1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm_init.c - Memory initialisation verification and debugging
4 *
5 * Copyright 2008 IBM Corporation, 2008
6 * Author Mel Gorman <mel@csn.ul.ie>
7 *
8 */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include <linux/kexec_handover.h>
34 #include <linux/hugetlb.h>
35 #include "internal.h"
36 #include "slab.h"
37 #include "shuffle.h"
38
39 #include <asm/setup.h>
40
41 #ifndef CONFIG_NUMA
42 unsigned long max_mapnr;
43 EXPORT_SYMBOL(max_mapnr);
44
45 struct page *mem_map;
46 EXPORT_SYMBOL(mem_map);
47 #endif
48
49 /*
50 * high_memory defines the upper bound on direct map memory, then end
51 * of ZONE_NORMAL.
52 */
53 void *high_memory;
54 EXPORT_SYMBOL(high_memory);
55
56 #ifdef CONFIG_DEBUG_MEMORY_INIT
57 int __meminitdata mminit_loglevel;
58
59 /* The zonelists are simply reported, validation is manual. */
mminit_verify_zonelist(void)60 void __init mminit_verify_zonelist(void)
61 {
62 int nid;
63
64 if (mminit_loglevel < MMINIT_VERIFY)
65 return;
66
67 for_each_online_node(nid) {
68 pg_data_t *pgdat = NODE_DATA(nid);
69 struct zone *zone;
70 struct zoneref *z;
71 struct zonelist *zonelist;
72 int i, listid, zoneid;
73
74 for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
75
76 /* Identify the zone and nodelist */
77 zoneid = i % MAX_NR_ZONES;
78 listid = i / MAX_NR_ZONES;
79 zonelist = &pgdat->node_zonelists[listid];
80 zone = &pgdat->node_zones[zoneid];
81 if (!populated_zone(zone))
82 continue;
83
84 /* Print information about the zonelist */
85 printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
86 listid > 0 ? "thisnode" : "general", nid,
87 zone->name);
88
89 /* Iterate the zonelist */
90 for_each_zone_zonelist(zone, z, zonelist, zoneid)
91 pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
92 pr_cont("\n");
93 }
94 }
95 }
96
mminit_verify_pageflags_layout(void)97 void __init mminit_verify_pageflags_layout(void)
98 {
99 int shift, width;
100 unsigned long or_mask, add_mask;
101
102 shift = BITS_PER_LONG;
103 width = shift - NR_NON_PAGEFLAG_BITS;
104 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
105 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
106 SECTIONS_WIDTH,
107 NODES_WIDTH,
108 ZONES_WIDTH,
109 LAST_CPUPID_WIDTH,
110 KASAN_TAG_WIDTH,
111 LRU_GEN_WIDTH,
112 LRU_REFS_WIDTH,
113 NR_PAGEFLAGS);
114 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
115 "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
116 SECTIONS_SHIFT,
117 NODES_SHIFT,
118 ZONES_SHIFT,
119 LAST_CPUPID_SHIFT,
120 KASAN_TAG_WIDTH);
121 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
122 "Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
123 (unsigned long)SECTIONS_PGSHIFT,
124 (unsigned long)NODES_PGSHIFT,
125 (unsigned long)ZONES_PGSHIFT,
126 (unsigned long)LAST_CPUPID_PGSHIFT,
127 (unsigned long)KASAN_TAG_PGSHIFT);
128 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
129 "Node/Zone ID: %lu -> %lu\n",
130 (unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
131 (unsigned long)ZONEID_PGOFF);
132 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
133 "location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
134 shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
135 #ifdef NODE_NOT_IN_PAGE_FLAGS
136 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
137 "Node not in page flags");
138 #endif
139 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
140 mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
141 "Last cpupid not in page flags");
142 #endif
143
144 if (SECTIONS_WIDTH) {
145 shift -= SECTIONS_WIDTH;
146 BUG_ON(shift != SECTIONS_PGSHIFT);
147 }
148 if (NODES_WIDTH) {
149 shift -= NODES_WIDTH;
150 BUG_ON(shift != NODES_PGSHIFT);
151 }
152 if (ZONES_WIDTH) {
153 shift -= ZONES_WIDTH;
154 BUG_ON(shift != ZONES_PGSHIFT);
155 }
156
157 /* Check for bitmask overlaps */
158 or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
159 (NODES_MASK << NODES_PGSHIFT) |
160 (SECTIONS_MASK << SECTIONS_PGSHIFT);
161 add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
162 (NODES_MASK << NODES_PGSHIFT) +
163 (SECTIONS_MASK << SECTIONS_PGSHIFT);
164 BUG_ON(or_mask != add_mask);
165 }
166
set_mminit_loglevel(char * str)167 static __init int set_mminit_loglevel(char *str)
168 {
169 get_option(&str, &mminit_loglevel);
170 return 0;
171 }
172 early_param("mminit_loglevel", set_mminit_loglevel);
173 #endif /* CONFIG_DEBUG_MEMORY_INIT */
174
175 struct kobject *mm_kobj;
176
177 #ifdef CONFIG_SMP
178 s32 vm_committed_as_batch = 32;
179
mm_compute_batch(int overcommit_policy)180 void mm_compute_batch(int overcommit_policy)
181 {
182 u64 memsized_batch;
183 s32 nr = num_present_cpus();
184 s32 batch = max_t(s32, nr*2, 32);
185 unsigned long ram_pages = totalram_pages();
186
187 /*
188 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
189 * (total memory/#cpus), and lift it to 25% for other policies
190 * to easy the possible lock contention for percpu_counter
191 * vm_committed_as, while the max limit is INT_MAX
192 */
193 if (overcommit_policy == OVERCOMMIT_NEVER)
194 memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
195 else
196 memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
197
198 vm_committed_as_batch = max_t(s32, memsized_batch, batch);
199 }
200
mm_compute_batch_notifier(struct notifier_block * self,unsigned long action,void * arg)201 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
202 unsigned long action, void *arg)
203 {
204 switch (action) {
205 case MEM_ONLINE:
206 case MEM_OFFLINE:
207 mm_compute_batch(sysctl_overcommit_memory);
208 break;
209 default:
210 break;
211 }
212 return NOTIFY_OK;
213 }
214
mm_compute_batch_init(void)215 static int __init mm_compute_batch_init(void)
216 {
217 mm_compute_batch(sysctl_overcommit_memory);
218 hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
219 return 0;
220 }
221
222 __initcall(mm_compute_batch_init);
223
224 #endif
225
mm_sysfs_init(void)226 static int __init mm_sysfs_init(void)
227 {
228 mm_kobj = kobject_create_and_add("mm", kernel_kobj);
229 if (!mm_kobj)
230 return -ENOMEM;
231
232 return 0;
233 }
234 postcore_initcall(mm_sysfs_init);
235
236 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
237 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
238 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
239
240 static unsigned long required_kernelcore __initdata;
241 static unsigned long required_kernelcore_percent __initdata;
242 static unsigned long required_movablecore __initdata;
243 static unsigned long required_movablecore_percent __initdata;
244
245 static unsigned long nr_kernel_pages __initdata;
246 static unsigned long nr_all_pages __initdata;
247
248 static bool deferred_struct_pages __meminitdata;
249
250 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
251
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)252 static int __init cmdline_parse_core(char *p, unsigned long *core,
253 unsigned long *percent)
254 {
255 unsigned long long coremem;
256 char *endptr;
257
258 if (!p)
259 return -EINVAL;
260
261 /* Value may be a percentage of total memory, otherwise bytes */
262 coremem = simple_strtoull(p, &endptr, 0);
263 if (*endptr == '%') {
264 /* Paranoid check for percent values greater than 100 */
265 WARN_ON(coremem > 100);
266
267 *percent = coremem;
268 } else {
269 coremem = memparse(p, &p);
270 /* Paranoid check that UL is enough for the coremem value */
271 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
272
273 *core = coremem >> PAGE_SHIFT;
274 *percent = 0UL;
275 }
276 return 0;
277 }
278
279 bool mirrored_kernelcore __initdata_memblock;
280
281 /*
282 * kernelcore=size sets the amount of memory for use for allocations that
283 * cannot be reclaimed or migrated.
284 */
cmdline_parse_kernelcore(char * p)285 static int __init cmdline_parse_kernelcore(char *p)
286 {
287 /* parse kernelcore=mirror */
288 if (parse_option_str(p, "mirror")) {
289 mirrored_kernelcore = true;
290 return 0;
291 }
292
293 return cmdline_parse_core(p, &required_kernelcore,
294 &required_kernelcore_percent);
295 }
296 early_param("kernelcore", cmdline_parse_kernelcore);
297
298 /*
299 * movablecore=size sets the amount of memory for use for allocations that
300 * can be reclaimed or migrated.
301 */
cmdline_parse_movablecore(char * p)302 static int __init cmdline_parse_movablecore(char *p)
303 {
304 return cmdline_parse_core(p, &required_movablecore,
305 &required_movablecore_percent);
306 }
307 early_param("movablecore", cmdline_parse_movablecore);
308
309 /*
310 * early_calculate_totalpages()
311 * Sum pages in active regions for movable zone.
312 * Populate N_MEMORY for calculating usable_nodes.
313 */
early_calculate_totalpages(void)314 static unsigned long __init early_calculate_totalpages(void)
315 {
316 unsigned long totalpages = 0;
317 unsigned long start_pfn, end_pfn;
318 int i, nid;
319
320 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
321 unsigned long pages = end_pfn - start_pfn;
322
323 totalpages += pages;
324 if (pages)
325 node_set_state(nid, N_MEMORY);
326 }
327 return totalpages;
328 }
329
330 /*
331 * This finds a zone that can be used for ZONE_MOVABLE pages. The
332 * assumption is made that zones within a node are ordered in monotonic
333 * increasing memory addresses so that the "highest" populated zone is used
334 */
find_usable_zone_for_movable(void)335 static void __init find_usable_zone_for_movable(void)
336 {
337 int zone_index;
338 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
339 if (zone_index == ZONE_MOVABLE)
340 continue;
341
342 if (arch_zone_highest_possible_pfn[zone_index] >
343 arch_zone_lowest_possible_pfn[zone_index])
344 break;
345 }
346
347 VM_BUG_ON(zone_index == -1);
348 movable_zone = zone_index;
349 }
350
351 /*
352 * Find the PFN the Movable zone begins in each node. Kernel memory
353 * is spread evenly between nodes as long as the nodes have enough
354 * memory. When they don't, some nodes will have more kernelcore than
355 * others
356 */
find_zone_movable_pfns_for_nodes(void)357 static void __init find_zone_movable_pfns_for_nodes(void)
358 {
359 int i, nid;
360 unsigned long usable_startpfn;
361 unsigned long kernelcore_node, kernelcore_remaining;
362 /* save the state before borrow the nodemask */
363 nodemask_t saved_node_state = node_states[N_MEMORY];
364 unsigned long totalpages = early_calculate_totalpages();
365 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
366 struct memblock_region *r;
367
368 /* Need to find movable_zone earlier when movable_node is specified. */
369 find_usable_zone_for_movable();
370
371 /*
372 * If movable_node is specified, ignore kernelcore and movablecore
373 * options.
