xref: /linux/mm/mm_init.c (revision 3349e275067f94ffb4141989aed9cbae7409429b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include <linux/kexec_handover.h>
34 #include <linux/hugetlb.h>
35 #include "internal.h"
36 #include "slab.h"
37 #include "shuffle.h"
38 
39 #include <asm/setup.h>
40 
41 #ifndef CONFIG_NUMA
42 unsigned long max_mapnr;
43 EXPORT_SYMBOL(max_mapnr);
44 
45 struct page *mem_map;
46 EXPORT_SYMBOL(mem_map);
47 #endif
48 
49 /*
50  * high_memory defines the upper bound on direct map memory, then end
51  * of ZONE_NORMAL.
52  */
53 void *high_memory;
54 EXPORT_SYMBOL(high_memory);
55 
56 #ifdef CONFIG_DEBUG_MEMORY_INIT
57 int __meminitdata mminit_loglevel;
58 
59 /* The zonelists are simply reported, validation is manual. */
mminit_verify_zonelist(void)60 void __init mminit_verify_zonelist(void)
61 {
62 	int nid;
63 
64 	if (mminit_loglevel < MMINIT_VERIFY)
65 		return;
66 
67 	for_each_online_node(nid) {
68 		pg_data_t *pgdat = NODE_DATA(nid);
69 		struct zone *zone;
70 		struct zoneref *z;
71 		struct zonelist *zonelist;
72 		int i, listid, zoneid;
73 
74 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
75 
76 			/* Identify the zone and nodelist */
77 			zoneid = i % MAX_NR_ZONES;
78 			listid = i / MAX_NR_ZONES;
79 			zonelist = &pgdat->node_zonelists[listid];
80 			zone = &pgdat->node_zones[zoneid];
81 			if (!populated_zone(zone))
82 				continue;
83 
84 			/* Print information about the zonelist */
85 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
86 				listid > 0 ? "thisnode" : "general", nid,
87 				zone->name);
88 
89 			/* Iterate the zonelist */
90 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
91 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
92 			pr_cont("\n");
93 		}
94 	}
95 }
96 
mminit_verify_pageflags_layout(void)97 void __init mminit_verify_pageflags_layout(void)
98 {
99 	int shift, width;
100 	unsigned long or_mask, add_mask;
101 
102 	shift = BITS_PER_LONG;
103 	width = shift - NR_NON_PAGEFLAG_BITS;
104 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
105 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
106 		SECTIONS_WIDTH,
107 		NODES_WIDTH,
108 		ZONES_WIDTH,
109 		LAST_CPUPID_WIDTH,
110 		KASAN_TAG_WIDTH,
111 		LRU_GEN_WIDTH,
112 		LRU_REFS_WIDTH,
113 		NR_PAGEFLAGS);
114 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
115 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
116 		SECTIONS_SHIFT,
117 		NODES_SHIFT,
118 		ZONES_SHIFT,
119 		LAST_CPUPID_SHIFT,
120 		KASAN_TAG_WIDTH);
121 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
122 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
123 		(unsigned long)SECTIONS_PGSHIFT,
124 		(unsigned long)NODES_PGSHIFT,
125 		(unsigned long)ZONES_PGSHIFT,
126 		(unsigned long)LAST_CPUPID_PGSHIFT,
127 		(unsigned long)KASAN_TAG_PGSHIFT);
128 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
129 		"Node/Zone ID: %lu -> %lu\n",
130 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
131 		(unsigned long)ZONEID_PGOFF);
132 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
133 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
134 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
135 #ifdef NODE_NOT_IN_PAGE_FLAGS
136 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
137 		"Node not in page flags");
138 #endif
139 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
140 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
141 		"Last cpupid not in page flags");
142 #endif
143 
144 	if (SECTIONS_WIDTH) {
145 		shift -= SECTIONS_WIDTH;
146 		BUG_ON(shift != SECTIONS_PGSHIFT);
147 	}
148 	if (NODES_WIDTH) {
149 		shift -= NODES_WIDTH;
150 		BUG_ON(shift != NODES_PGSHIFT);
151 	}
152 	if (ZONES_WIDTH) {
153 		shift -= ZONES_WIDTH;
154 		BUG_ON(shift != ZONES_PGSHIFT);
155 	}
156 
157 	/* Check for bitmask overlaps */
158 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
159 			(NODES_MASK << NODES_PGSHIFT) |
160 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
161 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
162 			(NODES_MASK << NODES_PGSHIFT) +
163 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
164 	BUG_ON(or_mask != add_mask);
165 }
166 
set_mminit_loglevel(char * str)167 static __init int set_mminit_loglevel(char *str)
168 {
169 	get_option(&str, &mminit_loglevel);
170 	return 0;
171 }
172 early_param("mminit_loglevel", set_mminit_loglevel);
173 #endif /* CONFIG_DEBUG_MEMORY_INIT */
174 
175 struct kobject *mm_kobj;
176 
177 #ifdef CONFIG_SMP
178 s32 vm_committed_as_batch = 32;
179 
mm_compute_batch(int overcommit_policy)180 void mm_compute_batch(int overcommit_policy)
181 {
182 	u64 memsized_batch;
183 	s32 nr = num_present_cpus();
184 	s32 batch = max_t(s32, nr*2, 32);
185 	unsigned long ram_pages = totalram_pages();
186 
187 	/*
188 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
189 	 * (total memory/#cpus), and lift it to 25% for other policies
190 	 * to easy the possible lock contention for percpu_counter
191 	 * vm_committed_as, while the max limit is INT_MAX
192 	 */
193 	if (overcommit_policy == OVERCOMMIT_NEVER)
194 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
195 	else
196 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
197 
198 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
199 }
200 
mm_compute_batch_notifier(struct notifier_block * self,unsigned long action,void * arg)201 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
202 					unsigned long action, void *arg)
203 {
204 	switch (action) {
205 	case MEM_ONLINE:
206 	case MEM_OFFLINE:
207 		mm_compute_batch(sysctl_overcommit_memory);
208 		break;
209 	default:
210 		break;
211 	}
212 	return NOTIFY_OK;
213 }
214 
mm_compute_batch_init(void)215 static int __init mm_compute_batch_init(void)
216 {
217 	mm_compute_batch(sysctl_overcommit_memory);
218 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
219 	return 0;
220 }
221 
222 __initcall(mm_compute_batch_init);
223 
224 #endif
225 
mm_sysfs_init(void)226 static int __init mm_sysfs_init(void)
227 {
228 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
229 	if (!mm_kobj)
230 		return -ENOMEM;
231 
232 	return 0;
233 }
234 postcore_initcall(mm_sysfs_init);
235 
236 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
237 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
238 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
239 
240 static unsigned long required_kernelcore __initdata;
241 static unsigned long required_kernelcore_percent __initdata;
242 static unsigned long required_movablecore __initdata;
243 static unsigned long required_movablecore_percent __initdata;
244 
245 static unsigned long nr_kernel_pages __initdata;
246 static unsigned long nr_all_pages __initdata;
247 
248 static bool deferred_struct_pages __meminitdata;
249 
250 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
251 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)252 static int __init cmdline_parse_core(char *p, unsigned long *core,
253 				     unsigned long *percent)
254 {
255 	unsigned long long coremem;
256 	char *endptr;
257 
258 	if (!p)
259 		return -EINVAL;
260 
261 	/* Value may be a percentage of total memory, otherwise bytes */
262 	coremem = simple_strtoull(p, &endptr, 0);
263 	if (*endptr == '%') {
264 		/* Paranoid check for percent values greater than 100 */
265 		WARN_ON(coremem > 100);
266 
267 		*percent = coremem;
268 	} else {
269 		coremem = memparse(p, &p);
270 		/* Paranoid check that UL is enough for the coremem value */
271 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
272 
273 		*core = coremem >> PAGE_SHIFT;
274 		*percent = 0UL;
275 	}
276 	return 0;
277 }
278 
279 bool mirrored_kernelcore __initdata_memblock;
280 
281 /*
282  * kernelcore=size sets the amount of memory for use for allocations that
283  * cannot be reclaimed or migrated.
284  */
cmdline_parse_kernelcore(char * p)285 static int __init cmdline_parse_kernelcore(char *p)
286 {
287 	/* parse kernelcore=mirror */
288 	if (parse_option_str(p, "mirror")) {
289 		mirrored_kernelcore = true;
290 		return 0;
291 	}
292 
293 	return cmdline_parse_core(p, &required_kernelcore,
294 				  &required_kernelcore_percent);
295 }
296 early_param("kernelcore", cmdline_parse_kernelcore);
297 
298 /*
299  * movablecore=size sets the amount of memory for use for allocations that
300  * can be reclaimed or migrated.
301  */
cmdline_parse_movablecore(char * p)302 static int __init cmdline_parse_movablecore(char *p)
303 {
304 	return cmdline_parse_core(p, &required_movablecore,
305 				  &required_movablecore_percent);
306 }
307 early_param("movablecore", cmdline_parse_movablecore);
308 
309 /*
310  * early_calculate_totalpages()
311  * Sum pages in active regions for movable zone.
312  * Populate N_MEMORY for calculating usable_nodes.
313  */
early_calculate_totalpages(void)314 static unsigned long __init early_calculate_totalpages(void)
315 {
316 	unsigned long totalpages = 0;
317 	unsigned long start_pfn, end_pfn;
318 	int i, nid;
319 
320 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
321 		unsigned long pages = end_pfn - start_pfn;
322 
323 		totalpages += pages;
324 		if (pages)
325 			node_set_state(nid, N_MEMORY);
326 	}
327 	return totalpages;
328 }
329 
330 /*
331  * This finds a zone that can be used for ZONE_MOVABLE pages. The
332  * assumption is made that zones within a node are ordered in monotonic
333  * increasing memory addresses so that the "highest" populated zone is used
334  */
find_usable_zone_for_movable(void)335 static void __init find_usable_zone_for_movable(void)
336 {
337 	int zone_index;
338 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
339 		if (zone_index == ZONE_MOVABLE)
340 			continue;
341 
342 		if (arch_zone_highest_possible_pfn[zone_index] >
343 				arch_zone_lowest_possible_pfn[zone_index])
344 			break;
345 	}
346 
347 	VM_BUG_ON(zone_index == -1);
348 	movable_zone = zone_index;
349 }
350 
351 /*
352  * Find the PFN the Movable zone begins in each node. Kernel memory
353  * is spread evenly between nodes as long as the nodes have enough
354  * memory. When they don't, some nodes will have more kernelcore than
355  * others
356  */
find_zone_movable_pfns_for_nodes(void)357 static void __init find_zone_movable_pfns_for_nodes(void)
358 {
359 	int i, nid;
360 	unsigned long usable_startpfn;
361 	unsigned long kernelcore_node, kernelcore_remaining;
362 	/* save the state before borrow the nodemask */
363 	nodemask_t saved_node_state = node_states[N_MEMORY];
364 	unsigned long totalpages = early_calculate_totalpages();
365 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
366 	struct memblock_region *r;
367 
368 	/* Need to find movable_zone earlier when movable_node is specified. */
369 	find_usable_zone_for_movable();
370 
371 	/*
372 	 * If movable_node is specified, ignore kernelcore and movablecore
373 	 * options.
