xref: /linux/mm/mm_init.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm_init.c - Memory initialisation verification and debugging
4  *
5  * Copyright 2008 IBM Corporation, 2008
6  * Author Mel Gorman <mel@csn.ul.ie>
7  *
8  */
9 #include <linux/kernel.h>
10 #include <linux/init.h>
11 #include <linux/kobject.h>
12 #include <linux/export.h>
13 #include <linux/memory.h>
14 #include <linux/notifier.h>
15 #include <linux/sched.h>
16 #include <linux/mman.h>
17 #include <linux/memblock.h>
18 #include <linux/page-isolation.h>
19 #include <linux/padata.h>
20 #include <linux/nmi.h>
21 #include <linux/buffer_head.h>
22 #include <linux/kmemleak.h>
23 #include <linux/kfence.h>
24 #include <linux/page_ext.h>
25 #include <linux/pti.h>
26 #include <linux/pgtable.h>
27 #include <linux/stackdepot.h>
28 #include <linux/swap.h>
29 #include <linux/cma.h>
30 #include <linux/crash_dump.h>
31 #include <linux/execmem.h>
32 #include <linux/vmstat.h>
33 #include <linux/kexec_handover.h>
34 #include <linux/hugetlb.h>
35 #include "internal.h"
36 #include "slab.h"
37 #include "shuffle.h"
38 
39 #include <asm/setup.h>
40 
41 #ifndef CONFIG_NUMA
42 unsigned long max_mapnr;
43 EXPORT_SYMBOL(max_mapnr);
44 
45 struct page *mem_map;
46 EXPORT_SYMBOL(mem_map);
47 #endif
48 
49 /*
50  * high_memory defines the upper bound on direct map memory, then end
51  * of ZONE_NORMAL.
52  */
53 void *high_memory;
54 EXPORT_SYMBOL(high_memory);
55 
56 #ifdef CONFIG_DEBUG_MEMORY_INIT
57 int __meminitdata mminit_loglevel;
58 
59 /* The zonelists are simply reported, validation is manual. */
mminit_verify_zonelist(void)60 void __init mminit_verify_zonelist(void)
61 {
62 	int nid;
63 
64 	if (mminit_loglevel < MMINIT_VERIFY)
65 		return;
66 
67 	for_each_online_node(nid) {
68 		pg_data_t *pgdat = NODE_DATA(nid);
69 		struct zone *zone;
70 		struct zoneref *z;
71 		struct zonelist *zonelist;
72 		int i, listid, zoneid;
73 
74 		for (i = 0; i < MAX_ZONELISTS * MAX_NR_ZONES; i++) {
75 
76 			/* Identify the zone and nodelist */
77 			zoneid = i % MAX_NR_ZONES;
78 			listid = i / MAX_NR_ZONES;
79 			zonelist = &pgdat->node_zonelists[listid];
80 			zone = &pgdat->node_zones[zoneid];
81 			if (!populated_zone(zone))
82 				continue;
83 
84 			/* Print information about the zonelist */
85 			printk(KERN_DEBUG "mminit::zonelist %s %d:%s = ",
86 				listid > 0 ? "thisnode" : "general", nid,
87 				zone->name);
88 
89 			/* Iterate the zonelist */
90 			for_each_zone_zonelist(zone, z, zonelist, zoneid)
91 				pr_cont("%d:%s ", zone_to_nid(zone), zone->name);
92 			pr_cont("\n");
93 		}
94 	}
95 }
96 
mminit_verify_pageflags_layout(void)97 void __init mminit_verify_pageflags_layout(void)
98 {
99 	int shift, width;
100 	unsigned long or_mask, add_mask;
101 
102 	shift = BITS_PER_LONG;
103 	width = shift - NR_NON_PAGEFLAG_BITS;
104 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
105 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
106 		SECTIONS_WIDTH,
107 		NODES_WIDTH,
108 		ZONES_WIDTH,
109 		LAST_CPUPID_WIDTH,
110 		KASAN_TAG_WIDTH,
111 		LRU_GEN_WIDTH,
112 		LRU_REFS_WIDTH,
113 		NR_PAGEFLAGS);
114 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
115 		"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
116 		SECTIONS_SHIFT,
117 		NODES_SHIFT,
118 		ZONES_SHIFT,
119 		LAST_CPUPID_SHIFT,
120 		KASAN_TAG_WIDTH);
121 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_pgshifts",
122 		"Section %lu Node %lu Zone %lu Lastcpupid %lu Kasantag %lu\n",
123 		(unsigned long)SECTIONS_PGSHIFT,
124 		(unsigned long)NODES_PGSHIFT,
125 		(unsigned long)ZONES_PGSHIFT,
126 		(unsigned long)LAST_CPUPID_PGSHIFT,
127 		(unsigned long)KASAN_TAG_PGSHIFT);
128 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodezoneid",
129 		"Node/Zone ID: %lu -> %lu\n",
130 		(unsigned long)(ZONEID_PGOFF + ZONEID_SHIFT),
131 		(unsigned long)ZONEID_PGOFF);
132 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_usage",
133 		"location: %d -> %d layout %d -> %d unused %d -> %d page-flags\n",
134 		shift, width, width, NR_PAGEFLAGS, NR_PAGEFLAGS, 0);
135 #ifdef NODE_NOT_IN_PAGE_FLAGS
136 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
137 		"Node not in page flags");
138 #endif
139 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
140 	mminit_dprintk(MMINIT_TRACE, "pageflags_layout_nodeflags",
141 		"Last cpupid not in page flags");
142 #endif
143 
144 	if (SECTIONS_WIDTH) {
145 		shift -= SECTIONS_WIDTH;
146 		BUG_ON(shift != SECTIONS_PGSHIFT);
147 	}
148 	if (NODES_WIDTH) {
149 		shift -= NODES_WIDTH;
150 		BUG_ON(shift != NODES_PGSHIFT);
151 	}
152 	if (ZONES_WIDTH) {
153 		shift -= ZONES_WIDTH;
154 		BUG_ON(shift != ZONES_PGSHIFT);
155 	}
156 
157 	/* Check for bitmask overlaps */
158 	or_mask = (ZONES_MASK << ZONES_PGSHIFT) |
159 			(NODES_MASK << NODES_PGSHIFT) |
160 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
161 	add_mask = (ZONES_MASK << ZONES_PGSHIFT) +
162 			(NODES_MASK << NODES_PGSHIFT) +
163 			(SECTIONS_MASK << SECTIONS_PGSHIFT);
164 	BUG_ON(or_mask != add_mask);
165 }
166 
set_mminit_loglevel(char * str)167 static __init int set_mminit_loglevel(char *str)
168 {
169 	get_option(&str, &mminit_loglevel);
170 	return 0;
171 }
172 early_param("mminit_loglevel", set_mminit_loglevel);
173 #endif /* CONFIG_DEBUG_MEMORY_INIT */
174 
175 struct kobject *mm_kobj;
176 
177 #ifdef CONFIG_SMP
178 s32 vm_committed_as_batch = 32;
179 
mm_compute_batch(int overcommit_policy)180 void mm_compute_batch(int overcommit_policy)
181 {
182 	u64 memsized_batch;
183 	s32 nr = num_present_cpus();
184 	s32 batch = max_t(s32, nr*2, 32);
185 	unsigned long ram_pages = totalram_pages();
186 
187 	/*
188 	 * For policy OVERCOMMIT_NEVER, set batch size to 0.4% of
189 	 * (total memory/#cpus), and lift it to 25% for other policies
190 	 * to easy the possible lock contention for percpu_counter
191 	 * vm_committed_as, while the max limit is INT_MAX
192 	 */
193 	if (overcommit_policy == OVERCOMMIT_NEVER)
194 		memsized_batch = min_t(u64, ram_pages/nr/256, INT_MAX);
195 	else
196 		memsized_batch = min_t(u64, ram_pages/nr/4, INT_MAX);
197 
198 	vm_committed_as_batch = max_t(s32, memsized_batch, batch);
199 }
200 
mm_compute_batch_notifier(struct notifier_block * self,unsigned long action,void * arg)201 static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
202 					unsigned long action, void *arg)
203 {
204 	switch (action) {
205 	case MEM_ONLINE:
206 	case MEM_OFFLINE:
207 		mm_compute_batch(sysctl_overcommit_memory);
208 		break;
209 	default:
210 		break;
211 	}
212 	return NOTIFY_OK;
213 }
214 
mm_compute_batch_init(void)215 static int __init mm_compute_batch_init(void)
216 {
217 	mm_compute_batch(sysctl_overcommit_memory);
218 	hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
219 	return 0;
220 }
221 
222 __initcall(mm_compute_batch_init);
223 
224 #endif
225 
mm_sysfs_init(void)226 static int __init mm_sysfs_init(void)
227 {
228 	mm_kobj = kobject_create_and_add("mm", kernel_kobj);
229 	if (!mm_kobj)
230 		return -ENOMEM;
231 
232 	return 0;
233 }
234 postcore_initcall(mm_sysfs_init);
235 
236 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
237 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
238 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
239 
240 static unsigned long required_kernelcore __initdata;
241 static unsigned long required_kernelcore_percent __initdata;
242 static unsigned long required_movablecore __initdata;
243 static unsigned long required_movablecore_percent __initdata;
244 
245 static unsigned long nr_kernel_pages __initdata;
246 static unsigned long nr_all_pages __initdata;
247 
248 static bool deferred_struct_pages __meminitdata;
249 
250 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
251 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)252 static int __init cmdline_parse_core(char *p, unsigned long *core,
253 				     unsigned long *percent)
254 {
255 	unsigned long long coremem;
256 	char *endptr;
257 
258 	if (!p)
259 		return -EINVAL;
260 
261 	/* Value may be a percentage of total memory, otherwise bytes */
262 	coremem = simple_strtoull(p, &endptr, 0);
263 	if (*endptr == '%') {
264 		/* Paranoid check for percent values greater than 100 */
265 		WARN_ON(coremem > 100);
266 
267 		*percent = coremem;
268 	} else {
269 		coremem = memparse(p, &p);
270 		/* Paranoid check that UL is enough for the coremem value */
271 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
272 
273 		*core = coremem >> PAGE_SHIFT;
274 		*percent = 0UL;
275 	}
276 	return 0;
277 }
278 
279 bool mirrored_kernelcore __initdata_memblock;
280 
281 /*
282  * kernelcore=size sets the amount of memory for use for allocations that
283  * cannot be reclaimed or migrated.
284  */
cmdline_parse_kernelcore(char * p)285 static int __init cmdline_parse_kernelcore(char *p)
286 {
287 	/* parse kernelcore=mirror */
288 	if (parse_option_str(p, "mirror")) {
289 		mirrored_kernelcore = true;
290 		return 0;
291 	}
292 
293 	return cmdline_parse_core(p, &required_kernelcore,
294 				  &required_kernelcore_percent);
295 }
296 early_param("kernelcore", cmdline_parse_kernelcore);
297 
298 /*
299  * movablecore=size sets the amount of memory for use for allocations that
300  * can be reclaimed or migrated.
301  */
cmdline_parse_movablecore(char * p)302 static int __init cmdline_parse_movablecore(char *p)
303 {
304 	return cmdline_parse_core(p, &required_movablecore,
305 				  &required_movablecore_percent);
306 }
307 early_param("movablecore", cmdline_parse_movablecore);
308 
309 /*
310  * early_calculate_totalpages()
311  * Sum pages in active regions for movable zone.
312  * Populate N_MEMORY for calculating usable_nodes.
