SWAPFILE_CLUSTER && offset <= end)
935 next = offset;
936 break;
937 }
938 out:
939 relocate_cluster(si, ci);
940 swap_cluster_unlock(ci);
941 if (si->flags & SWP_SOLIDSTATE) {
942 this_cpu_write(percpu_swap_cluster.offset[order], next);
943 this_cpu_write(percpu_swap_cluster.si[order], si);
944 } else {
945 si->global_cluster->next[order] = next;
946 }
947 return found;
948 }
949
alloc_swap_scan_list(struct swap_info_struct * si,struct list_head * list,unsigned int order,unsigned char usage,bool scan_all)950 static unsigned int alloc_swap_scan_list(struct swap_info_struct *si,
951 struct list_head *list,
952 unsigned int order,
953 unsigned char usage,
954 bool scan_all)
955 {
956 unsigned int found = SWAP_ENTRY_INVALID;
957
958 do {
959 struct swap_cluster_info *ci = isolate_lock_cluster(si, list);
960 unsigned long offset;
961
962 if (!ci)
963 break;
964 offset = cluster_offset(si, ci);
965 found = alloc_swap_scan_cluster(si, ci, offset, order, usage);
966 if (found)
967 break;
968 } while (scan_all);
969
970 return found;
971 }
972
swap_reclaim_full_clusters(struct swap_info_struct * si,bool force)973 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
974 {
975 long to_scan = 1;
976 unsigned long offset, end;
977 struct swap_cluster_info *ci;
978 unsigned char *map = si->swap_map;
979 int nr_reclaim;
980
981 if (force)
982 to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
983
984 while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
985 offset = cluster_offset(si, ci);
986 end = min(si->max, offset + SWAPFILE_CLUSTER);
987 to_scan--;
988
989 while (offset < end) {
990 if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
991 spin_unlock(&ci->lock);
992 nr_reclaim = __try_to_reclaim_swap(si, offset,
993 TTRS_ANYWAY);
994 spin_lock(&ci->lock);
995 if (nr_reclaim) {
996 offset += abs(nr_reclaim);
997 continue;
998 }
999 }
1000 offset++;
1001 }
1002
1003 /* in case no swap cache is reclaimed */
1004 if (ci->flags == CLUSTER_FLAG_NONE)
1005 relocate_cluster(si, ci);
1006
1007 swap_cluster_unlock(ci);
1008 if (to_scan <= 0)
1009 break;
1010 }
1011 }
1012
swap_reclaim_work(struct work_struct * work)1013 static void swap_reclaim_work(struct work_struct *work)
1014 {
1015 struct swap_info_struct *si;
1016
1017 si = container_of(work, struct swap_info_struct, reclaim_work);
1018
1019 swap_reclaim_full_clusters(si, true);
1020 }
1021
1022 /*
1023 * Try to allocate swap entries with specified order and try set a new
1024 * cluster for current CPU too.
1025 */
cluster_alloc_swap_entry(struct swap_info_struct * si,int order,unsigned char usage)1026 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
1027 unsigned char usage)
1028 {
1029 struct swap_cluster_info *ci;
1030 unsigned int offset = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
1031
1032 /*
1033 * Swapfile is not block device so unable
1034 * to allocate large entries.
1035 */
1036 if (order && !(si->flags & SWP_BLKDEV))
1037 return 0;
1038
1039 if (!(si->flags & SWP_SOLIDSTATE)) {
1040 /* Serialize HDD SWAP allocation for each device. */
1041 spin_lock(&si->global_cluster_lock);
1042 offset = si->global_cluster->next[order];
1043 if (offset == SWAP_ENTRY_INVALID)
1044 goto new_cluster;
1045
1046 ci = swap_cluster_lock(si, offset);
1047 /* Cluster could have been used by another order */
1048 if (cluster_is_usable(ci, order)) {
1049 if (cluster_is_empty(ci))
1050 offset = cluster_offset(si, ci);
1051 found = alloc_swap_scan_cluster(si, ci, offset,
1052 order, usage);
1053 } else {
1054 swap_cluster_unlock(ci);
1055 }
1056 if (found)
1057 goto done;
1058 }
1059
1060 new_cluster:
1061 /*
1062 * If the device need discard, prefer new cluster over nonfull
1063 * to spread out the writes.
1064 */
1065 if (si->flags & SWP_PAGE_DISCARD) {
1066 found = alloc_swap_scan_list(si, &si->free_clusters, order, usage,
1067 false);
1068 if (found)
1069 goto done;
1070 }
1071
1072 if (order < PMD_ORDER) {
1073 found = alloc_swap_scan_list(si, &si->nonfull_clusters[order],
1074 order, usage, true);
1075 if (found)
1076 goto done;
1077 }
1078
1079 if (!(si->flags & SWP_PAGE_DISCARD)) {
1080 found = alloc_swap_scan_list(si, &si->free_clusters, order, usage,
1081 false);
1082 if (found)
1083 goto done;
1084 }
1085
1086 /* Try reclaim full clusters if free and nonfull lists are drained */
1087 if (vm_swap_full())
1088 swap_reclaim_full_clusters(si, false);
1089
1090 if (order < PMD_ORDER) {
1091 /*
1092 * Scan only one fragment cluster is good enough. Order 0
1093 * allocation will surely success, and large allocation
1094 * failure is not critical. Scanning one cluster still
1095 * keeps the list rotated and reclaimed (for HAS_CACHE).
1096 */
1097 found = alloc_swap_scan_list(si, &si->frag_clusters[order], order,
1098 usage, false);
1099 if (found)
1100 goto done;
1101 }
1102
1103 if (order)
1104 goto done;
1105
1106 /* Order 0 stealing from higher order */
1107 for (int o = 1; o < SWAP_NR_ORDERS; o++) {
1108 /*
1109 * Clusters here have at least one usable slots and can't fail order 0
1110 * allocation, but reclaim may drop si->lock and race with another user.
1111 */
1112 found = alloc_swap_scan_list(si, &si->frag_clusters[o],
1113 0, usage, true);
1114 if (found)
1115 goto done;
1116
1117 found = alloc_swap_scan_list(si, &si->nonfull_clusters[o],
1118 0, usage, true);
1119 if (found)
1120 goto done;
1121 }
1122 done:
1123 if (!(si->flags & SWP_SOLIDSTATE))
1124 spin_unlock(&si->global_cluster_lock);
1125
1126 return found;
1127 }
1128
1129 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
del_from_avail_list(struct swap_info_struct * si,bool swapoff)1130 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
1131 {
1132 unsigned long pages;
1133
1134 spin_lock(&swap_avail_lock);
1135
1136 if (swapoff) {
1137 /*
1138 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1139 * swapoff here so it's synchronized by both si->lock and
1140 * swap_avail_lock, to ensure the result can be seen by
1141 * add_to_avail_list.
1142 */
1143 lockdep_assert_held(&si->lock);
1144 si->flags &= ~SWP_WRITEOK;
1145 atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1146 } else {
1147 /*
1148 * If not called by swapoff, take it off-list only if it's
1149 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1150 * si->inuse_pages == pages), any concurrent slot freeing,
1151 * or device already removed from plist by someone else
1152 * will make this return false.
1153 */
1154 pages = si->pages;
1155 if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1156 pages | SWAP_USAGE_OFFLIST_BIT))
1157 goto skip;
1158 }
1159
1160 plist_del(&si->avail_list, &swap_avail_head);
1161
1162 skip:
1163 spin_unlock(&swap_avail_lock);
1164 }
1165
1166 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
add_to_avail_list(struct swap_info_struct * si,bool swapon)1167 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1168 {
1169 long val;
1170 unsigned long pages;
1171
1172 spin_lock(&swap_avail_lock);
1173
1174 /* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1175 if (swapon) {
1176 lockdep_assert_held(&si->lock);
1177 si->flags |= SWP_WRITEOK;
1178 } else {
1179 if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1180 goto skip;
1181 }
1182
1183 if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1184 goto skip;
1185
1186 val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1187
1188 /*
1189 * When device is full and device is on the plist, only one updater will
1190 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1191 * that updater happen to be here, just skip adding.
1192 */
1193 pages = si->pages;
1194 if (val == pages) {
1195 /* Just like the cmpxchg in del_from_avail_list */
1196 if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1197 pages | SWAP_USAGE_OFFLIST_BIT))
1198 goto skip;
1199 }
1200
1201 plist_add(&si->avail_list, &swap_avail_head);
1202
1203 skip:
1204 spin_unlock(&swap_avail_lock);
1205 }
1206
1207 /*
1208 * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1209 * within each cluster, so the total contribution to the global counter should
1210 * always be positive and cannot exceed the total number of usable slots.
1211 */
swap_usage_add(struct swap_info_struct * si,unsigned int nr_entries)1212 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1213 {
1214 long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1215
1216 /*
1217 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1218 * remove it from the plist.
1219 */
1220 if (unlikely(val == si->pages)) {
1221 del_from_avail_list(si, false);
1222 return true;
1223 }
1224
1225 return false;
1226 }
1227
swap_usage_sub(struct swap_info_struct * si,unsigned int nr_entries)1228 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1229 {
1230 long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1231
1232 /*
1233 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1234 * add it to the plist.
1235 */
1236 if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1237 add_to_avail_list(si, false);
1238 }
1239
swap_range_alloc(struct swap_info_struct * si,unsigned int nr_entries)1240 static void swap_range_alloc(struct swap_info_struct *si,
1241 unsigned int nr_entries)
1242 {
1243 if (swap_usage_add(si, nr_entries)) {
1244 if (vm_swap_full())
1245 schedule_work(&si->reclaim_work);
1246 }
1247 atomic_long_sub(nr_entries, &nr_swap_pages);
1248 }
1249
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)1250 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1251 unsigned int nr_entries)
1252 {
1253 unsigned long begin = offset;
1254 unsigned long end = offset + nr_entries - 1;
1255 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1256 unsigned int i;
1257
1258 /*
1259 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1260 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1261 */
1262 for (i = 0; i < nr_entries; i++) {
1263 clear_bit(offset + i, si->zeromap);
1264 zswap_invalidate(swp_entry(si->type, offset + i));
1265 }
1266
1267 if (si->flags & SWP_BLKDEV)
1268 swap_slot_free_notify =
1269 si->bdev->bd_disk->fops->swap_slot_free_notify;
1270 else
1271 swap_slot_free_notify = NULL;
1272 while (offset <= end) {
1273 arch_swap_invalidate_page(si->type, offset);
1274 if (swap_slot_free_notify)
1275 swap_slot_free_notify(si->bdev, offset);
1276 offset++;
1277 }
1278 __swap_cache_clear_shadow(swp_entry(si->type, begin), nr_entries);
1279
1280 /*
1281 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1282 * only after the above cleanups are done.
1283 */
1284 smp_wmb();
1285 atomic_long_add(nr_entries, &nr_swap_pages);
1286 swap_usage_sub(si, nr_entries);
1287 }
1288
get_swap_device_info(struct swap_info_struct * si)1289 static bool get_swap_device_info(struct swap_info_struct *si)
1290 {
1291 if (!percpu_ref_tryget_live(&si->users))
1292 return false;
1293 /*
1294 * Guarantee the si->users are checked before accessing other
1295 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1296 * up to dated.
1297 *
1298 * Paired with the spin_unlock() after setup_swap_info() in
1299 * enable_swap_info(), and smp_wmb() in swapoff.
1300 */
1301 smp_rmb();
1302 return true;
1303 }
1304
1305 /*
1306 * Fast path try to get swap entries with specified order from current
1307 * CPU's swap entry pool (a cluster).
1308 */
swap_alloc_fast(swp_entry_t * entry,int order)1309 static bool swap_alloc_fast(swp_entry_t *entry,
1310 int order)
1311 {
1312 struct swap_cluster_info *ci;
1313 struct swap_info_struct *si;
1314 unsigned int offset, found = SWAP_ENTRY_INVALID;
1315
1316 /*
1317 * Once allocated, swap_info_struct will never be completely freed,
1318 * so checking it's liveness by get_swap_device_info is enough.