374 	 */
375 	if (movable_node_is_enabled()) {
376 		for_each_mem_region(r) {
377 			if (!memblock_is_hotpluggable(r))
378 				continue;
379 
380 			nid = memblock_get_region_node(r);
381 
382 			usable_startpfn = memblock_region_memory_base_pfn(r);
383 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
384 				min(usable_startpfn, zone_movable_pfn[nid]) :
385 				usable_startpfn;
386 		}
387 
388 		goto out2;
389 	}
390 
391 	/*
392 	 * If kernelcore=mirror is specified, ignore movablecore option
393 	 */
394 	if (mirrored_kernelcore) {
395 		bool mem_below_4gb_not_mirrored = false;
396 
397 		if (!memblock_has_mirror()) {
398 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
399 			goto out;
400 		}
401 
402 		if (is_kdump_kernel()) {
403 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
404 			goto out;
405 		}
406 
407 		for_each_mem_region(r) {
408 			if (memblock_is_mirror(r))
409 				continue;
410 
411 			nid = memblock_get_region_node(r);
412 
413 			usable_startpfn = memblock_region_memory_base_pfn(r);
414 
415 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
416 				mem_below_4gb_not_mirrored = true;
417 				continue;
418 			}
419 
420 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
421 				min(usable_startpfn, zone_movable_pfn[nid]) :
422 				usable_startpfn;
423 		}
424 
425 		if (mem_below_4gb_not_mirrored)
426 			pr_warn("This configuration results in unmirrored kernel memory.\n");
427 
428 		goto out2;
429 	}
430 
431 	/*
432 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
433 	 * amount of necessary memory.
434 	 */
435 	if (required_kernelcore_percent)
436 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
437 				       10000UL;
438 	if (required_movablecore_percent)
439 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
440 					10000UL;
441 
442 	/*
443 	 * If movablecore= was specified, calculate what size of
444 	 * kernelcore that corresponds so that memory usable for
445 	 * any allocation type is evenly spread. If both kernelcore
446 	 * and movablecore are specified, then the value of kernelcore
447 	 * will be used for required_kernelcore if it's greater than
448 	 * what movablecore would have allowed.
449 	 */
450 	if (required_movablecore) {
451 		unsigned long corepages;
452 
453 		/*
454 		 * Round-up so that ZONE_MOVABLE is at least as large as what
455 		 * was requested by the user
456 		 */
457 		required_movablecore =
458 			round_up(required_movablecore, MAX_ORDER_NR_PAGES);
459 		required_movablecore = min(totalpages, required_movablecore);
460 		corepages = totalpages - required_movablecore;
461 
462 		required_kernelcore = max(required_kernelcore, corepages);
463 	}
464 
465 	/*
466 	 * If kernelcore was not specified or kernelcore size is larger
467 	 * than totalpages, there is no ZONE_MOVABLE.
468 	 */
469 	if (!required_kernelcore || required_kernelcore >= totalpages)
470 		goto out;
471 
472 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
473 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
474 
475 restart:
476 	/* Spread kernelcore memory as evenly as possible throughout nodes */
477 	kernelcore_node = required_kernelcore / usable_nodes;
478 	for_each_node_state(nid, N_MEMORY) {
479 		unsigned long start_pfn, end_pfn;
480 
481 		/*
482 		 * Recalculate kernelcore_node if the division per node
483 		 * now exceeds what is necessary to satisfy the requested
484 		 * amount of memory for the kernel
485 		 */
486 		if (required_kernelcore < kernelcore_node)
487 			kernelcore_node = required_kernelcore / usable_nodes;
488 
489 		/*
490 		 * As the map is walked, we track how much memory is usable
491 		 * by the kernel using kernelcore_remaining. When it is
492 		 * 0, the rest of the node is usable by ZONE_MOVABLE
493 		 */
494 		kernelcore_remaining = kernelcore_node;
495 
496 		/* Go through each range of PFNs within this node */
497 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
498 			unsigned long size_pages;
499 
500 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
501 			if (start_pfn >= end_pfn)
502 				continue;
503 
504 			/* Account for what is only usable for kernelcore */
505 			if (start_pfn < usable_startpfn) {
506 				unsigned long kernel_pages;
507 				kernel_pages = min(end_pfn, usable_startpfn)
508 								- start_pfn;
509 
510 				kernelcore_remaining -= min(kernel_pages,
511 							kernelcore_remaining);
512 				required_kernelcore -= min(kernel_pages,
513 							required_kernelcore);
514 
515 				/* Continue if range is now fully accounted */
516 				if (end_pfn <= usable_startpfn) {
517 
518 					/*
519 					 * Push zone_movable_pfn to the end so
520 					 * that if we have to rebalance
521 					 * kernelcore across nodes, we will
522 					 * not double account here
523 					 */
524 					zone_movable_pfn[nid] = end_pfn;
525 					continue;
526 				}
527 				start_pfn = usable_startpfn;
528 			}
529 
530 			/*
531 			 * The usable PFN range for ZONE_MOVABLE is from
532 			 * start_pfn->end_pfn. Calculate size_pages as the
533 			 * number of pages used as kernelcore
534 			 */
535 			size_pages = end_pfn - start_pfn;
536 			if (size_pages > kernelcore_remaining)
537 				size_pages = kernelcore_remaining;
538 			zone_movable_pfn[nid] = start_pfn + size_pages;
539 
540 			/*
541 			 * Some kernelcore has been met, update counts and
542 			 * break if the kernelcore for this node has been
543 			 * satisfied
544 			 */
545 			required_kernelcore -= min(required_kernelcore,
546 								size_pages);
547 			kernelcore_remaining -= size_pages;
548 			if (!kernelcore_remaining)
549 				break;
550 		}
551 	}
552 
553 	/*
554 	 * If there is still required_kernelcore, we do another pass with one
555 	 * less node in the count. This will push zone_movable_pfn[nid] further
556 	 * along on the nodes that still have memory until kernelcore is
557 	 * satisfied
558 	 */
559 	usable_nodes--;
560 	if (usable_nodes && required_kernelcore > usable_nodes)
561 		goto restart;
562 
563 out2:
564 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
565 	for_each_node_state(nid, N_MEMORY) {
566 		unsigned long start_pfn, end_pfn;
567 
568 		zone_movable_pfn[nid] =
569 			round_up(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
570 
571 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
572 		if (zone_movable_pfn[nid] >= end_pfn)
573 			zone_movable_pfn[nid] = 0;
574 	}
575 
576 out:
577 	/* restore the node_state */
578 	node_states[N_MEMORY] = saved_node_state;
579 }
580 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)581 void __meminit __init_single_page(struct page *page, unsigned long pfn,
582 				unsigned long zone, int nid)
583 {
584 	mm_zero_struct_page(page);
585 	set_page_links(page, zone, nid, pfn);
586 	init_page_count(page);
587 	atomic_set(&page->_mapcount, -1);
588 	page_cpupid_reset_last(page);
589 	page_kasan_tag_reset(page);
590 
591 	INIT_LIST_HEAD(&page->lru);
592 #ifdef WANT_PAGE_VIRTUAL
593 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
594 	if (!is_highmem_idx(zone))
595 		set_page_address(page, __va(pfn << PAGE_SHIFT));
596 #endif
597 }
598 
599 #ifdef CONFIG_NUMA
600 /*
601  * During memory init memblocks map pfns to nids. The search is expensive and
602  * this caches recent lookups. The implementation of __early_pfn_to_nid
603  * treats start/end as pfns.
604  */
605 struct mminit_pfnnid_cache {
606 	unsigned long last_start;
607 	unsigned long last_end;
608 	int last_nid;
609 };
610 
611 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
612 
613 /*
614  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
615  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)616 static int __meminit __early_pfn_to_nid(unsigned long pfn,
617 					struct mminit_pfnnid_cache *state)
618 {
619 	unsigned long start_pfn, end_pfn;
620 	int nid;
621 
622 	if (state->last_start <= pfn && pfn < state->last_end)
623 		return state->last_nid;
624 
625 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
626 	if (nid != NUMA_NO_NODE) {
627 		state->last_start = start_pfn;
628 		state->last_end = end_pfn;
629 		state->last_nid = nid;
630 	}
631 
632 	return nid;
633 }
634 
early_pfn_to_nid(unsigned long pfn)635 int __meminit early_pfn_to_nid(unsigned long pfn)
636 {
637 	static DEFINE_SPINLOCK(early_pfn_lock);
638 	int nid;
639 
640 	spin_lock(&early_pfn_lock);
641 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
642 	if (nid < 0)
643 		nid = first_online_node;
644 	spin_unlock(&early_pfn_lock);
645 
646 	return nid;
647 }
648 
649 int hashdist = HASHDIST_DEFAULT;
650 
set_hashdist(char * str)651 static int __init set_hashdist(char *str)
652 {
653 	if (!str)
654 		return 0;
655 	hashdist = simple_strtoul(str, &str, 0);
656 	return 1;
657 }
658 __setup("hashdist=", set_hashdist);
659 
fixup_hashdist(void)660 static inline void fixup_hashdist(void)
661 {
662 	if (num_node_state(N_MEMORY) == 1)
663 		hashdist = 0;
664 }
665 #else
fixup_hashdist(void)666 static inline void fixup_hashdist(void) {}
667 #endif /* CONFIG_NUMA */
668 
669 /*
670  * Initialize a reserved page unconditionally, finding its zone first.
671  */
__init_page_from_nid(unsigned long pfn,int nid)672 void __meminit __init_page_from_nid(unsigned long pfn, int nid)
673 {
674 	pg_data_t *pgdat;
675 	int zid;
676 
677 	pgdat = NODE_DATA(nid);
678 
679 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
680 		struct zone *zone = &pgdat->node_zones[zid];
681 
682 		if (zone_spans_pfn(zone, pfn))
683 			break;
684 	}
685 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
686 
687 	if (pageblock_aligned(pfn))
688 		set_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE);
689 }
690 
691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)692 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
693 {
694 	pgdat->first_deferred_pfn = ULONG_MAX;
695 }
696 
697 /* Returns true if the struct page for the pfn is initialised */
early_page_initialised(unsigned long pfn,int nid)698 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
699 {
700 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
701 		return false;
702 
703 	return true;
704 }
705 
706 /*
707  * Returns true when the remaining initialisation should be deferred until
708  * later in the boot cycle when it can be parallelised.
709  */
710 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)711 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
712 {
713 	static unsigned long prev_end_pfn, nr_initialised;
714 
715 	if (early_page_ext_enabled())
716 		return false;
717 
718 	/* Always populate low zones for address-constrained allocations */
719 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
720 		return false;
721 
722 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
723 		return true;
724 
725 	/*
726 	 * prev_end_pfn static that contains the end of previous zone
727 	 * No need to protect because called very early in boot before smp_init.
728 	 */
729 	if (prev_end_pfn != end_pfn) {
730 		prev_end_pfn = end_pfn;
731 		nr_initialised = 0;
732 	}
733 
734 	/*
735 	 * We start only with one section of pages, more pages are added as
736 	 * needed until the rest of deferred pages are initialized.