313  */
early_calculate_totalpages(void)314 static unsigned long __init early_calculate_totalpages(void)
315 {
316 	unsigned long totalpages = 0;
317 	unsigned long start_pfn, end_pfn;
318 	int i, nid;
319 
320 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
321 		unsigned long pages = end_pfn - start_pfn;
322 
323 		totalpages += pages;
324 		if (pages)
325 			node_set_state(nid, N_MEMORY);
326 	}
327 	return totalpages;
328 }
329 
330 /*
331  * This finds a zone that can be used for ZONE_MOVABLE pages. The
332  * assumption is made that zones within a node are ordered in monotonic
333  * increasing memory addresses so that the "highest" populated zone is used
334  */
find_usable_zone_for_movable(void)335 static void __init find_usable_zone_for_movable(void)
336 {
337 	int zone_index;
338 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
339 		if (zone_index == ZONE_MOVABLE)
340 			continue;
341 
342 		if (arch_zone_highest_possible_pfn[zone_index] >
343 				arch_zone_lowest_possible_pfn[zone_index])
344 			break;
345 	}
346 
347 	VM_BUG_ON(zone_index == -1);
348 	movable_zone = zone_index;
349 }
350 
351 /*
352  * Find the PFN the Movable zone begins in each node. Kernel memory
353  * is spread evenly between nodes as long as the nodes have enough
354  * memory. When they don't, some nodes will have more kernelcore than
355  * others
356  */
find_zone_movable_pfns_for_nodes(void)357 static void __init find_zone_movable_pfns_for_nodes(void)
358 {
359 	int i, nid;
360 	unsigned long usable_startpfn;
361 	unsigned long kernelcore_node, kernelcore_remaining;
362 	/* save the state before borrow the nodemask */
363 	nodemask_t saved_node_state = node_states[N_MEMORY];
364 	unsigned long totalpages = early_calculate_totalpages();
365 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
366 	struct memblock_region *r;
367 
368 	/* Need to find movable_zone earlier when movable_node is specified. */
369 	find_usable_zone_for_movable();
370 
371 	/*
372 	 * If movable_node is specified, ignore kernelcore and movablecore
373 	 * options.
374 	 */
375 	if (movable_node_is_enabled()) {
376 		for_each_mem_region(r) {
377 			if (!memblock_is_hotpluggable(r))
378 				continue;
379 
380 			nid = memblock_get_region_node(r);
381 
382 			usable_startpfn = memblock_region_memory_base_pfn(r);
383 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
384 				min(usable_startpfn, zone_movable_pfn[nid]) :
385 				usable_startpfn;
386 		}
387 
388 		goto out2;
389 	}
390 
391 	/*
392 	 * If kernelcore=mirror is specified, ignore movablecore option
393 	 */
394 	if (mirrored_kernelcore) {
395 		bool mem_below_4gb_not_mirrored = false;
396 
397 		if (!memblock_has_mirror()) {
398 			pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
399 			goto out;
400 		}
401 
402 		if (is_kdump_kernel()) {
403 			pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
404 			goto out;
405 		}
406 
407 		for_each_mem_region(r) {
408 			if (memblock_is_mirror(r))
409 				continue;
410 
411 			nid = memblock_get_region_node(r);
412 
413 			usable_startpfn = memblock_region_memory_base_pfn(r);
414 
415 			if (usable_startpfn < PHYS_PFN(SZ_4G)) {
416 				mem_below_4gb_not_mirrored = true;
417 				continue;
418 			}
419 
420 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
421 				min(usable_startpfn, zone_movable_pfn[nid]) :
422 				usable_startpfn;
423 		}
424 
425 		if (mem_below_4gb_not_mirrored)
426 			pr_warn("This configuration results in unmirrored kernel memory.\n");
427 
428 		goto out2;
429 	}
430 
431 	/*
432 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
433 	 * amount of necessary memory.
434 	 */
435 	if (required_kernelcore_percent)
436 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
437 				       10000UL;
438 	if (required_movablecore_percent)
439 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
440 					10000UL;
441 
442 	/*
443 	 * If movablecore= was specified, calculate what size of
444 	 * kernelcore that corresponds so that memory usable for
445 	 * any allocation type is evenly spread. If both kernelcore
446 	 * and movablecore are specified, then the value of kernelcore
447 	 * will be used for required_kernelcore if it's greater than
448 	 * what movablecore would have allowed.
449 	 */
450 	if (required_movablecore) {
451 		unsigned long corepages;
452 
453 		/*
454 		 * Round-up so that ZONE_MOVABLE is at least as large as what
455 		 * was requested by the user
456 		 */
457 		required_movablecore =
458 			round_up(required_movablecore, MAX_ORDER_NR_PAGES);
459 		required_movablecore = min(totalpages, required_movablecore);
460 		corepages = totalpages - required_movablecore;
461 
462 		required_kernelcore = max(required_kernelcore, corepages);
463 	}
464 
465 	/*
466 	 * If kernelcore was not specified or kernelcore size is larger
467 	 * than totalpages, there is no ZONE_MOVABLE.
468 	 */
469 	if (!required_kernelcore || required_kernelcore >= totalpages)
470 		goto out;
471 
472 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
473 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
474 
475 restart:
476 	/* Spread kernelcore memory as evenly as possible throughout nodes */
477 	kernelcore_node = required_kernelcore / usable_nodes;
478 	for_each_node_state(nid, N_MEMORY) {
479 		unsigned long start_pfn, end_pfn;
480 
481 		/*
482 		 * Recalculate kernelcore_node if the division per node
483 		 * now exceeds what is necessary to satisfy the requested
484 		 * amount of memory for the kernel
485 		 */
486 		if (required_kernelcore < kernelcore_node)
487 			kernelcore_node = required_kernelcore / usable_nodes;
488 
489 		/*
490 		 * As the map is walked, we track how much memory is usable
491 		 * by the kernel using kernelcore_remaining. When it is
492 		 * 0, the rest of the node is usable by ZONE_MOVABLE
493 		 */
494 		kernelcore_remaining = kernelcore_node;
495 
496 		/* Go through each range of PFNs within this node */
497 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
498 			unsigned long size_pages;
499 
500 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
501 			if (start_pfn >= end_pfn)
502 				continue;
503 
504 			/* Account for what is only usable for kernelcore */
505 			if (start_pfn < usable_startpfn) {
506 				unsigned long kernel_pages;
507 				kernel_pages = min(end_pfn, usable_startpfn)
508 								- start_pfn;
509 
510 				kernelcore_remaining -= min(kernel_pages,
511 							kernelcore_remaining);
512 				required_kernelcore -= min(kernel_pages,
513 							required_kernelcore);
514 
515 				/* Continue if range is now fully accounted */
516 				if (end_pfn <= usable_startpfn) {
517 
518 					/*
519 					 * Push zone_movable_pfn to the end so
520 					 * that if we have to rebalance
521 					 * kernelcore across nodes, we will
522 					 * not double account here
523 					 */
524 					zone_movable_pfn[nid] = end_pfn;
525 					continue;
526 				}
527 				start_pfn = usable_startpfn;
528 			}
529 
530 			/*
531 			 * The usable PFN range for ZONE_MOVABLE is from
532 			 * start_pfn->end_pfn. Calculate size_pages as the
533 			 * number of pages used as kernelcore
534 			 */
535 			size_pages = end_pfn - start_pfn;
536 			if (size_pages > kernelcore_remaining)
537 				size_pages = kernelcore_remaining;
538 			zone_movable_pfn[nid] = start_pfn + size_pages;
539 
540 			/*
541 			 * Some kernelcore has been met, update counts and
542 			 * break if the kernelcore for this node has been
543 			 * satisfied
544 			 */
545 			required_kernelcore -= min(required_kernelcore,
546 								size_pages);
547 			kernelcore_remaining -= size_pages;
548 			if (!kernelcore_remaining)
549 				break;
550 		}
551 	}
552 
553 	/*
554 	 * If there is still required_kernelcore, we do another pass with one
555 	 * less node in the count. This will push zone_movable_pfn[nid] further
556 	 * along on the nodes that still have memory until kernelcore is
557 	 * satisfied
558 	 */
559 	usable_nodes--;
560 	if (usable_nodes && required_kernelcore > usable_nodes)
561 		goto restart;
562 
563 out2:
564 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
565 	for_each_node_state(nid, N_MEMORY) {
566 		unsigned long start_pfn, end_pfn;
567 
568 		zone_movable_pfn[nid] =
569 			round_up(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
570 
571 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
572 		if (zone_movable_pfn[nid] >= end_pfn)
573 			zone_movable_pfn[nid] = 0;
574 	}
575 
576 out:
577 	/* restore the node_state */
578 	node_states[N_MEMORY] = saved_node_state;
579 }
580 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)581 void __meminit __init_single_page(struct page *page, unsigned long pfn,
582 				unsigned long zone, int nid)
583 {
584 	mm_zero_struct_page(page);
585 	set_page_links(page, zone, nid, pfn);
586 	init_page_count(page);
587 	atomic_set(&page->_mapcount, -1);
588 	page_cpupid_reset_last(page);
589 	page_kasan_tag_reset(page);
590 
591 	INIT_LIST_HEAD(&page->lru);
592 #ifdef WANT_PAGE_VIRTUAL
593 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
594 	if (!is_highmem_idx(zone))
595 		set_page_address(page, __va(pfn << PAGE_SHIFT));
596 #endif
597 }
598 
599 #ifdef CONFIG_NUMA
600 /*
601  * During memory init memblocks map pfns to nids. The search is expensive and
602  * this caches recent lookups. The implementation of __early_pfn_to_nid
603  * treats start/end as pfns.
604  */
605 struct mminit_pfnnid_cache {
606 	unsigned long last_start;
607 	unsigned long last_end;
608 	int last_nid;
609 };
610 
611 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
612 
613 /*
614  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
615  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)616 static int __meminit __early_pfn_to_nid(unsigned long pfn,
617 					struct mminit_pfnnid_cache *state)
618 {
619 	unsigned long start_pfn, end_pfn;
620 	int nid;
621 
622 	if (state->last_start <= pfn && pfn < state->last_end)
623 		return state->last_nid;
624 
625 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
626 	if (nid != NUMA_NO_NODE) {
627 		state->last_start = start_pfn;
628 		state->last_end = end_pfn;
629 		state->last_nid = nid;
630 	}
631 
632 	return nid;
633 }
634 
early_pfn_to_nid(unsigned long pfn)635 int __meminit early_pfn_to_nid(unsigned long pfn)
636 {
637 	static DEFINE_SPINLOCK(early_pfn_lock);
638 	int nid;
639 
640 	spin_lock(&early_pfn_lock);
641 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
642 	if (nid < 0)
643 		nid = first_online_node;
644 	spin_unlock(&early_pfn_lock);
645 
646 	return nid;
647 }
648 
649 int hashdist = HASHDIST_DEFAULT;
650 
set_hashdist(char * str)651 static int __init set_hashdist(char *str)
652 {
653 	if (!str)
654 		return 0;
655 	hashdist = simple_strtoul(str, &str, 0);
656 	return 1;
657 }
658 __setup("hashdist=", set_hashdist);
659 
fixup_hashdist(void)660 static inline void fixup_hashdist(void)
661 {
662 	if (num_node_state(N_MEMORY) == 1)
663 		hashdist = 0;
664 }
665 #else
fixup_hashdist(void)666 static inline void fixup_hashdist(void) {}
667 #endif /* CONFIG_NUMA */
668 
669 /*
670  * Initialize a reserved page unconditionally, finding its zone first.
671  */
__init_page_from_nid(unsigned long pfn,int nid)672 void __meminit __init_page_from_nid(unsigned long pfn, int nid)
673 {
674 	pg_data_t *pgdat;
675 	int zid;
676 
677 	pgdat = NODE_DATA(nid);
678 
679 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
680 		struct zone *zone = &pgdat->node_zones[zid];
681 
682 		if (zone_spans_pfn(zone, pfn))
683 			break;
684 	}
685 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
686 
687 	if (pageblock_aligned(pfn))
688 		init_pageblock_migratetype(pfn_to_page(pfn), MIGRATE_MOVABLE,
689 				false);
690 }
691 
692 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)693 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
694 {
695 	pgdat->first_deferred_pfn = ULONG_MAX;
696 }
697 
698 /* Returns true if the struct page for the pfn is initialised */
early_page_initialised(unsigned long pfn,int nid)699 static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
700 {
701 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
702 		return false;
703 
704 	return true;
705 }
706 
707 /*
708  * Returns true when the remaining initialisation should be deferred until
709  * later in the boot cycle when it can be parallelised.