1319 */
1320 si = this_cpu_read(percpu_swap_cluster.si[order]);
1321 offset = this_cpu_read(percpu_swap_cluster.offset[order]);
1322 if (!si || !offset || !get_swap_device_info(si))
1323 return false;
1324
1325 ci = swap_cluster_lock(si, offset);
1326 if (cluster_is_usable(ci, order)) {
1327 if (cluster_is_empty(ci))
1328 offset = cluster_offset(si, ci);
1329 found = alloc_swap_scan_cluster(si, ci, offset, order, SWAP_HAS_CACHE);
1330 if (found)
1331 *entry = swp_entry(si->type, found);
1332 } else {
1333 swap_cluster_unlock(ci);
1334 }
1335
1336 put_swap_device(si);
1337 return !!found;
1338 }
1339
1340 /* Rotate the device and switch to a new cluster */
swap_alloc_slow(swp_entry_t * entry,int order)1341 static void swap_alloc_slow(swp_entry_t *entry,
1342 int order)
1343 {
1344 unsigned long offset;
1345 struct swap_info_struct *si, *next;
1346
1347 spin_lock(&swap_avail_lock);
1348 start_over:
1349 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
1350 /* Rotate the device and switch to a new cluster */
1351 plist_requeue(&si->avail_list, &swap_avail_head);
1352 spin_unlock(&swap_avail_lock);
1353 if (get_swap_device_info(si)) {
1354 offset = cluster_alloc_swap_entry(si, order, SWAP_HAS_CACHE);
1355 put_swap_device(si);
1356 if (offset) {
1357 *entry = swp_entry(si->type, offset);
1358 return;
1359 }
1360 if (order)
1361 return;
1362 }
1363
1364 spin_lock(&swap_avail_lock);
1365 /*
1366 * if we got here, it's likely that si was almost full before,
1367 * multiple callers probably all tried to get a page from the
1368 * same si and it filled up before we could get one; or, the si
1369 * filled up between us dropping swap_avail_lock.
1370 * Since we dropped the swap_avail_lock, the swap_avail_list
1371 * may have been modified; so if next is still in the
1372 * swap_avail_head list then try it, otherwise start over if we
1373 * have not gotten any slots.
1374 */
1375 if (plist_node_empty(&next->avail_list))
1376 goto start_over;
1377 }
1378 spin_unlock(&swap_avail_lock);
1379 }
1380
1381 /*
1382 * Discard pending clusters in a synchronized way when under high pressure.
1383 * Return: true if any cluster is discarded.
1384 */
swap_sync_discard(void)1385 static bool swap_sync_discard(void)
1386 {
1387 bool ret = false;
1388 struct swap_info_struct *si, *next;
1389
1390 spin_lock(&swap_lock);
1391 start_over:
1392 plist_for_each_entry_safe(si, next, &swap_active_head, list) {
1393 spin_unlock(&swap_lock);
1394 if (get_swap_device_info(si)) {
1395 if (si->flags & SWP_PAGE_DISCARD)
1396 ret = swap_do_scheduled_discard(si);
1397 put_swap_device(si);
1398 }
1399 if (ret)
1400 return true;
1401
1402 spin_lock(&swap_lock);
1403 if (plist_node_empty(&next->list))
1404 goto start_over;
1405 }
1406 spin_unlock(&swap_lock);
1407
1408 return false;
1409 }
1410
1411 /**
1412 * folio_alloc_swap - allocate swap space for a folio
1413 * @folio: folio we want to move to swap
1414 *
1415 * Allocate swap space for the folio and add the folio to the
1416 * swap cache.
1417 *
1418 * Context: Caller needs to hold the folio lock.
1419 * Return: Whether the folio was added to the swap cache.
1420 */
folio_alloc_swap(struct folio * folio)1421 int folio_alloc_swap(struct folio *folio)
1422 {
1423 unsigned int order = folio_order(folio);
1424 unsigned int size = 1 << order;
1425 swp_entry_t entry = {};
1426
1427 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1428 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
1429
1430 if (order) {
1431 /*
1432 * Reject large allocation when THP_SWAP is disabled,
1433 * the caller should split the folio and try again.
1434 */
1435 if (!IS_ENABLED(CONFIG_THP_SWAP))
1436 return -EAGAIN;
1437
1438 /*
1439 * Allocation size should never exceed cluster size
1440 * (HPAGE_PMD_SIZE).
1441 */
1442 if (size > SWAPFILE_CLUSTER) {
1443 VM_WARN_ON_ONCE(1);
1444 return -EINVAL;
1445 }
1446 }
1447
1448 again:
1449 local_lock(&percpu_swap_cluster.lock);
1450 if (!swap_alloc_fast(&entry, order))
1451 swap_alloc_slow(&entry, order);
1452 local_unlock(&percpu_swap_cluster.lock);
1453
1454 if (unlikely(!order && !entry.val)) {
1455 if (swap_sync_discard())
1456 goto again;
1457 }
1458
1459 /* Need to call this even if allocation failed, for MEMCG_SWAP_FAIL. */
1460 if (mem_cgroup_try_charge_swap(folio, entry))
1461 goto out_free;
1462
1463 if (!entry.val)
1464 return -ENOMEM;
1465
1466 swap_cache_add_folio(folio, entry, NULL);
1467
1468 return 0;
1469
1470 out_free:
1471 put_swap_folio(folio, entry);
1472 return -ENOMEM;
1473 }
1474
_swap_info_get(swp_entry_t entry)1475 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1476 {
1477 struct swap_info_struct *si;
1478 unsigned long offset;
1479
1480 if (!entry.val)
1481 goto out;
1482 si = swap_entry_to_info(entry);
1483 if (!si)
1484 goto bad_nofile;
1485 if (data_race(!(si->flags & SWP_USED)))
1486 goto bad_device;
1487 offset = swp_offset(entry);
1488 if (offset >= si->max)
1489 goto bad_offset;
1490 if (data_race(!si->swap_map[swp_offset(entry)]))
1491 goto bad_free;
1492 return si;
1493
1494 bad_free:
1495 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1496 goto out;
1497 bad_offset:
1498 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1499 goto out;
1500 bad_device:
1501 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1502 goto out;
1503 bad_nofile:
1504 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1505 out:
1506 return NULL;
1507 }
1508
swap_entry_put_locked(struct swap_info_struct * si,struct swap_cluster_info * ci,swp_entry_t entry,unsigned char usage)1509 static unsigned char swap_entry_put_locked(struct swap_info_struct *si,
1510 struct swap_cluster_info *ci,
1511 swp_entry_t entry,
1512 unsigned char usage)
1513 {
1514 unsigned long offset = swp_offset(entry);
1515 unsigned char count;
1516 unsigned char has_cache;
1517
1518 count = si->swap_map[offset];
1519
1520 has_cache = count & SWAP_HAS_CACHE;
1521 count &= ~SWAP_HAS_CACHE;
1522
1523 if (usage == SWAP_HAS_CACHE) {
1524 VM_BUG_ON(!has_cache);
1525 has_cache = 0;
1526 } else if (count == SWAP_MAP_SHMEM) {
1527 /*
1528 * Or we could insist on shmem.c using a special
1529 * swap_shmem_free() and free_shmem_swap_and_cache()...
1530 */
1531 count = 0;
1532 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1533 if (count == COUNT_CONTINUED) {
1534 if (swap_count_continued(si, offset, count))
1535 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1536 else
1537 count = SWAP_MAP_MAX;
1538 } else
1539 count--;
1540 }
1541
1542 usage = count | has_cache;
1543 if (usage)
1544 WRITE_ONCE(si->swap_map[offset], usage);
1545 else
1546 swap_entries_free(si, ci, entry, 1);
1547
1548 return usage;
1549 }
1550
1551 /*
1552 * When we get a swap entry, if there aren't some other ways to
1553 * prevent swapoff, such as the folio in swap cache is locked, RCU
1554 * reader side is locked, etc., the swap entry may become invalid
1555 * because of swapoff. Then, we need to enclose all swap related
1556 * functions with get_swap_device() and put_swap_device(), unless the
1557 * swap functions call get/put_swap_device() by themselves.
1558 *
1559 * RCU reader side lock (including any spinlock) is sufficient to
1560 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1561 * before freeing data structures.
1562 *
1563 * Check whether swap entry is valid in the swap device. If so,
1564 * return pointer to swap_info_struct, and keep the swap entry valid
1565 * via preventing the swap device from being swapoff, until
1566 * put_swap_device() is called. Otherwise return NULL.
1567 *
1568 * Notice that swapoff or swapoff+swapon can still happen before the
1569 * percpu_ref_tryget_live() in get_swap_device() or after the
1570 * percpu_ref_put() in put_swap_device() if there isn't any other way
1571 * to prevent swapoff. The caller must be prepared for that. For
1572 * example, the following situation is possible.
1573 *
1574 * CPU1 CPU2
1575 * do_swap_page()
1576 * ... swapoff+swapon
1577 * __read_swap_cache_async()
1578 * swapcache_prepare()
1579 * __swap_duplicate()
1580 * // check swap_map
1581 * // verify PTE not changed
1582 *
1583 * In __swap_duplicate(), the swap_map need to be checked before
1584 * changing partly because the specified swap entry may be for another
1585 * swap device which has been swapoff. And in do_swap_page(), after
1586 * the page is read from the swap device, the PTE is verified not
1587 * changed with the page table locked to check whether the swap device
1588 * has been swapoff or swapoff+swapon.
1589 */
get_swap_device(swp_entry_t entry)1590 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1591 {
1592 struct swap_info_struct *si;
1593 unsigned long offset;
1594
1595 if (!entry.val)
1596 goto out;
1597 si = swap_entry_to_info(entry);
1598 if (!si)
1599 goto bad_nofile;
1600 if (!get_swap_device_info(si))
1601 goto out;
1602 offset = swp_offset(entry);
1603 if (offset >= si->max)
1604 goto put_out;
1605
1606 return si;
1607 bad_nofile:
1608 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1609 out:
1610 return NULL;
1611 put_out:
1612 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1613 percpu_ref_put(&si->users);
1614 return NULL;
1615 }
1616
swap_entries_put_cache(struct swap_info_struct * si,swp_entry_t entry,int nr)1617 static void swap_entries_put_cache(struct swap_info_struct *si,
1618 swp_entry_t entry, int nr)
1619 {
1620 unsigned long offset = swp_offset(entry);
1621 struct swap_cluster_info *ci;
1622
1623 ci = swap_cluster_lock(si, offset);
1624 if (swap_only_has_cache(si, offset, nr)) {
1625 swap_entries_free(si, ci, entry, nr);
1626 } else {
1627 for (int i = 0; i < nr; i++, entry.val++)
1628 swap_entry_put_locked(si, ci, entry, SWAP_HAS_CACHE);
1629 }
1630 swap_cluster_unlock(ci);
1631 }
1632
swap_entries_put_map(struct swap_info_struct * si,swp_entry_t entry,int nr)1633 static bool swap_entries_put_map(struct swap_info_struct *si,
1634 swp_entry_t entry, int nr)
1635 {
1636 unsigned long offset = swp_offset(entry);
1637 struct swap_cluster_info *ci;
1638 bool has_cache = false;
1639 unsigned char count;
1640 int i;
1641
1642 if (nr <= 1)
1643 goto fallback;
1644 count = swap_count(data_race(si->swap_map[offset]));
1645 if (count != 1 && count != SWAP_MAP_SHMEM)
1646 goto fallback;
1647
1648 ci = swap_cluster_lock(si, offset);
1649 if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1650 goto locked_fallback;
1651 }
1652 if (!has_cache)
1653 swap_entries_free(si, ci, entry, nr);
1654 else
1655 for (i = 0; i < nr; i++)
1656 WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1657 swap_cluster_unlock(ci);
1658
1659 return has_cache;
1660
1661 fallback:
1662 ci = swap_cluster_lock(si, offset);
1663 locked_fallback:
1664 for (i = 0; i < nr; i++, entry.val++) {
1665 count = swap_entry_put_locked(si, ci, entry, 1);
1666 if (count == SWAP_HAS_CACHE)
1667 has_cache = true;
1668 }
1669 swap_cluster_unlock(ci);
1670 return has_cache;
1671 }
1672
1673 /*
1674 * Only functions with "_nr" suffix are able to free entries spanning
1675 * cross multi clusters, so ensure the range is within a single cluster
1676 * when freeing entries with functions without "_nr" suffix.
1677 */
swap_entries_put_map_nr(struct swap_info_struct * si,swp_entry_t entry,int nr)1678 static bool swap_entries_put_map_nr(struct swap_info_struct *si,
1679 swp_entry_t entry, int nr)
1680 {
1681 int cluster_nr, cluster_rest;
1682 unsigned long offset = swp_offset(entry);
1683 bool has_cache = false;
1684
1685 cluster_rest = SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER;
1686 while (nr) {
1687 cluster_nr = min(nr, cluster_rest);
1688 has_cache |= swap_entries_put_map(si, entry, cluster_nr);
1689 cluster_rest = SWAPFILE_CLUSTER;
1690 nr -= cluster_nr;
1691 entry.val += cluster_nr;
1692 }
1693
1694 return has_cache;
1695 }
1696
1697 /*
1698 * Check if it's the last ref of swap entry in the freeing path.
1699 * Qualified value includes 1, SWAP_HAS_CACHE or SWAP_MAP_SHMEM.
1700 */
swap_is_last_ref(unsigned char count)1701 static inline bool __maybe_unused swap_is_last_ref(unsigned char count)
1702 {
1703 return (count == SWAP_HAS_CACHE) || (count == 1) ||
1704 (count == SWAP_MAP_SHMEM);
1705 }
1706
1707 /*
1708 * Drop the last ref of swap entries, caller have to ensure all entries
1709 * belong to the same cgroup and cluster.