737 	 */
738 	nr_initialised++;
739 	if ((nr_initialised > PAGES_PER_SECTION) &&
740 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
741 		NODE_DATA(nid)->first_deferred_pfn = pfn;
742 		return true;
743 	}
744 	return false;
745 }
746 
__init_deferred_page(unsigned long pfn,int nid)747 static void __meminit __init_deferred_page(unsigned long pfn, int nid)
748 {
749 	if (early_page_initialised(pfn, nid))
750 		return;
751 
752 	__init_page_from_nid(pfn, nid);
753 }
754 #else
pgdat_set_deferred_range(pg_data_t * pgdat)755 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
756 
early_page_initialised(unsigned long pfn,int nid)757 static inline bool early_page_initialised(unsigned long pfn, int nid)
758 {
759 	return true;
760 }
761 
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)762 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
763 {
764 	return false;
765 }
766 
__init_deferred_page(unsigned long pfn,int nid)767 static inline void __init_deferred_page(unsigned long pfn, int nid)
768 {
769 }
770 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
771 
init_deferred_page(unsigned long pfn,int nid)772 void __meminit init_deferred_page(unsigned long pfn, int nid)
773 {
774 	__init_deferred_page(pfn, nid);
775 }
776 
777 /*
778  * Initialised pages do not have PageReserved set. This function is
779  * called for each range allocated by the bootmem allocator and
780  * marks the pages PageReserved. The remaining valid pages are later
781  * sent to the buddy page allocator.
782  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end,int nid)783 void __meminit reserve_bootmem_region(phys_addr_t start,
784 				      phys_addr_t end, int nid)
785 {
786 	unsigned long pfn;
787 
788 	for_each_valid_pfn(pfn, PFN_DOWN(start), PFN_UP(end)) {
789 		struct page *page = pfn_to_page(pfn);
790 
791 		__init_deferred_page(pfn, nid);
792 
793 		/*
794 		 * no need for atomic set_bit because the struct
795 		 * page is not visible yet so nobody should
796 		 * access it yet.
797 		 */
798 		__SetPageReserved(page);
799 	}
800 }
801 
802 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
803 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)804 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
805 {
806 	static struct memblock_region *r;
807 
808 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
809 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
810 			for_each_mem_region(r) {
811 				if (*pfn < memblock_region_memory_end_pfn(r))
812 					break;
813 			}
814 		}
815 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
816 		    memblock_is_mirror(r)) {
817 			*pfn = memblock_region_memory_end_pfn(r);
818 			return true;
819 		}
820 	}
821 	return false;
822 }
823 
824 /*
825  * Only struct pages that correspond to ranges defined by memblock.memory
826  * are zeroed and initialized by going through __init_single_page() during
827  * memmap_init_zone_range().
828  *
829  * But, there could be struct pages that correspond to holes in
830  * memblock.memory. This can happen because of the following reasons:
831  * - physical memory bank size is not necessarily the exact multiple of the
832  *   arbitrary section size
833  * - early reserved memory may not be listed in memblock.memory
834  * - non-memory regions covered by the contiguous flatmem mapping
835  * - memory layouts defined with memmap= kernel parameter may not align
836  *   nicely with memmap sections
837  *
838  * Explicitly initialize those struct pages so that:
839  * - PG_Reserved is set
840  * - zone and node links point to zone and node that span the page if the
841  *   hole is in the middle of a zone
842  * - zone and node links point to adjacent zone/node if the hole falls on
843  *   the zone boundary; the pages in such holes will be prepended to the
844  *   zone/node above the hole except for the trailing pages in the last
845  *   section that will be appended to the zone/node below.
846  */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)847 static void __init init_unavailable_range(unsigned long spfn,
848 					  unsigned long epfn,
849 					  int zone, int node)
850 {
851 	unsigned long pfn;
852 	u64 pgcnt = 0;
853 
854 	for_each_valid_pfn(pfn, spfn, epfn) {
855 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
856 		__SetPageReserved(pfn_to_page(pfn));
857 		pgcnt++;
858 	}
859 
860 	if (pgcnt)
861 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
862 			node, zone_names[zone], pgcnt);
863 }
864 
865 /*
866  * Initially all pages are reserved - free ones are freed
867  * up by memblock_free_all() once the early boot process is
868  * done. Non-atomic initialization, single-pass.
869  *
870  * All aligned pageblocks are initialized to the specified migratetype
871  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
872  * zone stats (e.g., nr_isolate_pageblock) are touched.
873  */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)874 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
875 		unsigned long start_pfn, unsigned long zone_end_pfn,
876 		enum meminit_context context,
877 		struct vmem_altmap *altmap, int migratetype)
878 {
879 	unsigned long pfn, end_pfn = start_pfn + size;
880 	struct page *page;
881 
882 	if (highest_memmap_pfn < end_pfn - 1)
883 		highest_memmap_pfn = end_pfn - 1;
884 
885 #ifdef CONFIG_ZONE_DEVICE
886 	/*
887 	 * Honor reservation requested by the driver for this ZONE_DEVICE
888 	 * memory. We limit the total number of pages to initialize to just
889 	 * those that might contain the memory mapping. We will defer the
890 	 * ZONE_DEVICE page initialization until after we have released
891 	 * the hotplug lock.
892 	 */
893 	if (zone == ZONE_DEVICE) {
894 		if (!altmap)
895 			return;
896 
897 		if (start_pfn == altmap->base_pfn)
898 			start_pfn += altmap->reserve;
899 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
900 	}
901 #endif
902 
903 	for (pfn = start_pfn; pfn < end_pfn; ) {
904 		/*
905 		 * There can be holes in boot-time mem_map[]s handed to this
906 		 * function.  They do not exist on hotplugged memory.
907 		 */
908 		if (context == MEMINIT_EARLY) {
909 			if (overlap_memmap_init(zone, &pfn))
910 				continue;
911 			if (defer_init(nid, pfn, zone_end_pfn)) {
912 				deferred_struct_pages = true;
913 				break;
914 			}
915 		}
916 
917 		page = pfn_to_page(pfn);
918 		__init_single_page(page, pfn, zone, nid);
919 		if (context == MEMINIT_HOTPLUG) {
920 #ifdef CONFIG_ZONE_DEVICE
921 			if (zone == ZONE_DEVICE)
922 				__SetPageReserved(page);
923 			else
924 #endif
925 				__SetPageOffline(page);
926 		}
927 
928 		/*
929 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
930 		 * such that unmovable allocations won't be scattered all
931 		 * over the place during system boot.
932 		 */
933 		if (pageblock_aligned(pfn)) {
934 			set_pageblock_migratetype(page, migratetype);
935 			cond_resched();
936 		}
937 		pfn++;
938 	}
939 }
940 
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)941 static void __init memmap_init_zone_range(struct zone *zone,
942 					  unsigned long start_pfn,
943 					  unsigned long end_pfn,
944 					  unsigned long *hole_pfn)
945 {
946 	unsigned long zone_start_pfn = zone->zone_start_pfn;
947 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
948 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
949 
950 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
951 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
952 
953 	if (start_pfn >= end_pfn)
954 		return;
955 
956 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
957 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
958 
959 	if (*hole_pfn < start_pfn)
960 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
961 
962 	*hole_pfn = end_pfn;
963 }
964 
memmap_init(void)965 static void __init memmap_init(void)
966 {
967 	unsigned long start_pfn, end_pfn;
968 	unsigned long hole_pfn = 0;
969 	int i, j, zone_id = 0, nid;
970 
971 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
972 		struct pglist_data *node = NODE_DATA(nid);
973 
974 		for (j = 0; j < MAX_NR_ZONES; j++) {
975 			struct zone *zone = node->node_zones + j;
976 
977 			if (!populated_zone(zone))
978 				continue;
979 
980 			memmap_init_zone_range(zone, start_pfn, end_pfn,
981 					       &hole_pfn);
982 			zone_id = j;
983 		}
984 	}
985 
986 	/*
987 	 * Initialize the memory map for hole in the range [memory_end,
988 	 * section_end] for SPARSEMEM and in the range [memory_end, memmap_end]
989 	 * for FLATMEM.
990 	 * Append the pages in this hole to the highest zone in the last
991 	 * node.
992 	 */
993 #ifdef CONFIG_SPARSEMEM
994 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
995 #else
996 	end_pfn = round_up(end_pfn, MAX_ORDER_NR_PAGES);
997 #endif
998 	if (hole_pfn < end_pfn)
999 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
1000 }
1001 
1002 #ifdef CONFIG_ZONE_DEVICE
__init_zone_device_page(struct page * page,unsigned long pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap)1003 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
1004 					  unsigned long zone_idx, int nid,
1005 					  struct dev_pagemap *pgmap)
1006 {
1007 
1008 	__init_single_page(page, pfn, zone_idx, nid);
1009 
1010 	/*
1011 	 * Mark page reserved as it will need to wait for onlining
1012 	 * phase for it to be fully associated with a zone.
1013 	 *
1014 	 * We can use the non-atomic __set_bit operation for setting
1015 	 * the flag as we are still initializing the pages.
1016 	 */
1017 	__SetPageReserved(page);
1018 
1019 	/*
1020 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
1021 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
1022 	 * ever freed or placed on a driver-private list.
1023 	 */
1024 	page_folio(page)->pgmap = pgmap;
1025 	page->zone_device_data = NULL;
1026 
1027 	/*
1028 	 * Mark the block movable so that blocks are reserved for
1029 	 * movable at startup. This will force kernel allocations
1030 	 * to reserve their blocks rather than leaking throughout
1031 	 * the address space during boot when many long-lived
1032 	 * kernel allocations are made.
1033 	 *
1034 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1035 	 * because this is done early in section_activate()
1036 	 */
1037 	if (pageblock_aligned(pfn)) {
1038 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1039 		cond_resched();
1040 	}
1041 
1042 	/*
1043 	 * ZONE_DEVICE pages other than MEMORY_TYPE_GENERIC are released
1044 	 * directly to the driver page allocator which will set the page count
1045 	 * to 1 when allocating the page.
1046 	 *
1047 	 * MEMORY_TYPE_GENERIC and MEMORY_TYPE_FS_DAX pages automatically have
1048 	 * their refcount reset to one whenever they are freed (ie. after
1049 	 * their refcount drops to 0).
1050 	 */
1051 	switch (pgmap->type) {
1052 	case MEMORY_DEVICE_FS_DAX:
1053 	case MEMORY_DEVICE_PRIVATE:
1054 	case MEMORY_DEVICE_COHERENT:
1055 	case MEMORY_DEVICE_PCI_P2PDMA:
1056 		set_page_count(page, 0);
1057 		break;
1058 
1059 	case MEMORY_DEVICE_GENERIC:
1060 		break;
1061 	}
1062 }
1063 
1064 /*
1065  * With compound page geometry and when struct pages are stored in ram most
1066  * tail pages are reused. Consequently, the amount of unique struct pages to
1067  * initialize is a lot smaller that the total amount of struct pages being
1068  * mapped. This is a paired / mild layering violation with explicit knowledge
1069  * of how the sparse_vmemmap internals handle compound pages in the lack
1070  * of an altmap. See vmemmap_populate_compound_pages().