710  */
711 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)712 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
713 {
714 	static unsigned long prev_end_pfn, nr_initialised;
715 
716 	if (early_page_ext_enabled())
717 		return false;
718 
719 	/* Always populate low zones for address-constrained allocations */
720 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
721 		return false;
722 
723 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
724 		return true;
725 
726 	/*
727 	 * prev_end_pfn static that contains the end of previous zone
728 	 * No need to protect because called very early in boot before smp_init.
729 	 */
730 	if (prev_end_pfn != end_pfn) {
731 		prev_end_pfn = end_pfn;
732 		nr_initialised = 0;
733 	}
734 
735 	/*
736 	 * We start only with one section of pages, more pages are added as
737 	 * needed until the rest of deferred pages are initialized.
738 	 */
739 	nr_initialised++;
740 	if ((nr_initialised > PAGES_PER_SECTION) &&
741 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
742 		NODE_DATA(nid)->first_deferred_pfn = pfn;
743 		return true;
744 	}
745 	return false;
746 }
747 
__init_deferred_page(unsigned long pfn,int nid)748 static void __meminit __init_deferred_page(unsigned long pfn, int nid)
749 {
750 	if (early_page_initialised(pfn, nid))
751 		return;
752 
753 	__init_page_from_nid(pfn, nid);
754 }
755 #else
pgdat_set_deferred_range(pg_data_t * pgdat)756 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
757 
early_page_initialised(unsigned long pfn,int nid)758 static inline bool early_page_initialised(unsigned long pfn, int nid)
759 {
760 	return true;
761 }
762 
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)763 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
764 {
765 	return false;
766 }
767 
__init_deferred_page(unsigned long pfn,int nid)768 static inline void __init_deferred_page(unsigned long pfn, int nid)
769 {
770 }
771 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
772 
init_deferred_page(unsigned long pfn,int nid)773 void __meminit init_deferred_page(unsigned long pfn, int nid)
774 {
775 	__init_deferred_page(pfn, nid);
776 }
777 
778 /*
779  * Initialised pages do not have PageReserved set. This function is
780  * called for each range allocated by the bootmem allocator and
781  * marks the pages PageReserved. The remaining valid pages are later
782  * sent to the buddy page allocator.
783  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end,int nid)784 void __meminit reserve_bootmem_region(phys_addr_t start,
785 				      phys_addr_t end, int nid)
786 {
787 	unsigned long pfn;
788 
789 	for_each_valid_pfn(pfn, PFN_DOWN(start), PFN_UP(end)) {
790 		struct page *page = pfn_to_page(pfn);
791 
792 		__init_deferred_page(pfn, nid);
793 
794 		/*
795 		 * no need for atomic set_bit because the struct
796 		 * page is not visible yet so nobody should
797 		 * access it yet.
798 		 */
799 		__SetPageReserved(page);
800 	}
801 }
802 
803 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
804 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)805 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
806 {
807 	static struct memblock_region *r;
808 
809 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
810 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
811 			for_each_mem_region(r) {
812 				if (*pfn < memblock_region_memory_end_pfn(r))
813 					break;
814 			}
815 		}
816 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
817 		    memblock_is_mirror(r)) {
818 			*pfn = memblock_region_memory_end_pfn(r);
819 			return true;
820 		}
821 	}
822 	return false;
823 }
824 
825 /*
826  * Only struct pages that correspond to ranges defined by memblock.memory
827  * are zeroed and initialized by going through __init_single_page() during
828  * memmap_init_zone_range().
829  *
830  * But, there could be struct pages that correspond to holes in
831  * memblock.memory. This can happen because of the following reasons:
832  * - physical memory bank size is not necessarily the exact multiple of the
833  *   arbitrary section size
834  * - early reserved memory may not be listed in memblock.memory
835  * - non-memory regions covered by the contiguous flatmem mapping
836  * - memory layouts defined with memmap= kernel parameter may not align
837  *   nicely with memmap sections
838  *
839  * Explicitly initialize those struct pages so that:
840  * - PG_Reserved is set
841  * - zone and node links point to zone and node that span the page if the
842  *   hole is in the middle of a zone
843  * - zone and node links point to adjacent zone/node if the hole falls on
844  *   the zone boundary; the pages in such holes will be prepended to the
845  *   zone/node above the hole except for the trailing pages in the last
846  *   section that will be appended to the zone/node below.
847  */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)848 static void __init init_unavailable_range(unsigned long spfn,
849 					  unsigned long epfn,
850 					  int zone, int node)
851 {
852 	unsigned long pfn;
853 	u64 pgcnt = 0;
854 
855 	for_each_valid_pfn(pfn, spfn, epfn) {
856 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
857 		__SetPageReserved(pfn_to_page(pfn));
858 		pgcnt++;
859 	}
860 
861 	if (pgcnt)
862 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
863 			node, zone_names[zone], pgcnt);
864 }
865 
866 /*
867  * Initially all pages are reserved - free ones are freed
868  * up by memblock_free_all() once the early boot process is
869  * done. Non-atomic initialization, single-pass.
870  *
871  * All aligned pageblocks are initialized to the specified migratetype
872  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
873  * zone stats (e.g., nr_isolate_pageblock) are touched.
874  */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype,bool isolate_pageblock)875 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
876 		unsigned long start_pfn, unsigned long zone_end_pfn,
877 		enum meminit_context context,
878 		struct vmem_altmap *altmap, int migratetype,
879 		bool isolate_pageblock)
880 {
881 	unsigned long pfn, end_pfn = start_pfn + size;
882 	struct page *page;
883 
884 	if (highest_memmap_pfn < end_pfn - 1)
885 		highest_memmap_pfn = end_pfn - 1;
886 
887 #ifdef CONFIG_ZONE_DEVICE
888 	/*
889 	 * Honor reservation requested by the driver for this ZONE_DEVICE
890 	 * memory. We limit the total number of pages to initialize to just
891 	 * those that might contain the memory mapping. We will defer the
892 	 * ZONE_DEVICE page initialization until after we have released
893 	 * the hotplug lock.
894 	 */
895 	if (zone == ZONE_DEVICE) {
896 		if (!altmap)
897 			return;
898 
899 		if (start_pfn == altmap->base_pfn)
900 			start_pfn += altmap->reserve;
901 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
902 	}
903 #endif
904 
905 	for (pfn = start_pfn; pfn < end_pfn; ) {
906 		/*
907 		 * There can be holes in boot-time mem_map[]s handed to this
908 		 * function.  They do not exist on hotplugged memory.
909 		 */
910 		if (context == MEMINIT_EARLY) {
911 			if (overlap_memmap_init(zone, &pfn))
912 				continue;
913 			if (defer_init(nid, pfn, zone_end_pfn)) {
914 				deferred_struct_pages = true;
915 				break;
916 			}
917 		}
918 
919 		page = pfn_to_page(pfn);
920 		__init_single_page(page, pfn, zone, nid);
921 		if (context == MEMINIT_HOTPLUG) {
922 #ifdef CONFIG_ZONE_DEVICE
923 			if (zone == ZONE_DEVICE)
924 				__SetPageReserved(page);
925 			else
926 #endif
927 				__SetPageOffline(page);
928 		}
929 
930 		/*
931 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
932 		 * such that unmovable allocations won't be scattered all
933 		 * over the place during system boot.
934 		 */
935 		if (pageblock_aligned(pfn)) {
936 			init_pageblock_migratetype(page, migratetype,
937 					isolate_pageblock);
938 			cond_resched();
939 		}
940 		pfn++;
941 	}
942 }
943 
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)944 static void __init memmap_init_zone_range(struct zone *zone,
945 					  unsigned long start_pfn,
946 					  unsigned long end_pfn,
947 					  unsigned long *hole_pfn)
948 {
949 	unsigned long zone_start_pfn = zone->zone_start_pfn;
950 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
951 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
952 
953 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
954 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
955 
956 	if (start_pfn >= end_pfn)
957 		return;
958 
959 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
960 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE,
961 			  false);
962 
963 	if (*hole_pfn < start_pfn)
964 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
965 
966 	*hole_pfn = end_pfn;
967 }
968 
memmap_init(void)969 static void __init memmap_init(void)
970 {
971 	unsigned long start_pfn, end_pfn;
972 	unsigned long hole_pfn = 0;
973 	int i, j, zone_id = 0, nid;
974 
975 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
976 		struct pglist_data *node = NODE_DATA(nid);
977 
978 		for (j = 0; j < MAX_NR_ZONES; j++) {
979 			struct zone *zone = node->node_zones + j;
980 
981 			if (!populated_zone(zone))
982 				continue;
983 
984 			memmap_init_zone_range(zone, start_pfn, end_pfn,
985 					       &hole_pfn);
986 			zone_id = j;
987 		}
988 	}
989 
990 	/*
991 	 * Initialize the memory map for hole in the range [memory_end,
992 	 * section_end] for SPARSEMEM and in the range [memory_end, memmap_end]
993 	 * for FLATMEM.
994 	 * Append the pages in this hole to the highest zone in the last
995 	 * node.
996 	 */
997 #ifdef CONFIG_SPARSEMEM
998 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
999 #else
1000 	end_pfn = round_up(end_pfn, MAX_ORDER_NR_PAGES);
1001 #endif
1002 	if (hole_pfn < end_pfn)
1003 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
1004 }
1005 
1006 #ifdef CONFIG_ZONE_DEVICE
__init_zone_device_page(struct page * page,unsigned long pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap)1007 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
1008 					  unsigned long zone_idx, int nid,
1009 					  struct dev_pagemap *pgmap)
1010 {
1011 
1012 	__init_single_page(page, pfn, zone_idx, nid);
1013 
1014 	/*
1015 	 * Mark page reserved as it will need to wait for onlining
1016 	 * phase for it to be fully associated with a zone.
1017 	 *
1018 	 * We can use the non-atomic __set_bit operation for setting
1019 	 * the flag as we are still initializing the pages.
1020 	 */
1021 	__SetPageReserved(page);
1022 
1023 	/*
1024 	 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
1025 	 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
1026 	 * ever freed or placed on a driver-private list.
1027 	 */
1028 	page_folio(page)->pgmap = pgmap;
1029 	page->zone_device_data = NULL;
1030 
1031 	/*
1032 	 * Mark the block movable so that blocks are reserved for
1033 	 * movable at startup. This will force kernel allocations
1034 	 * to reserve their blocks rather than leaking throughout
1035 	 * the address space during boot when many long-lived
1036 	 * kernel allocations are made.
1037 	 *
1038 	 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
1039 	 * because this is done early in section_activate()
1040 	 */
1041 	if (pageblock_aligned(pfn)) {
1042 		init_pageblock_migratetype(page, MIGRATE_MOVABLE, false);
1043 		cond_resched();
1044 	}
1045 
1046 	/*
1047 	 * ZONE_DEVICE pages other than MEMORY_TYPE_GENERIC are released
1048 	 * directly to the driver page allocator which will set the page count
1049 	 * to 1 when allocating the page.
1050 	 *
1051 	 * MEMORY_TYPE_GENERIC and MEMORY_TYPE_FS_DAX pages automatically have
1052 	 * their refcount reset to one whenever they are freed (ie. after
1053 	 * their refcount drops to 0).
1054 	 */
1055 	switch (pgmap->type) {
1056 	case MEMORY_DEVICE_FS_DAX:
1057 	case MEMORY_DEVICE_PRIVATE:
1058 	case MEMORY_DEVICE_COHERENT:
1059 	case MEMORY_DEVICE_PCI_P2PDMA:
1060 		set_page_count(page, 0);
1061 		break;
1062 
1063 	case MEMORY_DEVICE_GENERIC:
1064 		break;
1065 	}
1066 }
1067 
1068 /*
1069  * With compound page geometry and when struct pages are stored in ram most
1070  * tail pages are reused. Consequently, the amount of unique struct pages to
1071  * initialize is a lot smaller that the total amount of struct pages being
1072  * mapped. This is a paired / mild layering violation with explicit knowledge
1073  * of how the sparse_vmemmap internals handle compound pages in the lack
1074  * of an altmap. See vmemmap_populate_compound_pages().