374 */
375 if (movable_node_is_enabled()) {
376 for_each_mem_region(r) {
377 if (!memblock_is_hotpluggable(r))
378 continue;
379
380 nid = memblock_get_region_node(r);
381
382 usable_startpfn = memblock_region_memory_base_pfn(r);
383 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
384 min(usable_startpfn, zone_movable_pfn[nid]) :
385 usable_startpfn;
386 }
387
388 goto out2;
389 }
390
391 /*
392 * If kernelcore=mirror is specified, ignore movablecore option
393 */
394 if (mirrored_kernelcore) {
395 bool mem_below_4gb_not_mirrored = false;
396
397 if (!memblock_has_mirror()) {
398 pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
399 goto out;
400 }
401
402 if (is_kdump_kernel()) {
403 pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
404 goto out;
405 }
406
407 for_each_mem_region(r) {
408 if (memblock_is_mirror(r))
409 continue;
410
411 nid = memblock_get_region_node(r);
412
413 usable_startpfn = memblock_region_memory_base_pfn(r);
414
415 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
416 mem_below_4gb_not_mirrored = true;
417 continue;
418 }
419
420 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
421 min(usable_startpfn, zone_movable_pfn[nid]) :
422 usable_startpfn;
423 }
424
425 if (mem_below_4gb_not_mirrored)
426 pr_warn("This configuration results in unmirrored kernel memory.\n");
427
428 goto out2;
429 }
430
431 /*
432 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
433 * amount of necessary memory.
434 */
435 if (required_kernelcore_percent)
436 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
437 10000UL;
438 if (required_movablecore_percent)
439 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
440 10000UL;
441
442 /*
443 * If movablecore= was specified, calculate what size of
444 * kernelcore that corresponds so that memory usable for
445 * any allocation type is evenly spread. If both kernelcore
446 * and movablecore are specified, then the value of kernelcore
447 * will be used for required_kernelcore if it's greater than
448 * what movablecore would have allowed.
449 */
450 if (required_movablecore) {
451 unsigned long corepages;
452
453 /*
454 * Round-up so that ZONE_MOVABLE is at least as large as what
455 * was requested by the user
456 */
457 required_movablecore =
458 round_up(required_movablecore, MAX_ORDER_NR_PAGES);
459 required_movablecore = min(totalpages, required_movablecore);
460 corepages = totalpages - required_movablecore;
461
462 required_kernelcore = max(required_kernelcore, corepages);
463 }
464
465 /*
466 * If kernelcore was not specified or kernelcore size is larger
467 * than totalpages, there is no ZONE_MOVABLE.
468 */
469 if (!required_kernelcore || required_kernelcore >= totalpages)
470 goto out;
471
472 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
473 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
474
475 restart:
476 /* Spread kernelcore memory as evenly as possible throughout nodes */
477 kernelcore_node = required_kernelcore / usable_nodes;
478 for_each_node_state(nid, N_MEMORY) {
479 unsigned long start_pfn, end_pfn;
480
481 /*
482 * Recalculate kernelcore_node if the division per node
483 * now exceeds what is necessary to satisfy the requested
484 * amount of memory for the kernel
485 */
486 if (required_kernelcore < kernelcore_node)
487 kernelcore_node = required_kernelcore / usable_nodes;
488
489 /*
490 * As the map is walked, we track how much memory is usable
491 * by the kernel using kernelcore_remaining. When it is
492 * 0, the rest of the node is usable by ZONE_MOVABLE
493 */
494 kernelcore_remaining = kernelcore_node;
495
496 /* Go through each range of PFNs within this node */
497 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
498 unsigned long size_pages;
499
500 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
501 if (start_pfn >= end_pfn)
502 continue;
503
504 /* Account for what is only usable for kernelcore */
505 if (start_pfn < usable_startpfn) {
506 unsigned long kernel_pages;
507 kernel_pages = min(end_pfn, usable_startpfn)
508 - start_pfn;
509
510 kernelcore_remaining -= min(kernel_pages,
511 kernelcore_remaining);
512 required_kernelcore -= min(kernel_pages,
513 required_kernelcore);
514
515 /* Continue if range is now fully accounted */
516 if (end_pfn <= usable_startpfn) {
517
518 /*
519 * Push zone_movable_pfn to the end so
520 * that if we have to rebalance
521 * kernelcore across nodes, we will
522 * not double account here
523 */
524 zone_movable_pfn[nid] = end_pfn;
525 continue;
526 }
527 start_pfn = usable_startpfn;
528 }
529
530 /*
531 * The usable PFN range for ZONE_MOVABLE is from
532 * start_pfn->end_pfn. Calculate size_pages as the
533 * number of pages used as kernelcore
534 */
535 size_pages = end_pfn - start_pfn;
536 if (size_pages > kernelcore_remaining)
537 size_pages = kernelcore_remaining;
538 zone_movable_pfn[nid] = start_pfn + size_pages;
539
540 /*
541 * Some kernelcore has been met, update counts and
542 * break if the kernelcore for this node has been
543 * satisfied
544 */
545 required_kernelcore -= min(required_kernelcore,
546 size_pages);
547 kernelcore_remaining -= size_pages;
548 if (!kernelcore_remaining)
549 break;
550 }
551 }
552
553 /*
554 * If there is still required_kernelcore, we do another pass with one
555 * less node in the count. This will push zone_movable_pfn[nid] further
556 * along on the nodes that still have memory until kernelcore is
557 * satisfied
558 */
559 usable_nodes--;
560 if (usable_nodes && required_kernelcore > usable_nodes)
561 goto restart;
562
563 out2:
564 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
565 for_each_node_state(nid, N_MEMORY) {
566 unsigned long start_pfn, end_pfn;
567
568 zone_movable_pfn[nid] =
569 round_up(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
570
571 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
572 if (zone_movable_pfn[nid] >= end_pfn)
573 zone_movable_pfn[nid] = 0;
574 }
575
576 out:
577 /* restore the node_state */
578 node_states[N_MEMORY] = saved_node_state;
579 }
580
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)581 void __meminit __init_single_page(struct page *page, unsigned long pfn,
582 unsigned long zone, int nid)
583 {
584 mm_zero_struct_page(page);
585 set_page_links(page, zone, nid, pfn);
586 init_page_count(page);
587 atomic_set(&page->_mapcount, -1);
588 page_cpupid_reset_last(page);
589 page_kasan_tag_reset(page);
590
591 INIT_LIST_HEAD(&page->lru);
592 #ifdef WANT_PAGE_VIRTUAL
593 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
594 if (!is_highmem_idx(zone))
595 set_page_address(page, __va(pfn << PAGE_SHIFT));
596 #endif
597 }
598
599 #ifdef CONFIG_NUMA
600 /*
601 * During memory init memblocks map pfns to nids. The search is expensive and
602 * this caches recent lookups. The implementation of __early_pfn_to_nid
603 * treats start/end as pfns.
604 */
605 struct mminit_pfnnid_cache {
606 unsigned long last_start;
607 unsigned long last_end;
608 int last_nid;
609 };
610
611 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
612
613 /*
614 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
615 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)616 static int __meminit __early_pfn_to_nid(unsigned long pfn,
617 struct mminit_pfnnid_cache *state)
618 {
619 unsigned long start_pfn, end_pfn;
620 int nid;
621
622 if (state->last_start <= pfn && pfn < state->last_end)
623 return state->last_nid;
624
625 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
626 if (nid != NUMA_NO_NODE) {
627 state->last_start = start_pfn;
628 state->last_end = end_pfn;
629 state->last_nid = nid;
630 }
631
632 return nid;
633 }
634
early_pfn_to_nid(unsigned long pfn)635 int __meminit early_pfn_to_nid(unsigned long pfn)
636 {
637 static DEFINE_SPINLOCK(early_pfn_lock);
638 int nid;
639
640 spin_lock(&early_pfn_lock);
641 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
642 if (nid < 0)
643 nid = first_online_node;
644 spin_unlock(&early_pfn_lock);
645
646 return nid;
647 }
648
649 int hashdist = HASHDIST_DEFAULT;
650
set_hashdist(char * str)651 static int __init set_hashdist(char *str)
652 {
653 if (!str)
654 return 0;
655 hashdist = simple_strtoul(str, &str, 0);
656 return 1;
657 }
658 __setup("hashdist=", set_hashdist);
659
fixup_hashdist(void)660 static inline void fixup_hashdist(void)
661 {
662 if (num_node_state(N_MEMORY) == 1)
663 hashdist = 0;
664 }
665 #else
fixup_hashdist(void)666 static inline void fixup_hashdist(void) {}
667 #endif /* CONFIG_NUMA */
668
669 /*
670 * Initialize a reserved page unconditionally, finding its zone first.
671 */
__init_page_from_nid(unsigned long pfn,int nid)672 void __meminit __init_page_from_nid(unsigned long pfn, int nid)
673 {
674 pg_data_t *pgdat;
675 int zid;
676
677 pgdat = NODE_DATA(nid);
678
679 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
680 struct zone *zone = &pgdat->node_zones[zid];
681
682 if (zone_spans_pfn(zone, pfn))
683 break;
684 }
685 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
686
687 if (pageblock_aligned(pfn))
688 set_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE);
689 }
690
691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)692 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
693 {
694 pgdat->first_deferred_pfn = ULONG_MAX;
695 }
696
697 /* Returns true if the struct page for the pfn is initialised */
early_page_initialised(unsigned long pfn,int nid)698 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
699 {
700 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
701 return false;
702
703 return true;
704 }
705
706 /*
707 * Returns true when the remaining initialisation should be deferred until
708 * later in the boot cycle when it can be parallelised.
709 */
710 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)711 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
712 {
713 static unsigned long prev_end_pfn, nr_initialised;
714
715 if (early_page_ext_enabled())
716 return false;
717
718 /* Always populate low zones for address-constrained allocations */
719 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
720 return false;
721
722 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
723 return true;
724
725 /*
726 * prev_end_pfn static that contains the end of previous zone
727 * No need to protect because called very early in boot before smp_init.
728 */
729 if (prev_end_pfn != end_pfn) {
730 prev_end_pfn = end_pfn;
731 nr_initialised = 0;
732 }
733
734 /*
735 * We start only with one section of pages, more pages are added as
736 * needed until the rest of deferred pages are initialized.