1071  */
compound_nr_pages(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)1072 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1073 					      struct dev_pagemap *pgmap)
1074 {
1075 	if (!vmemmap_can_optimize(altmap, pgmap))
1076 		return pgmap_vmemmap_nr(pgmap);
1077 
1078 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1079 }
1080 
memmap_init_compound(struct page * head,unsigned long head_pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap,unsigned long nr_pages)1081 static void __ref memmap_init_compound(struct page *head,
1082 				       unsigned long head_pfn,
1083 				       unsigned long zone_idx, int nid,
1084 				       struct dev_pagemap *pgmap,
1085 				       unsigned long nr_pages)
1086 {
1087 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1088 	unsigned int order = pgmap->vmemmap_shift;
1089 
1090 	__SetPageHead(head);
1091 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1092 		struct page *page = pfn_to_page(pfn);
1093 
1094 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1095 		prep_compound_tail(head, pfn - head_pfn);
1096 		set_page_count(page, 0);
1097 
1098 		/*
1099 		 * The first tail page stores important compound page info.
1100 		 * Call prep_compound_head() after the first tail page has
1101 		 * been initialized, to not have the data overwritten.
1102 		 */
1103 		if (pfn == head_pfn + 1)
1104 			prep_compound_head(head, order);
1105 	}
1106 }
1107 
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)1108 void __ref memmap_init_zone_device(struct zone *zone,
1109 				   unsigned long start_pfn,
1110 				   unsigned long nr_pages,
1111 				   struct dev_pagemap *pgmap)
1112 {
1113 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1114 	struct pglist_data *pgdat = zone->zone_pgdat;
1115 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1116 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1117 	unsigned long zone_idx = zone_idx(zone);
1118 	unsigned long start = jiffies;
1119 	int nid = pgdat->node_id;
1120 
1121 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1122 		return;
1123 
1124 	/*
1125 	 * The call to memmap_init should have already taken care
1126 	 * of the pages reserved for the memmap, so we can just jump to
1127 	 * the end of that region and start processing the device pages.
1128 	 */
1129 	if (altmap) {
1130 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1131 		nr_pages = end_pfn - start_pfn;
1132 	}
1133 
1134 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1135 		struct page *page = pfn_to_page(pfn);
1136 
1137 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1138 
1139 		if (pfns_per_compound == 1)
1140 			continue;
1141 
1142 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1143 				     compound_nr_pages(altmap, pgmap));
1144 	}
1145 
1146 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1147 		nr_pages, jiffies_to_msecs(jiffies - start));
1148 }
1149 #endif
1150 
1151 /*
1152  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1153  * because it is sized independent of architecture. Unlike the other zones,
1154  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1155  * in each node depending on the size of each node and how evenly kernelcore
1156  * is distributed. This helper function adjusts the zone ranges
1157  * provided by the architecture for a given node by using the end of the
1158  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1159  * zones within a node are in order of monotonic increases memory addresses
1160  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1161 static void __init adjust_zone_range_for_zone_movable(int nid,
1162 					unsigned long zone_type,
1163 					unsigned long node_end_pfn,
1164 					unsigned long *zone_start_pfn,
1165 					unsigned long *zone_end_pfn)
1166 {
1167 	/* Only adjust if ZONE_MOVABLE is on this node */
1168 	if (zone_movable_pfn[nid]) {
1169 		/* Size ZONE_MOVABLE */
1170 		if (zone_type == ZONE_MOVABLE) {
1171 			*zone_start_pfn = zone_movable_pfn[nid];
1172 			*zone_end_pfn = min(node_end_pfn,
1173 				arch_zone_highest_possible_pfn[movable_zone]);
1174 
1175 		/* Adjust for ZONE_MOVABLE starting within this range */
1176 		} else if (!mirrored_kernelcore &&
1177 			*zone_start_pfn < zone_movable_pfn[nid] &&
1178 			*zone_end_pfn > zone_movable_pfn[nid]) {
1179 			*zone_end_pfn = zone_movable_pfn[nid];
1180 
1181 		/* Check if this whole range is within ZONE_MOVABLE */
1182 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1183 			*zone_start_pfn = *zone_end_pfn;
1184 	}
1185 }
1186 
1187 /*
1188  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1189  * then all holes in the requested range will be accounted for.
1190  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)1191 static unsigned long __init __absent_pages_in_range(int nid,
1192 				unsigned long range_start_pfn,
1193 				unsigned long range_end_pfn)
1194 {
1195 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1196 	unsigned long start_pfn, end_pfn;
1197 	int i;
1198 
1199 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1200 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1201 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1202 		nr_absent -= end_pfn - start_pfn;
1203 	}
1204 	return nr_absent;
1205 }
1206 
1207 /**
1208  * absent_pages_in_range - Return number of page frames in holes within a range
1209  * @start_pfn: The start PFN to start searching for holes
1210  * @end_pfn: The end PFN to stop searching for holes
1211  *
1212  * Return: the number of pages frames in memory holes within a range.
1213  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)1214 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1215 							unsigned long end_pfn)
1216 {
1217 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1218 }
1219 
1220 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long zone_start_pfn,unsigned long zone_end_pfn)1221 static unsigned long __init zone_absent_pages_in_node(int nid,
1222 					unsigned long zone_type,
1223 					unsigned long zone_start_pfn,
1224 					unsigned long zone_end_pfn)
1225 {
1226 	unsigned long nr_absent;
1227 
1228 	/* zone is empty, we don't have any absent pages */
1229 	if (zone_start_pfn == zone_end_pfn)
1230 		return 0;
1231 
1232 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1233 
1234 	/*
1235 	 * ZONE_MOVABLE handling.
1236 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1237 	 * and vice versa.
1238 	 */
1239 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1240 		unsigned long start_pfn, end_pfn;
1241 		struct memblock_region *r;
1242 
1243 		for_each_mem_region(r) {
1244 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1245 					  zone_start_pfn, zone_end_pfn);
1246 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1247 					zone_start_pfn, zone_end_pfn);
1248 
1249 			if (zone_type == ZONE_MOVABLE &&
1250 			    memblock_is_mirror(r))
1251 				nr_absent += end_pfn - start_pfn;
1252 
1253 			if (zone_type == ZONE_NORMAL &&
1254 			    !memblock_is_mirror(r))
1255 				nr_absent += end_pfn - start_pfn;
1256 		}
1257 	}
1258 
1259 	return nr_absent;
1260 }
1261 
1262 /*
1263  * Return the number of pages a zone spans in a node, including holes
1264  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1265  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1266 static unsigned long __init zone_spanned_pages_in_node(int nid,
1267 					unsigned long zone_type,
1268 					unsigned long node_start_pfn,
1269 					unsigned long node_end_pfn,
1270 					unsigned long *zone_start_pfn,
1271 					unsigned long *zone_end_pfn)
1272 {
1273 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1274 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1275 
1276 	/* Get the start and end of the zone */
1277 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1278 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1279 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1280 					   zone_start_pfn, zone_end_pfn);
1281 
1282 	/* Check that this node has pages within the zone's required range */
1283 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1284 		return 0;
1285 
1286 	/* Move the zone boundaries inside the node if necessary */
1287 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1288 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1289 
1290 	/* Return the spanned pages */
1291 	return *zone_end_pfn - *zone_start_pfn;
1292 }
1293 
reset_memoryless_node_totalpages(struct pglist_data * pgdat)1294 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1295 {
1296 	struct zone *z;
1297 
1298 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1299 		z->zone_start_pfn = 0;
1300 		z->spanned_pages = 0;
1301 		z->present_pages = 0;
1302 #if defined(CONFIG_MEMORY_HOTPLUG)
1303 		z->present_early_pages = 0;
1304 #endif
1305 	}
1306 
1307 	pgdat->node_spanned_pages = 0;
1308 	pgdat->node_present_pages = 0;
1309 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1310 }
1311 
calc_nr_kernel_pages(void)1312 static void __init calc_nr_kernel_pages(void)
1313 {
1314 	unsigned long start_pfn, end_pfn;
1315 	phys_addr_t start_addr, end_addr;
1316 	u64 u;
1317 #ifdef CONFIG_HIGHMEM
1318 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1319 #endif
1320 
1321 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1322 		start_pfn = PFN_UP(start_addr);
1323 		end_pfn   = PFN_DOWN(end_addr);
1324 
1325 		if (start_pfn < end_pfn) {
1326 			nr_all_pages += end_pfn - start_pfn;
1327 #ifdef CONFIG_HIGHMEM
1328 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1329 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1330 #endif
1331 			nr_kernel_pages += end_pfn - start_pfn;
1332 		}
1333 	}
1334 }
1335 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)1336 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1337 						unsigned long node_start_pfn,
1338 						unsigned long node_end_pfn)
1339 {
1340 	unsigned long realtotalpages = 0, totalpages = 0;
1341 	enum zone_type i;
1342 
1343 	for (i = 0; i < MAX_NR_ZONES; i++) {
1344 		struct zone *zone = pgdat->node_zones + i;
1345 		unsigned long zone_start_pfn, zone_end_pfn;
1346 		unsigned long spanned, absent;
1347 		unsigned long real_size;
1348 
1349 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1350 						     node_start_pfn,
1351 						     node_end_pfn,
1352 						     &zone_start_pfn,
1353 						     &zone_end_pfn);
1354 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1355 						   zone_start_pfn,
1356 						   zone_end_pfn);
1357 
1358 		real_size = spanned - absent;
1359 
1360 		if (spanned)
1361 			zone->zone_start_pfn = zone_start_pfn;
1362 		else
1363 			zone->zone_start_pfn = 0;
1364 		zone->spanned_pages = spanned;
1365 		zone->present_pages = real_size;
1366 #if defined(CONFIG_MEMORY_HOTPLUG)
1367 		zone->present_early_pages = real_size;
1368 #endif
1369 
1370 		totalpages += spanned;
1371 		realtotalpages += real_size;
1372 	}
1373 
1374 	pgdat->node_spanned_pages = totalpages;
1375 	pgdat->node_present_pages = realtotalpages;
1376 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1377 }
1378 
1379 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)1380 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1381 {
1382 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1383 
1384 	spin_lock_init(&ds_queue->split_queue_lock);
1385 	INIT_LIST_HEAD(&ds_queue->split_queue);
1386 	ds_queue->split_queue_len = 0;
1387 }
1388 #else
pgdat_init_split_queue(struct pglist_data * pgdat)1389 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1390 #endif
1391 
1392 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)1393 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1394 {
1395 	init_waitqueue_head(&pgdat->kcompactd_wait);
1396 }
1397 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)1398 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1399 #endif
1400 
pgdat_init_internals(struct pglist_data * pgdat)1401 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1402 {
1403 	int i;
1404 
1405 	pgdat_resize_init(pgdat);
1406 	pgdat_kswapd_lock_init(pgdat);
1407 
1408 	pgdat_init_split_queue(pgdat);
1409 	pgdat_init_kcompactd(pgdat);
1410 
1411 	init_waitqueue_head(&pgdat->kswapd_wait);
1412 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1413 
1414 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1415 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1416 
1417 	pgdat_page_ext_init(pgdat);
1418 	lruvec_init(&pgdat->__lruvec);
1419 }
1420 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)1421 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1422 							unsigned long remaining_pages)
1423 {
1424 	atomic_long_set(&zone->managed_pages, remaining_pages);
1425 	zone_set_nid(zone, nid);
1426 	zone->name = zone_names[idx];
1427 	zone->zone_pgdat = NODE_DATA(nid);
1428 	spin_lock_init(&zone->lock);
1429 	zone_seqlock_init(zone);
1430 	zone_pcp_init(zone);
1431 }
1432 
zone_init_free_lists(struct zone * zone)1433 static void __meminit zone_init_free_lists(struct zone *zone)
1434 {
1435 	unsigned int order, t;
1436 	for_each_migratetype_order(order, t) {
1437 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1438 		zone->free_area[order].nr_free = 0;
1439 	}
1440 
1441 #ifdef CONFIG_UNACCEPTED_MEMORY
1442 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1443 #endif
1444 }
1445 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)1446 void __meminit init_currently_empty_zone(struct zone *zone,
1447 					unsigned long zone_start_pfn,
1448 					unsigned long size)
1449 {
1450 	struct pglist_data *pgdat = zone->zone_pgdat;
1451 	int zone_idx = zone_idx(zone) + 1;
1452 
1453 	if (zone_idx > pgdat->nr_zones)
1454 		pgdat->nr_zones = zone_idx;
1455 
1456 	zone->zone_start_pfn = zone_start_pfn;
1457 
1458 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1459 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1460 			pgdat->node_id,
1461 			(unsigned long)zone_idx(zone),
1462 			zone_start_pfn, (zone_start_pfn + size));
1463 
1464 	zone_init_free_lists(zone);
1465 	zone->initialized = 1;
1466 }
1467 
1468 #ifndef CONFIG_SPARSEMEM
1469 /*
1470  * Calculate the size of the zone->pageblock_flags rounded to an unsigned long
1471  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1472  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1473  * round what is now in bits to nearest long in bits, then return it in
1474  * bytes.