1075  */
compound_nr_pages(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)1076 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
1077 					      struct dev_pagemap *pgmap)
1078 {
1079 	if (!vmemmap_can_optimize(altmap, pgmap))
1080 		return pgmap_vmemmap_nr(pgmap);
1081 
1082 	return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
1083 }
1084 
memmap_init_compound(struct page * head,unsigned long head_pfn,unsigned long zone_idx,int nid,struct dev_pagemap * pgmap,unsigned long nr_pages)1085 static void __ref memmap_init_compound(struct page *head,
1086 				       unsigned long head_pfn,
1087 				       unsigned long zone_idx, int nid,
1088 				       struct dev_pagemap *pgmap,
1089 				       unsigned long nr_pages)
1090 {
1091 	unsigned long pfn, end_pfn = head_pfn + nr_pages;
1092 	unsigned int order = pgmap->vmemmap_shift;
1093 
1094 	/*
1095 	 * We have to initialize the pages, including setting up page links.
1096 	 * prep_compound_page() does not take care of that, so instead we
1097 	 * open-code prep_compound_page() so we can take care of initializing
1098 	 * the pages in the same go.
1099 	 */
1100 	__SetPageHead(head);
1101 	for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
1102 		struct page *page = pfn_to_page(pfn);
1103 
1104 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1105 		prep_compound_tail(head, pfn - head_pfn);
1106 		set_page_count(page, 0);
1107 	}
1108 	prep_compound_head(head, order);
1109 }
1110 
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)1111 void __ref memmap_init_zone_device(struct zone *zone,
1112 				   unsigned long start_pfn,
1113 				   unsigned long nr_pages,
1114 				   struct dev_pagemap *pgmap)
1115 {
1116 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
1117 	struct pglist_data *pgdat = zone->zone_pgdat;
1118 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
1119 	unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
1120 	unsigned long zone_idx = zone_idx(zone);
1121 	unsigned long start = jiffies;
1122 	int nid = pgdat->node_id;
1123 
1124 	if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
1125 		return;
1126 
1127 	/*
1128 	 * The call to memmap_init should have already taken care
1129 	 * of the pages reserved for the memmap, so we can just jump to
1130 	 * the end of that region and start processing the device pages.
1131 	 */
1132 	if (altmap) {
1133 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
1134 		nr_pages = end_pfn - start_pfn;
1135 	}
1136 
1137 	for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
1138 		struct page *page = pfn_to_page(pfn);
1139 
1140 		__init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
1141 
1142 		if (pfns_per_compound == 1)
1143 			continue;
1144 
1145 		memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
1146 				     compound_nr_pages(altmap, pgmap));
1147 	}
1148 
1149 	pr_debug("%s initialised %lu pages in %ums\n", __func__,
1150 		nr_pages, jiffies_to_msecs(jiffies - start));
1151 }
1152 #endif
1153 
1154 /*
1155  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
1156  * because it is sized independent of architecture. Unlike the other zones,
1157  * the starting point for ZONE_MOVABLE is not fixed. It may be different
1158  * in each node depending on the size of each node and how evenly kernelcore
1159  * is distributed. This helper function adjusts the zone ranges
1160  * provided by the architecture for a given node by using the end of the
1161  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
1162  * zones within a node are in order of monotonic increases memory addresses
1163  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1164 static void __init adjust_zone_range_for_zone_movable(int nid,
1165 					unsigned long zone_type,
1166 					unsigned long node_end_pfn,
1167 					unsigned long *zone_start_pfn,
1168 					unsigned long *zone_end_pfn)
1169 {
1170 	/* Only adjust if ZONE_MOVABLE is on this node */
1171 	if (zone_movable_pfn[nid]) {
1172 		/* Size ZONE_MOVABLE */
1173 		if (zone_type == ZONE_MOVABLE) {
1174 			*zone_start_pfn = zone_movable_pfn[nid];
1175 			*zone_end_pfn = min(node_end_pfn,
1176 				arch_zone_highest_possible_pfn[movable_zone]);
1177 
1178 		/* Adjust for ZONE_MOVABLE starting within this range */
1179 		} else if (!mirrored_kernelcore &&
1180 			*zone_start_pfn < zone_movable_pfn[nid] &&
1181 			*zone_end_pfn > zone_movable_pfn[nid]) {
1182 			*zone_end_pfn = zone_movable_pfn[nid];
1183 
1184 		/* Check if this whole range is within ZONE_MOVABLE */
1185 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
1186 			*zone_start_pfn = *zone_end_pfn;
1187 	}
1188 }
1189 
1190 /*
1191  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
1192  * then all holes in the requested range will be accounted for.
1193  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)1194 static unsigned long __init __absent_pages_in_range(int nid,
1195 				unsigned long range_start_pfn,
1196 				unsigned long range_end_pfn)
1197 {
1198 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
1199 	unsigned long start_pfn, end_pfn;
1200 	int i;
1201 
1202 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
1203 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
1204 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
1205 		nr_absent -= end_pfn - start_pfn;
1206 	}
1207 	return nr_absent;
1208 }
1209 
1210 /**
1211  * absent_pages_in_range - Return number of page frames in holes within a range
1212  * @start_pfn: The start PFN to start searching for holes
1213  * @end_pfn: The end PFN to stop searching for holes
1214  *
1215  * Return: the number of pages frames in memory holes within a range.
1216  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)1217 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
1218 							unsigned long end_pfn)
1219 {
1220 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
1221 }
1222 
1223 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long zone_start_pfn,unsigned long zone_end_pfn)1224 static unsigned long __init zone_absent_pages_in_node(int nid,
1225 					unsigned long zone_type,
1226 					unsigned long zone_start_pfn,
1227 					unsigned long zone_end_pfn)
1228 {
1229 	unsigned long nr_absent;
1230 
1231 	/* zone is empty, we don't have any absent pages */
1232 	if (zone_start_pfn == zone_end_pfn)
1233 		return 0;
1234 
1235 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
1236 
1237 	/*
1238 	 * ZONE_MOVABLE handling.
1239 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
1240 	 * and vice versa.
1241 	 */
1242 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
1243 		unsigned long start_pfn, end_pfn;
1244 		struct memblock_region *r;
1245 
1246 		for_each_mem_region(r) {
1247 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
1248 					  zone_start_pfn, zone_end_pfn);
1249 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
1250 					zone_start_pfn, zone_end_pfn);
1251 
1252 			if (zone_type == ZONE_MOVABLE &&
1253 			    memblock_is_mirror(r))
1254 				nr_absent += end_pfn - start_pfn;
1255 
1256 			if (zone_type == ZONE_NORMAL &&
1257 			    !memblock_is_mirror(r))
1258 				nr_absent += end_pfn - start_pfn;
1259 		}
1260 	}
1261 
1262 	return nr_absent;
1263 }
1264 
1265 /*
1266  * Return the number of pages a zone spans in a node, including holes
1267  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
1268  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)1269 static unsigned long __init zone_spanned_pages_in_node(int nid,
1270 					unsigned long zone_type,
1271 					unsigned long node_start_pfn,
1272 					unsigned long node_end_pfn,
1273 					unsigned long *zone_start_pfn,
1274 					unsigned long *zone_end_pfn)
1275 {
1276 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
1277 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
1278 
1279 	/* Get the start and end of the zone */
1280 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
1281 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
1282 	adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
1283 					   zone_start_pfn, zone_end_pfn);
1284 
1285 	/* Check that this node has pages within the zone's required range */
1286 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
1287 		return 0;
1288 
1289 	/* Move the zone boundaries inside the node if necessary */
1290 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
1291 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
1292 
1293 	/* Return the spanned pages */
1294 	return *zone_end_pfn - *zone_start_pfn;
1295 }
1296 
reset_memoryless_node_totalpages(struct pglist_data * pgdat)1297 static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
1298 {
1299 	struct zone *z;
1300 
1301 	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
1302 		z->zone_start_pfn = 0;
1303 		z->spanned_pages = 0;
1304 		z->present_pages = 0;
1305 #if defined(CONFIG_MEMORY_HOTPLUG)
1306 		z->present_early_pages = 0;
1307 #endif
1308 	}
1309 
1310 	pgdat->node_spanned_pages = 0;
1311 	pgdat->node_present_pages = 0;
1312 	pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
1313 }
1314 
calc_nr_kernel_pages(void)1315 static void __init calc_nr_kernel_pages(void)
1316 {
1317 	unsigned long start_pfn, end_pfn;
1318 	phys_addr_t start_addr, end_addr;
1319 	u64 u;
1320 #ifdef CONFIG_HIGHMEM
1321 	unsigned long high_zone_low = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
1322 #endif
1323 
1324 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1325 		start_pfn = PFN_UP(start_addr);
1326 		end_pfn   = PFN_DOWN(end_addr);
1327 
1328 		if (start_pfn < end_pfn) {
1329 			nr_all_pages += end_pfn - start_pfn;
1330 #ifdef CONFIG_HIGHMEM
1331 			start_pfn = clamp(start_pfn, 0, high_zone_low);
1332 			end_pfn = clamp(end_pfn, 0, high_zone_low);
1333 #endif
1334 			nr_kernel_pages += end_pfn - start_pfn;
1335 		}
1336 	}
1337 }
1338 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)1339 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
1340 						unsigned long node_start_pfn,
1341 						unsigned long node_end_pfn)
1342 {
1343 	unsigned long realtotalpages = 0, totalpages = 0;
1344 	enum zone_type i;
1345 
1346 	for (i = 0; i < MAX_NR_ZONES; i++) {
1347 		struct zone *zone = pgdat->node_zones + i;
1348 		unsigned long zone_start_pfn, zone_end_pfn;
1349 		unsigned long spanned, absent;
1350 		unsigned long real_size;
1351 
1352 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
1353 						     node_start_pfn,
1354 						     node_end_pfn,
1355 						     &zone_start_pfn,
1356 						     &zone_end_pfn);
1357 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
1358 						   zone_start_pfn,
1359 						   zone_end_pfn);
1360 
1361 		real_size = spanned - absent;
1362 
1363 		if (spanned)
1364 			zone->zone_start_pfn = zone_start_pfn;
1365 		else
1366 			zone->zone_start_pfn = 0;
1367 		zone->spanned_pages = spanned;
1368 		zone->present_pages = real_size;
1369 #if defined(CONFIG_MEMORY_HOTPLUG)
1370 		zone->present_early_pages = real_size;
1371 #endif
1372 
1373 		totalpages += spanned;
1374 		realtotalpages += real_size;
1375 	}
1376 
1377 	pgdat->node_spanned_pages = totalpages;
1378 	pgdat->node_present_pages = realtotalpages;
1379 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1380 }
1381 
1382 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)1383 static void pgdat_init_split_queue(struct pglist_data *pgdat)
1384 {
1385 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
1386 
1387 	spin_lock_init(&ds_queue->split_queue_lock);
1388 	INIT_LIST_HEAD(&ds_queue->split_queue);
1389 	ds_queue->split_queue_len = 0;
1390 }
1391 #else
pgdat_init_split_queue(struct pglist_data * pgdat)1392 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
1393 #endif
1394 
1395 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)1396 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
1397 {
1398 	init_waitqueue_head(&pgdat->kcompactd_wait);
1399 }
1400 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)1401 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
1402 #endif
1403 
pgdat_init_internals(struct pglist_data * pgdat)1404 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1405 {
1406 	int i;
1407 
1408 	pgdat_resize_init(pgdat);
1409 	pgdat_kswapd_lock_init(pgdat);
1410 
1411 	pgdat_init_split_queue(pgdat);
1412 	pgdat_init_kcompactd(pgdat);
1413 
1414 	init_waitqueue_head(&pgdat->kswapd_wait);
1415 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
1416 
1417 	for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
1418 		init_waitqueue_head(&pgdat->reclaim_wait[i]);
1419 
1420 	pgdat_page_ext_init(pgdat);
1421 	lruvec_init(&pgdat->__lruvec);
1422 }
1423 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)1424 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
1425 							unsigned long remaining_pages)
1426 {
1427 	atomic_long_set(&zone->managed_pages, remaining_pages);
1428 	zone_set_nid(zone, nid);
1429 	zone->name = zone_names[idx];
1430 	zone->zone_pgdat = NODE_DATA(nid);
1431 	spin_lock_init(&zone->lock);
1432 	zone_seqlock_init(zone);
1433 	zone_pcp_init(zone);
1434 }
1435 
zone_init_free_lists(struct zone * zone)1436 static void __meminit zone_init_free_lists(struct zone *zone)
1437 {
1438 	unsigned int order, t;
1439 	for_each_migratetype_order(order, t) {
1440 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1441 		zone->free_area[order].nr_free = 0;
1442 	}
1443 
1444 #ifdef CONFIG_UNACCEPTED_MEMORY
1445 	INIT_LIST_HEAD(&zone->unaccepted_pages);
1446 #endif
1447 }
1448 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)1449 void __meminit init_currently_empty_zone(struct zone *zone,
1450 					unsigned long zone_start_pfn,
1451 					unsigned long size)
1452 {
1453 	struct pglist_data *pgdat = zone->zone_pgdat;
1454 	int zone_idx = zone_idx(zone) + 1;
1455 
1456 	if (zone_idx > pgdat->nr_zones)
1457 		pgdat->nr_zones = zone_idx;
1458 
1459 	zone->zone_start_pfn = zone_start_pfn;
1460 
1461 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
1462 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
1463 			pgdat->node_id,
1464 			(unsigned long)zone_idx(zone),
1465 			zone_start_pfn, (zone_start_pfn + size));
1466 
1467 	zone_init_free_lists(zone);
1468 	zone->initialized = 1;
1469 }
1470 
1471 #ifndef CONFIG_SPARSEMEM
1472 /*
1473  * Calculate the size of the zone->pageblock_flags rounded to an unsigned long
1474  * Start by making sure zonesize is a multiple of pageblock_order by rounding
1475  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
1476  * round what is now in bits to nearest long in bits, then return it in
1477  * bytes.