737 */
738 nr_initialised++;
739 if ((nr_initialised > PAGES_PER_SECTION) &&
740 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
741 NODE_DATA(nid)->first_deferred_pfn = pfn;
742 return true;
743 }
744 return false;
745 }
746
__init_deferred_page(unsigned long pfn,int nid)747 static void __meminit __init_deferred_page(unsigned long pfn, int nid)
748 {
749 if (early_page_initialised(pfn, nid))
750 return;
751
752 __init_page_from_nid(pfn, nid);
753 }
754 #else
pgdat_set_deferred_range(pg_data_t * pgdat)755 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
756
early_page_initialised(unsigned long pfn,int nid)757 static inline bool early_page_initialised(unsigned long pfn, int nid)
758 {
759 return true;
760 }
761
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)762 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
763 {
764 return false;
765 }
766
__init_deferred_page(unsigned long pfn,int nid)767 static inline void __init_deferred_page(unsigned long pfn, int nid)
768 {
769 }
770 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
771
init_deferred_page(unsigned long pfn,int nid)772 void __meminit init_deferred_page(unsigned long pfn, int nid)
773 {
774 __init_deferred_page(pfn, nid);
775 }
776
777 /*
778 * Initialised pages do not have PageReserved set. This function is
779 * called for each range allocated by the bootmem allocator and
780 * marks the pages PageReserved. The remaining valid pages are later
781 * sent to the buddy page allocator.
782 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end,int nid)783 void __meminit reserve_bootmem_region(phys_addr_t start,
784 phys_addr_t end, int nid)
785 {
786 unsigned long pfn;
787
788 for_each_valid_pfn(pfn, PFN_DOWN(start), PFN_UP(end)) {
789 struct page *page = pfn_to_page(pfn);
790
791 __init_deferred_page(pfn, nid);
792
793 /*
794 * no need for atomic set_bit because the struct
795 * page is not visible yet so nobody should
796 * access it yet.
797 */
798 __SetPageReserved(page);
799 }
800 }
801
802 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
803 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)804 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
805 {
806 static struct memblock_region *r;
807
808 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
809 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
810 for_each_mem_region(r) {
811 if (*pfn < memblock_region_memory_end_pfn(r))
812 break;
813 }
814 }
815 if (*pfn >= memblock_region_memory_base_pfn(r) &&
816 memblock_is_mirror(r)) {
817 *pfn = memblock_region_memory_end_pfn(r);
818 return true;
819 }
820 }
821 return false;
822 }
823
824 /*
825 * Only struct pages that correspond to ranges defined by memblock.memory
826 * are zeroed and initialized by going through __init_single_page() during
827 * memmap_init_zone_range().
828 *
829 * But, there could be struct pages that correspond to holes in
830 * memblock.memory. This can happen because of the following reasons:
831 * - physical memory bank size is not necessarily the exact multiple of the
832 * arbitrary section size
833 * - early reserved memory may not be listed in memblock.memory
834 * - non-memory regions covered by the contiguous flatmem mapping
835 * - memory layouts defined with memmap= kernel parameter may not align
836 * nicely with memmap sections
837 *
838 * Explicitly initialize those struct pages so that:
839 * - PG_Reserved is set
840 * - zone and node links point to zone and node that span the page if the
841 * hole is in the middle of a zone
842 * - zone and node links point to adjacent zone/node if the hole falls on
843 * the zone boundary; the pages in such holes will be prepended to the
844 * zone/node above the hole except for the trailing pages in the last
845 * section that will be appended to the zone/node below.
846 */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)847 static void __init init_unavailable_range(unsigned long spfn,
848 unsigned long epfn,
849 int zone, int node)
850 {
851 unsigned long pfn;
852 u64 pgcnt = 0;
853
854 for_each_valid_pfn(pfn, spfn, epfn) {
855 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
856 __SetPageReserved(pfn_to_page(pfn));
857 pgcnt++;
858 }
859
860 if (pgcnt)
861 pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
862 node, zone_names[zone], pgcnt);
863 }
864
865 /*
866 * Initially all pages are reserved - free ones are freed
867 * up by memblock_free_all() once the early boot process is
868 * done. Non-atomic initialization, single-pass.
869 *
870 * All aligned pageblocks are initialized to the specified migratetype
871 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
872 * zone stats (e.g., nr_isolate_pageblock) are touched.
873 */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)874 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
875 unsigned long start_pfn, unsigned long zone_end_pfn,
876 enum meminit_context context,
877 struct vmem_altmap *altmap, int migratetype)
878 {
879 unsigned long pfn, end_pfn = start_pfn + size;
880 struct page *page;
881
882 if (highest_memmap_pfn < end_pfn - 1)
883 highest_memmap_pfn = end_pfn - 1;
884
885 #ifdef CONFIG_ZONE_DEVICE
886 /*
887 * Honor reservation requested by the driver for this ZONE_DEVICE
888 * memory. We limit the total number of pages to initialize to just
889 * those that might contain the memory mapping. We will defer the
890 * ZONE_DEVICE page initialization until after we have released
891 * the hotplug lock.
892 */
893 if (zone == ZONE_DEVICE) {
894 if (!altmap)
895 return;
896
897 if (start_pfn == altmap->base_pfn)
898 start_pfn += altmap->reserve;
899 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
900 }
901 #endif
902
903 for (pfn = start_pfn; pfn < end_pfn; ) {
904 /*
905 * There can be holes in boot-time mem_map[]s handed to this
906 * function. They do not exist on hotplugged memory.
907 */
908 if (context == MEMINIT_EARLY) {
909 if (overlap_memmap_init(zone, &pfn))
910 continue;
911 if (defer_init(nid, pfn, zone_end_pfn)) {
912 deferred_struct_pages = true;
913 break;
914 }
915 }
916
917 page = pfn_to_page(pfn);
918 __init_single_page(page, pfn, zone, nid);
919 if (context == MEMINIT_HOTPLUG) {
920 #ifdef CONFIG_ZONE_DEVICE
921 if (zone == ZONE_DEVICE)
922 __SetPageReserved(page);
923 else
924 #endif
925 __SetPageOffline(page);
926 }
927
928 /*
929 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
930 * such that unmovable allocations won't be scattered all
931 * over the place during system boot.
932 */
933 if (pageblock_aligned(pfn)) {
934 set_pageblock_migratetype(page, migratetype);
935 cond_resched();
936 }
937 pfn++;
938 }
939 }
940
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)941 static void __init memmap_init_zone_range(struct zone *zone,
942 unsigned long start_pfn,
943 unsigned long end_pfn,
944 unsigned long *hole_pfn)
945 {
946 unsigned long zone_start_pfn = zone->zone_start_pfn;
947 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
948 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
949
950 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
951 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
952
953 if (start_pfn >= end_pfn)
954 return;
955
956 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
957 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
958
959 if (*hole_pfn < start_pfn)
960 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
961
962 *hole_pfn = end_pfn;
963 }
964
memmap_init(void)965 static void __init memmap_init(void)
966 {
967 unsigned long start_pfn, end_pfn;
968 unsigned long hole_pfn = 0;
969 int i, j, zone_id = 0, nid;
970
971 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
972 struct pglist_data *node = NODE_DATA(nid);
973
974 for (j = 0; j < MAX_NR_ZONES; j++) {
975 struct zone *zone = node->node_zones + j;
976
977 if (!populated_zone(zone))
978 continue;
979
980 memmap_init_zone_range(zone, start_pfn, end_pfn,
981 &hole_pfn);
982 zone_id = j;
983 }
984 }
985
986 /*
987 * Initialize the memory map for hole in the range [memory_end,
988 * section_end] for SPARSEMEM and in the range [memory_end, memmap_end]
989 * for FLATMEM.
990 * Append the pages in this hole to the highest zone in the last
991 * node.
992 */
993 #ifdef CONFIG_SPARSEMEM
994 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
995 #else
996 end_pfn = round_up(end_pfn, MAX_ORDER_NR_PAGES);
997 #endif
998 if (hole_pfn < end_pfn)
999 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
1000 }
1001
1002 #ifdef CONFIG_ZONE_DEVICE
__init_zone_device_page(struct page * page,unsigned long pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap)1003 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
1004 unsigned long zone_idx, int nid,
1005 struct dev_pagemap *pgmap)
1006 {
1007
1008 __init_single_page(page, pfn, zone_idx, nid);
1009
1010 /*
1011 * Mark page reserved as it will need to wait for onlining
1012 * phase for it to be fully associated with a zone.
1013 *
1014 * We can use the non-atomic __set_bit operation for setting
1015 * the flag as we are still initializing the pages.
1016 */
1017 __SetPageReserved(page);
1018
1019 /*
1020 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
1021 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
1022 * ever freed or placed on a driver-private list.
1023 */
1024 page_folio(page)->pgmap = pgmap;
1025 page->zone_device_data = NULL;
1026
1027 /*
1028 * Mark the block movable so that blocks are reserved for
1029 * movable at startup. This will force kernel allocations
1030 * to reserve their blocks rather than leaking throughout
1031 * the address space during boot when many long-lived
1032 * kernel allocations are made.
1033 *
1034 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1035 * because this is done early in section_activate()
1036 */
1037 if (pageblock_aligned(pfn)) {
1038 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1039 cond_resched();
1040 }
1041
1042 /*
1043 * ZONE_DEVICE pages other than MEMORY_TYPE_GENERIC are released
1044 * directly to the driver page allocator which will set the page count
1045 * to 1 when allocating the page.
1046 *
1047 * MEMORY_TYPE_GENERIC and MEMORY_TYPE_FS_DAX pages automatically have
1048 * their refcount reset to one whenever they are freed (ie. after
1049 * their refcount drops to 0).
1050 */
1051 switch (pgmap->type) {
1052 case MEMORY_DEVICE_FS_DAX:
1053 case MEMORY_DEVICE_PRIVATE:
1054 case MEMORY_DEVICE_COHERENT:
1055 case MEMORY_DEVICE_PCI_P2PDMA:
1056 set_page_count(page, 0);
1057 break;
1058
1059 case MEMORY_DEVICE_GENERIC:
1060 break;
1061 }
1062 }
1063
1064 /*
1065 * With compound page geometry and when struct pages are stored in ram most
1066 * tail pages are reused. Consequently, the amount of unique struct pages to
1067 * initialize is a lot smaller that the total amount of struct pages being
1068 * mapped. This is a paired / mild layering violation with explicit knowledge
1069 * of how the sparse_vmemmap internals handle compound pages in the lack
1070 * of an altmap. See vmemmap_populate_compound_pages().
1071 */
compound_nr_pages(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)1072 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1073 struct dev_pagemap *pgmap)
1074 {
1075 if (!vmemmap_can_optimize(altmap, pgmap))
1076 return pgmap_vmemmap_nr(pgmap);
1077
1078 return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1079 }
1080
memmap_init_compound(struct page * head,unsigned long head_pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap,unsigned long nr_pages)1081 static void __ref memmap_init_compound(struct page *head,
1082 unsigned long head_pfn,
1083 unsigned long zone_idx, int nid,
1084 struct dev_pagemap *pgmap,
1085 unsigned long nr_pages)
1086 {
1087 unsigned long pfn, end_pfn = head_pfn + nr_pages;
1088 unsigned int order = pgmap->vmemmap_shift;
1089
1090 __SetPageHead(head);
1091 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1092 struct page *page = pfn_to_page(pfn);
1093
1094 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1095 prep_compound_tail(head, pfn - head_pfn);
1096 set_page_count(page, 0);
1097
1098 /*
1099 * The first tail page stores important compound page info.