1475  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)1476 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1477 {
1478 	unsigned long usemapsize;
1479 
1480 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1481 	usemapsize = round_up(zonesize, pageblock_nr_pages);
1482 	usemapsize = usemapsize >> pageblock_order;
1483 	usemapsize *= NR_PAGEBLOCK_BITS;
1484 	usemapsize = round_up(usemapsize, BITS_PER_LONG);
1485 
1486 	return usemapsize / BITS_PER_BYTE;
1487 }
1488 
setup_usemap(struct zone * zone)1489 static void __ref setup_usemap(struct zone *zone)
1490 {
1491 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1492 					       zone->spanned_pages);
1493 	zone->pageblock_flags = NULL;
1494 	if (usemapsize) {
1495 		zone->pageblock_flags =
1496 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1497 					    zone_to_nid(zone));
1498 		if (!zone->pageblock_flags)
1499 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1500 			      usemapsize, zone->name, zone_to_nid(zone));
1501 	}
1502 }
1503 #else
setup_usemap(struct zone * zone)1504 static inline void setup_usemap(struct zone *zone) {}
1505 #endif /* CONFIG_SPARSEMEM */
1506 
1507 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1508 
1509 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)1510 void __init set_pageblock_order(void)
1511 {
1512 	unsigned int order = PAGE_BLOCK_ORDER;
1513 
1514 	/* Check that pageblock_nr_pages has not already been setup */
1515 	if (pageblock_order)
1516 		return;
1517 
1518 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1519 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1520 		order = HUGETLB_PAGE_ORDER;
1521 
1522 	/*
1523 	 * Assume the largest contiguous order of interest is a huge page.
1524 	 * This value may be variable depending on boot parameters on powerpc.
1525 	 */
1526 	pageblock_order = order;
1527 }
1528 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1529 
1530 /*
1531  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1532  * is unused as pageblock_order is set at compile-time. See
1533  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1534  * the kernel config
1535  */
set_pageblock_order(void)1536 void __init set_pageblock_order(void)
1537 {
1538 }
1539 
1540 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1541 
1542 /*
1543  * Set up the zone data structures
1544  * - init pgdat internals
1545  * - init all zones belonging to this node
1546  *
1547  * NOTE: this function is only called during memory hotplug
1548  */
1549 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(struct pglist_data * pgdat)1550 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1551 {
1552 	int nid = pgdat->node_id;
1553 	enum zone_type z;
1554 	int cpu;
1555 
1556 	pgdat_init_internals(pgdat);
1557 
1558 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1559 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1560 
1561 	/*
1562 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1563 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1564 	 * when it starts in the near future.
1565 	 */
1566 	pgdat->nr_zones = 0;
1567 	pgdat->kswapd_order = 0;
1568 	pgdat->kswapd_highest_zoneidx = 0;
1569 	pgdat->node_start_pfn = 0;
1570 	pgdat->node_present_pages = 0;
1571 
1572 	for_each_online_cpu(cpu) {
1573 		struct per_cpu_nodestat *p;
1574 
1575 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1576 		memset(p, 0, sizeof(*p));
1577 	}
1578 
1579 	/*
1580 	 * When memory is hot-added, all the memory is in offline state. So
1581 	 * clear all zones' present_pages and managed_pages because they will
1582 	 * be updated in online_pages() and offline_pages().
1583 	 */
1584 	for (z = 0; z < MAX_NR_ZONES; z++) {
1585 		struct zone *zone = pgdat->node_zones + z;
1586 
1587 		zone->present_pages = 0;
1588 		zone_init_internals(zone, z, nid, 0);
1589 	}
1590 }
1591 #endif
1592 
free_area_init_core(struct pglist_data * pgdat)1593 static void __init free_area_init_core(struct pglist_data *pgdat)
1594 {
1595 	enum zone_type j;
1596 	int nid = pgdat->node_id;
1597 
1598 	pgdat_init_internals(pgdat);
1599 	pgdat->per_cpu_nodestats = &boot_nodestats;
1600 
1601 	for (j = 0; j < MAX_NR_ZONES; j++) {
1602 		struct zone *zone = pgdat->node_zones + j;
1603 		unsigned long size = zone->spanned_pages;
1604 
1605 		/*
1606 		 * Initialize zone->managed_pages as 0 , it will be reset
1607 		 * when memblock allocator frees pages into buddy system.
1608 		 */
1609 		zone_init_internals(zone, j, nid, zone->present_pages);
1610 
1611 		if (!size)
1612 			continue;
1613 
1614 		setup_usemap(zone);
1615 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1616 	}
1617 }
1618 
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)1619 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1620 			  phys_addr_t min_addr, int nid, bool exact_nid)
1621 {
1622 	void *ptr;
1623 
1624 	/*
1625 	 * Kmemleak will explicitly scan mem_map by traversing all valid
1626 	 * `struct *page`,so memblock does not need to be added to the scan list.
1627 	 */
1628 	if (exact_nid)
1629 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1630 						   MEMBLOCK_ALLOC_NOLEAKTRACE,
1631 						   nid);
1632 	else
1633 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1634 						 MEMBLOCK_ALLOC_NOLEAKTRACE,
1635 						 nid);
1636 
1637 	if (ptr && size > 0)
1638 		page_init_poison(ptr, size);
1639 
1640 	return ptr;
1641 }
1642 
1643 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)1644 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1645 {
1646 	unsigned long start, offset, size, end;
1647 	struct page *map;
1648 
1649 	/* Skip empty nodes */
1650 	if (!pgdat->node_spanned_pages)
1651 		return;
1652 
1653 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1654 	offset = pgdat->node_start_pfn - start;
1655 	/*
1656 	 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1657 	 * aligned but the node_mem_map endpoints must be in order
1658 	 * for the buddy allocator to function correctly.
1659 	 */
1660 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1661 	size =  (end - start) * sizeof(struct page);
1662 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1663 			   pgdat->node_id, false);
1664 	if (!map)
1665 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1666 		      size, pgdat->node_id);
1667 	pgdat->node_mem_map = map + offset;
1668 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1669 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1670 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1671 		 (unsigned long)pgdat->node_mem_map);
1672 
1673 	/* the global mem_map is just set as node 0's */
1674 	WARN_ON(pgdat != NODE_DATA(0));
1675 
1676 	mem_map = pgdat->node_mem_map;
1677 	if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1678 		mem_map -= offset;
1679 
1680 	max_mapnr = end - start;
1681 }
1682 #else
alloc_node_mem_map(struct pglist_data * pgdat)1683 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1684 #endif /* CONFIG_FLATMEM */
1685 
1686 /**
1687  * get_pfn_range_for_nid - Return the start and end page frames for a node
1688  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1689  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1690  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1691  *
1692  * It returns the start and end page frame of a node based on information
1693  * provided by memblock_set_node(). If called for a node
1694  * with no available memory, the start and end PFNs will be 0.
1695  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)1696 void __init get_pfn_range_for_nid(unsigned int nid,
1697 			unsigned long *start_pfn, unsigned long *end_pfn)
1698 {
1699 	unsigned long this_start_pfn, this_end_pfn;
1700 	int i;
1701 
1702 	*start_pfn = -1UL;
1703 	*end_pfn = 0;
1704 
1705 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1706 		*start_pfn = min(*start_pfn, this_start_pfn);
1707 		*end_pfn = max(*end_pfn, this_end_pfn);
1708 	}
1709 
1710 	if (*start_pfn == -1UL)
1711 		*start_pfn = 0;
1712 }
1713 
free_area_init_node(int nid)1714 static void __init free_area_init_node(int nid)
1715 {
1716 	pg_data_t *pgdat = NODE_DATA(nid);
1717 	unsigned long start_pfn = 0;
1718 	unsigned long end_pfn = 0;
1719 
1720 	/* pg_data_t should be reset to zero when it's allocated */
1721 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1722 
1723 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1724 
1725 	pgdat->node_id = nid;
1726 	pgdat->node_start_pfn = start_pfn;
1727 	pgdat->per_cpu_nodestats = NULL;
1728 
1729 	if (start_pfn != end_pfn) {
1730 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1731 			(u64)start_pfn << PAGE_SHIFT,
1732 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1733 
1734 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1735 	} else {
1736 		pr_info("Initmem setup node %d as memoryless\n", nid);
1737 
1738 		reset_memoryless_node_totalpages(pgdat);
1739 	}
1740 
1741 	alloc_node_mem_map(pgdat);
1742 	pgdat_set_deferred_range(pgdat);
1743 
1744 	free_area_init_core(pgdat);
1745 	lru_gen_init_pgdat(pgdat);
1746 }
1747 
1748 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat)1749 static void __init check_for_memory(pg_data_t *pgdat)
1750 {
1751 	enum zone_type zone_type;
1752 
1753 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1754 		struct zone *zone = &pgdat->node_zones[zone_type];
1755 		if (populated_zone(zone)) {
1756 			if (IS_ENABLED(CONFIG_HIGHMEM))
1757 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1758 			if (zone_type <= ZONE_NORMAL)
1759 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1760 			break;
1761 		}
1762 	}
1763 }
1764 
1765 #if MAX_NUMNODES > 1
1766 /*
1767  * Figure out the number of possible node ids.