1478  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)1479 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
1480 {
1481 	unsigned long usemapsize;
1482 
1483 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
1484 	usemapsize = round_up(zonesize, pageblock_nr_pages);
1485 	usemapsize = usemapsize >> pageblock_order;
1486 	usemapsize *= NR_PAGEBLOCK_BITS;
1487 	usemapsize = round_up(usemapsize, BITS_PER_LONG);
1488 
1489 	return usemapsize / BITS_PER_BYTE;
1490 }
1491 
setup_usemap(struct zone * zone)1492 static void __ref setup_usemap(struct zone *zone)
1493 {
1494 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
1495 					       zone->spanned_pages);
1496 	zone->pageblock_flags = NULL;
1497 	if (usemapsize) {
1498 		zone->pageblock_flags =
1499 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
1500 					    zone_to_nid(zone));
1501 		if (!zone->pageblock_flags)
1502 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
1503 			      usemapsize, zone->name, zone_to_nid(zone));
1504 	}
1505 }
1506 #else
setup_usemap(struct zone * zone)1507 static inline void setup_usemap(struct zone *zone) {}
1508 #endif /* CONFIG_SPARSEMEM */
1509 
1510 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
1511 
1512 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)1513 void __init set_pageblock_order(void)
1514 {
1515 	unsigned int order = PAGE_BLOCK_MAX_ORDER;
1516 
1517 	/* Check that pageblock_nr_pages has not already been setup */
1518 	if (pageblock_order)
1519 		return;
1520 
1521 	/* Don't let pageblocks exceed the maximum allocation granularity. */
1522 	if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
1523 		order = HUGETLB_PAGE_ORDER;
1524 
1525 	/*
1526 	 * Assume the largest contiguous order of interest is a huge page.
1527 	 * This value may be variable depending on boot parameters on powerpc.
1528 	 */
1529 	pageblock_order = order;
1530 }
1531 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1532 
1533 /*
1534  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
1535  * is unused as pageblock_order is set at compile-time. See
1536  * include/linux/pageblock-flags.h for the values of pageblock_order based on
1537  * the kernel config
1538  */
set_pageblock_order(void)1539 void __init set_pageblock_order(void)
1540 {
1541 }
1542 
1543 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
1544 
1545 /*
1546  * Set up the zone data structures
1547  * - init pgdat internals
1548  * - init all zones belonging to this node
1549  *
1550  * NOTE: this function is only called during memory hotplug
1551  */
1552 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(struct pglist_data * pgdat)1553 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
1554 {
1555 	int nid = pgdat->node_id;
1556 	enum zone_type z;
1557 	int cpu;
1558 
1559 	pgdat_init_internals(pgdat);
1560 
1561 	if (pgdat->per_cpu_nodestats == &boot_nodestats)
1562 		pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
1563 
1564 	/*
1565 	 * Reset the nr_zones, order and highest_zoneidx before reuse.
1566 	 * Note that kswapd will init kswapd_highest_zoneidx properly
1567 	 * when it starts in the near future.
1568 	 */
1569 	pgdat->nr_zones = 0;
1570 	pgdat->kswapd_order = 0;
1571 	pgdat->kswapd_highest_zoneidx = 0;
1572 	pgdat->node_start_pfn = 0;
1573 	pgdat->node_present_pages = 0;
1574 
1575 	for_each_online_cpu(cpu) {
1576 		struct per_cpu_nodestat *p;
1577 
1578 		p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
1579 		memset(p, 0, sizeof(*p));
1580 	}
1581 
1582 	/*
1583 	 * When memory is hot-added, all the memory is in offline state. So
1584 	 * clear all zones' present_pages and managed_pages because they will
1585 	 * be updated in online_pages() and offline_pages().
1586 	 */
1587 	for (z = 0; z < MAX_NR_ZONES; z++) {
1588 		struct zone *zone = pgdat->node_zones + z;
1589 
1590 		zone->present_pages = 0;
1591 		zone_init_internals(zone, z, nid, 0);
1592 	}
1593 }
1594 #endif
1595 
free_area_init_core(struct pglist_data * pgdat)1596 static void __init free_area_init_core(struct pglist_data *pgdat)
1597 {
1598 	enum zone_type j;
1599 	int nid = pgdat->node_id;
1600 
1601 	pgdat_init_internals(pgdat);
1602 	pgdat->per_cpu_nodestats = &boot_nodestats;
1603 
1604 	for (j = 0; j < MAX_NR_ZONES; j++) {
1605 		struct zone *zone = pgdat->node_zones + j;
1606 		unsigned long size = zone->spanned_pages;
1607 
1608 		/*
1609 		 * Initialize zone->managed_pages as 0 , it will be reset
1610 		 * when memblock allocator frees pages into buddy system.
1611 		 */
1612 		zone_init_internals(zone, j, nid, zone->present_pages);
1613 
1614 		if (!size)
1615 			continue;
1616 
1617 		setup_usemap(zone);
1618 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
1619 	}
1620 }
1621 
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)1622 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
1623 			  phys_addr_t min_addr, int nid, bool exact_nid)
1624 {
1625 	void *ptr;
1626 
1627 	/*
1628 	 * Kmemleak will explicitly scan mem_map by traversing all valid
1629 	 * `struct *page`,so memblock does not need to be added to the scan list.
1630 	 */
1631 	if (exact_nid)
1632 		ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
1633 						   MEMBLOCK_ALLOC_NOLEAKTRACE,
1634 						   nid);
1635 	else
1636 		ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
1637 						 MEMBLOCK_ALLOC_NOLEAKTRACE,
1638 						 nid);
1639 
1640 	if (ptr && size > 0)
1641 		page_init_poison(ptr, size);
1642 
1643 	return ptr;
1644 }
1645 
1646 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)1647 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
1648 {
1649 	unsigned long start, offset, size, end;
1650 	struct page *map;
1651 
1652 	/* Skip empty nodes */
1653 	if (!pgdat->node_spanned_pages)
1654 		return;
1655 
1656 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
1657 	offset = pgdat->node_start_pfn - start;
1658 	/*
1659 	 * The zone's endpoints aren't required to be MAX_PAGE_ORDER
1660 	 * aligned but the node_mem_map endpoints must be in order
1661 	 * for the buddy allocator to function correctly.
1662 	 */
1663 	end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
1664 	size =  (end - start) * sizeof(struct page);
1665 	map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
1666 			   pgdat->node_id, false);
1667 	if (!map)
1668 		panic("Failed to allocate %ld bytes for node %d memory map\n",
1669 		      size, pgdat->node_id);
1670 	pgdat->node_mem_map = map + offset;
1671 	memmap_boot_pages_add(DIV_ROUND_UP(size, PAGE_SIZE));
1672 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
1673 		 __func__, pgdat->node_id, (unsigned long)pgdat,
1674 		 (unsigned long)pgdat->node_mem_map);
1675 
1676 	/* the global mem_map is just set as node 0's */
1677 	WARN_ON(pgdat != NODE_DATA(0));
1678 
1679 	mem_map = pgdat->node_mem_map;
1680 	if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
1681 		mem_map -= offset;
1682 
1683 	max_mapnr = end - start;
1684 }
1685 #else
alloc_node_mem_map(struct pglist_data * pgdat)1686 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
1687 #endif /* CONFIG_FLATMEM */
1688 
1689 /**
1690  * get_pfn_range_for_nid - Return the start and end page frames for a node
1691  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
1692  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
1693  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
1694  *
1695  * It returns the start and end page frame of a node based on information
1696  * provided by memblock_set_node(). If called for a node
1697  * with no available memory, the start and end PFNs will be 0.
1698  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)1699 void __init get_pfn_range_for_nid(unsigned int nid,
1700 			unsigned long *start_pfn, unsigned long *end_pfn)
1701 {
1702 	unsigned long this_start_pfn, this_end_pfn;
1703 	int i;
1704 
1705 	*start_pfn = -1UL;
1706 	*end_pfn = 0;
1707 
1708 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
1709 		*start_pfn = min(*start_pfn, this_start_pfn);
1710 		*end_pfn = max(*end_pfn, this_end_pfn);
1711 	}
1712 
1713 	if (*start_pfn == -1UL)
1714 		*start_pfn = 0;
1715 }
1716 
free_area_init_node(int nid)1717 static void __init free_area_init_node(int nid)
1718 {
1719 	pg_data_t *pgdat = NODE_DATA(nid);
1720 	unsigned long start_pfn = 0;
1721 	unsigned long end_pfn = 0;
1722 
1723 	/* pg_data_t should be reset to zero when it's allocated */
1724 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
1725 
1726 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1727 
1728 	pgdat->node_id = nid;
1729 	pgdat->node_start_pfn = start_pfn;
1730 	pgdat->per_cpu_nodestats = NULL;
1731 
1732 	if (start_pfn != end_pfn) {
1733 		pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
1734 			(u64)start_pfn << PAGE_SHIFT,
1735 			end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
1736 
1737 		calculate_node_totalpages(pgdat, start_pfn, end_pfn);
1738 	} else {
1739 		pr_info("Initmem setup node %d as memoryless\n", nid);
1740 
1741 		reset_memoryless_node_totalpages(pgdat);
1742 	}
1743 
1744 	alloc_node_mem_map(pgdat);
1745 	pgdat_set_deferred_range(pgdat);
1746 
1747 	free_area_init_core(pgdat);
1748 	lru_gen_init_pgdat(pgdat);
1749 }
1750 
1751 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat)1752 static void __init check_for_memory(pg_data_t *pgdat)
1753 {
1754 	enum zone_type zone_type;
1755 
1756 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
1757 		struct zone *zone = &pgdat->node_zones[zone_type];
1758 		if (populated_zone(zone)) {
1759 			if (IS_ENABLED(CONFIG_HIGHMEM))
1760 				node_set_state(pgdat->node_id, N_HIGH_MEMORY);
1761 			if (zone_type <= ZONE_NORMAL)
1762 				node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
1763 			break;
1764 		}
1765 	}
1766 }
1767 
1768 #if MAX_NUMNODES > 1
1769 /*
1770  * Figure out the number of possible node ids.