1100 * Call prep_compound_head() after the first tail page has
1101 * been initialized, to not have the data overwritten.
1102 */
1103 if (pfn == head_pfn + 1)
1104 prep_compound_head(head, order);
1105 }
1106 }
1107
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)1108 void __ref memmap_init_zone_device(struct zone *zone,
1109 unsigned long start_pfn,
1110 unsigned long nr_pages,
1111 struct dev_pagemap *pgmap)
1112 {
1113 unsigned long pfn, end_pfn = start_pfn + nr_pages;
1114 struct pglist_data *pgdat = zone->zone_pgdat;
1115 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1116 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1117 unsigned long zone_idx = zone_idx(zone);
1118 unsigned long start = jiffies;
1119 int nid = pgdat->node_id;
1120
1121 if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1122 return;
1123
1124 /*
1125 * The call to memmap_init should have already taken care
1126 * of the pages reserved for the memmap, so we can just jump to
1127 * the end of that region and start processing the device pages.
1128 */
1129 if (altmap) {
1130 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1131 nr_pages = end_pfn - start_pfn;
1132 }
1133
1134 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1135 struct page *page = pfn_to_page(pfn);
1136
1137 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1138
1139 if (pfns_per_compound == 1)
1140 continue;
1141
1142 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1143 compound_nr_pages(altmap, pgmap));
1144 }
1145
1146 pr_debug("%s initialised %lu pages in %ums\n", __func__,
1147 nr_pages, jiffies_to_msecs(jiffies - start));
1148 }
1149 #endif
1150
1151 /*
1152 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1153 * because it is sized independent of architecture. Unlike the other zones,
1154 * the starting point for ZONE_MOVABLE is not fixed. It may be different
1155 * in each node depending on the size of each node and how evenly kernelcore
1156 * is distributed. This helper function adjusts the zone ranges
1157 * provided by the architecture for a given node by using the end of the
1158 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1159 * zones within a node are in order of monotonic increases memory addresses
1160 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1161 static void __init adjust_zone_range_for_zone_movable(int nid,
1162 unsigned long zone_type,
1163 unsigned long node_end_pfn,
1164 unsigned long *zone_start_pfn,
1165 unsigned long *zone_end_pfn)
1166 {
1167 /* Only adjust if ZONE_MOVABLE is on this node */
1168 if (zone_movable_pfn[nid]) {
1169 /* Size ZONE_MOVABLE */
1170 if (zone_type == ZONE_MOVABLE) {
1171 *zone_start_pfn = zone_movable_pfn[nid];
1172 *zone_end_pfn = min(node_end_pfn,
1173 arch_zone_highest_possible_pfn[movable_zone]);
1174
1175 /* Adjust for ZONE_MOVABLE starting within this range */
1176 } else if (!mirrored_kernelcore &&
1177 *zone_start_pfn < zone_movable_pfn[nid] &&
1178 *zone_end_pfn > zone_movable_pfn[nid]) {
1179 *zone_end_pfn = zone_movable_pfn[nid];
1180
1181 /* Check if this whole range is within ZONE_MOVABLE */
1182 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
1183 *zone_start_pfn = *zone_end_pfn;
1184 }
1185 }
1186
1187 /*
1188 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1189 * then all holes in the requested range will be accounted for.
1190 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)1191 static unsigned long __init __absent_pages_in_range(int nid,
1192 unsigned long range_start_pfn,
1193 unsigned long range_end_pfn)
1194 {
1195 unsigned long nr_absent = range_end_pfn - range_start_pfn;
1196 unsigned long start_pfn, end_pfn;
1197 int i;
1198
1199 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1200 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1201 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1202 nr_absent -= end_pfn - start_pfn;
1203 }
1204 return nr_absent;
1205 }
1206
1207 /**
1208 * absent_pages_in_range - Return number of page frames in holes within a range
1209 * @start_pfn: The start PFN to start searching for holes
1210 * @end_pfn: The end PFN to stop searching for holes
1211 *
1212 * Return: the number of pages frames in memory holes within a range.
1213 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)1214 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1215 unsigned long end_pfn)
1216 {
1217 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1218 }
1219
1220 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long zone_start_pfn,unsigned long zone_end_pfn)1221 static unsigned long __init zone_absent_pages_in_node(int nid,
1222 unsigned long zone_type,
1223 unsigned long zone_start_pfn,
1224 unsigned long zone_end_pfn)
1225 {
1226 unsigned long nr_absent;
1227
1228 /* zone is empty, we don't have any absent pages */
1229 if (zone_start_pfn == zone_end_pfn)
1230 return 0;
1231
1232 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1233
1234 /*
1235 * ZONE_MOVABLE handling.
1236 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1237 * and vice versa.
1238 */
1239 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1240 unsigned long start_pfn, end_pfn;
1241 struct memblock_region *r;
1242
1243 for_each_mem_region(r) {
1244 start_pfn = clamp(memblock_region_memory_base_pfn(r),
1245 zone_start_pfn, zone_end_pfn);
1246 end_pfn = clamp(memblock_region_memory_end_pfn(r),
1247 zone_start_pfn, zone_end_pfn);
1248
1249 if (zone_type == ZONE_MOVABLE &&
1250 memblock_is_mirror(r))
1251 nr_absent += end_pfn - start_pfn;
1252
1253 if (zone_type == ZONE_NORMAL &&
1254 !memblock_is_mirror(r))
1255 nr_absent += end_pfn - start_pfn;
1256 }
1257 }
1258
1259 return nr_absent;
1260 }
1261
1262 /*
1263 * Return the number of pages a zone spans in a node, including holes
1264 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1265 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1266 static unsigned long __init zone_spanned_pages_in_node(int nid,
1267 unsigned long zone_type,
1268 unsigned long node_start_pfn,
1269 unsigned long node_end_pfn,
1270 unsigned long *zone_start_pfn,
1271 unsigned long *zone_end_pfn)
1272 {
1273 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1274 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1275
1276 /* Get the start and end of the zone */
1277 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1278 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1279 adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1280 zone_start_pfn, zone_end_pfn);
1281
1282 /* Check that this node has pages within the zone's required range */
1283 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1284 return 0;
1285
1286 /* Move the zone boundaries inside the node if necessary */
1287 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1288 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1289
1290 /* Return the spanned pages */
1291 return *zone_end_pfn - *zone_start_pfn;
1292 }
1293
reset_memoryless_node_totalpages(struct pglist_data * pgdat)1294 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1295 {
1296 struct zone *z;
1297
1298 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1299 z->zone_start_pfn = 0;
1300 z->spanned_pages = 0;
1301 z->present_pages = 0;
1302 #if defined(CONFIG_MEMORY_HOTPLUG)
1303 z->present_early_pages = 0;
1304 #endif
1305 }
1306
1307 pgdat->node_spanned_pages = 0;
1308 pgdat->node_present_pages = 0;
1309 pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1310 }
1311
calc_nr_kernel_pages(void)1312 static void __init calc_nr_kernel_pages(void)
1313 {
1314 unsigned long start_pfn, end_pfn;
1315 phys_addr_t start_addr, end_addr;
1316 u64 u;
1317 #ifdef CONFIG_HIGHMEM
1318 unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1319 #endif
1320
1321 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1322 start_pfn = PFN_UP(start_addr);
1323 end_pfn = PFN_DOWN(end_addr);
1324
1325 if (start_pfn < end_pfn) {
1326 nr_all_pages += end_pfn - start_pfn;
1327 #ifdef CONFIG_HIGHMEM
1328 start_pfn = clamp(start_pfn, 0, high_zone_low);
1329 end_pfn = clamp(end_pfn, 0, high_zone_low);
1330 #endif
1331 nr_kernel_pages += end_pfn - start_pfn;
1332 }
1333 }
1334 }
1335
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)1336 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1337 unsigned long node_start_pfn,
1338 unsigned long node_end_pfn)
1339 {
1340 unsigned long realtotalpages = 0, totalpages = 0;
1341 enum zone_type i;
1342
1343 for (i = 0; i < MAX_NR_ZONES; i++) {
1344 struct zone *zone = pgdat->node_zones + i;
1345 unsigned long zone_start_pfn, zone_end_pfn;
1346 unsigned long spanned, absent;
1347 unsigned long real_size;
1348
1349 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1350 node_start_pfn,
1351 node_end_pfn,
1352 &zone_start_pfn,
1353 &zone_end_pfn);
1354 absent = zone_absent_pages_in_node(pgdat->node_id, i,
1355 zone_start_pfn,
1356 zone_end_pfn);
1357
1358 real_size = spanned - absent;
1359
1360 if (spanned)
1361 zone->zone_start_pfn = zone_start_pfn;
1362 else
1363 zone->zone_start_pfn = 0;
1364 zone->spanned_pages = spanned;
1365 zone->present_pages = real_size;
1366 #if defined(CONFIG_MEMORY_HOTPLUG)
1367 zone->present_early_pages = real_size;
1368 #endif
1369
1370 totalpages += spanned;
1371 realtotalpages += real_size;
1372 }
1373
1374 pgdat->node_spanned_pages = totalpages;
1375 pgdat->node_present_pages = realtotalpages;
1376 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1377 }
1378
1379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)1380 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1381 {
1382 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1383
1384 spin_lock_init(&ds_queue->split_queue_lock);
1385 INIT_LIST_HEAD(&ds_queue->split_queue);
1386 ds_queue->split_queue_len = 0;
1387 }
1388 #else
pgdat_init_split_queue(struct pglist_data * pgdat)1389 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1390 #endif
1391
1392 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)1393 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1394 {
1395 init_waitqueue_head(&pgdat->kcompactd_wait);
1396 }
1397 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)1398 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1399 #endif
1400
pgdat_init_internals(struct pglist_data * pgdat)1401 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1402 {
1403 int i;
1404
1405 pgdat_resize_init(pgdat);
1406 pgdat_kswapd_lock_init(pgdat);
1407
1408 pgdat_init_split_queue(pgdat);
1409 pgdat_init_kcompactd(pgdat);
1410
1411 init_waitqueue_head(&pgdat->kswapd_wait);
1412 init_waitqueue_head(&pgdat->pfmemalloc_wait);
1413
1414 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1415 init_waitqueue_head(&pgdat->reclaim_wait[i]);
1416
1417 pgdat_page_ext_init(pgdat);
1418 lruvec_init(&pgdat->__lruvec);
1419 }
1420
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)1421 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1422 unsigned long remaining_pages)
1423 {
1424 atomic_long_set(&zone->managed_pages, remaining_pages);
1425 zone_set_nid(zone, nid);
1426 zone->name = zone_names[idx];
1427 zone->zone_pgdat = NODE_DATA(nid);
1428 spin_lock_init(&zone->lock);
1429 zone_seqlock_init(zone);
1430 zone_pcp_init(zone);
1431 }
1432
zone_init_free_lists(struct zone * zone)1433 static void __meminit zone_init_free_lists(struct zone *zone)
1434 {
1435 unsigned int order, t;
1436 for_each_migratetype_order(order, t) {
1437 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1438 zone->free_area[order].nr_free = 0;
1439 }
1440
1441 #ifdef CONFIG_UNACCEPTED_MEMORY
1442 INIT_LIST_HEAD(&zone->unaccepted_pages);
1443 #endif
1444 }
1445
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)1446 void __meminit init_currently_empty_zone(struct zone *zone,
1447 unsigned long zone_start_pfn,
1448 unsigned long size)
1449 {
1450 struct pglist_data *pgdat = zone->zone_pgdat;
1451 int zone_idx = zone_idx(zone) + 1;
1452
1453 if (zone_idx > pgdat->nr_zones)
1454 pgdat->nr_zones = zone_idx;
1455
1456 zone->zone_start_pfn = zone_start_pfn;
1457
1458 mminit_dprintk(MMINIT_TRACE, "memmap_init",
1459 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
1460 pgdat->node_id,
1461 (unsigned long)zone_idx(zone),
1462 zone_start_pfn, (zone_start_pfn + size));
1463
1464 zone_init_free_lists(zone);
1465 zone->initialized = 1;
1466 }
1467
1468 #ifndef CONFIG_SPARSEMEM
1469 /*
1470 * Calculate the size of the zone->pageblock_flags rounded to an unsigned long
1471 * Start by making sure zonesize is a multiple of pageblock_order by rounding
1472 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1473 * round what is now in bits to nearest long in bits, then return it in
1474 * bytes.