1768  */
setup_nr_node_ids(void)1769 void __init setup_nr_node_ids(void)
1770 {
1771 	unsigned int highest;
1772 
1773 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1774 	nr_node_ids = highest + 1;
1775 }
1776 #endif
1777 
1778 /*
1779  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1780  * such cases we allow max_zone_pfn sorted in the descending order
1781  */
arch_has_descending_max_zone_pfns(void)1782 static bool arch_has_descending_max_zone_pfns(void)
1783 {
1784 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1785 }
1786 
set_high_memory(void)1787 static void __init set_high_memory(void)
1788 {
1789 	phys_addr_t highmem = memblock_end_of_DRAM();
1790 
1791 	/*
1792 	 * Some architectures (e.g. ARM) set high_memory very early and
1793 	 * use it in arch setup code.
1794 	 * If an architecture already set high_memory don't overwrite it
1795 	 */
1796 	if (high_memory)
1797 		return;
1798 
1799 #ifdef CONFIG_HIGHMEM
1800 	if (arch_has_descending_max_zone_pfns() ||
1801 	    highmem > PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]))
1802 		highmem = PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]);
1803 #endif
1804 
1805 	high_memory = phys_to_virt(highmem - 1) + 1;
1806 }
1807 
1808 /**
1809  * free_area_init - Initialise all pg_data_t and zone data
1810  * @max_zone_pfn: an array of max PFNs for each zone
1811  *
1812  * This will call free_area_init_node() for each active node in the system.
1813  * Using the page ranges provided by memblock_set_node(), the size of each
1814  * zone in each node and their holes is calculated. If the maximum PFN
1815  * between two adjacent zones match, it is assumed that the zone is empty.
1816  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1817  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1818  * starts where the previous one ended. For example, ZONE_DMA32 starts
1819  * at arch_max_dma_pfn.
1820  */
free_area_init(unsigned long * max_zone_pfn)1821 void __init free_area_init(unsigned long *max_zone_pfn)
1822 {
1823 	unsigned long start_pfn, end_pfn;
1824 	int i, nid, zone;
1825 	bool descending;
1826 
1827 	/* Record where the zone boundaries are */
1828 	memset(arch_zone_lowest_possible_pfn, 0,
1829 				sizeof(arch_zone_lowest_possible_pfn));
1830 	memset(arch_zone_highest_possible_pfn, 0,
1831 				sizeof(arch_zone_highest_possible_pfn));
1832 
1833 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1834 	descending = arch_has_descending_max_zone_pfns();
1835 
1836 	for (i = 0; i < MAX_NR_ZONES; i++) {
1837 		if (descending)
1838 			zone = MAX_NR_ZONES - i - 1;
1839 		else
1840 			zone = i;
1841 
1842 		if (zone == ZONE_MOVABLE)
1843 			continue;
1844 
1845 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1846 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1847 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1848 
1849 		start_pfn = end_pfn;
1850 	}
1851 
1852 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1853 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1854 	find_zone_movable_pfns_for_nodes();
1855 
1856 	/* Print out the zone ranges */
1857 	pr_info("Zone ranges:\n");
1858 	for (i = 0; i < MAX_NR_ZONES; i++) {
1859 		if (i == ZONE_MOVABLE)
1860 			continue;
1861 		pr_info("  %-8s ", zone_names[i]);
1862 		if (arch_zone_lowest_possible_pfn[i] ==
1863 				arch_zone_highest_possible_pfn[i])
1864 			pr_cont("empty\n");
1865 		else
1866 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1867 				(u64)arch_zone_lowest_possible_pfn[i]
1868 					<< PAGE_SHIFT,
1869 				((u64)arch_zone_highest_possible_pfn[i]
1870 					<< PAGE_SHIFT) - 1);
1871 	}
1872 
1873 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1874 	pr_info("Movable zone start for each node\n");
1875 	for (i = 0; i < MAX_NUMNODES; i++) {
1876 		if (zone_movable_pfn[i])
1877 			pr_info("  Node %d: %#018Lx\n", i,
1878 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1879 	}
1880 
1881 	/*
1882 	 * Print out the early node map, and initialize the
1883 	 * subsection-map relative to active online memory ranges to
1884 	 * enable future "sub-section" extensions of the memory map.
1885 	 */
1886 	pr_info("Early memory node ranges\n");
1887 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1888 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1889 			(u64)start_pfn << PAGE_SHIFT,
1890 			((u64)end_pfn << PAGE_SHIFT) - 1);
1891 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1892 	}
1893 
1894 	/* Initialise every node */
1895 	mminit_verify_pageflags_layout();
1896 	setup_nr_node_ids();
1897 	set_pageblock_order();
1898 
1899 	for_each_node(nid) {
1900 		pg_data_t *pgdat;
1901 
1902 		if (!node_online(nid))
1903 			alloc_offline_node_data(nid);
1904 
1905 		pgdat = NODE_DATA(nid);
1906 		free_area_init_node(nid);
1907 
1908 		/*
1909 		 * No sysfs hierarchy will be created via register_one_node()
1910 		 *for memory-less node because here it's not marked as N_MEMORY
1911 		 *and won't be set online later. The benefit is userspace
1912 		 *program won't be confused by sysfs files/directories of
1913 		 *memory-less node. The pgdat will get fully initialized by
1914 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1915 		 */
1916 		if (pgdat->node_present_pages) {
1917 			node_set_state(nid, N_MEMORY);
1918 			check_for_memory(pgdat);
1919 		}
1920 	}
1921 
1922 	for_each_node_state(nid, N_MEMORY)
1923 		sparse_vmemmap_init_nid_late(nid);
1924 
1925 	calc_nr_kernel_pages();
1926 	memmap_init();
1927 
1928 	/* disable hash distribution for systems with a single node */
1929 	fixup_hashdist();
1930 
1931 	set_high_memory();
1932 }
1933 
1934 /**
1935  * node_map_pfn_alignment - determine the maximum internode alignment
1936  *
1937  * This function should be called after node map is populated and sorted.
1938  * It calculates the maximum power of two alignment which can distinguish
1939  * all the nodes.
1940  *
1941  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1942  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1943  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1944  * shifted, 1GiB is enough and this function will indicate so.
1945  *
1946  * This is used to test whether pfn -> nid mapping of the chosen memory
1947  * model has fine enough granularity to avoid incorrect mapping for the
1948  * populated node map.
1949  *
1950  * Return: the determined alignment in pfn's.  0 if there is no alignment
1951  * requirement (single node).
1952  */
node_map_pfn_alignment(void)1953 unsigned long __init node_map_pfn_alignment(void)
1954 {
1955 	unsigned long accl_mask = 0, last_end = 0;
1956 	unsigned long start, end, mask;
1957 	int last_nid = NUMA_NO_NODE;
1958 	int i, nid;
1959 
1960 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1961 		if (!start || last_nid < 0 || last_nid == nid) {
1962 			last_nid = nid;
1963 			last_end = end;
1964 			continue;
1965 		}
1966 
1967 		/*
1968 		 * Start with a mask granular enough to pin-point to the
1969 		 * start pfn and tick off bits one-by-one until it becomes
1970 		 * too coarse to separate the current node from the last.
1971 		 */
1972 		mask = ~((1 << __ffs(start)) - 1);
1973 		while (mask && last_end <= (start & (mask << 1)))
1974 			mask <<= 1;
1975 
1976 		/* accumulate all internode masks */
1977 		accl_mask |= mask;
1978 	}
1979 
1980 	/* convert mask to number of pages */
1981 	return ~accl_mask + 1;
1982 }
1983 
1984 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_pages(unsigned long pfn,unsigned long nr_pages)1985 static void __init deferred_free_pages(unsigned long pfn,
1986 		unsigned long nr_pages)
1987 {
1988 	struct page *page;
1989 	unsigned long i;
1990 
1991 	if (!nr_pages)
1992 		return;
1993 
1994 	page = pfn_to_page(pfn);
1995 
1996 	/* Free a large naturally-aligned chunk if possible */
1997 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
1998 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
1999 			set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
2000 		__free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
2001 		return;
2002 	}
2003 
2004 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
2005 	accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
2006 
2007 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
2008 		if (pageblock_aligned(pfn))
2009 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2010 		__free_pages_core(page, 0, MEMINIT_EARLY);
2011 	}
2012 }
2013 
2014 /* Completion tracking for deferred_init_memmap() threads */
2015 static atomic_t pgdat_init_n_undone __initdata;
2016 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2017 
pgdat_init_report_one_done(void)2018 static inline void __init pgdat_init_report_one_done(void)
2019 {
2020 	if (atomic_dec_and_test(&pgdat_init_n_undone))
2021 		complete(&pgdat_init_all_done_comp);
2022 }
2023 
2024 /*
2025  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2026  * by performing it only once every MAX_ORDER_NR_PAGES.
2027  * Return number of pages initialized.
2028  */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2029 static unsigned long __init deferred_init_pages(struct zone *zone,
2030 		unsigned long pfn, unsigned long end_pfn)
2031 {
2032 	int nid = zone_to_nid(zone);
2033 	unsigned long nr_pages = end_pfn - pfn;
2034 	int zid = zone_idx(zone);
2035 	struct page *page = pfn_to_page(pfn);
2036 
2037 	for (; pfn < end_pfn; pfn++, page++)
2038 		__init_single_page(page, pfn, zid, nid);
2039 	return nr_pages;
2040 }
2041 
2042 /*
2043  * This function is meant to pre-load the iterator for the zone init from
2044  * a given point.
2045  * Specifically it walks through the ranges starting with initial index
2046  * passed to it until we are caught up to the first_init_pfn value and
2047  * exits there. If we never encounter the value we return false indicating
2048  * there are no valid ranges left.
2049  */
2050 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2051 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2052 				    unsigned long *spfn, unsigned long *epfn,
2053 				    unsigned long first_init_pfn)
2054 {
2055 	u64 j = *i;
2056 
2057 	if (j == 0)
2058 		__next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
2059 
2060 	/*
2061 	 * Start out by walking through the ranges in this zone that have
2062 	 * already been initialized. We don't need to do anything with them
2063 	 * so we just need to flush them out of the system.
2064 	 */
2065 	for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
2066 		if (*epfn <= first_init_pfn)
2067 			continue;
2068 		if (*spfn < first_init_pfn)
2069 			*spfn = first_init_pfn;
2070 		*i = j;
2071 		return true;
2072 	}
2073 
2074 	return false;
2075 }
2076 
2077 /*
2078  * Initialize and free pages. We do it in two loops: first we initialize
2079  * struct page, then free to buddy allocator, because while we are
2080  * freeing pages we can access pages that are ahead (computing buddy
2081  * page in __free_one_page()).
2082  *
2083  * In order to try and keep some memory in the cache we have the loop
2084  * broken along max page order boundaries. This way we will not cause
2085  * any issues with the buddy page computation.