1771  */
setup_nr_node_ids(void)1772 void __init setup_nr_node_ids(void)
1773 {
1774 	unsigned int highest;
1775 
1776 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
1777 	nr_node_ids = highest + 1;
1778 }
1779 #endif
1780 
1781 /*
1782  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
1783  * such cases we allow max_zone_pfn sorted in the descending order
1784  */
arch_has_descending_max_zone_pfns(void)1785 static bool arch_has_descending_max_zone_pfns(void)
1786 {
1787 	return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
1788 }
1789 
set_high_memory(void)1790 static void __init set_high_memory(void)
1791 {
1792 	phys_addr_t highmem = memblock_end_of_DRAM();
1793 
1794 	/*
1795 	 * Some architectures (e.g. ARM) set high_memory very early and
1796 	 * use it in arch setup code.
1797 	 * If an architecture already set high_memory don't overwrite it
1798 	 */
1799 	if (high_memory)
1800 		return;
1801 
1802 #ifdef CONFIG_HIGHMEM
1803 	if (arch_has_descending_max_zone_pfns() ||
1804 	    highmem > PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]))
1805 		highmem = PFN_PHYS(arch_zone_lowest_possible_pfn[ZONE_HIGHMEM]);
1806 #endif
1807 
1808 	high_memory = phys_to_virt(highmem - 1) + 1;
1809 }
1810 
1811 /**
1812  * free_area_init - Initialise all pg_data_t and zone data
1813  * @max_zone_pfn: an array of max PFNs for each zone
1814  *
1815  * This will call free_area_init_node() for each active node in the system.
1816  * Using the page ranges provided by memblock_set_node(), the size of each
1817  * zone in each node and their holes is calculated. If the maximum PFN
1818  * between two adjacent zones match, it is assumed that the zone is empty.
1819  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
1820  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
1821  * starts where the previous one ended. For example, ZONE_DMA32 starts
1822  * at arch_max_dma_pfn.
1823  */
free_area_init(unsigned long * max_zone_pfn)1824 void __init free_area_init(unsigned long *max_zone_pfn)
1825 {
1826 	unsigned long start_pfn, end_pfn;
1827 	int i, nid, zone;
1828 	bool descending;
1829 
1830 	/* Record where the zone boundaries are */
1831 	memset(arch_zone_lowest_possible_pfn, 0,
1832 				sizeof(arch_zone_lowest_possible_pfn));
1833 	memset(arch_zone_highest_possible_pfn, 0,
1834 				sizeof(arch_zone_highest_possible_pfn));
1835 
1836 	start_pfn = PHYS_PFN(memblock_start_of_DRAM());
1837 	descending = arch_has_descending_max_zone_pfns();
1838 
1839 	for (i = 0; i < MAX_NR_ZONES; i++) {
1840 		if (descending)
1841 			zone = MAX_NR_ZONES - i - 1;
1842 		else
1843 			zone = i;
1844 
1845 		if (zone == ZONE_MOVABLE)
1846 			continue;
1847 
1848 		end_pfn = max(max_zone_pfn[zone], start_pfn);
1849 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
1850 		arch_zone_highest_possible_pfn[zone] = end_pfn;
1851 
1852 		start_pfn = end_pfn;
1853 	}
1854 
1855 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
1856 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
1857 	find_zone_movable_pfns_for_nodes();
1858 
1859 	/* Print out the zone ranges */
1860 	pr_info("Zone ranges:\n");
1861 	for (i = 0; i < MAX_NR_ZONES; i++) {
1862 		if (i == ZONE_MOVABLE)
1863 			continue;
1864 		pr_info("  %-8s ", zone_names[i]);
1865 		if (arch_zone_lowest_possible_pfn[i] ==
1866 				arch_zone_highest_possible_pfn[i])
1867 			pr_cont("empty\n");
1868 		else
1869 			pr_cont("[mem %#018Lx-%#018Lx]\n",
1870 				(u64)arch_zone_lowest_possible_pfn[i]
1871 					<< PAGE_SHIFT,
1872 				((u64)arch_zone_highest_possible_pfn[i]
1873 					<< PAGE_SHIFT) - 1);
1874 	}
1875 
1876 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
1877 	pr_info("Movable zone start for each node\n");
1878 	for (i = 0; i < MAX_NUMNODES; i++) {
1879 		if (zone_movable_pfn[i])
1880 			pr_info("  Node %d: %#018Lx\n", i,
1881 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
1882 	}
1883 
1884 	/*
1885 	 * Print out the early node map, and initialize the
1886 	 * subsection-map relative to active online memory ranges to
1887 	 * enable future "sub-section" extensions of the memory map.
1888 	 */
1889 	pr_info("Early memory node ranges\n");
1890 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
1891 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
1892 			(u64)start_pfn << PAGE_SHIFT,
1893 			((u64)end_pfn << PAGE_SHIFT) - 1);
1894 		subsection_map_init(start_pfn, end_pfn - start_pfn);
1895 	}
1896 
1897 	/* Initialise every node */
1898 	mminit_verify_pageflags_layout();
1899 	setup_nr_node_ids();
1900 	set_pageblock_order();
1901 
1902 	for_each_node(nid) {
1903 		pg_data_t *pgdat;
1904 
1905 		if (!node_online(nid))
1906 			alloc_offline_node_data(nid);
1907 
1908 		pgdat = NODE_DATA(nid);
1909 		free_area_init_node(nid);
1910 
1911 		/*
1912 		 * No sysfs hierarchy will be created via register_one_node()
1913 		 *for memory-less node because here it's not marked as N_MEMORY
1914 		 *and won't be set online later. The benefit is userspace
1915 		 *program won't be confused by sysfs files/directories of
1916 		 *memory-less node. The pgdat will get fully initialized by
1917 		 *hotadd_init_pgdat() when memory is hotplugged into this node.
1918 		 */
1919 		if (pgdat->node_present_pages) {
1920 			node_set_state(nid, N_MEMORY);
1921 			check_for_memory(pgdat);
1922 		}
1923 	}
1924 
1925 	for_each_node_state(nid, N_MEMORY)
1926 		sparse_vmemmap_init_nid_late(nid);
1927 
1928 	calc_nr_kernel_pages();
1929 	memmap_init();
1930 
1931 	/* disable hash distribution for systems with a single node */
1932 	fixup_hashdist();
1933 
1934 	set_high_memory();
1935 }
1936 
1937 /**
1938  * node_map_pfn_alignment - determine the maximum internode alignment
1939  *
1940  * This function should be called after node map is populated and sorted.
1941  * It calculates the maximum power of two alignment which can distinguish
1942  * all the nodes.
1943  *
1944  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
1945  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
1946  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
1947  * shifted, 1GiB is enough and this function will indicate so.
1948  *
1949  * This is used to test whether pfn -> nid mapping of the chosen memory
1950  * model has fine enough granularity to avoid incorrect mapping for the
1951  * populated node map.
1952  *
1953  * Return: the determined alignment in pfn's.  0 if there is no alignment
1954  * requirement (single node).
1955  */
node_map_pfn_alignment(void)1956 unsigned long __init node_map_pfn_alignment(void)
1957 {
1958 	unsigned long accl_mask = 0, last_end = 0;
1959 	unsigned long start, end, mask;
1960 	int last_nid = NUMA_NO_NODE;
1961 	int i, nid;
1962 
1963 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1964 		if (!start || last_nid < 0 || last_nid == nid) {
1965 			last_nid = nid;
1966 			last_end = end;
1967 			continue;
1968 		}
1969 
1970 		/*
1971 		 * Start with a mask granular enough to pin-point to the
1972 		 * start pfn and tick off bits one-by-one until it becomes
1973 		 * too coarse to separate the current node from the last.
1974 		 */
1975 		mask = ~((1 << __ffs(start)) - 1);
1976 		while (mask && last_end <= (start & (mask << 1)))
1977 			mask <<= 1;
1978 
1979 		/* accumulate all internode masks */
1980 		accl_mask |= mask;
1981 	}
1982 
1983 	/* convert mask to number of pages */
1984 	return ~accl_mask + 1;
1985 }
1986 
1987 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_pages(unsigned long pfn,unsigned long nr_pages)1988 static void __init deferred_free_pages(unsigned long pfn,
1989 		unsigned long nr_pages)
1990 {
1991 	struct page *page;
1992 	unsigned long i;
1993 
1994 	if (!nr_pages)
1995 		return;
1996 
1997 	page = pfn_to_page(pfn);
1998 
1999 	/* Free a large naturally-aligned chunk if possible */
2000 	if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
2001 		for (i = 0; i < nr_pages; i += pageblock_nr_pages)
2002 			init_pageblock_migratetype(page + i, MIGRATE_MOVABLE,
2003 					false);
2004 		__free_pages_core(page, MAX_PAGE_ORDER, MEMINIT_EARLY);
2005 		return;
2006 	}
2007 
2008 	/* Accept chunks smaller than MAX_PAGE_ORDER upfront */
2009 	accept_memory(PFN_PHYS(pfn), nr_pages * PAGE_SIZE);
2010 
2011 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
2012 		if (pageblock_aligned(pfn))
2013 			init_pageblock_migratetype(page, MIGRATE_MOVABLE,
2014 					false);
2015 		__free_pages_core(page, 0, MEMINIT_EARLY);
2016 	}
2017 }
2018 
2019 /* Completion tracking for deferred_init_memmap() threads */
2020 static atomic_t pgdat_init_n_undone __initdata;
2021 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
2022 
pgdat_init_report_one_done(void)2023 static inline void __init pgdat_init_report_one_done(void)
2024 {
2025 	if (atomic_dec_and_test(&pgdat_init_n_undone))
2026 		complete(&pgdat_init_all_done_comp);
2027 }
2028 
2029 /*
2030  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
2031  * by performing it only once every MAX_ORDER_NR_PAGES.
2032  * Return number of pages initialized.
2033  */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)2034 static unsigned long __init deferred_init_pages(struct zone *zone,
2035 		unsigned long pfn, unsigned long end_pfn)
2036 {
2037 	int nid = zone_to_nid(zone);
2038 	unsigned long nr_pages = end_pfn - pfn;
2039 	int zid = zone_idx(zone);
2040 	struct page *page = pfn_to_page(pfn);
2041 
2042 	for (; pfn < end_pfn; pfn++, page++)
2043 		__init_single_page(page, pfn, zid, nid);
2044 	return nr_pages;
2045 }
2046 
2047 /*
2048  * This function is meant to pre-load the iterator for the zone init from
2049  * a given point.
2050  * Specifically it walks through the ranges starting with initial index
2051  * passed to it until we are caught up to the first_init_pfn value and
2052  * exits there. If we never encounter the value we return false indicating
2053  * there are no valid ranges left.
2054  */
2055 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)2056 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
2057 				    unsigned long *spfn, unsigned long *epfn,
2058 				    unsigned long first_init_pfn)
2059 {
2060 	u64 j = *i;
2061 
2062 	if (j == 0)
2063 		__next_mem_pfn_range_in_zone(&j, zone, spfn, epfn);
2064 
2065 	/*
2066 	 * Start out by walking through the ranges in this zone that have
2067 	 * already been initialized. We don't need to do anything with them
2068 	 * so we just need to flush them out of the system.
2069 	 */
2070 	for_each_free_mem_pfn_range_in_zone_from(j, zone, spfn, epfn) {
2071 		if (*epfn <= first_init_pfn)
2072 			continue;
2073 		if (*spfn < first_init_pfn)
2074 			*spfn = first_init_pfn;
2075 		*i = j;
2076 		return true;
2077 	}
2078 
2079 	return false;
2080 }
2081 
2082 /*
2083  * Initialize and free pages. We do it in two loops: first we initialize
2084  * struct page, then free to buddy allocator, because while we are
2085  * freeing pages we can access pages that are ahead (computing buddy
2086  * page in __free_one_page()).