1475 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)1476 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1477 {
1478 unsigned long usemapsize;
1479
1480 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1481 usemapsize = round_up(zonesize, pageblock_nr_pages);
1482 usemapsize = usemapsize >> pageblock_order;
1483 usemapsize *= NR_PAGEBLOCK_BITS;
1484 usemapsize = round_up(usemapsize, BITS_PER_LONG);
1485
1486 return usemapsize / BITS_PER_BYTE;
1487 }
1488
setup_usemap(struct zone * zone)1489 static void __ref setup_usemap(struct zone *zone)
1490 {
1491 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1492 zone->spanned_pages);
1493 zone->pageblock_flags = NULL;
1494 if (usemapsize) {
1495 zone->pageblock_flags =
1496 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1497 zone_to_nid(zone));
1498 if (!zone->pageblock_flags)
1499 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1500 usemapsize, zone->name, zone_to_nid(zone));
1501 }
1502 }
1503 #else
setup_usemap(struct zone * zone)1504 static inline void setup_usemap(struct zone *zone) {}
1505 #endif /* CONFIG_SPARSEMEM */
1506
1507 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1508
1509 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)1510 void __init set_pageblock_order(void)
1511 {
1512 unsigned int order = PAGE_BLOCK_ORDER;
1513
1514 /* Check that pageblock_nr_pages has not already been setup */
1515 if (pageblock_order)
1516 return;
1517
1518 /* Don't let pageblocks exceed the maximum allocation granularity. */
1519 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1520 order = HUGETLB_PAGE_ORDER;
1521
1522 /*
1523 * Assume the largest contiguous order of interest is a huge page.
1524 * This value may be variable depending on boot parameters on powerpc.
1525 */
1526 pageblock_order = order;
1527 }
1528 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1529
1530 /*
1531 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1532 * is unused as pageblock_order is set at compile-time. See
1533 * include/linux/pageblock-flags.h for the values of pageblock_order based on
1534 * the kernel config
1535 */
set_pageblock_order(void)1536 void __init set_pageblock_order(void)
1537 {
1538 }
1539
1540 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1541
1542 /*
1543 * Set up the zone data structures
1544 * - init pgdat internals
1545 * - init all zones belonging to this node
1546 *
1547 * NOTE: this function is only called during memory hotplug
1548 */
1549 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(struct pglist_data * pgdat)1550 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1551 {
1552 int nid = pgdat->node_id;
1553 enum zone_type z;
1554 int cpu;
1555
1556 pgdat_init_internals(pgdat);
1557
1558 if (pgdat->per_cpu_nodestats == &boot_nodestats)
1559 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1560
1561 /*
1562 * Reset the nr_zones, order and highest_zoneidx before reuse.
1563 * Note that kswapd will init kswapd_highest_zoneidx properly
1564 * when it starts in the near future.
1565 */
1566 pgdat->nr_zones = 0;
1567 pgdat->kswapd_order = 0;
1568 pgdat->kswapd_highest_zoneidx = 0;
1569 pgdat->node_start_pfn = 0;
1570 pgdat->node_present_pages = 0;
1571
1572 for_each_online_cpu(cpu) {
1573 struct per_cpu_nodestat *p;
1574
1575 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1576 memset(p, 0, sizeof(*p));
1577 }
1578
1579 /*
1580 * When memory is hot-added, all the memory is in offline state. So
1581 * clear all zones' present_pages and managed_pages because they will
1582 * be updated in online_pages() and offline_pages().
1583 */
1584 for (z = 0; z < MAX_NR_ZONES; z++) {
1585 struct zone *zone = pgdat->node_zones + z;
1586
1587 zone->present_pages = 0;
1588 zone_init_internals(zone, z, nid, 0);
1589 }
1590 }
1591 #endif
1592
free_area_init_core(struct pglist_data * pgdat)1593 static void __init free_area_init_core(struct pglist_data *pgdat)
1594 {
1595 enum zone_type j;
1596 int nid = pgdat->node_id;
1597
1598 pgdat_init_internals(pgdat);
1599 pgdat->per_cpu_nodestats = &boot_nodestats;
1600
1601 for (j = 0; j < MAX_NR_ZONES; j++) {
1602 struct zone *zone = pgdat->node_zones + j;
1603 unsigned long size = zone->spanned_pages;
1604
1605 /*
1606 * Initialize zone->managed_pages as 0 , it will be reset
1607 * when memblock allocator frees pages into buddy system.
1608 */
1609 zone_init_internals(zone, j, nid, zone->present_pages);
1610
1611 if (!size)
1612 continue;
1613
1614 setup_usemap(zone);
1615 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1616 }
1617 }
1618
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)1619 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1620 phys_addr_t min_addr, int nid, bool exact_nid)
1621 {
1622 void *ptr;
1623
1624 /*
1625 * Kmemleak will explicitly scan mem_map by traversing all valid
1626 * `struct *page`,so memblock does not need to be added to the scan list.
1627 */
1628 if (exact_nid)
1629 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1630 MEMBLOCK_ALLOC_NOLEAKTRACE,
1631 nid);
1632 else
1633 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1634 MEMBLOCK_ALLOC_NOLEAKTRACE,
1635 nid);
1636
1637 if (ptr && size > 0)
1638 page_init_poison(ptr, size);
1639
1640 return ptr;
1641 }
1642
1643 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)1644 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1645 {
1646 unsigned long start, offset, size, end;
1647 struct page *map;
1648
1649 /* Skip empty nodes */
1650 if (!pgdat->node_spanned_pages)
1651 return;
1652
1653 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1654 offset = pgdat->node_start_pfn - start;
1655 /*
1656 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1657 * aligned but the node_mem_map endpoints must be in order
1658 * for the buddy allocator to function correctly.
1659 */
1660 end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1661 size = (end - start) * sizeof(struct page);
1662 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1663 pgdat->node_id, false);
1664 if (!map)
1665 panic("Failed to allocate %ld bytes for node %d memory map\n",
1666 size, pgdat->node_id);
1667 pgdat->node_mem_map = map + offset;
1668 memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1669 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1670 __func__, pgdat->node_id, (unsigned long)pgdat,
1671 (unsigned long)pgdat->node_mem_map);
1672
1673 /* the global mem_map is just set as node 0's */
1674 WARN_ON(pgdat != NODE_DATA(0));
1675
1676 mem_map = pgdat->node_mem_map;
1677 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1678 mem_map -= offset;
1679
1680 max_mapnr = end - start;
1681 }
1682 #else
alloc_node_mem_map(struct pglist_data * pgdat)1683 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1684 #endif /* CONFIG_FLATMEM */
1685
1686 /**
1687 * get_pfn_range_for_nid - Return the start and end page frames for a node
1688 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1689 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1690 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1691 *
1692 * It returns the start and end page frame of a node based on information
1693 * provided by memblock_set_node(). If called for a node
1694 * with no available memory, the start and end PFNs will be 0.
1695 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)1696 void __init get_pfn_range_for_nid(unsigned int nid,
1697 unsigned long *start_pfn, unsigned long *end_pfn)
1698 {
1699 unsigned long this_start_pfn, this_end_pfn;
1700 int i;
1701
1702 *start_pfn = -1UL;
1703 *end_pfn = 0;
1704
1705 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1706 *start_pfn = min(*start_pfn, this_start_pfn);
1707 *end_pfn = max(*end_pfn, this_end_pfn);
1708 }
1709
1710 if (*start_pfn == -1UL)
1711 *start_pfn = 0;
1712 }
1713
free_area_init_node(int nid)1714 static void __init free_area_init_node(int nid)
1715 {
1716 pg_data_t *pgdat = NODE_DATA(nid);
1717 unsigned long start_pfn = 0;
1718 unsigned long end_pfn = 0;
1719
1720 /* pg_data_t should be reset to zero when it's allocated */
1721 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1722
1723 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1724
1725 pgdat->node_id = nid;
1726 pgdat->node_start_pfn = start_pfn;
1727 pgdat->per_cpu_nodestats = NULL;
1728
1729 if (start_pfn != end_pfn) {
1730 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1731 (u64)start_pfn << PAGE_SHIFT,
1732 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1733
1734 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1735 } else {
1736 pr_info("Initmem setup node %d as memoryless\n", nid);
1737
1738 reset_memoryless_node_totalpages(pgdat);
1739 }
1740
1741 alloc_node_mem_map(pgdat);
1742 pgdat_set_deferred_range(pgdat);
1743
1744 free_area_init_core(pgdat);
1745 lru_gen_init_pgdat(pgdat);
1746 }
1747
1748 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat)1749 static void __init check_for_memory(pg_data_t *pgdat)
1750 {
1751 enum zone_type zone_type;
1752
1753 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1754 struct zone *zone = &pgdat->node_zones[zone_type];
1755 if (populated_zone(zone)) {
1756 if (IS_ENABLED(CONFIG_HIGHMEM))
1757 node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1758 if (zone_type <= ZONE_NORMAL)
1759 node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1760 break;
1761 }
1762 }
1763 }
1764
1765 #if MAX_NUMNODES > 1
1766 /*
1767 * Figure out the number of possible node ids.