2086  */
2087 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2088 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2089 		       unsigned long *end_pfn)
2090 {
2091 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2092 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2093 	unsigned long nr_pages = 0;
2094 	u64 j = *i;
2095 
2096 	/* First we loop through and initialize the page values */
2097 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2098 		unsigned long t;
2099 
2100 		if (mo_pfn <= *start_pfn)
2101 			break;
2102 
2103 		t = min(mo_pfn, *end_pfn);
2104 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2105 
2106 		if (mo_pfn < *end_pfn) {
2107 			*start_pfn = mo_pfn;
2108 			break;
2109 		}
2110 	}
2111 
2112 	/* Reset values and now loop through freeing pages as needed */
2113 	swap(j, *i);
2114 
2115 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2116 		unsigned long t;
2117 
2118 		if (mo_pfn <= spfn)
2119 			break;
2120 
2121 		t = min(mo_pfn, epfn);
2122 		deferred_free_pages(spfn, t - spfn);
2123 
2124 		if (mo_pfn <= epfn)
2125 			break;
2126 	}
2127 
2128 	return nr_pages;
2129 }
2130 
2131 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2132 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2133 			   void *arg)
2134 {
2135 	unsigned long spfn, epfn;
2136 	struct zone *zone = arg;
2137 	u64 i = 0;
2138 
2139 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2140 
2141 	/*
2142 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2143 	 * we can avoid introducing any issues with the buddy allocator.
2144 	 */
2145 	while (spfn < end_pfn) {
2146 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2147 		cond_resched();
2148 	}
2149 }
2150 
2151 static unsigned int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2152 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2153 {
2154 	return max(cpumask_weight(node_cpumask), 1U);
2155 }
2156 
2157 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2158 static int __init deferred_init_memmap(void *data)
2159 {
2160 	pg_data_t *pgdat = data;
2161 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2162 	unsigned long spfn = 0, epfn = 0;
2163 	unsigned long first_init_pfn, flags;
2164 	unsigned long start = jiffies;
2165 	struct zone *zone;
2166 	int max_threads;
2167 	u64 i = 0;
2168 
2169 	/* Bind memory initialisation thread to a local node if possible */
2170 	if (!cpumask_empty(cpumask))
2171 		set_cpus_allowed_ptr(current, cpumask);
2172 
2173 	pgdat_resize_lock(pgdat, &flags);
2174 	first_init_pfn = pgdat->first_deferred_pfn;
2175 	if (first_init_pfn == ULONG_MAX) {
2176 		pgdat_resize_unlock(pgdat, &flags);
2177 		pgdat_init_report_one_done();
2178 		return 0;
2179 	}
2180 
2181 	/* Sanity check boundaries */
2182 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2183 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2184 	pgdat->first_deferred_pfn = ULONG_MAX;
2185 
2186 	/*
2187 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2188 	 * interrupt thread must allocate this early in boot, zone must be
2189 	 * pre-grown prior to start of deferred page initialization.
2190 	 */
2191 	pgdat_resize_unlock(pgdat, &flags);
2192 
2193 	/* Only the highest zone is deferred */
2194 	zone = pgdat->node_zones + pgdat->nr_zones - 1;
2195 
2196 	max_threads = deferred_page_init_max_threads(cpumask);
2197 
2198 	while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2199 		first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2200 		struct padata_mt_job job = {
2201 			.thread_fn   = deferred_init_memmap_chunk,
2202 			.fn_arg      = zone,
2203 			.start       = spfn,
2204 			.size        = first_init_pfn - spfn,
2205 			.align       = PAGES_PER_SECTION,
2206 			.min_chunk   = PAGES_PER_SECTION,
2207 			.max_threads = max_threads,
2208 			.numa_aware  = false,
2209 		};
2210 
2211 		padata_do_multithreaded(&job);
2212 	}
2213 
2214 	/* Sanity check that the next zone really is unpopulated */
2215 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2216 
2217 	pr_info("node %d deferred pages initialised in %ums\n",
2218 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2219 
2220 	pgdat_init_report_one_done();
2221 	return 0;
2222 }
2223 
2224 /*
2225  * If this zone has deferred pages, try to grow it by initializing enough
2226  * deferred pages to satisfy the allocation specified by order, rounded up to
2227  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2228  * of SECTION_SIZE bytes by initializing struct pages in increments of
2229  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2230  *
2231  * Return true when zone was grown, otherwise return false. We return true even
2232  * when we grow less than requested, to let the caller decide if there are
2233  * enough pages to satisfy the allocation.
2234  */
deferred_grow_zone(struct zone * zone,unsigned int order)2235 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2236 {
2237 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2238 	pg_data_t *pgdat = zone->zone_pgdat;
2239 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2240 	unsigned long spfn, epfn, flags;
2241 	unsigned long nr_pages = 0;
2242 	u64 i = 0;
2243 
2244 	/* Only the last zone may have deferred pages */
2245 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2246 		return false;
2247 
2248 	pgdat_resize_lock(pgdat, &flags);
2249 
2250 	/*
2251 	 * If someone grew this zone while we were waiting for spinlock, return
2252 	 * true, as there might be enough pages already.
2253 	 */
2254 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2255 		pgdat_resize_unlock(pgdat, &flags);
2256 		return true;
2257 	}
2258 
2259 	/* If the zone is empty somebody else may have cleared out the zone */
2260 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2261 						 first_deferred_pfn)) {
2262 		pgdat->first_deferred_pfn = ULONG_MAX;
2263 		pgdat_resize_unlock(pgdat, &flags);
2264 		/* Retry only once. */
2265 		return first_deferred_pfn != ULONG_MAX;
2266 	}
2267 
2268 	/*
2269 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2270 	 * that we can avoid introducing any issues with the buddy
2271 	 * allocator.
2272 	 */
2273 	while (spfn < epfn) {
2274 		/* update our first deferred PFN for this section */
2275 		first_deferred_pfn = spfn;
2276 
2277 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2278 		touch_nmi_watchdog();
2279 
2280 		/* We should only stop along section boundaries */
2281 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2282 			continue;
2283 
2284 		/* If our quota has been met we can stop here */
2285 		if (nr_pages >= nr_pages_needed)
2286 			break;
2287 	}
2288 
2289 	pgdat->first_deferred_pfn = spfn;
2290 	pgdat_resize_unlock(pgdat, &flags);
2291 
2292 	return nr_pages > 0;
2293 }
2294 
2295 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2296 
2297 #ifdef CONFIG_CMA
init_cma_reserved_pageblock(struct page * page)2298 void __init init_cma_reserved_pageblock(struct page *page)
2299 {
2300 	unsigned i = pageblock_nr_pages;
2301 	struct page *p = page;
2302 
2303 	do {
2304 		__ClearPageReserved(p);
2305 		set_page_count(p, 0);
2306 	} while (++p, --i);
2307 
2308 	set_pageblock_migratetype(page, MIGRATE_CMA);
2309 	set_page_refcounted(page);
2310 	/* pages were reserved and not allocated */
2311 	clear_page_tag_ref(page);
2312 	__free_pages(page, pageblock_order);
2313 
2314 	adjust_managed_page_count(page, pageblock_nr_pages);
2315 	page_zone(page)->cma_pages += pageblock_nr_pages;
2316 }
2317 /*
2318  * Similar to above, but only set the migrate type and stats.
2319  */
init_cma_pageblock(struct page * page)2320 void __init init_cma_pageblock(struct page *page)
2321 {
2322 	set_pageblock_migratetype(page, MIGRATE_CMA);
2323 	adjust_managed_page_count(page, pageblock_nr_pages);
2324 	page_zone(page)->cma_pages += pageblock_nr_pages;
2325 }
2326 #endif
2327 
set_zone_contiguous(struct zone * zone)2328 void set_zone_contiguous(struct zone *zone)
2329 {
2330 	unsigned long block_start_pfn = zone->zone_start_pfn;
2331 	unsigned long block_end_pfn;
2332 
2333 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2334 	for (; block_start_pfn < zone_end_pfn(zone);
2335 			block_start_pfn = block_end_pfn,
2336 			 block_end_pfn += pageblock_nr_pages) {
2337 
2338 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2339 
2340 		if (!__pageblock_pfn_to_page(block_start_pfn,
2341 					     block_end_pfn, zone))
2342 			return;
2343 		cond_resched();
2344 	}
2345 
2346 	/* We confirm that there is no hole */
2347 	zone->contiguous = true;
2348 }
2349 
2350 /*
2351  * Check if a PFN range intersects multiple zones on one or more
2352  * NUMA nodes. Specify the @nid argument if it is known that this
2353  * PFN range is on one node, NUMA_NO_NODE otherwise.
2354  */
pfn_range_intersects_zones(int nid,unsigned long start_pfn,unsigned long nr_pages)2355 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
2356 			   unsigned long nr_pages)
2357 {
2358 	struct zone *zone, *izone = NULL;
2359 
2360 	for_each_zone(zone) {
2361 		if (nid != NUMA_NO_NODE && zone_to_nid(zone) != nid)
2362 			continue;
2363 
2364 		if (zone_intersects(zone, start_pfn, nr_pages)) {
2365 			if (izone != NULL)
2366 				return true;
2367 			izone = zone;
2368 		}
2369 
2370 	}
2371 
2372 	return false;
2373 }
2374 
2375 static void __init mem_init_print_info(void);
page_alloc_init_late(void)2376 void __init page_alloc_init_late(void)
2377 {
2378 	struct zone *zone;
2379 	int nid;
2380 
2381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2382 
2383 	/* There will be num_node_state(N_MEMORY) threads */
2384 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2385 	for_each_node_state(nid, N_MEMORY) {
2386 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2387 	}
2388 
2389 	/* Block until all are initialised */
2390 	wait_for_completion(&pgdat_init_all_done_comp);
2391 
2392 	/*
2393 	 * We initialized the rest of the deferred pages.  Permanently disable
2394 	 * on-demand struct page initialization.
2395 	 */
2396 	static_branch_disable(&deferred_pages);
2397 
2398 	/* Reinit limits that are based on free pages after the kernel is up */
2399 	files_maxfiles_init();
2400 #endif
2401 
2402 	/* Accounting of total+free memory is stable at this point. */
2403 	mem_init_print_info();
2404 	buffer_init();
2405 
2406 	/* Discard memblock private memory */
2407 	memblock_discard();
2408 
2409 	for_each_node_state(nid, N_MEMORY)
2410 		shuffle_free_memory(NODE_DATA(nid));
2411 
2412 	for_each_populated_zone(zone)
2413 		set_zone_contiguous(zone);
2414 
2415 	/* Initialize page ext after all struct pages are initialized. */
2416 	if (deferred_struct_pages)
2417 		page_ext_init();
2418 
2419 	page_alloc_sysctl_init();
2420 }
2421 
2422 /*
2423  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2424  * machines. As memory size is increased the scale is also increased but at
2425  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2426  * quadruples the scale is increased by one, which means the size of hash table
2427  * only doubles, instead of quadrupling as well.
2428  * Because 32-bit systems cannot have large physical memory, where this scaling
2429  * makes sense, it is disabled on such platforms.