1710 */
swap_entries_free(struct swap_info_struct * si,struct swap_cluster_info * ci,swp_entry_t entry,unsigned int nr_pages)1711 static void swap_entries_free(struct swap_info_struct *si,
1712 struct swap_cluster_info *ci,
1713 swp_entry_t entry, unsigned int nr_pages)
1714 {
1715 unsigned long offset = swp_offset(entry);
1716 unsigned char *map = si->swap_map + offset;
1717 unsigned char *map_end = map + nr_pages;
1718
1719 /* It should never free entries across different clusters */
1720 VM_BUG_ON(ci != __swap_offset_to_cluster(si, offset + nr_pages - 1));
1721 VM_BUG_ON(cluster_is_empty(ci));
1722 VM_BUG_ON(ci->count < nr_pages);
1723
1724 ci->count -= nr_pages;
1725 do {
1726 VM_BUG_ON(!swap_is_last_ref(*map));
1727 *map = 0;
1728 } while (++map < map_end);
1729
1730 mem_cgroup_uncharge_swap(entry, nr_pages);
1731 swap_range_free(si, offset, nr_pages);
1732 swap_cluster_assert_table_empty(ci, offset, nr_pages);
1733
1734 if (!ci->count)
1735 free_cluster(si, ci);
1736 else
1737 partial_free_cluster(si, ci);
1738 }
1739
1740 /*
1741 * Caller has made sure that the swap device corresponding to entry
1742 * is still around or has not been recycled.
1743 */
swap_free_nr(swp_entry_t entry,int nr_pages)1744 void swap_free_nr(swp_entry_t entry, int nr_pages)
1745 {
1746 int nr;
1747 struct swap_info_struct *sis;
1748 unsigned long offset = swp_offset(entry);
1749
1750 sis = _swap_info_get(entry);
1751 if (!sis)
1752 return;
1753
1754 while (nr_pages) {
1755 nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1756 swap_entries_put_map(sis, swp_entry(sis->type, offset), nr);
1757 offset += nr;
1758 nr_pages -= nr;
1759 }
1760 }
1761
1762 /*
1763 * Called after dropping swapcache to decrease refcnt to swap entries.
1764 */
put_swap_folio(struct folio * folio,swp_entry_t entry)1765 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1766 {
1767 struct swap_info_struct *si;
1768 int size = 1 << swap_entry_order(folio_order(folio));
1769
1770 si = _swap_info_get(entry);
1771 if (!si)
1772 return;
1773
1774 swap_entries_put_cache(si, entry, size);
1775 }
1776
__swap_count(swp_entry_t entry)1777 int __swap_count(swp_entry_t entry)
1778 {
1779 struct swap_info_struct *si = __swap_entry_to_info(entry);
1780 pgoff_t offset = swp_offset(entry);
1781
1782 return swap_count(si->swap_map[offset]);
1783 }
1784
1785 /*
1786 * How many references to @entry are currently swapped out?
1787 * This does not give an exact answer when swap count is continued,
1788 * but does include the high COUNT_CONTINUED flag to allow for that.
1789 */
swap_entry_swapped(struct swap_info_struct * si,swp_entry_t entry)1790 bool swap_entry_swapped(struct swap_info_struct *si, swp_entry_t entry)
1791 {
1792 pgoff_t offset = swp_offset(entry);
1793 struct swap_cluster_info *ci;
1794 int count;
1795
1796 ci = swap_cluster_lock(si, offset);
1797 count = swap_count(si->swap_map[offset]);
1798 swap_cluster_unlock(ci);
1799 return !!count;
1800 }
1801
1802 /*
1803 * How many references to @entry are currently swapped out?
1804 * This considers COUNT_CONTINUED so it returns exact answer.
1805 */
swp_swapcount(swp_entry_t entry)1806 int swp_swapcount(swp_entry_t entry)
1807 {
1808 int count, tmp_count, n;
1809 struct swap_info_struct *si;
1810 struct swap_cluster_info *ci;
1811 struct page *page;
1812 pgoff_t offset;
1813 unsigned char *map;
1814
1815 si = _swap_info_get(entry);
1816 if (!si)
1817 return 0;
1818
1819 offset = swp_offset(entry);
1820
1821 ci = swap_cluster_lock(si, offset);
1822
1823 count = swap_count(si->swap_map[offset]);
1824 if (!(count & COUNT_CONTINUED))
1825 goto out;
1826
1827 count &= ~COUNT_CONTINUED;
1828 n = SWAP_MAP_MAX + 1;
1829
1830 page = vmalloc_to_page(si->swap_map + offset);
1831 offset &= ~PAGE_MASK;
1832 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1833
1834 do {
1835 page = list_next_entry(page, lru);
1836 map = kmap_local_page(page);
1837 tmp_count = map[offset];
1838 kunmap_local(map);
1839
1840 count += (tmp_count & ~COUNT_CONTINUED) * n;
1841 n *= (SWAP_CONT_MAX + 1);
1842 } while (tmp_count & COUNT_CONTINUED);
1843 out:
1844 swap_cluster_unlock(ci);
1845 return count;
1846 }
1847
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry,int order)1848 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1849 swp_entry_t entry, int order)
1850 {
1851 struct swap_cluster_info *ci;
1852 unsigned char *map = si->swap_map;
1853 unsigned int nr_pages = 1 << order;
1854 unsigned long roffset = swp_offset(entry);
1855 unsigned long offset = round_down(roffset, nr_pages);
1856 int i;
1857 bool ret = false;
1858
1859 ci = swap_cluster_lock(si, offset);
1860 if (nr_pages == 1) {
1861 if (swap_count(map[roffset]))
1862 ret = true;
1863 goto unlock_out;
1864 }
1865 for (i = 0; i < nr_pages; i++) {
1866 if (swap_count(map[offset + i])) {
1867 ret = true;
1868 break;
1869 }
1870 }
1871 unlock_out:
1872 swap_cluster_unlock(ci);
1873 return ret;
1874 }
1875
folio_swapped(struct folio * folio)1876 static bool folio_swapped(struct folio *folio)
1877 {
1878 swp_entry_t entry = folio->swap;
1879 struct swap_info_struct *si = _swap_info_get(entry);
1880
1881 if (!si)
1882 return false;
1883
1884 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1885 return swap_entry_swapped(si, entry);
1886
1887 return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1888 }
1889
folio_swapcache_freeable(struct folio * folio)1890 static bool folio_swapcache_freeable(struct folio *folio)
1891 {
1892 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1893
1894 if (!folio_test_swapcache(folio))
1895 return false;
1896 if (folio_test_writeback(folio))
1897 return false;
1898
1899 /*
1900 * Once hibernation has begun to create its image of memory,
1901 * there's a danger that one of the calls to folio_free_swap()
1902 * - most probably a call from __try_to_reclaim_swap() while
1903 * hibernation is allocating its own swap pages for the image,
1904 * but conceivably even a call from memory reclaim - will free
1905 * the swap from a folio which has already been recorded in the
1906 * image as a clean swapcache folio, and then reuse its swap for
1907 * another page of the image. On waking from hibernation, the
1908 * original folio might be freed under memory pressure, then
1909 * later read back in from swap, now with the wrong data.
1910 *
1911 * Hibernation suspends storage while it is writing the image
1912 * to disk so check that here.
1913 */
1914 if (pm_suspended_storage())
1915 return false;
1916
1917 return true;
1918 }
1919
1920 /**
1921 * folio_free_swap() - Free the swap space used for this folio.
1922 * @folio: The folio to remove.
1923 *
1924 * If swap is getting full, or if there are no more mappings of this folio,
1925 * then call folio_free_swap to free its swap space.
1926 *
1927 * Return: true if we were able to release the swap space.
1928 */
folio_free_swap(struct folio * folio)1929 bool folio_free_swap(struct folio *folio)
1930 {
1931 if (!folio_swapcache_freeable(folio))
1932 return false;
1933 if (folio_swapped(folio))
1934 return false;
1935
1936 swap_cache_del_folio(folio);
1937 folio_set_dirty(folio);
1938 return true;
1939 }
1940
1941 /**
1942 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1943 * reclaim their cache if no more references remain.
1944 * @entry: First entry of range.
1945 * @nr: Number of entries in range.
1946 *
1947 * For each swap entry in the contiguous range, release a reference. If any swap
1948 * entries become free, try to reclaim their underlying folios, if present. The
1949 * offset range is defined by [entry.offset, entry.offset + nr).
1950 */
free_swap_and_cache_nr(swp_entry_t entry,int nr)1951 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1952 {
1953 const unsigned long start_offset = swp_offset(entry);
1954 const unsigned long end_offset = start_offset + nr;
1955 struct swap_info_struct *si;
1956 bool any_only_cache = false;
1957 unsigned long offset;
1958
1959 si = get_swap_device(entry);
1960 if (!si)
1961 return;
1962
1963 if (WARN_ON(end_offset > si->max))
1964 goto out;
1965
1966 /*
1967 * First free all entries in the range.
1968 */
1969 any_only_cache = swap_entries_put_map_nr(si, entry, nr);
1970
1971 /*
1972 * Short-circuit the below loop if none of the entries had their
1973 * reference drop to zero.
1974 */
1975 if (!any_only_cache)
1976 goto out;
1977
1978 /*
1979 * Now go back over the range trying to reclaim the swap cache.
1980 */
1981 for (offset = start_offset; offset < end_offset; offset += nr) {
1982 nr = 1;
1983 if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1984 /*
1985 * Folios are always naturally aligned in swap so
1986 * advance forward to the next boundary. Zero means no
1987 * folio was found for the swap entry, so advance by 1
1988 * in this case. Negative value means folio was found
1989 * but could not be reclaimed. Here we can still advance
1990 * to the next boundary.
1991 */
1992 nr = __try_to_reclaim_swap(si, offset,
1993 TTRS_UNMAPPED | TTRS_FULL);
1994 if (nr == 0)
1995 nr = 1;
1996 else if (nr < 0)
1997 nr = -nr;
1998 nr = ALIGN(offset + 1, nr) - offset;
1999 }
2000 }
2001
2002 out:
2003 put_swap_device(si);
2004 }
2005
2006 #ifdef CONFIG_HIBERNATION
2007
get_swap_page_of_type(int type)2008 swp_entry_t get_swap_page_of_type(int type)
2009 {
2010 struct swap_info_struct *si = swap_type_to_info(type);
2011 unsigned long offset;
2012 swp_entry_t entry = {0};
2013
2014 if (!si)
2015 goto fail;
2016
2017 /* This is called for allocating swap entry, not cache */
2018 if (get_swap_device_info(si)) {
2019 if (si->flags & SWP_WRITEOK) {
2020 /*
2021 * Grab the local lock to be complaint
2022 * with swap table allocation.
2023 */
2024 local_lock(&percpu_swap_cluster.lock);
2025 offset = cluster_alloc_swap_entry(si, 0, 1);
2026 local_unlock(&percpu_swap_cluster.lock);
2027 if (offset)
2028 entry = swp_entry(si->type, offset);
2029 }
2030 put_swap_device(si);
2031 }
2032 fail:
2033 return entry;
2034 }
2035
2036 /*
2037 * Find the swap type that corresponds to given device (if any).
2038 *
2039 * @offset - number of the PAGE_SIZE-sized block of the device, starting
2040 * from 0, in which the swap header is expected to be located.
2041 *
2042 * This is needed for the suspend to disk (aka swsusp).
2043 */
swap_type_of(dev_t device,sector_t offset)2044 int swap_type_of(dev_t device, sector_t offset)
2045 {
2046 int type;
2047
2048 if (!device)
2049 return -1;
2050
2051 spin_lock(&swap_lock);
2052 for (type = 0; type < nr_swapfiles; type++) {
2053 struct swap_info_struct *sis = swap_info[type];
2054
2055 if (!(sis->flags & SWP_WRITEOK))
2056 continue;
2057
2058 if (device == sis->bdev->bd_dev) {
2059 struct swap_extent *se = first_se(sis);
2060
2061 if (se->start_block == offset) {
2062 spin_unlock(&swap_lock);
2063 return type;
2064 }
2065 }
2066 }
2067 spin_unlock(&swap_lock);
2068 return -ENODEV;
2069 }
2070
find_first_swap(dev_t * device)2071 int find_first_swap(dev_t *device)
2072 {
2073 int type;
2074
2075 spin_lock(&swap_lock);
2076 for (type = 0; type < nr_swapfiles; type++) {
2077 struct swap_info_struct *sis = swap_info[type];
2078
2079 if (!(sis->flags & SWP_WRITEOK))
2080 continue;
2081 *device = sis->bdev->bd_dev;
2082 spin_unlock(&swap_lock);
2083 return type;
2084 }
2085 spin_unlock(&swap_lock);
2086 return -ENODEV;
2087 }
2088
2089 /*
2090 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2091 * corresponding to given index in swap_info (swap type).