2087  *
2088  * In order to try and keep some memory in the cache we have the loop
2089  * broken along max page order boundaries. This way we will not cause
2090  * any issues with the buddy page computation.
2091  */
2092 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)2093 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2094 		       unsigned long *end_pfn)
2095 {
2096 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2097 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
2098 	unsigned long nr_pages = 0;
2099 	u64 j = *i;
2100 
2101 	/* First we loop through and initialize the page values */
2102 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2103 		unsigned long t;
2104 
2105 		if (mo_pfn <= *start_pfn)
2106 			break;
2107 
2108 		t = min(mo_pfn, *end_pfn);
2109 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2110 
2111 		if (mo_pfn < *end_pfn) {
2112 			*start_pfn = mo_pfn;
2113 			break;
2114 		}
2115 	}
2116 
2117 	/* Reset values and now loop through freeing pages as needed */
2118 	swap(j, *i);
2119 
2120 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2121 		unsigned long t;
2122 
2123 		if (mo_pfn <= spfn)
2124 			break;
2125 
2126 		t = min(mo_pfn, epfn);
2127 		deferred_free_pages(spfn, t - spfn);
2128 
2129 		if (mo_pfn <= epfn)
2130 			break;
2131 	}
2132 
2133 	return nr_pages;
2134 }
2135 
2136 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2137 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2138 			   void *arg)
2139 {
2140 	unsigned long spfn, epfn;
2141 	struct zone *zone = arg;
2142 	u64 i = 0;
2143 
2144 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2145 
2146 	/*
2147 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
2148 	 * we can avoid introducing any issues with the buddy allocator.
2149 	 */
2150 	while (spfn < end_pfn) {
2151 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2152 		cond_resched();
2153 	}
2154 }
2155 
2156 static unsigned int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2157 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2158 {
2159 	return max(cpumask_weight(node_cpumask), 1U);
2160 }
2161 
2162 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2163 static int __init deferred_init_memmap(void *data)
2164 {
2165 	pg_data_t *pgdat = data;
2166 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2167 	unsigned long spfn = 0, epfn = 0;
2168 	unsigned long first_init_pfn, flags;
2169 	unsigned long start = jiffies;
2170 	struct zone *zone;
2171 	int max_threads;
2172 	u64 i = 0;
2173 
2174 	/* Bind memory initialisation thread to a local node if possible */
2175 	if (!cpumask_empty(cpumask))
2176 		set_cpus_allowed_ptr(current, cpumask);
2177 
2178 	pgdat_resize_lock(pgdat, &flags);
2179 	first_init_pfn = pgdat->first_deferred_pfn;
2180 	if (first_init_pfn == ULONG_MAX) {
2181 		pgdat_resize_unlock(pgdat, &flags);
2182 		pgdat_init_report_one_done();
2183 		return 0;
2184 	}
2185 
2186 	/* Sanity check boundaries */
2187 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2188 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2189 	pgdat->first_deferred_pfn = ULONG_MAX;
2190 
2191 	/*
2192 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2193 	 * interrupt thread must allocate this early in boot, zone must be
2194 	 * pre-grown prior to start of deferred page initialization.
2195 	 */
2196 	pgdat_resize_unlock(pgdat, &flags);
2197 
2198 	/* Only the highest zone is deferred */
2199 	zone = pgdat->node_zones + pgdat->nr_zones - 1;
2200 
2201 	max_threads = deferred_page_init_max_threads(cpumask);
2202 
2203 	while (deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, first_init_pfn)) {
2204 		first_init_pfn = ALIGN(epfn, PAGES_PER_SECTION);
2205 		struct padata_mt_job job = {
2206 			.thread_fn   = deferred_init_memmap_chunk,
2207 			.fn_arg      = zone,
2208 			.start       = spfn,
2209 			.size        = first_init_pfn - spfn,
2210 			.align       = PAGES_PER_SECTION,
2211 			.min_chunk   = PAGES_PER_SECTION,
2212 			.max_threads = max_threads,
2213 			.numa_aware  = false,
2214 		};
2215 
2216 		padata_do_multithreaded(&job);
2217 	}
2218 
2219 	/* Sanity check that the next zone really is unpopulated */
2220 	WARN_ON(pgdat->nr_zones < MAX_NR_ZONES && populated_zone(++zone));
2221 
2222 	pr_info("node %d deferred pages initialised in %ums\n",
2223 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2224 
2225 	pgdat_init_report_one_done();
2226 	return 0;
2227 }
2228 
2229 /*
2230  * If this zone has deferred pages, try to grow it by initializing enough
2231  * deferred pages to satisfy the allocation specified by order, rounded up to
2232  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2233  * of SECTION_SIZE bytes by initializing struct pages in increments of
2234  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2235  *
2236  * Return true when zone was grown, otherwise return false. We return true even
2237  * when we grow less than requested, to let the caller decide if there are
2238  * enough pages to satisfy the allocation.
2239  */
deferred_grow_zone(struct zone * zone,unsigned int order)2240 bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
2241 {
2242 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2243 	pg_data_t *pgdat = zone->zone_pgdat;
2244 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2245 	unsigned long spfn, epfn, flags;
2246 	unsigned long nr_pages = 0;
2247 	u64 i = 0;
2248 
2249 	/* Only the last zone may have deferred pages */
2250 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2251 		return false;
2252 
2253 	pgdat_resize_lock(pgdat, &flags);
2254 
2255 	/*
2256 	 * If someone grew this zone while we were waiting for spinlock, return
2257 	 * true, as there might be enough pages already.
2258 	 */
2259 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2260 		pgdat_resize_unlock(pgdat, &flags);
2261 		return true;
2262 	}
2263 
2264 	/* If the zone is empty somebody else may have cleared out the zone */
2265 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2266 						 first_deferred_pfn)) {
2267 		pgdat->first_deferred_pfn = ULONG_MAX;
2268 		pgdat_resize_unlock(pgdat, &flags);
2269 		/* Retry only once. */
2270 		return first_deferred_pfn != ULONG_MAX;
2271 	}
2272 
2273 	/*
2274 	 * Initialize and free pages in MAX_PAGE_ORDER sized increments so
2275 	 * that we can avoid introducing any issues with the buddy
2276 	 * allocator.
2277 	 */
2278 	while (spfn < epfn) {
2279 		/* update our first deferred PFN for this section */
2280 		first_deferred_pfn = spfn;
2281 
2282 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2283 		touch_nmi_watchdog();
2284 
2285 		/* We should only stop along section boundaries */
2286 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2287 			continue;
2288 
2289 		/* If our quota has been met we can stop here */
2290 		if (nr_pages >= nr_pages_needed)
2291 			break;
2292 	}
2293 
2294 	pgdat->first_deferred_pfn = spfn;
2295 	pgdat_resize_unlock(pgdat, &flags);
2296 
2297 	return nr_pages > 0;
2298 }
2299 
2300 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2301 
2302 #ifdef CONFIG_CMA
init_cma_reserved_pageblock(struct page * page)2303 void __init init_cma_reserved_pageblock(struct page *page)
2304 {
2305 	unsigned i = pageblock_nr_pages;
2306 	struct page *p = page;
2307 
2308 	do {
2309 		__ClearPageReserved(p);
2310 		set_page_count(p, 0);
2311 	} while (++p, --i);
2312 
2313 	init_pageblock_migratetype(page, MIGRATE_CMA, false);
2314 	set_page_refcounted(page);
2315 	/* pages were reserved and not allocated */
2316 	clear_page_tag_ref(page);
2317 	__free_pages(page, pageblock_order);
2318 
2319 	adjust_managed_page_count(page, pageblock_nr_pages);
2320 	page_zone(page)->cma_pages += pageblock_nr_pages;
2321 }
2322 /*
2323  * Similar to above, but only set the migrate type and stats.
2324  */
init_cma_pageblock(struct page * page)2325 void __init init_cma_pageblock(struct page *page)
2326 {
2327 	init_pageblock_migratetype(page, MIGRATE_CMA, false);
2328 	adjust_managed_page_count(page, pageblock_nr_pages);
2329 	page_zone(page)->cma_pages += pageblock_nr_pages;
2330 }
2331 #endif
2332 
set_zone_contiguous(struct zone * zone)2333 void set_zone_contiguous(struct zone *zone)
2334 {
2335 	unsigned long block_start_pfn = zone->zone_start_pfn;
2336 	unsigned long block_end_pfn;
2337 
2338 	block_end_pfn = pageblock_end_pfn(block_start_pfn);
2339 	for (; block_start_pfn < zone_end_pfn(zone);
2340 			block_start_pfn = block_end_pfn,
2341 			 block_end_pfn += pageblock_nr_pages) {
2342 
2343 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
2344 
2345 		if (!__pageblock_pfn_to_page(block_start_pfn,
2346 					     block_end_pfn, zone))
2347 			return;
2348 		cond_resched();
2349 	}
2350 
2351 	/* We confirm that there is no hole */
2352 	zone->contiguous = true;
2353 }
2354 
2355 /*
2356  * Check if a PFN range intersects multiple zones on one or more
2357  * NUMA nodes. Specify the @nid argument if it is known that this
2358  * PFN range is on one node, NUMA_NO_NODE otherwise.
2359  */
pfn_range_intersects_zones(int nid,unsigned long start_pfn,unsigned long nr_pages)2360 bool pfn_range_intersects_zones(int nid, unsigned long start_pfn,
2361 			   unsigned long nr_pages)
2362 {
2363 	struct zone *zone, *izone = NULL;
2364 
2365 	for_each_zone(zone) {
2366 		if (nid != NUMA_NO_NODE && zone_to_nid(zone) != nid)
2367 			continue;
2368 
2369 		if (zone_intersects(zone, start_pfn, nr_pages)) {
2370 			if (izone != NULL)
2371 				return true;
2372 			izone = zone;
2373 		}
2374 
2375 	}
2376 
2377 	return false;
2378 }
2379 
2380 static void __init mem_init_print_info(void);
page_alloc_init_late(void)2381 void __init page_alloc_init_late(void)
2382 {
2383 	struct zone *zone;
2384 	int nid;
2385 
2386 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2387 
2388 	/* There will be num_node_state(N_MEMORY) threads */
2389 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2390 	for_each_node_state(nid, N_MEMORY) {
2391 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2392 	}
2393 
2394 	/* Block until all are initialised */
2395 	wait_for_completion(&pgdat_init_all_done_comp);
2396 
2397 	/*
2398 	 * We initialized the rest of the deferred pages.  Permanently disable
2399 	 * on-demand struct page initialization.
2400 	 */
2401 	static_branch_disable(&deferred_pages);
2402 
2403 	/* Reinit limits that are based on free pages after the kernel is up */
2404 	files_maxfiles_init();
2405 #endif
2406 
2407 	/* Accounting of total+free memory is stable at this point. */
2408 	mem_init_print_info();
2409 	buffer_init();
2410 
2411 	/* Discard memblock private memory */
2412 	memblock_discard();
2413 
2414 	for_each_node_state(nid, N_MEMORY)
2415 		shuffle_free_memory(NODE_DATA(nid));
2416 
2417 	for_each_populated_zone(zone)
2418 		set_zone_contiguous(zone);
2419 
2420 	/* Initialize page ext after all struct pages are initialized. */
2421 	if (deferred_struct_pages)
2422 		page_ext_init();
2423 
2424 	page_alloc_sysctl_init();
2425 }
2426 
2427 /*
2428  * Adaptive scale is meant to reduce sizes of hash tables on large memory
2429  * machines. As memory size is increased the scale is also increased but at
2430  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
2431  * quadruples the scale is increased by one, which means the size of hash table
2432  * only doubles, instead of quadrupling as well.
2433  * Because 32-bit systems cannot have large physical memory, where this scaling
2434  * makes sense, it is disabled on such platforms.