1768 */
setup_nr_node_ids(void)1769 void __init setup_nr_node_ids(void)
1770 {
1771 unsigned int highest;
1772
1773 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1774 nr_node_ids = highest + 1;
1775 }
1776 #endif
1777
1778 /*
1779 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1780 * such cases we allow max_zone_pfn sorted in the descending order
1781 */
arch_has_descending_max_zone_pfns(void)1782 static bool arch_has_descending_max_zone_pfns(void)
1783 {
1784 return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1785 }
1786
set_high_memory(void)1787 static void __init set_high_memory(void)
1788 {
1789 phys_addr_t highmem = memblock_end_of_DRAM();
1790
1791 /*
1792 * Some architectures (e.g. ARM) set high_memory very early and
1793 * use it in arch setup code.
1794 * If an architecture already set high_memory don't overwrite it
1795 */
1796 if (high_memory)
1797 return;
1798
1799 #ifdef CONFIG_HIGHMEM
1800 if (arch_has_descending_max_zone_pfns() ||
1801 highmem > PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]))
1802 highmem = PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]);
1803 #endif
1804
1805 high_memory = phys_to_virt(highmem - 1) + 1;
1806 }
1807
1808 /**
1809 * free_area_init - Initialise all pg_data_t and zone data
1810 * @max_zone_pfn: an array of max PFNs for each zone
1811 *
1812 * This will call free_area_init_node() for each active node in the system.
1813 * Using the page ranges provided by memblock_set_node(), the size of each
1814 * zone in each node and their holes is calculated. If the maximum PFN
1815 * between two adjacent zones match, it is assumed that the zone is empty.
1816 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1817 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1818 * starts where the previous one ended. For example, ZONE_DMA32 starts
1819 * at arch_max_dma_pfn.
1820 */
free_area_init(unsigned long * max_zone_pfn)1821 void __init free_area_init(unsigned long *max_zone_pfn)
1822 {
1823 unsigned long start_pfn, end_pfn;
1824 int i, nid, zone;
1825 bool descending;
1826
1827 /* Record where the zone boundaries are */
1828 memset(arch_zone_lowest_possible_pfn, 0,
1829 sizeof(arch_zone_lowest_possible_pfn));
1830 memset(arch_zone_highest_possible_pfn, 0,
1831 sizeof(arch_zone_highest_possible_pfn));
1832
1833 start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1834 descending = arch_has_descending_max_zone_pfns();
1835
1836 for (i = 0; i < MAX_NR_ZONES; i++) {
1837 if (descending)
1838 zone = MAX_NR_ZONES - i - 1;
1839 else
1840 zone = i;
1841
1842 if (zone == ZONE_MOVABLE)
1843 continue;
1844
1845 end_pfn = max(max_zone_pfn[zone], start_pfn);
1846 arch_zone_lowest_possible_pfn[zone] = start_pfn;
1847 arch_zone_highest_possible_pfn[zone] = end_pfn;
1848
1849 start_pfn = end_pfn;
1850 }
1851
1852 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
1853 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1854 find_zone_movable_pfns_for_nodes();
1855
1856 /* Print out the zone ranges */
1857 pr_info("Zone ranges:\n");
1858 for (i = 0; i < MAX_NR_ZONES; i++) {
1859 if (i == ZONE_MOVABLE)
1860 continue;
1861 pr_info(" %-8s ", zone_names[i]);
1862 if (arch_zone_lowest_possible_pfn[i] ==
1863 arch_zone_highest_possible_pfn[i])
1864 pr_cont("empty\n");
1865 else
1866 pr_cont("[mem %#018Lx-%#018Lx]\n",
1867 (u64)arch_zone_lowest_possible_pfn[i]
1868 << PAGE_SHIFT,
1869 ((u64)arch_zone_highest_possible_pfn[i]
1870 << PAGE_SHIFT) - 1);
1871 }
1872
1873 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
1874 pr_info("Movable zone start for each node\n");
1875 for (i = 0; i < MAX_NUMNODES; i++) {
1876 if (zone_movable_pfn[i])
1877 pr_info(" Node %d: %#018Lx\n", i,
1878 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1879 }
1880
1881 /*
1882 * Print out the early node map, and initialize the
1883 * subsection-map relative to active online memory ranges to
1884 * enable future "sub-section" extensions of the memory map.
1885 */
1886 pr_info("Early memory node ranges\n");
1887 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1888 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1889 (u64)start_pfn << PAGE_SHIFT,
1890 ((u64)end_pfn << PAGE_SHIFT) - 1);
1891 subsection_map_init(start_pfn, end_pfn - start_pfn);
1892 }
1893
1894 /* Initialise every node */
1895 mminit_verify_pageflags_layout();
1896 setup_nr_node_ids();
1897 set_pageblock_order();
1898
1899 for_each_node(nid) {
1900 pg_data_t *pgdat;
1901
1902 if (!node_online(nid))
1903 alloc_offline_node_data(nid);
1904
1905 pgdat = NODE_DATA(nid);
1906 free_area_init_node(nid);
1907
1908 /*
1909 * No sysfs hierarchy will be created via register_one_node()
1910 *for memory-less node because here it's not marked as N_MEMORY
1911 *and won't be set online later. The benefit is userspace
1912 *program won't be confused by sysfs files/directories of
1913 *memory-less node. The pgdat will get fully initialized by
1914 *hotadd_init_pgdat() when memory is hotplugged into this node.
1915 */
1916 if (pgdat->node_present_pages) {
1917 node_set_state(nid, N_MEMORY);
1918 check_for_memory(pgdat);
1919 }
1920 }
1921
1922 for_each_node_state(nid, N_MEMORY)
1923 sparse_vmemmap_init_nid_late(nid);
1924
1925 calc_nr_kernel_pages();
1926 memmap_init();
1927
1928 /* disable hash distribution for systems with a single node */
1929 fixup_hashdist();
1930
1931 set_high_memory();
1932 }
1933
1934 /**
1935 * node_map_pfn_alignment - determine the maximum internode alignment
1936 *
1937 * This function should be called after node map is populated and sorted.
1938 * It calculates the maximum power of two alignment which can distinguish
1939 * all the nodes.
1940 *
1941 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1942 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
1943 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
1944 * shifted, 1GiB is enough and this function will indicate so.
1945 *
1946 * This is used to test whether pfn -> nid mapping of the chosen memory
1947 * model has fine enough granularity to avoid incorrect mapping for the
1948 * populated node map.
1949 *
1950 * Return: the determined alignment in pfn's. 0 if there is no alignment
1951 * requirement (single node).
1952 */
node_map_pfn_alignment(void)1953 unsigned long __init node_map_pfn_alignment(void)
1954 {
1955 unsigned long accl_mask = 0, last_end = 0;
1956 unsigned long start, end, mask;
1957 int last_nid = NUMA_NO_NODE;
1958 int i, nid;
1959
1960 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1961 if (!start || last_nid < 0 || last_nid == nid) {
1962 last_nid = nid;
1963 last_end = end;
1964 continue;
1965 }
1966
1967 /*
1968 * Start with a mask granular enough to pin-point to the
1969 * start pfn and tick off bits one-by-one until it becomes
1970 * too coarse to separate the current node from the last.
1971 */
1972 mask = ~((1 << __ffs(start)) - 1);
1973 while (mask && last_end <= (start & (mask << 1)))
1974 mask <<= 1;
1975
1976 /* accumulate all internode masks */
1977 accl_mask |= mask;
1978 }
1979
1980 /* convert mask to number of pages */
1981 return ~accl_mask + 1;
1982 }
1983
1984 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_pages(unsigned long pfn,unsigned long nr_pages)1985 static void __init deferred_free_pages(unsigned long pfn,
1986 unsigned long nr_pages)
1987 {
1988 struct page *page;
1989 unsigned long i;
1990
1991 if (!nr_pages)
1992 return;
1993
1994 page = pfn_to_page(pfn);
1995
1996 /* Free a large naturally-aligned chunk if possible */
1997 if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1998 for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1999 set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
2000 __free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
2001 return;
2002 }
2003
2004 /* Accept chunks smaller than MAX_PAGE_ORDER upfront */
2005 accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
2006
2007 for (i = 0; i < nr_pages; i++, page++, pfn++) {
2008 if (pageblock_aligned(pfn))
2009 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2010 __free_pages_core(page, 0, MEMINIT_EARLY);
2011 }
2012 }
2013
2014 /* Completion tracking for deferred_init_memmap() threads */
2015 static atomic_t pgdat_init_n_undone __initdata;
2016 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2017
pgdat_init_report_one_done(void)2018 static inline void __init pgdat_init_report_one_done(void)
2019 {
2020 if (atomic_dec_and_test(&pgdat_init_n_undone))
2021 complete(&pgdat_init_all_done_comp);
2022 }
2023
2024 /*
2025 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
2026 * by performing it only once every MAX_ORDER_NR_PAGES.
2027 * Return number of pages initialized.
2028 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2029 static unsigned long __init deferred_init_pages(struct zone *zone,
2030 unsigned long pfn, unsigned long end_pfn)
2031 {
2032 int nid = zone_to_nid(zone);
2033 unsigned long nr_pages = end_pfn - pfn;
2034 int zid = zone_idx(zone);
2035 struct page *page = pfn_to_page(pfn);
2036
2037 for (; pfn < end_pfn; pfn++, page++)
2038 __init_single_page(page, pfn, zid, nid);
2039 return nr_pages;
2040 }
2041
2042 /*
2043 * This function is meant to pre-load the iterator for the zone init from
2044 * a given point.
2045 * Specifically it walks through the ranges starting with initial index
2046 * passed to it until we are caught up to the first_init_pfn value and
2047 * exits there. If we never encounter the value we return false indicating
2048 * there are no valid ranges left.
2049 */
2050 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2051 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2052 unsigned long *spfn, unsigned long *epfn,
2053 unsigned long first_init_pfn)
2054 {
2055 u64 j = *i;
2056
2057 if (j == 0)
2058 __next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
2059
2060 /*
2061 * Start out by walking through the ranges in this zone that have
2062 * already been initialized. We don't need to do anything with them
2063 * so we just need to flush them out of the system.
2064 */
2065 for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
2066 if (*epfn <= first_init_pfn)
2067 continue;
2068 if (*spfn < first_init_pfn)
2069 *spfn = first_init_pfn;
2070 *i = j;
2071 return true;
2072 }
2073
2074 return false;
2075 }
2076
2077 /*
2078 * Initialize and free pages. We do it in two loops: first we initialize
2079 * struct page, then free to buddy allocator, because while we are
2080 * freeing pages we can access pages that are ahead (computing buddy
2081 * page in __free_one_page()).
2082 *
2083 * In order to try and keep some memory in the cache we have the loop
2084 * broken along max page order boundaries. This way we will not cause
2085 * any issues with the buddy page computation.