2092 */
swapdev_block(int type,pgoff_t offset)2093 sector_t swapdev_block(int type, pgoff_t offset)
2094 {
2095 struct swap_info_struct *si = swap_type_to_info(type);
2096 struct swap_extent *se;
2097
2098 if (!si || !(si->flags & SWP_WRITEOK))
2099 return 0;
2100 se = offset_to_swap_extent(si, offset);
2101 return se->start_block + (offset - se->start_page);
2102 }
2103
2104 /*
2105 * Return either the total number of swap pages of given type, or the number
2106 * of free pages of that type (depending on @free)
2107 *
2108 * This is needed for software suspend
2109 */
count_swap_pages(int type,int free)2110 unsigned int count_swap_pages(int type, int free)
2111 {
2112 unsigned int n = 0;
2113
2114 spin_lock(&swap_lock);
2115 if ((unsigned int)type < nr_swapfiles) {
2116 struct swap_info_struct *sis = swap_info[type];
2117
2118 spin_lock(&sis->lock);
2119 if (sis->flags & SWP_WRITEOK) {
2120 n = sis->pages;
2121 if (free)
2122 n -= swap_usage_in_pages(sis);
2123 }
2124 spin_unlock(&sis->lock);
2125 }
2126 spin_unlock(&swap_lock);
2127 return n;
2128 }
2129 #endif /* CONFIG_HIBERNATION */
2130
pte_same_as_swp(pte_t pte,pte_t swp_pte)2131 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
2132 {
2133 return pte_same(pte_swp_clear_flags(pte), swp_pte);
2134 }
2135
2136 /*
2137 * No need to decide whether this PTE shares the swap entry with others,
2138 * just let do_wp_page work it out if a write is requested later - to
2139 * force COW, vm_page_prot omits write permission from any private vma.
2140 */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)2141 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
2142 unsigned long addr, swp_entry_t entry, struct folio *folio)
2143 {
2144 struct page *page;
2145 struct folio *swapcache;
2146 spinlock_t *ptl;
2147 pte_t *pte, new_pte, old_pte;
2148 bool hwpoisoned = false;
2149 int ret = 1;
2150
2151 /*
2152 * If the folio is removed from swap cache by others, continue to
2153 * unuse other PTEs. try_to_unuse may try again if we missed this one.
2154 */
2155 if (!folio_matches_swap_entry(folio, entry))
2156 return 0;
2157
2158 swapcache = folio;
2159 folio = ksm_might_need_to_copy(folio, vma, addr);
2160 if (unlikely(!folio))
2161 return -ENOMEM;
2162 else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
2163 hwpoisoned = true;
2164 folio = swapcache;
2165 }
2166
2167 page = folio_file_page(folio, swp_offset(entry));
2168 if (PageHWPoison(page))
2169 hwpoisoned = true;
2170
2171 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
2172 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
2173 swp_entry_to_pte(entry)))) {
2174 ret = 0;
2175 goto out;
2176 }
2177
2178 old_pte = ptep_get(pte);
2179
2180 if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2181 swp_entry_t swp_entry;
2182
2183 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2184 if (hwpoisoned) {
2185 swp_entry = make_hwpoison_entry(page);
2186 } else {
2187 swp_entry = make_poisoned_swp_entry();
2188 }
2189 new_pte = swp_entry_to_pte(swp_entry);
2190 ret = 0;
2191 goto setpte;
2192 }
2193
2194 /*
2195 * Some architectures may have to restore extra metadata to the page
2196 * when reading from swap. This metadata may be indexed by swap entry
2197 * so this must be called before swap_free().
2198 */
2199 arch_swap_restore(folio_swap(entry, folio), folio);
2200
2201 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2202 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2203 folio_get(folio);
2204 if (folio == swapcache) {
2205 rmap_t rmap_flags = RMAP_NONE;
2206
2207 /*
2208 * See do_swap_page(): writeback would be problematic.
2209 * However, we do a folio_wait_writeback() just before this
2210 * call and have the folio locked.
2211 */
2212 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2213 if (pte_swp_exclusive(old_pte))
2214 rmap_flags |= RMAP_EXCLUSIVE;
2215 /*
2216 * We currently only expect small !anon folios, which are either
2217 * fully exclusive or fully shared. If we ever get large folios
2218 * here, we have to be careful.
2219 */
2220 if (!folio_test_anon(folio)) {
2221 VM_WARN_ON_ONCE(folio_test_large(folio));
2222 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2223 folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2224 } else {
2225 folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2226 }
2227 } else { /* ksm created a completely new copy */
2228 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2229 folio_add_lru_vma(folio, vma);
2230 }
2231 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2232 if (pte_swp_soft_dirty(old_pte))
2233 new_pte = pte_mksoft_dirty(new_pte);
2234 if (pte_swp_uffd_wp(old_pte))
2235 new_pte = pte_mkuffd_wp(new_pte);
2236 setpte:
2237 set_pte_at(vma->vm_mm, addr, pte, new_pte);
2238 swap_free(entry);
2239 out:
2240 if (pte)
2241 pte_unmap_unlock(pte, ptl);
2242 if (folio != swapcache) {
2243 folio_unlock(folio);
2244 folio_put(folio);
2245 }
2246 return ret;
2247 }
2248
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)2249 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2250 unsigned long addr, unsigned long end,
2251 unsigned int type)
2252 {
2253 pte_t *pte = NULL;
2254 struct swap_info_struct *si;
2255
2256 si = swap_info[type];
2257 do {
2258 struct folio *folio;
2259 unsigned long offset;
2260 unsigned char swp_count;
2261 softleaf_t entry;
2262 int ret;
2263 pte_t ptent;
2264
2265 if (!pte++) {
2266 pte = pte_offset_map(pmd, addr);
2267 if (!pte)
2268 break;
2269 }
2270
2271 ptent = ptep_get_lockless(pte);
2272 entry = softleaf_from_pte(ptent);
2273
2274 if (!softleaf_is_swap(entry))
2275 continue;
2276 if (swp_type(entry) != type)
2277 continue;
2278
2279 offset = swp_offset(entry);
2280 pte_unmap(pte);
2281 pte = NULL;
2282
2283 folio = swap_cache_get_folio(entry);
2284 if (!folio) {
2285 struct vm_fault vmf = {
2286 .vma = vma,
2287 .address = addr,
2288 .real_address = addr,
2289 .pmd = pmd,
2290 };
2291
2292 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2293 &vmf);
2294 }
2295 if (!folio) {
2296 swp_count = READ_ONCE(si->swap_map[offset]);
2297 if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2298 continue;
2299 return -ENOMEM;
2300 }
2301
2302 folio_lock(folio);
2303 folio_wait_writeback(folio);
2304 ret = unuse_pte(vma, pmd, addr, entry, folio);
2305 if (ret < 0) {
2306 folio_unlock(folio);
2307 folio_put(folio);
2308 return ret;
2309 }
2310
2311 folio_free_swap(folio);
2312 folio_unlock(folio);
2313 folio_put(folio);
2314 } while (addr += PAGE_SIZE, addr != end);
2315
2316 if (pte)
2317 pte_unmap(pte);
2318 return 0;
2319 }
2320
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)2321 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2322 unsigned long addr, unsigned long end,
2323 unsigned int type)
2324 {
2325 pmd_t *pmd;
2326 unsigned long next;
2327 int ret;
2328
2329 pmd = pmd_offset(pud, addr);
2330 do {
2331 cond_resched();
2332 next = pmd_addr_end(addr, end);
2333 ret = unuse_pte_range(vma, pmd, addr, next, type);
2334 if (ret)
2335 return ret;
2336 } while (pmd++, addr = next, addr != end);
2337 return 0;
2338 }
2339
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)2340 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2341 unsigned long addr, unsigned long end,
2342 unsigned int type)
2343 {
2344 pud_t *pud;
2345 unsigned long next;
2346 int ret;
2347
2348 pud = pud_offset(p4d, addr);
2349 do {
2350 next = pud_addr_end(addr, end);
2351 if (pud_none_or_clear_bad(pud))
2352 continue;
2353 ret = unuse_pmd_range(vma, pud, addr, next, type);
2354 if (ret)
2355 return ret;
2356 } while (pud++, addr = next, addr != end);
2357 return 0;
2358 }
2359
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)2360 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2361 unsigned long addr, unsigned long end,
2362 unsigned int type)
2363 {
2364 p4d_t *p4d;
2365 unsigned long next;
2366 int ret;
2367
2368 p4d = p4d_offset(pgd, addr);
2369 do {
2370 next = p4d_addr_end(addr, end);
2371 if (p4d_none_or_clear_bad(p4d))
2372 continue;
2373 ret = unuse_pud_range(vma, p4d, addr, next, type);
2374 if (ret)
2375 return ret;
2376 } while (p4d++, addr = next, addr != end);
2377 return 0;
2378 }
2379
unuse_vma(struct vm_area_struct * vma,unsigned int type)2380 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2381 {
2382 pgd_t *pgd;
2383 unsigned long addr, end, next;
2384 int ret;
2385
2386 addr = vma->vm_start;
2387 end = vma->vm_end;
2388
2389 pgd = pgd_offset(vma->vm_mm, addr);
2390 do {
2391 next = pgd_addr_end(addr, end);
2392 if (pgd_none_or_clear_bad(pgd))
2393 continue;
2394 ret = unuse_p4d_range(vma, pgd, addr, next, type);
2395 if (ret)
2396 return ret;
2397 } while (pgd++, addr = next, addr != end);
2398 return 0;
2399 }
2400
unuse_mm(struct mm_struct * mm,unsigned int type)2401 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2402 {
2403 struct vm_area_struct *vma;
2404 int ret = 0;
2405 VMA_ITERATOR(vmi, mm, 0);
2406
2407 mmap_read_lock(mm);
2408 if (check_stable_address_space(mm))
2409 goto unlock;
2410 for_each_vma(vmi, vma) {
2411 if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2412 ret = unuse_vma(vma, type);
2413 if (ret)
2414 break;
2415 }
2416
2417 cond_resched();
2418 }
2419 unlock:
2420 mmap_read_unlock(mm);
2421 return ret;
2422 }
2423
2424 /*
2425 * Scan swap_map from current position to next entry still in use.
2426 * Return 0 if there are no inuse entries after prev till end of
2427 * the map.
2428 */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2429 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2430 unsigned int prev)
2431 {
2432 unsigned int i;
2433 unsigned char count;
2434
2435 /*
2436 * No need for swap_lock here: we're just looking
2437 * for whether an entry is in use, not modifying it; false
2438 * hits are okay, and sys_swapoff() has already prevented new
2439 * allocations from this area (while holding swap_lock).
2440 */
2441 for (i = prev + 1; i < si->max; i++) {
2442 count = READ_ONCE(si->swap_map[i]);
2443 if (count && swap_count(count) != SWAP_MAP_BAD)
2444 break;
2445 if ((i % LATENCY_LIMIT) == 0)
2446 cond_resched();
2447 }
2448
2449 if (i == si->max)
2450 i = 0;
2451
2452 return i;
2453 }
2454
try_to_unuse(unsigned int type)2455 static int try_to_unuse(unsigned int type)
2456 {
2457 struct mm_struct *prev_mm;
2458 struct mm_struct *mm;
2459 struct list_head *p;
2460 int retval = 0;
2461 struct swap_info_struct *si = swap_info[type];
2462 struct folio *folio;
2463 swp_entry_t entry;
2464 unsigned int i;
2465
2466 if (!swap_usage_in_pages(si))
2467 goto success;
2468
2469 retry:
2470 retval = shmem_unuse(type);
2471 if (retval)
2472 return retval;
2473
2474 prev_mm = &init_mm;
2475 mmget(prev_mm);
2476
2477 spin_lock(&mmlist_lock);
2478 p = &init_mm.mmlist;
2479 while (swap_usage_in_pages(si) &&
2480 !signal_pending(current) &&
2481 (p = p->next) != &init_mm.mmlist) {
2482
2483 mm = list_entry(p, struct mm_struct, mmlist);
2484 if (!mmget_not_zero(mm))
2485 continue;
2486 spin_unlock(&mmlist_lock);
2487 mmput(prev_mm);
2488 prev_mm = mm;
2489 retval = unuse_mm(mm, type);
2490 if (retval) {
2491 mmput(prev_mm);
2492 return retval;
2493 }
2494
2495 /*
2496 * Make sure that we aren't completely killing
2497 * interactive performance.