2430  */
2431 #if __BITS_PER_LONG > 32
2432 #define ADAPT_SCALE_BASE	(64ul << 30)
2433 #define ADAPT_SCALE_SHIFT	2
2434 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2435 #endif
2436 
2437 /*
2438  * allocate a large system hash table from bootmem
2439  * - it is assumed that the hash table must contain an exact power-of-2
2440  *   quantity of entries
2441  * - limit is the number of hash buckets, not the total allocation size
2442  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)2443 void *__init alloc_large_system_hash(const char *tablename,
2444 				     unsigned long bucketsize,
2445 				     unsigned long numentries,
2446 				     int scale,
2447 				     int flags,
2448 				     unsigned int *_hash_shift,
2449 				     unsigned int *_hash_mask,
2450 				     unsigned long low_limit,
2451 				     unsigned long high_limit)
2452 {
2453 	unsigned long long max = high_limit;
2454 	unsigned long log2qty, size;
2455 	void *table;
2456 	gfp_t gfp_flags;
2457 	bool virt;
2458 	bool huge;
2459 
2460 	/* allow the kernel cmdline to have a say */
2461 	if (!numentries) {
2462 		/* round applicable memory size up to nearest megabyte */
2463 		numentries = nr_kernel_pages;
2464 
2465 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2466 		if (PAGE_SIZE < SZ_1M)
2467 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2468 
2469 #if __BITS_PER_LONG > 32
2470 		if (!high_limit) {
2471 			unsigned long adapt;
2472 
2473 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2474 			     adapt <<= ADAPT_SCALE_SHIFT)
2475 				scale++;
2476 		}
2477 #endif
2478 
2479 		/* limit to 1 bucket per 2^scale bytes of low memory */
2480 		if (scale > PAGE_SHIFT)
2481 			numentries >>= (scale - PAGE_SHIFT);
2482 		else
2483 			numentries <<= (PAGE_SHIFT - scale);
2484 
2485 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2486 			numentries = PAGE_SIZE / bucketsize;
2487 	}
2488 	numentries = roundup_pow_of_two(numentries);
2489 
2490 	/* limit allocation size to 1/16 total memory by default */
2491 	if (max == 0) {
2492 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2493 		do_div(max, bucketsize);
2494 	}
2495 	max = min(max, 0x80000000ULL);
2496 
2497 	if (numentries < low_limit)
2498 		numentries = low_limit;
2499 	if (numentries > max)
2500 		numentries = max;
2501 
2502 	log2qty = ilog2(numentries);
2503 
2504 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2505 	do {
2506 		virt = false;
2507 		size = bucketsize << log2qty;
2508 		if (flags & HASH_EARLY) {
2509 			if (flags & HASH_ZERO)
2510 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2511 			else
2512 				table = memblock_alloc_raw(size,
2513 							   SMP_CACHE_BYTES);
2514 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2515 			table = vmalloc_huge(size, gfp_flags);
2516 			virt = true;
2517 			if (table)
2518 				huge = is_vm_area_hugepages(table);
2519 		} else {
2520 			/*
2521 			 * If bucketsize is not a power-of-two, we may free
2522 			 * some pages at the end of hash table which
2523 			 * alloc_pages_exact() automatically does
2524 			 */
2525 			table = alloc_pages_exact(size, gfp_flags);
2526 			kmemleak_alloc(table, size, 1, gfp_flags);
2527 		}
2528 	} while (!table && size > PAGE_SIZE && --log2qty);
2529 
2530 	if (!table)
2531 		panic("Failed to allocate %s hash table\n", tablename);
2532 
2533 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2534 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2535 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2536 
2537 	if (_hash_shift)
2538 		*_hash_shift = log2qty;
2539 	if (_hash_mask)
2540 		*_hash_mask = (1 << log2qty) - 1;
2541 
2542 	return table;
2543 }
2544 
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)2545 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2546 							unsigned int order)
2547 {
2548 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2549 		int nid = early_pfn_to_nid(pfn);
2550 
2551 		if (!early_page_initialised(pfn, nid))
2552 			return;
2553 	}
2554 
2555 	if (!kmsan_memblock_free_pages(page, order)) {
2556 		/* KMSAN will take care of these pages. */
2557 		return;
2558 	}
2559 
2560 	/* pages were reserved and not allocated */
2561 	clear_page_tag_ref(page);
2562 	__free_pages_core(page, order, MEMINIT_EARLY);
2563 }
2564 
2565 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2566 EXPORT_SYMBOL(init_on_alloc);
2567 
2568 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2569 EXPORT_SYMBOL(init_on_free);
2570 
2571 static bool _init_on_alloc_enabled_early __read_mostly
2572 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)2573 static int __init early_init_on_alloc(char *buf)
2574 {
2575 
2576 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2577 }
2578 early_param("init_on_alloc", early_init_on_alloc);
2579 
2580 static bool _init_on_free_enabled_early __read_mostly
2581 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)2582 static int __init early_init_on_free(char *buf)
2583 {
2584 	return kstrtobool(buf, &_init_on_free_enabled_early);
2585 }
2586 early_param("init_on_free", early_init_on_free);
2587 
2588 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2589 
2590 /*
2591  * Enable static keys related to various memory debugging and hardening options.
2592  * Some override others, and depend on early params that are evaluated in the
2593  * order of appearance. So we need to first gather the full picture of what was
2594  * enabled, and then make decisions.
2595  */
mem_debugging_and_hardening_init(void)2596 static void __init mem_debugging_and_hardening_init(void)
2597 {
2598 	bool page_poisoning_requested = false;
2599 	bool want_check_pages = false;
2600 
2601 #ifdef CONFIG_PAGE_POISONING
2602 	/*
2603 	 * Page poisoning is debug page alloc for some arches. If
2604 	 * either of those options are enabled, enable poisoning.
2605 	 */
2606 	if (page_poisoning_enabled() ||
2607 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2608 	      debug_pagealloc_enabled())) {
2609 		static_branch_enable(&_page_poisoning_enabled);
2610 		page_poisoning_requested = true;
2611 		want_check_pages = true;
2612 	}
2613 #endif
2614 
2615 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2616 	    page_poisoning_requested) {
2617 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2618 			"will take precedence over init_on_alloc and init_on_free\n");
2619 		_init_on_alloc_enabled_early = false;
2620 		_init_on_free_enabled_early = false;
2621 	}
2622 
2623 	if (_init_on_alloc_enabled_early) {
2624 		want_check_pages = true;
2625 		static_branch_enable(&init_on_alloc);
2626 	} else {
2627 		static_branch_disable(&init_on_alloc);
2628 	}
2629 
2630 	if (_init_on_free_enabled_early) {
2631 		want_check_pages = true;
2632 		static_branch_enable(&init_on_free);
2633 	} else {
2634 		static_branch_disable(&init_on_free);
2635 	}
2636 
2637 	if (IS_ENABLED(CONFIG_KMSAN) &&
2638 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2639 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2640 
2641 #ifdef CONFIG_DEBUG_PAGEALLOC
2642 	if (debug_pagealloc_enabled()) {
2643 		want_check_pages = true;
2644 		static_branch_enable(&_debug_pagealloc_enabled);
2645 
2646 		if (debug_guardpage_minorder())
2647 			static_branch_enable(&_debug_guardpage_enabled);
2648 	}
2649 #endif
2650 
2651 	/*
2652 	 * Any page debugging or hardening option also enables sanity checking
2653 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2654 	 * enabled already.
2655 	 */
2656 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2657 		static_branch_enable(&check_pages_enabled);
2658 }
2659 
2660 /* Report memory auto-initialization states for this boot. */
report_meminit(void)2661 static void __init report_meminit(void)
2662 {
2663 	const char *stack;
2664 
2665 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2666 		stack = "all(pattern)";
2667 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2668 		stack = "all(zero)";
2669 	else
2670 		stack = "off";
2671 
2672 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2673 		stack, str_on_off(want_init_on_alloc(GFP_KERNEL)),
2674 		str_on_off(want_init_on_free()));
2675 	if (want_init_on_free())
2676 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2677 }
2678 
mem_init_print_info(void)2679 static void __init mem_init_print_info(void)
2680 {
2681 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2682 	unsigned long init_code_size, init_data_size;
2683 
2684 	physpages = get_num_physpages();
2685 	codesize = _etext - _stext;
2686 	datasize = _edata - _sdata;
2687 	rosize = __end_rodata - __start_rodata;
2688 	bss_size = __bss_stop - __bss_start;
2689 	init_data_size = __init_end - __init_begin;
2690 	init_code_size = _einittext - _sinittext;
2691 
2692 	/*
2693 	 * Detect special cases and adjust section sizes accordingly:
2694 	 * 1) .init.* may be embedded into .data sections
2695 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2696 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2697 	 * 3) .rodata.* may be embedded into .text or .data sections.
2698 	 */
2699 #define adj_init_size(start, end, size, pos, adj) \
2700 	do { \
2701 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2702 			size -= adj; \
2703 	} while (0)
2704 
2705 	adj_init_size(__init_begin, __init_end, init_data_size,
2706 		     _sinittext, init_code_size);
2707 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2708 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2709 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2710 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2711 
2712 #undef	adj_init_size
2713 
2714 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2715 #ifdef	CONFIG_HIGHMEM
2716 		", %luK highmem"
2717 #endif
2718 		")\n",
2719 		K(nr_free_pages()), K(physpages),
2720 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2721 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2722 		K(physpages - totalram_pages() - totalcma_pages),
2723 		K(totalcma_pages)
2724 #ifdef	CONFIG_HIGHMEM
2725 		, K(totalhigh_pages())
2726 #endif
2727 		);
2728 }
2729 
arch_mm_preinit(void)2730 void __init __weak arch_mm_preinit(void)
2731 {
2732 }
2733 
mem_init(void)2734 void __init __weak mem_init(void)
2735 {
2736 }
2737 
2738 /*
2739  * Set up kernel memory allocators
2740  */
mm_core_init(void)2741 void __init mm_core_init(void)
2742 {
2743 	arch_mm_preinit();
2744 	hugetlb_bootmem_alloc();
2745 
2746 	/* Initializations relying on SMP setup */
2747 	BUILD_BUG_ON(MAX_ZONELISTS > 2);
2748 	build_all_zonelists(NULL);
2749 	page_alloc_init_cpuhp();
2750 	alloc_tag_sec_init();
2751 	/*
2752 	 * page_ext requires contiguous pages,
2753 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2754 	 */
2755 	page_ext_init_flatmem();
2756 	mem_debugging_and_hardening_init();
2757 	kfence_alloc_pool_and_metadata();
2758 	report_meminit();
2759 	kmsan_init_shadow();
2760 	stack_depot_early_init();
2761 
2762 	/*
2763 	 * KHO memory setup must happen while memblock is still active, but
2764 	 * as close as possible to buddy initialization
2765 	 */
2766 	kho_memory_init();
2767 
2768 	memblock_free_all();
2769 	mem_init();
2770 	kmem_cache_init();
2771 	/*
2772 	 * page_owner must be initialized after buddy is ready, and also after
2773 	 * slab is ready so that stack_depot_init() works properly
2774 	 */
2775 	page_ext_init_flatmem_late();
2776 	kmemleak_init();
2777 	ptlock_cache_init();
2778 	pgtable_cache_init();
2779 	debug_objects_mem_init();
2780 	vmalloc_init();
2781 	/* If no deferred init page_ext now, as vmap is fully initialized */
2782 	if (!deferred_struct_pages)
2783 		page_ext_init();
2784 	/* Should be run before the first non-init thread is created */
2785 	init_espfix_bsp();
2786 	/* Should be run after espfix64 is set up. */
2787 	pti_init();
2788 	kmsan_init_runtime();
2789 	mm_cache_init();
2790 	execmem_init();
2791 }
2792