2086 */
2087 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2088 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2089 unsigned long *end_pfn)
2090 {
2091 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2092 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2093 unsigned long nr_pages = 0;
2094 u64 j = *i;
2095
2096 /* First we loop through and initialize the page values */
2097 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2098 unsigned long t;
2099
2100 if (mo_pfn <= *start_pfn)
2101 break;
2102
2103 t = min(mo_pfn, *end_pfn);
2104 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2105
2106 if (mo_pfn < *end_pfn) {
2107 *start_pfn = mo_pfn;
2108 break;
2109 }
2110 }
2111
2112 /* Reset values and now loop through freeing pages as needed */
2113 swap(j, *i);
2114
2115 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2116 unsigned long t;
2117
2118 if (mo_pfn <= spfn)
2119 break;
2120
2121 t = min(mo_pfn, epfn);
2122 deferred_free_pages(spfn, t - spfn);
2123
2124 if (mo_pfn <= epfn)
2125 break;
2126 }
2127
2128 return nr_pages;
2129 }
2130
2131 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2132 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2133 void *arg)
2134 {
2135 unsigned long spfn, epfn;
2136 struct zone *zone = arg;
2137 u64 i = 0;
2138
2139 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2140
2141 /*
2142 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2143 * we can avoid introducing any issues with the buddy allocator.
2144 */
2145 while (spfn < end_pfn) {
2146 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2147 cond_resched();
2148 }
2149 }
2150
2151 static unsigned int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2152 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2153 {
2154 return max(cpumask_weight(node_cpumask), 1U);
2155 }
2156
2157 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2158 static int __init deferred_init_memmap(void *data)
2159 {
2160 pg_data_t *pgdat = data;
2161 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2162 unsigned long spfn = 0, epfn = 0;
2163 unsigned long first_init_pfn, flags;
2164 unsigned long start = jiffies;
2165 struct zone *zone;
2166 int max_threads;
2167 u64 i = 0;
2168
2169 /* Bind memory initialisation thread to a local node if possible */
2170 if (!cpumask_empty(cpumask))
2171 set_cpus_allowed_ptr(current, cpumask);
2172
2173 pgdat_resize_lock(pgdat, &flags);
2174 first_init_pfn = pgdat->first_deferred_pfn;
2175 if (first_init_pfn == ULONG_MAX) {
2176 pgdat_resize_unlock(pgdat, &flags);
2177 pgdat_init_report_one_done();
2178 return 0;
2179 }
2180
2181 /* Sanity check boundaries */
2182 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2183 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2184 pgdat->first_deferred_pfn = ULONG_MAX;
2185
2186 /*
2187 * Once we unlock here, the zone cannot be grown anymore, thus if an
2188 * interrupt thread must allocate this early in boot, zone must be
2189 * pre-grown prior to start of deferred page initialization.
2190 */
2191 pgdat_resize_unlock(pgdat, &flags);
2192
2193 /* Only the highest zone is deferred */
2194 zone = pgdat->node_zones + pgdat->nr_zones - 1;
2195
2196 max_threads = deferred_page_init_max_threads(cpumask);
2197
2198 while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2199 first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2200 struct padata_mt_job job = {
2201 .thread_fn = deferred_init_memmap_chunk,
2202 .fn_arg = zone,
2203 .start = spfn,
2204 .size = first_init_pfn - spfn,
2205 .align = PAGES_PER_SECTION,
2206 .min_chunk = PAGES_PER_SECTION,
2207 .max_threads = max_threads,
2208 .numa_aware = false,
2209 };
2210
2211 padata_do_multithreaded(&job);
2212 }
2213
2214 /* Sanity check that the next zone really is unpopulated */
2215 WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2216
2217 pr_info("node %d deferred pages initialised in %ums\n",
2218 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2219
2220 pgdat_init_report_one_done();
2221 return 0;
2222 }
2223
2224 /*
2225 * If this zone has deferred pages, try to grow it by initializing enough
2226 * deferred pages to satisfy the allocation specified by order, rounded up to
2227 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2228 * of SECTION_SIZE bytes by initializing struct pages in increments of
2229 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2230 *
2231 * Return true when zone was grown, otherwise return false. We return true even
2232 * when we grow less than requested, to let the caller decide if there are
2233 * enough pages to satisfy the allocation.
2234 */
deferred_grow_zone(struct zone * zone,unsigned int order)2235 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2236 {
2237 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2238 pg_data_t *pgdat = zone->zone_pgdat;
2239 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2240 unsigned long spfn, epfn, flags;
2241 unsigned long nr_pages = 0;
2242 u64 i = 0;
2243
2244 /* Only the last zone may have deferred pages */
2245 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2246 return false;
2247
2248 pgdat_resize_lock(pgdat, &flags);
2249
2250 /*
2251 * If someone grew this zone while we were waiting for spinlock, return
2252 * true, as there might be enough pages already.
2253 */
2254 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2255 pgdat_resize_unlock(pgdat, &flags);
2256 return true;
2257 }
2258
2259 /* If the zone is empty somebody else may have cleared out the zone */
2260 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2261 first_deferred_pfn)) {
2262 pgdat->first_deferred_pfn = ULONG_MAX;
2263 pgdat_resize_unlock(pgdat, &flags);
2264 /* Retry only once. */
2265 return first_deferred_pfn != ULONG_MAX;
2266 }
2267
2268 /*
2269 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2270 * that we can avoid introducing any issues with the buddy
2271 * allocator.
2272 */
2273 while (spfn < epfn) {
2274 /* update our first deferred PFN for this section */
2275 first_deferred_pfn = spfn;
2276
2277 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2278 touch_nmi_watchdog();
2279
2280 /* We should only stop along section boundaries */
2281 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2282 continue;
2283
2284 /* If our quota has been met we can stop here */
2285 if (nr_pages >= nr_pages_needed)
2286 break;
2287 }
2288
2289 pgdat->first_deferred_pfn = spfn;
2290 pgdat_resize_unlock(pgdat, &flags);
2291
2292 return nr_pages > 0;
2293 }
2294
2295 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2296
2297 #ifdef CONFIG_CMA
init_cma_reserved_pageblock(struct page * page)2298 void __init init_cma_reserved_pageblock(struct page *page)
2299 {
2300 unsigned i = pageblock_nr_pages;
2301 struct page *p = page;
2302
2303 do {
2304 __ClearPageReserved(p);
2305 set_page_count(p, 0);
2306 } while (++p, --i);
2307
2308 set_pageblock_migratetype(page, MIGRATE_CMA);
2309 set_page_refcounted(page);
2310 /* pages were reserved and not allocated */
2311 clear_page_tag_ref(page);
2312 __free_pages(page, pageblock_order);
2313
2314 adjust_managed_page_count(page, pageblock_nr_pages);
2315 page_zone(page)->cma_pages += pageblock_nr_pages;
2316 }
2317 /*
2318 * Similar to above, but only set the migrate type and stats.
2319 */
init_cma_pageblock(struct page * page)2320 void __init init_cma_pageblock(struct page *page)
2321 {
2322 set_pageblock_migratetype(page, MIGRATE_CMA);
2323 adjust_managed_page_count(page, pageblock_nr_pages);
2324 page_zone(page)->cma_pages += pageblock_nr_pages;
2325 }
2326 #endif
2327
set_zone_contiguous(struct zone * zone)2328 void set_zone_contiguous(struct zone *zone)
2329 {
2330 unsigned long block_start_pfn = zone->zone_start_pfn;
2331 unsigned long block_end_pfn;
2332
2333 block_end_pfn = pageblock_end_pfn(block_start_pfn);
2334 for (; block_start_pfn < zone_end_pfn(zone);
2335 block_start_pfn = block_end_pfn,
2336 block_end_pfn += pageblock_nr_pages) {
2337
2338 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2339
2340 if (!__pageblock_pfn_to_page(block_start_pfn,
2341 block_end_pfn, zone))
2342 return;
2343 cond_resched();
2344 }
2345
2346 /* We confirm that there is no hole */
2347 zone->contiguous = true;
2348 }
2349
2350 /*
2351 * Check if a PFN range intersects multiple zones on one or more
2352 * NUMA nodes. Specify the @nid argument if it is known that this
2353 * PFN range is on one node, NUMA_NO_NODE otherwise.
2354 */
pfn_range_intersects_zones(int nid,unsigned long start_pfn,unsigned long nr_pages)2355 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
2356 unsigned long nr_pages)
2357 {
2358 struct zone *zone, *izone = NULL;
2359
2360 for_each_zone(zone) {
2361 if (nid != NUMA_NO_NODE && zone_to_nid(zone) != nid)
2362 continue;
2363
2364 if (zone_intersects(zone, start_pfn, nr_pages)) {
2365 if (izone != NULL)
2366 return true;
2367 izone = zone;
2368 }
2369
2370 }
2371
2372 return false;
2373 }
2374
2375 static void __init mem_init_print_info(void);
page_alloc_init_late(void)2376 void __init page_alloc_init_late(void)
2377 {
2378 struct zone *zone;
2379 int nid;
2380
2381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2382
2383 /* There will be num_node_state(N_MEMORY) threads */
2384 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2385 for_each_node_state(nid, N_MEMORY) {
2386 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2387 }
2388
2389 /* Block until all are initialised */
2390 wait_for_completion(&pgdat_init_all_done_comp);
2391
2392 /*
2393 * We initialized the rest of the deferred pages. Permanently disable
2394 * on-demand struct page initialization.
2395 */
2396 static_branch_disable(&deferred_pages);
2397
2398 /* Reinit limits that are based on free pages after the kernel is up */
2399 files_maxfiles_init();
2400 #endif
2401
2402 /* Accounting of total+free memory is stable at this point. */
2403 mem_init_print_info();
2404 buffer_init();
2405
2406 /* Discard memblock private memory */
2407 memblock_discard();
2408
2409 for_each_node_state(nid, N_MEMORY)
2410 shuffle_free_memory(NODE_DATA(nid));
2411
2412 for_each_populated_zone(zone)
2413 set_zone_contiguous(zone);
2414
2415 /* Initialize page ext after all struct pages are initialized. */
2416 if (deferred_struct_pages)
2417 page_ext_init();
2418
2419 page_alloc_sysctl_init();
2420 }
2421
2422 /*
2423 * Adaptive scale is meant to reduce sizes of hash tables on large memory
2424 * machines. As memory size is increased the scale is also increased but at
2425 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
2426 * quadruples the scale is increased by one, which means the size of hash table
2427 * only doubles, instead of quadrupling as well.
2428 * Because 32-bit systems cannot have large physical memory, where this scaling
2429 * makes sense, it is disabled on such platforms.