2498 */
2499 cond_resched();
2500 spin_lock(&mmlist_lock);
2501 }
2502 spin_unlock(&mmlist_lock);
2503
2504 mmput(prev_mm);
2505
2506 i = 0;
2507 while (swap_usage_in_pages(si) &&
2508 !signal_pending(current) &&
2509 (i = find_next_to_unuse(si, i)) != 0) {
2510
2511 entry = swp_entry(type, i);
2512 folio = swap_cache_get_folio(entry);
2513 if (!folio)
2514 continue;
2515
2516 /*
2517 * It is conceivable that a racing task removed this folio from
2518 * swap cache just before we acquired the page lock. The folio
2519 * might even be back in swap cache on another swap area. But
2520 * that is okay, folio_free_swap() only removes stale folios.
2521 */
2522 folio_lock(folio);
2523 folio_wait_writeback(folio);
2524 folio_free_swap(folio);
2525 folio_unlock(folio);
2526 folio_put(folio);
2527 }
2528
2529 /*
2530 * Lets check again to see if there are still swap entries in the map.
2531 * If yes, we would need to do retry the unuse logic again.
2532 * Under global memory pressure, swap entries can be reinserted back
2533 * into process space after the mmlist loop above passes over them.
2534 *
2535 * Limit the number of retries? No: when mmget_not_zero()
2536 * above fails, that mm is likely to be freeing swap from
2537 * exit_mmap(), which proceeds at its own independent pace;
2538 * and even shmem_writeout() could have been preempted after
2539 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2540 * and robust (though cpu-intensive) just to keep retrying.
2541 */
2542 if (swap_usage_in_pages(si)) {
2543 if (!signal_pending(current))
2544 goto retry;
2545 return -EINTR;
2546 }
2547
2548 success:
2549 /*
2550 * Make sure that further cleanups after try_to_unuse() returns happen
2551 * after swap_range_free() reduces si->inuse_pages to 0.
2552 */
2553 smp_mb();
2554 return 0;
2555 }
2556
2557 /*
2558 * After a successful try_to_unuse, if no swap is now in use, we know
2559 * we can empty the mmlist. swap_lock must be held on entry and exit.
2560 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2561 * added to the mmlist just after page_duplicate - before would be racy.
2562 */
drain_mmlist(void)2563 static void drain_mmlist(void)
2564 {
2565 struct list_head *p, *next;
2566 unsigned int type;
2567
2568 for (type = 0; type < nr_swapfiles; type++)
2569 if (swap_usage_in_pages(swap_info[type]))
2570 return;
2571 spin_lock(&mmlist_lock);
2572 list_for_each_safe(p, next, &init_mm.mmlist)
2573 list_del_init(p);
2574 spin_unlock(&mmlist_lock);
2575 }
2576
2577 /*
2578 * Free all of a swapdev's extent information
2579 */
destroy_swap_extents(struct swap_info_struct * sis)2580 static void destroy_swap_extents(struct swap_info_struct *sis)
2581 {
2582 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2583 struct rb_node *rb = sis->swap_extent_root.rb_node;
2584 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2585
2586 rb_erase(rb, &sis->swap_extent_root);
2587 kfree(se);
2588 }
2589
2590 if (sis->flags & SWP_ACTIVATED) {
2591 struct file *swap_file = sis->swap_file;
2592 struct address_space *mapping = swap_file->f_mapping;
2593
2594 sis->flags &= ~SWP_ACTIVATED;
2595 if (mapping->a_ops->swap_deactivate)
2596 mapping->a_ops->swap_deactivate(swap_file);
2597 }
2598 }
2599
2600 /*
2601 * Add a block range (and the corresponding page range) into this swapdev's
2602 * extent tree.
2603 *
2604 * This function rather assumes that it is called in ascending page order.
2605 */
2606 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2607 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2608 unsigned long nr_pages, sector_t start_block)
2609 {
2610 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2611 struct swap_extent *se;
2612 struct swap_extent *new_se;
2613
2614 /*
2615 * place the new node at the right most since the
2616 * function is called in ascending page order.
2617 */
2618 while (*link) {
2619 parent = *link;
2620 link = &parent->rb_right;
2621 }
2622
2623 if (parent) {
2624 se = rb_entry(parent, struct swap_extent, rb_node);
2625 BUG_ON(se->start_page + se->nr_pages != start_page);
2626 if (se->start_block + se->nr_pages == start_block) {
2627 /* Merge it */
2628 se->nr_pages += nr_pages;
2629 return 0;
2630 }
2631 }
2632
2633 /* No merge, insert a new extent. */
2634 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2635 if (new_se == NULL)
2636 return -ENOMEM;
2637 new_se->start_page = start_page;
2638 new_se->nr_pages = nr_pages;
2639 new_se->start_block = start_block;
2640
2641 rb_link_node(&new_se->rb_node, parent, link);
2642 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2643 return 1;
2644 }
2645 EXPORT_SYMBOL_GPL(add_swap_extent);
2646
2647 /*
2648 * A `swap extent' is a simple thing which maps a contiguous range of pages
2649 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2650 * built at swapon time and is then used at swap_writepage/swap_read_folio
2651 * time for locating where on disk a page belongs.
2652 *
2653 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2654 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2655 * swap files identically.
2656 *
2657 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2658 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2659 * swapfiles are handled *identically* after swapon time.
2660 *
2661 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2662 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2663 * blocks are found which do not fall within the PAGE_SIZE alignment
2664 * requirements, they are simply tossed out - we will never use those blocks
2665 * for swapping.
2666 *
2667 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2668 * prevents users from writing to the swap device, which will corrupt memory.
2669 *
2670 * The amount of disk space which a single swap extent represents varies.
2671 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2672 * extents in the rbtree. - akpm.
2673 */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2674 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2675 {
2676 struct file *swap_file = sis->swap_file;
2677 struct address_space *mapping = swap_file->f_mapping;
2678 struct inode *inode = mapping->host;
2679 int ret;
2680
2681 if (S_ISBLK(inode->i_mode)) {
2682 ret = add_swap_extent(sis, 0, sis->max, 0);
2683 *span = sis->pages;
2684 return ret;
2685 }
2686
2687 if (mapping->a_ops->swap_activate) {
2688 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2689 if (ret < 0)
2690 return ret;
2691 sis->flags |= SWP_ACTIVATED;
2692 if ((sis->flags & SWP_FS_OPS) &&
2693 sio_pool_init() != 0) {
2694 destroy_swap_extents(sis);
2695 return -ENOMEM;
2696 }
2697 return ret;
2698 }
2699
2700 return generic_swapfile_activate(sis, swap_file, span);
2701 }
2702
setup_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2703 static void setup_swap_info(struct swap_info_struct *si, int prio,
2704 unsigned char *swap_map,
2705 struct swap_cluster_info *cluster_info,
2706 unsigned long *zeromap)
2707 {
2708 si->prio = prio;
2709 /*
2710 * the plist prio is negated because plist ordering is
2711 * low-to-high, while swap ordering is high-to-low
2712 */
2713 si->list.prio = -si->prio;
2714 si->avail_list.prio = -si->prio;
2715 si->swap_map = swap_map;
2716 si->cluster_info = cluster_info;
2717 si->zeromap = zeromap;
2718 }
2719
_enable_swap_info(struct swap_info_struct * si)2720 static void _enable_swap_info(struct swap_info_struct *si)
2721 {
2722 atomic_long_add(si->pages, &nr_swap_pages);
2723 total_swap_pages += si->pages;
2724
2725 assert_spin_locked(&swap_lock);
2726
2727 plist_add(&si->list, &swap_active_head);
2728
2729 /* Add back to available list */
2730 add_to_avail_list(si, true);
2731 }
2732
enable_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2733 static void enable_swap_info(struct swap_info_struct *si, int prio,
2734 unsigned char *swap_map,
2735 struct swap_cluster_info *cluster_info,
2736 unsigned long *zeromap)
2737 {
2738 spin_lock(&swap_lock);
2739 spin_lock(&si->lock);
2740 setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2741 spin_unlock(&si->lock);
2742 spin_unlock(&swap_lock);
2743 /*
2744 * Finished initializing swap device, now it's safe to reference it.
2745 */
2746 percpu_ref_resurrect(&si->users);
2747 spin_lock(&swap_lock);
2748 spin_lock(&si->lock);
2749 _enable_swap_info(si);
2750 spin_unlock(&si->lock);
2751 spin_unlock(&swap_lock);
2752 }
2753
reinsert_swap_info(struct swap_info_struct * si)2754 static void reinsert_swap_info(struct swap_info_struct *si)
2755 {
2756 spin_lock(&swap_lock);
2757 spin_lock(&si->lock);
2758 setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2759 _enable_swap_info(si);
2760 spin_unlock(&si->lock);
2761 spin_unlock(&swap_lock);
2762 }
2763
2764 /*
2765 * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2766 * see the updated flags, so there will be no more allocations.
2767 */
wait_for_allocation(struct swap_info_struct * si)2768 static void wait_for_allocation(struct swap_info_struct *si)
2769 {
2770 unsigned long offset;
2771 unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2772 struct swap_cluster_info *ci;
2773
2774 BUG_ON(si->flags & SWP_WRITEOK);
2775
2776 for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2777 ci = swap_cluster_lock(si, offset);
2778 swap_cluster_unlock(ci);
2779 }
2780 }
2781
free_cluster_info(struct swap_cluster_info * cluster_info,unsigned long maxpages)2782 static void free_cluster_info(struct swap_cluster_info *cluster_info,
2783 unsigned long maxpages)
2784 {
2785 struct swap_cluster_info *ci;
2786 int i, nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2787
2788 if (!cluster_info)
2789 return;
2790 for (i = 0; i < nr_clusters; i++) {
2791 ci = cluster_info + i;
2792 /* Cluster with bad marks count will have a remaining table */
2793 spin_lock(&ci->lock);
2794 if (rcu_dereference_protected(ci->table, true)) {
2795 ci->count = 0;
2796 swap_cluster_free_table(ci);
2797 }
2798 spin_unlock(&ci->lock);
2799 }
2800 kvfree(cluster_info);
2801 }
2802
2803 /*
2804 * Called after swap device's reference count is dead, so
2805 * neither scan nor allocation will use it.
2806 */
flush_percpu_swap_cluster(struct swap_info_struct * si)2807 static void flush_percpu_swap_cluster(struct swap_info_struct *si)
2808 {
2809 int cpu, i;
2810 struct swap_info_struct **pcp_si;
2811
2812 for_each_possible_cpu(cpu) {
2813 pcp_si = per_cpu_ptr(percpu_swap_cluster.si, cpu);
2814 /*
2815 * Invalidate the percpu swap cluster cache, si->users
2816 * is dead, so no new user will point to it, just flush
2817 * any existing user.
2818 */
2819 for (i = 0; i < SWAP_NR_ORDERS; i++)
2820 cmpxchg(&pcp_si[i], si, NULL);
2821 }
2822 }
2823
2824
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2825 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2826 {
2827 struct swap_info_struct *p = NULL;
2828 unsigned char *swap_map;
2829 unsigned long *zeromap;
2830 struct swap_cluster_info *cluster_info;
2831 struct file *swap_file, *victim;
2832 struct address_space *mapping;
2833 struct inode *inode;
2834 struct filename *pathname;
2835 unsigned int maxpages;
2836 int err, found = 0;
2837
2838 if (!capable(CAP_SYS_ADMIN))
2839 return -EPERM;
2840
2841 BUG_ON(!current->mm);
2842
2843 pathname = getname(specialfile);
2844 if (IS_ERR(pathname))
2845 return PTR_ERR(pathname);
2846
2847 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2848 err = PTR_ERR(victim);
2849 if (IS_ERR(victim))
2850 goto out;
2851
2852 mapping = victim->f_mapping;
2853 spin_lock(&swap_lock);
2854 plist_for_each_entry(p, &swap_active_head, list) {
2855 if (p->flags & SWP_WRITEOK) {
2856 if (p->swap_file->f_mapping == mapping) {
2857 found = 1;
2858 break;
2859 }
2860 }
2861 }
2862 if (!found) {
2863 err = -EINVAL;
2864 spin_unlock(&swap_lock);
2865 goto out_dput;
2866 }
2867 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2868 vm_unacct_memory(p->pages);
2869 else {
2870 err = -ENOMEM;
2871 spin_unlock(&swap_lock);
2872 goto out_dput;
2873 }
2874 spin_lock(&p->lock);
2875 del_from_avail_list(p, true);
2876 plist_del(&p->list, &swap_active_head);
2877 atomic_long_sub(p->pages, &nr_swap_pages);
2878 total_swap_pages -= p->pages;
2879 spin_unlock(&p->lock);
2880 spin_unlock(&swap_lock);
2881
2882 wait_for_allocation(p);
2883
2884 set_current_oom_origin();
2885 err = try_to_unuse(p->type);
2886 clear_current_oom_origin();
2887
2888 if (err) {
2889 /* re-insert swap space back into swap_list */
2890 reinsert_swap_info(p);
2891 goto out_dput;
2892 }
2893
2894 /*
2895 * Wait for swap operations protected by get/put_swap_device()
2896 * to complete. Because of synchronize_rcu() here, all swap
2897 * operations protected by RCU reader side lock (including any
2898 * spinlock) will be waited too. This makes it easy to
2899 * prevent folio_test_swapcache() and the following swap cache
2900 * operations from racing with swapoff.