2435  */
2436 #if __BITS_PER_LONG > 32
2437 #define ADAPT_SCALE_BASE	(64ul << 30)
2438 #define ADAPT_SCALE_SHIFT	2
2439 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
2440 #endif
2441 
2442 /*
2443  * allocate a large system hash table from bootmem
2444  * - it is assumed that the hash table must contain an exact power-of-2
2445  *   quantity of entries
2446  * - limit is the number of hash buckets, not the total allocation size
2447  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)2448 void *__init alloc_large_system_hash(const char *tablename,
2449 				     unsigned long bucketsize,
2450 				     unsigned long numentries,
2451 				     int scale,
2452 				     int flags,
2453 				     unsigned int *_hash_shift,
2454 				     unsigned int *_hash_mask,
2455 				     unsigned long low_limit,
2456 				     unsigned long high_limit)
2457 {
2458 	unsigned long long max = high_limit;
2459 	unsigned long log2qty, size;
2460 	void *table;
2461 	gfp_t gfp_flags;
2462 	bool virt;
2463 	bool huge;
2464 
2465 	/* allow the kernel cmdline to have a say */
2466 	if (!numentries) {
2467 		/* round applicable memory size up to nearest megabyte */
2468 		numentries = nr_kernel_pages;
2469 
2470 		/* It isn't necessary when PAGE_SIZE >= 1MB */
2471 		if (PAGE_SIZE < SZ_1M)
2472 			numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
2473 
2474 #if __BITS_PER_LONG > 32
2475 		if (!high_limit) {
2476 			unsigned long adapt;
2477 
2478 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
2479 			     adapt <<= ADAPT_SCALE_SHIFT)
2480 				scale++;
2481 		}
2482 #endif
2483 
2484 		/* limit to 1 bucket per 2^scale bytes of low memory */
2485 		if (scale > PAGE_SHIFT)
2486 			numentries >>= (scale - PAGE_SHIFT);
2487 		else
2488 			numentries <<= (PAGE_SHIFT - scale);
2489 
2490 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
2491 			numentries = PAGE_SIZE / bucketsize;
2492 	}
2493 	numentries = roundup_pow_of_two(numentries);
2494 
2495 	/* limit allocation size to 1/16 total memory by default */
2496 	if (max == 0) {
2497 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2498 		do_div(max, bucketsize);
2499 	}
2500 	max = min(max, 0x80000000ULL);
2501 
2502 	if (numentries < low_limit)
2503 		numentries = low_limit;
2504 	if (numentries > max)
2505 		numentries = max;
2506 
2507 	log2qty = ilog2(numentries);
2508 
2509 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
2510 	do {
2511 		virt = false;
2512 		size = bucketsize << log2qty;
2513 		if (flags & HASH_EARLY) {
2514 			if (flags & HASH_ZERO)
2515 				table = memblock_alloc(size, SMP_CACHE_BYTES);
2516 			else
2517 				table = memblock_alloc_raw(size,
2518 							   SMP_CACHE_BYTES);
2519 		} else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
2520 			table = vmalloc_huge(size, gfp_flags);
2521 			virt = true;
2522 			if (table)
2523 				huge = is_vm_area_hugepages(table);
2524 		} else {
2525 			/*
2526 			 * If bucketsize is not a power-of-two, we may free
2527 			 * some pages at the end of hash table which
2528 			 * alloc_pages_exact() automatically does
2529 			 */
2530 			table = alloc_pages_exact(size, gfp_flags);
2531 			kmemleak_alloc(table, size, 1, gfp_flags);
2532 		}
2533 	} while (!table && size > PAGE_SIZE && --log2qty);
2534 
2535 	if (!table)
2536 		panic("Failed to allocate %s hash table\n", tablename);
2537 
2538 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
2539 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
2540 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
2541 
2542 	if (_hash_shift)
2543 		*_hash_shift = log2qty;
2544 	if (_hash_mask)
2545 		*_hash_mask = (1 << log2qty) - 1;
2546 
2547 	return table;
2548 }
2549 
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)2550 void __init memblock_free_pages(struct page *page, unsigned long pfn,
2551 							unsigned int order)
2552 {
2553 	if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
2554 		int nid = early_pfn_to_nid(pfn);
2555 
2556 		if (!early_page_initialised(pfn, nid))
2557 			return;
2558 	}
2559 
2560 	if (!kmsan_memblock_free_pages(page, order)) {
2561 		/* KMSAN will take care of these pages. */
2562 		return;
2563 	}
2564 
2565 	/* pages were reserved and not allocated */
2566 	clear_page_tag_ref(page);
2567 	__free_pages_core(page, order, MEMINIT_EARLY);
2568 }
2569 
2570 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2571 EXPORT_SYMBOL(init_on_alloc);
2572 
2573 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2574 EXPORT_SYMBOL(init_on_free);
2575 
2576 static bool _init_on_alloc_enabled_early __read_mostly
2577 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)2578 static int __init early_init_on_alloc(char *buf)
2579 {
2580 
2581 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
2582 }
2583 early_param("init_on_alloc", early_init_on_alloc);
2584 
2585 static bool _init_on_free_enabled_early __read_mostly
2586 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)2587 static int __init early_init_on_free(char *buf)
2588 {
2589 	return kstrtobool(buf, &_init_on_free_enabled_early);
2590 }
2591 early_param("init_on_free", early_init_on_free);
2592 
2593 DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
2594 
2595 /*
2596  * Enable static keys related to various memory debugging and hardening options.
2597  * Some override others, and depend on early params that are evaluated in the
2598  * order of appearance. So we need to first gather the full picture of what was
2599  * enabled, and then make decisions.
2600  */
mem_debugging_and_hardening_init(void)2601 static void __init mem_debugging_and_hardening_init(void)
2602 {
2603 	bool page_poisoning_requested = false;
2604 	bool want_check_pages = false;
2605 
2606 #ifdef CONFIG_PAGE_POISONING
2607 	/*
2608 	 * Page poisoning is debug page alloc for some arches. If
2609 	 * either of those options are enabled, enable poisoning.
2610 	 */
2611 	if (page_poisoning_enabled() ||
2612 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
2613 	      debug_pagealloc_enabled())) {
2614 		static_branch_enable(&_page_poisoning_enabled);
2615 		page_poisoning_requested = true;
2616 		want_check_pages = true;
2617 	}
2618 #endif
2619 
2620 	if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
2621 	    page_poisoning_requested) {
2622 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
2623 			"will take precedence over init_on_alloc and init_on_free\n");
2624 		_init_on_alloc_enabled_early = false;
2625 		_init_on_free_enabled_early = false;
2626 	}
2627 
2628 	if (_init_on_alloc_enabled_early) {
2629 		want_check_pages = true;
2630 		static_branch_enable(&init_on_alloc);
2631 	} else {
2632 		static_branch_disable(&init_on_alloc);
2633 	}
2634 
2635 	if (_init_on_free_enabled_early) {
2636 		want_check_pages = true;
2637 		static_branch_enable(&init_on_free);
2638 	} else {
2639 		static_branch_disable(&init_on_free);
2640 	}
2641 
2642 	if (IS_ENABLED(CONFIG_KMSAN) &&
2643 	    (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
2644 		pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
2645 
2646 #ifdef CONFIG_DEBUG_PAGEALLOC
2647 	if (debug_pagealloc_enabled()) {
2648 		want_check_pages = true;
2649 		static_branch_enable(&_debug_pagealloc_enabled);
2650 
2651 		if (debug_guardpage_minorder())
2652 			static_branch_enable(&_debug_guardpage_enabled);
2653 	}
2654 #endif
2655 
2656 	/*
2657 	 * Any page debugging or hardening option also enables sanity checking
2658 	 * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
2659 	 * enabled already.
2660 	 */
2661 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
2662 		static_branch_enable(&check_pages_enabled);
2663 }
2664 
2665 /* Report memory auto-initialization states for this boot. */
report_meminit(void)2666 static void __init report_meminit(void)
2667 {
2668 	const char *stack;
2669 
2670 	if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
2671 		stack = "all(pattern)";
2672 	else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
2673 		stack = "all(zero)";
2674 	else
2675 		stack = "off";
2676 
2677 	pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
2678 		stack, str_on_off(want_init_on_alloc(GFP_KERNEL)),
2679 		str_on_off(want_init_on_free()));
2680 	if (want_init_on_free())
2681 		pr_info("mem auto-init: clearing system memory may take some time...\n");
2682 }
2683 
mem_init_print_info(void)2684 static void __init mem_init_print_info(void)
2685 {
2686 	unsigned long physpages, codesize, datasize, rosize, bss_size;
2687 	unsigned long init_code_size, init_data_size;
2688 
2689 	physpages = get_num_physpages();
2690 	codesize = _etext - _stext;
2691 	datasize = _edata - _sdata;
2692 	rosize = __end_rodata - __start_rodata;
2693 	bss_size = __bss_stop - __bss_start;
2694 	init_data_size = __init_end - __init_begin;
2695 	init_code_size = _einittext - _sinittext;
2696 
2697 	/*
2698 	 * Detect special cases and adjust section sizes accordingly:
2699 	 * 1) .init.* may be embedded into .data sections
2700 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
2701 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
2702 	 * 3) .rodata.* may be embedded into .text or .data sections.
2703 	 */
2704 #define adj_init_size(start, end, size, pos, adj) \
2705 	do { \
2706 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
2707 			size -= adj; \
2708 	} while (0)
2709 
2710 	adj_init_size(__init_begin, __init_end, init_data_size,
2711 		     _sinittext, init_code_size);
2712 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
2713 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
2714 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
2715 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
2716 
2717 #undef	adj_init_size
2718 
2719 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
2720 #ifdef	CONFIG_HIGHMEM
2721 		", %luK highmem"
2722 #endif
2723 		")\n",
2724 		K(nr_free_pages()), K(physpages),
2725 		codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
2726 		(init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
2727 		K(physpages - totalram_pages() - totalcma_pages),
2728 		K(totalcma_pages)
2729 #ifdef	CONFIG_HIGHMEM
2730 		, K(totalhigh_pages())
2731 #endif
2732 		);
2733 }
2734 
arch_mm_preinit(void)2735 void __init __weak arch_mm_preinit(void)
2736 {
2737 }
2738 
mem_init(void)2739 void __init __weak mem_init(void)
2740 {
2741 }
2742 
2743 /*
2744  * Set up kernel memory allocators
2745  */
mm_core_init(void)2746 void __init mm_core_init(void)
2747 {
2748 	arch_mm_preinit();
2749 	hugetlb_bootmem_alloc();
2750 
2751 	/* Initializations relying on SMP setup */
2752 	BUILD_BUG_ON(MAX_ZONELISTS > 2);
2753 	build_all_zonelists(NULL);
2754 	page_alloc_init_cpuhp();
2755 	alloc_tag_sec_init();
2756 	/*
2757 	 * page_ext requires contiguous pages,
2758 	 * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
2759 	 */
2760 	page_ext_init_flatmem();
2761 	mem_debugging_and_hardening_init();
2762 	kfence_alloc_pool_and_metadata();
2763 	report_meminit();
2764 	kmsan_init_shadow();
2765 	stack_depot_early_init();
2766 
2767 	/*
2768 	 * KHO memory setup must happen while memblock is still active, but
2769 	 * as close as possible to buddy initialization
2770 	 */
2771 	kho_memory_init();
2772 
2773 	memblock_free_all();
2774 	mem_init();
2775 	kmem_cache_init();
2776 	/*
2777 	 * page_owner must be initialized after buddy is ready, and also after
2778 	 * slab is ready so that stack_depot_init() works properly
2779 	 */
2780 	page_ext_init_flatmem_late();
2781 	kmemleak_init();
2782 	ptlock_cache_init();
2783 	pgtable_cache_init();
2784 	debug_objects_mem_init();
2785 	vmalloc_init();
2786 	/* If no deferred init page_ext now, as vmap is fully initialized */
2787 	if (!deferred_struct_pages)
2788 		page_ext_init();
2789 	/* Should be run before the first non-init thread is created */
2790 	init_espfix_bsp();
2791 	/* Should be run after espfix64 is set up. */
2792 	pti_init();
2793 	kmsan_init_runtime();
2794 	mm_cache_init();
2795 	execmem_init();
2796 }
2797