2430 */
2431 #if __BITS_PER_LONG > 32
2432 #define ADAPT_SCALE_BASE (64ul << 30)
2433 #define ADAPT_SCALE_SHIFT 2
2434 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
2435 #endif
2436
2437 /*
2438 * allocate a large system hash table from bootmem
2439 * - it is assumed that the hash table must contain an exact power-of-2
2440 * quantity of entries
2441 * - limit is the number of hash buckets, not the total allocation size
2442 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)2443 void *__init alloc_large_system_hash(const char *tablename,
2444 unsigned long bucketsize,
2445 unsigned long numentries,
2446 int scale,
2447 int flags,
2448 unsigned int *_hash_shift,
2449 unsigned int *_hash_mask,
2450 unsigned long low_limit,
2451 unsigned long high_limit)
2452 {
2453 unsigned long long max = high_limit;
2454 unsigned long log2qty, size;
2455 void *table;
2456 gfp_t gfp_flags;
2457 bool virt;
2458 bool huge;
2459
2460 /* allow the kernel cmdline to have a say */
2461 if (!numentries) {
2462 /* round applicable memory size up to nearest megabyte */
2463 numentries = nr_kernel_pages;
2464
2465 /* It isn't necessary when PAGE_SIZE >= 1MB */
2466 if (PAGE_SIZE < SZ_1M)
2467 numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2468
2469 #if __BITS_PER_LONG > 32
2470 if (!high_limit) {
2471 unsigned long adapt;
2472
2473 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2474 adapt <<= ADAPT_SCALE_SHIFT)
2475 scale++;
2476 }
2477 #endif
2478
2479 /* limit to 1 bucket per 2^scale bytes of low memory */
2480 if (scale > PAGE_SHIFT)
2481 numentries >>= (scale - PAGE_SHIFT);
2482 else
2483 numentries <<= (PAGE_SHIFT - scale);
2484
2485 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2486 numentries = PAGE_SIZE / bucketsize;
2487 }
2488 numentries = roundup_pow_of_two(numentries);
2489
2490 /* limit allocation size to 1/16 total memory by default */
2491 if (max == 0) {
2492 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2493 do_div(max, bucketsize);
2494 }
2495 max = min(max, 0x80000000ULL);
2496
2497 if (numentries < low_limit)
2498 numentries = low_limit;
2499 if (numentries > max)
2500 numentries = max;
2501
2502 log2qty = ilog2(numentries);
2503
2504 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2505 do {
2506 virt = false;
2507 size = bucketsize << log2qty;
2508 if (flags & HASH_EARLY) {
2509 if (flags & HASH_ZERO)
2510 table = memblock_alloc(size, SMP_CACHE_BYTES);
2511 else
2512 table = memblock_alloc_raw(size,
2513 SMP_CACHE_BYTES);
2514 } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2515 table = vmalloc_huge(size, gfp_flags);
2516 virt = true;
2517 if (table)
2518 huge = is_vm_area_hugepages(table);
2519 } else {
2520 /*
2521 * If bucketsize is not a power-of-two, we may free
2522 * some pages at the end of hash table which
2523 * alloc_pages_exact() automatically does
2524 */
2525 table = alloc_pages_exact(size, gfp_flags);
2526 kmemleak_alloc(table, size, 1, gfp_flags);
2527 }
2528 } while (!table && size > PAGE_SIZE && --log2qty);
2529
2530 if (!table)
2531 panic("Failed to allocate %s hash table\n", tablename);
2532
2533 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2534 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2535 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2536
2537 if (_hash_shift)
2538 *_hash_shift = log2qty;
2539 if (_hash_mask)
2540 *_hash_mask = (1 << log2qty) - 1;
2541
2542 return table;
2543 }
2544
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)2545 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2546 unsigned int order)
2547 {
2548 if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2549 int nid = early_pfn_to_nid(pfn);
2550
2551 if (!early_page_initialised(pfn, nid))
2552 return;
2553 }
2554
2555 if (!kmsan_memblock_free_pages(page, order)) {
2556 /* KMSAN will take care of these pages. */
2557 return;
2558 }
2559
2560 /* pages were reserved and not allocated */
2561 clear_page_tag_ref(page);
2562 __free_pages_core(page, order, MEMINIT_EARLY);
2563 }
2564
2565 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2566 EXPORT_SYMBOL(init_on_alloc);
2567
2568 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2569 EXPORT_SYMBOL(init_on_free);
2570
2571 static bool _init_on_alloc_enabled_early __read_mostly
2572 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)2573 static int __init early_init_on_alloc(char *buf)
2574 {
2575
2576 return kstrtobool(buf, &_init_on_alloc_enabled_early);
2577 }
2578 early_param("init_on_alloc", early_init_on_alloc);
2579
2580 static bool _init_on_free_enabled_early __read_mostly
2581 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)2582 static int __init early_init_on_free(char *buf)
2583 {
2584 return kstrtobool(buf, &_init_on_free_enabled_early);
2585 }
2586 early_param("init_on_free", early_init_on_free);
2587
2588 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2589
2590 /*
2591 * Enable static keys related to various memory debugging and hardening options.
2592 * Some override others, and depend on early params that are evaluated in the
2593 * order of appearance. So we need to first gather the full picture of what was
2594 * enabled, and then make decisions.
2595 */
mem_debugging_and_hardening_init(void)2596 static void __init mem_debugging_and_hardening_init(void)
2597 {
2598 bool page_poisoning_requested = false;
2599 bool want_check_pages = false;
2600
2601 #ifdef CONFIG_PAGE_POISONING
2602 /*
2603 * Page poisoning is debug page alloc for some arches. If
2604 * either of those options are enabled, enable poisoning.
2605 */
2606 if (page_poisoning_enabled() ||
2607 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2608 debug_pagealloc_enabled())) {
2609 static_branch_enable(&_page_poisoning_enabled);
2610 page_poisoning_requested = true;
2611 want_check_pages = true;
2612 }
2613 #endif
2614
2615 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2616 page_poisoning_requested) {
2617 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2618 "will take precedence over init_on_alloc and init_on_free\n");
2619 _init_on_alloc_enabled_early = false;
2620 _init_on_free_enabled_early = false;
2621 }
2622
2623 if (_init_on_alloc_enabled_early) {
2624 want_check_pages = true;
2625 static_branch_enable(&init_on_alloc);
2626 } else {
2627 static_branch_disable(&init_on_alloc);
2628 }
2629
2630 if (_init_on_free_enabled_early) {
2631 want_check_pages = true;
2632 static_branch_enable(&init_on_free);
2633 } else {
2634 static_branch_disable(&init_on_free);
2635 }
2636
2637 if (IS_ENABLED(CONFIG_KMSAN) &&
2638 (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2639 pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2640
2641 #ifdef CONFIG_DEBUG_PAGEALLOC
2642 if (debug_pagealloc_enabled()) {
2643 want_check_pages = true;
2644 static_branch_enable(&_debug_pagealloc_enabled);
2645
2646 if (debug_guardpage_minorder())
2647 static_branch_enable(&_debug_guardpage_enabled);
2648 }
2649 #endif
2650
2651 /*
2652 * Any page debugging or hardening option also enables sanity checking
2653 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2654 * enabled already.
2655 */
2656 if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2657 static_branch_enable(&check_pages_enabled);
2658 }
2659
2660 /* Report memory auto-initialization states for this boot. */
report_meminit(void)2661 static void __init report_meminit(void)
2662 {
2663 const char *stack;
2664
2665 if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2666 stack = "all(pattern)";
2667 else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2668 stack = "all(zero)";
2669 else
2670 stack = "off";
2671
2672 pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2673 stack, str_on_off(want_init_on_alloc(GFP_KERNEL)),
2674 str_on_off(want_init_on_free()));
2675 if (want_init_on_free())
2676 pr_info("mem auto-init: clearing system memory may take some time...\n");
2677 }
2678
mem_init_print_info(void)2679 static void __init mem_init_print_info(void)
2680 {
2681 unsigned long physpages, codesize, datasize, rosize, bss_size;
2682 unsigned long init_code_size, init_data_size;
2683
2684 physpages = get_num_physpages();
2685 codesize = _etext - _stext;
2686 datasize = _edata - _sdata;
2687 rosize = __end_rodata - __start_rodata;
2688 bss_size = __bss_stop - __bss_start;
2689 init_data_size = __init_end - __init_begin;
2690 init_code_size = _einittext - _sinittext;
2691
2692 /*
2693 * Detect special cases and adjust section sizes accordingly:
2694 * 1) .init.* may be embedded into .data sections
2695 * 2) .init.text.* may be out of [__init_begin, __init_end],
2696 * please refer to arch/tile/kernel/vmlinux.lds.S.
2697 * 3) .rodata.* may be embedded into .text or .data sections.
2698 */
2699 #define adj_init_size(start, end, size, pos, adj) \
2700 do { \
2701 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2702 size -= adj; \
2703 } while (0)
2704
2705 adj_init_size(__init_begin, __init_end, init_data_size,
2706 _sinittext, init_code_size);
2707 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2708 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2709 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2710 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2711
2712 #undef adj_init_size
2713
2714 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2715 #ifdef CONFIG_HIGHMEM
2716 ", %luK highmem"
2717 #endif
2718 ")\n",
2719 K(nr_free_pages()), K(physpages),
2720 codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2721 (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2722 K(physpages - totalram_pages() - totalcma_pages),
2723 K(totalcma_pages)
2724 #ifdef CONFIG_HIGHMEM
2725 , K(totalhigh_pages())
2726 #endif
2727 );
2728 }
2729
arch_mm_preinit(void)2730 void __init __weak arch_mm_preinit(void)
2731 {
2732 }
2733
mem_init(void)2734 void __init __weak mem_init(void)
2735 {
2736 }
2737
2738 /*
2739 * Set up kernel memory allocators
2740 */
mm_core_init(void)2741 void __init mm_core_init(void)
2742 {
2743 arch_mm_preinit();
2744 hugetlb_bootmem_alloc();
2745
2746 /* Initializations relying on SMP setup */
2747 BUILD_BUG_ON(MAX_ZONELISTS > 2);
2748 build_all_zonelists(NULL);
2749 page_alloc_init_cpuhp();
2750 alloc_tag_sec_init();
2751 /*
2752 * page_ext requires contiguous pages,
2753 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2754 */
2755 page_ext_init_flatmem();
2756 mem_debugging_and_hardening_init();
2757 kfence_alloc_pool_and_metadata();
2758 report_meminit();
2759 kmsan_init_shadow();
2760 stack_depot_early_init();
2761
2762 /*
2763 * KHO memory setup must happen while memblock is still active, but
2764 * as close as possible to buddy initialization
2765 */
2766 kho_memory_init();
2767
2768 memblock_free_all();
2769 mem_init();
2770 kmem_cache_init();
2771 /*
2772 * page_owner must be initialized after buddy is ready, and also after
2773 * slab is ready so that stack_depot_init() works properly
2774 */
2775 page_ext_init_flatmem_late();
2776 kmemleak_init();
2777 ptlock_cache_init();
2778 pgtable_cache_init();
2779 debug_objects_mem_init();
2780 vmalloc_init();
2781 /* If no deferred init page_ext now, as vmap is fully initialized */
2782 if (!deferred_struct_pages)
2783 page_ext_init();
2784 /* Should be run before the first non-init thread is created */
2785 init_espfix_bsp();
2786 /* Should be run after espfix64 is set up. */
2787 pti_init();
2788 kmsan_init_runtime();
2789 mm_cache_init();
2790 execmem_init();
2791 }
2792