2901 */
2902 percpu_ref_kill(&p->users);
2903 synchronize_rcu();
2904 wait_for_completion(&p->comp);
2905
2906 flush_work(&p->discard_work);
2907 flush_work(&p->reclaim_work);
2908 flush_percpu_swap_cluster(p);
2909
2910 destroy_swap_extents(p);
2911 if (p->flags & SWP_CONTINUED)
2912 free_swap_count_continuations(p);
2913
2914 if (!(p->flags & SWP_SOLIDSTATE))
2915 atomic_dec(&nr_rotate_swap);
2916
2917 mutex_lock(&swapon_mutex);
2918 spin_lock(&swap_lock);
2919 spin_lock(&p->lock);
2920 drain_mmlist();
2921
2922 swap_file = p->swap_file;
2923 p->swap_file = NULL;
2924 swap_map = p->swap_map;
2925 p->swap_map = NULL;
2926 zeromap = p->zeromap;
2927 p->zeromap = NULL;
2928 maxpages = p->max;
2929 cluster_info = p->cluster_info;
2930 p->max = 0;
2931 p->cluster_info = NULL;
2932 spin_unlock(&p->lock);
2933 spin_unlock(&swap_lock);
2934 arch_swap_invalidate_area(p->type);
2935 zswap_swapoff(p->type);
2936 mutex_unlock(&swapon_mutex);
2937 kfree(p->global_cluster);
2938 p->global_cluster = NULL;
2939 vfree(swap_map);
2940 kvfree(zeromap);
2941 free_cluster_info(cluster_info, maxpages);
2942 /* Destroy swap account information */
2943 swap_cgroup_swapoff(p->type);
2944
2945 inode = mapping->host;
2946
2947 inode_lock(inode);
2948 inode->i_flags &= ~S_SWAPFILE;
2949 inode_unlock(inode);
2950 filp_close(swap_file, NULL);
2951
2952 /*
2953 * Clear the SWP_USED flag after all resources are freed so that swapon
2954 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2955 * not hold p->lock after we cleared its SWP_WRITEOK.
2956 */
2957 spin_lock(&swap_lock);
2958 p->flags = 0;
2959 spin_unlock(&swap_lock);
2960
2961 err = 0;
2962 atomic_inc(&proc_poll_event);
2963 wake_up_interruptible(&proc_poll_wait);
2964
2965 out_dput:
2966 filp_close(victim, NULL);
2967 out:
2968 putname(pathname);
2969 return err;
2970 }
2971
2972 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2973 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2974 {
2975 struct seq_file *seq = file->private_data;
2976
2977 poll_wait(file, &proc_poll_wait, wait);
2978
2979 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2980 seq->poll_event = atomic_read(&proc_poll_event);
2981 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2982 }
2983
2984 return EPOLLIN | EPOLLRDNORM;
2985 }
2986
2987 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2988 static void *swap_start(struct seq_file *swap, loff_t *pos)
2989 {
2990 struct swap_info_struct *si;
2991 int type;
2992 loff_t l = *pos;
2993
2994 mutex_lock(&swapon_mutex);
2995
2996 if (!l)
2997 return SEQ_START_TOKEN;
2998
2999 for (type = 0; (si = swap_type_to_info(type)); type++) {
3000 if (!(si->flags & SWP_USED) || !si->swap_map)
3001 continue;
3002 if (!--l)
3003 return si;
3004 }
3005
3006 return NULL;
3007 }
3008
swap_next(struct seq_file * swap,void * v,loff_t * pos)3009 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
3010 {
3011 struct swap_info_struct *si = v;
3012 int type;
3013
3014 if (v == SEQ_START_TOKEN)
3015 type = 0;
3016 else
3017 type = si->type + 1;
3018
3019 ++(*pos);
3020 for (; (si = swap_type_to_info(type)); type++) {
3021 if (!(si->flags & SWP_USED) || !si->swap_map)
3022 continue;
3023 return si;
3024 }
3025
3026 return NULL;
3027 }
3028
swap_stop(struct seq_file * swap,void * v)3029 static void swap_stop(struct seq_file *swap, void *v)
3030 {
3031 mutex_unlock(&swapon_mutex);
3032 }
3033
swap_show(struct seq_file * swap,void * v)3034 static int swap_show(struct seq_file *swap, void *v)
3035 {
3036 struct swap_info_struct *si = v;
3037 struct file *file;
3038 int len;
3039 unsigned long bytes, inuse;
3040
3041 if (si == SEQ_START_TOKEN) {
3042 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
3043 return 0;
3044 }
3045
3046 bytes = K(si->pages);
3047 inuse = K(swap_usage_in_pages(si));
3048
3049 file = si->swap_file;
3050 len = seq_file_path(swap, file, " \t\n\\");
3051 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
3052 len < 40 ? 40 - len : 1, " ",
3053 S_ISBLK(file_inode(file)->i_mode) ?
3054 "partition" : "file\t",
3055 bytes, bytes < 10000000 ? "\t" : "",
3056 inuse, inuse < 10000000 ? "\t" : "",
3057 si->prio);
3058 return 0;
3059 }
3060
3061 static const struct seq_operations swaps_op = {
3062 .start = swap_start,
3063 .next = swap_next,
3064 .stop = swap_stop,
3065 .show = swap_show
3066 };
3067
swaps_open(struct inode * inode,struct file * file)3068 static int swaps_open(struct inode *inode, struct file *file)
3069 {
3070 struct seq_file *seq;
3071 int ret;
3072
3073 ret = seq_open(file, &swaps_op);
3074 if (ret)
3075 return ret;
3076
3077 seq = file->private_data;
3078 seq->poll_event = atomic_read(&proc_poll_event);
3079 return 0;
3080 }
3081
3082 static const struct proc_ops swaps_proc_ops = {
3083 .proc_flags = PROC_ENTRY_PERMANENT,
3084 .proc_open = swaps_open,
3085 .proc_read = seq_read,
3086 .proc_lseek = seq_lseek,
3087 .proc_release = seq_release,
3088 .proc_poll = swaps_poll,
3089 };
3090
procswaps_init(void)3091 static int __init procswaps_init(void)
3092 {
3093 proc_create("swaps", 0, NULL, &swaps_proc_ops);
3094 return 0;
3095 }
3096 __initcall(procswaps_init);
3097 #endif /* CONFIG_PROC_FS */
3098
3099 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)3100 static int __init max_swapfiles_check(void)
3101 {
3102 MAX_SWAPFILES_CHECK();
3103 return 0;
3104 }
3105 late_initcall(max_swapfiles_check);
3106 #endif
3107
alloc_swap_info(void)3108 static struct swap_info_struct *alloc_swap_info(void)
3109 {
3110 struct swap_info_struct *p;
3111 struct swap_info_struct *defer = NULL;
3112 unsigned int type;
3113
3114 p = kvzalloc(sizeof(struct swap_info_struct), GFP_KERNEL);
3115 if (!p)
3116 return ERR_PTR(-ENOMEM);
3117
3118 if (percpu_ref_init(&p->users, swap_users_ref_free,
3119 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
3120 kvfree(p);
3121 return ERR_PTR(-ENOMEM);
3122 }
3123
3124 spin_lock(&swap_lock);
3125 for (type = 0; type < nr_swapfiles; type++) {
3126 if (!(swap_info[type]->flags & SWP_USED))
3127 break;
3128 }
3129 if (type >= MAX_SWAPFILES) {
3130 spin_unlock(&swap_lock);
3131 percpu_ref_exit(&p->users);
3132 kvfree(p);
3133 return ERR_PTR(-EPERM);
3134 }
3135 if (type >= nr_swapfiles) {
3136 p->type = type;
3137 /*
3138 * Publish the swap_info_struct after initializing it.
3139 * Note that kvzalloc() above zeroes all its fields.
3140 */
3141 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
3142 nr_swapfiles++;
3143 } else {
3144 defer = p;
3145 p = swap_info[type];
3146 /*
3147 * Do not memset this entry: a racing procfs swap_next()
3148 * would be relying on p->type to remain valid.
3149 */
3150 }
3151 p->swap_extent_root = RB_ROOT;
3152 plist_node_init(&p->list, 0);
3153 plist_node_init(&p->avail_list, 0);
3154 p->flags = SWP_USED;
3155 spin_unlock(&swap_lock);
3156 if (defer) {
3157 percpu_ref_exit(&defer->users);
3158 kvfree(defer);
3159 }
3160 spin_lock_init(&p->lock);
3161 spin_lock_init(&p->cont_lock);
3162 atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3163 init_completion(&p->comp);
3164
3165 return p;
3166 }
3167
claim_swapfile(struct swap_info_struct * si,struct inode * inode)3168 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3169 {
3170 if (S_ISBLK(inode->i_mode)) {
3171 si->bdev = I_BDEV(inode);
3172 /*
3173 * Zoned block devices contain zones that have a sequential
3174 * write only restriction. Hence zoned block devices are not
3175 * suitable for swapping. Disallow them here.
3176 */
3177 if (bdev_is_zoned(si->bdev))
3178 return -EINVAL;
3179 si->flags |= SWP_BLKDEV;
3180 } else if (S_ISREG(inode->i_mode)) {
3181 si->bdev = inode->i_sb->s_bdev;
3182 }
3183
3184 return 0;
3185 }
3186
3187
3188 /*
3189 * Find out how many pages are allowed for a single swap device. There
3190 * are two limiting factors:
3191 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3192 * 2) the number of bits in the swap pte, as defined by the different
3193 * architectures.
3194 *
3195 * In order to find the largest possible bit mask, a swap entry with
3196 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3197 * decoded to a swp_entry_t again, and finally the swap offset is
3198 * extracted.
3199 *
3200 * This will mask all the bits from the initial ~0UL mask that can't
3201 * be encoded in either the swp_entry_t or the architecture definition
3202 * of a swap pte.
3203 */
generic_max_swapfile_size(void)3204 unsigned long generic_max_swapfile_size(void)
3205 {
3206 swp_entry_t entry = swp_entry(0, ~0UL);
3207 const pte_t pte = softleaf_to_pte(entry);
3208
3209 /*
3210 * Since the PTE can be an invalid softleaf entry (e.g. the none PTE),
3211 * we need to do this manually.
3212 */
3213 entry = __pte_to_swp_entry(pte);
3214 entry = swp_entry(__swp_type(entry), __swp_offset(entry));
3215
3216 return swp_offset(entry) + 1;
3217 }
3218
3219 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)3220 __weak unsigned long arch_max_swapfile_size(void)
3221 {
3222 return generic_max_swapfile_size();
3223 }
3224
read_swap_header(struct swap_info_struct * si,union swap_header * swap_header,struct inode * inode)3225 static unsigned long read_swap_header(struct swap_info_struct *si,
3226 union swap_header *swap_header,
3227 struct inode *inode)
3228 {
3229 int i;
3230 unsigned long maxpages;
3231 unsigned long swapfilepages;
3232 unsigned long last_page;
3233
3234 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3235 pr_err("Unable to find swap-space signature\n");
3236 return 0;
3237 }
3238
3239 /* swap partition endianness hack... */
3240 if (swab32(swap_header->info.version) == 1) {
3241 swab32s(&swap_header->info.version);
3242 swab32s(&swap_header->info.last_page);
3243 swab32s(&swap_header->info.nr_badpages);
3244 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3245 return 0;
3246 for (i = 0; i < swap_header->info.nr_badpages; i++)
3247 swab32s(&swap_header->info.badpages[i]);
3248 }
3249 /* Check the swap header's sub-version */
3250 if (swap_header->info.version != 1) {
3251 pr_warn("Unable to handle swap header version %d\n",
3252 swap_header->info.version);
3253 return 0;
3254 }
3255
3256 maxpages = swapfile_maximum_size;
3257 last_page = swap_header->info.last_page;
3258 if (!last_page) {
3259 pr_warn("Empty swap-file\n");
3260 return 0;
3261 }
3262 if (last_page > maxpages) {
3263 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3264 K(maxpages), K(last_page));
3265 }
3266 if (maxpages > last_page) {
3267 maxpages = last_page + 1;
3268 /* p->max is an unsigned int: don't overflow it */
3269 if ((unsigned int)maxpages == 0)
3270 maxpages = UINT_MAX;
3271 }
3272
3273 if (!maxpages)
3274 return 0;
3275 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3276 if (swapfilepages && maxpages > swapfilepages) {
3277 pr_warn("Swap area shorter than signature indicates\n");
3278 return 0;
3279 }
3280 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3281 return 0;
3282 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3283 return 0;
3284
3285 return maxpages;
3286 }
3287
setup_swap_map(struct swap_info_struct * si,union swap_header * swap_header,unsigned char * swap_map,unsigned long maxpages)3288 static int setup_swap_map(struct swap_info_struct *si,
3289 union swap_header *swap_header,
3290 unsigned char *swap_map,
3291 unsigned long maxpages)
3292 {
3293 unsigned long i;
3294
3295 swap_map[0] = SWAP_MAP_BAD; /* omit header page */
3296 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3297 unsigned int page_nr = swap_header->info.badpages[i];
3298 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3299 return -EINVAL;
3300 if (page_nr < maxpages) {
3301 swap_map[page_nr] = SWAP_MAP_BAD;
3302 si->pages--;
3303 }
3304 }
3305
3306 if (!si->pages) {
3307 pr_warn("Empty swap-file\n");
3308 return -EINVAL;
3309 }
3310
3311 return 0;
3312 }
3313
setup_clusters(struct swap_info_struct * si,union swap_header * swap_header,unsigned long maxpages)3314 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3315 union swap_header *swap_header,
3316 unsigned long maxpages)
3317 {
3318 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3319 struct swap_cluster_info *cluster_info;
3320 int err = -ENOMEM;
3321 unsigned long i;
3322
3323 cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3324 if (!cluster_info)
3325 goto err;
3326
3327 for (i = 0; i < nr_clusters; i++)
3328 spin_lock_init(&cluster_info[i].lock);
3329
3330 if (!(si->flags & SWP_SOLIDSTATE)) {
3331 si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3332 GFP_KERNEL);
3333 if (!si->global_cluster)
3334 goto err;
3335 for (i = 0; i < SWAP_NR_ORDERS; i++)
3336 si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3337 spin_lock_init(&si->global_cluster_lock);
3338 }
3339
3340 /*
3341 * Mark unusable pages as unavailable. The clusters aren't
3342 * marked free yet, so no list operations are involved yet.
3343 *
3344 * See setup_swap_map(): header page, bad pages,
3345 * and the EOF part of the last cluster.
3346 */
3347 err = swap_cluster_setup_bad_slot(cluster_info, 0);
3348 if (err)
3349 goto err;
3350 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3351 unsigned int page_nr = swap_header->info.badpages[i];
3352
3353 if (page_nr >= maxpages)
3354 continue;
3355 err = swap_cluster_setup_bad_slot(cluster_info, page_nr);
3356 if (err)
3357 goto err;
3358 }
3359 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) {
3360 err = swap_cluster_setup_bad_slot(cluster_info, i);
3361 if (err)
3362 goto err;
3363 }
3364
3365 INIT_LIST_HEAD(&si->free_clusters);
3366 INIT_LIST_HEAD(&si->full_clusters);
3367 INIT_LIST_HEAD(&si->discard_clusters);
3368
3369 for (i = 0; i < SWAP_NR_ORDERS; i++) {
3370 INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3371 INIT_LIST_HEAD(&si->frag_clusters[i]);
3372 }
3373
3374 for (i = 0; i < nr_clusters; i++) {
3375 struct swap_cluster_info *ci = &cluster_info[i];
3376
3377 if (ci->count) {
3378 ci->flags = CLUSTER_FLAG_NONFULL;
3379 list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3380 } else {
3381 ci->flags = CLUSTER_FLAG_FREE;
3382 list_add_tail(&ci->list, &si->free_clusters);
3383 }
3384 }
3385
3386 return cluster_info;
3387 err:
3388 free_cluster_info(cluster_info, maxpages);
3389 return ERR_PTR(err);
3390 }
3391
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3392 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3393 {
3394 struct swap_info_struct *si;
3395 struct filename *name;
3396 struct file *swap_file = NULL;
3397 struct address_space *mapping;
3398 struct dentry *dentry;
3399 int prio;
3400 int error;
3401 union swap_header *swap_header;
3402 int nr_extents;
3403 sector_t span;
3404 unsigned long maxpages;
3405 unsigned char *swap_map = NULL;
3406 unsigned long *zeromap = NULL;
3407 struct swap_cluster_info *cluster_info = NULL;
3408 struct folio *folio = NULL;
3409 struct inode *inode = NULL;
3410 bool inced_nr_rotate_swap = false;
3411
3412 if (swap_flags & ~SWAP_FLAGS_VALID)
3413 return -EINVAL;
3414
3415 if (!capable(CAP_SYS_ADMIN))
3416 return -EPERM;
3417
3418 si = alloc_swap_info();
3419 if (IS_ERR(si))
3420 return PTR_ERR(si);
3421
3422 INIT_WORK(&si->discard_work, swap_discard_work);
3423 INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3424
3425 name = getname(specialfile);
3426 if (IS_ERR(name)) {
3427 error = PTR_ERR(name);
3428 name = NULL;
3429 goto bad_swap;
3430 }
3431 swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3432 if (IS_ERR(swap_file)) {
3433 error = PTR_ERR(swap_file);
3434 swap_file = NULL;
3435 goto bad_swap;
3436 }
3437
3438 si->swap_file = swap_file;
3439 mapping = swap_file->f_mapping;
3440 dentry = swap_file->f_path.dentry;
3441 inode = mapping->host;
3442
3443 error = claim_swapfile(si, inode);
3444 if (unlikely(error))
3445 goto bad_swap;
3446
3447 inode_lock(inode);
3448 if (d_unlinked(dentry) || cant_mount(dentry)) {
3449 error = -ENOENT;
3450 goto bad_swap_unlock_inode;
3451 }
3452 if (IS_SWAPFILE(inode)) {
3453 error = -EBUSY;
3454 goto bad_swap_unlock_inode;
3455 }
3456
3457 /*
3458 * The swap subsystem needs a major overhaul to support this.
3459 * It doesn't work yet so just disable it for now.
3460 */
3461 if (mapping_min_folio_order(mapping) > 0) {
3462 error = -EINVAL;
3463 goto bad_swap_unlock_inode;
3464 }
3465
3466 /*
3467 * Read the swap header.
3468 */
3469 if (!mapping->a_ops->read_folio) {
3470 error = -EINVAL;
3471 goto bad_swap_unlock_inode;
3472 }
3473 folio = read_mapping_folio(mapping, 0, swap_file);
3474 if (IS_ERR(folio)) {
3475 error = PTR_ERR(folio);
3476 goto bad_swap_unlock_inode;
3477 }
3478 swap_header = kmap_local_folio(folio, 0);
3479
3480 maxpages = read_swap_header(si, swap_header, inode);
3481 if (unlikely(!maxpages)) {
3482 error = -EINVAL;
3483 goto bad_swap_unlock_inode;
3484 }
3485
3486 si->max = maxpages;
3487 si->pages = maxpages - 1;
3488 nr_extents = setup_swap_extents(si, &span);
3489 if (nr_extents < 0) {
3490 error = nr_extents;
3491 goto bad_swap_unlock_inode;
3492 }
3493 if (si->pages != si->max - 1) {
3494 pr_err("swap:%u != (max:%u - 1)\n", si->pages, si->max);
3495 error = -EINVAL;
3496 goto bad_swap_unlock_inode;
3497 }
3498
3499 maxpages = si->max;
3500
3501 /* OK, set up the swap map and apply the bad block list */
3502 swap_map = vzalloc(maxpages);
3503 if (!swap_map) {
3504 error = -ENOMEM;
3505 goto bad_swap_unlock_inode;
3506 }
3507
3508 error = swap_cgroup_swapon(si->type, maxpages);
3509 if (error)
3510 goto bad_swap_unlock_inode;
3511
3512 error = setup_swap_map(si, swap_header, swap_map, maxpages);
3513 if (error)
3514 goto bad_swap_unlock_inode;
3515
3516 /*
3517 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3518 * be above MAX_PAGE_ORDER incase of a large swap file.
3519 */
3520 zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3521 GFP_KERNEL | __GFP_ZERO);
3522 if (!zeromap) {
3523 error = -ENOMEM;
3524 goto bad_swap_unlock_inode;
3525 }
3526
3527 if (si->bdev && bdev_stable_writes(si->bdev))
3528 si->flags |= SWP_STABLE_WRITES;
3529
3530 if (si->bdev && bdev_synchronous(si->bdev))
3531 si->flags |= SWP_SYNCHRONOUS_IO;
3532
3533 if (si->bdev && bdev_nonrot(si->bdev)) {
3534 si->flags |= SWP_SOLIDSTATE;
3535 } else {
3536 atomic_inc(&nr_rotate_swap);
3537 inced_nr_rotate_swap = true;
3538 }
3539
3540 cluster_info = setup_clusters(si, swap_header, maxpages);
3541 if (IS_ERR(cluster_info)) {
3542 error = PTR_ERR(cluster_info);
3543 cluster_info = NULL;
3544 goto bad_swap_unlock_inode;
3545 }
3546
3547 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3548 si->bdev && bdev_max_discard_sectors(si->bdev)) {
3549 /*
3550 * When discard is enabled for swap with no particular
3551 * policy flagged, we set all swap discard flags here in
3552 * order to sustain backward compatibility with older
3553 * swapon(8) releases.
3554 */
3555 si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3556 SWP_PAGE_DISCARD);
3557
3558 /*
3559 * By flagging sys_swapon, a sysadmin can tell us to
3560 * either do single-time area discards only, or to just
3561 * perform discards for released swap page-clusters.
3562 * Now it's time to adjust the p->flags accordingly.
3563 */
3564 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3565 si->flags &= ~SWP_PAGE_DISCARD;
3566 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3567 si->flags &= ~SWP_AREA_DISCARD;
3568
3569 /* issue a swapon-time discard if it's still required */
3570 if (si->flags & SWP_AREA_DISCARD) {
3571 int err = discard_swap(si);
3572 if (unlikely(err))
3573 pr_err("swapon: discard_swap(%p): %d\n",
3574 si, err);
3575 }
3576 }
3577
3578 error = zswap_swapon(si->type, maxpages);
3579 if (error)
3580 goto bad_swap_unlock_inode;
3581
3582 /*
3583 * Flush any pending IO and dirty mappings before we start using this
3584 * swap device.
3585 */
3586 inode->i_flags |= S_SWAPFILE;
3587 error = inode_drain_writes(inode);
3588 if (error) {
3589 inode->i_flags &= ~S_SWAPFILE;
3590 goto free_swap_zswap;
3591 }
3592
3593 mutex_lock(&swapon_mutex);
3594 prio = DEF_SWAP_PRIO;
3595 if (swap_flags & SWAP_FLAG_PREFER)
3596 prio = swap_flags & SWAP_FLAG_PRIO_MASK;
3597 enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3598
3599 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3600 K(si->pages), name->name, si->prio, nr_extents,
3601 K((unsigned long long)span),
3602 (si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3603 (si->flags & SWP_DISCARDABLE) ? "D" : "",
3604 (si->flags & SWP_AREA_DISCARD) ? "s" : "",
3605 (si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3606
3607 mutex_unlock(&swapon_mutex);
3608 atomic_inc(&proc_poll_event);
3609 wake_up_interruptible(&proc_poll_wait);
3610
3611 error = 0;
3612 goto out;
3613 free_swap_zswap:
3614 zswap_swapoff(si->type);
3615 bad_swap_unlock_inode:
3616 inode_unlock(inode);
3617 bad_swap:
3618 kfree(si->global_cluster);
3619 si->global_cluster = NULL;
3620 inode = NULL;
3621 destroy_swap_extents(si);
3622 swap_cgroup_swapoff(si->type);
3623 spin_lock(&swap_lock);
3624 si->swap_file = NULL;
3625 si->flags = 0;
3626 spin_unlock(&swap_lock);
3627 vfree(swap_map);
3628 kvfree(zeromap);
3629 if (cluster_info)
3630 free_cluster_info(cluster_info, maxpages);
3631 if (inced_nr_rotate_swap)
3632 atomic_dec(&nr_rotate_swap);
3633 if (swap_file)
3634 filp_close(swap_file, NULL);
3635 out:
3636 if (!IS_ERR_OR_NULL(folio))
3637 folio_release_kmap(folio, swap_header);
3638 if (name)
3639 putname(name);
3640 if (inode)
3641 inode_unlock(inode);
3642 return error;
3643 }
3644
si_swapinfo(struct sysinfo * val)3645 void si_swapinfo(struct sysinfo *val)
3646 {
3647 unsigned int type;
3648 unsigned long nr_to_be_unused = 0;
3649
3650 spin_lock(&swap_lock);
3651 for (type = 0; type < nr_swapfiles; type++) {
3652 struct swap_info_struct *si = swap_info[type];
3653
3654 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3655 nr_to_be_unused += swap_usage_in_pages(si);
3656 }
3657 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3658 val->totalswap = total_swap_pages + nr_to_be_unused;
3659 spin_unlock(&swap_lock);
3660 }
3661
3662 /*
3663 * Verify that nr swap entries are valid and increment their swap map counts.
3664 *
3665 * Returns error code in following case.
3666 * - success -> 0
3667 * - swp_entry is invalid -> EINVAL
3668 * - swap-cache reference is requested but there is already one. -> EEXIST
3669 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3670 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3671 */
__swap_duplicate(swp_entry_t entry,unsigned char usage,int nr)3672 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3673 {
3674 struct swap_info_struct *si;
3675 struct swap_cluster_info *ci;
3676 unsigned long offset;
3677 unsigned char count;
3678 unsigned char has_cache;
3679 int err, i;
3680
3681 si = swap_entry_to_info(entry);
3682 if (WARN_ON_ONCE(!si)) {
3683 pr_err("%s%08lx\n", Bad_file, entry.val);
3684 return -EINVAL;
3685 }
3686
3687 offset = swp_offset(entry);
3688 VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3689 VM_WARN_ON(usage == 1 && nr > 1);
3690 ci = swap_cluster_lock(si, offset);
3691
3692 err = 0;
3693 for (i = 0; i < nr; i++) {
3694 count = si->swap_map[offset + i];
3695
3696 /*
3697 * swapin_readahead() doesn't check if a swap entry is valid, so the
3698 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3699 */
3700 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3701 err = -ENOENT;
3702 goto unlock_out;
3703 }
3704
3705 has_cache = count & SWAP_HAS_CACHE;
3706 count &= ~SWAP_HAS_CACHE;
3707
3708 if (!count && !has_cache) {
3709 err = -ENOENT;
3710 } else if (usage == SWAP_HAS_CACHE) {
3711 if (has_cache)
3712 err = -EEXIST;
3713 } else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3714 err = -EINVAL;
3715 }
3716
3717 if (err)
3718 goto unlock_out;
3719 }
3720
3721 for (i = 0; i < nr; i++) {
3722 count = si->swap_map[offset + i];
3723 has_cache = count & SWAP_HAS_CACHE;
3724 count &= ~SWAP_HAS_CACHE;
3725
3726 if (usage == SWAP_HAS_CACHE)
3727 has_cache = SWAP_HAS_CACHE;
3728 else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3729 count += usage;
3730 else if (swap_count_continued(si, offset + i, count))
3731 count = COUNT_CONTINUED;
3732 else {
3733 /*
3734 * Don't need to rollback changes, because if
3735 * usage == 1, there must be nr == 1.
3736 */
3737 err = -ENOMEM;
3738 goto unlock_out;
3739 }
3740
3741 WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3742 }
3743
3744 unlock_out:
3745 swap_cluster_unlock(ci);
3746 return err;
3747 }
3748
3749 /*
3750 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3751 * (in which case its reference count is never incremented).
3752 */
swap_shmem_alloc(swp_entry_t entry,int nr)3753 void swap_shmem_alloc(swp_entry_t entry, int nr)
3754 {
3755 __swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3756 }
3757
3758 /*
3759 * Increase reference count of swap entry by 1.
3760 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3761 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3762 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3763 * might occur if a page table entry has got corrupted.
3764 */
swap_duplicate(swp_entry_t entry)3765 int swap_duplicate(swp_entry_t entry)
3766 {
3767 int err = 0;
3768
3769 while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3770 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3771 return err;
3772 }
3773
3774 /*
3775 * @entry: first swap entry from which we allocate nr swap cache.
3776 *
3777 * Called when allocating swap cache for existing swap entries,
3778 * This can return error codes. Returns 0 at success.
3779 * -EEXIST means there is a swap cache.
3780 * Note: return code is different from swap_duplicate().
3781 */
swapcache_prepare(swp_entry_t entry,int nr)3782 int swapcache_prepare(swp_entry_t entry, int nr)
3783 {
3784 return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3785 }
3786
3787 /*
3788 * Caller should ensure entries belong to the same folio so
3789 * the entries won't span cross cluster boundary.
3790 */
swapcache_clear(struct swap_info_struct * si,swp_entry_t entry,int nr)3791 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3792 {
3793 swap_entries_put_cache(si, entry, nr);
3794 }
3795
3796 /*
3797 * add_swap_count_continuation - called when a swap count is duplicated
3798 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3799 * page of the original vmalloc'ed swap_map, to hold the continuation count
3800 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3801 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3802 *
3803 * These continuation pages are seldom referenced: the common paths all work
3804 * on the original swap_map, only referring to a continuation page when the
3805 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3806 *
3807 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3808 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3809 * can be called after dropping locks.
3810 */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3811 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3812 {
3813 struct swap_info_struct *si;
3814 struct swap_cluster_info *ci;
3815 struct page *head;
3816 struct page *page;
3817 struct page *list_page;
3818 pgoff_t offset;
3819 unsigned char count;
3820 int ret = 0;
3821
3822 /*
3823 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3824 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3825 */
3826 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3827
3828 si = get_swap_device(entry);
3829 if (!si) {
3830 /*
3831 * An acceptable race has occurred since the failing
3832 * __swap_duplicate(): the swap device may be swapoff
3833 */
3834 goto outer;
3835 }
3836
3837 offset = swp_offset(entry);
3838
3839 ci = swap_cluster_lock(si, offset);
3840
3841 count = swap_count(si->swap_map[offset]);
3842
3843 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3844 /*
3845 * The higher the swap count, the more likely it is that tasks
3846 * will race to add swap count continuation: we need to avoid
3847 * over-provisioning.
3848 */
3849 goto out;
3850 }
3851
3852 if (!page) {
3853 ret = -ENOMEM;
3854 goto out;
3855 }
3856
3857 head = vmalloc_to_page(si->swap_map + offset);
3858 offset &= ~PAGE_MASK;
3859
3860 spin_lock(&si->cont_lock);
3861 /*
3862 * Page allocation does not initialize the page's lru field,
3863 * but it does always reset its private field.
3864 */
3865 if (!page_private(head)) {
3866 BUG_ON(count & COUNT_CONTINUED);
3867 INIT_LIST_HEAD(&head->lru);
3868 set_page_private(head, SWP_CONTINUED);
3869 si->flags |= SWP_CONTINUED;
3870 }
3871
3872 list_for_each_entry(list_page, &head->lru, lru) {
3873 unsigned char *map;
3874
3875 /*
3876 * If the previous map said no continuation, but we've found
3877 * a continuation page, free our allocation and use this one.
3878 */
3879 if (!(count & COUNT_CONTINUED))
3880 goto out_unlock_cont;
3881
3882 map = kmap_local_page(list_page) + offset;
3883 count = *map;
3884 kunmap_local(map);
3885
3886 /*
3887 * If this continuation count now has some space in it,
3888 * free our allocation and use this one.
3889 */
3890 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3891 goto out_unlock_cont;
3892 }
3893
3894 list_add_tail(&page->lru, &head->lru);
3895 page = NULL; /* now it's attached, don't free it */
3896 out_unlock_cont:
3897 spin_unlock(&si->cont_lock);
3898 out:
3899 swap_cluster_unlock(ci);
3900 put_swap_device(si);
3901 outer:
3902 if (page)
3903 __free_page(page);
3904 return ret;
3905 }
3906
3907 /*
3908 * swap_count_continued - when the original swap_map count is incremented
3909 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3910 * into, carry if so, or else fail until a new continuation page is allocated;
3911 * when the original swap_map count is decremented from 0 with continuation,
3912 * borrow from the continuation and report whether it still holds more.
3913 * Called while __swap_duplicate() or caller of swap_entry_put_locked()
3914 * holds cluster lock.
3915 */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3916 static bool swap_count_continued(struct swap_info_struct *si,
3917 pgoff_t offset, unsigned char count)
3918 {
3919 struct page *head;
3920 struct page *page;
3921 unsigned char *map;
3922 bool ret;
3923
3924 head = vmalloc_to_page(si->swap_map + offset);
3925 if (page_private(head) != SWP_CONTINUED) {
3926 BUG_ON(count & COUNT_CONTINUED);
3927 return false; /* need to add count continuation */
3928 }
3929
3930 spin_lock(&si->cont_lock);
3931 offset &= ~PAGE_MASK;
3932 page = list_next_entry(head, lru);
3933 map = kmap_local_page(page) + offset;
3934
3935 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3936 goto init_map; /* jump over SWAP_CONT_MAX checks */
3937
3938 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3939 /*
3940 * Think of how you add 1 to 999
3941 */
3942 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3943 kunmap_local(map);
3944 page = list_next_entry(page, lru);
3945 BUG_ON(page == head);
3946 map = kmap_local_page(page) + offset;
3947 }
3948 if (*map == SWAP_CONT_MAX) {
3949 kunmap_local(map);
3950 page = list_next_entry(page, lru);
3951 if (page == head) {
3952 ret = false; /* add count continuation */
3953 goto out;
3954 }
3955 map = kmap_local_page(page) + offset;
3956 init_map: *map = 0; /* we didn't zero the page */
3957 }
3958 *map += 1;
3959 kunmap_local(map);
3960 while ((page = list_prev_entry(page, lru)) != head) {
3961 map = kmap_local_page(page) + offset;
3962 *map = COUNT_CONTINUED;
3963 kunmap_local(map);
3964 }
3965 ret = true; /* incremented */
3966
3967 } else { /* decrementing */
3968 /*
3969 * Think of how you subtract 1 from 1000
3970 */
3971 BUG_ON(count != COUNT_CONTINUED);
3972 while (*map == COUNT_CONTINUED) {
3973 kunmap_local(map);
3974 page = list_next_entry(page, lru);
3975 BUG_ON(page == head);
3976 map = kmap_local_page(page) + offset;
3977 }
3978 BUG_ON(*map == 0);
3979 *map -= 1;
3980 if (*map == 0)
3981 count = 0;
3982 kunmap_local(map);
3983 while ((page = list_prev_entry(page, lru)) != head) {
3984 map = kmap_local_page(page) + offset;
3985 *map = SWAP_CONT_MAX | count;
3986 count = COUNT_CONTINUED;
3987 kunmap_local(map);
3988 }
3989 ret = count == COUNT_CONTINUED;
3990 }
3991 out:
3992 spin_unlock(&si->cont_lock);
3993 return ret;
3994 }
3995
3996 /*
3997 * free_swap_count_continuations - swapoff free all the continuation pages
3998 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3999 */
free_swap_count_continuations(struct swap_info_struct * si)4000 static void free_swap_count_continuations(struct swap_info_struct *si)
4001 {
4002 pgoff_t offset;
4003
4004 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
4005 struct page *head;
4006 head = vmalloc_to_page(si->swap_map + offset);
4007 if (page_private(head)) {
4008 struct page *page, *next;
4009
4010 list_for_each_entry_safe(page, next, &head->lru, lru) {
4011 list_del(&page->lru);
4012 __free_page(page);
4013 }
4014 }
4015 }
4016 }
4017
4018 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__has_usable_swap(void)4019 static bool __has_usable_swap(void)
4020 {
4021 return !plist_head_empty(&swap_active_head);
4022 }
4023
__folio_throttle_swaprate(struct folio * folio,gfp_t gfp)4024 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
4025 {
4026 struct swap_info_struct *si;
4027
4028 if (!(gfp & __GFP_IO))
4029 return;
4030
4031 if (!__has_usable_swap())
4032 return;
4033
4034 if (!blk_cgroup_congested())
4035 return;
4036
4037 /*
4038 * We've already scheduled a throttle, avoid taking the global swap
4039 * lock.
4040 */
4041 if (current->throttle_disk)
4042 return;
4043
4044 spin_lock(&swap_avail_lock);
4045 plist_for_each_entry(si, &swap_avail_head, avail_list) {
4046 if (si->bdev) {
4047 blkcg_schedule_throttle(si->bdev->bd_disk, true);
4048 break;
4049 }
4050 }
4051 spin_unlock(&swap_avail_lock);
4052 }
4053 #endif
4054
swapfile_init(void)4055 static int __init swapfile_init(void)
4056 {
4057 swapfile_maximum_size = arch_max_swapfile_size();
4058
4059 /*
4060 * Once a cluster is freed, it's swap table content is read
4061 * only, and all swap cache readers (swap_cache_*) verifies
4062 * the content before use. So it's safe to use RCU slab here.
4063 */
4064 if (!SWP_TABLE_USE_PAGE)
4065 swap_table_cachep = kmem_cache_create("swap_table",
4066 sizeof(struct swap_table),
4067 0, SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, NULL);
4068
4069 #ifdef CONFIG_MIGRATION
4070 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
4071 swap_migration_ad_supported = true;
4072 #endif /* CONFIG_MIGRATION */
4073
4074 return 0;
4075 }
4076 subsys_initcall(swapfile_init);
4077